xref: /linux-6.15/kernel/exit.c (revision f60d24d2)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58 #include "cred-internals.h"
59 
60 static void exit_mm(struct task_struct * tsk);
61 
62 static void __unhash_process(struct task_struct *p)
63 {
64 	nr_threads--;
65 	detach_pid(p, PIDTYPE_PID);
66 	if (thread_group_leader(p)) {
67 		detach_pid(p, PIDTYPE_PGID);
68 		detach_pid(p, PIDTYPE_SID);
69 
70 		list_del_rcu(&p->tasks);
71 		__get_cpu_var(process_counts)--;
72 	}
73 	list_del_rcu(&p->thread_group);
74 	list_del_init(&p->sibling);
75 }
76 
77 /*
78  * This function expects the tasklist_lock write-locked.
79  */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 	struct signal_struct *sig = tsk->signal;
83 	struct sighand_struct *sighand;
84 
85 	BUG_ON(!sig);
86 	BUG_ON(!atomic_read(&sig->count));
87 
88 	sighand = rcu_dereference(tsk->sighand);
89 	spin_lock(&sighand->siglock);
90 
91 	posix_cpu_timers_exit(tsk);
92 	if (atomic_dec_and_test(&sig->count))
93 		posix_cpu_timers_exit_group(tsk);
94 	else {
95 		/*
96 		 * If there is any task waiting for the group exit
97 		 * then notify it:
98 		 */
99 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
100 			wake_up_process(sig->group_exit_task);
101 
102 		if (tsk == sig->curr_target)
103 			sig->curr_target = next_thread(tsk);
104 		/*
105 		 * Accumulate here the counters for all threads but the
106 		 * group leader as they die, so they can be added into
107 		 * the process-wide totals when those are taken.
108 		 * The group leader stays around as a zombie as long
109 		 * as there are other threads.  When it gets reaped,
110 		 * the exit.c code will add its counts into these totals.
111 		 * We won't ever get here for the group leader, since it
112 		 * will have been the last reference on the signal_struct.
113 		 */
114 		sig->utime = cputime_add(sig->utime, task_utime(tsk));
115 		sig->stime = cputime_add(sig->stime, task_stime(tsk));
116 		sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
117 		sig->min_flt += tsk->min_flt;
118 		sig->maj_flt += tsk->maj_flt;
119 		sig->nvcsw += tsk->nvcsw;
120 		sig->nivcsw += tsk->nivcsw;
121 		sig->inblock += task_io_get_inblock(tsk);
122 		sig->oublock += task_io_get_oublock(tsk);
123 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
124 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
125 		sig = NULL; /* Marker for below. */
126 	}
127 
128 	__unhash_process(tsk);
129 
130 	/*
131 	 * Do this under ->siglock, we can race with another thread
132 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
133 	 */
134 	flush_sigqueue(&tsk->pending);
135 
136 	tsk->signal = NULL;
137 	tsk->sighand = NULL;
138 	spin_unlock(&sighand->siglock);
139 
140 	__cleanup_sighand(sighand);
141 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142 	if (sig) {
143 		flush_sigqueue(&sig->shared_pending);
144 		taskstats_tgid_free(sig);
145 		/*
146 		 * Make sure ->signal can't go away under rq->lock,
147 		 * see account_group_exec_runtime().
148 		 */
149 		task_rq_unlock_wait(tsk);
150 		__cleanup_signal(sig);
151 	}
152 }
153 
154 static void delayed_put_task_struct(struct rcu_head *rhp)
155 {
156 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
157 
158 #ifdef CONFIG_PERF_EVENTS
159 	WARN_ON_ONCE(tsk->perf_event_ctxp);
160 #endif
161 	trace_sched_process_free(tsk);
162 	put_task_struct(tsk);
163 }
164 
165 
166 void release_task(struct task_struct * p)
167 {
168 	struct task_struct *leader;
169 	int zap_leader;
170 repeat:
171 	tracehook_prepare_release_task(p);
172 	/* don't need to get the RCU readlock here - the process is dead and
173 	 * can't be modifying its own credentials */
174 	atomic_dec(&__task_cred(p)->user->processes);
175 
176 	proc_flush_task(p);
177 
178 	write_lock_irq(&tasklist_lock);
179 	tracehook_finish_release_task(p);
180 	__exit_signal(p);
181 
182 	/*
183 	 * If we are the last non-leader member of the thread
184 	 * group, and the leader is zombie, then notify the
185 	 * group leader's parent process. (if it wants notification.)
186 	 */
187 	zap_leader = 0;
188 	leader = p->group_leader;
189 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
190 		BUG_ON(task_detached(leader));
191 		do_notify_parent(leader, leader->exit_signal);
192 		/*
193 		 * If we were the last child thread and the leader has
194 		 * exited already, and the leader's parent ignores SIGCHLD,
195 		 * then we are the one who should release the leader.
196 		 *
197 		 * do_notify_parent() will have marked it self-reaping in
198 		 * that case.
199 		 */
200 		zap_leader = task_detached(leader);
201 
202 		/*
203 		 * This maintains the invariant that release_task()
204 		 * only runs on a task in EXIT_DEAD, just for sanity.
205 		 */
206 		if (zap_leader)
207 			leader->exit_state = EXIT_DEAD;
208 	}
209 
210 	write_unlock_irq(&tasklist_lock);
211 	release_thread(p);
212 	call_rcu(&p->rcu, delayed_put_task_struct);
213 
214 	p = leader;
215 	if (unlikely(zap_leader))
216 		goto repeat;
217 }
218 
219 /*
220  * This checks not only the pgrp, but falls back on the pid if no
221  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
222  * without this...
223  *
224  * The caller must hold rcu lock or the tasklist lock.
225  */
226 struct pid *session_of_pgrp(struct pid *pgrp)
227 {
228 	struct task_struct *p;
229 	struct pid *sid = NULL;
230 
231 	p = pid_task(pgrp, PIDTYPE_PGID);
232 	if (p == NULL)
233 		p = pid_task(pgrp, PIDTYPE_PID);
234 	if (p != NULL)
235 		sid = task_session(p);
236 
237 	return sid;
238 }
239 
240 /*
241  * Determine if a process group is "orphaned", according to the POSIX
242  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
243  * by terminal-generated stop signals.  Newly orphaned process groups are
244  * to receive a SIGHUP and a SIGCONT.
245  *
246  * "I ask you, have you ever known what it is to be an orphan?"
