xref: /linux-6.15/kernel/exit.c (revision f7275650)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/tracehook.h>
50 
51 #include <asm/uaccess.h>
52 #include <asm/unistd.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu_context.h>
55 
56 static void exit_mm(struct task_struct * tsk);
57 
58 static inline int task_detached(struct task_struct *p)
59 {
60 	return p->exit_signal == -1;
61 }
62 
63 static void __unhash_process(struct task_struct *p)
64 {
65 	nr_threads--;
66 	detach_pid(p, PIDTYPE_PID);
67 	if (thread_group_leader(p)) {
68 		detach_pid(p, PIDTYPE_PGID);
69 		detach_pid(p, PIDTYPE_SID);
70 
71 		list_del_rcu(&p->tasks);
72 		__get_cpu_var(process_counts)--;
73 	}
74 	list_del_rcu(&p->thread_group);
75 	list_del_init(&p->sibling);
76 }
77 
78 /*
79  * This function expects the tasklist_lock write-locked.
80  */
81 static void __exit_signal(struct task_struct *tsk)
82 {
83 	struct signal_struct *sig = tsk->signal;
84 	struct sighand_struct *sighand;
85 
86 	BUG_ON(!sig);
87 	BUG_ON(!atomic_read(&sig->count));
88 
89 	sighand = rcu_dereference(tsk->sighand);
90 	spin_lock(&sighand->siglock);
91 
92 	posix_cpu_timers_exit(tsk);
93 	if (atomic_dec_and_test(&sig->count))
94 		posix_cpu_timers_exit_group(tsk);
95 	else {
96 		/*
97 		 * If there is any task waiting for the group exit
98 		 * then notify it:
99 		 */
100 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101 			wake_up_process(sig->group_exit_task);
102 
103 		if (tsk == sig->curr_target)
104 			sig->curr_target = next_thread(tsk);
105 		/*
106 		 * Accumulate here the counters for all threads but the
107 		 * group leader as they die, so they can be added into
108 		 * the process-wide totals when those are taken.
109 		 * The group leader stays around as a zombie as long
110 		 * as there are other threads.  When it gets reaped,
111 		 * the exit.c code will add its counts into these totals.
112 		 * We won't ever get here for the group leader, since it
113 		 * will have been the last reference on the signal_struct.
114 		 */
115 		sig->utime = cputime_add(sig->utime, task_utime(tsk));
116 		sig->stime = cputime_add(sig->stime, task_stime(tsk));
117 		sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
118 		sig->min_flt += tsk->min_flt;
119 		sig->maj_flt += tsk->maj_flt;
120 		sig->nvcsw += tsk->nvcsw;
121 		sig->nivcsw += tsk->nivcsw;
122 		sig->inblock += task_io_get_inblock(tsk);
123 		sig->oublock += task_io_get_oublock(tsk);
124 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
125 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
126 		sig = NULL; /* Marker for below. */
127 	}
128 
129 	__unhash_process(tsk);
130 
131 	/*
132 	 * Do this under ->siglock, we can race with another thread
133 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
134 	 */
135 	flush_sigqueue(&tsk->pending);
136 
137 	tsk->signal = NULL;
138 	tsk->sighand = NULL;
139 	spin_unlock(&sighand->siglock);
140 
141 	__cleanup_sighand(sighand);
142 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
143 	if (sig) {
144 		flush_sigqueue(&sig->shared_pending);
145 		taskstats_tgid_free(sig);
146 		__cleanup_signal(sig);
147 	}
148 }
149 
150 static void delayed_put_task_struct(struct rcu_head *rhp)
151 {
152 	put_task_struct(container_of(rhp, struct task_struct, rcu));
153 }
154 
155 
156 void release_task(struct task_struct * p)
157 {
158 	struct task_struct *leader;
159 	int zap_leader;
160 repeat:
161 	tracehook_prepare_release_task(p);
162 	atomic_dec(&p->user->processes);
163 	proc_flush_task(p);
164 	write_lock_irq(&tasklist_lock);
165 	tracehook_finish_release_task(p);
166 	__exit_signal(p);
167 
168 	/*
169 	 * If we are the last non-leader member of the thread
170 	 * group, and the leader is zombie, then notify the
171 	 * group leader's parent process. (if it wants notification.)
172 	 */
173 	zap_leader = 0;
174 	leader = p->group_leader;
175 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
176 		BUG_ON(task_detached(leader));
177 		do_notify_parent(leader, leader->exit_signal);
178 		/*
179 		 * If we were the last child thread and the leader has
180 		 * exited already, and the leader's parent ignores SIGCHLD,
181 		 * then we are the one who should release the leader.
182 		 *
183 		 * do_notify_parent() will have marked it self-reaping in
184 		 * that case.
185 		 */
186 		zap_leader = task_detached(leader);
187 
188 		/*
189 		 * This maintains the invariant that release_task()
190 		 * only runs on a task in EXIT_DEAD, just for sanity.
191 		 */
192 		if (zap_leader)
193 			leader->exit_state = EXIT_DEAD;
194 	}
195 
196 	write_unlock_irq(&tasklist_lock);
197 	release_thread(p);
198 	call_rcu(&p->rcu, delayed_put_task_struct);
199 
200 	p = leader;
201 	if (unlikely(zap_leader))
202 		goto repeat;
203 }
204 
205 /*
206  * This checks not only the pgrp, but falls back on the pid if no
207  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
208  * without this...
209  *
210  * The caller must hold rcu lock or the tasklist lock.
211  */
212 struct pid *session_of_pgrp(struct pid *pgrp)
213 {
214 	struct task_struct *p;
215 	struct pid *sid = NULL;
216 
217 	p = pid_task(pgrp, PIDTYPE_PGID);
218 	if (p == NULL)
219 		p = pid_task(pgrp, PIDTYPE_PID);
220 	if (p != NULL)
221 		sid = task_session(p);
222 
223 	return sid;
224 }
225 
226 /*
227  * Determine if a process group is "orphaned", according to the POSIX
228  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
229  * by terminal-generated stop signals.  Newly orphaned process groups are
230  * to receive a SIGHUP and a SIGCONT.
231  *
232  * "I ask you, have you ever known what it is to be an orphan?"
233  */
234 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
235 {
236 	struct task_struct *p;
237 
238 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
239 		if ((p == ignored_task) ||
240 		    (p->exit_state && thread_group_empty(p)) ||
241 		    is_global_init(p->real_parent))
242 			continue;
243 
244 		if (task_pgrp(p->real_parent) != pgrp &&
245 		    task_session(p->real_parent) == task_session(p))
246 			return 0;
247 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
248 
249 	return 1;
250 }
251 
252 int is_current_pgrp_orphaned(void)
253 {
254 	int retval;
255 
256 	read_lock(&tasklist_lock);
257 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
258 	read_unlock(&tasklist_lock);
259 
260 	return retval;
261 }
262 
263 static int has_stopped_jobs(struct pid *pgrp)
264 {
265 	int retval = 0;
266 	struct task_struct *p;
267 
268 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
269 		if (!task_is_stopped(p))
270 			continue;
271 		retval = 1;
272 		break;
273 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
274 	return retval;
275 }
276 
277 /*
278  * Check to see if any process groups have become orphaned as
279  * a result of our exiting, and if they have any stopped jobs,
280  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
281  */
282 static void
283 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
284 {
285 	struct pid *pgrp = task_pgrp(tsk);
286 	struct task_struct *ignored_task = tsk;
287 
288 	if (!parent)
289 		 /* exit: our father is in a different pgrp than
290 		  * we are and we were the only connection outside.
