1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 54 #include <asm/uaccess.h> 55 #include <asm/unistd.h> 56 #include <asm/pgtable.h> 57 #include <asm/mmu_context.h> 58 #include "cred-internals.h" 59 60 static void exit_mm(struct task_struct * tsk); 61 62 static void __unhash_process(struct task_struct *p) 63 { 64 nr_threads--; 65 detach_pid(p, PIDTYPE_PID); 66 if (thread_group_leader(p)) { 67 detach_pid(p, PIDTYPE_PGID); 68 detach_pid(p, PIDTYPE_SID); 69 70 list_del_rcu(&p->tasks); 71 __get_cpu_var(process_counts)--; 72 } 73 list_del_rcu(&p->thread_group); 74 list_del_init(&p->sibling); 75 } 76 77 /* 78 * This function expects the tasklist_lock write-locked. 79 */ 80 static void __exit_signal(struct task_struct *tsk) 81 { 82 struct signal_struct *sig = tsk->signal; 83 struct sighand_struct *sighand; 84 85 BUG_ON(!sig); 86 BUG_ON(!atomic_read(&sig->count)); 87 88 sighand = rcu_dereference(tsk->sighand); 89 spin_lock(&sighand->siglock); 90 91 posix_cpu_timers_exit(tsk); 92 if (atomic_dec_and_test(&sig->count)) 93 posix_cpu_timers_exit_group(tsk); 94 else { 95 /* 96 * If there is any task waiting for the group exit 97 * then notify it: 98 */ 99 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 100 wake_up_process(sig->group_exit_task); 101 102 if (tsk == sig->curr_target) 103 sig->curr_target = next_thread(tsk); 104 /* 105 * Accumulate here the counters for all threads but the 106 * group leader as they die, so they can be added into 107 * the process-wide totals when those are taken. 108 * The group leader stays around as a zombie as long 109 * as there are other threads. When it gets reaped, 110 * the exit.c code will add its counts into these totals. 111 * We won't ever get here for the group leader, since it 112 * will have been the last reference on the signal_struct. 113 */ 114 sig->utime = cputime_add(sig->utime, task_utime(tsk)); 115 sig->stime = cputime_add(sig->stime, task_stime(tsk)); 116 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); 117 sig->min_flt += tsk->min_flt; 118 sig->maj_flt += tsk->maj_flt; 119 sig->nvcsw += tsk->nvcsw; 120 sig->nivcsw += tsk->nivcsw; 121 sig->inblock += task_io_get_inblock(tsk); 122 sig->oublock += task_io_get_oublock(tsk); 123 task_io_accounting_add(&sig->ioac, &tsk->ioac); 124 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 125 sig = NULL; /* Marker for below. */ 126 } 127 128 __unhash_process(tsk); 129 130 /* 131 * Do this under ->siglock, we can race with another thread 132 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 133 */ 134 flush_sigqueue(&tsk->pending); 135 136 tsk->signal = NULL; 137 tsk->sighand = NULL; 138 spin_unlock(&sighand->siglock); 139 140 __cleanup_sighand(sighand); 141 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 142 if (sig) { 143 flush_sigqueue(&sig->shared_pending); 144 taskstats_tgid_free(sig); 145 /* 146 * Make sure ->signal can't go away under rq->lock, 147 * see account_group_exec_runtime(). 148 */ 149 task_rq_unlock_wait(tsk); 150 __cleanup_signal(sig); 151 } 152 } 153 154 static void delayed_put_task_struct(struct rcu_head *rhp) 155 { 156 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 157 158 #ifdef CONFIG_PERF_EVENTS 159 WARN_ON_ONCE(tsk->perf_event_ctxp); 160 #endif 161 trace_sched_process_free(tsk); 162 put_task_struct(tsk); 163 } 164 165 166 void release_task(struct task_struct * p) 167 { 168 struct task_struct *leader; 169 int zap_leader; 170 repeat: 171 tracehook_prepare_release_task(p); 172 /* don't need to get the RCU readlock here - the process is dead and 173 * can't be modifying its own credentials */ 174 atomic_dec(&__task_cred(p)->user->processes); 175 176 proc_flush_task(p); 177 178 write_lock_irq(&tasklist_lock); 179 tracehook_finish_release_task(p); 180 __exit_signal(p); 181 182 /* 183 * If we are the last non-leader member of the thread 184 * group, and the leader is zombie, then notify the 185 * group leader's parent process. (if it wants notification.) 186 */ 187 zap_leader = 0; 188 leader = p->group_leader; 189 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 190 BUG_ON(task_detached(leader)); 191 do_notify_parent(leader, leader->exit_signal); 192 /* 193 * If we were the last child thread and the leader has 194 * exited already, and the leader's parent ignores SIGCHLD, 195 * then we are the one who should release the leader. 196 * 197 * do_notify_parent() will have marked it self-reaping in 198 * that case. 199 */ 200 zap_leader = task_detached(leader); 201 202 /* 203 * This maintains the invariant that release_task() 204 * only runs on a task in EXIT_DEAD, just for sanity. 205 */ 206 if (zap_leader) 207 leader->exit_state = EXIT_DEAD; 208 } 209 210 write_unlock_irq(&tasklist_lock); 211 release_thread(p); 212 call_rcu(&p->rcu, delayed_put_task_struct); 213 214 p = leader; 215 if (unlikely(zap_leader)) 216 goto repeat; 217 } 218 219 /* 220 * This checks not only the pgrp, but falls back on the pid if no 221 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 222 * without this... 223 * 224 * The caller must hold rcu lock or the tasklist lock. 225 */ 226 struct pid *session_of_pgrp(struct pid *pgrp) 227 { 228 struct task_struct *p; 229 struct pid *sid = NULL; 230 231 p = pid_task(pgrp, PIDTYPE_PGID); 232 if (p == NULL) 233 p = pid_task(pgrp, PIDTYPE_PID); 234 if (p != NULL) 235 sid = task_session(p); 236 237 return sid; 238 } 239 240 /* 241 * Determine if a process group is "orphaned", according to the POSIX 242 * definition in 2.2.2.52. Orphaned process groups are not to be affected 243 * by terminal-generated stop signals. Newly orphaned process groups are 244 * to receive a SIGHUP and a SIGCONT. 245 * 246 * "I ask you, have you ever known what it is to be an orphan?" 