247  */
248 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
249 {
250 	struct task_struct *p;
251 
252 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
253 		if ((p == ignored_task) ||
254 		    (p->exit_state && thread_group_empty(p)) ||
255 		    is_global_init(p->real_parent))
256 			continue;
257 
258 		if (task_pgrp(p->real_parent) != pgrp &&
259 		    task_session(p->real_parent) == task_session(p))
260 			return 0;
261 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
262 
263 	return 1;
264 }
265 
266 int is_current_pgrp_orphaned(void)
267 {
268 	int retval;
269 
270 	read_lock(&tasklist_lock);
271 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
272 	read_unlock(&tasklist_lock);
273 
274 	return retval;
275 }
276 
277 static int has_stopped_jobs(struct pid *pgrp)
278 {
279 	int retval = 0;
280 	struct task_struct *p;
281 
282 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
283 		if (!task_is_stopped(p))
284 			continue;
285 		retval = 1;
286 		break;
287 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
288 	return retval;
289 }
290 
291 /*
292  * Check to see if any process groups have become orphaned as
293  * a result of our exiting, and if they have any stopped jobs,
294  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
295  */
296 static void
297 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
298 {
299 	struct pid *pgrp = task_pgrp(tsk);
300 	struct task_struct *ignored_task = tsk;
301 
302 	if (!parent)
303 		 /* exit: our father is in a different pgrp than
304 		  * we are and we were the only connection outside.
305 		  */
306 		parent = tsk->real_parent;
307 	else
308 		/* reparent: our child is in a different pgrp than
309 		 * we are, and it was the only connection outside.
310 		 */
311 		ignored_task = NULL;
312 
313 	if (task_pgrp(parent) != pgrp &&
314 	    task_session(parent) == task_session(tsk) &&
315 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
316 	    has_stopped_jobs(pgrp)) {
317 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
318 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
319 	}
320 }
321 
322 /**
323  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
324  *
325  * If a kernel thread is launched as a result of a system call, or if
326  * it ever exits, it should generally reparent itself to kthreadd so it
327  * isn't in the way of other processes and is correctly cleaned up on exit.
328  *
329  * The various task state such as scheduling policy and priority may have
330  * been inherited from a user process, so we reset them to sane values here.
331  *
332  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
333  */
334 static void reparent_to_kthreadd(void)
335 {
336 	write_lock_irq(&tasklist_lock);
337 
338 	ptrace_unlink(current);
339 	/* Reparent to init */
340 	current->real_parent = current->parent = kthreadd_task;
341 	list_move_tail(&current->sibling, &current->real_parent->children);
342 
343 	/* Set the exit signal to SIGCHLD so we signal init on exit */
344 	current->exit_signal = SIGCHLD;
345 
346 	if (task_nice(current) < 0)
347 		set_user_nice(current, 0);
348 	/* cpus_allowed? */
349 	/* rt_priority? */
350 	/* signals? */
351 	memcpy(current->signal->rlim, init_task.signal->rlim,
352 	       sizeof(current->signal->rlim));
353 
354 	atomic_inc(&init_cred.usage);
355 	commit_creds(&init_cred);
356 	write_unlock_irq(&tasklist_lock);
357 }
358 
359 void __set_special_pids(struct pid *pid)
360 {
361 	struct task_struct *curr = current->group_leader;
362 
363 	if (task_session(curr) != pid) {
364 		change_pid(curr, PIDTYPE_SID, pid);
365 		proc_sid_connector(curr);
366 	}
367 
368 	if (task_pgrp(curr) != pid)
369 		change_pid(curr, PIDTYPE_PGID, pid);
370 }
371 
372 static void set_special_pids(struct pid *pid)
373 {
374 	write_lock_irq(&tasklist_lock);
375 	__set_special_pids(pid);
376 	write_unlock_irq(&tasklist_lock);
377 }
378 
379 /*
380  * Let kernel threads use this to say that they allow a certain signal.
381  * Must not be used if kthread was cloned with CLONE_SIGHAND.
382  */
383 int allow_signal(int sig)
384 {
385 	if (!valid_signal(sig) || sig < 1)
386 		return -EINVAL;
387 
388 	spin_lock_irq(&current->sighand->siglock);
389 	/* This is only needed for daemonize()'ed kthreads */
390 	sigdelset(&current->blocked, sig);
391 	/*
392 	 * Kernel threads handle their own signals. Let the signal code
393 	 * know it'll be handled, so that they don't get converted to
394 	 * SIGKILL or just silently dropped.
395 	 */
396 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
397 	recalc_sigpending();
398 	spin_unlock_irq(&current->sighand->siglock);
399 	return 0;
400 }
401 
402 EXPORT_SYMBOL(allow_signal);
403 
404 int disallow_signal(int sig)
405 {
406 	if (!valid_signal(sig) || sig < 1)
407 		return -EINVAL;
408 
409 	spin_lock_irq(&current->sighand->siglock);
410 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
411 	recalc_sigpending();
412 	spin_unlock_irq(&current->sighand->siglock);
413 	return 0;
414 }
415 
416 EXPORT_SYMBOL(disallow_signal);
417 
418 /*
419  *	Put all the gunge required to become a kernel thread without
420  *	attached user resources in one place where it belongs.
421  */
422 
423 void daemonize(const char *name, ...)
424 {
425 	va_list args;
426 	sigset_t blocked;
427 
428 	va_start(args, name);
429 	vsnprintf(current->comm, sizeof(current->comm), name, args);
430 	va_end(args);
431 
432 	/*
433 	 * If we were started as result of loading a module, close all of the
434 	 * user space pages.  We don't need them, and if we didn't close them
435 	 * they would be locked into memory.
436 	 */
437 	exit_mm(current);
438 	/*
439 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
440 	 * or suspend transition begins right now.
441 	 */
442 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
443 
444 	if (current->nsproxy != &init_nsproxy) {
445 		get_nsproxy(&init_nsproxy);
446 		switch_task_namespaces(current, &init_nsproxy);
447 	}
448 	set_special_pids(&init_struct_pid);
449 	proc_clear_tty(current);
450 
451 	/* Block and flush all signals */
452 	sigfillset(&blocked);
453 	sigprocmask(SIG_BLOCK, &blocked, NULL);
454 	flush_signals(current);
455 
456 	/* Become as one with the init task */
457 
458 	daemonize_fs_struct();
459 	exit_files(current);
460 	current->files = init_task.files;
461 	atomic_inc(&current->files->count);
462 
463 	reparent_to_kthreadd();
464 }
465 
466 EXPORT_SYMBOL(daemonize);
467 
468 static void close_files(struct files_struct * files)
469 {
470 	int i, j;
471 	struct fdtable *fdt;
472 
473 	j = 0;
474 
475 	/*
476 	 * It is safe to dereference the fd table without RCU or
477 	 * ->file_lock because this is the last reference to the
478 	 * files structure.
