1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/binfmts.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pid_namespace.h> 25 #include <linux/ptrace.h> 26 #include <linux/profile.h> 27 #include <linux/mount.h> 28 #include <linux/proc_fs.h> 29 #include <linux/kthread.h> 30 #include <linux/mempolicy.h> 31 #include <linux/taskstats_kern.h> 32 #include <linux/delayacct.h> 33 #include <linux/freezer.h> 34 #include <linux/cgroup.h> 35 #include <linux/syscalls.h> 36 #include <linux/signal.h> 37 #include <linux/posix-timers.h> 38 #include <linux/cn_proc.h> 39 #include <linux/mutex.h> 40 #include <linux/futex.h> 41 #include <linux/compat.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 48 #include <asm/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/pgtable.h> 51 #include <asm/mmu_context.h> 52 53 static void exit_mm(struct task_struct * tsk); 54 55 static void __unhash_process(struct task_struct *p) 56 { 57 nr_threads--; 58 detach_pid(p, PIDTYPE_PID); 59 if (thread_group_leader(p)) { 60 detach_pid(p, PIDTYPE_PGID); 61 detach_pid(p, PIDTYPE_SID); 62 63 list_del_rcu(&p->tasks); 64 __get_cpu_var(process_counts)--; 65 } 66 list_del_rcu(&p->thread_group); 67 remove_parent(p); 68 } 69 70 /* 71 * This function expects the tasklist_lock write-locked. 72 */ 73 static void __exit_signal(struct task_struct *tsk) 74 { 75 struct signal_struct *sig = tsk->signal; 76 struct sighand_struct *sighand; 77 78 BUG_ON(!sig); 79 BUG_ON(!atomic_read(&sig->count)); 80 81 rcu_read_lock(); 82 sighand = rcu_dereference(tsk->sighand); 83 spin_lock(&sighand->siglock); 84 85 posix_cpu_timers_exit(tsk); 86 if (atomic_dec_and_test(&sig->count)) 87 posix_cpu_timers_exit_group(tsk); 88 else { 89 /* 90 * If there is any task waiting for the group exit 91 * then notify it: 92 */ 93 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 94 wake_up_process(sig->group_exit_task); 95 96 if (tsk == sig->curr_target) 97 sig->curr_target = next_thread(tsk); 98 /* 99 * Accumulate here the counters for all threads but the 100 * group leader as they die, so they can be added into 101 * the process-wide totals when those are taken. 102 * The group leader stays around as a zombie as long 103 * as there are other threads. When it gets reaped, 104 * the exit.c code will add its counts into these totals. 105 * We won't ever get here for the group leader, since it 106 * will have been the last reference on the signal_struct. 107 */ 108 sig->utime = cputime_add(sig->utime, tsk->utime); 109 sig->stime = cputime_add(sig->stime, tsk->stime); 110 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 111 sig->min_flt += tsk->min_flt; 112 sig->maj_flt += tsk->maj_flt; 113 sig->nvcsw += tsk->nvcsw; 114 sig->nivcsw += tsk->nivcsw; 115 sig->inblock += task_io_get_inblock(tsk); 116 sig->oublock += task_io_get_oublock(tsk); 117 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 118 sig = NULL; /* Marker for below. */ 119 } 120 121 __unhash_process(tsk); 122 123 tsk->signal = NULL; 124 tsk->sighand = NULL; 125 spin_unlock(&sighand->siglock); 126 rcu_read_unlock(); 127 128 __cleanup_sighand(sighand); 129 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 130 flush_sigqueue(&tsk->pending); 131 if (sig) { 132 flush_sigqueue(&sig->shared_pending); 133 taskstats_tgid_free(sig); 134 __cleanup_signal(sig); 135 } 136 } 137 138 static void delayed_put_task_struct(struct rcu_head *rhp) 139 { 140 put_task_struct(container_of(rhp, struct task_struct, rcu)); 141 } 142 143 void release_task(struct task_struct * p) 144 { 145 struct task_struct *leader; 146 int zap_leader; 147 repeat: 148 atomic_dec(&p->user->processes); 149 proc_flush_task(p); 150 write_lock_irq(&tasklist_lock); 151 ptrace_unlink(p); 152 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 153 __exit_signal(p); 154 155 /* 156 * If we are the last non-leader member of the thread 157 * group, and the leader is zombie, then notify the 158 * group leader's parent process. (if it wants notification.) 159 */ 160 zap_leader = 0; 161 leader = p->group_leader; 162 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 163 BUG_ON(leader->exit_signal == -1); 164 do_notify_parent(leader, leader->exit_signal); 165 /* 166 * If we were the last child thread and the leader has 167 * exited already, and the leader's parent ignores SIGCHLD, 168 * then we are the one who should release the leader. 169 * 170 * do_notify_parent() will have marked it self-reaping in 171 * that case. 172 */ 173 zap_leader = (leader->exit_signal == -1); 174 } 175 176 write_unlock_irq(&tasklist_lock); 177 release_thread(p); 178 call_rcu(&p->rcu, delayed_put_task_struct); 179 180 p = leader; 181 if (unlikely(zap_leader)) 182 goto repeat; 183 } 184 185 /* 186 * This checks not only the pgrp, but falls back on the pid if no 187 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 188 * without this... 189 * 190 * The caller must hold rcu lock or the tasklist lock. 191 */ 192 struct pid *session_of_pgrp(struct pid *pgrp) 193 { 194 struct task_struct *p; 195 struct pid *sid = NULL; 196 197 p = pid_task(pgrp, PIDTYPE_PGID); 198 if (p == NULL) 199 p = pid_task(pgrp, PIDTYPE_PID); 200 if (p != NULL) 201 sid = task_session(p); 202 203 return sid; 204 } 205 206 /* 207 * Determine if a process group is "orphaned", according to the POSIX 208 * definition in 2.2.2.52. Orphaned process groups are not to be affected 209 * by terminal-generated stop signals. Newly orphaned process groups are 210 * to receive a SIGHUP and a SIGCONT. 211 * 212 * "I ask you, have you ever known what it is to be an orphan?" 