247 */ 248 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 249 { 250 struct task_struct *p; 251 252 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 253 if ((p == ignored_task) || 254 (p->exit_state && thread_group_empty(p)) || 255 is_global_init(p->real_parent)) 256 continue; 257 258 if (task_pgrp(p->real_parent) != pgrp && 259 task_session(p->real_parent) == task_session(p)) 260 return 0; 261 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 262 263 return 1; 264 } 265 266 int is_current_pgrp_orphaned(void) 267 { 268 int retval; 269 270 read_lock(&tasklist_lock); 271 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 272 read_unlock(&tasklist_lock); 273 274 return retval; 275 } 276 277 static int has_stopped_jobs(struct pid *pgrp) 278 { 279 int retval = 0; 280 struct task_struct *p; 281 282 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 283 if (!task_is_stopped(p)) 284 continue; 285 retval = 1; 286 break; 287 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 288 return retval; 289 } 290 291 /* 292 * Check to see if any process groups have become orphaned as 293 * a result of our exiting, and if they have any stopped jobs, 294 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 295 */ 296 static void 297 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 298 { 299 struct pid *pgrp = task_pgrp(tsk); 300 struct task_struct *ignored_task = tsk; 301 302 if (!parent) 303 /* exit: our father is in a different pgrp than 304 * we are and we were the only connection outside. 305 */ 306 parent = tsk->real_parent; 307 else 308 /* reparent: our child is in a different pgrp than 309 * we are, and it was the only connection outside. 310 */ 311 ignored_task = NULL; 312 313 if (task_pgrp(parent) != pgrp && 314 task_session(parent) == task_session(tsk) && 315 will_become_orphaned_pgrp(pgrp, ignored_task) && 316 has_stopped_jobs(pgrp)) { 317 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 318 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 319 } 320 } 321 322 /** 323 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 324 * 325 * If a kernel thread is launched as a result of a system call, or if 326 * it ever exits, it should generally reparent itself to kthreadd so it 327 * isn't in the way of other processes and is correctly cleaned up on exit. 328 * 329 * The various task state such as scheduling policy and priority may have 330 * been inherited from a user process, so we reset them to sane values here. 331 * 332 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 333 */ 334 static void reparent_to_kthreadd(void) 335 { 336 write_lock_irq(&tasklist_lock); 337 338 ptrace_unlink(current); 339 /* Reparent to init */ 340 current->real_parent = current->parent = kthreadd_task; 341 list_move_tail(¤t->sibling, ¤t->real_parent->children); 342 343 /* Set the exit signal to SIGCHLD so we signal init on exit */ 344 current->exit_signal = SIGCHLD; 345 346 if (task_nice(current) < 0) 347 set_user_nice(current, 0); 348 /* cpus_allowed? */ 349 /* rt_priority? */ 350 /* signals? */ 351 memcpy(current->signal->rlim, init_task.signal->rlim, 352 sizeof(current->signal->rlim)); 353 354 atomic_inc(&init_cred.usage); 355 commit_creds(&init_cred); 356 write_unlock_irq(&tasklist_lock); 357 } 358 359 void __set_special_pids(struct pid *pid) 360 { 361 struct task_struct *curr = current->group_leader; 362 363 if (task_session(curr) != pid) 364 change_pid(curr, PIDTYPE_SID, pid); 365 366 if (task_pgrp(curr) != pid) 367 change_pid(curr, PIDTYPE_PGID, pid); 368 } 369 370 static void set_special_pids(struct pid *pid) 371 { 372 write_lock_irq(&tasklist_lock); 373 __set_special_pids(pid); 374 write_unlock_irq(&tasklist_lock); 375 } 376 377 /* 378 * Let kernel threads use this to say that they allow a certain signal. 379 * Must not be used if kthread was cloned with CLONE_SIGHAND. 380 */ 381 int allow_signal(int sig) 382 { 383 if (!valid_signal(sig) || sig < 1) 384 return -EINVAL; 385 386 spin_lock_irq(¤t->sighand->siglock); 387 /* This is only needed for daemonize()'ed kthreads */ 388 sigdelset(¤t->blocked, sig); 389 /* 390 * Kernel threads handle their own signals. Let the signal code 391 * know it'll be handled, so that they don't get converted to 392 * SIGKILL or just silently dropped. 393 */ 394 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 395 recalc_sigpending(); 396 spin_unlock_irq(¤t->sighand->siglock); 397 return 0; 398 } 399 400 EXPORT_SYMBOL(allow_signal); 401 402 int disallow_signal(int sig) 403 { 404 if (!valid_signal(sig) || sig < 1) 405 return -EINVAL; 406 407 spin_lock_irq(¤t->sighand->siglock); 408 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 409 recalc_sigpending(); 410 spin_unlock_irq(¤t->sighand->siglock); 411 return 0; 412 } 413 414 EXPORT_SYMBOL(disallow_signal); 415 416 /* 417 * Put all the gunge required to become a kernel thread without 418 * attached user resources in one place where it belongs. 419 */ 420 421 void daemonize(const char *name, ...) 422 { 423 va_list args; 424 sigset_t blocked; 425 426 va_start(args, name); 427 vsnprintf(current->comm, sizeof(current->comm), name, args); 428 va_end(args); 429 430 /* 431 * If we were started as result of loading a module, close all of the 432 * user space pages. We don't need them, and if we didn't close them 433 * they would be locked into memory. 434 */ 435 exit_mm(current); 436 /* 437 * We don't want to have TIF_FREEZE set if the system-wide hibernation 438 * or suspend transition begins right now. 439 */ 440 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 441 442 if (current->nsproxy != &init_nsproxy) { 443 get_nsproxy(&init_nsproxy); 444 switch_task_namespaces(current, &init_nsproxy); 445 } 446 set_special_pids(&init_struct_pid); 447 proc_clear_tty(current); 448 449 /* Block and flush all signals */ 450 sigfillset(&blocked); 451 sigprocmask(SIG_BLOCK, &blocked, NULL); 452 flush_signals(current); 453 454 /* Become as one with the init task */ 455 456 daemonize_fs_struct(); 457 exit_files(current); 458 current->files = init_task.files; 459 atomic_inc(¤t->files->count); 460 461 reparent_to_kthreadd(); 462 } 463 464 EXPORT_SYMBOL(daemonize); 465 466 static void close_files(struct files_struct * files) 467 { 468 int i, j; 469 struct fdtable *fdt; 470 471 j = 0; 472 473 /* 474 * It is safe to dereference the fd table without RCU or 475 * ->file_lock because this is the last reference to the 476 * files structure. 