xref: /linux-6.15/kernel/exit.c (revision d289bf7b)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cgroup.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
52 
53 static void exit_mm(struct task_struct * tsk);
54 
55 static void __unhash_process(struct task_struct *p)
56 {
57 	nr_threads--;
58 	detach_pid(p, PIDTYPE_PID);
59 	if (thread_group_leader(p)) {
60 		detach_pid(p, PIDTYPE_PGID);
61 		detach_pid(p, PIDTYPE_SID);
62 
63 		list_del_rcu(&p->tasks);
64 		__get_cpu_var(process_counts)--;
65 	}
66 	list_del_rcu(&p->thread_group);
67 	remove_parent(p);
68 }
69 
70 /*
71  * This function expects the tasklist_lock write-locked.
72  */
73 static void __exit_signal(struct task_struct *tsk)
74 {
75 	struct signal_struct *sig = tsk->signal;
76 	struct sighand_struct *sighand;
77 
78 	BUG_ON(!sig);
79 	BUG_ON(!atomic_read(&sig->count));
80 
81 	rcu_read_lock();
82 	sighand = rcu_dereference(tsk->sighand);
83 	spin_lock(&sighand->siglock);
84 
85 	posix_cpu_timers_exit(tsk);
86 	if (atomic_dec_and_test(&sig->count))
87 		posix_cpu_timers_exit_group(tsk);
88 	else {
89 		/*
90 		 * If there is any task waiting for the group exit
91 		 * then notify it:
92 		 */
93 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
94 			wake_up_process(sig->group_exit_task);
95 
96 		if (tsk == sig->curr_target)
97 			sig->curr_target = next_thread(tsk);
98 		/*
99 		 * Accumulate here the counters for all threads but the
100 		 * group leader as they die, so they can be added into
101 		 * the process-wide totals when those are taken.
102 		 * The group leader stays around as a zombie as long
103 		 * as there are other threads.  When it gets reaped,
104 		 * the exit.c code will add its counts into these totals.
105 		 * We won't ever get here for the group leader, since it
106 		 * will have been the last reference on the signal_struct.
107 		 */
108 		sig->utime = cputime_add(sig->utime, tsk->utime);
109 		sig->stime = cputime_add(sig->stime, tsk->stime);
110 		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
111 		sig->min_flt += tsk->min_flt;
112 		sig->maj_flt += tsk->maj_flt;
113 		sig->nvcsw += tsk->nvcsw;
114 		sig->nivcsw += tsk->nivcsw;
115 		sig->inblock += task_io_get_inblock(tsk);
116 		sig->oublock += task_io_get_oublock(tsk);
117 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
118 		sig = NULL; /* Marker for below. */
119 	}
120 
121 	__unhash_process(tsk);
122 
123 	tsk->signal = NULL;
124 	tsk->sighand = NULL;
125 	spin_unlock(&sighand->siglock);
126 	rcu_read_unlock();
127 
128 	__cleanup_sighand(sighand);
129 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
130 	flush_sigqueue(&tsk->pending);
131 	if (sig) {
132 		flush_sigqueue(&sig->shared_pending);
133 		taskstats_tgid_free(sig);
134 		__cleanup_signal(sig);
135 	}
136 }
137 
138 static void delayed_put_task_struct(struct rcu_head *rhp)
139 {
140 	put_task_struct(container_of(rhp, struct task_struct, rcu));
141 }
142 
143 void release_task(struct task_struct * p)
144 {
145 	struct task_struct *leader;
146 	int zap_leader;
147 repeat:
148 	atomic_dec(&p->user->processes);
149 	proc_flush_task(p);
150 	write_lock_irq(&tasklist_lock);
151 	ptrace_unlink(p);
152 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
153 	__exit_signal(p);
154 
155 	/*
156 	 * If we are the last non-leader member of the thread
157 	 * group, and the leader is zombie, then notify the
158 	 * group leader's parent process. (if it wants notification.)
159 	 */
160 	zap_leader = 0;
161 	leader = p->group_leader;
162 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
163 		BUG_ON(leader->exit_signal == -1);
164 		do_notify_parent(leader, leader->exit_signal);
165 		/*
166 		 * If we were the last child thread and the leader has
167 		 * exited already, and the leader's parent ignores SIGCHLD,
168 		 * then we are the one who should release the leader.
169 		 *
170 		 * do_notify_parent() will have marked it self-reaping in
171 		 * that case.
172 		 */
173 		zap_leader = (leader->exit_signal == -1);
174 	}
175 
176 	write_unlock_irq(&tasklist_lock);
177 	release_thread(p);
178 	call_rcu(&p->rcu, delayed_put_task_struct);
179 
180 	p = leader;
181 	if (unlikely(zap_leader))
182 		goto repeat;
183 }
184 
185 /*
186  * This checks not only the pgrp, but falls back on the pid if no
187  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
188  * without this...
189  *
190  * The caller must hold rcu lock or the tasklist lock.
191  */
192 struct pid *session_of_pgrp(struct pid *pgrp)
193 {
194 	struct task_struct *p;
195 	struct pid *sid = NULL;
196 
197 	p = pid_task(pgrp, PIDTYPE_PGID);
198 	if (p == NULL)
199 		p = pid_task(pgrp, PIDTYPE_PID);
200 	if (p != NULL)
201 		sid = task_session(p);
202 
203 	return sid;
204 }
205 
206 /*
207  * Determine if a process group is "orphaned", according to the POSIX
208  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
209  * by terminal-generated stop signals.  Newly orphaned process groups are
210  * to receive a SIGHUP and a SIGCONT.
211  *
212  * "I ask you, have you ever known what it is to be an orphan?"
213  */
214 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
215 {
216 	struct task_struct *p;
217 
218 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
219 		if ((p == ignored_task) ||
220 		    (p->exit_state && thread_group_empty(p)) ||
221 		    is_global_init(p->real_parent))
222 			continue;
223 
224 		if (task_pgrp(p->real_parent) != pgrp &&
225 		    task_session(p->real_parent) == task_session(p))
226 			return 0;
227 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
228 
229 	return 1;
230 }
231 
232 int is_current_pgrp_orphaned(void)
233 {
234 	int retval;
235 
236 	read_lock(&tasklist_lock);
237 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
238 	read_unlock(&tasklist_lock);
239 
240 	return retval;
241 }
242 
243 static int has_stopped_jobs(struct pid *pgrp)
244 {
245 	int retval = 0;
246 	struct task_struct *p;
247 
248 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 		if (!task_is_stopped(p))
250 			continue;
251 		retval = 1;
252 		break;
253 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
254 	return retval;
255 }
256 
257 /*
258  * Check to see if any process groups have become orphaned as
259  * a result of our exiting, and if they have any stopped jobs,
260  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
261  */
262 static void
263 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
264 {
265 	struct pid *pgrp = task_pgrp(tsk);
266 	struct task_struct *ignored_task = tsk;
267 
268 	if (!parent)
269 		 /* exit: our father is in a different pgrp than
270 		  * we are and we were the only connection outside.
