1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 54 #include <asm/uaccess.h> 55 #include <asm/unistd.h> 56 #include <asm/pgtable.h> 57 #include <asm/mmu_context.h> 58 #include "cred-internals.h" 59 60 static void exit_mm(struct task_struct * tsk); 61 62 static void __unhash_process(struct task_struct *p) 63 { 64 nr_threads--; 65 detach_pid(p, PIDTYPE_PID); 66 if (thread_group_leader(p)) { 67 detach_pid(p, PIDTYPE_PGID); 68 detach_pid(p, PIDTYPE_SID); 69 70 list_del_rcu(&p->tasks); 71 __get_cpu_var(process_counts)--; 72 } 73 list_del_rcu(&p->thread_group); 74 list_del_init(&p->sibling); 75 } 76 77 /* 78 * This function expects the tasklist_lock write-locked. 79 */ 80 static void __exit_signal(struct task_struct *tsk) 81 { 82 struct signal_struct *sig = tsk->signal; 83 struct sighand_struct *sighand; 84 85 BUG_ON(!sig); 86 BUG_ON(!atomic_read(&sig->count)); 87 88 sighand = rcu_dereference(tsk->sighand); 89 spin_lock(&sighand->siglock); 90 91 posix_cpu_timers_exit(tsk); 92 if (atomic_dec_and_test(&sig->count)) 93 posix_cpu_timers_exit_group(tsk); 94 else { 95 /* 96 * If there is any task waiting for the group exit 97 * then notify it: 98 */ 99 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 100 wake_up_process(sig->group_exit_task); 101 102 if (tsk == sig->curr_target) 103 sig->curr_target = next_thread(tsk); 104 /* 105 * Accumulate here the counters for all threads but the 106 * group leader as they die, so they can be added into 107 * the process-wide totals when those are taken. 108 * The group leader stays around as a zombie as long 109 * as there are other threads. When it gets reaped, 110 * the exit.c code will add its counts into these totals. 111 * We won't ever get here for the group leader, since it 112 * will have been the last reference on the signal_struct. 113 */ 114 sig->utime = cputime_add(sig->utime, task_utime(tsk)); 115 sig->stime = cputime_add(sig->stime, task_stime(tsk)); 116 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); 117 sig->min_flt += tsk->min_flt; 118 sig->maj_flt += tsk->maj_flt; 119 sig->nvcsw += tsk->nvcsw; 120 sig->nivcsw += tsk->nivcsw; 121 sig->inblock += task_io_get_inblock(tsk); 122 sig->oublock += task_io_get_oublock(tsk); 123 task_io_accounting_add(&sig->ioac, &tsk->ioac); 124 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 125 sig = NULL; /* Marker for below. */ 126 } 127 128 __unhash_process(tsk); 129 130 /* 131 * Do this under ->siglock, we can race with another thread 132 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 133 */ 134 flush_sigqueue(&tsk->pending); 135 136 tsk->signal = NULL; 137 tsk->sighand = NULL; 138 spin_unlock(&sighand->siglock); 139 140 __cleanup_sighand(sighand); 141 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 142 if (sig) { 143 flush_sigqueue(&sig->shared_pending); 144 taskstats_tgid_free(sig); 145 /* 146 * Make sure ->signal can't go away under rq->lock, 147 * see account_group_exec_runtime(). 148 */ 149 task_rq_unlock_wait(tsk); 150 __cleanup_signal(sig); 151 } 152 } 153 154 static void delayed_put_task_struct(struct rcu_head *rhp) 155 { 156 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 157 158 #ifdef CONFIG_PERF_EVENTS 159 WARN_ON_ONCE(tsk->perf_event_ctxp); 160 #endif 161 trace_sched_process_free(tsk); 162 put_task_struct(tsk); 163 } 164 165 166 void release_task(struct task_struct * p) 167 { 168 struct task_struct *leader; 169 int zap_leader; 170 repeat: 171 tracehook_prepare_release_task(p); 172 /* don't need to get the RCU readlock here - the process is dead and 173 * can't be modifying its own credentials */ 174 atomic_dec(&__task_cred(p)->user->processes); 175 176 proc_flush_task(p); 177 178 write_lock_irq(&tasklist_lock); 179 tracehook_finish_release_task(p); 180 __exit_signal(p); 181 182 /* 183 * If we are the last non-leader member of the thread 184 * group, and the leader is zombie, then notify the 185 * group leader's parent process. (if it wants notification.) 186 */ 187 zap_leader = 0; 188 leader = p->group_leader; 189 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 190 BUG_ON(task_detached(leader)); 191 do_notify_parent(leader, leader->exit_signal); 192 /* 193 * If we were the last child thread and the leader has 194 * exited already, and the leader's parent ignores SIGCHLD, 195 * then we are the one who should release the leader. 196 * 197 * do_notify_parent() will have marked it self-reaping in 198 * that case. 199 */ 200 zap_leader = task_detached(leader); 201 202 /* 203 * This maintains the invariant that release_task() 204 * only runs on a task in EXIT_DEAD, just for sanity. 205 */ 206 if (zap_leader) 207 leader->exit_state = EXIT_DEAD; 208 } 209 210 write_unlock_irq(&tasklist_lock); 211 release_thread(p); 212 call_rcu(&p->rcu, delayed_put_task_struct); 213 214 p = leader; 215 if (unlikely(zap_leader)) 216 goto repeat; 217 } 218 219 /* 220 * This checks not only the pgrp, but falls back on the pid if no 221 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 222 * without this... 223 * 224 * The caller must hold rcu lock or the tasklist lock. 225 */ 226 struct pid *session_of_pgrp(struct pid *pgrp) 227 { 228 struct task_struct *p; 229 struct pid *sid = NULL; 230 231 p = pid_task(pgrp, PIDTYPE_PGID); 232 if (p == NULL) 233 p = pid_task(pgrp, PIDTYPE_PID); 234 if (p != NULL) 235 sid = task_session(p); 236 237 return sid; 238 } 239 240 /* 241 * Determine if a process group is "orphaned", according to the POSIX 242 * definition in 2.2.2.52. Orphaned process groups are not to be affected 243 * by terminal-generated stop signals. Newly orphaned process groups are 244 * to receive a SIGHUP and a SIGCONT. 245 * 246 * "I ask you, have you ever known what it is to be an orphan?" 