213 */ 214 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 215 { 216 struct task_struct *p; 217 218 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 219 if ((p == ignored_task) || 220 (p->exit_state && thread_group_empty(p)) || 221 is_global_init(p->real_parent)) 222 continue; 223 224 if (task_pgrp(p->real_parent) != pgrp && 225 task_session(p->real_parent) == task_session(p)) 226 return 0; 227 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 228 229 return 1; 230 } 231 232 int is_current_pgrp_orphaned(void) 233 { 234 int retval; 235 236 read_lock(&tasklist_lock); 237 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 238 read_unlock(&tasklist_lock); 239 240 return retval; 241 } 242 243 static int has_stopped_jobs(struct pid *pgrp) 244 { 245 int retval = 0; 246 struct task_struct *p; 247 248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 249 if (!task_is_stopped(p)) 250 continue; 251 retval = 1; 252 break; 253 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 254 return retval; 255 } 256 257 /* 258 * Check to see if any process groups have become orphaned as 259 * a result of our exiting, and if they have any stopped jobs, 260 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 261 */ 262 static void 263 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 264 { 265 struct pid *pgrp = task_pgrp(tsk); 266 struct task_struct *ignored_task = tsk; 267 268 if (!parent) 269 /* exit: our father is in a different pgrp than 270 * we are and we were the only connection outside. 271 */ 272 parent = tsk->real_parent; 273 else 274 /* reparent: our child is in a different pgrp than 275 * we are, and it was the only connection outside. 276 */ 277 ignored_task = NULL; 278 279 if (task_pgrp(parent) != pgrp && 280 task_session(parent) == task_session(tsk) && 281 will_become_orphaned_pgrp(pgrp, ignored_task) && 282 has_stopped_jobs(pgrp)) { 283 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 284 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 285 } 286 } 287 288 /** 289 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 290 * 291 * If a kernel thread is launched as a result of a system call, or if 292 * it ever exits, it should generally reparent itself to kthreadd so it 293 * isn't in the way of other processes and is correctly cleaned up on exit. 294 * 295 * The various task state such as scheduling policy and priority may have 296 * been inherited from a user process, so we reset them to sane values here. 297 * 298 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 299 */ 300 static void reparent_to_kthreadd(void) 301 { 302 write_lock_irq(&tasklist_lock); 303 304 ptrace_unlink(current); 305 /* Reparent to init */ 306 remove_parent(current); 307 current->real_parent = current->parent = kthreadd_task; 308 add_parent(current); 309 310 /* Set the exit signal to SIGCHLD so we signal init on exit */ 311 current->exit_signal = SIGCHLD; 312 313 if (task_nice(current) < 0) 314 set_user_nice(current, 0); 315 /* cpus_allowed? */ 316 /* rt_priority? */ 317 /* signals? */ 318 security_task_reparent_to_init(current); 319 memcpy(current->signal->rlim, init_task.signal->rlim, 320 sizeof(current->signal->rlim)); 321 atomic_inc(&(INIT_USER->__count)); 322 write_unlock_irq(&tasklist_lock); 323 switch_uid(INIT_USER); 324 } 325 326 void __set_special_pids(struct pid *pid) 327 { 328 struct task_struct *curr = current->group_leader; 329 pid_t nr = pid_nr(pid); 330 331 if (task_session(curr) != pid) { 332 detach_pid(curr, PIDTYPE_SID); 333 attach_pid(curr, PIDTYPE_SID, pid); 334 set_task_session(curr, nr); 335 } 336 if (task_pgrp(curr) != pid) { 337 detach_pid(curr, PIDTYPE_PGID); 338 attach_pid(curr, PIDTYPE_PGID, pid); 339 set_task_pgrp(curr, nr); 340 } 341 } 342 343 static void set_special_pids(struct pid *pid) 344 { 345 write_lock_irq(&tasklist_lock); 346 __set_special_pids(pid); 347 write_unlock_irq(&tasklist_lock); 348 } 349 350 /* 351 * Let kernel threads use this to say that they 352 * allow a certain signal (since daemonize() will 353 * have disabled all of them by default). 354 */ 355 int allow_signal(int sig) 356 { 357 if (!valid_signal(sig) || sig < 1) 358 return -EINVAL; 359 360 spin_lock_irq(¤t->sighand->siglock); 361 sigdelset(¤t->blocked, sig); 362 if (!current->mm) { 363 /* Kernel threads handle their own signals. 364 Let the signal code know it'll be handled, so 365 that they don't get converted to SIGKILL or 366 just silently dropped */ 367 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 368 } 369 recalc_sigpending(); 370 spin_unlock_irq(¤t->sighand->siglock); 371 return 0; 372 } 373 374 EXPORT_SYMBOL(allow_signal); 375 376 int disallow_signal(int sig) 377 { 378 if (!valid_signal(sig) || sig < 1) 379 return -EINVAL; 380 381 spin_lock_irq(¤t->sighand->siglock); 382 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 383 recalc_sigpending(); 384 spin_unlock_irq(¤t->sighand->siglock); 385 return 0; 386 } 387 388 EXPORT_SYMBOL(disallow_signal); 389 390 /* 391 * Put all the gunge required to become a kernel thread without 392 * attached user resources in one place where it belongs. 393 */ 394 395 void daemonize(const char *name, ...) 396 { 397 va_list args; 398 struct fs_struct *fs; 399 sigset_t blocked; 400 401 va_start(args, name); 402 vsnprintf(current->comm, sizeof(current->comm), name, args); 403 va_end(args); 404 405 /* 406 * If we were started as result of loading a module, close all of the 407 * user space pages. We don't need them, and if we didn't close them 408 * they would be locked into memory. 