479 	 */
480 	fdt = files_fdtable(files);
481 	for (;;) {
482 		unsigned long set;
483 		i = j * __NFDBITS;
484 		if (i >= fdt->max_fds)
485 			break;
486 		set = fdt->open_fds->fds_bits[j++];
487 		while (set) {
488 			if (set & 1) {
489 				struct file * file = xchg(&fdt->fd[i], NULL);
490 				if (file) {
491 					filp_close(file, files);
492 					cond_resched();
493 				}
494 			}
495 			i++;
496 			set >>= 1;
497 		}
498 	}
499 }
500 
501 struct files_struct *get_files_struct(struct task_struct *task)
502 {
503 	struct files_struct *files;
504 
505 	task_lock(task);
506 	files = task->files;
507 	if (files)
508 		atomic_inc(&files->count);
509 	task_unlock(task);
510 
511 	return files;
512 }
513 
514 void put_files_struct(struct files_struct *files)
515 {
516 	struct fdtable *fdt;
517 
518 	if (atomic_dec_and_test(&files->count)) {
519 		close_files(files);
520 		/*
521 		 * Free the fd and fdset arrays if we expanded them.
522 		 * If the fdtable was embedded, pass files for freeing
523 		 * at the end of the RCU grace period. Otherwise,
524 		 * you can free files immediately.
525 		 */
526 		fdt = files_fdtable(files);
527 		if (fdt != &files->fdtab)
528 			kmem_cache_free(files_cachep, files);
529 		free_fdtable(fdt);
530 	}
531 }
532 
533 void reset_files_struct(struct files_struct *files)
534 {
535 	struct task_struct *tsk = current;
536 	struct files_struct *old;
537 
538 	old = tsk->files;
539 	task_lock(tsk);
540 	tsk->files = files;
541 	task_unlock(tsk);
542 	put_files_struct(old);
543 }
544 
545 void exit_files(struct task_struct *tsk)
546 {
547 	struct files_struct * files = tsk->files;
548 
549 	if (files) {
550 		task_lock(tsk);
551 		tsk->files = NULL;
552 		task_unlock(tsk);
553 		put_files_struct(files);
554 	}
555 }
556 
557 #ifdef CONFIG_MM_OWNER
558 /*
559  * Task p is exiting and it owned mm, lets find a new owner for it
560  */
561 static inline int
562 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
563 {
564 	/*
565 	 * If there are other users of the mm and the owner (us) is exiting
566 	 * we need to find a new owner to take on the responsibility.
567 	 */
568 	if (atomic_read(&mm->mm_users) <= 1)
569 		return 0;
570 	if (mm->owner != p)
571 		return 0;
572 	return 1;
573 }
574 
575 void mm_update_next_owner(struct mm_struct *mm)
576 {
577 	struct task_struct *c, *g, *p = current;
578 
579 retry:
580 	if (!mm_need_new_owner(mm, p))
581 		return;
582 
583 	read_lock(&tasklist_lock);
584 	/*
585 	 * Search in the children
586 	 */
587 	list_for_each_entry(c, &p->children, sibling) {
588 		if (c->mm == mm)
589 			goto assign_new_owner;
590 	}
591 
592 	/*
593 	 * Search in the siblings
594 	 */
595 	list_for_each_entry(c, &p->real_parent->children, sibling) {
596 		if (c->mm == mm)
597 			goto assign_new_owner;
598 	}
599 
600 	/*
601 	 * Search through everything else. We should not get
602 	 * here often
603 	 */
604 	do_each_thread(g, c) {
605 		if (c->mm == mm)
606 			goto assign_new_owner;
607 	} while_each_thread(g, c);
608 
609 	read_unlock(&tasklist_lock);
610 	/*
611 	 * We found no owner yet mm_users > 1: this implies that we are
612 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
613 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
614 	 */
615 	mm->owner = NULL;
616 	return;
617 
618 assign_new_owner:
619 	BUG_ON(c == p);
620 	get_task_struct(c);
621 	/*
622 	 * The task_lock protects c->mm from changing.
623 	 * We always want mm->owner->mm == mm
624 	 */
625 	task_lock(c);
626 	/*
627 	 * Delay read_unlock() till we have the task_lock()
628 	 * to ensure that c does not slip away underneath us
629 	 */
630 	read_unlock(&tasklist_lock);
631 	if (c->mm != mm) {
632 		task_unlock(c);
633 		put_task_struct(c);
634 		goto retry;
635 	}
636 	mm->owner = c;
637 	task_unlock(c);
638 	put_task_struct(c);
639 }
640 #endif /* CONFIG_MM_OWNER */
641 
642 /*
643  * Turn us into a lazy TLB process if we
644  * aren't already..
645  */
646 static void exit_mm(struct task_struct * tsk)
647 {
648 	struct mm_struct *mm = tsk->mm;
649 	struct core_state *core_state;
650 
651 	mm_release(tsk, mm);
652 	if (!mm)
653 		return;
654 	/*
655 	 * Serialize with any possible pending coredump.
656 	 * We must hold mmap_sem around checking core_state
657 	 * and clearing tsk->mm.  The core-inducing thread
658 	 * will increment ->nr_threads for each thread in the
659 	 * group with ->mm != NULL.
660 	 */
661 	down_read(&mm->mmap_sem);
662 	core_state = mm->core_state;
663 	if (core_state) {
664 		struct core_thread self;
665 		up_read(&mm->mmap_sem);
666 
667 		self.task = tsk;
668 		self.next = xchg(&core_state->dumper.next, &self);
669 		/*
670 		 * Implies mb(), the result of xchg() must be visible
671 		 * to core_state->dumper.
672 		 */
673 		if (atomic_dec_and_test(&core_state->nr_threads))
674 			complete(&core_state->startup);
675 
676 		for (;;) {
677 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
678 			if (!self.task) /* see coredump_finish() */
679 				break;
680 			schedule();
681 		}
682 		__set_task_state(tsk, TASK_RUNNING);
683 		down_read(&mm->mmap_sem);
684 	}
685 	atomic_inc(&mm->mm_count);
686 	BUG_ON(mm != tsk->active_mm);
687 	/* more a memory barrier than a real lock */
688 	task_lock(tsk);
689 	tsk->mm = NULL;
690 	up_read(&mm->mmap_sem);
691 	enter_lazy_tlb(mm, current);
692 	/* We don't want this task to be frozen prematurely */
693 	clear_freeze_flag(tsk);
694 	task_unlock(tsk);
695 	mm_update_next_owner(mm);
696 	mmput(mm);
697 }
698 
699 /*
700  * When we die, we re-parent all our children.
701  * Try to give them to another thread in our thread
702  * group, and if no such member exists, give it to
703  * the child reaper process (ie "init") in our pid
704  * space.
705  */
706 static struct task_struct *find_new_reaper(struct task_struct *father)
707 {
708 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
709 	struct task_struct *thread;
710 
711 	thread = father;
712 	while_each_thread(father, thread) {
713 		if (thread->flags & PF_EXITING)
714 			continue;
715 		if (unlikely(pid_ns->child_reaper == father))
716 			pid_ns->child_reaper = thread;
717 		return thread;
718 	}
719 
720 	if (unlikely(pid_ns->child_reaper == father)) {
721 		write_unlock_irq(&tasklist_lock);
722 		if (unlikely(pid_ns == &init_pid_ns))
723 			panic("Attempted to kill init!");
724 
725 		zap_pid_ns_processes(pid_ns);
726 		write_lock_irq(&tasklist_lock);
727 		/*
728 		 * We can not clear ->child_reaper or leave it alone.