477 */ 478 fdt = files_fdtable(files); 479 for (;;) { 480 unsigned long set; 481 i = j * __NFDBITS; 482 if (i >= fdt->max_fds) 483 break; 484 set = fdt->open_fds->fds_bits[j++]; 485 while (set) { 486 if (set & 1) { 487 struct file * file = xchg(&fdt->fd[i], NULL); 488 if (file) { 489 filp_close(file, files); 490 cond_resched(); 491 } 492 } 493 i++; 494 set >>= 1; 495 } 496 } 497 } 498 499 struct files_struct *get_files_struct(struct task_struct *task) 500 { 501 struct files_struct *files; 502 503 task_lock(task); 504 files = task->files; 505 if (files) 506 atomic_inc(&files->count); 507 task_unlock(task); 508 509 return files; 510 } 511 512 void put_files_struct(struct files_struct *files) 513 { 514 struct fdtable *fdt; 515 516 if (atomic_dec_and_test(&files->count)) { 517 close_files(files); 518 /* 519 * Free the fd and fdset arrays if we expanded them. 520 * If the fdtable was embedded, pass files for freeing 521 * at the end of the RCU grace period. Otherwise, 522 * you can free files immediately. 523 */ 524 fdt = files_fdtable(files); 525 if (fdt != &files->fdtab) 526 kmem_cache_free(files_cachep, files); 527 free_fdtable(fdt); 528 } 529 } 530 531 void reset_files_struct(struct files_struct *files) 532 { 533 struct task_struct *tsk = current; 534 struct files_struct *old; 535 536 old = tsk->files; 537 task_lock(tsk); 538 tsk->files = files; 539 task_unlock(tsk); 540 put_files_struct(old); 541 } 542 543 void exit_files(struct task_struct *tsk) 544 { 545 struct files_struct * files = tsk->files; 546 547 if (files) { 548 task_lock(tsk); 549 tsk->files = NULL; 550 task_unlock(tsk); 551 put_files_struct(files); 552 } 553 } 554 555 #ifdef CONFIG_MM_OWNER 556 /* 557 * Task p is exiting and it owned mm, lets find a new owner for it 558 */ 559 static inline int 560 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 561 { 562 /* 563 * If there are other users of the mm and the owner (us) is exiting 564 * we need to find a new owner to take on the responsibility. 565 */ 566 if (atomic_read(&mm->mm_users) <= 1) 567 return 0; 568 if (mm->owner != p) 569 return 0; 570 return 1; 571 } 572 573 void mm_update_next_owner(struct mm_struct *mm) 574 { 575 struct task_struct *c, *g, *p = current; 576 577 retry: 578 if (!mm_need_new_owner(mm, p)) 579 return; 580 581 read_lock(&tasklist_lock); 582 /* 583 * Search in the children 584 */ 585 list_for_each_entry(c, &p->children, sibling) { 586 if (c->mm == mm) 587 goto assign_new_owner; 588 } 589 590 /* 591 * Search in the siblings 592 */ 593 list_for_each_entry(c, &p->real_parent->children, sibling) { 594 if (c->mm == mm) 595 goto assign_new_owner; 596 } 597 598 /* 599 * Search through everything else. We should not get 600 * here often 601 */ 602 do_each_thread(g, c) { 603 if (c->mm == mm) 604 goto assign_new_owner; 605 } while_each_thread(g, c); 606 607 read_unlock(&tasklist_lock); 608 /* 609 * We found no owner yet mm_users > 1: this implies that we are 610 * most likely racing with swapoff (try_to_unuse()) or /proc or 611 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 612 */ 613 mm->owner = NULL; 614 return; 615 616 assign_new_owner: 617 BUG_ON(c == p); 618 get_task_struct(c); 619 /* 620 * The task_lock protects c->mm from changing. 621 * We always want mm->owner->mm == mm 622 */ 623 task_lock(c); 624 /* 625 * Delay read_unlock() till we have the task_lock() 626 * to ensure that c does not slip away underneath us 627 */ 628 read_unlock(&tasklist_lock); 629 if (c->mm != mm) { 630 task_unlock(c); 631 put_task_struct(c); 632 goto retry; 633 } 634 mm->owner = c; 635 task_unlock(c); 636 put_task_struct(c); 637 } 638 #endif /* CONFIG_MM_OWNER */ 639 640 /* 641 * Turn us into a lazy TLB process if we 642 * aren't already.. 643 */ 644 static void exit_mm(struct task_struct * tsk) 645 { 646 struct mm_struct *mm = tsk->mm; 647 struct core_state *core_state; 648 649 mm_release(tsk, mm); 650 if (!mm) 651 return; 652 /* 653 * Serialize with any possible pending coredump. 654 * We must hold mmap_sem around checking core_state 655 * and clearing tsk->mm. The core-inducing thread 656 * will increment ->nr_threads for each thread in the 657 * group with ->mm != NULL. 658 */ 659 down_read(&mm->mmap_sem); 660 core_state = mm->core_state; 661 if (core_state) { 662 struct core_thread self; 663 up_read(&mm->mmap_sem); 664 665 self.task = tsk; 666 self.next = xchg(&core_state->dumper.next, &self); 667 /* 668 * Implies mb(), the result of xchg() must be visible 669 * to core_state->dumper. 670 */ 671 if (atomic_dec_and_test(&core_state->nr_threads)) 672 complete(&core_state->startup); 673 674 for (;;) { 675 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 676 if (!self.task) /* see coredump_finish() */ 677 break; 678 schedule(); 679 } 680 __set_task_state(tsk, TASK_RUNNING); 681 down_read(&mm->mmap_sem); 682 } 683 atomic_inc(&mm->mm_count); 684 BUG_ON(mm != tsk->active_mm); 685 /* more a memory barrier than a real lock */ 686 task_lock(tsk); 687 tsk->mm = NULL; 688 up_read(&mm->mmap_sem); 689 enter_lazy_tlb(mm, current); 690 /* We don't want this task to be frozen prematurely */ 691 clear_freeze_flag(tsk); 692 task_unlock(tsk); 693 mm_update_next_owner(mm); 694 mmput(mm); 695 } 696 697 /* 698 * When we die, we re-parent all our children. 699 * Try to give them to another thread in our thread 700 * group, and if no such member exists, give it to 701 * the child reaper process (ie "init") in our pid 702 * space. 