271 		  */
272 		parent = tsk->real_parent;
273 	else
274 		/* reparent: our child is in a different pgrp than
275 		 * we are, and it was the only connection outside.
276 		 */
277 		ignored_task = NULL;
278 
279 	if (task_pgrp(parent) != pgrp &&
280 	    task_session(parent) == task_session(tsk) &&
281 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
282 	    has_stopped_jobs(pgrp)) {
283 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
284 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
285 	}
286 }
287 
288 /**
289  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
290  *
291  * If a kernel thread is launched as a result of a system call, or if
292  * it ever exits, it should generally reparent itself to kthreadd so it
293  * isn't in the way of other processes and is correctly cleaned up on exit.
294  *
295  * The various task state such as scheduling policy and priority may have
296  * been inherited from a user process, so we reset them to sane values here.
297  *
298  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
299  */
300 static void reparent_to_kthreadd(void)
301 {
302 	write_lock_irq(&tasklist_lock);
303 
304 	ptrace_unlink(current);
305 	/* Reparent to init */
306 	remove_parent(current);
307 	current->real_parent = current->parent = kthreadd_task;
308 	add_parent(current);
309 
310 	/* Set the exit signal to SIGCHLD so we signal init on exit */
311 	current->exit_signal = SIGCHLD;
312 
313 	if (task_nice(current) < 0)
314 		set_user_nice(current, 0);
315 	/* cpus_allowed? */
316 	/* rt_priority? */
317 	/* signals? */
318 	security_task_reparent_to_init(current);
319 	memcpy(current->signal->rlim, init_task.signal->rlim,
320 	       sizeof(current->signal->rlim));
321 	atomic_inc(&(INIT_USER->__count));
322 	write_unlock_irq(&tasklist_lock);
323 	switch_uid(INIT_USER);
324 }
325 
326 void __set_special_pids(struct pid *pid)
327 {
328 	struct task_struct *curr = current->group_leader;
329 	pid_t nr = pid_nr(pid);
330 
331 	if (task_session(curr) != pid) {
332 		detach_pid(curr, PIDTYPE_SID);
333 		attach_pid(curr, PIDTYPE_SID, pid);
334 		set_task_session(curr, nr);
335 	}
336 	if (task_pgrp(curr) != pid) {
337 		detach_pid(curr, PIDTYPE_PGID);
338 		attach_pid(curr, PIDTYPE_PGID, pid);
339 		set_task_pgrp(curr, nr);
340 	}
341 }
342 
343 static void set_special_pids(struct pid *pid)
344 {
345 	write_lock_irq(&tasklist_lock);
346 	__set_special_pids(pid);
347 	write_unlock_irq(&tasklist_lock);
348 }
349 
350 /*
351  * Let kernel threads use this to say that they
352  * allow a certain signal (since daemonize() will
353  * have disabled all of them by default).
354  */
355 int allow_signal(int sig)
356 {
357 	if (!valid_signal(sig) || sig < 1)
358 		return -EINVAL;
359 
360 	spin_lock_irq(&current->sighand->siglock);
361 	sigdelset(&current->blocked, sig);
362 	if (!current->mm) {
363 		/* Kernel threads handle their own signals.
364 		   Let the signal code know it'll be handled, so
365 		   that they don't get converted to SIGKILL or
366 		   just silently dropped */
367 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
368 	}
369 	recalc_sigpending();
370 	spin_unlock_irq(&current->sighand->siglock);
371 	return 0;
372 }
373 
374 EXPORT_SYMBOL(allow_signal);
375 
376 int disallow_signal(int sig)
377 {
378 	if (!valid_signal(sig) || sig < 1)
379 		return -EINVAL;
380 
381 	spin_lock_irq(&current->sighand->siglock);
382 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
383 	recalc_sigpending();
384 	spin_unlock_irq(&current->sighand->siglock);
385 	return 0;
386 }
387 
388 EXPORT_SYMBOL(disallow_signal);
389 
390 /*
391  *	Put all the gunge required to become a kernel thread without
392  *	attached user resources in one place where it belongs.
393  */
394 
395 void daemonize(const char *name, ...)
396 {
397 	va_list args;
398 	struct fs_struct *fs;
399 	sigset_t blocked;
400 
401 	va_start(args, name);
402 	vsnprintf(current->comm, sizeof(current->comm), name, args);
403 	va_end(args);
404 
405 	/*
406 	 * If we were started as result of loading a module, close all of the
407 	 * user space pages.  We don't need them, and if we didn't close them
408 	 * they would be locked into memory.
409 	 */
410 	exit_mm(current);
411 	/*
412 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
413 	 * or suspend transition begins right now.
414 	 */
415 	current->flags |= PF_NOFREEZE;
416 
417 	if (current->nsproxy != &init_nsproxy) {
418 		get_nsproxy(&init_nsproxy);
419 		switch_task_namespaces(current, &init_nsproxy);
420 	}
421 	set_special_pids(&init_struct_pid);
422 	proc_clear_tty(current);
423 
424 	/* Block and flush all signals */
425 	sigfillset(&blocked);
426 	sigprocmask(SIG_BLOCK, &blocked, NULL);
427 	flush_signals(current);
428 
429 	/* Become as one with the init task */
430 
431 	exit_fs(current);	/* current->fs->count--; */
432 	fs = init_task.fs;
433 	current->fs = fs;
434 	atomic_inc(&fs->count);
435 
436 	exit_files(current);
437 	current->files = init_task.files;
438 	atomic_inc(&current->files->count);
439 
440 	reparent_to_kthreadd();
441 }
442 
443 EXPORT_SYMBOL(daemonize);
444 
445 static void close_files(struct files_struct * files)
446 {
447 	int i, j;
448 	struct fdtable *fdt;
449 
450 	j = 0;
451 
452 	/*
453 	 * It is safe to dereference the fd table without RCU or
454 	 * ->file_lock because this is the last reference to the
455 	 * files structure.