291 		  */
292 		parent = tsk->real_parent;
293 	else
294 		/* reparent: our child is in a different pgrp than
295 		 * we are, and it was the only connection outside.
296 		 */
297 		ignored_task = NULL;
298 
299 	if (task_pgrp(parent) != pgrp &&
300 	    task_session(parent) == task_session(tsk) &&
301 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
302 	    has_stopped_jobs(pgrp)) {
303 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
304 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
305 	}
306 }
307 
308 /**
309  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
310  *
311  * If a kernel thread is launched as a result of a system call, or if
312  * it ever exits, it should generally reparent itself to kthreadd so it
313  * isn't in the way of other processes and is correctly cleaned up on exit.
314  *
315  * The various task state such as scheduling policy and priority may have
316  * been inherited from a user process, so we reset them to sane values here.
317  *
318  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
319  */
320 static void reparent_to_kthreadd(void)
321 {
322 	write_lock_irq(&tasklist_lock);
323 
324 	ptrace_unlink(current);
325 	/* Reparent to init */
326 	current->real_parent = current->parent = kthreadd_task;
327 	list_move_tail(&current->sibling, &current->real_parent->children);
328 
329 	/* Set the exit signal to SIGCHLD so we signal init on exit */
330 	current->exit_signal = SIGCHLD;
331 
332 	if (task_nice(current) < 0)
333 		set_user_nice(current, 0);
334 	/* cpus_allowed? */
335 	/* rt_priority? */
336 	/* signals? */
337 	security_task_reparent_to_init(current);
338 	memcpy(current->signal->rlim, init_task.signal->rlim,
339 	       sizeof(current->signal->rlim));
340 	atomic_inc(&(INIT_USER->__count));
341 	write_unlock_irq(&tasklist_lock);
342 	switch_uid(INIT_USER);
343 }
344 
345 void __set_special_pids(struct pid *pid)
346 {
347 	struct task_struct *curr = current->group_leader;
348 	pid_t nr = pid_nr(pid);
349 
350 	if (task_session(curr) != pid) {
351 		change_pid(curr, PIDTYPE_SID, pid);
352 		set_task_session(curr, nr);
353 	}
354 	if (task_pgrp(curr) != pid) {
355 		change_pid(curr, PIDTYPE_PGID, pid);
356 		set_task_pgrp(curr, nr);
357 	}
358 }
359 
360 static void set_special_pids(struct pid *pid)
361 {
362 	write_lock_irq(&tasklist_lock);
363 	__set_special_pids(pid);
364 	write_unlock_irq(&tasklist_lock);
365 }
366 
367 /*
368  * Let kernel threads use this to say that they
369  * allow a certain signal (since daemonize() will
370  * have disabled all of them by default).
371  */
372 int allow_signal(int sig)
373 {
374 	if (!valid_signal(sig) || sig < 1)
375 		return -EINVAL;
376 
377 	spin_lock_irq(&current->sighand->siglock);
378 	sigdelset(&current->blocked, sig);
379 	if (!current->mm) {
380 		/* Kernel threads handle their own signals.
381 		   Let the signal code know it'll be handled, so
382 		   that they don't get converted to SIGKILL or
383 		   just silently dropped */
384 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
385 	}
386 	recalc_sigpending();
387 	spin_unlock_irq(&current->sighand->siglock);
388 	return 0;
389 }
390 
391 EXPORT_SYMBOL(allow_signal);
392 
393 int disallow_signal(int sig)
394 {
395 	if (!valid_signal(sig) || sig < 1)
396 		return -EINVAL;
397 
398 	spin_lock_irq(&current->sighand->siglock);
399 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
400 	recalc_sigpending();
401 	spin_unlock_irq(&current->sighand->siglock);
402 	return 0;
403 }
404 
405 EXPORT_SYMBOL(disallow_signal);
406 
407 /*
408  *	Put all the gunge required to become a kernel thread without
409  *	attached user resources in one place where it belongs.
410  */
411 
412 void daemonize(const char *name, ...)
413 {
414 	va_list args;
415 	struct fs_struct *fs;
416 	sigset_t blocked;
417 
418 	va_start(args, name);
419 	vsnprintf(current->comm, sizeof(current->comm), name, args);
420 	va_end(args);
421 
422 	/*
423 	 * If we were started as result of loading a module, close all of the
424 	 * user space pages.  We don't need them, and if we didn't close them
425 	 * they would be locked into memory.
426 	 */
427 	exit_mm(current);
428 	/*
429 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
430 	 * or suspend transition begins right now.
431 	 */
432 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
433 
434 	if (current->nsproxy != &init_nsproxy) {
435 		get_nsproxy(&init_nsproxy);
436 		switch_task_namespaces(current, &init_nsproxy);
437 	}
438 	set_special_pids(&init_struct_pid);
439 	proc_clear_tty(current);
440 
441 	/* Block and flush all signals */
442 	sigfillset(&blocked);
443 	sigprocmask(SIG_BLOCK, &blocked, NULL);
444 	flush_signals(current);
445 
446 	/* Become as one with the init task */
447 
448 	exit_fs(current);	/* current->fs->count--; */
449 	fs = init_task.fs;
450 	current->fs = fs;
451 	atomic_inc(&fs->count);
452 
453 	exit_files(current);
454 	current->files = init_task.files;
455 	atomic_inc(&current->files->count);
456 
457 	reparent_to_kthreadd();
458 }
459 
460 EXPORT_SYMBOL(daemonize);
461 
462 static void close_files(struct files_struct * files)
463 {
464 	int i, j;
465 	struct fdtable *fdt;
466 
467 	j = 0;
468 
469 	/*
470 	 * It is safe to dereference the fd table without RCU or
471 	 * ->file_lock because this is the last reference to the
472 	 * files structure.
473 	 */
474 	fdt = files_fdtable(files);
475 	for (;;) {
476 		unsigned long set;
477 		i = j * __NFDBITS;
478 		if (i >= fdt->max_fds)
479 			break;
480 		set = fdt->open_fds->fds_bits[j++];
481 		while (set) {
482 			if (set & 1) {
483 				struct file * file = xchg(&fdt->fd[i], NULL);
484 				if (file) {
485 					filp_close(file, files);
486 					cond_resched();
487 				}
488 			}
489 			i++;
490 			set >>= 1;
491 		}
492 	}
493 }
494 
495 struct files_struct *get_files_struct(struct task_struct *task)
496 {
497 	struct files_struct *files;
498 
499 	task_lock(task);
500 	files = task->files;
501 	if (files)
502 		atomic_inc(&files->count);
503 	task_unlock(task);
504 
505 	return files;
506 }
507 
508 void put_files_struct(struct files_struct *files)
509 {
510 	struct fdtable *fdt;
511 
512 	if (atomic_dec_and_test(&files->count)) {
513 		close_files(files);
514 		/*
515 		 * Free the fd and fdset arrays if we expanded them.
516 		 * If the fdtable was embedded, pass files for freeing
517 		 * at the end of the RCU grace period. Otherwise,
518 		 * you can free files immediately.