703 */ 704 static struct task_struct *find_new_reaper(struct task_struct *father) 705 { 706 struct pid_namespace *pid_ns = task_active_pid_ns(father); 707 struct task_struct *thread; 708 709 thread = father; 710 while_each_thread(father, thread) { 711 if (thread->flags & PF_EXITING) 712 continue; 713 if (unlikely(pid_ns->child_reaper == father)) 714 pid_ns->child_reaper = thread; 715 return thread; 716 } 717 718 if (unlikely(pid_ns->child_reaper == father)) { 719 write_unlock_irq(&tasklist_lock); 720 if (unlikely(pid_ns == &init_pid_ns)) 721 panic("Attempted to kill init!"); 722 723 zap_pid_ns_processes(pid_ns); 724 write_lock_irq(&tasklist_lock); 725 /* 726 * We can not clear ->child_reaper or leave it alone. 727 * There may by stealth EXIT_DEAD tasks on ->children, 728 * forget_original_parent() must move them somewhere. 729 */ 730 pid_ns->child_reaper = init_pid_ns.child_reaper; 731 } 732 733 return pid_ns->child_reaper; 734 } 735 736 /* 737 * Any that need to be release_task'd are put on the @dead list. 738 */ 739 static void reparent_thread(struct task_struct *father, struct task_struct *p, 740 struct list_head *dead) 741 { 742 if (p->pdeath_signal) 743 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 744 745 list_move_tail(&p->sibling, &p->real_parent->children); 746 747 if (task_detached(p)) 748 return; 749 /* 750 * If this is a threaded reparent there is no need to 751 * notify anyone anything has happened. 752 */ 753 if (same_thread_group(p->real_parent, father)) 754 return; 755 756 /* We don't want people slaying init. */ 757 p->exit_signal = SIGCHLD; 758 759 /* If it has exited notify the new parent about this child's death. */ 760 if (!task_ptrace(p) && 761 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 762 do_notify_parent(p, p->exit_signal); 763 if (task_detached(p)) { 764 p->exit_state = EXIT_DEAD; 765 list_move_tail(&p->sibling, dead); 766 } 767 } 768 769 kill_orphaned_pgrp(p, father); 770 } 771 772 static void forget_original_parent(struct task_struct *father) 773 { 774 struct task_struct *p, *n, *reaper; 775 LIST_HEAD(dead_children); 776 777 exit_ptrace(father); 778 779 write_lock_irq(&tasklist_lock); 780 reaper = find_new_reaper(father); 781 782 list_for_each_entry_safe(p, n, &father->children, sibling) { 783 p->real_parent = reaper; 784 if (p->parent == father) { 785 BUG_ON(task_ptrace(p)); 786 p->parent = p->real_parent; 787 } 788 reparent_thread(father, p, &dead_children); 789 } 790 write_unlock_irq(&tasklist_lock); 791 792 BUG_ON(!list_empty(&father->children)); 793 794 list_for_each_entry_safe(p, n, &dead_children, sibling) { 795 list_del_init(&p->sibling); 796 release_task(p); 797 } 798 } 799 800 /* 801 * Send signals to all our closest relatives so that they know 802 * to properly mourn us.. 803 */ 804 static void exit_notify(struct task_struct *tsk, int group_dead) 805 { 806 int signal; 807 void *cookie; 808 809 /* 810 * This does two things: 811 * 812 * A. Make init inherit all the child processes 813 * B. Check to see if any process groups have become orphaned 814 * as a result of our exiting, and if they have any stopped 815 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 816 */ 817 forget_original_parent(tsk); 818 exit_task_namespaces(tsk); 819 820 write_lock_irq(&tasklist_lock); 821 if (group_dead) 822 kill_orphaned_pgrp(tsk->group_leader, NULL); 823 824 /* Let father know we died 825 * 826 * Thread signals are configurable, but you aren't going to use 827 * that to send signals to arbitary processes. 828 * That stops right now. 829 * 830 * If the parent exec id doesn't match the exec id we saved 831 * when we started then we know the parent has changed security 832 * domain. 833 * 834 * If our self_exec id doesn't match our parent_exec_id then 835 * we have changed execution domain as these two values started 836 * the same after a fork. 837 */ 838 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 839 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 840 tsk->self_exec_id != tsk->parent_exec_id)) 841 tsk->exit_signal = SIGCHLD; 842 843 signal = tracehook_notify_death(tsk, &cookie, group_dead); 844 if (signal >= 0) 845 signal = do_notify_parent(tsk, signal); 846 847 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 848 849 /* mt-exec, de_thread() is waiting for us */ 850 if (thread_group_leader(tsk) && 851 tsk->signal->group_exit_task && 852 tsk->signal->notify_count < 0) 853 wake_up_process(tsk->signal->group_exit_task); 854 855 write_unlock_irq(&tasklist_lock); 856 857 tracehook_report_death(tsk, signal, cookie, group_dead); 858 859 /* If the process is dead, release it - nobody will wait for it */ 860 if (signal == DEATH_REAP) 861 release_task(tsk); 862 } 863 864 #ifdef CONFIG_DEBUG_STACK_USAGE 865 static void check_stack_usage(void) 866 { 867 static DEFINE_SPINLOCK(low_water_lock); 868 static int lowest_to_date = THREAD_SIZE; 869 unsigned long free; 870 871 free = stack_not_used(current); 872 873 if (free >= lowest_to_date) 874 return; 875 876 spin_lock(&low_water_lock); 877 if (free < lowest_to_date) { 878 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 879 "left\n", 880 current->comm, free); 881 lowest_to_date = free; 882 } 883 spin_unlock(&low_water_lock); 884 } 885 #else 886 static inline void check_stack_usage(void) {} 887 #endif 888 889 NORET_TYPE void do_exit(long code) 890 { 891 struct task_struct *tsk = current; 892 int group_dead; 893 894 profile_task_exit(tsk); 895 896 WARN_ON(atomic_read(&tsk->fs_excl)); 897 898 if (unlikely(in_interrupt())) 899 panic("Aiee, killing interrupt handler!"); 900 if (unlikely(!tsk->pid)) 901 panic("Attempted to kill the idle task!"); 902 903 tracehook_report_exit(&code); 904 905 validate_creds_for_do_exit(tsk); 906 907 /* 908 * We're taking recursive faults here in do_exit. Safest is to just 909 * leave this task alone and wait for reboot. 910 */ 911 if (unlikely(tsk->flags & PF_EXITING)) { 912 printk(KERN_ALERT 913 "Fixing recursive fault but reboot is needed!