1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/blkdev.h> 53 #include <linux/task_work.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/kmsan.h> 64 #include <linux/random.h> 65 #include <linux/rcuwait.h> 66 #include <linux/compat.h> 67 #include <linux/io_uring.h> 68 #include <linux/kprobes.h> 69 #include <linux/rethook.h> 70 #include <linux/sysfs.h> 71 #include <linux/user_events.h> 72 #include <linux/uaccess.h> 73 74 #include <uapi/linux/wait.h> 75 76 #include <asm/unistd.h> 77 #include <asm/mmu_context.h> 78 79 #include "exit.h" 80 81 /* 82 * The default value should be high enough to not crash a system that randomly 83 * crashes its kernel from time to time, but low enough to at least not permit 84 * overflowing 32-bit refcounts or the ldsem writer count. 85 */ 86 static unsigned int oops_limit = 10000; 87 88 #ifdef CONFIG_SYSCTL 89 static struct ctl_table kern_exit_table[] = { 90 { 91 .procname = "oops_limit", 92 .data = &oops_limit, 93 .maxlen = sizeof(oops_limit), 94 .mode = 0644, 95 .proc_handler = proc_douintvec, 96 }, 97 }; 98 99 static __init int kernel_exit_sysctls_init(void) 100 { 101 register_sysctl_init("kernel", kern_exit_table); 102 return 0; 103 } 104 late_initcall(kernel_exit_sysctls_init); 105 #endif 106 107 static atomic_t oops_count = ATOMIC_INIT(0); 108 109 #ifdef CONFIG_SYSFS 110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 111 char *page) 112 { 113 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 114 } 115 116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 117 118 static __init int kernel_exit_sysfs_init(void) 119 { 120 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 121 return 0; 122 } 123 late_initcall(kernel_exit_sysfs_init); 124 #endif 125 126 static void __unhash_process(struct task_struct *p, bool group_dead) 127 { 128 nr_threads--; 129 detach_pid(p, PIDTYPE_PID); 130 if (group_dead) { 131 detach_pid(p, PIDTYPE_TGID); 132 detach_pid(p, PIDTYPE_PGID); 133 detach_pid(p, PIDTYPE_SID); 134 135 list_del_rcu(&p->tasks); 136 list_del_init(&p->sibling); 137 __this_cpu_dec(process_counts); 138 } 139 list_del_rcu(&p->thread_node); 140 } 141 142 /* 143 * This function expects the tasklist_lock write-locked. 144 */ 145 static void __exit_signal(struct task_struct *tsk) 146 { 147 struct signal_struct *sig = tsk->signal; 148 bool group_dead = thread_group_leader(tsk); 149 struct sighand_struct *sighand; 150 struct tty_struct *tty; 151 u64 utime, stime; 152 153 sighand = rcu_dereference_check(tsk->sighand, 154 lockdep_tasklist_lock_is_held()); 155 spin_lock(&sighand->siglock); 156 157 #ifdef CONFIG_POSIX_TIMERS 158 posix_cpu_timers_exit(tsk); 159 if (group_dead) 160 posix_cpu_timers_exit_group(tsk); 161 #endif 162 163 if (group_dead) { 164 tty = sig->tty; 165 sig->tty = NULL; 166 } else { 167 /* 168 * If there is any task waiting for the group exit 169 * then notify it: 170 */ 171 if (sig->notify_count > 0 && !--sig->notify_count) 172 wake_up_process(sig->group_exec_task); 173 174 if (tsk == sig->curr_target) 175 sig->curr_target = next_thread(tsk); 176 } 177 178 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 179 sizeof(unsigned long long)); 180 181 /* 182 * Accumulate here the counters for all threads as they die. We could 183 * skip the group leader because it is the last user of signal_struct, 184 * but we want to avoid the race with thread_group_cputime() which can 185 * see the empty ->thread_head list. 186 */ 187 task_cputime(tsk, &utime, &stime); 188 write_seqlock(&sig->stats_lock); 189 sig->utime += utime; 190 sig->stime += stime; 191 sig->gtime += task_gtime(tsk); 192 sig->min_flt += tsk->min_flt; 193 sig->maj_flt += tsk->maj_flt; 194 sig->nvcsw += tsk->nvcsw; 195 sig->nivcsw += tsk->nivcsw; 196 sig->inblock += task_io_get_inblock(tsk); 197 sig->oublock += task_io_get_oublock(tsk); 198 task_io_accounting_add(&sig->ioac, &tsk->ioac); 199 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 200 sig->nr_threads--; 201 __unhash_process(tsk, group_dead); 202 write_sequnlock(&sig->stats_lock); 203 204 /* 205 * Do this under ->siglock, we can race with another thread 206 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 207 */ 208 flush_sigqueue(&tsk->pending); 209 tsk->sighand = NULL; 210 spin_unlock(&sighand->siglock); 211 212 __cleanup_sighand(sighand); 213 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 214 if (group_dead) { 215 flush_sigqueue(&sig->shared_pending); 216 tty_kref_put(tty); 217 } 218 } 219 220 static void delayed_put_task_struct(struct rcu_head *rhp) 221 { 222 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 223 224 kprobe_flush_task(tsk); 225 rethook_flush_task(tsk); 226 perf_event_delayed_put(tsk); 227 trace_sched_process_free(tsk); 228 put_task_struct(tsk); 229 } 230 231 void put_task_struct_rcu_user(struct task_struct *task) 232 { 233 if (refcount_dec_and_test(&task->rcu_users)) 234 call_rcu(&task->rcu, delayed_put_task_struct); 235 } 236 237 void __weak release_thread(struct task_struct *dead_task) 238 { 239 } 240 241 void release_task(struct task_struct *p) 242 { 243 struct task_struct *leader; 244 struct pid *thread_pid; 245 int zap_leader; 246 repeat: 247 /* don't need to get the RCU readlock here - the process is dead and 248 * can't be modifying its own credentials. But shut RCU-lockdep up */ 249 rcu_read_lock(); 250 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 251 rcu_read_unlock(); 252 253 cgroup_release(p); 254 255 write_lock_irq(&tasklist_lock); 256 ptrace_release_task(p); 257 thread_pid = get_pid(p->thread_pid); 258 __exit_signal(p); 259 260 /* 261 * If we are the last non-leader member of the thread 262 * group, and the leader is zombie, then notify the 263 * group leader's parent process. (if it wants notification.) 264 */ 265 zap_leader = 0; 266 leader = p->group_leader; 267 if (leader != p && thread_group_empty(leader) 268 && leader->exit_state == EXIT_ZOMBIE) { 269 /* 270 * If we were the last child thread and the leader has 271 * exited already, and the leader's parent ignores SIGCHLD, 272 * then we are the one who should release the leader. 273 */ 274 zap_leader = do_notify_parent(leader, leader->exit_signal); 275 if (zap_leader) 276 leader->exit_state = EXIT_DEAD; 277 } 278 279 write_unlock_irq(&tasklist_lock); 280 proc_flush_pid(thread_pid); 281 put_pid(thread_pid); 282 release_thread(p); 283 put_task_struct_rcu_user(p); 284 285 p = leader; 286 if (unlikely(zap_leader)) 287 goto repeat; 288 } 289 290 int rcuwait_wake_up(struct rcuwait *w) 291 { 292 int ret = 0; 293 struct task_struct *task; 294 295 rcu_read_lock(); 296 297 /* 298 * Order condition vs @task, such that everything prior to the load 299 * of @task is visible. This is the condition as to why the user called 300 * rcuwait_wake() in the first place. Pairs with set_current_state() 301 * barrier (A) in rcuwait_wait_event(). 