519 		 */
520 		fdt = files_fdtable(files);
521 		if (fdt != &files->fdtab)
522 			kmem_cache_free(files_cachep, files);
523 		free_fdtable(fdt);
524 	}
525 }
526 
527 void reset_files_struct(struct files_struct *files)
528 {
529 	struct task_struct *tsk = current;
530 	struct files_struct *old;
531 
532 	old = tsk->files;
533 	task_lock(tsk);
534 	tsk->files = files;
535 	task_unlock(tsk);
536 	put_files_struct(old);
537 }
538 
539 void exit_files(struct task_struct *tsk)
540 {
541 	struct files_struct * files = tsk->files;
542 
543 	if (files) {
544 		task_lock(tsk);
545 		tsk->files = NULL;
546 		task_unlock(tsk);
547 		put_files_struct(files);
548 	}
549 }
550 
551 void put_fs_struct(struct fs_struct *fs)
552 {
553 	/* No need to hold fs->lock if we are killing it */
554 	if (atomic_dec_and_test(&fs->count)) {
555 		path_put(&fs->root);
556 		path_put(&fs->pwd);
557 		kmem_cache_free(fs_cachep, fs);
558 	}
559 }
560 
561 void exit_fs(struct task_struct *tsk)
562 {
563 	struct fs_struct * fs = tsk->fs;
564 
565 	if (fs) {
566 		task_lock(tsk);
567 		tsk->fs = NULL;
568 		task_unlock(tsk);
569 		put_fs_struct(fs);
570 	}
571 }
572 
573 EXPORT_SYMBOL_GPL(exit_fs);
574 
575 #ifdef CONFIG_MM_OWNER
576 /*
577  * Task p is exiting and it owned mm, lets find a new owner for it
578  */
579 static inline int
580 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
581 {
582 	/*
583 	 * If there are other users of the mm and the owner (us) is exiting
584 	 * we need to find a new owner to take on the responsibility.
585 	 */
586 	if (atomic_read(&mm->mm_users) <= 1)
587 		return 0;
588 	if (mm->owner != p)
589 		return 0;
590 	return 1;
591 }
592 
593 void mm_update_next_owner(struct mm_struct *mm)
594 {
595 	struct task_struct *c, *g, *p = current;
596 
597 retry:
598 	if (!mm_need_new_owner(mm, p))
599 		return;
600 
601 	read_lock(&tasklist_lock);
602 	/*
603 	 * Search in the children
604 	 */
605 	list_for_each_entry(c, &p->children, sibling) {
606 		if (c->mm == mm)
607 			goto assign_new_owner;
608 	}
609 
610 	/*
611 	 * Search in the siblings
612 	 */
613 	list_for_each_entry(c, &p->parent->children, sibling) {
614 		if (c->mm == mm)
615 			goto assign_new_owner;
616 	}
617 
618 	/*
619 	 * Search through everything else. We should not get
620 	 * here often
621 	 */
622 	do_each_thread(g, c) {
623 		if (c->mm == mm)
624 			goto assign_new_owner;
625 	} while_each_thread(g, c);
626 
627 	read_unlock(&tasklist_lock);
628 	/*
629 	 * We found no owner yet mm_users > 1: this implies that we are
630 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
631 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL,
632 	 * so that subsystems can understand the callback and take action.
633 	 */
634 	down_write(&mm->mmap_sem);
635 	cgroup_mm_owner_callbacks(mm->owner, NULL);
636 	mm->owner = NULL;
637 	up_write(&mm->mmap_sem);
638 	return;
639 
640 assign_new_owner:
641 	BUG_ON(c == p);
642 	get_task_struct(c);
643 	read_unlock(&tasklist_lock);
644 	down_write(&mm->mmap_sem);
645 	/*
646 	 * The task_lock protects c->mm from changing.
647 	 * We always want mm->owner->mm == mm
648 	 */
649 	task_lock(c);
650 	if (c->mm != mm) {
651 		task_unlock(c);
652 		up_write(&mm->mmap_sem);
653 		put_task_struct(c);
654 		goto retry;
655 	}
656 	cgroup_mm_owner_callbacks(mm->owner, c);
657 	mm->owner = c;
658 	task_unlock(c);
659 	up_write(&mm->mmap_sem);
660 	put_task_struct(c);
661 }
662 #endif /* CONFIG_MM_OWNER */
663 
664 /*
665  * Turn us into a lazy TLB process if we
666  * aren't already..
667  */
668 static void exit_mm(struct task_struct * tsk)
669 {
670 	struct mm_struct *mm = tsk->mm;
671 	struct core_state *core_state;
672 
673 	mm_release(tsk, mm);
674 	if (!mm)
675 		return;
676 	/*
677 	 * Serialize with any possible pending coredump.
678 	 * We must hold mmap_sem around checking core_state
679 	 * and clearing tsk->mm.  The core-inducing thread
680 	 * will increment ->nr_threads for each thread in the
681 	 * group with ->mm != NULL.
682 	 */
683 	down_read(&mm->mmap_sem);
684 	core_state = mm->core_state;
685 	if (core_state) {
686 		struct core_thread self;
687 		up_read(&mm->mmap_sem);
688 
689 		self.task = tsk;
690 		self.next = xchg(&core_state->dumper.next, &self);
691 		/*
692 		 * Implies mb(), the result of xchg() must be visible
693 		 * to core_state->dumper.
694 		 */
695 		if (atomic_dec_and_test(&core_state->nr_threads))
696 			complete(&core_state->startup);
697 
698 		for (;;) {
699 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
700 			if (!self.task) /* see coredump_finish() */
701 				break;
702 			schedule();
703 		}
704 		__set_task_state(tsk, TASK_RUNNING);
705 		down_read(&mm->mmap_sem);
706 	}
707 	atomic_inc(&mm->mm_count);
708 	BUG_ON(mm != tsk->active_mm);
709 	/* more a memory barrier than a real lock */
710 	task_lock(tsk);
711 	tsk->mm = NULL;
712 	up_read(&mm->mmap_sem);
713 	enter_lazy_tlb(mm, current);
714 	/* We don't want this task to be frozen prematurely */
715 	clear_freeze_flag(tsk);
716 	task_unlock(tsk);
717 	mm_update_next_owner(mm);
718 	mmput(mm);
719 }
720 
721 /*
722  * Return nonzero if @parent's children should reap themselves.
723  *
724  * Called with write_lock_irq(&tasklist_lock) held.
725  */
726 static int ignoring_children(struct task_struct *parent)
727 {
728 	int ret;
729 	struct sighand_struct *psig = parent->sighand;
730 	unsigned long flags;
731 	spin_lock_irqsave(&psig->siglock, flags);
732 	ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
733 	       (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
734 	spin_unlock_irqrestore(&psig->siglock, flags);
735 	return ret;
736 }
737 
738 /*
739  * Detach all tasks we were using ptrace on.
740  * Any that need to be release_task'd are put on the @dead list.
741  *
742  * Called with write_lock(&tasklist_lock) held.
743  */
744 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
745 {
746 	struct task_struct *p, *n;
747 	int ign = -1;
748 
749 	list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
750 		__ptrace_unlink(p);
751 
752 		if (p->exit_state != EXIT_ZOMBIE)
753 			continue;
754 
755 		/*
756 		 * If it's a zombie, our attachedness prevented normal
757 		 * parent notification or self-reaping.  Do notification
758 		 * now if it would have happened earlier.  If it should
759 		 * reap itself, add it to the @dead list.  We can't call
760 		 * release_task() here because we already hold tasklist_lock.