456 	 */
457 	fdt = files_fdtable(files);
458 	for (;;) {
459 		unsigned long set;
460 		i = j * __NFDBITS;
461 		if (i >= fdt->max_fds)
462 			break;
463 		set = fdt->open_fds->fds_bits[j++];
464 		while (set) {
465 			if (set & 1) {
466 				struct file * file = xchg(&fdt->fd[i], NULL);
467 				if (file) {
468 					filp_close(file, files);
469 					cond_resched();
470 				}
471 			}
472 			i++;
473 			set >>= 1;
474 		}
475 	}
476 }
477 
478 struct files_struct *get_files_struct(struct task_struct *task)
479 {
480 	struct files_struct *files;
481 
482 	task_lock(task);
483 	files = task->files;
484 	if (files)
485 		atomic_inc(&files->count);
486 	task_unlock(task);
487 
488 	return files;
489 }
490 
491 void put_files_struct(struct files_struct *files)
492 {
493 	struct fdtable *fdt;
494 
495 	if (atomic_dec_and_test(&files->count)) {
496 		close_files(files);
497 		/*
498 		 * Free the fd and fdset arrays if we expanded them.
499 		 * If the fdtable was embedded, pass files for freeing
500 		 * at the end of the RCU grace period. Otherwise,
501 		 * you can free files immediately.
502 		 */
503 		fdt = files_fdtable(files);
504 		if (fdt != &files->fdtab)
505 			kmem_cache_free(files_cachep, files);
506 		free_fdtable(fdt);
507 	}
508 }
509 
510 EXPORT_SYMBOL(put_files_struct);
511 
512 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
513 {
514 	struct files_struct *old;
515 
516 	old = tsk->files;
517 	task_lock(tsk);
518 	tsk->files = files;
519 	task_unlock(tsk);
520 	put_files_struct(old);
521 }
522 EXPORT_SYMBOL(reset_files_struct);
523 
524 static void __exit_files(struct task_struct *tsk)
525 {
526 	struct files_struct * files = tsk->files;
527 
528 	if (files) {
529 		task_lock(tsk);
530 		tsk->files = NULL;
531 		task_unlock(tsk);
532 		put_files_struct(files);
533 	}
534 }
535 
536 void exit_files(struct task_struct *tsk)
537 {
538 	__exit_files(tsk);
539 }
540 
541 static void __put_fs_struct(struct fs_struct *fs)
542 {
543 	/* No need to hold fs->lock if we are killing it */
544 	if (atomic_dec_and_test(&fs->count)) {
545 		path_put(&fs->root);
546 		path_put(&fs->pwd);
547 		if (fs->altroot.dentry)
548 			path_put(&fs->altroot);
549 		kmem_cache_free(fs_cachep, fs);
550 	}
551 }
552 
553 void put_fs_struct(struct fs_struct *fs)
554 {
555 	__put_fs_struct(fs);
556 }
557 
558 static void __exit_fs(struct task_struct *tsk)
559 {
560 	struct fs_struct * fs = tsk->fs;
561 
562 	if (fs) {
563 		task_lock(tsk);
564 		tsk->fs = NULL;
565 		task_unlock(tsk);
566 		__put_fs_struct(fs);
567 	}
568 }
569 
570 void exit_fs(struct task_struct *tsk)
571 {
572 	__exit_fs(tsk);
573 }
574 
575 EXPORT_SYMBOL_GPL(exit_fs);
576 
577 /*
578  * Turn us into a lazy TLB process if we
579  * aren't already..
580  */
581 static void exit_mm(struct task_struct * tsk)
582 {
583 	struct mm_struct *mm = tsk->mm;
584 
585 	mm_release(tsk, mm);
586 	if (!mm)
587 		return;
588 	/*
589 	 * Serialize with any possible pending coredump.
590 	 * We must hold mmap_sem around checking core_waiters
591 	 * and clearing tsk->mm.  The core-inducing thread
592 	 * will increment core_waiters for each thread in the
593 	 * group with ->mm != NULL.
594 	 */
595 	down_read(&mm->mmap_sem);
596 	if (mm->core_waiters) {
597 		up_read(&mm->mmap_sem);
598 		down_write(&mm->mmap_sem);
599 		if (!--mm->core_waiters)
600 			complete(mm->core_startup_done);
601 		up_write(&mm->mmap_sem);
602 
603 		wait_for_completion(&mm->core_done);
604 		down_read(&mm->mmap_sem);
605 	}
606 	atomic_inc(&mm->mm_count);
607 	BUG_ON(mm != tsk->active_mm);
608 	/* more a memory barrier than a real lock */
609 	task_lock(tsk);
610 	tsk->mm = NULL;
611 	up_read(&mm->mmap_sem);
612 	enter_lazy_tlb(mm, current);
613 	/* We don't want this task to be frozen prematurely */
614 	clear_freeze_flag(tsk);
615 	task_unlock(tsk);
616 	mmput(mm);
617 }
618 
619 static void
620 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
621 {
622 	if (p->pdeath_signal)
623 		/* We already hold the tasklist_lock here.  */
624 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
625 
626 	/* Move the child from its dying parent to the new one.  */
627 	if (unlikely(traced)) {
628 		/* Preserve ptrace links if someone else is tracing this child.  */
629 		list_del_init(&p->ptrace_list);
630 		if (p->parent != p->real_parent)
631 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
632 	} else {
633 		/* If this child is being traced, then we're the one tracing it
634 		 * anyway, so let go of it.
635 		 */
636 		p->ptrace = 0;
637 		remove_parent(p);
638 		p->parent = p->real_parent;
639 		add_parent(p);
640 
641 		if (task_is_traced(p)) {
642 			/*
643 			 * If it was at a trace stop, turn it into
644 			 * a normal stop since it's no longer being
645 			 * traced.
646 			 */
647 			ptrace_untrace(p);
648 		}
649 	}
650 
651 	/* If this is a threaded reparent there is no need to
652 	 * notify anyone anything has happened.
653 	 */
654 	if (p->real_parent->group_leader == father->group_leader)
655 		return;
656 
657 	/* We don't want people slaying init.  */
658 	if (p->exit_signal != -1)
659 		p->exit_signal = SIGCHLD;
660 
661 	/* If we'd notified the old parent about this child's death,
662 	 * also notify the new parent.
663 	 */
664 	if (!traced && p->exit_state == EXIT_ZOMBIE &&
665 	    p->exit_signal != -1 && thread_group_empty(p))
666 		do_notify_parent(p, p->exit_signal);
667 
668 	kill_orphaned_pgrp(p, father);
669 }
670 
671 /*
672  * When we die, we re-parent all our children.
673  * Try to give them to another thread in our thread
674  * group, and if no such member exists, give it to
675  * the child reaper process (ie "init") in our pid
676  * space.