409 */ 410 exit_mm(current); 411 /* 412 * We don't want to have TIF_FREEZE set if the system-wide hibernation 413 * or suspend transition begins right now. 414 */ 415 current->flags |= PF_NOFREEZE; 416 417 if (current->nsproxy != &init_nsproxy) { 418 get_nsproxy(&init_nsproxy); 419 switch_task_namespaces(current, &init_nsproxy); 420 } 421 set_special_pids(&init_struct_pid); 422 proc_clear_tty(current); 423 424 /* Block and flush all signals */ 425 sigfillset(&blocked); 426 sigprocmask(SIG_BLOCK, &blocked, NULL); 427 flush_signals(current); 428 429 /* Become as one with the init task */ 430 431 exit_fs(current); /* current->fs->count--; */ 432 fs = init_task.fs; 433 current->fs = fs; 434 atomic_inc(&fs->count); 435 436 exit_files(current); 437 current->files = init_task.files; 438 atomic_inc(¤t->files->count); 439 440 reparent_to_kthreadd(); 441 } 442 443 EXPORT_SYMBOL(daemonize); 444 445 static void close_files(struct files_struct * files) 446 { 447 int i, j; 448 struct fdtable *fdt; 449 450 j = 0; 451 452 /* 453 * It is safe to dereference the fd table without RCU or 454 * ->file_lock because this is the last reference to the 455 * files structure. 456 */ 457 fdt = files_fdtable(files); 458 for (;;) { 459 unsigned long set; 460 i = j * __NFDBITS; 461 if (i >= fdt->max_fds) 462 break; 463 set = fdt->open_fds->fds_bits[j++]; 464 while (set) { 465 if (set & 1) { 466 struct file * file = xchg(&fdt->fd[i], NULL); 467 if (file) { 468 filp_close(file, files); 469 cond_resched(); 470 } 471 } 472 i++; 473 set >>= 1; 474 } 475 } 476 } 477 478 struct files_struct *get_files_struct(struct task_struct *task) 479 { 480 struct files_struct *files; 481 482 task_lock(task); 483 files = task->files; 484 if (files) 485 atomic_inc(&files->count); 486 task_unlock(task); 487 488 return files; 489 } 490 491 void put_files_struct(struct files_struct *files) 492 { 493 struct fdtable *fdt; 494 495 if (atomic_dec_and_test(&files->count)) { 496 close_files(files); 497 /* 498 * Free the fd and fdset arrays if we expanded them. 499 * If the fdtable was embedded, pass files for freeing 500 * at the end of the RCU grace period. Otherwise, 501 * you can free files immediately. 502 */ 503 fdt = files_fdtable(files); 504 if (fdt != &files->fdtab) 505 kmem_cache_free(files_cachep, files); 506 free_fdtable(fdt); 507 } 508 } 509 510 EXPORT_SYMBOL(put_files_struct); 511 512 void reset_files_struct(struct task_struct *tsk, struct files_struct *files) 513 { 514 struct files_struct *old; 515 516 old = tsk->files; 517 task_lock(tsk); 518 tsk->files = files; 519 task_unlock(tsk); 520 put_files_struct(old); 521 } 522 EXPORT_SYMBOL(reset_files_struct); 523 524 static void __exit_files(struct task_struct *tsk) 525 { 526 struct files_struct * files = tsk->files; 527 528 if (files) { 529 task_lock(tsk); 530 tsk->files = NULL; 531 task_unlock(tsk); 532 put_files_struct(files); 533 } 534 } 535 536 void exit_files(struct task_struct *tsk) 537 { 538 __exit_files(tsk); 539 } 540 541 static void __put_fs_struct(struct fs_struct *fs) 542 { 543 /* No need to hold fs->lock if we are killing it */ 544 if (atomic_dec_and_test(&fs->count)) { 545 path_put(&fs->root); 546 path_put(&fs->pwd); 547 if (fs->altroot.dentry) 548 path_put(&fs->altroot); 549 kmem_cache_free(fs_cachep, fs); 550 } 551 } 552 553 void put_fs_struct(struct fs_struct *fs) 554 { 555 __put_fs_struct(fs); 556 } 557 558 static void __exit_fs(struct task_struct *tsk) 559 { 560 struct fs_struct * fs = tsk->fs; 561 562 if (fs) { 563 task_lock(tsk); 564 tsk->fs = NULL; 565 task_unlock(tsk); 566 __put_fs_struct(fs); 567 } 568 } 569 570 void exit_fs(struct task_struct *tsk) 571 { 572 __exit_fs(tsk); 573 } 574 575 EXPORT_SYMBOL_GPL(exit_fs); 576 577 /* 578 * Turn us into a lazy TLB process if we 579 * aren't already.. 580 */ 581 static void exit_mm(struct task_struct * tsk) 582 { 583 struct mm_struct *mm = tsk->mm; 584 585 mm_release(tsk, mm); 586 if (!mm) 587 return; 588 /* 589 * Serialize with any possible pending coredump. 590 * We must hold mmap_sem around checking core_waiters 591 * and clearing tsk->mm. The core-inducing thread 592 * will increment core_waiters for each thread in the 593 * group with ->mm != NULL. 594 */ 595 down_read(&mm->mmap_sem); 596 if (mm->core_waiters) { 597 up_read(&mm->mmap_sem); 598 down_write(&mm->mmap_sem); 599 if (!--mm->core_waiters) 600 complete(mm->core_startup_done); 601 up_write(&mm->mmap_sem); 602 603 wait_for_completion(&mm->core_done); 604 down_read(&mm->mmap_sem); 605 } 606 atomic_inc(&mm->mm_count); 607 BUG_ON(mm != tsk->active_mm); 608 /* more a memory barrier than a real lock */ 609 task_lock(tsk); 610 tsk->mm = NULL; 611 up_read(&mm->mmap_sem); 612 enter_lazy_tlb(mm, current); 613 /* We don't want this task to be frozen prematurely */ 614 clear_freeze_flag(tsk); 615 task_unlock(tsk); 616 mmput(mm); 617 } 618 619 static void 620 reparent_thread(struct task_struct *p, struct task_struct *father, int traced) 621 { 622 if (p->pdeath_signal) 623 /* We already hold the tasklist_lock here. */ 624 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 625 626 /* Move the child from its dying parent to the new one. */ 627 if (unlikely(traced)) { 628 /* Preserve ptrace links if someone else is tracing this child. */ 629 list_del_init(&p->ptrace_list); 630 if (p->parent != p->real_parent) 631 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 632 } else { 633 /* If this child is being traced, then we're the one tracing it 634 * anyway, so let go of it. 635 */ 636 p->ptrace = 0; 637 remove_parent(p); 638 p->parent = p->real_parent; 639 add_parent(p); 640 641 if (task_is_traced(p)) { 642 /* 643 * If it was at a trace stop, turn it into 644 * a normal stop since it's no longer being 645 * traced. 646 */ 647 ptrace_untrace(p); 648 } 649 } 650 651 /* If this is a threaded reparent there is no need to 652 * notify anyone anything has happened. 653 */ 654 if (p->real_parent->group_leader == father->group_leader) 655 return; 656 657 /* We don't want people slaying init. */ 658 if (p->exit_signal != -1) 659 p->exit_signal = SIGCHLD; 660 661 /* If we'd notified the old parent about this child's death, 662 * also notify the new parent. 