761 		 *
762 		 * If it's our own child, there is no notification to do.
763 		 * But if our normal children self-reap, then this child
764 		 * was prevented by ptrace and we must reap it now.
765 		 */
766 		if (!task_detached(p) && thread_group_empty(p)) {
767 			if (!same_thread_group(p->real_parent, parent))
768 				do_notify_parent(p, p->exit_signal);
769 			else {
770 				if (ign < 0)
771 					ign = ignoring_children(parent);
772 				if (ign)
773 					p->exit_signal = -1;
774 			}
775 		}
776 
777 		if (task_detached(p)) {
778 			/*
779 			 * Mark it as in the process of being reaped.
780 			 */
781 			p->exit_state = EXIT_DEAD;
782 			list_add(&p->ptrace_entry, dead);
783 		}
784 	}
785 }
786 
787 /*
788  * Finish up exit-time ptrace cleanup.
789  *
790  * Called without locks.
791  */
792 static void ptrace_exit_finish(struct task_struct *parent,
793 			       struct list_head *dead)
794 {
795 	struct task_struct *p, *n;
796 
797 	BUG_ON(!list_empty(&parent->ptraced));
798 
799 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
800 		list_del_init(&p->ptrace_entry);
801 		release_task(p);
802 	}
803 }
804 
805 static void reparent_thread(struct task_struct *p, struct task_struct *father)
806 {
807 	if (p->pdeath_signal)
808 		/* We already hold the tasklist_lock here.  */
809 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
810 
811 	list_move_tail(&p->sibling, &p->real_parent->children);
812 
813 	/* If this is a threaded reparent there is no need to
814 	 * notify anyone anything has happened.
815 	 */
816 	if (same_thread_group(p->real_parent, father))
817 		return;
818 
819 	/* We don't want people slaying init.  */
820 	if (!task_detached(p))
821 		p->exit_signal = SIGCHLD;
822 
823 	/* If we'd notified the old parent about this child's death,
824 	 * also notify the new parent.
825 	 */
826 	if (!ptrace_reparented(p) &&
827 	    p->exit_state == EXIT_ZOMBIE &&
828 	    !task_detached(p) && thread_group_empty(p))
829 		do_notify_parent(p, p->exit_signal);
830 
831 	kill_orphaned_pgrp(p, father);
832 }
833 
834 /*
835  * When we die, we re-parent all our children.
836  * Try to give them to another thread in our thread
837  * group, and if no such member exists, give it to
838  * the child reaper process (ie "init") in our pid
839  * space.
840  */
841 static struct task_struct *find_new_reaper(struct task_struct *father)
842 {
843 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
844 	struct task_struct *thread;
845 
846 	thread = father;
847 	while_each_thread(father, thread) {
848 		if (thread->flags & PF_EXITING)
849 			continue;
850 		if (unlikely(pid_ns->child_reaper == father))
851 			pid_ns->child_reaper = thread;
852 		return thread;
853 	}
854 
855 	if (unlikely(pid_ns->child_reaper == father)) {
856 		write_unlock_irq(&tasklist_lock);
857 		if (unlikely(pid_ns == &init_pid_ns))
858 			panic("Attempted to kill init!");
859 
860 		zap_pid_ns_processes(pid_ns);
861 		write_lock_irq(&tasklist_lock);
862 		/*
863 		 * We can not clear ->child_reaper or leave it alone.
864 		 * There may by stealth EXIT_DEAD tasks on ->children,
865 		 * forget_original_parent() must move them somewhere.
866 		 */
867 		pid_ns->child_reaper = init_pid_ns.child_reaper;
868 	}
869 
870 	return pid_ns->child_reaper;
871 }
872 
873 static void forget_original_parent(struct task_struct *father)
874 {
875 	struct task_struct *p, *n, *reaper;
876 	LIST_HEAD(ptrace_dead);
877 
878 	write_lock_irq(&tasklist_lock);
879 	reaper = find_new_reaper(father);
880 	/*
881 	 * First clean up ptrace if we were using it.
882 	 */
883 	ptrace_exit(father, &ptrace_dead);
884 
885 	list_for_each_entry_safe(p, n, &father->children, sibling) {
886 		p->real_parent = reaper;
887 		if (p->parent == father) {
888 			BUG_ON(p->ptrace);
889 			p->parent = p->real_parent;
890 		}
891 		reparent_thread(p, father);
892 	}
893 
894 	write_unlock_irq(&tasklist_lock);
895 	BUG_ON(!list_empty(&father->children));
896 
897 	ptrace_exit_finish(father, &ptrace_dead);
898 }
899 
900 /*
901  * Send signals to all our closest relatives so that they know
902  * to properly mourn us..
903  */
904 static void exit_notify(struct task_struct *tsk, int group_dead)
905 {
906 	int signal;
907 	void *cookie;
908 
909 	/*
910 	 * This does two things:
911 	 *
912   	 * A.  Make init inherit all the child processes
913 	 * B.  Check to see if any process groups have become orphaned
914 	 *	as a result of our exiting, and if they have any stopped
915 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
916 	 */
917 	forget_original_parent(tsk);
918 	exit_task_namespaces(tsk);
919 
920 	write_lock_irq(&tasklist_lock);
921 	if (group_dead)
922 		kill_orphaned_pgrp(tsk->group_leader, NULL);
923 
924 	/* Let father know we died
925 	 *
926 	 * Thread signals are configurable, but you aren't going to use
927 	 * that to send signals to arbitary processes.
928 	 * That stops right now.
929 	 *
930 	 * If the parent exec id doesn't match the exec id we saved
931 	 * when we started then we know the parent has changed security
932 	 * domain.
933 	 *
934 	 * If our self_exec id doesn't match our parent_exec_id then
935 	 * we have changed execution domain as these two values started
936 	 * the same after a fork.
937 	 */
938 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
939 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
940 	     tsk->self_exec_id != tsk->parent_exec_id) &&
941 	    !capable(CAP_KILL))
942 		tsk->exit_signal = SIGCHLD;
943 
944 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
945 	if (signal >= 0)
946 		signal = do_notify_parent(tsk, signal);
947 
948 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
949 
950 	/* mt-exec, de_thread() is waiting for us */
951 	if (thread_group_leader(tsk) &&
952 	    tsk->signal->group_exit_task &&
953 	    tsk->signal->notify_count < 0)
954 		wake_up_process(tsk->signal->group_exit_task);
955 
956 	write_unlock_irq(&tasklist_lock);
957 
958 	tracehook_report_death(tsk, signal, cookie, group_dead);
959 
960 	/* If the process is dead, release it - nobody will wait for it */
961 	if (signal == DEATH_REAP)
962 		release_task(tsk);
963 }
964 
965 #ifdef CONFIG_DEBUG_STACK_USAGE
966 static void check_stack_usage(void)
967 {
968 	static DEFINE_SPINLOCK(low_water_lock);
969 	static int lowest_to_date = THREAD_SIZE;
970 	unsigned long *n = end_of_stack(current);
971 	unsigned long free;
972 
973 	while (*n == 0)
974 		n++;
975 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
976 
977 	if (free >= lowest_to_date)
978 		return;
979 
980 	spin_lock(&low_water_lock);
981 	if (free < lowest_to_date) {
982 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
983 				"left\n",
984 				current->comm, free);
985 		lowest_to_date = free;
986 	}
987 	spin_unlock(&low_water_lock);
988 }
989 #else
990 static inline void check_stack_usage(void) {}
991 #endif
992 
993 NORET_TYPE void do_exit(long code)
994 {
995 	struct task_struct *tsk = current;
996 	int group_dead;
997 
998 	profile_task_exit(tsk);
999 
1000 	WARN_ON(atomic_read(&tsk->fs_excl));
1001 
1002 	if (unlikely(in_interrupt()))
1003 		panic("Aiee, killing interrupt handler!");
1004 	if (unlikely(!tsk->pid))
1005 		panic("Attempted to kill the idle task!");
1006 
1007 	tracehook_report_exit(&code);
1008 
1009 	/*
1010 	 * We're taking recursive faults here in do_exit. Safest is to just
1011 	 * leave this task alone and wait for reboot.