247 */ 248 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 249 { 250 struct task_struct *p; 251 252 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 253 if ((p == ignored_task) || 254 (p->exit_state && thread_group_empty(p)) || 255 is_global_init(p->real_parent)) 256 continue; 257 258 if (task_pgrp(p->real_parent) != pgrp && 259 task_session(p->real_parent) == task_session(p)) 260 return 0; 261 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 262 263 return 1; 264 } 265 266 int is_current_pgrp_orphaned(void) 267 { 268 int retval; 269 270 read_lock(&tasklist_lock); 271 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 272 read_unlock(&tasklist_lock); 273 274 return retval; 275 } 276 277 static int has_stopped_jobs(struct pid *pgrp) 278 { 279 int retval = 0; 280 struct task_struct *p; 281 282 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 283 if (!task_is_stopped(p)) 284 continue; 285 retval = 1; 286 break; 287 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 288 return retval; 289 } 290 291 /* 292 * Check to see if any process groups have become orphaned as 293 * a result of our exiting, and if they have any stopped jobs, 294 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 295 */ 296 static void 297 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 298 { 299 struct pid *pgrp = task_pgrp(tsk); 300 struct task_struct *ignored_task = tsk; 301 302 if (!parent) 303 /* exit: our father is in a different pgrp than 304 * we are and we were the only connection outside. 305 */ 306 parent = tsk->real_parent; 307 else 308 /* reparent: our child is in a different pgrp than 309 * we are, and it was the only connection outside. 310 */ 311 ignored_task = NULL; 312 313 if (task_pgrp(parent) != pgrp && 314 task_session(parent) == task_session(tsk) && 315 will_become_orphaned_pgrp(pgrp, ignored_task) && 316 has_stopped_jobs(pgrp)) { 317 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 318 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 319 } 320 } 321 322 /** 323 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 324 * 325 * If a kernel thread is launched as a result of a system call, or if 326 * it ever exits, it should generally reparent itself to kthreadd so it 327 * isn't in the way of other processes and is correctly cleaned up on exit. 328 * 329 * The various task state such as scheduling policy and priority may have 330 * been inherited from a user process, so we reset them to sane values here. 331 * 332 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 333 */ 334 static void reparent_to_kthreadd(void) 335 { 336 write_lock_irq(&tasklist_lock); 337 338 ptrace_unlink(current); 339 /* Reparent to init */ 340 current->real_parent = current->parent = kthreadd_task; 341 list_move_tail(¤t->sibling, ¤t->real_parent->children); 342 343 /* Set the exit signal to SIGCHLD so we signal init on exit */ 344 current->exit_signal = SIGCHLD; 345 346 if (task_nice(current) < 0) 347 set_user_nice(current, 0); 348 /* cpus_allowed? */ 349 /* rt_priority? */ 350 /* signals? */ 351 memcpy(current->signal->rlim, init_task.signal->rlim, 352 sizeof(current->signal->rlim)); 353 354 atomic_inc(&init_cred.usage); 355 commit_creds(&init_cred); 356 write_unlock_irq(&tasklist_lock); 357 } 358 359 void __set_special_pids(struct pid *pid) 360 { 361 struct task_struct *curr = current->group_leader; 362 363 if (task_session(curr) != pid) { 364 change_pid(curr, PIDTYPE_SID, pid); 365 proc_sid_connector(curr); 366 } 367 368 if (task_pgrp(curr) != pid) 369 change_pid(curr, PIDTYPE_PGID, pid); 370 } 371 372 static void set_special_pids(struct pid *pid) 373 { 374 write_lock_irq(&tasklist_lock); 375 __set_special_pids(pid); 376 write_unlock_irq(&tasklist_lock); 377 } 378 379 /* 380 * Let kernel threads use this to say that they allow a certain signal. 381 * Must not be used if kthread was cloned with CLONE_SIGHAND. 382 */ 383 int allow_signal(int sig) 384 { 385 if (!valid_signal(sig) || sig < 1) 386 return -EINVAL; 387 388 spin_lock_irq(¤t->sighand->siglock); 389 /* This is only needed for daemonize()'ed kthreads */ 390 sigdelset(¤t->blocked, sig); 391 /* 392 * Kernel threads handle their own signals. Let the signal code 393 * know it'll be handled, so that they don't get converted to 394 * SIGKILL or just silently dropped. 395 */ 396 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 397 recalc_sigpending(); 398 spin_unlock_irq(¤t->sighand->siglock); 399 return 0; 400 } 401 402 EXPORT_SYMBOL(allow_signal); 403 404 int disallow_signal(int sig) 405 { 406 if (!valid_signal(sig) || sig < 1) 407 return -EINVAL; 408 409 spin_lock_irq(¤t->sighand->siglock); 410 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 411 recalc_sigpending(); 412 spin_unlock_irq(¤t->sighand->siglock); 413 return 0; 414 } 415 416 EXPORT_SYMBOL(disallow_signal); 417 418 /* 419 * Put all the gunge required to become a kernel thread without 420 * attached user resources in one place where it belongs. 421 */ 422 423 void daemonize(const char *name, ...) 424 { 425 va_list args; 426 sigset_t blocked; 427 428 va_start(args, name); 429 vsnprintf(current->comm, sizeof(current->comm), name, args); 430 va_end(args); 431 432 /* 433 * If we were started as result of loading a module, close all of the 434 * user space pages. We don't need them, and if we didn't close them 435 * they would be locked into memory. 436 */ 437 exit_mm(current); 438 /* 439 * We don't want to have TIF_FREEZE set if the system-wide hibernation 440 * or suspend transition begins right now. 441 */ 442 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 443 444 if (current->nsproxy != &init_nsproxy) { 445 get_nsproxy(&init_nsproxy); 446 switch_task_namespaces(current, &init_nsproxy); 447 } 448 set_special_pids(&init_struct_pid); 449 proc_clear_tty(current); 450 451 /* Block and flush all signals */ 452 sigfillset(&blocked); 453 sigprocmask(SIG_BLOCK, &blocked, NULL); 454 flush_signals(current); 455 456 /* Become as one with the init task */ 457 458 daemonize_fs_struct(); 459 exit_files(current); 460 current->files = init_task.files; 461 atomic_inc(¤t->files->count); 462 463 reparent_to_kthreadd(); 464 } 465 466 EXPORT_SYMBOL(daemonize); 467 468 static void close_files(struct files_struct * files) 469 { 470 int i, j; 471 struct fdtable *fdt; 472 473 j = 0; 474 475 /* 476 * It is safe to dereference the fd table without RCU or 477 * ->file_lock because this is the last reference to the 478 * files structure. 