302 * 303 * WAIT WAKE 304 * [S] tsk = current [S] cond = true 305 * MB (A) MB (B) 306 * [L] cond [L] tsk 307 */ 308 smp_mb(); /* (B) */ 309 310 task = rcu_dereference(w->task); 311 if (task) 312 ret = wake_up_process(task); 313 rcu_read_unlock(); 314 315 return ret; 316 } 317 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 318 319 /* 320 * Determine if a process group is "orphaned", according to the POSIX 321 * definition in 2.2.2.52. Orphaned process groups are not to be affected 322 * by terminal-generated stop signals. Newly orphaned process groups are 323 * to receive a SIGHUP and a SIGCONT. 324 * 325 * "I ask you, have you ever known what it is to be an orphan?" 326 */ 327 static int will_become_orphaned_pgrp(struct pid *pgrp, 328 struct task_struct *ignored_task) 329 { 330 struct task_struct *p; 331 332 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 333 if ((p == ignored_task) || 334 (p->exit_state && thread_group_empty(p)) || 335 is_global_init(p->real_parent)) 336 continue; 337 338 if (task_pgrp(p->real_parent) != pgrp && 339 task_session(p->real_parent) == task_session(p)) 340 return 0; 341 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 342 343 return 1; 344 } 345 346 int is_current_pgrp_orphaned(void) 347 { 348 int retval; 349 350 read_lock(&tasklist_lock); 351 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 352 read_unlock(&tasklist_lock); 353 354 return retval; 355 } 356 357 static bool has_stopped_jobs(struct pid *pgrp) 358 { 359 struct task_struct *p; 360 361 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 362 if (p->signal->flags & SIGNAL_STOP_STOPPED) 363 return true; 364 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 365 366 return false; 367 } 368 369 /* 370 * Check to see if any process groups have become orphaned as 371 * a result of our exiting, and if they have any stopped jobs, 372 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 373 */ 374 static void 375 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 376 { 377 struct pid *pgrp = task_pgrp(tsk); 378 struct task_struct *ignored_task = tsk; 379 380 if (!parent) 381 /* exit: our father is in a different pgrp than 382 * we are and we were the only connection outside. 383 */ 384 parent = tsk->real_parent; 385 else 386 /* reparent: our child is in a different pgrp than 387 * we are, and it was the only connection outside. 388 */ 389 ignored_task = NULL; 390 391 if (task_pgrp(parent) != pgrp && 392 task_session(parent) == task_session(tsk) && 393 will_become_orphaned_pgrp(pgrp, ignored_task) && 394 has_stopped_jobs(pgrp)) { 395 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 396 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 397 } 398 } 399 400 static void coredump_task_exit(struct task_struct *tsk) 401 { 402 struct core_state *core_state; 403 404 /* 405 * Serialize with any possible pending coredump. 406 * We must hold siglock around checking core_state 407 * and setting PF_POSTCOREDUMP. The core-inducing thread 408 * will increment ->nr_threads for each thread in the 409 * group without PF_POSTCOREDUMP set. 410 */ 411 spin_lock_irq(&tsk->sighand->siglock); 412 tsk->flags |= PF_POSTCOREDUMP; 413 core_state = tsk->signal->core_state; 414 spin_unlock_irq(&tsk->sighand->siglock); 415 if (core_state) { 416 struct core_thread self; 417 418 self.task = current; 419 if (self.task->flags & PF_SIGNALED) 420 self.next = xchg(&core_state->dumper.next, &self); 421 else 422 self.task = NULL; 423 /* 424 * Implies mb(), the result of xchg() must be visible 425 * to core_state->dumper. 426 */ 427 if (atomic_dec_and_test(&core_state->nr_threads)) 428 complete(&core_state->startup); 429 430 for (;;) { 431 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE); 432 if (!self.task) /* see coredump_finish() */ 433 break; 434 schedule(); 435 } 436 __set_current_state(TASK_RUNNING); 437 } 438 } 439 440 #ifdef CONFIG_MEMCG 441 /* 442 * A task is exiting. If it owned this mm, find a new owner for the mm. 443 */ 444 void mm_update_next_owner(struct mm_struct *mm) 445 { 446 struct task_struct *c, *g, *p = current; 447 448 retry: 449 /* 450 * If the exiting or execing task is not the owner, it's 451 * someone else's problem. 452 */ 453 if (mm->owner != p) 454 return; 455 /* 456 * The current owner is exiting/execing and there are no other 457 * candidates. Do not leave the mm pointing to a possibly 458 * freed task structure. 459 */ 460 if (atomic_read(&mm->mm_users) <= 1) { 461 WRITE_ONCE(mm->owner, NULL); 462 return; 463 } 464 465 read_lock(&tasklist_lock); 466 /* 467 * Search in the children 468 */ 469 list_for_each_entry(c, &p->children, sibling) { 470 if (c->mm == mm) 471 goto assign_new_owner; 472 } 473 474 /* 475 * Search in the siblings 476 */ 477 list_for_each_entry(c, &p->real_parent->children, sibling) { 478 if (c->mm == mm) 479 goto assign_new_owner; 480 } 481 482 /* 483 * Search through everything else, we should not get here often. 484 */ 485 for_each_process(g) { 486 if (g->flags & PF_KTHREAD) 487 continue; 488 for_each_thread(g, c) { 489 if (c->mm == mm) 490 goto assign_new_owner; 491 if (c->mm) 492 break; 493 } 494 } 495 read_unlock(&tasklist_lock); 496 /* 497 * We found no owner yet mm_users > 1: this implies that we are 498 * most likely racing with swapoff (try_to_unuse()) or /proc or 499 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 500 */ 501 WRITE_ONCE(mm->owner, NULL); 502 return; 503 504 assign_new_owner: 505 BUG_ON(c == p); 506 get_task_struct(c); 507 /* 508 * The task_lock protects c->mm from changing. 509 * We always want mm->owner->mm == mm 510 */ 511 task_lock(c); 512 /* 513 * Delay read_unlock() till we have the task_lock() 514 * to ensure that c does not slip away underneath us 515 */ 516 read_unlock(&tasklist_lock); 517 if (c->mm != mm) { 518 task_unlock(c); 519 put_task_struct(c); 520 goto retry; 521 } 522 WRITE_ONCE(mm->owner, c); 523 lru_gen_migrate_mm(mm); 524 task_unlock(c); 525 put_task_struct(c); 526 } 527 #endif /* CONFIG_MEMCG */ 528 529 /* 530 * Turn us into a lazy TLB process if we 531 * aren't already.. 