1012 	 */
1013 	if (unlikely(tsk->flags & PF_EXITING)) {
1014 		printk(KERN_ALERT
1015 			"Fixing recursive fault but reboot is needed!\n");
1016 		/*
1017 		 * We can do this unlocked here. The futex code uses
1018 		 * this flag just to verify whether the pi state
1019 		 * cleanup has been done or not. In the worst case it
1020 		 * loops once more. We pretend that the cleanup was
1021 		 * done as there is no way to return. Either the
1022 		 * OWNER_DIED bit is set by now or we push the blocked
1023 		 * task into the wait for ever nirwana as well.
1024 		 */
1025 		tsk->flags |= PF_EXITPIDONE;
1026 		if (tsk->io_context)
1027 			exit_io_context();
1028 		set_current_state(TASK_UNINTERRUPTIBLE);
1029 		schedule();
1030 	}
1031 
1032 	exit_signals(tsk);  /* sets PF_EXITING */
1033 	/*
1034 	 * tsk->flags are checked in the futex code to protect against
1035 	 * an exiting task cleaning up the robust pi futexes.
1036 	 */
1037 	smp_mb();
1038 	spin_unlock_wait(&tsk->pi_lock);
1039 
1040 	if (unlikely(in_atomic()))
1041 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1042 				current->comm, task_pid_nr(current),
1043 				preempt_count());
1044 
1045 	acct_update_integrals(tsk);
1046 	if (tsk->mm) {
1047 		update_hiwater_rss(tsk->mm);
1048 		update_hiwater_vm(tsk->mm);
1049 	}
1050 	group_dead = atomic_dec_and_test(&tsk->signal->live);
1051 	if (group_dead) {
1052 		hrtimer_cancel(&tsk->signal->real_timer);
1053 		exit_itimers(tsk->signal);
1054 	}
1055 	acct_collect(code, group_dead);
1056 #ifdef CONFIG_FUTEX
1057 	if (unlikely(tsk->robust_list))
1058 		exit_robust_list(tsk);
1059 #ifdef CONFIG_COMPAT
1060 	if (unlikely(tsk->compat_robust_list))
1061 		compat_exit_robust_list(tsk);
1062 #endif
1063 #endif
1064 	if (group_dead)
1065 		tty_audit_exit();
1066 	if (unlikely(tsk->audit_context))
1067 		audit_free(tsk);
1068 
1069 	tsk->exit_code = code;
1070 	taskstats_exit(tsk, group_dead);
1071 
1072 	exit_mm(tsk);
1073 
1074 	if (group_dead)
1075 		acct_process();
1076 	exit_sem(tsk);
1077 	exit_files(tsk);
1078 	exit_fs(tsk);
1079 	check_stack_usage();
1080 	exit_thread();
1081 	cgroup_exit(tsk, 1);
1082 	exit_keys(tsk);
1083 
1084 	if (group_dead && tsk->signal->leader)
1085 		disassociate_ctty(1);
1086 
1087 	module_put(task_thread_info(tsk)->exec_domain->module);
1088 	if (tsk->binfmt)
1089 		module_put(tsk->binfmt->module);
1090 
1091 	proc_exit_connector(tsk);
1092 	exit_notify(tsk, group_dead);
1093 #ifdef CONFIG_NUMA
1094 	mpol_put(tsk->mempolicy);
1095 	tsk->mempolicy = NULL;
1096 #endif
1097 #ifdef CONFIG_FUTEX
1098 	/*
1099 	 * This must happen late, after the PID is not
1100 	 * hashed anymore:
1101 	 */
1102 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1103 		exit_pi_state_list(tsk);
1104 	if (unlikely(current->pi_state_cache))
1105 		kfree(current->pi_state_cache);
1106 #endif
1107 	/*
1108 	 * Make sure we are holding no locks:
1109 	 */
1110 	debug_check_no_locks_held(tsk);
1111 	/*
1112 	 * We can do this unlocked here. The futex code uses this flag
1113 	 * just to verify whether the pi state cleanup has been done
1114 	 * or not. In the worst case it loops once more.
1115 	 */
1116 	tsk->flags |= PF_EXITPIDONE;
1117 
1118 	if (tsk->io_context)
1119 		exit_io_context();
1120 
1121 	if (tsk->splice_pipe)
1122 		__free_pipe_info(tsk->splice_pipe);
1123 
1124 	preempt_disable();
1125 	/* causes final put_task_struct in finish_task_switch(). */
1126 	tsk->state = TASK_DEAD;
1127 
1128 	schedule();
1129 	BUG();
1130 	/* Avoid "noreturn function does return".  */
1131 	for (;;)
1132 		cpu_relax();	/* For when BUG is null */
1133 }
1134 
1135 EXPORT_SYMBOL_GPL(do_exit);
1136 
1137 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1138 {
1139 	if (comp)
1140 		complete(comp);
1141 
1142 	do_exit(code);
1143 }
1144 
1145 EXPORT_SYMBOL(complete_and_exit);
1146 
1147 asmlinkage long sys_exit(int error_code)
1148 {
1149 	do_exit((error_code&0xff)<<8);
1150 }
1151 
1152 /*
1153  * Take down every thread in the group.  This is called by fatal signals
1154  * as well as by sys_exit_group (below).
1155  */
1156 NORET_TYPE void
1157 do_group_exit(int exit_code)
1158 {
1159 	struct signal_struct *sig = current->signal;
1160 
1161 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1162 
1163 	if (signal_group_exit(sig))
1164 		exit_code = sig->group_exit_code;
1165 	else if (!thread_group_empty(current)) {
1166 		struct sighand_struct *const sighand = current->sighand;
1167 		spin_lock_irq(&sighand->siglock);
1168 		if (signal_group_exit(sig))
1169 			/* Another thread got here before we took the lock.  */
1170 			exit_code = sig->group_exit_code;
1171 		else {
1172 			sig->group_exit_code = exit_code;
1173 			sig->flags = SIGNAL_GROUP_EXIT;
1174 			zap_other_threads(current);
1175 		}
1176 		spin_unlock_irq(&sighand->siglock);
1177 	}
1178 
1179 	do_exit(exit_code);
1180 	/* NOTREACHED */
1181 }
1182 
1183 /*
1184  * this kills every thread in the thread group. Note that any externally
1185  * wait4()-ing process will get the correct exit code - even if this
1186  * thread is not the thread group leader.