663 */ 664 if (!traced && p->exit_state == EXIT_ZOMBIE && 665 p->exit_signal != -1 && thread_group_empty(p)) 666 do_notify_parent(p, p->exit_signal); 667 668 kill_orphaned_pgrp(p, father); 669 } 670 671 /* 672 * When we die, we re-parent all our children. 673 * Try to give them to another thread in our thread 674 * group, and if no such member exists, give it to 675 * the child reaper process (ie "init") in our pid 676 * space. 677 */ 678 static void forget_original_parent(struct task_struct *father) 679 { 680 struct task_struct *p, *n, *reaper = father; 681 struct list_head ptrace_dead; 682 683 INIT_LIST_HEAD(&ptrace_dead); 684 685 write_lock_irq(&tasklist_lock); 686 687 do { 688 reaper = next_thread(reaper); 689 if (reaper == father) { 690 reaper = task_child_reaper(father); 691 break; 692 } 693 } while (reaper->flags & PF_EXITING); 694 695 /* 696 * There are only two places where our children can be: 697 * 698 * - in our child list 699 * - in our ptraced child list 700 * 701 * Search them and reparent children. 702 */ 703 list_for_each_entry_safe(p, n, &father->children, sibling) { 704 int ptrace; 705 706 ptrace = p->ptrace; 707 708 /* if father isn't the real parent, then ptrace must be enabled */ 709 BUG_ON(father != p->real_parent && !ptrace); 710 711 if (father == p->real_parent) { 712 /* reparent with a reaper, real father it's us */ 713 p->real_parent = reaper; 714 reparent_thread(p, father, 0); 715 } else { 716 /* reparent ptraced task to its real parent */ 717 __ptrace_unlink (p); 718 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 719 thread_group_empty(p)) 720 do_notify_parent(p, p->exit_signal); 721 } 722 723 /* 724 * if the ptraced child is a zombie with exit_signal == -1 725 * we must collect it before we exit, or it will remain 726 * zombie forever since we prevented it from self-reap itself 727 * while it was being traced by us, to be able to see it in wait4. 728 */ 729 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) 730 list_add(&p->ptrace_list, &ptrace_dead); 731 } 732 733 list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) { 734 p->real_parent = reaper; 735 reparent_thread(p, father, 1); 736 } 737 738 write_unlock_irq(&tasklist_lock); 739 BUG_ON(!list_empty(&father->children)); 740 BUG_ON(!list_empty(&father->ptrace_children)); 741 742 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) { 743 list_del_init(&p->ptrace_list); 744 release_task(p); 745 } 746 747 } 748 749 /* 750 * Send signals to all our closest relatives so that they know 751 * to properly mourn us.. 752 */ 753 static void exit_notify(struct task_struct *tsk, int group_dead) 754 { 755 int state; 756 757 /* 758 * This does two things: 759 * 760 * A. Make init inherit all the child processes 761 * B. Check to see if any process groups have become orphaned 762 * as a result of our exiting, and if they have any stopped 763 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 764 */ 765 forget_original_parent(tsk); 766 exit_task_namespaces(tsk); 767 768 write_lock_irq(&tasklist_lock); 769 if (group_dead) 770 kill_orphaned_pgrp(tsk->group_leader, NULL); 771 772 /* Let father know we died 773 * 774 * Thread signals are configurable, but you aren't going to use 775 * that to send signals to arbitary processes. 776 * That stops right now. 777 * 778 * If the parent exec id doesn't match the exec id we saved 779 * when we started then we know the parent has changed security 780 * domain. 781 * 782 * If our self_exec id doesn't match our parent_exec_id then 783 * we have changed execution domain as these two values started 784 * the same after a fork. 785 */ 786 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && 787 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 788 tsk->self_exec_id != tsk->parent_exec_id) 789 && !capable(CAP_KILL)) 790 tsk->exit_signal = SIGCHLD; 791 792 793 /* If something other than our normal parent is ptracing us, then 794 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 795 * only has special meaning to our real parent. 796 */ 797 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { 798 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; 799 do_notify_parent(tsk, signal); 800 } else if (tsk->ptrace) { 801 do_notify_parent(tsk, SIGCHLD); 802 } 803 804 state = EXIT_ZOMBIE; 805 if (tsk->exit_signal == -1 && likely(!tsk->ptrace)) 806 state = EXIT_DEAD; 807 tsk->exit_state = state; 808 809 if (thread_group_leader(tsk) && 810 tsk->signal->notify_count < 0 && 811 tsk->signal->group_exit_task) 812 wake_up_process(tsk->signal->group_exit_task); 813 814 write_unlock_irq(&tasklist_lock); 815 816 /* If the process is dead, release it - nobody will wait for it */ 817 if (state == EXIT_DEAD) 818 release_task(tsk); 819 } 820 821 #ifdef CONFIG_DEBUG_STACK_USAGE 822 static void check_stack_usage(void) 823 { 824 static DEFINE_SPINLOCK(low_water_lock); 825 static int lowest_to_date = THREAD_SIZE; 826 unsigned long *n = end_of_stack(current); 827 unsigned long free; 828 829 while (*n == 0) 830 n++; 831 free = (unsigned long)n - (unsigned long)end_of_stack(current); 832 833 if (free >= lowest_to_date) 834 return; 835 836 spin_lock(&low_water_lock); 837 if (free < lowest_to_date) { 838 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 839 "left\n", 840 current->comm, free); 841 lowest_to_date = free; 842 } 843 spin_unlock(&low_water_lock); 844 } 845 #else 846 static inline void check_stack_usage(void) {} 847 #endif 848 849 static inline void exit_child_reaper(struct task_struct *tsk) 850 { 851 if (likely(tsk->group_leader != task_child_reaper(tsk))) 852 return; 853 854 if (tsk->nsproxy->pid_ns == &init_pid_ns) 855 panic("Attempted to kill init!"); 856 857 /* 858 * @tsk is the last thread in the 'cgroup-init' and is exiting. 