677  */
678 static void forget_original_parent(struct task_struct *father)
679 {
680 	struct task_struct *p, *n, *reaper = father;
681 	struct list_head ptrace_dead;
682 
683 	INIT_LIST_HEAD(&ptrace_dead);
684 
685 	write_lock_irq(&tasklist_lock);
686 
687 	do {
688 		reaper = next_thread(reaper);
689 		if (reaper == father) {
690 			reaper = task_child_reaper(father);
691 			break;
692 		}
693 	} while (reaper->flags & PF_EXITING);
694 
695 	/*
696 	 * There are only two places where our children can be:
697 	 *
698 	 * - in our child list
699 	 * - in our ptraced child list
700 	 *
701 	 * Search them and reparent children.
702 	 */
703 	list_for_each_entry_safe(p, n, &father->children, sibling) {
704 		int ptrace;
705 
706 		ptrace = p->ptrace;
707 
708 		/* if father isn't the real parent, then ptrace must be enabled */
709 		BUG_ON(father != p->real_parent && !ptrace);
710 
711 		if (father == p->real_parent) {
712 			/* reparent with a reaper, real father it's us */
713 			p->real_parent = reaper;
714 			reparent_thread(p, father, 0);
715 		} else {
716 			/* reparent ptraced task to its real parent */
717 			__ptrace_unlink (p);
718 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
719 			    thread_group_empty(p))
720 				do_notify_parent(p, p->exit_signal);
721 		}
722 
723 		/*
724 		 * if the ptraced child is a zombie with exit_signal == -1
725 		 * we must collect it before we exit, or it will remain
726 		 * zombie forever since we prevented it from self-reap itself
727 		 * while it was being traced by us, to be able to see it in wait4.
728 		 */
729 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
730 			list_add(&p->ptrace_list, &ptrace_dead);
731 	}
732 
733 	list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
734 		p->real_parent = reaper;
735 		reparent_thread(p, father, 1);
736 	}
737 
738 	write_unlock_irq(&tasklist_lock);
739 	BUG_ON(!list_empty(&father->children));
740 	BUG_ON(!list_empty(&father->ptrace_children));
741 
742 	list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
743 		list_del_init(&p->ptrace_list);
744 		release_task(p);
745 	}
746 
747 }
748 
749 /*
750  * Send signals to all our closest relatives so that they know
751  * to properly mourn us..
752  */
753 static void exit_notify(struct task_struct *tsk, int group_dead)
754 {
755 	int state;
756 
757 	/*
758 	 * This does two things:
759 	 *
760   	 * A.  Make init inherit all the child processes
761 	 * B.  Check to see if any process groups have become orphaned
762 	 *	as a result of our exiting, and if they have any stopped
763 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
764 	 */
765 	forget_original_parent(tsk);
766 	exit_task_namespaces(tsk);
767 
768 	write_lock_irq(&tasklist_lock);
769 	if (group_dead)
770 		kill_orphaned_pgrp(tsk->group_leader, NULL);
771 
772 	/* Let father know we died
773 	 *
774 	 * Thread signals are configurable, but you aren't going to use
775 	 * that to send signals to arbitary processes.
776 	 * That stops right now.
777 	 *
778 	 * If the parent exec id doesn't match the exec id we saved
779 	 * when we started then we know the parent has changed security
780 	 * domain.
781 	 *
782 	 * If our self_exec id doesn't match our parent_exec_id then
783 	 * we have changed execution domain as these two values started
784 	 * the same after a fork.
785 	 */
786 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
787 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
788 	     tsk->self_exec_id != tsk->parent_exec_id)
789 	    && !capable(CAP_KILL))
790 		tsk->exit_signal = SIGCHLD;
791 
792 
793 	/* If something other than our normal parent is ptracing us, then
794 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
795 	 * only has special meaning to our real parent.
796 	 */
797 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
798 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
799 		do_notify_parent(tsk, signal);
800 	} else if (tsk->ptrace) {
801 		do_notify_parent(tsk, SIGCHLD);
802 	}
803 
804 	state = EXIT_ZOMBIE;
805 	if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
806 		state = EXIT_DEAD;
807 	tsk->exit_state = state;
808 
809 	if (thread_group_leader(tsk) &&
810 	    tsk->signal->notify_count < 0 &&
811 	    tsk->signal->group_exit_task)
812 		wake_up_process(tsk->signal->group_exit_task);
813 
814 	write_unlock_irq(&tasklist_lock);
815 
816 	/* If the process is dead, release it - nobody will wait for it */
817 	if (state == EXIT_DEAD)
818 		release_task(tsk);
819 }
820 
821 #ifdef CONFIG_DEBUG_STACK_USAGE
822 static void check_stack_usage(void)
823 {
824 	static DEFINE_SPINLOCK(low_water_lock);
825 	static int lowest_to_date = THREAD_SIZE;
826 	unsigned long *n = end_of_stack(current);
827 	unsigned long free;
828 
829 	while (*n == 0)
830 		n++;
831 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
832 
833 	if (free >= lowest_to_date)
834 		return;
835 
836 	spin_lock(&low_water_lock);
837 	if (free < lowest_to_date) {
838 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
839 				"left\n",
840 				current->comm, free);
841 		lowest_to_date = free;
842 	}
843 	spin_unlock(&low_water_lock);
844 }
845 #else
846 static inline void check_stack_usage(void) {}
847 #endif
848 
849 static inline void exit_child_reaper(struct task_struct *tsk)
850 {
851 	if (likely(tsk->group_leader != task_child_reaper(tsk)))
852 		return;
853 
854 	if (tsk->nsproxy->pid_ns == &init_pid_ns)
855 		panic("Attempted to kill init!");
856 
857 	/*
858 	 * @tsk is the last thread in the 'cgroup-init' and is exiting.
859 	 * Terminate all remaining processes in the namespace and reap them
860 	 * before exiting @tsk.
861 	 *
862 	 * Note that @tsk (last thread of cgroup-init) may not necessarily
863 	 * be the child-reaper (i.e main thread of cgroup-init) of the
864 	 * namespace i.e the child_reaper may have already exited.
865 	 *
866 	 * Even after a child_reaper exits, we let it inherit orphaned children,
867 	 * because, pid_ns->child_reaper remains valid as long as there is
868 	 * at least one living sub-thread in the cgroup init.
869 
870 	 * This living sub-thread of the cgroup-init will be notified when
871 	 * a child inherited by the 'child-reaper' exits (do_notify_parent()
872 	 * uses __group_send_sig_info()). Further, when reaping child processes,
873 	 * do_wait() iterates over children of all living sub threads.
874 
875 	 * i.e even though 'child_reaper' thread is listed as the parent of the
876 	 * orphaned children, any living sub-thread in the cgroup-init can
877 	 * perform the role of the child_reaper.