\n"); 914 /* 915 * We can do this unlocked here. The futex code uses 916 * this flag just to verify whether the pi state 917 * cleanup has been done or not. In the worst case it 918 * loops once more. We pretend that the cleanup was 919 * done as there is no way to return. Either the 920 * OWNER_DIED bit is set by now or we push the blocked 921 * task into the wait for ever nirwana as well. 922 */ 923 tsk->flags |= PF_EXITPIDONE; 924 set_current_state(TASK_UNINTERRUPTIBLE); 925 schedule(); 926 } 927 928 exit_irq_thread(); 929 930 exit_signals(tsk); /* sets PF_EXITING */ 931 /* 932 * tsk->flags are checked in the futex code to protect against 933 * an exiting task cleaning up the robust pi futexes. 934 */ 935 smp_mb(); 936 spin_unlock_wait(&tsk->pi_lock); 937 938 if (unlikely(in_atomic())) 939 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 940 current->comm, task_pid_nr(current), 941 preempt_count()); 942 943 acct_update_integrals(tsk); 944 945 group_dead = atomic_dec_and_test(&tsk->signal->live); 946 if (group_dead) { 947 hrtimer_cancel(&tsk->signal->real_timer); 948 exit_itimers(tsk->signal); 949 if (tsk->mm) 950 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 951 } 952 acct_collect(code, group_dead); 953 if (group_dead) 954 tty_audit_exit(); 955 if (unlikely(tsk->audit_context)) 956 audit_free(tsk); 957 958 tsk->exit_code = code; 959 taskstats_exit(tsk, group_dead); 960 961 exit_mm(tsk); 962 963 if (group_dead) 964 acct_process(); 965 trace_sched_process_exit(tsk); 966 967 exit_sem(tsk); 968 exit_files(tsk); 969 exit_fs(tsk); 970 check_stack_usage(); 971 exit_thread(); 972 cgroup_exit(tsk, 1); 973 974 if (group_dead && tsk->signal->leader) 975 disassociate_ctty(1); 976 977 module_put(task_thread_info(tsk)->exec_domain->module); 978 979 proc_exit_connector(tsk); 980 981 /* 982 * FIXME: do that only when needed, using sched_exit tracepoint 983 */ 984 flush_ptrace_hw_breakpoint(tsk); 985 /* 986 * Flush inherited counters to the parent - before the parent 987 * gets woken up by child-exit notifications. 988 */ 989 perf_event_exit_task(tsk); 990 991 exit_notify(tsk, group_dead); 992 #ifdef CONFIG_NUMA 993 mpol_put(tsk->mempolicy); 994 tsk->mempolicy = NULL; 995 #endif 996 #ifdef CONFIG_FUTEX 997 if (unlikely(current->pi_state_cache)) 998 kfree(current->pi_state_cache); 999 #endif 1000 /* 1001 * Make sure we are holding no locks: 1002 */ 1003 debug_check_no_locks_held(tsk); 1004 /* 1005 * We can do this unlocked here. The futex code uses this flag 1006 * just to verify whether the pi state cleanup has been done 1007 * or not. In the worst case it loops once more. 1008 */ 1009 tsk->flags |= PF_EXITPIDONE; 1010 1011 if (tsk->io_context) 1012 exit_io_context(); 1013 1014 if (tsk->splice_pipe) 1015 __free_pipe_info(tsk->splice_pipe); 1016 1017 validate_creds_for_do_exit(tsk); 1018 1019 preempt_disable(); 1020 exit_rcu(); 1021 /* causes final put_task_struct in finish_task_switch(). */ 1022 tsk->state = TASK_DEAD; 1023 schedule(); 1024 BUG(); 1025 /* Avoid "noreturn function does return". */ 1026 for (;;) 1027 cpu_relax(); /* For when BUG is null */ 1028 } 1029 1030 EXPORT_SYMBOL_GPL(do_exit); 1031 1032 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1033 { 1034 if (comp) 1035 complete(comp); 1036 1037 do_exit(code); 1038 } 1039 1040 EXPORT_SYMBOL(complete_and_exit); 1041 1042 SYSCALL_DEFINE1(exit, int, error_code) 1043 { 1044 do_exit((error_code&0xff)<<8); 1045 } 1046 1047 /* 1048 * Take down every thread in the group. This is called by fatal signals 1049 * as well as by sys_exit_group (below). 1050 */ 1051 NORET_TYPE void 1052 do_group_exit(int exit_code) 1053 { 1054 struct signal_struct *sig = current->signal; 1055 1056 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1057 1058 if (signal_group_exit(sig)) 1059 exit_code = sig->group_exit_code; 1060 else if (!thread_group_empty(current)) { 1061 struct sighand_struct *const sighand = current->sighand; 1062 spin_lock_irq(&sighand->siglock); 1063 if (signal_group_exit(sig)) 1064 /* Another thread got here before we took the lock. */ 1065 exit_code = sig->group_exit_code; 1066 else { 1067 sig->group_exit_code = exit_code; 1068 sig->flags = SIGNAL_GROUP_EXIT; 1069 zap_other_threads(current); 1070 } 1071 spin_unlock_irq(&sighand->siglock); 1072 } 1073 1074 do_exit(exit_code); 1075 /* NOTREACHED */ 1076 } 1077 1078 /* 1079 * this kills every thread in the thread group. Note that any externally 1080 * wait4()-ing process will get the correct exit code - even if this 1081 * thread is not the thread group leader. 1082 */ 1083 SYSCALL_DEFINE1(exit_group, int, error_code) 1084 { 1085 do_group_exit((error_code & 0xff) << 8); 1086 /* NOTREACHED */ 1087 return 0; 1088 } 1089 1090 struct wait_opts { 1091 enum pid_type wo_type; 1092 int wo_flags; 1093 struct pid *wo_pid; 1094 1095 struct siginfo __user *wo_info; 1096 int __user *wo_stat; 1097 struct rusage __user *wo_rusage; 1098 1099 wait_queue_t child_wait; 1100 int notask_error; 1101 }; 1102 1103 static inline 1104 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1105 { 1106 if (type != PIDTYPE_PID) 1107 task = task->group_leader; 1108 return task->pids[type].pid; 1109 } 1110 1111 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1112 { 1113 return wo->wo_type == PIDTYPE_MAX || 1114 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1115 } 1116 1117 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1118 { 1119 if (!eligible_pid(wo, p)) 1120 return 0; 1121 /* Wait for all children (clone and not) if __WALL is set; 1122 * otherwise, wait for clone children *only* if __WCLONE is 1123 * set; otherwise, wait for non-clone children *only*. (Note: 1124 * A "clone" child here is one that reports to its parent 1125 * using a signal other than SIGCHLD.) */ 1126 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1127 && !