859 * Terminate all remaining processes in the namespace and reap them 860 * before exiting @tsk. 861 * 862 * Note that @tsk (last thread of cgroup-init) may not necessarily 863 * be the child-reaper (i.e main thread of cgroup-init) of the 864 * namespace i.e the child_reaper may have already exited. 865 * 866 * Even after a child_reaper exits, we let it inherit orphaned children, 867 * because, pid_ns->child_reaper remains valid as long as there is 868 * at least one living sub-thread in the cgroup init. 869 870 * This living sub-thread of the cgroup-init will be notified when 871 * a child inherited by the 'child-reaper' exits (do_notify_parent() 872 * uses __group_send_sig_info()). Further, when reaping child processes, 873 * do_wait() iterates over children of all living sub threads. 874 875 * i.e even though 'child_reaper' thread is listed as the parent of the 876 * orphaned children, any living sub-thread in the cgroup-init can 877 * perform the role of the child_reaper. 878 */ 879 zap_pid_ns_processes(tsk->nsproxy->pid_ns); 880 } 881 882 NORET_TYPE void do_exit(long code) 883 { 884 struct task_struct *tsk = current; 885 int group_dead; 886 887 profile_task_exit(tsk); 888 889 WARN_ON(atomic_read(&tsk->fs_excl)); 890 891 if (unlikely(in_interrupt())) 892 panic("Aiee, killing interrupt handler!"); 893 if (unlikely(!tsk->pid)) 894 panic("Attempted to kill the idle task!"); 895 896 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 897 current->ptrace_message = code; 898 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 899 } 900 901 /* 902 * We're taking recursive faults here in do_exit. Safest is to just 903 * leave this task alone and wait for reboot. 904 */ 905 if (unlikely(tsk->flags & PF_EXITING)) { 906 printk(KERN_ALERT 907 "Fixing recursive fault but reboot is needed!\n"); 908 /* 909 * We can do this unlocked here. The futex code uses 910 * this flag just to verify whether the pi state 911 * cleanup has been done or not. In the worst case it 912 * loops once more. We pretend that the cleanup was 913 * done as there is no way to return. Either the 914 * OWNER_DIED bit is set by now or we push the blocked 915 * task into the wait for ever nirwana as well. 916 */ 917 tsk->flags |= PF_EXITPIDONE; 918 if (tsk->io_context) 919 exit_io_context(); 920 set_current_state(TASK_UNINTERRUPTIBLE); 921 schedule(); 922 } 923 924 exit_signals(tsk); /* sets PF_EXITING */ 925 /* 926 * tsk->flags are checked in the futex code to protect against 927 * an exiting task cleaning up the robust pi futexes. 928 */ 929 smp_mb(); 930 spin_unlock_wait(&tsk->pi_lock); 931 932 if (unlikely(in_atomic())) 933 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 934 current->comm, task_pid_nr(current), 935 preempt_count()); 936 937 acct_update_integrals(tsk); 938 if (tsk->mm) { 939 update_hiwater_rss(tsk->mm); 940 update_hiwater_vm(tsk->mm); 941 } 942 group_dead = atomic_dec_and_test(&tsk->signal->live); 943 if (group_dead) { 944 exit_child_reaper(tsk); 945 hrtimer_cancel(&tsk->signal->real_timer); 946 exit_itimers(tsk->signal); 947 } 948 acct_collect(code, group_dead); 949 #ifdef CONFIG_FUTEX 950 if (unlikely(tsk->robust_list)) 951 exit_robust_list(tsk); 952 #ifdef CONFIG_COMPAT 953 if (unlikely(tsk->compat_robust_list)) 954 compat_exit_robust_list(tsk); 955 #endif 956 #endif 957 if (group_dead) 958 tty_audit_exit(); 959 if (unlikely(tsk->audit_context)) 960 audit_free(tsk); 961 962 tsk->exit_code = code; 963 taskstats_exit(tsk, group_dead); 964 965 exit_mm(tsk); 966 967 if (group_dead) 968 acct_process(); 969 exit_sem(tsk); 970 __exit_files(tsk); 971 __exit_fs(tsk); 972 check_stack_usage(); 973 exit_thread(); 974 cgroup_exit(tsk, 1); 975 exit_keys(tsk); 976 977 if (group_dead && tsk->signal->leader) 978 disassociate_ctty(1); 979 980 module_put(task_thread_info(tsk)->exec_domain->module); 981 if (tsk->binfmt) 982 module_put(tsk->binfmt->module); 983 984 proc_exit_connector(tsk); 985 exit_notify(tsk, group_dead); 986 #ifdef CONFIG_NUMA 987 mpol_free(tsk->mempolicy); 988 tsk->mempolicy = NULL; 989 #endif 990 #ifdef CONFIG_FUTEX 991 /* 992 * This must happen late, after the PID is not 993 * hashed anymore: 994 */ 995 if (unlikely(!list_empty(&tsk->pi_state_list))) 996 exit_pi_state_list(tsk); 997 if (unlikely(current->pi_state_cache)) 998 kfree(current->pi_state_cache); 999 #endif 1000 /* 1001 * Make sure we are holding no locks: 1002 */ 1003 debug_check_no_locks_held(tsk); 1004 /* 1005 * We can do this unlocked here. The futex code uses this flag 1006 * just to verify whether the pi state cleanup has been done 1007 * or not. In the worst case it loops once more. 1008 */ 1009 tsk->flags |= PF_EXITPIDONE; 1010 1011 if (tsk->io_context) 1012 exit_io_context(); 1013 1014 if (tsk->splice_pipe) 1015 __free_pipe_info(tsk->splice_pipe); 1016 1017 preempt_disable(); 1018 /* causes final put_task_struct in finish_task_switch(). */ 1019 tsk->state = TASK_DEAD; 1020 1021 schedule(); 1022 BUG(); 1023 /* Avoid "noreturn function does return". */ 1024 for (;;) 1025 cpu_relax(); /* For when BUG is null */ 1026 } 1027 1028 EXPORT_SYMBOL_GPL(do_exit); 1029 1030 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1031 { 1032 if (comp) 1033 complete(comp); 1034 1035 do_exit(code); 1036 } 1037 1038 EXPORT_SYMBOL(complete_and_exit); 1039 1040 asmlinkage long sys_exit(int error_code) 1041 { 1042 do_exit((error_code&0xff)<<8); 1043 } 1044 1045 /* 1046 * Take down every thread in the group. This is called by fatal signals 1047 * as well as by sys_exit_group (below). 