532 */ 533 static void exit_mm(void) 534 { 535 struct mm_struct *mm = current->mm; 536 537 exit_mm_release(current, mm); 538 if (!mm) 539 return; 540 mmap_read_lock(mm); 541 mmgrab_lazy_tlb(mm); 542 BUG_ON(mm != current->active_mm); 543 /* more a memory barrier than a real lock */ 544 task_lock(current); 545 /* 546 * When a thread stops operating on an address space, the loop 547 * in membarrier_private_expedited() may not observe that 548 * tsk->mm, and the loop in membarrier_global_expedited() may 549 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 550 * rq->membarrier_state, so those would not issue an IPI. 551 * Membarrier requires a memory barrier after accessing 552 * user-space memory, before clearing tsk->mm or the 553 * rq->membarrier_state. 554 */ 555 smp_mb__after_spinlock(); 556 local_irq_disable(); 557 current->mm = NULL; 558 membarrier_update_current_mm(NULL); 559 enter_lazy_tlb(mm, current); 560 local_irq_enable(); 561 task_unlock(current); 562 mmap_read_unlock(mm); 563 mm_update_next_owner(mm); 564 mmput(mm); 565 if (test_thread_flag(TIF_MEMDIE)) 566 exit_oom_victim(); 567 } 568 569 static struct task_struct *find_alive_thread(struct task_struct *p) 570 { 571 struct task_struct *t; 572 573 for_each_thread(p, t) { 574 if (!(t->flags & PF_EXITING)) 575 return t; 576 } 577 return NULL; 578 } 579 580 static struct task_struct *find_child_reaper(struct task_struct *father, 581 struct list_head *dead) 582 __releases(&tasklist_lock) 583 __acquires(&tasklist_lock) 584 { 585 struct pid_namespace *pid_ns = task_active_pid_ns(father); 586 struct task_struct *reaper = pid_ns->child_reaper; 587 struct task_struct *p, *n; 588 589 if (likely(reaper != father)) 590 return reaper; 591 592 reaper = find_alive_thread(father); 593 if (reaper) { 594 pid_ns->child_reaper = reaper; 595 return reaper; 596 } 597 598 write_unlock_irq(&tasklist_lock); 599 600 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 601 list_del_init(&p->ptrace_entry); 602 release_task(p); 603 } 604 605 zap_pid_ns_processes(pid_ns); 606 write_lock_irq(&tasklist_lock); 607 608 return father; 609 } 610 611 /* 612 * When we die, we re-parent all our children, and try to: 613 * 1. give them to another thread in our thread group, if such a member exists 614 * 2. give it to the first ancestor process which prctl'd itself as a 615 * child_subreaper for its children (like a service manager) 616 * 3. give it to the init process (PID 1) in our pid namespace 617 */ 618 static struct task_struct *find_new_reaper(struct task_struct *father, 619 struct task_struct *child_reaper) 620 { 621 struct task_struct *thread, *reaper; 622 623 thread = find_alive_thread(father); 624 if (thread) 625 return thread; 626 627 if (father->signal->has_child_subreaper) { 628 unsigned int ns_level = task_pid(father)->level; 629 /* 630 * Find the first ->is_child_subreaper ancestor in our pid_ns. 631 * We can't check reaper != child_reaper to ensure we do not 632 * cross the namespaces, the exiting parent could be injected 633 * by setns() + fork(). 634 * We check pid->level, this is slightly more efficient than 635 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 636 */ 637 for (reaper = father->real_parent; 638 task_pid(reaper)->level == ns_level; 639 reaper = reaper->real_parent) { 640 if (reaper == &init_task) 641 break; 642 if (!reaper->signal->is_child_subreaper) 643 continue; 644 thread = find_alive_thread(reaper); 645 if (thread) 646 return thread; 647 } 648 } 649 650 return child_reaper; 651 } 652 653 /* 654 * Any that need to be release_task'd are put on the @dead list. 655 */ 656 static void reparent_leader(struct task_struct *father, struct task_struct *p, 657 struct list_head *dead) 658 { 659 if (unlikely(p->exit_state == EXIT_DEAD)) 660 return; 661 662 /* We don't want people slaying init. */ 663 p->exit_signal = SIGCHLD; 664 665 /* If it has exited notify the new parent about this child's death. */ 666 if (!p->ptrace && 667 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 668 if (do_notify_parent(p, p->exit_signal)) { 669 p->exit_state = EXIT_DEAD; 670 list_add(&p->ptrace_entry, dead); 671 } 672 } 673 674 kill_orphaned_pgrp(p, father); 675 } 676 677 /* 678 * This does two things: 679 * 680 * A. Make init inherit all the child processes 681 * B. Check to see if any process groups have become orphaned 682 * as a result of our exiting, and if they have any stopped 683 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 684 */ 685 static void forget_original_parent(struct task_struct *father, 686 struct list_head *dead) 687 { 688 struct task_struct *p, *t, *reaper; 689 690 if (unlikely(!list_empty(&father->ptraced))) 691 exit_ptrace(father, dead); 692 693 /* Can drop and reacquire tasklist_lock */ 694 reaper = find_child_reaper(father, dead); 695 if (list_empty(&father->children)) 696 return; 697 698 reaper = find_new_reaper(father, reaper); 699 list_for_each_entry(p, &father->children, sibling) { 700 for_each_thread(p, t) { 701 RCU_INIT_POINTER(t->real_parent, reaper); 702 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 703 if (likely(!t->ptrace)) 704 t->parent = t->real_parent; 705 if (t->pdeath_signal) 706 group_send_sig_info(t->pdeath_signal, 707 SEND_SIG_NOINFO, t, 708 PIDTYPE_TGID); 709 } 710 /* 711 * If this is a threaded reparent there is no need to 712 * notify anyone anything has happened. 713 */ 714 if (!same_thread_group(reaper, father)) 715 reparent_leader(father, p, dead); 716 } 717 list_splice_tail_init(&father->children, &reaper->children); 718 } 719 720 /* 721 * Send signals to all our closest relatives so that they know 722 * to properly mourn us.. 723 */ 724 static void exit_notify(struct task_struct *tsk, int group_dead) 725 { 726 bool autoreap; 727 struct task_struct *p, *n; 728 LIST_HEAD(dead); 729 730 write_lock_irq(&tasklist_lock); 731 forget_original_parent(tsk, &dead); 732 733 if (group_dead) 734 kill_orphaned_pgrp(tsk->group_leader, NULL); 735 736 tsk->exit_state = EXIT_ZOMBIE; 737 /* 738 * sub-thread or delay_group_leader(), wake up the 739 * PIDFD_THREAD waiters. 740 */ 741 if (!thread_group_empty(tsk)) 742 do_notify_pidfd(tsk); 743 744 if (unlikely(tsk->ptrace)) { 745 int sig = thread_group_leader(tsk) && 746 thread_group_empty(tsk) && 747 !ptrace_reparented(tsk) ? 