479 */ 480 fdt = files_fdtable(files); 481 for (;;) { 482 unsigned long set; 483 i = j * __NFDBITS; 484 if (i >= fdt->max_fds) 485 break; 486 set = fdt->open_fds->fds_bits[j++]; 487 while (set) { 488 if (set & 1) { 489 struct file * file = xchg(&fdt->fd[i], NULL); 490 if (file) { 491 filp_close(file, files); 492 cond_resched(); 493 } 494 } 495 i++; 496 set >>= 1; 497 } 498 } 499 } 500 501 struct files_struct *get_files_struct(struct task_struct *task) 502 { 503 struct files_struct *files; 504 505 task_lock(task); 506 files = task->files; 507 if (files) 508 atomic_inc(&files->count); 509 task_unlock(task); 510 511 return files; 512 } 513 514 void put_files_struct(struct files_struct *files) 515 { 516 struct fdtable *fdt; 517 518 if (atomic_dec_and_test(&files->count)) { 519 close_files(files); 520 /* 521 * Free the fd and fdset arrays if we expanded them. 522 * If the fdtable was embedded, pass files for freeing 523 * at the end of the RCU grace period. Otherwise, 524 * you can free files immediately. 525 */ 526 fdt = files_fdtable(files); 527 if (fdt != &files->fdtab) 528 kmem_cache_free(files_cachep, files); 529 free_fdtable(fdt); 530 } 531 } 532 533 void reset_files_struct(struct files_struct *files) 534 { 535 struct task_struct *tsk = current; 536 struct files_struct *old; 537 538 old = tsk->files; 539 task_lock(tsk); 540 tsk->files = files; 541 task_unlock(tsk); 542 put_files_struct(old); 543 } 544 545 void exit_files(struct task_struct *tsk) 546 { 547 struct files_struct * files = tsk->files; 548 549 if (files) { 550 task_lock(tsk); 551 tsk->files = NULL; 552 task_unlock(tsk); 553 put_files_struct(files); 554 } 555 } 556 557 #ifdef CONFIG_MM_OWNER 558 /* 559 * Task p is exiting and it owned mm, lets find a new owner for it 560 */ 561 static inline int 562 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 563 { 564 /* 565 * If there are other users of the mm and the owner (us) is exiting 566 * we need to find a new owner to take on the responsibility. 567 */ 568 if (atomic_read(&mm->mm_users) <= 1) 569 return 0; 570 if (mm->owner != p) 571 return 0; 572 return 1; 573 } 574 575 void mm_update_next_owner(struct mm_struct *mm) 576 { 577 struct task_struct *c, *g, *p = current; 578 579 retry: 580 if (!mm_need_new_owner(mm, p)) 581 return; 582 583 read_lock(&tasklist_lock); 584 /* 585 * Search in the children 586 */ 587 list_for_each_entry(c, &p->children, sibling) { 588 if (c->mm == mm) 589 goto assign_new_owner; 590 } 591 592 /* 593 * Search in the siblings 594 */ 595 list_for_each_entry(c, &p->real_parent->children, sibling) { 596 if (c->mm == mm) 597 goto assign_new_owner; 598 } 599 600 /* 601 * Search through everything else. We should not get 602 * here often 603 */ 604 do_each_thread(g, c) { 605 if (c->mm == mm) 606 goto assign_new_owner; 607 } while_each_thread(g, c); 608 609 read_unlock(&tasklist_lock); 610 /* 611 * We found no owner yet mm_users > 1: this implies that we are 612 * most likely racing with swapoff (try_to_unuse()) or /proc or 613 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 614 */ 615 mm->owner = NULL; 616 return; 617 618 assign_new_owner: 619 BUG_ON(c == p); 620 get_task_struct(c); 621 /* 622 * The task_lock protects c->mm from changing. 623 * We always want mm->owner->mm == mm 624 */ 625 task_lock(c); 626 /* 627 * Delay read_unlock() till we have the task_lock() 628 * to ensure that c does not slip away underneath us 629 */ 630 read_unlock(&tasklist_lock); 631 if (c->mm != mm) { 632 task_unlock(c); 633 put_task_struct(c); 634 goto retry; 635 } 636 mm->owner = c; 637 task_unlock(c); 638 put_task_struct(c); 639 } 640 #endif /* CONFIG_MM_OWNER */ 641 642 /* 643 * Turn us into a lazy TLB process if we 644 * aren't already.. 645 */ 646 static void exit_mm(struct task_struct * tsk) 647 { 648 struct mm_struct *mm = tsk->mm; 649 struct core_state *core_state; 650 651 mm_release(tsk, mm); 652 if (!mm) 653 return; 654 /* 655 * Serialize with any possible pending coredump. 656 * We must hold mmap_sem around checking core_state 657 * and clearing tsk->mm. The core-inducing thread 658 * will increment ->nr_threads for each thread in the 659 * group with ->mm != NULL. 660 */ 661 down_read(&mm->mmap_sem); 662 core_state = mm->core_state; 663 if (core_state) { 664 struct core_thread self; 665 up_read(&mm->mmap_sem); 666 667 self.task = tsk; 668 self.next = xchg(&core_state->dumper.next, &self); 669 /* 670 * Implies mb(), the result of xchg() must be visible 671 * to core_state->dumper. 672 */ 673 if (atomic_dec_and_test(&core_state->nr_threads)) 674 complete(&core_state->startup); 675 676 for (;;) { 677 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 678 if (!self.task) /* see coredump_finish() */ 679 break; 680 schedule(); 681 } 682 __set_task_state(tsk, TASK_RUNNING); 683 down_read(&mm->mmap_sem); 684 } 685 atomic_inc(&mm->mm_count); 686 BUG_ON(mm != tsk->active_mm); 687 /* more a memory barrier than a real lock */ 688 task_lock(tsk); 689 tsk->mm = NULL; 690 up_read(&mm->mmap_sem); 691 enter_lazy_tlb(mm, current); 692 /* We don't want this task to be frozen prematurely */ 693 clear_freeze_flag(tsk); 694 task_unlock(tsk); 695 mm_update_next_owner(mm); 696 mmput(mm); 697 } 698 699 /* 700 * When we die, we re-parent all our children. 701 * Try to give them to another thread in our thread 702 * group, and if no such member exists, give it to 703 * the child reaper process (ie "init") in our pid 704 * space. 