729 		 * There may by stealth EXIT_DEAD tasks on ->children,
730 		 * forget_original_parent() must move them somewhere.
731 		 */
732 		pid_ns->child_reaper = init_pid_ns.child_reaper;
733 	}
734 
735 	return pid_ns->child_reaper;
736 }
737 
738 /*
739 * Any that need to be release_task'd are put on the @dead list.
740  */
741 static void reparent_thread(struct task_struct *father, struct task_struct *p,
742 				struct list_head *dead)
743 {
744 	if (p->pdeath_signal)
745 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
746 
747 	list_move_tail(&p->sibling, &p->real_parent->children);
748 
749 	if (task_detached(p))
750 		return;
751 	/*
752 	 * If this is a threaded reparent there is no need to
753 	 * notify anyone anything has happened.
754 	 */
755 	if (same_thread_group(p->real_parent, father))
756 		return;
757 
758 	/* We don't want people slaying init.  */
759 	p->exit_signal = SIGCHLD;
760 
761 	/* If it has exited notify the new parent about this child's death. */
762 	if (!task_ptrace(p) &&
763 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
764 		do_notify_parent(p, p->exit_signal);
765 		if (task_detached(p)) {
766 			p->exit_state = EXIT_DEAD;
767 			list_move_tail(&p->sibling, dead);
768 		}
769 	}
770 
771 	kill_orphaned_pgrp(p, father);
772 }
773 
774 static void forget_original_parent(struct task_struct *father)
775 {
776 	struct task_struct *p, *n, *reaper;
777 	LIST_HEAD(dead_children);
778 
779 	exit_ptrace(father);
780 
781 	write_lock_irq(&tasklist_lock);
782 	reaper = find_new_reaper(father);
783 
784 	list_for_each_entry_safe(p, n, &father->children, sibling) {
785 		p->real_parent = reaper;
786 		if (p->parent == father) {
787 			BUG_ON(task_ptrace(p));
788 			p->parent = p->real_parent;
789 		}
790 		reparent_thread(father, p, &dead_children);
791 	}
792 	write_unlock_irq(&tasklist_lock);
793 
794 	BUG_ON(!list_empty(&father->children));
795 
796 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
797 		list_del_init(&p->sibling);
798 		release_task(p);
799 	}
800 }
801 
802 /*
803  * Send signals to all our closest relatives so that they know
804  * to properly mourn us..
805  */
806 static void exit_notify(struct task_struct *tsk, int group_dead)
807 {
808 	int signal;
809 	void *cookie;
810 
811 	/*
812 	 * This does two things:
813 	 *
814   	 * A.  Make init inherit all the child processes
815 	 * B.  Check to see if any process groups have become orphaned
816 	 *	as a result of our exiting, and if they have any stopped
817 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
818 	 */
819 	forget_original_parent(tsk);
820 	exit_task_namespaces(tsk);
821 
822 	write_lock_irq(&tasklist_lock);
823 	if (group_dead)
824 		kill_orphaned_pgrp(tsk->group_leader, NULL);
825 
826 	/* Let father know we died
827 	 *
828 	 * Thread signals are configurable, but you aren't going to use
829 	 * that to send signals to arbitary processes.
830 	 * That stops right now.
831 	 *
832 	 * If the parent exec id doesn't match the exec id we saved
833 	 * when we started then we know the parent has changed security
834 	 * domain.
835 	 *
836 	 * If our self_exec id doesn't match our parent_exec_id then
837 	 * we have changed execution domain as these two values started
838 	 * the same after a fork.
839 	 */
840 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
841 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
842 	     tsk->self_exec_id != tsk->parent_exec_id))
843 		tsk->exit_signal = SIGCHLD;
844 
845 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
846 	if (signal >= 0)
847 		signal = do_notify_parent(tsk, signal);
848 
849 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
850 
851 	/* mt-exec, de_thread() is waiting for us */
852 	if (thread_group_leader(tsk) &&
853 	    tsk->signal->group_exit_task &&
854 	    tsk->signal->notify_count < 0)
855 		wake_up_process(tsk->signal->group_exit_task);
856 
857 	write_unlock_irq(&tasklist_lock);
858 
859 	tracehook_report_death(tsk, signal, cookie, group_dead);
860 
861 	/* If the process is dead, release it - nobody will wait for it */
862 	if (signal == DEATH_REAP)
863 		release_task(tsk);
864 }
865 
866 #ifdef CONFIG_DEBUG_STACK_USAGE
867 static void check_stack_usage(void)
868 {
869 	static DEFINE_SPINLOCK(low_water_lock);
870 	static int lowest_to_date = THREAD_SIZE;
871 	unsigned long free;
872 
873 	free = stack_not_used(current);
874 
875 	if (free >= lowest_to_date)
876 		return;
877 
878 	spin_lock(&low_water_lock);
879 	if (free < lowest_to_date) {
880 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
881 				"left\n",
882 				current->comm, free);
883 		lowest_to_date = free;
884 	}
885 	spin_unlock(&low_water_lock);
886 }
887 #else
888 static inline void check_stack_usage(void) {}
889 #endif
890 
891 NORET_TYPE void do_exit(long code)
892 {
893 	struct task_struct *tsk = current;
894 	int group_dead;
895 
896 	profile_task_exit(tsk);
897 
898 	WARN_ON(atomic_read(&tsk->fs_excl));
899 
900 	if (unlikely(in_interrupt()))
901 		panic("Aiee, killing interrupt handler!");
902 	if (unlikely(!tsk->pid))
903 		panic("Attempted to kill the idle task!");
904 
905 	tracehook_report_exit(&code);
906 
907 	validate_creds_for_do_exit(tsk);
908 
909 	/*
910 	 * We're taking recursive faults here in do_exit. Safest is to just
911 	 * leave this task alone and wait for reboot.
912 	 */
913 	if (unlikely(tsk->flags & PF_EXITING)) {
914 		printk(KERN_ALERT
915 			"Fixing recursive fault but reboot is needed!\n");
916 		/*
917 		 * We can do this unlocked here. The futex code uses
918 		 * this flag just to verify whether the pi state
919 		 * cleanup has been done or not. In the worst case it
920 		 * loops once more. We pretend that the cleanup was
921 		 * done as there is no way to return. Either the
922 		 * OWNER_DIED bit is set by now or we push the blocked
923 		 * task into the wait for ever nirwana as well.