748 tsk->exit_signal : SIGCHLD; 749 autoreap = do_notify_parent(tsk, sig); 750 } else if (thread_group_leader(tsk)) { 751 autoreap = thread_group_empty(tsk) && 752 do_notify_parent(tsk, tsk->exit_signal); 753 } else { 754 autoreap = true; 755 } 756 757 if (autoreap) { 758 tsk->exit_state = EXIT_DEAD; 759 list_add(&tsk->ptrace_entry, &dead); 760 } 761 762 /* mt-exec, de_thread() is waiting for group leader */ 763 if (unlikely(tsk->signal->notify_count < 0)) 764 wake_up_process(tsk->signal->group_exec_task); 765 write_unlock_irq(&tasklist_lock); 766 767 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 768 list_del_init(&p->ptrace_entry); 769 release_task(p); 770 } 771 } 772 773 #ifdef CONFIG_DEBUG_STACK_USAGE 774 static void check_stack_usage(void) 775 { 776 static DEFINE_SPINLOCK(low_water_lock); 777 static int lowest_to_date = THREAD_SIZE; 778 unsigned long free; 779 780 free = stack_not_used(current); 781 782 if (free >= lowest_to_date) 783 return; 784 785 spin_lock(&low_water_lock); 786 if (free < lowest_to_date) { 787 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 788 current->comm, task_pid_nr(current), free); 789 lowest_to_date = free; 790 } 791 spin_unlock(&low_water_lock); 792 } 793 #else 794 static inline void check_stack_usage(void) {} 795 #endif 796 797 static void synchronize_group_exit(struct task_struct *tsk, long code) 798 { 799 struct sighand_struct *sighand = tsk->sighand; 800 struct signal_struct *signal = tsk->signal; 801 802 spin_lock_irq(&sighand->siglock); 803 signal->quick_threads--; 804 if ((signal->quick_threads == 0) && 805 !(signal->flags & SIGNAL_GROUP_EXIT)) { 806 signal->flags = SIGNAL_GROUP_EXIT; 807 signal->group_exit_code = code; 808 signal->group_stop_count = 0; 809 } 810 spin_unlock_irq(&sighand->siglock); 811 } 812 813 void __noreturn do_exit(long code) 814 { 815 struct task_struct *tsk = current; 816 int group_dead; 817 818 WARN_ON(irqs_disabled()); 819 820 synchronize_group_exit(tsk, code); 821 822 WARN_ON(tsk->plug); 823 824 kcov_task_exit(tsk); 825 kmsan_task_exit(tsk); 826 827 coredump_task_exit(tsk); 828 ptrace_event(PTRACE_EVENT_EXIT, code); 829 user_events_exit(tsk); 830 831 io_uring_files_cancel(); 832 exit_signals(tsk); /* sets PF_EXITING */ 833 834 seccomp_filter_release(tsk); 835 836 acct_update_integrals(tsk); 837 group_dead = atomic_dec_and_test(&tsk->signal->live); 838 if (group_dead) { 839 /* 840 * If the last thread of global init has exited, panic 841 * immediately to get a useable coredump. 842 */ 843 if (unlikely(is_global_init(tsk))) 844 panic("Attempted to kill init! exitcode=0x%08x\n", 845 tsk->signal->group_exit_code ?: (int)code); 846 847 #ifdef CONFIG_POSIX_TIMERS 848 hrtimer_cancel(&tsk->signal->real_timer); 849 exit_itimers(tsk); 850 #endif 851 if (tsk->mm) 852 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 853 } 854 acct_collect(code, group_dead); 855 if (group_dead) 856 tty_audit_exit(); 857 audit_free(tsk); 858 859 tsk->exit_code = code; 860 taskstats_exit(tsk, group_dead); 861 862 exit_mm(); 863 864 if (group_dead) 865 acct_process(); 866 trace_sched_process_exit(tsk); 867 868 exit_sem(tsk); 869 exit_shm(tsk); 870 exit_files(tsk); 871 exit_fs(tsk); 872 if (group_dead) 873 disassociate_ctty(1); 874 exit_task_namespaces(tsk); 875 exit_task_work(tsk); 876 exit_thread(tsk); 877 878 /* 879 * Flush inherited counters to the parent - before the parent 880 * gets woken up by child-exit notifications. 881 * 882 * because of cgroup mode, must be called before cgroup_exit() 883 */ 884 perf_event_exit_task(tsk); 885 886 sched_autogroup_exit_task(tsk); 887 cgroup_exit(tsk); 888 889 /* 890 * FIXME: do that only when needed, using sched_exit tracepoint 891 */ 892 flush_ptrace_hw_breakpoint(tsk); 893 894 exit_tasks_rcu_start(); 895 exit_notify(tsk, group_dead); 896 proc_exit_connector(tsk); 897 mpol_put_task_policy(tsk); 898 #ifdef CONFIG_FUTEX 899 if (unlikely(current->pi_state_cache)) 900 kfree(current->pi_state_cache); 901 #endif 902 /* 903 * Make sure we are holding no locks: 904 */ 905 debug_check_no_locks_held(); 906 907 if (tsk->io_context) 908 exit_io_context(tsk); 909 910 if (tsk->splice_pipe) 911 free_pipe_info(tsk->splice_pipe); 912 913 if (tsk->task_frag.page) 914 put_page(tsk->task_frag.page); 915 916 exit_task_stack_account(tsk); 917 918 check_stack_usage(); 919 preempt_disable(); 920 if (tsk->nr_dirtied) 921 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 922 exit_rcu(); 923 exit_tasks_rcu_finish(); 924 925 lockdep_free_task(tsk); 926 do_task_dead(); 927 } 928 929 void __noreturn make_task_dead(int signr) 930 { 931 /* 932 * Take the task off the cpu after something catastrophic has 933 * happened. 934 * 935 * We can get here from a kernel oops, sometimes with preemption off. 936 * Start by checking for critical errors. 937 * Then fix up important state like USER_DS and preemption. 938 * Then do everything else. 939 */ 940 struct task_struct *tsk = current; 941 unsigned int limit; 942 943 if (unlikely(in_interrupt())) 944 panic("Aiee, killing interrupt handler!"); 945 if (unlikely(!tsk->pid)) 946 panic("Attempted to kill the idle task!"); 947 948 if (unlikely(irqs_disabled())) { 949 pr_info("note: %s[%d] exited with irqs disabled\n", 950 current->comm, task_pid_nr(current)); 951 local_irq_enable(); 952 } 953 if (unlikely(in_atomic())) { 954 pr_info("note: %s[%d] exited with preempt_count %d\n", 955 current->comm, task_pid_nr(current), 956 preempt_count()); 957 preempt_count_set(PREEMPT_ENABLED); 958 } 959 960 /* 961 * Every time the system oopses, if the oops happens while a reference 962 * to an object was held, the reference leaks. 963 * If the oops doesn't also leak memory, repeated oopsing can cause 964 * reference counters to wrap around (if they're not using refcount_t). 965 * This means that repeated oopsing can make unexploitable-looking bugs 966 * exploitable through repeated oopsing. 967 * To make sure this can't happen, place an upper bound on how often the 968 * kernel may oops without panic(). 969 */ 970 limit = READ_ONCE(oops_limit); 971 if (atomic_inc_return(&oops_count) >= limit && limit) 972 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 973 974 /* 975 * We're taking recursive faults here in make_task_dead. Safest is to just 976 * leave this task alone and wait for reboot. 977 */ 978 if (unlikely(tsk->flags & PF_EXITING)) { 979 pr_alert("Fixing recursive fault but reboot is needed!\n"); 980 futex_exit_recursive(tsk); 981 tsk->exit_state = EXIT_DEAD; 982 refcount_inc(&tsk->rcu_users); 983 do_task_dead(); 984 } 985 986 do_exit(signr); 987 } 988 989 SYSCALL_DEFINE1(exit, int, error_code) 990 { 991 do_exit((error_code&0xff)<<8); 992 } 993 994 /* 995 * Take down every thread in the group. This is called by fatal signals 996 * as well as by sys_exit_group (below). 