705 */ 706 static struct task_struct *find_new_reaper(struct task_struct *father) 707 { 708 struct pid_namespace *pid_ns = task_active_pid_ns(father); 709 struct task_struct *thread; 710 711 thread = father; 712 while_each_thread(father, thread) { 713 if (thread->flags & PF_EXITING) 714 continue; 715 if (unlikely(pid_ns->child_reaper == father)) 716 pid_ns->child_reaper = thread; 717 return thread; 718 } 719 720 if (unlikely(pid_ns->child_reaper == father)) { 721 write_unlock_irq(&tasklist_lock); 722 if (unlikely(pid_ns == &init_pid_ns)) 723 panic("Attempted to kill init!"); 724 725 zap_pid_ns_processes(pid_ns); 726 write_lock_irq(&tasklist_lock); 727 /* 728 * We can not clear ->child_reaper or leave it alone. 729 * There may by stealth EXIT_DEAD tasks on ->children, 730 * forget_original_parent() must move them somewhere. 731 */ 732 pid_ns->child_reaper = init_pid_ns.child_reaper; 733 } 734 735 return pid_ns->child_reaper; 736 } 737 738 /* 739 * Any that need to be release_task'd are put on the @dead list. 740 */ 741 static void reparent_thread(struct task_struct *father, struct task_struct *p, 742 struct list_head *dead) 743 { 744 if (p->pdeath_signal) 745 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 746 747 list_move_tail(&p->sibling, &p->real_parent->children); 748 749 if (task_detached(p)) 750 return; 751 /* 752 * If this is a threaded reparent there is no need to 753 * notify anyone anything has happened. 754 */ 755 if (same_thread_group(p->real_parent, father)) 756 return; 757 758 /* We don't want people slaying init. */ 759 p->exit_signal = SIGCHLD; 760 761 /* If it has exited notify the new parent about this child's death. */ 762 if (!task_ptrace(p) && 763 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 764 do_notify_parent(p, p->exit_signal); 765 if (task_detached(p)) { 766 p->exit_state = EXIT_DEAD; 767 list_move_tail(&p->sibling, dead); 768 } 769 } 770 771 kill_orphaned_pgrp(p, father); 772 } 773 774 static void forget_original_parent(struct task_struct *father) 775 { 776 struct task_struct *p, *n, *reaper; 777 LIST_HEAD(dead_children); 778 779 exit_ptrace(father); 780 781 write_lock_irq(&tasklist_lock); 782 reaper = find_new_reaper(father); 783 784 list_for_each_entry_safe(p, n, &father->children, sibling) { 785 p->real_parent = reaper; 786 if (p->parent == father) { 787 BUG_ON(task_ptrace(p)); 788 p->parent = p->real_parent; 789 } 790 reparent_thread(father, p, &dead_children); 791 } 792 write_unlock_irq(&tasklist_lock); 793 794 BUG_ON(!list_empty(&father->children)); 795 796 list_for_each_entry_safe(p, n, &dead_children, sibling) { 797 list_del_init(&p->sibling); 798 release_task(p); 799 } 800 } 801 802 /* 803 * Send signals to all our closest relatives so that they know 804 * to properly mourn us.. 805 */ 806 static void exit_notify(struct task_struct *tsk, int group_dead) 807 { 808 int signal; 809 void *cookie; 810 811 /* 812 * This does two things: 813 * 814 * A. Make init inherit all the child processes 815 * B. Check to see if any process groups have become orphaned 816 * as a result of our exiting, and if they have any stopped 817 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 818 */ 819 forget_original_parent(tsk); 820 exit_task_namespaces(tsk); 821 822 write_lock_irq(&tasklist_lock); 823 if (group_dead) 824 kill_orphaned_pgrp(tsk->group_leader, NULL); 825 826 /* Let father know we died 827 * 828 * Thread signals are configurable, but you aren't going to use 829 * that to send signals to arbitary processes. 830 * That stops right now. 831 * 832 * If the parent exec id doesn't match the exec id we saved 833 * when we started then we know the parent has changed security 834 * domain. 835 * 836 * If our self_exec id doesn't match our parent_exec_id then 837 * we have changed execution domain as these two values started 838 * the same after a fork. 839 */ 840 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 841 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 842 tsk->self_exec_id != tsk->parent_exec_id)) 843 tsk->exit_signal = SIGCHLD; 844 845 signal = tracehook_notify_death(tsk, &cookie, group_dead); 846 if (signal >= 0) 847 signal = do_notify_parent(tsk, signal); 848 849 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 850 851 /* mt-exec, de_thread() is waiting for us */ 852 if (thread_group_leader(tsk) && 853 tsk->signal->group_exit_task && 854 tsk->signal->notify_count < 0) 855 wake_up_process(tsk->signal->group_exit_task); 856 857 write_unlock_irq(&tasklist_lock); 858 859 tracehook_report_death(tsk, signal, cookie, group_dead); 860 861 /* If the process is dead, release it - nobody will wait for it */ 862 if (signal == DEATH_REAP) 863 release_task(tsk); 864 } 865 866 #ifdef CONFIG_DEBUG_STACK_USAGE 867 static void check_stack_usage(void) 868 { 869 static DEFINE_SPINLOCK(low_water_lock); 870 static int lowest_to_date = THREAD_SIZE; 871 unsigned long free; 872 873 free = stack_not_used(current); 874 875 if (free >= lowest_to_date) 876 return; 877 878 spin_lock(&low_water_lock); 879 if (free < lowest_to_date) { 880 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 881 "left\n", 882 current->comm, free); 883 lowest_to_date = free; 884 } 885 spin_unlock(&low_water_lock); 886 } 887 #else 888 static inline void check_stack_usage(void) {} 889 #endif 890 891 NORET_TYPE void do_exit(long code) 892 { 893 struct task_struct *tsk = current; 894 int group_dead; 895 896 profile_task_exit(tsk); 897 898 WARN_ON(atomic_read(&tsk->fs_excl)); 899 900 if (unlikely(in_interrupt())) 901 panic("Aiee, killing interrupt handler!"); 902 if (unlikely(!tsk->pid)) 903 panic("Attempted to kill the idle task!"); 904 905 tracehook_report_exit(&code); 906 907 validate_creds_for_do_exit(tsk); 908 909 /* 910 * We're taking recursive faults here in do_exit. Safest is to just 911 * leave this task alone and wait for reboot. 912 */ 913 if (unlikely(tsk->flags & PF_EXITING)) { 914 printk(KERN_ALERT 915 "Fixing recursive fault but reboot is needed!