924 		 */
925 		tsk->flags |= PF_EXITPIDONE;
926 		set_current_state(TASK_UNINTERRUPTIBLE);
927 		schedule();
928 	}
929 
930 	exit_irq_thread();
931 
932 	exit_signals(tsk);  /* sets PF_EXITING */
933 	/*
934 	 * tsk->flags are checked in the futex code to protect against
935 	 * an exiting task cleaning up the robust pi futexes.
936 	 */
937 	smp_mb();
938 	spin_unlock_wait(&tsk->pi_lock);
939 
940 	if (unlikely(in_atomic()))
941 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
942 				current->comm, task_pid_nr(current),
943 				preempt_count());
944 
945 	acct_update_integrals(tsk);
946 
947 	group_dead = atomic_dec_and_test(&tsk->signal->live);
948 	if (group_dead) {
949 		hrtimer_cancel(&tsk->signal->real_timer);
950 		exit_itimers(tsk->signal);
951 		if (tsk->mm)
952 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
953 	}
954 	acct_collect(code, group_dead);
955 	if (group_dead)
956 		tty_audit_exit();
957 	if (unlikely(tsk->audit_context))
958 		audit_free(tsk);
959 
960 	tsk->exit_code = code;
961 	taskstats_exit(tsk, group_dead);
962 
963 	exit_mm(tsk);
964 
965 	if (group_dead)
966 		acct_process();
967 	trace_sched_process_exit(tsk);
968 
969 	exit_sem(tsk);
970 	exit_files(tsk);
971 	exit_fs(tsk);
972 	check_stack_usage();
973 	exit_thread();
974 	cgroup_exit(tsk, 1);
975 
976 	if (group_dead && tsk->signal->leader)
977 		disassociate_ctty(1);
978 
979 	module_put(task_thread_info(tsk)->exec_domain->module);
980 
981 	proc_exit_connector(tsk);
982 
983 	/*
984 	 * FIXME: do that only when needed, using sched_exit tracepoint
985 	 */
986 	flush_ptrace_hw_breakpoint(tsk);
987 	/*
988 	 * Flush inherited counters to the parent - before the parent
989 	 * gets woken up by child-exit notifications.
990 	 */
991 	perf_event_exit_task(tsk);
992 
993 	exit_notify(tsk, group_dead);
994 #ifdef CONFIG_NUMA
995 	mpol_put(tsk->mempolicy);
996 	tsk->mempolicy = NULL;
997 #endif
998 #ifdef CONFIG_FUTEX
999 	if (unlikely(current->pi_state_cache))
1000 		kfree(current->pi_state_cache);
1001 #endif
1002 	/*
1003 	 * Make sure we are holding no locks:
1004 	 */
1005 	debug_check_no_locks_held(tsk);
1006 	/*
1007 	 * We can do this unlocked here. The futex code uses this flag
1008 	 * just to verify whether the pi state cleanup has been done
1009 	 * or not. In the worst case it loops once more.
1010 	 */
1011 	tsk->flags |= PF_EXITPIDONE;
1012 
1013 	if (tsk->io_context)
1014 		exit_io_context();
1015 
1016 	if (tsk->splice_pipe)
1017 		__free_pipe_info(tsk->splice_pipe);
1018 
1019 	validate_creds_for_do_exit(tsk);
1020 
1021 	preempt_disable();
1022 	exit_rcu();
1023 	/* causes final put_task_struct in finish_task_switch(). */
1024 	tsk->state = TASK_DEAD;
1025 	schedule();
1026 	BUG();
1027 	/* Avoid "noreturn function does return".  */
1028 	for (;;)
1029 		cpu_relax();	/* For when BUG is null */
1030 }
1031 
1032 EXPORT_SYMBOL_GPL(do_exit);
1033 
1034 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1035 {
1036 	if (comp)
1037 		complete(comp);
1038 
1039 	do_exit(code);
1040 }
1041 
1042 EXPORT_SYMBOL(complete_and_exit);
1043 
1044 SYSCALL_DEFINE1(exit, int, error_code)
1045 {
1046 	do_exit((error_code&0xff)<<8);
1047 }
1048 
1049 /*
1050  * Take down every thread in the group.  This is called by fatal signals
1051  * as well as by sys_exit_group (below).
1052  */
1053 NORET_TYPE void
1054 do_group_exit(int exit_code)
1055 {
1056 	struct signal_struct *sig = current->signal;
1057 
1058 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1059 
1060 	if (signal_group_exit(sig))
1061 		exit_code = sig->group_exit_code;
1062 	else if (!thread_group_empty(current)) {
1063 		struct sighand_struct *const sighand = current->sighand;
1064 		spin_lock_irq(&sighand->siglock);
1065 		if (signal_group_exit(sig))
1066 			/* Another thread got here before we took the lock.  */
1067 			exit_code = sig->group_exit_code;
1068 		else {
1069 			sig->group_exit_code = exit_code;
1070 			sig->flags = SIGNAL_GROUP_EXIT;
1071 			zap_other_threads(current);
1072 		}
1073 		spin_unlock_irq(&sighand->siglock);
1074 	}
1075 
1076 	do_exit(exit_code);
1077 	/* NOTREACHED */
1078 }
1079 
1080 /*
1081  * this kills every thread in the thread group. Note that any externally
1082  * wait4()-ing process will get the correct exit code - even if this
1083  * thread is not the thread group leader.
1084  */
1085 SYSCALL_DEFINE1(exit_group, int, error_code)
1086 {
1087 	do_group_exit((error_code & 0xff) << 8);
1088 	/* NOTREACHED */
1089 	return 0;
1090 }
1091 
1092 struct wait_opts {
1093 	enum pid_type		wo_type;
1094 	int			wo_flags;
1095 	struct pid		*wo_pid;
1096 
1097 	struct siginfo __user	*wo_info;
1098 	int __user		*wo_stat;
1099 	struct rusage __user	*wo_rusage;
1100 
1101 	wait_queue_t		child_wait;
1102 	int			notask_error;
1103 };
1104 
1105 static inline
1106 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1107 {
1108 	if (type != PIDTYPE_PID)
1109 		task = task->group_leader;
1110 	return task->pids[type].pid;
1111 }
1112 
1113 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1114 {
1115 	return	wo->wo_type == PIDTYPE_MAX ||
1116 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1117 }
1118 
1119 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1120 {
1121 	if (!eligible_pid(wo, p))
1122 		return 0;
1123 	/* Wait for all children (clone and not) if __WALL is set;
1124 	 * otherwise, wait for clone children *only* if __WCLONE is
1125 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1126 	 * A "clone" child here is one that reports to its parent
1127 	 * using a signal other than SIGCHLD.) */
1128 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1129 	    && !(wo->wo_flags & __WALL))
1130 		return 0;
1131 
1132 	return 1;
1133 }
1134 
1135 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1136 				pid_t pid, uid_t uid, int why, int status)
1137 {
1138 	struct siginfo __user *infop;
1139 	int retval = wo->wo_rusage
1140 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1141 
1142 	put_task_struct(p);
1143 	infop = wo->wo_info;
1144 	if (infop) {
1145 		if (!retval)
1146 			retval = put_user(SIGCHLD, &infop->si_signo);
1147 		if (!retval)
1148 			retval = put_user(0, &infop->si_errno);
1149 		if (!retval)
1150 			retval = put_user((short)why, &infop->si_code);
1151 		if (!retval)
1152 			retval = put_user(pid, &infop->si_pid);
1153 		if (!retval)
1154 			retval = put_user(uid, &infop->si_uid);
1155 		if (!retval)
1156 			retval = put_user(status, &infop->si_status);
1157 	}
1158 	if (!retval)
1159 		retval = pid;
1160 	return retval;
1161 }
1162 
1163 /*
1164  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1165  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1166  * the lock and this task is uninteresting.  If we return nonzero, we have
1167  * released the lock and the system call should return.