997 */ 998 void __noreturn 999 do_group_exit(int exit_code) 1000 { 1001 struct signal_struct *sig = current->signal; 1002 1003 if (sig->flags & SIGNAL_GROUP_EXIT) 1004 exit_code = sig->group_exit_code; 1005 else if (sig->group_exec_task) 1006 exit_code = 0; 1007 else { 1008 struct sighand_struct *const sighand = current->sighand; 1009 1010 spin_lock_irq(&sighand->siglock); 1011 if (sig->flags & SIGNAL_GROUP_EXIT) 1012 /* Another thread got here before we took the lock. */ 1013 exit_code = sig->group_exit_code; 1014 else if (sig->group_exec_task) 1015 exit_code = 0; 1016 else { 1017 sig->group_exit_code = exit_code; 1018 sig->flags = SIGNAL_GROUP_EXIT; 1019 zap_other_threads(current); 1020 } 1021 spin_unlock_irq(&sighand->siglock); 1022 } 1023 1024 do_exit(exit_code); 1025 /* NOTREACHED */ 1026 } 1027 1028 /* 1029 * this kills every thread in the thread group. Note that any externally 1030 * wait4()-ing process will get the correct exit code - even if this 1031 * thread is not the thread group leader. 1032 */ 1033 SYSCALL_DEFINE1(exit_group, int, error_code) 1034 { 1035 do_group_exit((error_code & 0xff) << 8); 1036 /* NOTREACHED */ 1037 return 0; 1038 } 1039 1040 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1041 { 1042 return wo->wo_type == PIDTYPE_MAX || 1043 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1044 } 1045 1046 static int 1047 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1048 { 1049 if (!eligible_pid(wo, p)) 1050 return 0; 1051 1052 /* 1053 * Wait for all children (clone and not) if __WALL is set or 1054 * if it is traced by us. 1055 */ 1056 if (ptrace || (wo->wo_flags & __WALL)) 1057 return 1; 1058 1059 /* 1060 * Otherwise, wait for clone children *only* if __WCLONE is set; 1061 * otherwise, wait for non-clone children *only*. 1062 * 1063 * Note: a "clone" child here is one that reports to its parent 1064 * using a signal other than SIGCHLD, or a non-leader thread which 1065 * we can only see if it is traced by us. 1066 */ 1067 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1068 return 0; 1069 1070 return 1; 1071 } 1072 1073 /* 1074 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1075 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1076 * the lock and this task is uninteresting. If we return nonzero, we have 1077 * released the lock and the system call should return. 1078 */ 1079 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1080 { 1081 int state, status; 1082 pid_t pid = task_pid_vnr(p); 1083 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1084 struct waitid_info *infop; 1085 1086 if (!likely(wo->wo_flags & WEXITED)) 1087 return 0; 1088 1089 if (unlikely(wo->wo_flags & WNOWAIT)) { 1090 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1091 ? p->signal->group_exit_code : p->exit_code; 1092 get_task_struct(p); 1093 read_unlock(&tasklist_lock); 1094 sched_annotate_sleep(); 1095 if (wo->wo_rusage) 1096 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1097 put_task_struct(p); 1098 goto out_info; 1099 } 1100 /* 1101 * Move the task's state to DEAD/TRACE, only one thread can do this. 1102 */ 1103 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1104 EXIT_TRACE : EXIT_DEAD; 1105 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1106 return 0; 1107 /* 1108 * We own this thread, nobody else can reap it. 1109 */ 1110 read_unlock(&tasklist_lock); 1111 sched_annotate_sleep(); 1112 1113 /* 1114 * Check thread_group_leader() to exclude the traced sub-threads. 1115 */ 1116 if (state == EXIT_DEAD && thread_group_leader(p)) { 1117 struct signal_struct *sig = p->signal; 1118 struct signal_struct *psig = current->signal; 1119 unsigned long maxrss; 1120 u64 tgutime, tgstime; 1121 1122 /* 1123 * The resource counters for the group leader are in its 1124 * own task_struct. Those for dead threads in the group 1125 * are in its signal_struct, as are those for the child 1126 * processes it has previously reaped. All these 1127 * accumulate in the parent's signal_struct c* fields. 1128 * 1129 * We don't bother to take a lock here to protect these 1130 * p->signal fields because the whole thread group is dead 1131 * and nobody can change them. 1132 * 1133 * psig->stats_lock also protects us from our sub-threads 1134 * which can reap other children at the same time. 1135 * 1136 * We use thread_group_cputime_adjusted() to get times for 1137 * the thread group, which consolidates times for all threads 1138 * in the group including the group leader. 1139 */ 1140 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1141 write_seqlock_irq(&psig->stats_lock); 1142 psig->cutime += tgutime + sig->cutime; 1143 psig->cstime += tgstime + sig->cstime; 1144 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1145 psig->cmin_flt += 1146 p->min_flt + sig->min_flt + sig->cmin_flt; 1147 psig->cmaj_flt += 1148 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1149 psig->cnvcsw += 1150 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1151 psig->cnivcsw += 1152 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1153 psig->cinblock += 1154 task_io_get_inblock(p) + 1155 sig->inblock + sig->cinblock; 1156 psig->coublock += 1157 task_io_get_oublock(p) + 1158 sig->oublock + sig->coublock; 1159 maxrss = max(sig->maxrss, sig->cmaxrss); 1160 if (psig->cmaxrss < maxrss) 1161 psig->cmaxrss = maxrss; 1162 task_io_accounting_add(&psig->ioac, &p->ioac); 1163 task_io_accounting_add(&psig->ioac, &sig->ioac); 1164 write_sequnlock_irq(&psig->stats_lock); 1165 } 1166 1167 if (wo->wo_rusage) 1168 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1169 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1170 ? p->signal->group_exit_code : p->exit_code; 1171 wo->wo_stat = status; 1172 1173 if (state == EXIT_TRACE) { 1174 write_lock_irq(&tasklist_lock); 1175 /* We dropped tasklist, ptracer could die and untrace */ 1176 ptrace_unlink(p); 1177 1178 /* If parent wants a zombie, don't release it now */ 1179 state = EXIT_ZOMBIE; 1180 if (do_notify_parent(p, p->exit_signal)) 1181 state = EXIT_DEAD; 1182 p->exit_state = state; 1183 write_unlock_irq(&tasklist_lock); 1184 } 1185 if (state == EXIT_DEAD) 1186 release_task(p); 1187 1188 out_info: 1189 infop = wo->wo_info; 1190 if (infop) { 1191 if ((status & 0x7f) == 0) { 1192 infop->cause = CLD_EXITED; 1193 infop->status = status >> 8; 1194 } else { 1195 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1196 infop->status = status & 0x7f; 1197 } 1198 infop->pid = pid; 1199 infop->uid = uid; 1200 } 1201 1202 return pid; 1203 } 1204 1205 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1206 { 1207 if (ptrace) { 1208 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1209 return &p->exit_code; 1210 } else { 1211 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1212 return &p->signal->group_exit_code; 1213 } 1214 return NULL; 1215 } 1216 1217 /** 1218 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1219 * @wo: wait options 1220 * @ptrace: is the wait for ptrace 1221 * @p: task to wait for 1222 * 1223 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1224 * 1225 * CONTEXT: 1226 * read_lock(&tasklist_lock), which is released if return value is 1227 * non-zero. Also, grabs and releases @p->sighand->siglock. 