878 	 */
879 	zap_pid_ns_processes(tsk->nsproxy->pid_ns);
880 }
881 
882 NORET_TYPE void do_exit(long code)
883 {
884 	struct task_struct *tsk = current;
885 	int group_dead;
886 
887 	profile_task_exit(tsk);
888 
889 	WARN_ON(atomic_read(&tsk->fs_excl));
890 
891 	if (unlikely(in_interrupt()))
892 		panic("Aiee, killing interrupt handler!");
893 	if (unlikely(!tsk->pid))
894 		panic("Attempted to kill the idle task!");
895 
896 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
897 		current->ptrace_message = code;
898 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
899 	}
900 
901 	/*
902 	 * We're taking recursive faults here in do_exit. Safest is to just
903 	 * leave this task alone and wait for reboot.
904 	 */
905 	if (unlikely(tsk->flags & PF_EXITING)) {
906 		printk(KERN_ALERT
907 			"Fixing recursive fault but reboot is needed!\n");
908 		/*
909 		 * We can do this unlocked here. The futex code uses
910 		 * this flag just to verify whether the pi state
911 		 * cleanup has been done or not. In the worst case it
912 		 * loops once more. We pretend that the cleanup was
913 		 * done as there is no way to return. Either the
914 		 * OWNER_DIED bit is set by now or we push the blocked
915 		 * task into the wait for ever nirwana as well.
916 		 */
917 		tsk->flags |= PF_EXITPIDONE;
918 		if (tsk->io_context)
919 			exit_io_context();
920 		set_current_state(TASK_UNINTERRUPTIBLE);
921 		schedule();
922 	}
923 
924 	exit_signals(tsk);  /* sets PF_EXITING */
925 	/*
926 	 * tsk->flags are checked in the futex code to protect against
927 	 * an exiting task cleaning up the robust pi futexes.
928 	 */
929 	smp_mb();
930 	spin_unlock_wait(&tsk->pi_lock);
931 
932 	if (unlikely(in_atomic()))
933 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
934 				current->comm, task_pid_nr(current),
935 				preempt_count());
936 
937 	acct_update_integrals(tsk);
938 	if (tsk->mm) {
939 		update_hiwater_rss(tsk->mm);
940 		update_hiwater_vm(tsk->mm);
941 	}
942 	group_dead = atomic_dec_and_test(&tsk->signal->live);
943 	if (group_dead) {
944 		exit_child_reaper(tsk);
945 		hrtimer_cancel(&tsk->signal->real_timer);
946 		exit_itimers(tsk->signal);
947 	}
948 	acct_collect(code, group_dead);
949 #ifdef CONFIG_FUTEX
950 	if (unlikely(tsk->robust_list))
951 		exit_robust_list(tsk);
952 #ifdef CONFIG_COMPAT
953 	if (unlikely(tsk->compat_robust_list))
954 		compat_exit_robust_list(tsk);
955 #endif
956 #endif
957 	if (group_dead)
958 		tty_audit_exit();
959 	if (unlikely(tsk->audit_context))
960 		audit_free(tsk);
961 
962 	tsk->exit_code = code;
963 	taskstats_exit(tsk, group_dead);
964 
965 	exit_mm(tsk);
966 
967 	if (group_dead)
968 		acct_process();
969 	exit_sem(tsk);
970 	__exit_files(tsk);
971 	__exit_fs(tsk);
972 	check_stack_usage();
973 	exit_thread();
974 	cgroup_exit(tsk, 1);
975 	exit_keys(tsk);
976 
977 	if (group_dead && tsk->signal->leader)
978 		disassociate_ctty(1);
979 
980 	module_put(task_thread_info(tsk)->exec_domain->module);
981 	if (tsk->binfmt)
982 		module_put(tsk->binfmt->module);
983 
984 	proc_exit_connector(tsk);
985 	exit_notify(tsk, group_dead);
986 #ifdef CONFIG_NUMA
987 	mpol_free(tsk->mempolicy);
988 	tsk->mempolicy = NULL;
989 #endif
990 #ifdef CONFIG_FUTEX
991 	/*
992 	 * This must happen late, after the PID is not
993 	 * hashed anymore:
994 	 */
995 	if (unlikely(!list_empty(&tsk->pi_state_list)))
996 		exit_pi_state_list(tsk);
997 	if (unlikely(current->pi_state_cache))
998 		kfree(current->pi_state_cache);
999 #endif
1000 	/*
1001 	 * Make sure we are holding no locks:
1002 	 */
1003 	debug_check_no_locks_held(tsk);
1004 	/*
1005 	 * We can do this unlocked here. The futex code uses this flag
1006 	 * just to verify whether the pi state cleanup has been done
1007 	 * or not. In the worst case it loops once more.
1008 	 */
1009 	tsk->flags |= PF_EXITPIDONE;
1010 
1011 	if (tsk->io_context)
1012 		exit_io_context();
1013 
1014 	if (tsk->splice_pipe)
1015 		__free_pipe_info(tsk->splice_pipe);
1016 
1017 	preempt_disable();
1018 	/* causes final put_task_struct in finish_task_switch(). */
1019 	tsk->state = TASK_DEAD;
1020 
1021 	schedule();
1022 	BUG();
1023 	/* Avoid "noreturn function does return".  */
1024 	for (;;)
1025 		cpu_relax();	/* For when BUG is null */
1026 }
1027 
1028 EXPORT_SYMBOL_GPL(do_exit);
1029 
1030 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1031 {
1032 	if (comp)
1033 		complete(comp);
1034 
1035 	do_exit(code);
1036 }
1037 
1038 EXPORT_SYMBOL(complete_and_exit);
1039 
1040 asmlinkage long sys_exit(int error_code)
1041 {
1042 	do_exit((error_code&0xff)<<8);
1043 }
1044 
1045 /*
1046  * Take down every thread in the group.  This is called by fatal signals
1047  * as well as by sys_exit_group (below).
1048  */
1049 NORET_TYPE void
1050 do_group_exit(int exit_code)
1051 {
1052 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1053 
1054 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1055 		exit_code = current->signal->group_exit_code;
1056 	else if (!thread_group_empty(current)) {
1057 		struct signal_struct *const sig = current->signal;
1058 		struct sighand_struct *const sighand = current->sighand;
1059 		spin_lock_irq(&sighand->siglock);
1060 		if (signal_group_exit(sig))
1061 			/* Another thread got here before we took the lock.  */
1062 			exit_code = sig->group_exit_code;
1063 		else {
1064 			sig->group_exit_code = exit_code;
1065 			sig->flags = SIGNAL_GROUP_EXIT;
1066 			zap_other_threads(current);
1067 		}
1068 		spin_unlock_irq(&sighand->siglock);
1069 	}
1070 
1071 	do_exit(exit_code);
1072 	/* NOTREACHED */
1073 }
1074 
1075 /*
1076  * this kills every thread in the thread group. Note that any externally
1077  * wait4()-ing process will get the correct exit code - even if this
1078  * thread is not the thread group leader.