1048 */ 1049 NORET_TYPE void 1050 do_group_exit(int exit_code) 1051 { 1052 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1053 1054 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1055 exit_code = current->signal->group_exit_code; 1056 else if (!thread_group_empty(current)) { 1057 struct signal_struct *const sig = current->signal; 1058 struct sighand_struct *const sighand = current->sighand; 1059 spin_lock_irq(&sighand->siglock); 1060 if (signal_group_exit(sig)) 1061 /* Another thread got here before we took the lock. */ 1062 exit_code = sig->group_exit_code; 1063 else { 1064 sig->group_exit_code = exit_code; 1065 sig->flags = SIGNAL_GROUP_EXIT; 1066 zap_other_threads(current); 1067 } 1068 spin_unlock_irq(&sighand->siglock); 1069 } 1070 1071 do_exit(exit_code); 1072 /* NOTREACHED */ 1073 } 1074 1075 /* 1076 * this kills every thread in the thread group. Note that any externally 1077 * wait4()-ing process will get the correct exit code - even if this 1078 * thread is not the thread group leader. 1079 */ 1080 asmlinkage void sys_exit_group(int error_code) 1081 { 1082 do_group_exit((error_code & 0xff) << 8); 1083 } 1084 1085 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1086 { 1087 struct pid *pid = NULL; 1088 if (type == PIDTYPE_PID) 1089 pid = task->pids[type].pid; 1090 else if (type < PIDTYPE_MAX) 1091 pid = task->group_leader->pids[type].pid; 1092 return pid; 1093 } 1094 1095 static int eligible_child(enum pid_type type, struct pid *pid, int options, 1096 struct task_struct *p) 1097 { 1098 int err; 1099 1100 if (type < PIDTYPE_MAX) { 1101 if (task_pid_type(p, type) != pid) 1102 return 0; 1103 } 1104 1105 /* 1106 * Do not consider detached threads that are 1107 * not ptraced: 1108 */ 1109 if (p->exit_signal == -1 && !p->ptrace) 1110 return 0; 1111 1112 /* Wait for all children (clone and not) if __WALL is set; 1113 * otherwise, wait for clone children *only* if __WCLONE is 1114 * set; otherwise, wait for non-clone children *only*. (Note: 1115 * A "clone" child here is one that reports to its parent 1116 * using a signal other than SIGCHLD.) */ 1117 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1118 && !(options & __WALL)) 1119 return 0; 1120 1121 err = security_task_wait(p); 1122 if (likely(!err)) 1123 return 1; 1124 1125 if (type != PIDTYPE_PID) 1126 return 0; 1127 /* This child was explicitly requested, abort */ 1128 read_unlock(&tasklist_lock); 1129 return err; 1130 } 1131 1132 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1133 int why, int status, 1134 struct siginfo __user *infop, 1135 struct rusage __user *rusagep) 1136 { 1137 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1138 1139 put_task_struct(p); 1140 if (!retval) 1141 retval = put_user(SIGCHLD, &infop->si_signo); 1142 if (!retval) 1143 retval = put_user(0, &infop->si_errno); 1144 if (!retval) 1145 retval = put_user((short)why, &infop->si_code); 1146 if (!retval) 1147 retval = put_user(pid, &infop->si_pid); 1148 if (!retval) 1149 retval = put_user(uid, &infop->si_uid); 1150 if (!retval) 1151 retval = put_user(status, &infop->si_status); 1152 if (!retval) 1153 retval = pid; 1154 return retval; 1155 } 1156 1157 /* 1158 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1159 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1160 * the lock and this task is uninteresting. If we return nonzero, we have 1161 * released the lock and the system call should return. 1162 */ 1163 static int wait_task_zombie(struct task_struct *p, int noreap, 1164 struct siginfo __user *infop, 1165 int __user *stat_addr, struct rusage __user *ru) 1166 { 1167 unsigned long state; 1168 int retval, status, traced; 1169 pid_t pid = task_pid_vnr(p); 1170 1171 if (unlikely(noreap)) { 1172 uid_t uid = p->uid; 1173 int exit_code = p->exit_code; 1174 int why, status; 1175 1176 get_task_struct(p); 1177 read_unlock(&tasklist_lock); 1178 if ((exit_code & 0x7f) == 0) { 1179 why = CLD_EXITED; 1180 status = exit_code >> 8; 1181 } else { 1182 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1183 status = exit_code & 0x7f; 1184 } 1185 return wait_noreap_copyout(p, pid, uid, why, 1186 status, infop, ru); 1187 } 1188 1189 /* 1190 * Try to move the task's state to DEAD 1191 * only one thread is allowed to do this: 1192 */ 1193 state = xchg(&p->exit_state, EXIT_DEAD); 1194 if (state != EXIT_ZOMBIE) { 1195 BUG_ON(state != EXIT_DEAD); 1196 return 0; 1197 } 1198 1199 /* traced means p->ptrace, but not vice versa */ 1200 traced = (p->real_parent != p->parent); 1201 1202 if (likely(!traced)) { 1203 struct signal_struct *psig; 1204 struct signal_struct *sig; 1205 1206 /* 1207 * The resource counters for the group leader are in its 1208 * own task_struct. Those for dead threads in the group 1209 * are in its signal_struct, as are those for the child 1210 * processes it has previously reaped. All these 1211 * accumulate in the parent's signal_struct c* fields. 1212 * 1213 * We don't bother to take a lock here to protect these 1214 * p->signal fields, because they are only touched by 1215 * __exit_signal, which runs with tasklist_lock 1216 * write-locked anyway, and so is excluded here. We do 1217 * need to protect the access to p->parent->signal fields, 1218 * as other threads in the parent group can be right 1219 * here reaping other children at the same time. 1220 */ 1221 spin_lock_irq(&p->parent->sighand->siglock); 1222 psig = p->parent->signal; 1223 sig = p->signal; 1224 psig->cutime = 1225 cputime_add(psig->cutime, 1226 cputime_add(p->utime, 1227 cputime_add(sig->utime, 1228 sig->cutime))); 1229 psig->cstime = 1230 cputime_add(psig->cstime, 1231 cputime_add(p->stime, 1232 cputime_add(sig->stime, 1233 sig->cstime))); 1234 psig->cgtime = 1235 cputime_add(psig->cgtime, 1236 cputime_add(p->gtime, 1237 cputime_add(sig->gtime, 1238 sig->cgtime))); 1239 psig->cmin_flt += 1240 p->min_flt + sig->min_flt + sig->cmin_flt; 1241 psig->cmaj_flt += 1242 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1243 psig->cnvcsw += 