1228 * 1229 * RETURNS: 1230 * 0 if wait condition didn't exist and search for other wait conditions 1231 * should continue. Non-zero return, -errno on failure and @p's pid on 1232 * success, implies that tasklist_lock is released and wait condition 1233 * search should terminate. 1234 */ 1235 static int wait_task_stopped(struct wait_opts *wo, 1236 int ptrace, struct task_struct *p) 1237 { 1238 struct waitid_info *infop; 1239 int exit_code, *p_code, why; 1240 uid_t uid = 0; /* unneeded, required by compiler */ 1241 pid_t pid; 1242 1243 /* 1244 * Traditionally we see ptrace'd stopped tasks regardless of options. 1245 */ 1246 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1247 return 0; 1248 1249 if (!task_stopped_code(p, ptrace)) 1250 return 0; 1251 1252 exit_code = 0; 1253 spin_lock_irq(&p->sighand->siglock); 1254 1255 p_code = task_stopped_code(p, ptrace); 1256 if (unlikely(!p_code)) 1257 goto unlock_sig; 1258 1259 exit_code = *p_code; 1260 if (!exit_code) 1261 goto unlock_sig; 1262 1263 if (!unlikely(wo->wo_flags & WNOWAIT)) 1264 *p_code = 0; 1265 1266 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1267 unlock_sig: 1268 spin_unlock_irq(&p->sighand->siglock); 1269 if (!exit_code) 1270 return 0; 1271 1272 /* 1273 * Now we are pretty sure this task is interesting. 1274 * Make sure it doesn't get reaped out from under us while we 1275 * give up the lock and then examine it below. We don't want to 1276 * keep holding onto the tasklist_lock while we call getrusage and 1277 * possibly take page faults for user memory. 1278 */ 1279 get_task_struct(p); 1280 pid = task_pid_vnr(p); 1281 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1282 read_unlock(&tasklist_lock); 1283 sched_annotate_sleep(); 1284 if (wo->wo_rusage) 1285 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1286 put_task_struct(p); 1287 1288 if (likely(!(wo->wo_flags & WNOWAIT))) 1289 wo->wo_stat = (exit_code << 8) | 0x7f; 1290 1291 infop = wo->wo_info; 1292 if (infop) { 1293 infop->cause = why; 1294 infop->status = exit_code; 1295 infop->pid = pid; 1296 infop->uid = uid; 1297 } 1298 return pid; 1299 } 1300 1301 /* 1302 * Handle do_wait work for one task in a live, non-stopped state. 1303 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1304 * the lock and this task is uninteresting. If we return nonzero, we have 1305 * released the lock and the system call should return. 1306 */ 1307 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1308 { 1309 struct waitid_info *infop; 1310 pid_t pid; 1311 uid_t uid; 1312 1313 if (!unlikely(wo->wo_flags & WCONTINUED)) 1314 return 0; 1315 1316 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1317 return 0; 1318 1319 spin_lock_irq(&p->sighand->siglock); 1320 /* Re-check with the lock held. */ 1321 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1322 spin_unlock_irq(&p->sighand->siglock); 1323 return 0; 1324 } 1325 if (!unlikely(wo->wo_flags & WNOWAIT)) 1326 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1327 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1328 spin_unlock_irq(&p->sighand->siglock); 1329 1330 pid = task_pid_vnr(p); 1331 get_task_struct(p); 1332 read_unlock(&tasklist_lock); 1333 sched_annotate_sleep(); 1334 if (wo->wo_rusage) 1335 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1336 put_task_struct(p); 1337 1338 infop = wo->wo_info; 1339 if (!infop) { 1340 wo->wo_stat = 0xffff; 1341 } else { 1342 infop->cause = CLD_CONTINUED; 1343 infop->pid = pid; 1344 infop->uid = uid; 1345 infop->status = SIGCONT; 1346 } 1347 return pid; 1348 } 1349 1350 /* 1351 * Consider @p for a wait by @parent. 1352 * 1353 * -ECHILD should be in ->notask_error before the first call. 1354 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1355 * Returns zero if the search for a child should continue; 1356 * then ->notask_error is 0 if @p is an eligible child, 1357 * or still -ECHILD. 1358 */ 1359 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1360 struct task_struct *p) 1361 { 1362 /* 1363 * We can race with wait_task_zombie() from another thread. 1364 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1365 * can't confuse the checks below. 1366 */ 1367 int exit_state = READ_ONCE(p->exit_state); 1368 int ret; 1369 1370 if (unlikely(exit_state == EXIT_DEAD)) 1371 return 0; 1372 1373 ret = eligible_child(wo, ptrace, p); 1374 if (!ret) 1375 return ret; 1376 1377 if (unlikely(exit_state == EXIT_TRACE)) { 1378 /* 1379 * ptrace == 0 means we are the natural parent. In this case 1380 * we should clear notask_error, debugger will notify us. 1381 */ 1382 if (likely(!ptrace)) 1383 wo->notask_error = 0; 1384 return 0; 1385 } 1386 1387 if (likely(!ptrace) && unlikely(p->ptrace)) { 1388 /* 1389 * If it is traced by its real parent's group, just pretend 1390 * the caller is ptrace_do_wait() and reap this child if it 1391 * is zombie. 1392 * 1393 * This also hides group stop state from real parent; otherwise 1394 * a single stop can be reported twice as group and ptrace stop. 1395 * If a ptracer wants to distinguish these two events for its 1396 * own children it should create a separate process which takes 1397 * the role of real parent. 1398 */ 1399 if (!ptrace_reparented(p)) 1400 ptrace = 1; 1401 } 1402 1403 /* slay zombie? */ 1404 if (exit_state == EXIT_ZOMBIE) { 1405 /* we don't reap group leaders with subthreads */ 1406 if (!delay_group_leader(p)) { 1407 /* 1408 * A zombie ptracee is only visible to its ptracer. 1409 * Notification and reaping will be cascaded to the 1410 * real parent when the ptracer detaches. 