1079  */
1080 asmlinkage void sys_exit_group(int error_code)
1081 {
1082 	do_group_exit((error_code & 0xff) << 8);
1083 }
1084 
1085 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1086 {
1087 	struct pid *pid = NULL;
1088 	if (type == PIDTYPE_PID)
1089 		pid = task->pids[type].pid;
1090 	else if (type < PIDTYPE_MAX)
1091 		pid = task->group_leader->pids[type].pid;
1092 	return pid;
1093 }
1094 
1095 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1096 			  struct task_struct *p)
1097 {
1098 	int err;
1099 
1100 	if (type < PIDTYPE_MAX) {
1101 		if (task_pid_type(p, type) != pid)
1102 			return 0;
1103 	}
1104 
1105 	/*
1106 	 * Do not consider detached threads that are
1107 	 * not ptraced:
1108 	 */
1109 	if (p->exit_signal == -1 && !p->ptrace)
1110 		return 0;
1111 
1112 	/* Wait for all children (clone and not) if __WALL is set;
1113 	 * otherwise, wait for clone children *only* if __WCLONE is
1114 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1115 	 * A "clone" child here is one that reports to its parent
1116 	 * using a signal other than SIGCHLD.) */
1117 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1118 	    && !(options & __WALL))
1119 		return 0;
1120 
1121 	err = security_task_wait(p);
1122 	if (likely(!err))
1123 		return 1;
1124 
1125 	if (type != PIDTYPE_PID)
1126 		return 0;
1127 	/* This child was explicitly requested, abort */
1128 	read_unlock(&tasklist_lock);
1129 	return err;
1130 }
1131 
1132 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1133 			       int why, int status,
1134 			       struct siginfo __user *infop,
1135 			       struct rusage __user *rusagep)
1136 {
1137 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1138 
1139 	put_task_struct(p);
1140 	if (!retval)
1141 		retval = put_user(SIGCHLD, &infop->si_signo);
1142 	if (!retval)
1143 		retval = put_user(0, &infop->si_errno);
1144 	if (!retval)
1145 		retval = put_user((short)why, &infop->si_code);
1146 	if (!retval)
1147 		retval = put_user(pid, &infop->si_pid);
1148 	if (!retval)
1149 		retval = put_user(uid, &infop->si_uid);
1150 	if (!retval)
1151 		retval = put_user(status, &infop->si_status);
1152 	if (!retval)
1153 		retval = pid;
1154 	return retval;
1155 }
1156 
1157 /*
1158  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1159  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1160  * the lock and this task is uninteresting.  If we return nonzero, we have
1161  * released the lock and the system call should return.
1162  */
1163 static int wait_task_zombie(struct task_struct *p, int noreap,
1164 			    struct siginfo __user *infop,
1165 			    int __user *stat_addr, struct rusage __user *ru)
1166 {
1167 	unsigned long state;
1168 	int retval, status, traced;
1169 	pid_t pid = task_pid_vnr(p);
1170 
1171 	if (unlikely(noreap)) {
1172 		uid_t uid = p->uid;
1173 		int exit_code = p->exit_code;
1174 		int why, status;
1175 
1176 		get_task_struct(p);
1177 		read_unlock(&tasklist_lock);
1178 		if ((exit_code & 0x7f) == 0) {
1179 			why = CLD_EXITED;
1180 			status = exit_code >> 8;
1181 		} else {
1182 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1183 			status = exit_code & 0x7f;
1184 		}
1185 		return wait_noreap_copyout(p, pid, uid, why,
1186 					   status, infop, ru);
1187 	}
1188 
1189 	/*
1190 	 * Try to move the task's state to DEAD
1191 	 * only one thread is allowed to do this:
1192 	 */
1193 	state = xchg(&p->exit_state, EXIT_DEAD);
1194 	if (state != EXIT_ZOMBIE) {
1195 		BUG_ON(state != EXIT_DEAD);
1196 		return 0;
1197 	}
1198 
1199 	/* traced means p->ptrace, but not vice versa */
1200 	traced = (p->real_parent != p->parent);
1201 
1202 	if (likely(!traced)) {
1203 		struct signal_struct *psig;
1204 		struct signal_struct *sig;
1205 
1206 		/*
1207 		 * The resource counters for the group leader are in its
1208 		 * own task_struct.  Those for dead threads in the group
1209 		 * are in its signal_struct, as are those for the child
1210 		 * processes it has previously reaped.  All these
1211 		 * accumulate in the parent's signal_struct c* fields.
1212 		 *
1213 		 * We don't bother to take a lock here to protect these
1214 		 * p->signal fields, because they are only touched by
1215 		 * __exit_signal, which runs with tasklist_lock
1216 		 * write-locked anyway, and so is excluded here.  We do
1217 		 * need to protect the access to p->parent->signal fields,
1218 		 * as other threads in the parent group can be right
1219 		 * here reaping other children at the same time.
1220 		 */
1221 		spin_lock_irq(&p->parent->sighand->siglock);
1222 		psig = p->parent->signal;
1223 		sig = p->signal;
1224 		psig->cutime =
1225 			cputime_add(psig->cutime,
1226 			cputime_add(p->utime,
1227 			cputime_add(sig->utime,
1228 				    sig->cutime)));
1229 		psig->cstime =
1230 			cputime_add(psig->cstime,
1231 			cputime_add(p->stime,
1232 			cputime_add(sig->stime,
1233 				    sig->cstime)));
1234 		psig->cgtime =
1235 			cputime_add(psig->cgtime,
1236 			cputime_add(p->gtime,
1237 			cputime_add(sig->gtime,
1238 				    sig->cgtime)));
1239 		psig->cmin_flt +=
1240 			p->min_flt + sig->min_flt + sig->cmin_flt;
1241 		psig->cmaj_flt +=
1242 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1243 		psig->cnvcsw +=
1244 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1245 		psig->cnivcsw +=
1246 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1247 		psig->cinblock +=
1248 			task_io_get_inblock(p) +
1249 			sig->inblock + sig->cinblock;
1250 		psig->coublock +=
1251 			task_io_get_oublock(p) +
1252 			sig->oublock + sig->coublock;
1253 		spin_unlock_irq(&p->parent->sighand->siglock);
1254 	}
1255 
1256 	/*
1257 	 * Now we are sure this task is interesting, and no other
1258 	 * thread can reap it because we set its state to EXIT_DEAD.