(wo->wo_flags & __WALL)) 1128 return 0; 1129 1130 return 1; 1131 } 1132 1133 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1134 pid_t pid, uid_t uid, int why, int status) 1135 { 1136 struct siginfo __user *infop; 1137 int retval = wo->wo_rusage 1138 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1139 1140 put_task_struct(p); 1141 infop = wo->wo_info; 1142 if (infop) { 1143 if (!retval) 1144 retval = put_user(SIGCHLD, &infop->si_signo); 1145 if (!retval) 1146 retval = put_user(0, &infop->si_errno); 1147 if (!retval) 1148 retval = put_user((short)why, &infop->si_code); 1149 if (!retval) 1150 retval = put_user(pid, &infop->si_pid); 1151 if (!retval) 1152 retval = put_user(uid, &infop->si_uid); 1153 if (!retval) 1154 retval = put_user(status, &infop->si_status); 1155 } 1156 if (!retval) 1157 retval = pid; 1158 return retval; 1159 } 1160 1161 /* 1162 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1163 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1164 * the lock and this task is uninteresting. If we return nonzero, we have 1165 * released the lock and the system call should return. 1166 */ 1167 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1168 { 1169 unsigned long state; 1170 int retval, status, traced; 1171 pid_t pid = task_pid_vnr(p); 1172 uid_t uid = __task_cred(p)->uid; 1173 struct siginfo __user *infop; 1174 1175 if (!likely(wo->wo_flags & WEXITED)) 1176 return 0; 1177 1178 if (unlikely(wo->wo_flags & WNOWAIT)) { 1179 int exit_code = p->exit_code; 1180 int why, status; 1181 1182 get_task_struct(p); 1183 read_unlock(&tasklist_lock); 1184 if ((exit_code & 0x7f) == 0) { 1185 why = CLD_EXITED; 1186 status = exit_code >> 8; 1187 } else { 1188 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1189 status = exit_code & 0x7f; 1190 } 1191 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1192 } 1193 1194 /* 1195 * Try to move the task's state to DEAD 1196 * only one thread is allowed to do this: 1197 */ 1198 state = xchg(&p->exit_state, EXIT_DEAD); 1199 if (state != EXIT_ZOMBIE) { 1200 BUG_ON(state != EXIT_DEAD); 1201 return 0; 1202 } 1203 1204 traced = ptrace_reparented(p); 1205 /* 1206 * It can be ptraced but not reparented, check 1207 * !task_detached() to filter out sub-threads. 1208 */ 1209 if (likely(!traced) && likely(!task_detached(p))) { 1210 struct signal_struct *psig; 1211 struct signal_struct *sig; 1212 unsigned long maxrss; 1213 1214 /* 1215 * The resource counters for the group leader are in its 1216 * own task_struct. Those for dead threads in the group 1217 * are in its signal_struct, as are those for the child 1218 * processes it has previously reaped. All these 1219 * accumulate in the parent's signal_struct c* fields. 1220 * 1221 * We don't bother to take a lock here to protect these 1222 * p->signal fields, because they are only touched by 1223 * __exit_signal, which runs with tasklist_lock 1224 * write-locked anyway, and so is excluded here. We do 1225 * need to protect the access to parent->signal fields, 1226 * as other threads in the parent group can be right 1227 * here reaping other children at the same time. 1228 */ 1229 spin_lock_irq(&p->real_parent->sighand->siglock); 1230 psig = p->real_parent->signal; 1231 sig = p->signal; 1232 psig->cutime = 1233 cputime_add(psig->cutime, 1234 cputime_add(p->utime, 1235 cputime_add(sig->utime, 1236 sig->cutime))); 1237 psig->cstime = 1238 cputime_add(psig->cstime, 1239 cputime_add(p->stime, 1240 cputime_add(sig->stime, 1241 sig->cstime))); 1242 psig->cgtime = 1243 cputime_add(psig->cgtime, 1244 cputime_add(p->gtime, 1245 cputime_add(sig->gtime, 1246 sig->cgtime))); 1247 psig->cmin_flt += 1248 p->min_flt + sig->min_flt + sig->cmin_flt; 1249 psig->cmaj_flt += 1250 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1251 psig->cnvcsw += 1252 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1253 psig->cnivcsw += 1254 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1255 psig->cinblock += 1256 task_io_get_inblock(p) + 1257 sig->inblock + sig->cinblock; 1258 psig->coublock += 1259 task_io_get_oublock(p) + 1260 sig->oublock + sig->coublock; 1261 maxrss = max(sig->maxrss, sig->cmaxrss); 1262 if (psig->cmaxrss < maxrss) 1263 psig->cmaxrss = maxrss; 1264 task_io_accounting_add(&psig->ioac, &p->ioac); 1265 task_io_accounting_add(&psig->ioac, &sig->ioac); 1266 spin_unlock_irq(&p->real_parent->sighand->siglock); 1267 } 1268 1269 /* 1270 * Now we are sure this task is interesting, and no other 1271 * thread can reap it because we set its state to EXIT_DEAD. 1272 */ 1273 read_unlock(&tasklist_lock); 1274 1275 retval = wo->wo_rusage 1276 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1277 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1278 ? p->signal->group_exit_code : p->exit_code; 1279 if (!retval && wo->wo_stat) 1280 retval = put_user(status, wo->wo_stat); 1281 1282 infop = wo->wo_info; 1283 if (!retval && infop) 1284 retval = put_user(SIGCHLD, &infop->si_signo); 1285 if (!retval && infop) 1286 retval = put_user(0, &infop->si_errno); 1287 if (!retval && infop) { 1288 int why; 1289 1290 if ((status & 0x7f) == 0) { 1291 why = CLD_EXITED; 1292 status >>= 8; 1293 } else { 1294 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1295 status &= 0x7f; 1296 } 1297 retval = put_user((short)why, &infop->si_code); 1298 if (!retval) 1299 retval = put_user(status, &infop->si_status); 1300 } 1301 if (!retval && infop) 1302 retval = put_user(pid, &infop->si_pid); 1303 if (!retval && infop) 1304 retval = put_user(uid, &infop->si_uid); 1305 if (!retval) 1306 retval = pid; 1307 1308 if (traced) { 1309 write_lock_irq(&tasklist_lock); 1310 /* We dropped tasklist, ptracer could die and untrace */ 1311 ptrace_unlink(p); 1312 /* 1313 * If this is not a detached task, notify the parent. 1314 * If it's still not detached after that, don't release 1315 * it now. 1316 */ 1317 if (!task_detached(p)) { 1318 do_notify_parent(p, p->exit_signal); 1319 if (!task_detached(p)) { 1320 p->exit_state = EXIT_ZOMBIE; 1321 p = NULL; 1322 } 1323 } 1324 write_unlock_irq(&tasklist_lock); 1325 } 1326 if (p != NULL) 1327 release_task(p); 1328 1329 return retval; 1330 } 1331 1332 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1333 { 1334 if (ptrace) { 1335 if (task_is_stopped_or_traced(p)) 1336 return &p->exit_code; 1337 } else { 1338 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1339 return &p->signal->group_exit_code; 1340 } 1341 return NULL; 1342 } 1343 1344 /* 1345 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1346 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1347 * the lock and this task is uninteresting. If we return nonzero, we have 1348 * released the lock and the system call should return. 