1411 */ 1412 if (unlikely(ptrace) || likely(!p->ptrace)) 1413 return wait_task_zombie(wo, p); 1414 } 1415 1416 /* 1417 * Allow access to stopped/continued state via zombie by 1418 * falling through. Clearing of notask_error is complex. 1419 * 1420 * When !@ptrace: 1421 * 1422 * If WEXITED is set, notask_error should naturally be 1423 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1424 * so, if there are live subthreads, there are events to 1425 * wait for. If all subthreads are dead, it's still safe 1426 * to clear - this function will be called again in finite 1427 * amount time once all the subthreads are released and 1428 * will then return without clearing. 1429 * 1430 * When @ptrace: 1431 * 1432 * Stopped state is per-task and thus can't change once the 1433 * target task dies. Only continued and exited can happen. 1434 * Clear notask_error if WCONTINUED | WEXITED. 1435 */ 1436 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1437 wo->notask_error = 0; 1438 } else { 1439 /* 1440 * @p is alive and it's gonna stop, continue or exit, so 1441 * there always is something to wait for. 1442 */ 1443 wo->notask_error = 0; 1444 } 1445 1446 /* 1447 * Wait for stopped. Depending on @ptrace, different stopped state 1448 * is used and the two don't interact with each other. 1449 */ 1450 ret = wait_task_stopped(wo, ptrace, p); 1451 if (ret) 1452 return ret; 1453 1454 /* 1455 * Wait for continued. There's only one continued state and the 1456 * ptracer can consume it which can confuse the real parent. Don't 1457 * use WCONTINUED from ptracer. You don't need or want it. 1458 */ 1459 return wait_task_continued(wo, p); 1460 } 1461 1462 /* 1463 * Do the work of do_wait() for one thread in the group, @tsk. 1464 * 1465 * -ECHILD should be in ->notask_error before the first call. 1466 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1467 * Returns zero if the search for a child should continue; then 1468 * ->notask_error is 0 if there were any eligible children, 1469 * or still -ECHILD. 1470 */ 1471 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1472 { 1473 struct task_struct *p; 1474 1475 list_for_each_entry(p, &tsk->children, sibling) { 1476 int ret = wait_consider_task(wo, 0, p); 1477 1478 if (ret) 1479 return ret; 1480 } 1481 1482 return 0; 1483 } 1484 1485 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1486 { 1487 struct task_struct *p; 1488 1489 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1490 int ret = wait_consider_task(wo, 1, p); 1491 1492 if (ret) 1493 return ret; 1494 } 1495 1496 return 0; 1497 } 1498 1499 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p) 1500 { 1501 if (!eligible_pid(wo, p)) 1502 return false; 1503 1504 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent) 1505 return false; 1506 1507 return true; 1508 } 1509 1510 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1511 int sync, void *key) 1512 { 1513 struct wait_opts *wo = container_of(wait, struct wait_opts, 1514 child_wait); 1515 struct task_struct *p = key; 1516 1517 if (pid_child_should_wake(wo, p)) 1518 return default_wake_function(wait, mode, sync, key); 1519 1520 return 0; 1521 } 1522 1523 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1524 { 1525 __wake_up_sync_key(&parent->signal->wait_chldexit, 1526 TASK_INTERRUPTIBLE, p); 1527 } 1528 1529 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1530 struct task_struct *target) 1531 { 1532 struct task_struct *parent = 1533 !ptrace ? target->real_parent : target->parent; 1534 1535 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1536 same_thread_group(current, parent)); 1537 } 1538 1539 /* 1540 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1541 * and tracee lists to find the target task. 1542 */ 1543 static int do_wait_pid(struct wait_opts *wo) 1544 { 1545 bool ptrace; 1546 struct task_struct *target; 1547 int retval; 1548 1549 ptrace = false; 1550 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1551 if (target && is_effectively_child(wo, ptrace, target)) { 1552 retval = wait_consider_task(wo, ptrace, target); 1553 if (retval) 1554 return retval; 1555 } 1556 1557 ptrace = true; 1558 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1559 if (target && target->ptrace && 1560 is_effectively_child(wo, ptrace, target)) { 1561 retval = wait_consider_task(wo, ptrace, target); 1562 if (retval) 1563 return retval; 1564 } 1565 1566 return 0; 1567 } 1568 1569 long __do_wait(struct wait_opts *wo) 1570 { 1571 long retval; 1572 1573 /* 1574 * If there is nothing that can match our criteria, just get out. 1575 * We will clear ->notask_error to zero if we see any child that 1576 * might later match our criteria, even if we are not able to reap 1577 * it yet. 1578 */ 1579 wo->notask_error = -ECHILD; 1580 if ((wo->wo_type < PIDTYPE_MAX) && 1581 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1582 goto notask; 1583 1584 read_lock(&tasklist_lock); 1585 1586 if (wo->wo_type == PIDTYPE_PID) { 1587 retval = do_wait_pid(wo); 1588 if (retval) 1589 return retval; 1590 } else { 1591 struct task_struct *tsk = current; 1592 1593 do { 1594 retval = do_wait_thread(wo, tsk); 1595 if (retval) 1596 return retval; 1597 1598 retval = ptrace_do_wait(wo, tsk); 1599 if (retval) 1600 return retval; 1601 1602 if (wo->wo_flags & __WNOTHREAD) 1603 break; 1604 } while_each_thread(current, tsk); 1605 } 1606 read_unlock(&tasklist_lock); 1607 1608 notask: 1609 retval = wo->notask_error; 1610 if (!retval && !(wo->wo_flags & WNOHANG)) 1611 return -ERESTARTSYS; 1612 1613 return retval; 1614 } 1615 1616 static long do_wait(struct wait_opts *wo) 1617 { 1618 int retval; 1619 1620 trace_sched_process_wait(wo->wo_pid); 1621 1622 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1623 wo->child_wait.private = current; 1624 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1625 1626 do { 1627 set_current_state(TASK_INTERRUPTIBLE); 1628 retval = __do_wait(wo); 1629 if (retval != -ERESTARTSYS) 1630 break; 1631 if (signal_pending(current)) 1632 break; 1633 schedule(); 1634 } while (1); 1635 1636 __set_current_state(TASK_RUNNING); 1637 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1638 return retval; 1639 } 1640 1641 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid, 1642 struct waitid_info *infop, int options, 1643 struct rusage *ru) 1644 { 1645 unsigned int f_flags = 0; 1646 struct pid *pid = NULL; 1647 enum pid_type type; 1648 1649 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1650 __WNOTHREAD|__WCLONE|__WALL)) 1651 return -EINVAL; 1652 