1259 	 */
1260 	read_unlock(&tasklist_lock);
1261 
1262 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1263 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1264 		? p->signal->group_exit_code : p->exit_code;
1265 	if (!retval && stat_addr)
1266 		retval = put_user(status, stat_addr);
1267 	if (!retval && infop)
1268 		retval = put_user(SIGCHLD, &infop->si_signo);
1269 	if (!retval && infop)
1270 		retval = put_user(0, &infop->si_errno);
1271 	if (!retval && infop) {
1272 		int why;
1273 
1274 		if ((status & 0x7f) == 0) {
1275 			why = CLD_EXITED;
1276 			status >>= 8;
1277 		} else {
1278 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1279 			status &= 0x7f;
1280 		}
1281 		retval = put_user((short)why, &infop->si_code);
1282 		if (!retval)
1283 			retval = put_user(status, &infop->si_status);
1284 	}
1285 	if (!retval && infop)
1286 		retval = put_user(pid, &infop->si_pid);
1287 	if (!retval && infop)
1288 		retval = put_user(p->uid, &infop->si_uid);
1289 	if (!retval)
1290 		retval = pid;
1291 
1292 	if (traced) {
1293 		write_lock_irq(&tasklist_lock);
1294 		/* We dropped tasklist, ptracer could die and untrace */
1295 		ptrace_unlink(p);
1296 		/*
1297 		 * If this is not a detached task, notify the parent.
1298 		 * If it's still not detached after that, don't release
1299 		 * it now.
1300 		 */
1301 		if (p->exit_signal != -1) {
1302 			do_notify_parent(p, p->exit_signal);
1303 			if (p->exit_signal != -1) {
1304 				p->exit_state = EXIT_ZOMBIE;
1305 				p = NULL;
1306 			}
1307 		}
1308 		write_unlock_irq(&tasklist_lock);
1309 	}
1310 	if (p != NULL)
1311 		release_task(p);
1312 
1313 	return retval;
1314 }
1315 
1316 /*
1317  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1318  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1319  * the lock and this task is uninteresting.  If we return nonzero, we have
1320  * released the lock and the system call should return.
1321  */
1322 static int wait_task_stopped(struct task_struct *p,
1323 			     int noreap, struct siginfo __user *infop,
1324 			     int __user *stat_addr, struct rusage __user *ru)
1325 {
1326 	int retval, exit_code, why;
1327 	uid_t uid = 0; /* unneeded, required by compiler */
1328 	pid_t pid;
1329 
1330 	exit_code = 0;
1331 	spin_lock_irq(&p->sighand->siglock);
1332 
1333 	if (unlikely(!task_is_stopped_or_traced(p)))
1334 		goto unlock_sig;
1335 
1336 	if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0)
1337 		/*
1338 		 * A group stop is in progress and this is the group leader.
1339 		 * We won't report until all threads have stopped.
1340 		 */
1341 		goto unlock_sig;
1342 
1343 	exit_code = p->exit_code;
1344 	if (!exit_code)
1345 		goto unlock_sig;
1346 
1347 	if (!noreap)
1348 		p->exit_code = 0;
1349 
1350 	uid = p->uid;
1351 unlock_sig:
1352 	spin_unlock_irq(&p->sighand->siglock);
1353 	if (!exit_code)
1354 		return 0;
1355 
1356 	/*
1357 	 * Now we are pretty sure this task is interesting.
1358 	 * Make sure it doesn't get reaped out from under us while we
1359 	 * give up the lock and then examine it below.  We don't want to
1360 	 * keep holding onto the tasklist_lock while we call getrusage and
1361 	 * possibly take page faults for user memory.
1362 	 */
1363 	get_task_struct(p);
1364 	pid = task_pid_vnr(p);
1365 	why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1366 	read_unlock(&tasklist_lock);
1367 
1368 	if (unlikely(noreap))
1369 		return wait_noreap_copyout(p, pid, uid,
1370 					   why, exit_code,
1371 					   infop, ru);
1372 
1373 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1374 	if (!retval && stat_addr)
1375 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1376 	if (!retval && infop)
1377 		retval = put_user(SIGCHLD, &infop->si_signo);
1378 	if (!retval && infop)
1379 		retval = put_user(0, &infop->si_errno);
1380 	if (!retval && infop)
1381 		retval = put_user((short)why, &infop->si_code);
1382 	if (!retval && infop)
1383 		retval = put_user(exit_code, &infop->si_status);
1384 	if (!retval && infop)
1385 		retval = put_user(pid, &infop->si_pid);
1386 	if (!retval && infop)
1387 		retval = put_user(uid, &infop->si_uid);
1388 	if (!retval)
1389 		retval = pid;
1390 	put_task_struct(p);
1391 
1392 	BUG_ON(!retval);
1393 	return retval;
1394 }
1395 
1396 /*
1397  * Handle do_wait work for one task in a live, non-stopped state.
1398  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1399  * the lock and this task is uninteresting.  If we return nonzero, we have
1400  * released the lock and the system call should return.
1401  */
1402 static int wait_task_continued(struct task_struct *p, int noreap,
1403 			       struct siginfo __user *infop,
1404 			       int __user *stat_addr, struct rusage __user *ru)
1405 {
1406 	int retval;
1407 	pid_t pid;
1408 	uid_t uid;
1409 
1410 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1411 		return 0;
1412 
1413 	spin_lock_irq(&p->sighand->siglock);
1414 	/* Re-check with the lock held.  */
1415 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1416 		spin_unlock_irq(&p->sighand->siglock);
1417 		return 0;
1418 	}
1419 	if (!noreap)
1420 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1421 	spin_unlock_irq(&p->sighand->siglock);
1422 
1423 	pid = task_pid_vnr(p);
1424 	uid = p->uid;
1425 	get_task_struct(p);
1426 	read_unlock(&tasklist_lock);
1427 
1428 	if (!infop) {
1429 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1430 		put_task_struct(p);
1431 		if (!retval && stat_addr)
1432 			retval = put_user(0xffff, stat_addr);
1433 		if (!retval)
1434 			retval = pid;
1435 	} else {
1436 		retval = wait_noreap_copyout(p, pid, uid,
1437 					     CLD_CONTINUED, SIGCONT,
1438 					     infop, ru);
1439 		BUG_ON(retval == 0);
1440 	}
1441 
1442 	return retval;
1443 }
1444 
1445 static long do_wait(enum pid_type type, struct pid *pid, int options,
1446 		    struct siginfo __user *infop, int __user *stat_addr,
1447 		    struct rusage __user *ru)
1448 {
1449 	DECLARE_WAITQUEUE(wait, current);
1450 	struct task_struct *tsk;
1451 	int flag, retval;
1452 
1453 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1454 repeat:
1455 	/* If there is nothing that can match our critier just get out */
1456 	retval = -ECHILD;
1457 	if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1458 		goto end;
1459 
1460 	/*
1461 	 * We will set this flag if we see any child that might later
1462 	 * match our criteria, even if we are not able to reap it yet.