1187  */
1188 asmlinkage void sys_exit_group(int error_code)
1189 {
1190 	do_group_exit((error_code & 0xff) << 8);
1191 }
1192 
1193 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1194 {
1195 	struct pid *pid = NULL;
1196 	if (type == PIDTYPE_PID)
1197 		pid = task->pids[type].pid;
1198 	else if (type < PIDTYPE_MAX)
1199 		pid = task->group_leader->pids[type].pid;
1200 	return pid;
1201 }
1202 
1203 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1204 			  struct task_struct *p)
1205 {
1206 	int err;
1207 
1208 	if (type < PIDTYPE_MAX) {
1209 		if (task_pid_type(p, type) != pid)
1210 			return 0;
1211 	}
1212 
1213 	/* Wait for all children (clone and not) if __WALL is set;
1214 	 * otherwise, wait for clone children *only* if __WCLONE is
1215 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1216 	 * A "clone" child here is one that reports to its parent
1217 	 * using a signal other than SIGCHLD.) */
1218 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1219 	    && !(options & __WALL))
1220 		return 0;
1221 
1222 	err = security_task_wait(p);
1223 	if (err)
1224 		return err;
1225 
1226 	return 1;
1227 }
1228 
1229 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1230 			       int why, int status,
1231 			       struct siginfo __user *infop,
1232 			       struct rusage __user *rusagep)
1233 {
1234 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1235 
1236 	put_task_struct(p);
1237 	if (!retval)
1238 		retval = put_user(SIGCHLD, &infop->si_signo);
1239 	if (!retval)
1240 		retval = put_user(0, &infop->si_errno);
1241 	if (!retval)
1242 		retval = put_user((short)why, &infop->si_code);
1243 	if (!retval)
1244 		retval = put_user(pid, &infop->si_pid);
1245 	if (!retval)
1246 		retval = put_user(uid, &infop->si_uid);
1247 	if (!retval)
1248 		retval = put_user(status, &infop->si_status);
1249 	if (!retval)
1250 		retval = pid;
1251 	return retval;
1252 }
1253 
1254 /*
1255  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1256  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1257  * the lock and this task is uninteresting.  If we return nonzero, we have
1258  * released the lock and the system call should return.
1259  */
1260 static int wait_task_zombie(struct task_struct *p, int options,
1261 			    struct siginfo __user *infop,
1262 			    int __user *stat_addr, struct rusage __user *ru)
1263 {
1264 	unsigned long state;
1265 	int retval, status, traced;
1266 	pid_t pid = task_pid_vnr(p);
1267 
1268 	if (!likely(options & WEXITED))
1269 		return 0;
1270 
1271 	if (unlikely(options & WNOWAIT)) {
1272 		uid_t uid = p->uid;
1273 		int exit_code = p->exit_code;
1274 		int why, status;
1275 
1276 		get_task_struct(p);
1277 		read_unlock(&tasklist_lock);
1278 		if ((exit_code & 0x7f) == 0) {
1279 			why = CLD_EXITED;
1280 			status = exit_code >> 8;
1281 		} else {
1282 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1283 			status = exit_code & 0x7f;
1284 		}
1285 		return wait_noreap_copyout(p, pid, uid, why,
1286 					   status, infop, ru);
1287 	}
1288 
1289 	/*
1290 	 * Try to move the task's state to DEAD
1291 	 * only one thread is allowed to do this:
1292 	 */
1293 	state = xchg(&p->exit_state, EXIT_DEAD);
1294 	if (state != EXIT_ZOMBIE) {
1295 		BUG_ON(state != EXIT_DEAD);
1296 		return 0;
1297 	}
1298 
1299 	traced = ptrace_reparented(p);
1300 
1301 	if (likely(!traced)) {
1302 		struct signal_struct *psig;
1303 		struct signal_struct *sig;
1304 
1305 		/*
1306 		 * The resource counters for the group leader are in its
1307 		 * own task_struct.  Those for dead threads in the group
1308 		 * are in its signal_struct, as are those for the child
1309 		 * processes it has previously reaped.  All these
1310 		 * accumulate in the parent's signal_struct c* fields.
1311 		 *
1312 		 * We don't bother to take a lock here to protect these
1313 		 * p->signal fields, because they are only touched by
1314 		 * __exit_signal, which runs with tasklist_lock
1315 		 * write-locked anyway, and so is excluded here.  We do
1316 		 * need to protect the access to p->parent->signal fields,
1317 		 * as other threads in the parent group can be right
1318 		 * here reaping other children at the same time.
1319 		 */
1320 		spin_lock_irq(&p->parent->sighand->siglock);
1321 		psig = p->parent->signal;
1322 		sig = p->signal;
1323 		psig->cutime =
1324 			cputime_add(psig->cutime,
1325 			cputime_add(p->utime,
1326 			cputime_add(sig->utime,
1327 				    sig->cutime)));
1328 		psig->cstime =
1329 			cputime_add(psig->cstime,
1330 			cputime_add(p->stime,
1331 			cputime_add(sig->stime,
1332 				    sig->cstime)));
1333 		psig->cgtime =
1334 			cputime_add(psig->cgtime,
1335 			cputime_add(p->gtime,
1336 			cputime_add(sig->gtime,
1337 				    sig->cgtime)));
1338 		psig->cmin_flt +=
1339 			p->min_flt + sig->min_flt + sig->cmin_flt;
1340 		psig->cmaj_flt +=
1341 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1342 		psig->cnvcsw +=
1343 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1344 		psig->cnivcsw +=
1345 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1346 		psig->cinblock +=
1347 			task_io_get_inblock(p) +
1348 			sig->inblock + sig->cinblock;
1349 		psig->coublock +=
1350 			task_io_get_oublock(p) +
1351 			sig->oublock + sig->coublock;
1352 		task_io_accounting_add(&psig->ioac, &p->ioac);
1353 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1354 		spin_unlock_irq(&p->parent->sighand->siglock);
1355 	}
1356 
1357 	/*
1358 	 * Now we are sure this task is interesting, and no other
1359 	 * thread can reap it because we set its state to EXIT_DEAD.
1360 	 */
1361 	read_unlock(&tasklist_lock);
1362 
1363 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1364 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1365 		? p->signal->group_exit_code : p->exit_code;
1366 	if (!retval && stat_addr)
1367 		retval = put_user(status, stat_addr);
1368 	if (!retval && infop)
1369 		retval = put_user(SIGCHLD, &infop->si_signo);
1370 	if (!retval && infop)
1371 		retval = put_user(0, &infop->si_errno);
1372 	if (!retval && infop) {
1373 		int why;
1374 
1375 		if ((status & 0x7f) == 0) {
1376 			why = CLD_EXITED;
1377 			status >>= 8;
1378 		} else {
1379 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1380 			status &= 0x7f;
1381 		}
1382 		retval = put_user((short)why, &infop->si_code);
1383 		if (!retval)
1384 			retval = put_user(status, &infop->si_status);
1385 	}
1386 	if (!retval && infop)
1387 		retval = put_user(pid, &infop->si_pid);
1388 	if (!retval && infop)
1389 		retval = put_user(p->uid, &infop->si_uid);
1390 	if (!retval)
1391 		retval = pid;
1392 
1393 	if (traced) {
1394 		write_lock_irq(&tasklist_lock);
1395 		/* We dropped tasklist, ptracer could die and untrace */
1396 		ptrace_unlink(p);
1397 		/*
1398 		 * If this is not a detached task, notify the parent.