1168  */
1169 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1170 {
1171 	unsigned long state;
1172 	int retval, status, traced;
1173 	pid_t pid = task_pid_vnr(p);
1174 	uid_t uid = __task_cred(p)->uid;
1175 	struct siginfo __user *infop;
1176 
1177 	if (!likely(wo->wo_flags & WEXITED))
1178 		return 0;
1179 
1180 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1181 		int exit_code = p->exit_code;
1182 		int why, status;
1183 
1184 		get_task_struct(p);
1185 		read_unlock(&tasklist_lock);
1186 		if ((exit_code & 0x7f) == 0) {
1187 			why = CLD_EXITED;
1188 			status = exit_code >> 8;
1189 		} else {
1190 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1191 			status = exit_code & 0x7f;
1192 		}
1193 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1194 	}
1195 
1196 	/*
1197 	 * Try to move the task's state to DEAD
1198 	 * only one thread is allowed to do this:
1199 	 */
1200 	state = xchg(&p->exit_state, EXIT_DEAD);
1201 	if (state != EXIT_ZOMBIE) {
1202 		BUG_ON(state != EXIT_DEAD);
1203 		return 0;
1204 	}
1205 
1206 	traced = ptrace_reparented(p);
1207 	/*
1208 	 * It can be ptraced but not reparented, check
1209 	 * !task_detached() to filter out sub-threads.
1210 	 */
1211 	if (likely(!traced) && likely(!task_detached(p))) {
1212 		struct signal_struct *psig;
1213 		struct signal_struct *sig;
1214 		unsigned long maxrss;
1215 
1216 		/*
1217 		 * The resource counters for the group leader are in its
1218 		 * own task_struct.  Those for dead threads in the group
1219 		 * are in its signal_struct, as are those for the child
1220 		 * processes it has previously reaped.  All these
1221 		 * accumulate in the parent's signal_struct c* fields.
1222 		 *
1223 		 * We don't bother to take a lock here to protect these
1224 		 * p->signal fields, because they are only touched by
1225 		 * __exit_signal, which runs with tasklist_lock
1226 		 * write-locked anyway, and so is excluded here.  We do
1227 		 * need to protect the access to parent->signal fields,
1228 		 * as other threads in the parent group can be right
1229 		 * here reaping other children at the same time.
1230 		 */
1231 		spin_lock_irq(&p->real_parent->sighand->siglock);
1232 		psig = p->real_parent->signal;
1233 		sig = p->signal;
1234 		psig->cutime =
1235 			cputime_add(psig->cutime,
1236 			cputime_add(p->utime,
1237 			cputime_add(sig->utime,
1238 				    sig->cutime)));
1239 		psig->cstime =
1240 			cputime_add(psig->cstime,
1241 			cputime_add(p->stime,
1242 			cputime_add(sig->stime,
1243 				    sig->cstime)));
1244 		psig->cgtime =
1245 			cputime_add(psig->cgtime,
1246 			cputime_add(p->gtime,
1247 			cputime_add(sig->gtime,
1248 				    sig->cgtime)));
1249 		psig->cmin_flt +=
1250 			p->min_flt + sig->min_flt + sig->cmin_flt;
1251 		psig->cmaj_flt +=
1252 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1253 		psig->cnvcsw +=
1254 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1255 		psig->cnivcsw +=
1256 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1257 		psig->cinblock +=
1258 			task_io_get_inblock(p) +
1259 			sig->inblock + sig->cinblock;
1260 		psig->coublock +=
1261 			task_io_get_oublock(p) +
1262 			sig->oublock + sig->coublock;
1263 		maxrss = max(sig->maxrss, sig->cmaxrss);
1264 		if (psig->cmaxrss < maxrss)
1265 			psig->cmaxrss = maxrss;
1266 		task_io_accounting_add(&psig->ioac, &p->ioac);
1267 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1268 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1269 	}
1270 
1271 	/*
1272 	 * Now we are sure this task is interesting, and no other
1273 	 * thread can reap it because we set its state to EXIT_DEAD.
1274 	 */
1275 	read_unlock(&tasklist_lock);
1276 
1277 	retval = wo->wo_rusage
1278 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1279 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1280 		? p->signal->group_exit_code : p->exit_code;
1281 	if (!retval && wo->wo_stat)
1282 		retval = put_user(status, wo->wo_stat);
1283 
1284 	infop = wo->wo_info;
1285 	if (!retval && infop)
1286 		retval = put_user(SIGCHLD, &infop->si_signo);
1287 	if (!retval && infop)
1288 		retval = put_user(0, &infop->si_errno);
1289 	if (!retval && infop) {
1290 		int why;
1291 
1292 		if ((status & 0x7f) == 0) {
1293 			why = CLD_EXITED;
1294 			status >>= 8;
1295 		} else {
1296 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1297 			status &= 0x7f;
1298 		}
1299 		retval = put_user((short)why, &infop->si_code);
1300 		if (!retval)
1301 			retval = put_user(status, &infop->si_status);
1302 	}
1303 	if (!retval && infop)
1304 		retval = put_user(pid, &infop->si_pid);
1305 	if (!retval && infop)
1306 		retval = put_user(uid, &infop->si_uid);
1307 	if (!retval)
1308 		retval = pid;
1309 
1310 	if (traced) {
1311 		write_lock_irq(&tasklist_lock);
1312 		/* We dropped tasklist, ptracer could die and untrace */
1313 		ptrace_unlink(p);
1314 		/*
1315 		 * If this is not a detached task, notify the parent.
1316 		 * If it's still not detached after that, don't release
1317 		 * it now.