1349 */ 1350 static int wait_task_stopped(struct wait_opts *wo, 1351 int ptrace, struct task_struct *p) 1352 { 1353 struct siginfo __user *infop; 1354 int retval, exit_code, *p_code, why; 1355 uid_t uid = 0; /* unneeded, required by compiler */ 1356 pid_t pid; 1357 1358 /* 1359 * Traditionally we see ptrace'd stopped tasks regardless of options. 1360 */ 1361 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1362 return 0; 1363 1364 exit_code = 0; 1365 spin_lock_irq(&p->sighand->siglock); 1366 1367 p_code = task_stopped_code(p, ptrace); 1368 if (unlikely(!p_code)) 1369 goto unlock_sig; 1370 1371 exit_code = *p_code; 1372 if (!exit_code) 1373 goto unlock_sig; 1374 1375 if (!unlikely(wo->wo_flags & WNOWAIT)) 1376 *p_code = 0; 1377 1378 /* don't need the RCU readlock here as we're holding a spinlock */ 1379 uid = __task_cred(p)->uid; 1380 unlock_sig: 1381 spin_unlock_irq(&p->sighand->siglock); 1382 if (!exit_code) 1383 return 0; 1384 1385 /* 1386 * Now we are pretty sure this task is interesting. 1387 * Make sure it doesn't get reaped out from under us while we 1388 * give up the lock and then examine it below. We don't want to 1389 * keep holding onto the tasklist_lock while we call getrusage and 1390 * possibly take page faults for user memory. 1391 */ 1392 get_task_struct(p); 1393 pid = task_pid_vnr(p); 1394 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1395 read_unlock(&tasklist_lock); 1396 1397 if (unlikely(wo->wo_flags & WNOWAIT)) 1398 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1399 1400 retval = wo->wo_rusage 1401 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1402 if (!retval && wo->wo_stat) 1403 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1404 1405 infop = wo->wo_info; 1406 if (!retval && infop) 1407 retval = put_user(SIGCHLD, &infop->si_signo); 1408 if (!retval && infop) 1409 retval = put_user(0, &infop->si_errno); 1410 if (!retval && infop) 1411 retval = put_user((short)why, &infop->si_code); 1412 if (!retval && infop) 1413 retval = put_user(exit_code, &infop->si_status); 1414 if (!retval && infop) 1415 retval = put_user(pid, &infop->si_pid); 1416 if (!retval && infop) 1417 retval = put_user(uid, &infop->si_uid); 1418 if (!retval) 1419 retval = pid; 1420 put_task_struct(p); 1421 1422 BUG_ON(!retval); 1423 return retval; 1424 } 1425 1426 /* 1427 * Handle do_wait work for one task in a live, non-stopped state. 1428 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1429 * the lock and this task is uninteresting. If we return nonzero, we have 1430 * released the lock and the system call should return. 1431 */ 1432 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1433 { 1434 int retval; 1435 pid_t pid; 1436 uid_t uid; 1437 1438 if (!unlikely(wo->wo_flags & WCONTINUED)) 1439 return 0; 1440 1441 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1442 return 0; 1443 1444 spin_lock_irq(&p->sighand->siglock); 1445 /* Re-check with the lock held. */ 1446 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1447 spin_unlock_irq(&p->sighand->siglock); 1448 return 0; 1449 } 1450 if (!unlikely(wo->wo_flags & WNOWAIT)) 1451 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1452 uid = __task_cred(p)->uid; 1453 spin_unlock_irq(&p->sighand->siglock); 1454 1455 pid = task_pid_vnr(p); 1456 get_task_struct(p); 1457 read_unlock(&tasklist_lock); 1458 1459 if (!wo->wo_info) { 1460 retval = wo->wo_rusage 1461 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1462 put_task_struct(p); 1463 if (!retval && wo->wo_stat) 1464 retval = put_user(0xffff, wo->wo_stat); 1465 if (!retval) 1466 retval = pid; 1467 } else { 1468 retval = wait_noreap_copyout(wo, p, pid, uid, 1469 CLD_CONTINUED, SIGCONT); 1470 BUG_ON(retval == 0); 1471 } 1472 1473 return retval; 1474 } 1475 1476 /* 1477 * Consider @p for a wait by @parent. 1478 * 1479 * -ECHILD should be in ->notask_error before the first call. 1480 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1481 * Returns zero if the search for a child should continue; 1482 * then ->notask_error is 0 if @p is an eligible child, 1483 * or another error from security_task_wait(), or still -ECHILD. 1484 */ 1485 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1486 struct task_struct *p) 1487 { 1488 int ret = eligible_child(wo, p); 1489 if (!ret) 1490 return ret; 1491 1492 ret = security_task_wait(p); 1493 if (unlikely(ret < 0)) { 1494 /* 1495 * If we have not yet seen any eligible child, 1496 * then let this error code replace -ECHILD. 1497 * A permission error will give the user a clue 1498 * to look for security policy problems, rather 1499 * than for mysterious wait bugs. 1500 */ 1501 if (wo->notask_error) 1502 wo->notask_error = ret; 1503 return 0; 1504 } 1505 1506 if (likely(!ptrace) && unlikely(task_ptrace(p))) { 1507 /* 1508 * This child is hidden by ptrace. 1509 * We aren't allowed to see it now, but eventually we will. 1510 */ 1511 wo->notask_error = 0; 1512 return 0; 1513 } 1514 1515 if (p->exit_state == EXIT_DEAD) 1516 return 0; 1517 1518 /* 1519 * We don't reap group leaders with subthreads. 1520 */ 1521 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1522 return wait_task_zombie(wo, p); 1523 1524 /* 1525 * It's stopped or running now, so it might 1526 * later continue, exit, or stop again. 