1244 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1245 psig->cnivcsw += 1246 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1247 psig->cinblock += 1248 task_io_get_inblock(p) + 1249 sig->inblock + sig->cinblock; 1250 psig->coublock += 1251 task_io_get_oublock(p) + 1252 sig->oublock + sig->coublock; 1253 spin_unlock_irq(&p->parent->sighand->siglock); 1254 } 1255 1256 /* 1257 * Now we are sure this task is interesting, and no other 1258 * thread can reap it because we set its state to EXIT_DEAD. 1259 */ 1260 read_unlock(&tasklist_lock); 1261 1262 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1263 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1264 ? p->signal->group_exit_code : p->exit_code; 1265 if (!retval && stat_addr) 1266 retval = put_user(status, stat_addr); 1267 if (!retval && infop) 1268 retval = put_user(SIGCHLD, &infop->si_signo); 1269 if (!retval && infop) 1270 retval = put_user(0, &infop->si_errno); 1271 if (!retval && infop) { 1272 int why; 1273 1274 if ((status & 0x7f) == 0) { 1275 why = CLD_EXITED; 1276 status >>= 8; 1277 } else { 1278 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1279 status &= 0x7f; 1280 } 1281 retval = put_user((short)why, &infop->si_code); 1282 if (!retval) 1283 retval = put_user(status, &infop->si_status); 1284 } 1285 if (!retval && infop) 1286 retval = put_user(pid, &infop->si_pid); 1287 if (!retval && infop) 1288 retval = put_user(p->uid, &infop->si_uid); 1289 if (!retval) 1290 retval = pid; 1291 1292 if (traced) { 1293 write_lock_irq(&tasklist_lock); 1294 /* We dropped tasklist, ptracer could die and untrace */ 1295 ptrace_unlink(p); 1296 /* 1297 * If this is not a detached task, notify the parent. 1298 * If it's still not detached after that, don't release 1299 * it now. 1300 */ 1301 if (p->exit_signal != -1) { 1302 do_notify_parent(p, p->exit_signal); 1303 if (p->exit_signal != -1) { 1304 p->exit_state = EXIT_ZOMBIE; 1305 p = NULL; 1306 } 1307 } 1308 write_unlock_irq(&tasklist_lock); 1309 } 1310 if (p != NULL) 1311 release_task(p); 1312 1313 return retval; 1314 } 1315 1316 /* 1317 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1318 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1319 * the lock and this task is uninteresting. If we return nonzero, we have 1320 * released the lock and the system call should return. 1321 */ 1322 static int wait_task_stopped(struct task_struct *p, 1323 int noreap, struct siginfo __user *infop, 1324 int __user *stat_addr, struct rusage __user *ru) 1325 { 1326 int retval, exit_code, why; 1327 uid_t uid = 0; /* unneeded, required by compiler */ 1328 pid_t pid; 1329 1330 exit_code = 0; 1331 spin_lock_irq(&p->sighand->siglock); 1332 1333 if (unlikely(!task_is_stopped_or_traced(p))) 1334 goto unlock_sig; 1335 1336 if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0) 1337 /* 1338 * A group stop is in progress and this is the group leader. 1339 * We won't report until all threads have stopped. 1340 */ 1341 goto unlock_sig; 1342 1343 exit_code = p->exit_code; 1344 if (!exit_code) 1345 goto unlock_sig; 1346 1347 if (!noreap) 1348 p->exit_code = 0; 1349 1350 uid = p->uid; 1351 unlock_sig: 1352 spin_unlock_irq(&p->sighand->siglock); 1353 if (!exit_code) 1354 return 0; 1355 1356 /* 1357 * Now we are pretty sure this task is interesting. 1358 * Make sure it doesn't get reaped out from under us while we 1359 * give up the lock and then examine it below. We don't want to 1360 * keep holding onto the tasklist_lock while we call getrusage and 1361 * possibly take page faults for user memory. 1362 */ 1363 get_task_struct(p); 1364 pid = task_pid_vnr(p); 1365 why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1366 read_unlock(&tasklist_lock); 1367 1368 if (unlikely(noreap)) 1369 return wait_noreap_copyout(p, pid, uid, 1370 why, exit_code, 1371 infop, ru); 1372 1373 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1374 if (!retval && stat_addr) 1375 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1376 if (!retval && infop) 1377 retval = put_user(SIGCHLD, &infop->si_signo); 1378 if (!retval && infop) 1379 retval = put_user(0, &infop->si_errno); 1380 if (!retval && infop) 1381 retval = put_user((short)why, &infop->si_code); 1382 if (!retval && infop) 1383 retval = put_user(exit_code, &infop->si_status); 1384 if (!retval && infop) 1385 retval = put_user(pid, &infop->si_pid); 1386 if (!retval && infop) 1387 retval = put_user(uid, &infop->si_uid); 1388 if (!retval) 1389 retval = pid; 1390 put_task_struct(p); 1391 1392 BUG_ON(!retval); 1393 return retval; 1394 } 1395 1396 /* 1397 * Handle do_wait work for one task in a live, non-stopped state. 1398 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1399 * the lock and this task is uninteresting. If we return nonzero, we have 1400 * released the lock and the system call should return. 1401 */ 1402 static int wait_task_continued(struct task_struct *p, int noreap, 1403 struct siginfo __user *infop, 1404 int __user *stat_addr, struct rusage __user *ru) 1405 { 1406 int retval; 1407 pid_t pid; 1408 uid_t uid; 1409 1410 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1411 return 0; 1412 1413 spin_lock_irq(&p->sighand->siglock); 1414 /* Re-check with the lock held. */ 1415 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1416 spin_unlock_irq(&p->sighand->siglock); 1417 return 0; 1418 } 1419 if (!noreap) 1420 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1421 spin_unlock_irq(&p->sighand->siglock); 1422 1423 pid = task_pid_vnr(p); 1424 uid = p->uid; 1425 get_task_struct(p); 1426 read_unlock(&tasklist_lock); 1427 1428 if (!infop) { 1429 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1430 put_task_struct(p); 1431 if (!retval && stat_addr) 1432 retval = put_user(0xffff, stat_addr); 