\n"); 916 /* 917 * We can do this unlocked here. The futex code uses 918 * this flag just to verify whether the pi state 919 * cleanup has been done or not. In the worst case it 920 * loops once more. We pretend that the cleanup was 921 * done as there is no way to return. Either the 922 * OWNER_DIED bit is set by now or we push the blocked 923 * task into the wait for ever nirwana as well. 924 */ 925 tsk->flags |= PF_EXITPIDONE; 926 set_current_state(TASK_UNINTERRUPTIBLE); 927 schedule(); 928 } 929 930 exit_irq_thread(); 931 932 exit_signals(tsk); /* sets PF_EXITING */ 933 /* 934 * tsk->flags are checked in the futex code to protect against 935 * an exiting task cleaning up the robust pi futexes. 936 */ 937 smp_mb(); 938 spin_unlock_wait(&tsk->pi_lock); 939 940 if (unlikely(in_atomic())) 941 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 942 current->comm, task_pid_nr(current), 943 preempt_count()); 944 945 acct_update_integrals(tsk); 946 947 group_dead = atomic_dec_and_test(&tsk->signal->live); 948 if (group_dead) { 949 hrtimer_cancel(&tsk->signal->real_timer); 950 exit_itimers(tsk->signal); 951 if (tsk->mm) 952 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 953 } 954 acct_collect(code, group_dead); 955 if (group_dead) 956 tty_audit_exit(); 957 if (unlikely(tsk->audit_context)) 958 audit_free(tsk); 959 960 tsk->exit_code = code; 961 taskstats_exit(tsk, group_dead); 962 963 exit_mm(tsk); 964 965 if (group_dead) 966 acct_process(); 967 trace_sched_process_exit(tsk); 968 969 exit_sem(tsk); 970 exit_files(tsk); 971 exit_fs(tsk); 972 check_stack_usage(); 973 exit_thread(); 974 cgroup_exit(tsk, 1); 975 976 if (group_dead && tsk->signal->leader) 977 disassociate_ctty(1); 978 979 module_put(task_thread_info(tsk)->exec_domain->module); 980 981 proc_exit_connector(tsk); 982 983 /* 984 * FIXME: do that only when needed, using sched_exit tracepoint 985 */ 986 flush_ptrace_hw_breakpoint(tsk); 987 /* 988 * Flush inherited counters to the parent - before the parent 989 * gets woken up by child-exit notifications. 990 */ 991 perf_event_exit_task(tsk); 992 993 exit_notify(tsk, group_dead); 994 #ifdef CONFIG_NUMA 995 mpol_put(tsk->mempolicy); 996 tsk->mempolicy = NULL; 997 #endif 998 #ifdef CONFIG_FUTEX 999 if (unlikely(current->pi_state_cache)) 1000 kfree(current->pi_state_cache); 1001 #endif 1002 /* 1003 * Make sure we are holding no locks: 1004 */ 1005 debug_check_no_locks_held(tsk); 1006 /* 1007 * We can do this unlocked here. The futex code uses this flag 1008 * just to verify whether the pi state cleanup has been done 1009 * or not. In the worst case it loops once more. 1010 */ 1011 tsk->flags |= PF_EXITPIDONE; 1012 1013 if (tsk->io_context) 1014 exit_io_context(); 1015 1016 if (tsk->splice_pipe) 1017 __free_pipe_info(tsk->splice_pipe); 1018 1019 validate_creds_for_do_exit(tsk); 1020 1021 preempt_disable(); 1022 exit_rcu(); 1023 /* causes final put_task_struct in finish_task_switch(). */ 1024 tsk->state = TASK_DEAD; 1025 schedule(); 1026 BUG(); 1027 /* Avoid "noreturn function does return". */ 1028 for (;;) 1029 cpu_relax(); /* For when BUG is null */ 1030 } 1031 1032 EXPORT_SYMBOL_GPL(do_exit); 1033 1034 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1035 { 1036 if (comp) 1037 complete(comp); 1038 1039 do_exit(code); 1040 } 1041 1042 EXPORT_SYMBOL(complete_and_exit); 1043 1044 SYSCALL_DEFINE1(exit, int, error_code) 1045 { 1046 do_exit((error_code&0xff)<<8); 1047 } 1048 1049 /* 1050 * Take down every thread in the group. This is called by fatal signals 1051 * as well as by sys_exit_group (below). 1052 */ 1053 NORET_TYPE void 1054 do_group_exit(int exit_code) 1055 { 1056 struct signal_struct *sig = current->signal; 1057 1058 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1059 1060 if (signal_group_exit(sig)) 1061 exit_code = sig->group_exit_code; 1062 else if (!thread_group_empty(current)) { 1063 struct sighand_struct *const sighand = current->sighand; 1064 spin_lock_irq(&sighand->siglock); 1065 if (signal_group_exit(sig)) 1066 /* Another thread got here before we took the lock. */ 1067 exit_code = sig->group_exit_code; 1068 else { 1069 sig->group_exit_code = exit_code; 1070 sig->flags = SIGNAL_GROUP_EXIT; 1071 zap_other_threads(current); 1072 } 1073 spin_unlock_irq(&sighand->siglock); 1074 } 1075 1076 do_exit(exit_code); 1077 /* NOTREACHED */ 1078 } 1079 1080 /* 1081 * this kills every thread in the thread group. Note that any externally 1082 * wait4()-ing process will get the correct exit code - even if this 1083 * thread is not the thread group leader. 1084 */ 1085 SYSCALL_DEFINE1(exit_group, int, error_code) 1086 { 1087 do_group_exit((error_code & 0xff) << 8); 1088 /* NOTREACHED */ 1089 return 0; 1090 } 1091 1092 struct wait_opts { 1093 enum pid_type wo_type; 1094 int wo_flags; 1095 struct pid *wo_pid; 1096 1097 struct siginfo __user *wo_info; 1098 int __user *wo_stat; 1099 struct rusage __user *wo_rusage; 1100 1101 wait_queue_t child_wait; 1102 int notask_error; 1103 }; 1104 1105 static inline 1106 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1107 { 1108 if (type != PIDTYPE_PID) 1109 task = task->group_leader; 1110 return task->pids[type].pid; 1111 } 1112 1113 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1114 { 1115 return wo->wo_type == PIDTYPE_MAX || 1116 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1117 } 1118 1119 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1120 { 1121 if (!eligible_pid(wo, p)) 1122 return 0; 1123 /* Wait for all children (clone and not) if __WALL is set; 1124 * otherwise, wait for clone children *only* if __WCLONE is 1125 * set; otherwise, wait for non-clone children *only*. (Note: 1126 * A "clone" child here is one that reports to its parent 1127 * using a signal other than SIGCHLD.) */ 1128 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1129 && !