1527 */ 1528 wo->notask_error = 0; 1529 1530 if (task_stopped_code(p, ptrace)) 1531 return wait_task_stopped(wo, ptrace, p); 1532 1533 return wait_task_continued(wo, p); 1534 } 1535 1536 /* 1537 * Do the work of do_wait() for one thread in the group, @tsk. 1538 * 1539 * -ECHILD should be in ->notask_error before the first call. 1540 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1541 * Returns zero if the search for a child should continue; then 1542 * ->notask_error is 0 if there were any eligible children, 1543 * or another error from security_task_wait(), or still -ECHILD. 1544 */ 1545 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1546 { 1547 struct task_struct *p; 1548 1549 list_for_each_entry(p, &tsk->children, sibling) { 1550 /* 1551 * Do not consider detached threads. 1552 */ 1553 if (!task_detached(p)) { 1554 int ret = wait_consider_task(wo, 0, p); 1555 if (ret) 1556 return ret; 1557 } 1558 } 1559 1560 return 0; 1561 } 1562 1563 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1564 { 1565 struct task_struct *p; 1566 1567 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1568 int ret = wait_consider_task(wo, 1, p); 1569 if (ret) 1570 return ret; 1571 } 1572 1573 return 0; 1574 } 1575 1576 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1577 int sync, void *key) 1578 { 1579 struct wait_opts *wo = container_of(wait, struct wait_opts, 1580 child_wait); 1581 struct task_struct *p = key; 1582 1583 if (!eligible_pid(wo, p)) 1584 return 0; 1585 1586 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1587 return 0; 1588 1589 return default_wake_function(wait, mode, sync, key); 1590 } 1591 1592 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1593 { 1594 __wake_up_sync_key(&parent->signal->wait_chldexit, 1595 TASK_INTERRUPTIBLE, 1, p); 1596 } 1597 1598 static long do_wait(struct wait_opts *wo) 1599 { 1600 struct task_struct *tsk; 1601 int retval; 1602 1603 trace_sched_process_wait(wo->wo_pid); 1604 1605 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1606 wo->child_wait.private = current; 1607 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1608 repeat: 1609 /* 1610 * If there is nothing that can match our critiera just get out. 1611 * We will clear ->notask_error to zero if we see any child that 1612 * might later match our criteria, even if we are not able to reap 1613 * it yet. 1614 */ 1615 wo->notask_error = -ECHILD; 1616 if ((wo->wo_type < PIDTYPE_MAX) && 1617 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1618 goto notask; 1619 1620 set_current_state(TASK_INTERRUPTIBLE); 1621 read_lock(&tasklist_lock); 1622 tsk = current; 1623 do { 1624 retval = do_wait_thread(wo, tsk); 1625 if (retval) 1626 goto end; 1627 1628 retval = ptrace_do_wait(wo, tsk); 1629 if (retval) 1630 goto end; 1631 1632 if (wo->wo_flags & __WNOTHREAD) 1633 break; 1634 } while_each_thread(current, tsk); 1635 read_unlock(&tasklist_lock); 1636 1637 notask: 1638 retval = wo->notask_error; 1639 if (!retval && !(wo->wo_flags & WNOHANG)) { 1640 retval = -ERESTARTSYS; 1641 if (!signal_pending(current)) { 1642 schedule(); 1643 goto repeat; 1644 } 1645 } 1646 end: 1647 __set_current_state(TASK_RUNNING); 1648 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1649 return retval; 1650 } 1651 1652 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1653 infop, int, options, struct rusage __user *, ru) 1654 { 1655 struct wait_opts wo; 1656 struct pid *pid = NULL; 1657 enum pid_type type; 1658 long ret; 1659 1660 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1661 return -EINVAL; 1662 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1663 return -EINVAL; 1664 1665 switch (which) { 1666 case P_ALL: 1667 type = PIDTYPE_MAX; 1668 break; 1669 case P_PID: 1670 type = PIDTYPE_PID; 1671 if (upid <= 0) 1672 return -EINVAL; 1673 break; 1674 case P_PGID: 1675 type = PIDTYPE_PGID; 1676 if (upid <= 0) 1677 return -EINVAL; 1678 break; 1679 default: 1680 return -EINVAL; 1681 } 1682 1683 if (type < PIDTYPE_MAX) 1684 pid = find_get_pid(upid); 1685 1686 wo.wo_type = type; 1687 wo.wo_pid = pid; 1688 wo.wo_flags = options; 1689 wo.wo_info = infop; 1690 wo.wo_stat = NULL; 1691 wo.wo_rusage = ru; 1692 ret = do_wait(&wo); 1693 1694 if (ret > 0) { 1695 ret = 0; 1696 } else if (infop) { 1697 /* 1698 * For a WNOHANG return, clear out all the fields 1699 * we would set so the user can easily tell the 1700 * difference. 1701 */ 1702 if (!ret) 1703 ret = put_user(0, &infop->si_signo); 1704 if (!ret) 1705 ret = put_user(0, &infop->si_errno); 1706 if (!ret) 1707 ret = put_user(0, &infop->si_code); 1708 if (!ret) 1709 ret = put_user(0, &infop->si_pid); 1710 if (!ret) 1711 ret = put_user(0, &infop->si_uid); 1712 if (!ret) 1713 ret = put_user(0, &infop->si_status); 1714 } 1715 1716 put_pid(pid); 1717 1718 /* avoid REGPARM breakage on x86: */ 1719 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1720 return ret; 1721 } 1722 1723 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1724 int, options, struct rusage __user *, ru) 1725 { 1726 struct wait_opts wo; 1727 struct pid *pid = NULL; 1728 enum pid_type type; 1729 long ret; 1730 1731 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1732 __WNOTHREAD|__WCLONE|__WALL)) 1733 return -EINVAL; 1734 1735 if (upid == -1) 1736 type = PIDTYPE_MAX; 1737 else if (upid < 0) { 1738 type = PIDTYPE_PGID; 1739 pid = find_get_pid(-upid); 1740 } else if (upid == 0) { 1741 type = PIDTYPE_PGID; 1742 pid = get_task_pid(current, PIDTYPE_PGID); 1743 } else /* upid > 0 */ { 1744 type = PIDTYPE_PID; 1745 pid = find_get_pid(upid); 1746 } 1747 1748 wo.wo_type = type; 1749 wo.wo_pid = pid; 1750 wo.wo_flags = options | WEXITED; 1751 wo.wo_info = NULL; 1752 wo.wo_stat = stat_addr; 1753 wo.wo_rusage = ru; 1754 ret = do_wait(&wo); 1755 put_pid(pid); 1756 1757 /* avoid REGPARM breakage on x86: */ 1758 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1759 return ret; 1760 } 1761 1762 #ifdef __ARCH_WANT_SYS_WAITPID 1763 1764 /* 1765 * sys_waitpid() remains for compatibility. waitpid() should be 1766 * implemented by calling sys_wait4() from libc.a. 1767 */ 1768 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1769 { 1770 return sys_wait4(pid, stat_addr, options, NULL); 1771 } 1772 1773 #endif 1774