1433 if (!retval) 1434 retval = pid; 1435 } else { 1436 retval = wait_noreap_copyout(p, pid, uid, 1437 CLD_CONTINUED, SIGCONT, 1438 infop, ru); 1439 BUG_ON(retval == 0); 1440 } 1441 1442 return retval; 1443 } 1444 1445 static long do_wait(enum pid_type type, struct pid *pid, int options, 1446 struct siginfo __user *infop, int __user *stat_addr, 1447 struct rusage __user *ru) 1448 { 1449 DECLARE_WAITQUEUE(wait, current); 1450 struct task_struct *tsk; 1451 int flag, retval; 1452 1453 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1454 repeat: 1455 /* If there is nothing that can match our critier just get out */ 1456 retval = -ECHILD; 1457 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) 1458 goto end; 1459 1460 /* 1461 * We will set this flag if we see any child that might later 1462 * match our criteria, even if we are not able to reap it yet. 1463 */ 1464 flag = retval = 0; 1465 current->state = TASK_INTERRUPTIBLE; 1466 read_lock(&tasklist_lock); 1467 tsk = current; 1468 do { 1469 struct task_struct *p; 1470 1471 list_for_each_entry(p, &tsk->children, sibling) { 1472 int ret = eligible_child(type, pid, options, p); 1473 if (!ret) 1474 continue; 1475 1476 if (unlikely(ret < 0)) { 1477 retval = ret; 1478 } else if (task_is_stopped_or_traced(p)) { 1479 /* 1480 * It's stopped now, so it might later 1481 * continue, exit, or stop again. 1482 */ 1483 flag = 1; 1484 if (!(p->ptrace & PT_PTRACED) && 1485 !(options & WUNTRACED)) 1486 continue; 1487 1488 retval = wait_task_stopped(p, 1489 (options & WNOWAIT), infop, 1490 stat_addr, ru); 1491 } else if (p->exit_state == EXIT_ZOMBIE && 1492 !delay_group_leader(p)) { 1493 /* 1494 * We don't reap group leaders with subthreads. 1495 */ 1496 if (!likely(options & WEXITED)) 1497 continue; 1498 retval = wait_task_zombie(p, 1499 (options & WNOWAIT), infop, 1500 stat_addr, ru); 1501 } else if (p->exit_state != EXIT_DEAD) { 1502 /* 1503 * It's running now, so it might later 1504 * exit, stop, or stop and then continue. 1505 */ 1506 flag = 1; 1507 if (!unlikely(options & WCONTINUED)) 1508 continue; 1509 retval = wait_task_continued(p, 1510 (options & WNOWAIT), infop, 1511 stat_addr, ru); 1512 } 1513 if (retval != 0) /* tasklist_lock released */ 1514 goto end; 1515 } 1516 if (!flag) { 1517 list_for_each_entry(p, &tsk->ptrace_children, 1518 ptrace_list) { 1519 flag = eligible_child(type, pid, options, p); 1520 if (!flag) 1521 continue; 1522 if (likely(flag > 0)) 1523 break; 1524 retval = flag; 1525 goto end; 1526 } 1527 } 1528 if (options & __WNOTHREAD) 1529 break; 1530 tsk = next_thread(tsk); 1531 BUG_ON(tsk->signal != current->signal); 1532 } while (tsk != current); 1533 read_unlock(&tasklist_lock); 1534 1535 if (flag) { 1536 if (options & WNOHANG) 1537 goto end; 1538 retval = -ERESTARTSYS; 1539 if (signal_pending(current)) 1540 goto end; 1541 schedule(); 1542 goto repeat; 1543 } 1544 retval = -ECHILD; 1545 end: 1546 current->state = TASK_RUNNING; 1547 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1548 if (infop) { 1549 if (retval > 0) 1550 retval = 0; 1551 else { 1552 /* 1553 * For a WNOHANG return, clear out all the fields 1554 * we would set so the user can easily tell the 1555 * difference. 1556 */ 1557 if (!retval) 1558 retval = put_user(0, &infop->si_signo); 1559 if (!retval) 1560 retval = put_user(0, &infop->si_errno); 1561 if (!retval) 1562 retval = put_user(0, &infop->si_code); 1563 if (!retval) 1564 retval = put_user(0, &infop->si_pid); 1565 if (!retval) 1566 retval = put_user(0, &infop->si_uid); 1567 if (!retval) 1568 retval = put_user(0, &infop->si_status); 1569 } 1570 } 1571 return retval; 1572 } 1573 1574 asmlinkage long sys_waitid(int which, pid_t upid, 1575 struct siginfo __user *infop, int options, 1576 struct rusage __user *ru) 1577 { 1578 struct pid *pid = NULL; 1579 enum pid_type type; 1580 long ret; 1581 1582 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1583 return -EINVAL; 1584 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1585 return -EINVAL; 1586 1587 switch (which) { 1588 case P_ALL: 1589 type = PIDTYPE_MAX; 1590 break; 1591 case P_PID: 1592 type = PIDTYPE_PID; 1593 if (upid <= 0) 1594 return -EINVAL; 1595 break; 1596 case P_PGID: 1597 type = PIDTYPE_PGID; 1598 if (upid <= 0) 1599 return -EINVAL; 1600 break; 1601 default: 1602 return -EINVAL; 1603 } 1604 1605 if (type < PIDTYPE_MAX) 1606 pid = find_get_pid(upid); 1607 ret = do_wait(type, pid, options, infop, NULL, ru); 1608 put_pid(pid); 1609 1610 /* avoid REGPARM breakage on x86: */ 1611 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1612 return ret; 1613 } 1614 1615 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr, 1616 int options, struct rusage __user *ru) 1617 { 1618 struct pid *pid = NULL; 1619 enum pid_type type; 1620 long ret; 1621 1622 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1623 __WNOTHREAD|__WCLONE|__WALL)) 1624 return -EINVAL; 1625 1626 if (upid == -1) 1627 type = PIDTYPE_MAX; 1628 else if (upid < 0) { 1629 type = PIDTYPE_PGID; 1630 pid = find_get_pid(-upid); 1631 } else if (upid == 0) { 1632 type = PIDTYPE_PGID; 1633 pid = get_pid(task_pgrp(current)); 1634 } else /* upid > 0 */ { 1635 type = PIDTYPE_PID; 1636 pid = find_get_pid(upid); 1637 } 1638 1639 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); 1640 put_pid(pid); 1641 1642 /* avoid REGPARM breakage on x86: */ 1643 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1644 return ret; 1645 } 1646 1647 #ifdef __ARCH_WANT_SYS_WAITPID 1648 1649 /* 1650 * sys_waitpid() remains for compatibility. waitpid() should be 1651 * implemented by calling sys_wait4() from libc.a. 1652 */ 1653 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1654 { 1655 return sys_wait4(pid, stat_addr, options, NULL); 1656 } 1657 1658 #endif 1659