(wo->wo_flags & __WALL)) 1130 return 0; 1131 1132 return 1; 1133 } 1134 1135 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1136 pid_t pid, uid_t uid, int why, int status) 1137 { 1138 struct siginfo __user *infop; 1139 int retval = wo->wo_rusage 1140 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1141 1142 put_task_struct(p); 1143 infop = wo->wo_info; 1144 if (infop) { 1145 if (!retval) 1146 retval = put_user(SIGCHLD, &infop->si_signo); 1147 if (!retval) 1148 retval = put_user(0, &infop->si_errno); 1149 if (!retval) 1150 retval = put_user((short)why, &infop->si_code); 1151 if (!retval) 1152 retval = put_user(pid, &infop->si_pid); 1153 if (!retval) 1154 retval = put_user(uid, &infop->si_uid); 1155 if (!retval) 1156 retval = put_user(status, &infop->si_status); 1157 } 1158 if (!retval) 1159 retval = pid; 1160 return retval; 1161 } 1162 1163 /* 1164 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1165 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1166 * the lock and this task is uninteresting. If we return nonzero, we have 1167 * released the lock and the system call should return. 1168 */ 1169 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1170 { 1171 unsigned long state; 1172 int retval, status, traced; 1173 pid_t pid = task_pid_vnr(p); 1174 uid_t uid = __task_cred(p)->uid; 1175 struct siginfo __user *infop; 1176 1177 if (!likely(wo->wo_flags & WEXITED)) 1178 return 0; 1179 1180 if (unlikely(wo->wo_flags & WNOWAIT)) { 1181 int exit_code = p->exit_code; 1182 int why, status; 1183 1184 get_task_struct(p); 1185 read_unlock(&tasklist_lock); 1186 if ((exit_code & 0x7f) == 0) { 1187 why = CLD_EXITED; 1188 status = exit_code >> 8; 1189 } else { 1190 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1191 status = exit_code & 0x7f; 1192 } 1193 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1194 } 1195 1196 /* 1197 * Try to move the task's state to DEAD 1198 * only one thread is allowed to do this: 1199 */ 1200 state = xchg(&p->exit_state, EXIT_DEAD); 1201 if (state != EXIT_ZOMBIE) { 1202 BUG_ON(state != EXIT_DEAD); 1203 return 0; 1204 } 1205 1206 traced = ptrace_reparented(p); 1207 /* 1208 * It can be ptraced but not reparented, check 1209 * !task_detached() to filter out sub-threads. 1210 */ 1211 if (likely(!traced) && likely(!task_detached(p))) { 1212 struct signal_struct *psig; 1213 struct signal_struct *sig; 1214 unsigned long maxrss; 1215 1216 /* 1217 * The resource counters for the group leader are in its 1218 * own task_struct. Those for dead threads in the group 1219 * are in its signal_struct, as are those for the child 1220 * processes it has previously reaped. All these 1221 * accumulate in the parent's signal_struct c* fields. 1222 * 1223 * We don't bother to take a lock here to protect these 1224 * p->signal fields, because they are only touched by 1225 * __exit_signal, which runs with tasklist_lock 1226 * write-locked anyway, and so is excluded here. We do 1227 * need to protect the access to parent->signal fields, 1228 * as other threads in the parent group can be right 1229 * here reaping other children at the same time. 1230 */ 1231 spin_lock_irq(&p->real_parent->sighand->siglock); 1232 psig = p->real_parent->signal; 1233 sig = p->signal; 1234 psig->cutime = 1235 cputime_add(psig->cutime, 1236 cputime_add(p->utime, 1237 cputime_add(sig->utime, 1238 sig->cutime))); 1239 psig->cstime = 1240 cputime_add(psig->cstime, 1241 cputime_add(p->stime, 1242 cputime_add(sig->stime, 1243 sig->cstime))); 1244 psig->cgtime = 1245 cputime_add(psig->cgtime, 1246 cputime_add(p->gtime, 1247 cputime_add(sig->gtime, 1248 sig->cgtime))); 1249 psig->cmin_flt += 1250 p->min_flt + sig->min_flt + sig->cmin_flt; 1251 psig->cmaj_flt += 1252 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1253 psig->cnvcsw += 1254 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1255 psig->cnivcsw += 1256 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1257 psig->cinblock += 1258 task_io_get_inblock(p) + 1259 sig->inblock + sig->cinblock; 1260 psig->coublock += 1261 task_io_get_oublock(p) + 1262 sig->oublock + sig->coublock; 1263 maxrss = max(sig->maxrss, sig->cmaxrss); 1264 if (psig->cmaxrss < maxrss) 1265 psig->cmaxrss = maxrss; 1266 task_io_accounting_add(&psig->ioac, &p->ioac); 1267 task_io_accounting_add(&psig->ioac, &sig->ioac); 1268 spin_unlock_irq(&p->real_parent->sighand->siglock); 1269 } 1270 1271 /* 1272 * Now we are sure this task is interesting, and no other 1273 * thread can reap it because we set its state to EXIT_DEAD. 1274 */ 1275 read_unlock(&tasklist_lock); 1276 1277 retval = wo->wo_rusage 1278 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1279 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1280 ? p->signal->group_exit_code : p->exit_code; 1281 if (!retval && wo->wo_stat) 1282 retval = put_user(status, wo->wo_stat); 1283 1284 infop = wo->wo_info; 1285 if (!retval && infop) 1286 retval = put_user(SIGCHLD, &infop->si_signo); 1287 if (!retval && infop) 1288 retval = put_user(0, &infop->si_errno); 1289 if (!retval && infop) { 1290 int why; 1291 1292 if ((status & 0x7f) == 0) { 1293 why = CLD_EXITED; 1294 status >>= 8; 1295 } else { 1296 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1297 status &= 0x7f; 1298 } 1299 retval = put_user((short)why, &infop->si_code); 1300 if (!retval) 1301 retval = put_user(status, &infop->si_status); 1302 } 1303 if (!retval && infop) 1304 retval = put_user(pid, &infop->si_pid); 1305 if (!retval && infop) 1306 retval = put_user(uid, &infop->si_uid); 1307 if (!retval) 1308 retval = pid; 1309 1310 if (traced) { 1311 write_lock_irq(&tasklist_lock); 1312 /* We dropped tasklist, ptracer could die and untrace */ 1313 ptrace_unlink(p); 1314 /* 1315 * If this is not a detached task, notify the parent. 1316 * If it's still not detached after that, don't release 1317 * it now. 1318 */ 1319 if (!task_detached(p)) { 1320 do_notify_parent(p, p->exit_signal); 1321 if (!task_detached(p)) { 1322 p->exit_state = EXIT_ZOMBIE; 1323 p = NULL; 1324 } 1325 } 1326 write_unlock_irq(&tasklist_lock); 1327 } 1328 if (p != NULL) 1329 release_task(p); 1330 1331 return retval; 1332 } 1333 1334 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1335 { 1336 if (ptrace) { 1337 if (task_is_stopped_or_traced(p)) 1338 return &p->exit_code; 1339 } else { 1340 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1341 return &p->signal->group_exit_code; 1342 } 1343 return NULL; 1344 } 1345 1346 /* 1347 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1348 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1349 * the lock and this task is uninteresting. If we return nonzero, we have 1350 * released the lock and the system call should return. 