1463 	 */
1464 	flag = retval = 0;
1465 	current->state = TASK_INTERRUPTIBLE;
1466 	read_lock(&tasklist_lock);
1467 	tsk = current;
1468 	do {
1469 		struct task_struct *p;
1470 
1471 		list_for_each_entry(p, &tsk->children, sibling) {
1472 			int ret = eligible_child(type, pid, options, p);
1473 			if (!ret)
1474 				continue;
1475 
1476 			if (unlikely(ret < 0)) {
1477 				retval = ret;
1478 			} else if (task_is_stopped_or_traced(p)) {
1479 				/*
1480 				 * It's stopped now, so it might later
1481 				 * continue, exit, or stop again.
1482 				 */
1483 				flag = 1;
1484 				if (!(p->ptrace & PT_PTRACED) &&
1485 				    !(options & WUNTRACED))
1486 					continue;
1487 
1488 				retval = wait_task_stopped(p,
1489 						(options & WNOWAIT), infop,
1490 						stat_addr, ru);
1491 			} else if (p->exit_state == EXIT_ZOMBIE &&
1492 					!delay_group_leader(p)) {
1493 				/*
1494 				 * We don't reap group leaders with subthreads.
1495 				 */
1496 				if (!likely(options & WEXITED))
1497 					continue;
1498 				retval = wait_task_zombie(p,
1499 						(options & WNOWAIT), infop,
1500 						stat_addr, ru);
1501 			} else if (p->exit_state != EXIT_DEAD) {
1502 				/*
1503 				 * It's running now, so it might later
1504 				 * exit, stop, or stop and then continue.
1505 				 */
1506 				flag = 1;
1507 				if (!unlikely(options & WCONTINUED))
1508 					continue;
1509 				retval = wait_task_continued(p,
1510 						(options & WNOWAIT), infop,
1511 						stat_addr, ru);
1512 			}
1513 			if (retval != 0) /* tasklist_lock released */
1514 				goto end;
1515 		}
1516 		if (!flag) {
1517 			list_for_each_entry(p, &tsk->ptrace_children,
1518 								ptrace_list) {
1519 				flag = eligible_child(type, pid, options, p);
1520 				if (!flag)
1521 					continue;
1522 				if (likely(flag > 0))
1523 					break;
1524 				retval = flag;
1525 				goto end;
1526 			}
1527 		}
1528 		if (options & __WNOTHREAD)
1529 			break;
1530 		tsk = next_thread(tsk);
1531 		BUG_ON(tsk->signal != current->signal);
1532 	} while (tsk != current);
1533 	read_unlock(&tasklist_lock);
1534 
1535 	if (flag) {
1536 		if (options & WNOHANG)
1537 			goto end;
1538 		retval = -ERESTARTSYS;
1539 		if (signal_pending(current))
1540 			goto end;
1541 		schedule();
1542 		goto repeat;
1543 	}
1544 	retval = -ECHILD;
1545 end:
1546 	current->state = TASK_RUNNING;
1547 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1548 	if (infop) {
1549 		if (retval > 0)
1550 			retval = 0;
1551 		else {
1552 			/*
1553 			 * For a WNOHANG return, clear out all the fields
1554 			 * we would set so the user can easily tell the
1555 			 * difference.
1556 			 */
1557 			if (!retval)
1558 				retval = put_user(0, &infop->si_signo);
1559 			if (!retval)
1560 				retval = put_user(0, &infop->si_errno);
1561 			if (!retval)
1562 				retval = put_user(0, &infop->si_code);
1563 			if (!retval)
1564 				retval = put_user(0, &infop->si_pid);
1565 			if (!retval)
1566 				retval = put_user(0, &infop->si_uid);
1567 			if (!retval)
1568 				retval = put_user(0, &infop->si_status);
1569 		}
1570 	}
1571 	return retval;
1572 }
1573 
1574 asmlinkage long sys_waitid(int which, pid_t upid,
1575 			   struct siginfo __user *infop, int options,
1576 			   struct rusage __user *ru)
1577 {
1578 	struct pid *pid = NULL;
1579 	enum pid_type type;
1580 	long ret;
1581 
1582 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1583 		return -EINVAL;
1584 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1585 		return -EINVAL;
1586 
1587 	switch (which) {
1588 	case P_ALL:
1589 		type = PIDTYPE_MAX;
1590 		break;
1591 	case P_PID:
1592 		type = PIDTYPE_PID;
1593 		if (upid <= 0)
1594 			return -EINVAL;
1595 		break;
1596 	case P_PGID:
1597 		type = PIDTYPE_PGID;
1598 		if (upid <= 0)
1599 			return -EINVAL;
1600 		break;
1601 	default:
1602 		return -EINVAL;
1603 	}
1604 
1605 	if (type < PIDTYPE_MAX)
1606 		pid = find_get_pid(upid);
1607 	ret = do_wait(type, pid, options, infop, NULL, ru);
1608 	put_pid(pid);
1609 
1610 	/* avoid REGPARM breakage on x86: */
1611 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1612 	return ret;
1613 }
1614 
1615 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1616 			  int options, struct rusage __user *ru)
1617 {
1618 	struct pid *pid = NULL;
1619 	enum pid_type type;
1620 	long ret;
1621 
1622 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1623 			__WNOTHREAD|__WCLONE|__WALL))
1624 		return -EINVAL;
1625 
1626 	if (upid == -1)
1627 		type = PIDTYPE_MAX;
1628 	else if (upid < 0) {
1629 		type = PIDTYPE_PGID;
1630 		pid = find_get_pid(-upid);
1631 	} else if (upid == 0) {
1632 		type = PIDTYPE_PGID;
1633 		pid = get_pid(task_pgrp(current));
1634 	} else /* upid > 0 */ {
1635 		type = PIDTYPE_PID;
1636 		pid = find_get_pid(upid);
1637 	}
1638 
1639 	ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1640 	put_pid(pid);
1641 
1642 	/* avoid REGPARM breakage on x86: */
1643 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1644 	return ret;
1645 }
1646 
1647 #ifdef __ARCH_WANT_SYS_WAITPID
1648 
1649 /*
1650  * sys_waitpid() remains for compatibility. waitpid() should be
1651  * implemented by calling sys_wait4() from libc.a.
1652  */
1653 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1654 {
1655 	return sys_wait4(pid, stat_addr, options, NULL);
1656 }
1657 
1658 #endif
1659