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1653 return -EINVAL; 1654 1655 switch (which) { 1656 case P_ALL: 1657 type = PIDTYPE_MAX; 1658 break; 1659 case P_PID: 1660 type = PIDTYPE_PID; 1661 if (upid <= 0) 1662 return -EINVAL; 1663 1664 pid = find_get_pid(upid); 1665 break; 1666 case P_PGID: 1667 type = PIDTYPE_PGID; 1668 if (upid < 0) 1669 return -EINVAL; 1670 1671 if (upid) 1672 pid = find_get_pid(upid); 1673 else 1674 pid = get_task_pid(current, PIDTYPE_PGID); 1675 break; 1676 case P_PIDFD: 1677 type = PIDTYPE_PID; 1678 if (upid < 0) 1679 return -EINVAL; 1680 1681 pid = pidfd_get_pid(upid, &f_flags); 1682 if (IS_ERR(pid)) 1683 return PTR_ERR(pid); 1684 1685 break; 1686 default: 1687 return -EINVAL; 1688 } 1689 1690 wo->wo_type = type; 1691 wo->wo_pid = pid; 1692 wo->wo_flags = options; 1693 wo->wo_info = infop; 1694 wo->wo_rusage = ru; 1695 if (f_flags & O_NONBLOCK) 1696 wo->wo_flags |= WNOHANG; 1697 1698 return 0; 1699 } 1700 1701 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1702 int options, struct rusage *ru) 1703 { 1704 struct wait_opts wo; 1705 long ret; 1706 1707 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru); 1708 if (ret) 1709 return ret; 1710 1711 ret = do_wait(&wo); 1712 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG)) 1713 ret = -EAGAIN; 1714 1715 put_pid(wo.wo_pid); 1716 return ret; 1717 } 1718 1719 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1720 infop, int, options, struct rusage __user *, ru) 1721 { 1722 struct rusage r; 1723 struct waitid_info info = {.status = 0}; 1724 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1725 int signo = 0; 1726 1727 if (err > 0) { 1728 signo = SIGCHLD; 1729 err = 0; 1730 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1731 return -EFAULT; 1732 } 1733 if (!infop) 1734 return err; 1735 1736 if (!user_write_access_begin(infop, sizeof(*infop))) 1737 return -EFAULT; 1738 1739 unsafe_put_user(signo, &infop->si_signo, Efault); 1740 unsafe_put_user(0, &infop->si_errno, Efault); 1741 unsafe_put_user(info.cause, &infop->si_code, Efault); 1742 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1743 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1744 unsafe_put_user(info.status, &infop->si_status, Efault); 1745 user_write_access_end(); 1746 return err; 1747 Efault: 1748 user_write_access_end(); 1749 return -EFAULT; 1750 } 1751 1752 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1753 struct rusage *ru) 1754 { 1755 struct wait_opts wo; 1756 struct pid *pid = NULL; 1757 enum pid_type type; 1758 long ret; 1759 1760 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1761 __WNOTHREAD|__WCLONE|__WALL)) 1762 return -EINVAL; 1763 1764 /* -INT_MIN is not defined */ 1765 if (upid == INT_MIN) 1766 return -ESRCH; 1767 1768 if (upid == -1) 1769 type = PIDTYPE_MAX; 1770 else if (upid < 0) { 1771 type = PIDTYPE_PGID; 1772 pid = find_get_pid(-upid); 1773 } else if (upid == 0) { 1774 type = PIDTYPE_PGID; 1775 pid = get_task_pid(current, PIDTYPE_PGID); 1776 } else /* upid > 0 */ { 1777 type = PIDTYPE_PID; 1778 pid = find_get_pid(upid); 1779 } 1780 1781 wo.wo_type = type; 1782 wo.wo_pid = pid; 1783 wo.wo_flags = options | WEXITED; 1784 wo.wo_info = NULL; 1785 wo.wo_stat = 0; 1786 wo.wo_rusage = ru; 1787 ret = do_wait(&wo); 1788 put_pid(pid); 1789 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1790 ret = -EFAULT; 1791 1792 return ret; 1793 } 1794 1795 int kernel_wait(pid_t pid, int *stat) 1796 { 1797 struct wait_opts wo = { 1798 .wo_type = PIDTYPE_PID, 1799 .wo_pid = find_get_pid(pid), 1800 .wo_flags = WEXITED, 1801 }; 1802 int ret; 1803 1804 ret = do_wait(&wo); 1805 if (ret > 0 && wo.wo_stat) 1806 *stat = wo.wo_stat; 1807 put_pid(wo.wo_pid); 1808 return ret; 1809 } 1810 1811 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1812 int, options, struct rusage __user *, ru) 1813 { 1814 struct rusage r; 1815 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1816 1817 if (err > 0) { 1818 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1819 return -EFAULT; 1820 } 1821 return err; 1822 } 1823 1824 #ifdef __ARCH_WANT_SYS_WAITPID 1825 1826 /* 1827 * sys_waitpid() remains for compatibility. waitpid() should be 1828 * implemented by calling sys_wait4() from libc.a. 1829 */ 1830 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1831 { 1832 return kernel_wait4(pid, stat_addr, options, NULL); 1833 } 1834 1835 #endif 1836 1837 #ifdef CONFIG_COMPAT 1838 COMPAT_SYSCALL_DEFINE4(wait4, 1839 compat_pid_t, pid, 1840 compat_uint_t __user *, stat_addr, 1841 int, options, 1842 struct compat_rusage __user *, ru) 1843 { 1844 struct rusage r; 1845 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1846 if (err > 0) { 1847 if (ru && put_compat_rusage(&r, ru)) 1848 return -EFAULT; 1849 } 1850 return err; 1851 } 1852 1853 COMPAT_SYSCALL_DEFINE5(waitid, 1854 int, which, compat_pid_t, pid, 1855 struct compat_siginfo __user *, infop, int, options, 1856 struct compat_rusage __user *, uru) 1857 { 1858 struct rusage ru; 1859 struct waitid_info info = {.status = 0}; 1860 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1861 int signo = 0; 1862 if (err > 0) { 1863 signo = SIGCHLD; 1864 err = 0; 1865 if (uru) { 1866 /* kernel_waitid() overwrites everything in ru */ 1867 if (COMPAT_USE_64BIT_TIME) 1868 err = copy_to_user(uru, &ru, sizeof(ru)); 1869 else 1870 err = put_compat_rusage(&ru, uru); 1871 if (err) 1872 return -EFAULT; 1873 } 1874 } 1875 1876 if (!infop) 1877 return err; 1878 1879 if (!user_write_access_begin(infop, sizeof(*infop))) 1880 return -EFAULT; 1881 1882 unsafe_put_user(signo, &infop->si_signo, Efault); 1883 unsafe_put_user(0, &infop->si_errno, Efault); 1884 unsafe_put_user(info.cause, &infop->si_code, Efault); 1885 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1886 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1887 unsafe_put_user(info.status, &infop->si_status, Efault); 1888 user_write_access_end(); 1889 return err; 1890 Efault: 1891 user_write_access_end(); 1892 return -EFAULT; 1893 } 1894 #endif 1895 1896 /* 1897 * This needs to be __function_aligned as GCC implicitly makes any 1898 * implementation of abort() cold and drops alignment specified by 1899 * -falign-functions=N. 1900 * 1901 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1902 */ 1903 __weak __function_aligned void abort(void) 1904 { 1905 BUG(); 1906 1907 /* if that doesn't kill us, halt */ 1908 panic("Oops failed to kill thread"); 1909 } 1910 EXPORT_SYMBOL(abort); 1911