1351 */ 1352 static int wait_task_stopped(struct wait_opts *wo, 1353 int ptrace, struct task_struct *p) 1354 { 1355 struct siginfo __user *infop; 1356 int retval, exit_code, *p_code, why; 1357 uid_t uid = 0; /* unneeded, required by compiler */ 1358 pid_t pid; 1359 1360 /* 1361 * Traditionally we see ptrace'd stopped tasks regardless of options. 1362 */ 1363 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1364 return 0; 1365 1366 exit_code = 0; 1367 spin_lock_irq(&p->sighand->siglock); 1368 1369 p_code = task_stopped_code(p, ptrace); 1370 if (unlikely(!p_code)) 1371 goto unlock_sig; 1372 1373 exit_code = *p_code; 1374 if (!exit_code) 1375 goto unlock_sig; 1376 1377 if (!unlikely(wo->wo_flags & WNOWAIT)) 1378 *p_code = 0; 1379 1380 /* don't need the RCU readlock here as we're holding a spinlock */ 1381 uid = __task_cred(p)->uid; 1382 unlock_sig: 1383 spin_unlock_irq(&p->sighand->siglock); 1384 if (!exit_code) 1385 return 0; 1386 1387 /* 1388 * Now we are pretty sure this task is interesting. 1389 * Make sure it doesn't get reaped out from under us while we 1390 * give up the lock and then examine it below. We don't want to 1391 * keep holding onto the tasklist_lock while we call getrusage and 1392 * possibly take page faults for user memory. 1393 */ 1394 get_task_struct(p); 1395 pid = task_pid_vnr(p); 1396 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1397 read_unlock(&tasklist_lock); 1398 1399 if (unlikely(wo->wo_flags & WNOWAIT)) 1400 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1401 1402 retval = wo->wo_rusage 1403 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1404 if (!retval && wo->wo_stat) 1405 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1406 1407 infop = wo->wo_info; 1408 if (!retval && infop) 1409 retval = put_user(SIGCHLD, &infop->si_signo); 1410 if (!retval && infop) 1411 retval = put_user(0, &infop->si_errno); 1412 if (!retval && infop) 1413 retval = put_user((short)why, &infop->si_code); 1414 if (!retval && infop) 1415 retval = put_user(exit_code, &infop->si_status); 1416 if (!retval && infop) 1417 retval = put_user(pid, &infop->si_pid); 1418 if (!retval && infop) 1419 retval = put_user(uid, &infop->si_uid); 1420 if (!retval) 1421 retval = pid; 1422 put_task_struct(p); 1423 1424 BUG_ON(!retval); 1425 return retval; 1426 } 1427 1428 /* 1429 * Handle do_wait work for one task in a live, non-stopped state. 1430 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1431 * the lock and this task is uninteresting. If we return nonzero, we have 1432 * released the lock and the system call should return. 1433 */ 1434 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1435 { 1436 int retval; 1437 pid_t pid; 1438 uid_t uid; 1439 1440 if (!unlikely(wo->wo_flags & WCONTINUED)) 1441 return 0; 1442 1443 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1444 return 0; 1445 1446 spin_lock_irq(&p->sighand->siglock); 1447 /* Re-check with the lock held. */ 1448 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1449 spin_unlock_irq(&p->sighand->siglock); 1450 return 0; 1451 } 1452 if (!unlikely(wo->wo_flags & WNOWAIT)) 1453 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1454 uid = __task_cred(p)->uid; 1455 spin_unlock_irq(&p->sighand->siglock); 1456 1457 pid = task_pid_vnr(p); 1458 get_task_struct(p); 1459 read_unlock(&tasklist_lock); 1460 1461 if (!wo->wo_info) { 1462 retval = wo->wo_rusage 1463 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1464 put_task_struct(p); 1465 if (!retval && wo->wo_stat) 1466 retval = put_user(0xffff, wo->wo_stat); 1467 if (!retval) 1468 retval = pid; 1469 } else { 1470 retval = wait_noreap_copyout(wo, p, pid, uid, 1471 CLD_CONTINUED, SIGCONT); 1472 BUG_ON(retval == 0); 1473 } 1474 1475 return retval; 1476 } 1477 1478 /* 1479 * Consider @p for a wait by @parent. 1480 * 1481 * -ECHILD should be in ->notask_error before the first call. 1482 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1483 * Returns zero if the search for a child should continue; 1484 * then ->notask_error is 0 if @p is an eligible child, 1485 * or another error from security_task_wait(), or still -ECHILD. 1486 */ 1487 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1488 struct task_struct *p) 1489 { 1490 int ret = eligible_child(wo, p); 1491 if (!ret) 1492 return ret; 1493 1494 ret = security_task_wait(p); 1495 if (unlikely(ret < 0)) { 1496 /* 1497 * If we have not yet seen any eligible child, 1498 * then let this error code replace -ECHILD. 1499 * A permission error will give the user a clue 1500 * to look for security policy problems, rather 1501 * than for mysterious wait bugs. 1502 */ 1503 if (wo->notask_error) 1504 wo->notask_error = ret; 1505 return 0; 1506 } 1507 1508 if (likely(!ptrace) && unlikely(task_ptrace(p))) { 1509 /* 1510 * This child is hidden by ptrace. 1511 * We aren't allowed to see it now, but eventually we will. 1512 */ 1513 wo->notask_error = 0; 1514 return 0; 1515 } 1516 1517 if (p->exit_state == EXIT_DEAD) 1518 return 0; 1519 1520 /* 1521 * We don't reap group leaders with subthreads. 1522 */ 1523 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1524 return wait_task_zombie(wo, p); 1525 1526 /* 1527 * It's stopped or running now, so it might 1528 * later continue, exit, or stop again. 