1318 		 */
1319 		if (!task_detached(p)) {
1320 			do_notify_parent(p, p->exit_signal);
1321 			if (!task_detached(p)) {
1322 				p->exit_state = EXIT_ZOMBIE;
1323 				p = NULL;
1324 			}
1325 		}
1326 		write_unlock_irq(&tasklist_lock);
1327 	}
1328 	if (p != NULL)
1329 		release_task(p);
1330 
1331 	return retval;
1332 }
1333 
1334 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1335 {
1336 	if (ptrace) {
1337 		if (task_is_stopped_or_traced(p))
1338 			return &p->exit_code;
1339 	} else {
1340 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1341 			return &p->signal->group_exit_code;
1342 	}
1343 	return NULL;
1344 }
1345 
1346 /*
1347  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1348  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1349  * the lock and this task is uninteresting.  If we return nonzero, we have
1350  * released the lock and the system call should return.
1351  */
1352 static int wait_task_stopped(struct wait_opts *wo,
1353 				int ptrace, struct task_struct *p)
1354 {
1355 	struct siginfo __user *infop;
1356 	int retval, exit_code, *p_code, why;
1357 	uid_t uid = 0; /* unneeded, required by compiler */
1358 	pid_t pid;
1359 
1360 	/*
1361 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1362 	 */
1363 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1364 		return 0;
1365 
1366 	exit_code = 0;
1367 	spin_lock_irq(&p->sighand->siglock);
1368 
1369 	p_code = task_stopped_code(p, ptrace);
1370 	if (unlikely(!p_code))
1371 		goto unlock_sig;
1372 
1373 	exit_code = *p_code;
1374 	if (!exit_code)
1375 		goto unlock_sig;
1376 
1377 	if (!unlikely(wo->wo_flags & WNOWAIT))
1378 		*p_code = 0;
1379 
1380 	/* don't need the RCU readlock here as we're holding a spinlock */
1381 	uid = __task_cred(p)->uid;
1382 unlock_sig:
1383 	spin_unlock_irq(&p->sighand->siglock);
1384 	if (!exit_code)
1385 		return 0;
1386 
1387 	/*
1388 	 * Now we are pretty sure this task is interesting.
1389 	 * Make sure it doesn't get reaped out from under us while we
1390 	 * give up the lock and then examine it below.  We don't want to
1391 	 * keep holding onto the tasklist_lock while we call getrusage and
1392 	 * possibly take page faults for user memory.
1393 	 */
1394 	get_task_struct(p);
1395 	pid = task_pid_vnr(p);
1396 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1397 	read_unlock(&tasklist_lock);
1398 
1399 	if (unlikely(wo->wo_flags & WNOWAIT))
1400 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1401 
1402 	retval = wo->wo_rusage
1403 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1404 	if (!retval && wo->wo_stat)
1405 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1406 
1407 	infop = wo->wo_info;
1408 	if (!retval && infop)
1409 		retval = put_user(SIGCHLD, &infop->si_signo);
1410 	if (!retval && infop)
1411 		retval = put_user(0, &infop->si_errno);
1412 	if (!retval && infop)
1413 		retval = put_user((short)why, &infop->si_code);
1414 	if (!retval && infop)
1415 		retval = put_user(exit_code, &infop->si_status);
1416 	if (!retval && infop)
1417 		retval = put_user(pid, &infop->si_pid);
1418 	if (!retval && infop)
1419 		retval = put_user(uid, &infop->si_uid);
1420 	if (!retval)
1421 		retval = pid;
1422 	put_task_struct(p);
1423 
1424 	BUG_ON(!retval);
1425 	return retval;
1426 }
1427 
1428 /*
1429  * Handle do_wait work for one task in a live, non-stopped state.
1430  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1431  * the lock and this task is uninteresting.  If we return nonzero, we have
1432  * released the lock and the system call should return.
1433  */
1434 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1435 {
1436 	int retval;
1437 	pid_t pid;
1438 	uid_t uid;
1439 
1440 	if (!unlikely(wo->wo_flags & WCONTINUED))
1441 		return 0;
1442 
1443 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1444 		return 0;
1445 
1446 	spin_lock_irq(&p->sighand->siglock);
1447 	/* Re-check with the lock held.  */
1448 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1449 		spin_unlock_irq(&p->sighand->siglock);
1450 		return 0;
1451 	}
1452 	if (!unlikely(wo->wo_flags & WNOWAIT))
1453 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1454 	uid = __task_cred(p)->uid;
1455 	spin_unlock_irq(&p->sighand->siglock);
1456 
1457 	pid = task_pid_vnr(p);
1458 	get_task_struct(p);
1459 	read_unlock(&tasklist_lock);
1460 
1461 	if (!wo->wo_info) {
1462 		retval = wo->wo_rusage
1463 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1464 		put_task_struct(p);
1465 		if (!retval && wo->wo_stat)
1466 			retval = put_user(0xffff, wo->wo_stat);
1467 		if (!retval)
1468 			retval = pid;
1469 	} else {
1470 		retval = wait_noreap_copyout(wo, p, pid, uid,
1471 					     CLD_CONTINUED, SIGCONT);
1472 		BUG_ON(retval == 0);
1473 	}
1474 
1475 	return retval;
1476 }
1477 
1478 /*
1479  * Consider @p for a wait by @parent.
1480  *
1481  * -ECHILD should be in ->notask_error before the first call.
1482  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1483  * Returns zero if the search for a child should continue;
1484  * then ->notask_error is 0 if @p is an eligible child,
1485  * or another error from security_task_wait(), or still -ECHILD.
1486  */
1487 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1488 				struct task_struct *p)
1489 {
1490 	int ret = eligible_child(wo, p);
1491 	if (!ret)
1492 		return ret;
1493 
1494 	ret = security_task_wait(p);
1495 	if (unlikely(ret < 0)) {
1496 		/*
1497 		 * If we have not yet seen any eligible child,
1498 		 * then let this error code replace -ECHILD.
1499 		 * A permission error will give the user a clue
1500 		 * to look for security policy problems, rather
1501 		 * than for mysterious wait bugs.
1502 		 */
1503 		if (wo->notask_error)
1504 			wo->notask_error = ret;
1505 		return 0;
1506 	}
1507 
1508 	if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1509 		/*
1510 		 * This child is hidden by ptrace.
1511 		 * We aren't allowed to see it now, but eventually we will.
1512 		 */
1513 		wo->notask_error = 0;
1514 		return 0;
1515 	}
1516 
1517 	if (p->exit_state == EXIT_DEAD)
1518 		return 0;
1519 
1520 	/*
1521 	 * We don't reap group leaders with subthreads.
1522 	 */
1523 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1524 		return wait_task_zombie(wo, p);
1525 
1526 	/*
1527 	 * It's stopped or running now, so it might
1528 	 * later continue, exit, or stop again.
1529 	 */
1530 	wo->notask_error = 0;
1531 
1532 	if (task_stopped_code(p, ptrace))
1533 		return wait_task_stopped(wo, ptrace, p);
1534 
1535 	return wait_task_continued(wo, p);
1536 }
1537 
1538 /*
1539  * Do the work of do_wait() for one thread in the group, @tsk.
1540  *
1541  * -ECHILD should be in ->notask_error before the first call.