1399 		 * If it's still not detached after that, don't release
1400 		 * it now.
1401 		 */
1402 		if (!task_detached(p)) {
1403 			do_notify_parent(p, p->exit_signal);
1404 			if (!task_detached(p)) {
1405 				p->exit_state = EXIT_ZOMBIE;
1406 				p = NULL;
1407 			}
1408 		}
1409 		write_unlock_irq(&tasklist_lock);
1410 	}
1411 	if (p != NULL)
1412 		release_task(p);
1413 
1414 	return retval;
1415 }
1416 
1417 /*
1418  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1419  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1420  * the lock and this task is uninteresting.  If we return nonzero, we have
1421  * released the lock and the system call should return.
1422  */
1423 static int wait_task_stopped(int ptrace, struct task_struct *p,
1424 			     int options, struct siginfo __user *infop,
1425 			     int __user *stat_addr, struct rusage __user *ru)
1426 {
1427 	int retval, exit_code, why;
1428 	uid_t uid = 0; /* unneeded, required by compiler */
1429 	pid_t pid;
1430 
1431 	if (!(options & WUNTRACED))
1432 		return 0;
1433 
1434 	exit_code = 0;
1435 	spin_lock_irq(&p->sighand->siglock);
1436 
1437 	if (unlikely(!task_is_stopped_or_traced(p)))
1438 		goto unlock_sig;
1439 
1440 	if (!ptrace && p->signal->group_stop_count > 0)
1441 		/*
1442 		 * A group stop is in progress and this is the group leader.
1443 		 * We won't report until all threads have stopped.
1444 		 */
1445 		goto unlock_sig;
1446 
1447 	exit_code = p->exit_code;
1448 	if (!exit_code)
1449 		goto unlock_sig;
1450 
1451 	if (!unlikely(options & WNOWAIT))
1452 		p->exit_code = 0;
1453 
1454 	uid = p->uid;
1455 unlock_sig:
1456 	spin_unlock_irq(&p->sighand->siglock);
1457 	if (!exit_code)
1458 		return 0;
1459 
1460 	/*
1461 	 * Now we are pretty sure this task is interesting.
1462 	 * Make sure it doesn't get reaped out from under us while we
1463 	 * give up the lock and then examine it below.  We don't want to
1464 	 * keep holding onto the tasklist_lock while we call getrusage and
1465 	 * possibly take page faults for user memory.
1466 	 */
1467 	get_task_struct(p);
1468 	pid = task_pid_vnr(p);
1469 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1470 	read_unlock(&tasklist_lock);
1471 
1472 	if (unlikely(options & WNOWAIT))
1473 		return wait_noreap_copyout(p, pid, uid,
1474 					   why, exit_code,
1475 					   infop, ru);
1476 
1477 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1478 	if (!retval && stat_addr)
1479 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1480 	if (!retval && infop)
1481 		retval = put_user(SIGCHLD, &infop->si_signo);
1482 	if (!retval && infop)
1483 		retval = put_user(0, &infop->si_errno);
1484 	if (!retval && infop)
1485 		retval = put_user((short)why, &infop->si_code);
1486 	if (!retval && infop)
1487 		retval = put_user(exit_code, &infop->si_status);
1488 	if (!retval && infop)
1489 		retval = put_user(pid, &infop->si_pid);
1490 	if (!retval && infop)
1491 		retval = put_user(uid, &infop->si_uid);
1492 	if (!retval)
1493 		retval = pid;
1494 	put_task_struct(p);
1495 
1496 	BUG_ON(!retval);
1497 	return retval;
1498 }
1499 
1500 /*
1501  * Handle do_wait work for one task in a live, non-stopped state.
1502  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1503  * the lock and this task is uninteresting.  If we return nonzero, we have
1504  * released the lock and the system call should return.
1505  */
1506 static int wait_task_continued(struct task_struct *p, int options,
1507 			       struct siginfo __user *infop,
1508 			       int __user *stat_addr, struct rusage __user *ru)
1509 {
1510 	int retval;
1511 	pid_t pid;
1512 	uid_t uid;
1513 
1514 	if (!unlikely(options & WCONTINUED))
1515 		return 0;
1516 
1517 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1518 		return 0;
1519 
1520 	spin_lock_irq(&p->sighand->siglock);
1521 	/* Re-check with the lock held.  */
1522 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1523 		spin_unlock_irq(&p->sighand->siglock);
1524 		return 0;
1525 	}
1526 	if (!unlikely(options & WNOWAIT))
1527 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1528 	spin_unlock_irq(&p->sighand->siglock);
1529 
1530 	pid = task_pid_vnr(p);
1531 	uid = p->uid;
1532 	get_task_struct(p);
1533 	read_unlock(&tasklist_lock);
1534 
1535 	if (!infop) {
1536 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1537 		put_task_struct(p);
1538 		if (!retval && stat_addr)
1539 			retval = put_user(0xffff, stat_addr);
1540 		if (!retval)
1541 			retval = pid;
1542 	} else {
1543 		retval = wait_noreap_copyout(p, pid, uid,
1544 					     CLD_CONTINUED, SIGCONT,
1545 					     infop, ru);
1546 		BUG_ON(retval == 0);
1547 	}
1548 
1549 	return retval;
1550 }
1551 
1552 /*
1553  * Consider @p for a wait by @parent.
1554  *
1555  * -ECHILD should be in *@notask_error before the first call.
1556  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1557  * Returns zero if the search for a child should continue;
1558  * then *@notask_error is 0 if @p is an eligible child,
1559  * or another error from security_task_wait(), or still -ECHILD.
1560  */
1561 static int wait_consider_task(struct task_struct *parent, int ptrace,
1562 			      struct task_struct *p, int *notask_error,
1563 			      enum pid_type type, struct pid *pid, int options,
1564 			      struct siginfo __user *infop,
1565 			      int __user *stat_addr, struct rusage __user *ru)
1566 {
1567 	int ret = eligible_child(type, pid, options, p);
1568 	if (!ret)
1569 		return ret;
1570 
1571 	if (unlikely(ret < 0)) {
1572 		/*
1573 		 * If we have not yet seen any eligible child,
1574 		 * then let this error code replace -ECHILD.
1575 		 * A permission error will give the user a clue
1576 		 * to look for security policy problems, rather
1577 		 * than for mysterious wait bugs.
1578 		 */
1579 		if (*notask_error)
1580 			*notask_error = ret;
1581 	}
1582 
1583 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1584 		/*
1585 		 * This child is hidden by ptrace.
1586 		 * We aren't allowed to see it now, but eventually we will.
1587 		 */
1588 		*notask_error = 0;
1589 		return 0;
1590 	}
1591 
1592 	if (p->exit_state == EXIT_DEAD)
1593 		return 0;
1594 
1595 	/*
1596 	 * We don't reap group leaders with subthreads.
1597 	 */
1598 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1599 		return wait_task_zombie(p, options, infop, stat_addr, ru);
1600 
1601 	/*
1602 	 * It's stopped or running now, so it might
1603 	 * later continue, exit, or stop again.