1529 */ 1530 wo->notask_error = 0; 1531 1532 if (task_stopped_code(p, ptrace)) 1533 return wait_task_stopped(wo, ptrace, p); 1534 1535 return wait_task_continued(wo, p); 1536 } 1537 1538 /* 1539 * Do the work of do_wait() for one thread in the group, @tsk. 1540 * 1541 * -ECHILD should be in ->notask_error before the first call. 1542 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1543 * Returns zero if the search for a child should continue; then 1544 * ->notask_error is 0 if there were any eligible children, 1545 * or another error from security_task_wait(), or still -ECHILD. 1546 */ 1547 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1548 { 1549 struct task_struct *p; 1550 1551 list_for_each_entry(p, &tsk->children, sibling) { 1552 /* 1553 * Do not consider detached threads. 1554 */ 1555 if (!task_detached(p)) { 1556 int ret = wait_consider_task(wo, 0, p); 1557 if (ret) 1558 return ret; 1559 } 1560 } 1561 1562 return 0; 1563 } 1564 1565 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1566 { 1567 struct task_struct *p; 1568 1569 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1570 int ret = wait_consider_task(wo, 1, p); 1571 if (ret) 1572 return ret; 1573 } 1574 1575 return 0; 1576 } 1577 1578 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1579 int sync, void *key) 1580 { 1581 struct wait_opts *wo = container_of(wait, struct wait_opts, 1582 child_wait); 1583 struct task_struct *p = key; 1584 1585 if (!eligible_pid(wo, p)) 1586 return 0; 1587 1588 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1589 return 0; 1590 1591 return default_wake_function(wait, mode, sync, key); 1592 } 1593 1594 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1595 { 1596 __wake_up_sync_key(&parent->signal->wait_chldexit, 1597 TASK_INTERRUPTIBLE, 1, p); 1598 } 1599 1600 static long do_wait(struct wait_opts *wo) 1601 { 1602 struct task_struct *tsk; 1603 int retval; 1604 1605 trace_sched_process_wait(wo->wo_pid); 1606 1607 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1608 wo->child_wait.private = current; 1609 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1610 repeat: 1611 /* 1612 * If there is nothing that can match our critiera just get out. 1613 * We will clear ->notask_error to zero if we see any child that 1614 * might later match our criteria, even if we are not able to reap 1615 * it yet. 1616 */ 1617 wo->notask_error = -ECHILD; 1618 if ((wo->wo_type < PIDTYPE_MAX) && 1619 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1620 goto notask; 1621 1622 set_current_state(TASK_INTERRUPTIBLE); 1623 read_lock(&tasklist_lock); 1624 tsk = current; 1625 do { 1626 retval = do_wait_thread(wo, tsk); 1627 if (retval) 1628 goto end; 1629 1630 retval = ptrace_do_wait(wo, tsk); 1631 if (retval) 1632 goto end; 1633 1634 if (wo->wo_flags & __WNOTHREAD) 1635 break; 1636 } while_each_thread(current, tsk); 1637 read_unlock(&tasklist_lock); 1638 1639 notask: 1640 retval = wo->notask_error; 1641 if (!retval && !(wo->wo_flags & WNOHANG)) { 1642 retval = -ERESTARTSYS; 1643 if (!signal_pending(current)) { 1644 schedule(); 1645 goto repeat; 1646 } 1647 } 1648 end: 1649 __set_current_state(TASK_RUNNING); 1650 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1651 return retval; 1652 } 1653 1654 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1655 infop, int, options, struct rusage __user *, ru) 1656 { 1657 struct wait_opts wo; 1658 struct pid *pid = NULL; 1659 enum pid_type type; 1660 long ret; 1661 1662 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1663 return -EINVAL; 1664 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1665 return -EINVAL; 1666 1667 switch (which) { 1668 case P_ALL: 1669 type = PIDTYPE_MAX; 1670 break; 1671 case P_PID: 1672 type = PIDTYPE_PID; 1673 if (upid <= 0) 1674 return -EINVAL; 1675 break; 1676 case P_PGID: 1677 type = PIDTYPE_PGID; 1678 if (upid <= 0) 1679 return -EINVAL; 1680 break; 1681 default: 1682 return -EINVAL; 1683 } 1684 1685 if (type < PIDTYPE_MAX) 1686 pid = find_get_pid(upid); 1687 1688 wo.wo_type = type; 1689 wo.wo_pid = pid; 1690 wo.wo_flags = options; 1691 wo.wo_info = infop; 1692 wo.wo_stat = NULL; 1693 wo.wo_rusage = ru; 1694 ret = do_wait(&wo); 1695 1696 if (ret > 0) { 1697 ret = 0; 1698 } else if (infop) { 1699 /* 1700 * For a WNOHANG return, clear out all the fields 1701 * we would set so the user can easily tell the 1702 * difference. 1703 */ 1704 if (!ret) 1705 ret = put_user(0, &infop->si_signo); 1706 if (!ret) 1707 ret = put_user(0, &infop->si_errno); 1708 if (!ret) 1709 ret = put_user(0, &infop->si_code); 1710 if (!ret) 1711 ret = put_user(0, &infop->si_pid); 1712 if (!ret) 1713 ret = put_user(0, &infop->si_uid); 1714 if (!ret) 1715 ret = put_user(0, &infop->si_status); 1716 } 1717 1718 put_pid(pid); 1719 1720 /* avoid REGPARM breakage on x86: */ 1721 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1722 return ret; 1723 } 1724 1725 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1726 int, options, struct rusage __user *, ru) 1727 { 1728 struct wait_opts wo; 1729 struct pid *pid = NULL; 1730 enum pid_type type; 1731 long ret; 1732 1733 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1734 __WNOTHREAD|__WCLONE|__WALL)) 1735 return -EINVAL; 1736 1737 if (upid == -1) 1738 type = PIDTYPE_MAX; 1739 else if (upid < 0) { 1740 type = PIDTYPE_PGID; 1741 pid = find_get_pid(-upid); 1742 } else if (upid == 0) { 1743 type = PIDTYPE_PGID; 1744 pid = get_task_pid(current, PIDTYPE_PGID); 1745 } else /* upid > 0 */ { 1746 type = PIDTYPE_PID; 1747 pid = find_get_pid(upid); 1748 } 1749 1750 wo.wo_type = type; 1751 wo.wo_pid = pid; 1752 wo.wo_flags = options | WEXITED; 1753 wo.wo_info = NULL; 1754 wo.wo_stat = stat_addr; 1755 wo.wo_rusage = ru; 1756 ret = do_wait(&wo); 1757 put_pid(pid); 1758 1759 /* avoid REGPARM breakage on x86: */ 1760 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1761 return ret; 1762 } 1763 1764 #ifdef __ARCH_WANT_SYS_WAITPID 1765 1766 /* 1767 * sys_waitpid() remains for compatibility. waitpid() should be 1768 * implemented by calling sys_wait4() from libc.a. 1769 */ 1770 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1771 { 1772 return sys_wait4(pid, stat_addr, options, NULL); 1773 } 1774 1775 #endif 1776