1542  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1543  * Returns zero if the search for a child should continue; then
1544  * ->notask_error is 0 if there were any eligible children,
1545  * or another error from security_task_wait(), or still -ECHILD.
1546  */
1547 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1548 {
1549 	struct task_struct *p;
1550 
1551 	list_for_each_entry(p, &tsk->children, sibling) {
1552 		/*
1553 		 * Do not consider detached threads.
1554 		 */
1555 		if (!task_detached(p)) {
1556 			int ret = wait_consider_task(wo, 0, p);
1557 			if (ret)
1558 				return ret;
1559 		}
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1566 {
1567 	struct task_struct *p;
1568 
1569 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1570 		int ret = wait_consider_task(wo, 1, p);
1571 		if (ret)
1572 			return ret;
1573 	}
1574 
1575 	return 0;
1576 }
1577 
1578 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1579 				int sync, void *key)
1580 {
1581 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1582 						child_wait);
1583 	struct task_struct *p = key;
1584 
1585 	if (!eligible_pid(wo, p))
1586 		return 0;
1587 
1588 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1589 		return 0;
1590 
1591 	return default_wake_function(wait, mode, sync, key);
1592 }
1593 
1594 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1595 {
1596 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1597 				TASK_INTERRUPTIBLE, 1, p);
1598 }
1599 
1600 static long do_wait(struct wait_opts *wo)
1601 {
1602 	struct task_struct *tsk;
1603 	int retval;
1604 
1605 	trace_sched_process_wait(wo->wo_pid);
1606 
1607 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1608 	wo->child_wait.private = current;
1609 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1610 repeat:
1611 	/*
1612 	 * If there is nothing that can match our critiera just get out.
1613 	 * We will clear ->notask_error to zero if we see any child that
1614 	 * might later match our criteria, even if we are not able to reap
1615 	 * it yet.
1616 	 */
1617 	wo->notask_error = -ECHILD;
1618 	if ((wo->wo_type < PIDTYPE_MAX) &&
1619 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1620 		goto notask;
1621 
1622 	set_current_state(TASK_INTERRUPTIBLE);
1623 	read_lock(&tasklist_lock);
1624 	tsk = current;
1625 	do {
1626 		retval = do_wait_thread(wo, tsk);
1627 		if (retval)
1628 			goto end;
1629 
1630 		retval = ptrace_do_wait(wo, tsk);
1631 		if (retval)
1632 			goto end;
1633 
1634 		if (wo->wo_flags & __WNOTHREAD)
1635 			break;
1636 	} while_each_thread(current, tsk);
1637 	read_unlock(&tasklist_lock);
1638 
1639 notask:
1640 	retval = wo->notask_error;
1641 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1642 		retval = -ERESTARTSYS;
1643 		if (!signal_pending(current)) {
1644 			schedule();
1645 			goto repeat;
1646 		}
1647 	}
1648 end:
1649 	__set_current_state(TASK_RUNNING);
1650 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1651 	return retval;
1652 }
1653 
1654 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1655 		infop, int, options, struct rusage __user *, ru)
1656 {
1657 	struct wait_opts wo;
1658 	struct pid *pid = NULL;
1659 	enum pid_type type;
1660 	long ret;
1661 
1662 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1663 		return -EINVAL;
1664 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1665 		return -EINVAL;
1666 
1667 	switch (which) {
1668 	case P_ALL:
1669 		type = PIDTYPE_MAX;
1670 		break;
1671 	case P_PID:
1672 		type = PIDTYPE_PID;
1673 		if (upid <= 0)
1674 			return -EINVAL;
1675 		break;
1676 	case P_PGID:
1677 		type = PIDTYPE_PGID;
1678 		if (upid <= 0)
1679 			return -EINVAL;
1680 		break;
1681 	default:
1682 		return -EINVAL;
1683 	}
1684 
1685 	if (type < PIDTYPE_MAX)
1686 		pid = find_get_pid(upid);
1687 
1688 	wo.wo_type	= type;
1689 	wo.wo_pid	= pid;
1690 	wo.wo_flags	= options;
1691 	wo.wo_info	= infop;
1692 	wo.wo_stat	= NULL;
1693 	wo.wo_rusage	= ru;
1694 	ret = do_wait(&wo);
1695 
1696 	if (ret > 0) {
1697 		ret = 0;
1698 	} else if (infop) {
1699 		/*
1700 		 * For a WNOHANG return, clear out all the fields
1701 		 * we would set so the user can easily tell the
1702 		 * difference.
1703 		 */
1704 		if (!ret)
1705 			ret = put_user(0, &infop->si_signo);
1706 		if (!ret)
1707 			ret = put_user(0, &infop->si_errno);
1708 		if (!ret)
1709 			ret = put_user(0, &infop->si_code);
1710 		if (!ret)
1711 			ret = put_user(0, &infop->si_pid);
1712 		if (!ret)
1713 			ret = put_user(0, &infop->si_uid);
1714 		if (!ret)
1715 			ret = put_user(0, &infop->si_status);
1716 	}
1717 
1718 	put_pid(pid);
1719 
1720 	/* avoid REGPARM breakage on x86: */
1721 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1722 	return ret;
1723 }
1724 
1725 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1726 		int, options, struct rusage __user *, ru)
1727 {
1728 	struct wait_opts wo;
1729 	struct pid *pid = NULL;
1730 	enum pid_type type;
1731 	long ret;
1732 
1733 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1734 			__WNOTHREAD|__WCLONE|__WALL))
1735 		return -EINVAL;
1736 
1737 	if (upid == -1)
1738 		type = PIDTYPE_MAX;
1739 	else if (upid < 0) {
1740 		type = PIDTYPE_PGID;
1741 		pid = find_get_pid(-upid);
1742 	} else if (upid == 0) {
1743 		type = PIDTYPE_PGID;
1744 		pid = get_task_pid(current, PIDTYPE_PGID);
1745 	} else /* upid > 0 */ {
1746 		type = PIDTYPE_PID;
1747 		pid = find_get_pid(upid);
1748 	}
1749 
1750 	wo.wo_type	= type;
1751 	wo.wo_pid	= pid;
1752 	wo.wo_flags	= options | WEXITED;
1753 	wo.wo_info	= NULL;
1754 	wo.wo_stat	= stat_addr;
1755 	wo.wo_rusage	= ru;
1756 	ret = do_wait(&wo);
1757 	put_pid(pid);
1758 
1759 	/* avoid REGPARM breakage on x86: */
1760 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1761 	return ret;
1762 }
1763 
1764 #ifdef __ARCH_WANT_SYS_WAITPID
1765 
1766 /*
1767  * sys_waitpid() remains for compatibility. waitpid() should be
1768  * implemented by calling sys_wait4() from libc.a.
1769  */
1770 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1771 {
1772 	return sys_wait4(pid, stat_addr, options, NULL);
1773 }
1774 
1775 #endif
1776