1604 	 */
1605 	*notask_error = 0;
1606 
1607 	if (task_is_stopped_or_traced(p))
1608 		return wait_task_stopped(ptrace, p, options,
1609 					 infop, stat_addr, ru);
1610 
1611 	return wait_task_continued(p, options, infop, stat_addr, ru);
1612 }
1613 
1614 /*
1615  * Do the work of do_wait() for one thread in the group, @tsk.
1616  *
1617  * -ECHILD should be in *@notask_error before the first call.
1618  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1619  * Returns zero if the search for a child should continue; then
1620  * *@notask_error is 0 if there were any eligible children,
1621  * or another error from security_task_wait(), or still -ECHILD.
1622  */
1623 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1624 			  enum pid_type type, struct pid *pid, int options,
1625 			  struct siginfo __user *infop, int __user *stat_addr,
1626 			  struct rusage __user *ru)
1627 {
1628 	struct task_struct *p;
1629 
1630 	list_for_each_entry(p, &tsk->children, sibling) {
1631 		/*
1632 		 * Do not consider detached threads.
1633 		 */
1634 		if (!task_detached(p)) {
1635 			int ret = wait_consider_task(tsk, 0, p, notask_error,
1636 						     type, pid, options,
1637 						     infop, stat_addr, ru);
1638 			if (ret)
1639 				return ret;
1640 		}
1641 	}
1642 
1643 	return 0;
1644 }
1645 
1646 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1647 			  enum pid_type type, struct pid *pid, int options,
1648 			  struct siginfo __user *infop, int __user *stat_addr,
1649 			  struct rusage __user *ru)
1650 {
1651 	struct task_struct *p;
1652 
1653 	/*
1654 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1655 	 */
1656 	options |= WUNTRACED;
1657 
1658 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1659 		int ret = wait_consider_task(tsk, 1, p, notask_error,
1660 					     type, pid, options,
1661 					     infop, stat_addr, ru);
1662 		if (ret)
1663 			return ret;
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 static long do_wait(enum pid_type type, struct pid *pid, int options,
1670 		    struct siginfo __user *infop, int __user *stat_addr,
1671 		    struct rusage __user *ru)
1672 {
1673 	DECLARE_WAITQUEUE(wait, current);
1674 	struct task_struct *tsk;
1675 	int retval;
1676 
1677 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1678 repeat:
1679 	/*
1680 	 * If there is nothing that can match our critiera just get out.
1681 	 * We will clear @retval to zero if we see any child that might later
1682 	 * match our criteria, even if we are not able to reap it yet.
1683 	 */
1684 	retval = -ECHILD;
1685 	if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1686 		goto end;
1687 
1688 	current->state = TASK_INTERRUPTIBLE;
1689 	read_lock(&tasklist_lock);
1690 	tsk = current;
1691 	do {
1692 		int tsk_result = do_wait_thread(tsk, &retval,
1693 						type, pid, options,
1694 						infop, stat_addr, ru);
1695 		if (!tsk_result)
1696 			tsk_result = ptrace_do_wait(tsk, &retval,
1697 						    type, pid, options,
1698 						    infop, stat_addr, ru);
1699 		if (tsk_result) {
1700 			/*
1701 			 * tasklist_lock is unlocked and we have a final result.
1702 			 */
1703 			retval = tsk_result;
1704 			goto end;
1705 		}
1706 
1707 		if (options & __WNOTHREAD)
1708 			break;
1709 		tsk = next_thread(tsk);
1710 		BUG_ON(tsk->signal != current->signal);
1711 	} while (tsk != current);
1712 	read_unlock(&tasklist_lock);
1713 
1714 	if (!retval && !(options & WNOHANG)) {
1715 		retval = -ERESTARTSYS;
1716 		if (!signal_pending(current)) {
1717 			schedule();
1718 			goto repeat;
1719 		}
1720 	}
1721 
1722 end:
1723 	current->state = TASK_RUNNING;
1724 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1725 	if (infop) {
1726 		if (retval > 0)
1727 			retval = 0;
1728 		else {
1729 			/*
1730 			 * For a WNOHANG return, clear out all the fields
1731 			 * we would set so the user can easily tell the
1732 			 * difference.
1733 			 */
1734 			if (!retval)
1735 				retval = put_user(0, &infop->si_signo);
1736 			if (!retval)
1737 				retval = put_user(0, &infop->si_errno);
1738 			if (!retval)
1739 				retval = put_user(0, &infop->si_code);
1740 			if (!retval)
1741 				retval = put_user(0, &infop->si_pid);
1742 			if (!retval)
1743 				retval = put_user(0, &infop->si_uid);
1744 			if (!retval)
1745 				retval = put_user(0, &infop->si_status);
1746 		}
1747 	}
1748 	return retval;
1749 }
1750 
1751 asmlinkage long sys_waitid(int which, pid_t upid,
1752 			   struct siginfo __user *infop, int options,
1753 			   struct rusage __user *ru)
1754 {
1755 	struct pid *pid = NULL;
1756 	enum pid_type type;
1757 	long ret;
1758 
1759 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1760 		return -EINVAL;
1761 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1762 		return -EINVAL;
1763 
1764 	switch (which) {
1765 	case P_ALL:
1766 		type = PIDTYPE_MAX;
1767 		break;
1768 	case P_PID:
1769 		type = PIDTYPE_PID;
1770 		if (upid <= 0)
1771 			return -EINVAL;
1772 		break;
1773 	case P_PGID:
1774 		type = PIDTYPE_PGID;
1775 		if (upid <= 0)
1776 			return -EINVAL;
1777 		break;
1778 	default:
1779 		return -EINVAL;
1780 	}
1781 
1782 	if (type < PIDTYPE_MAX)
1783 		pid = find_get_pid(upid);
1784 	ret = do_wait(type, pid, options, infop, NULL, ru);
1785 	put_pid(pid);
1786 
1787 	/* avoid REGPARM breakage on x86: */
1788 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1789 	return ret;
1790 }
1791 
1792 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1793 			  int options, struct rusage __user *ru)
1794 {
1795 	struct pid *pid = NULL;
1796 	enum pid_type type;
1797 	long ret;
1798 
1799 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1800 			__WNOTHREAD|__WCLONE|__WALL))
1801 		return -EINVAL;
1802 
1803 	if (upid == -1)
1804 		type = PIDTYPE_MAX;
1805 	else if (upid < 0) {
1806 		type = PIDTYPE_PGID;
1807 		pid = find_get_pid(-upid);
1808 	} else if (upid == 0) {
1809 		type = PIDTYPE_PGID;
1810 		pid = get_pid(task_pgrp(current));
1811 	} else /* upid > 0 */ {
1812 		type = PIDTYPE_PID;
1813 		pid = find_get_pid(upid);
1814 	}
1815 
1816 	ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1817 	put_pid(pid);
1818 
1819 	/* avoid REGPARM breakage on x86: */
1820 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1821 	return ret;
1822 }
1823 
1824 #ifdef __ARCH_WANT_SYS_WAITPID
1825 
1826 /*
1827  * sys_waitpid() remains for compatibility. waitpid() should be
1828  * implemented by calling sys_wait4() from libc.a.
1829  */
1830 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1831 {
1832 	return sys_wait4(pid, stat_addr, options, NULL);
1833 }
1834 
1835 #endif
1836