1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/iocontext.h> 17 #include <linux/key.h> 18 #include <linux/security.h> 19 #include <linux/cpu.h> 20 #include <linux/acct.h> 21 #include <linux/tsacct_kern.h> 22 #include <linux/file.h> 23 #include <linux/fdtable.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/freezer.h> 36 #include <linux/cgroup.h> 37 #include <linux/syscalls.h> 38 #include <linux/signal.h> 39 #include <linux/posix-timers.h> 40 #include <linux/cn_proc.h> 41 #include <linux/mutex.h> 42 #include <linux/futex.h> 43 #include <linux/pipe_fs_i.h> 44 #include <linux/audit.h> /* for audit_free() */ 45 #include <linux/resource.h> 46 #include <linux/blkdev.h> 47 #include <linux/task_io_accounting_ops.h> 48 #include <linux/tracehook.h> 49 #include <linux/init_task.h> 50 #include <trace/sched.h> 51 52 #include <asm/uaccess.h> 53 #include <asm/unistd.h> 54 #include <asm/pgtable.h> 55 #include <asm/mmu_context.h> 56 #include "cred-internals.h" 57 58 DEFINE_TRACE(sched_process_free); 59 DEFINE_TRACE(sched_process_exit); 60 DEFINE_TRACE(sched_process_wait); 61 62 static void exit_mm(struct task_struct * tsk); 63 64 static inline int task_detached(struct task_struct *p) 65 { 66 return p->exit_signal == -1; 67 } 68 69 static void __unhash_process(struct task_struct *p) 70 { 71 nr_threads--; 72 detach_pid(p, PIDTYPE_PID); 73 if (thread_group_leader(p)) { 74 detach_pid(p, PIDTYPE_PGID); 75 detach_pid(p, PIDTYPE_SID); 76 77 list_del_rcu(&p->tasks); 78 __get_cpu_var(process_counts)--; 79 } 80 list_del_rcu(&p->thread_group); 81 list_del_init(&p->sibling); 82 } 83 84 /* 85 * This function expects the tasklist_lock write-locked. 86 */ 87 static void __exit_signal(struct task_struct *tsk) 88 { 89 struct signal_struct *sig = tsk->signal; 90 struct sighand_struct *sighand; 91 92 BUG_ON(!sig); 93 BUG_ON(!atomic_read(&sig->count)); 94 95 sighand = rcu_dereference(tsk->sighand); 96 spin_lock(&sighand->siglock); 97 98 posix_cpu_timers_exit(tsk); 99 if (atomic_dec_and_test(&sig->count)) 100 posix_cpu_timers_exit_group(tsk); 101 else { 102 /* 103 * If there is any task waiting for the group exit 104 * then notify it: 105 */ 106 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 107 wake_up_process(sig->group_exit_task); 108 109 if (tsk == sig->curr_target) 110 sig->curr_target = next_thread(tsk); 111 /* 112 * Accumulate here the counters for all threads but the 113 * group leader as they die, so they can be added into 114 * the process-wide totals when those are taken. 115 * The group leader stays around as a zombie as long 116 * as there are other threads. When it gets reaped, 117 * the exit.c code will add its counts into these totals. 118 * We won't ever get here for the group leader, since it 119 * will have been the last reference on the signal_struct. 120 */ 121 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); 122 sig->min_flt += tsk->min_flt; 123 sig->maj_flt += tsk->maj_flt; 124 sig->nvcsw += tsk->nvcsw; 125 sig->nivcsw += tsk->nivcsw; 126 sig->inblock += task_io_get_inblock(tsk); 127 sig->oublock += task_io_get_oublock(tsk); 128 task_io_accounting_add(&sig->ioac, &tsk->ioac); 129 sig = NULL; /* Marker for below. */ 130 } 131 132 __unhash_process(tsk); 133 134 /* 135 * Do this under ->siglock, we can race with another thread 136 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 137 */ 138 flush_sigqueue(&tsk->pending); 139 140 tsk->signal = NULL; 141 tsk->sighand = NULL; 142 spin_unlock(&sighand->siglock); 143 144 __cleanup_sighand(sighand); 145 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 146 if (sig) { 147 flush_sigqueue(&sig->shared_pending); 148 taskstats_tgid_free(sig); 149 /* 150 * Make sure ->signal can't go away under rq->lock, 151 * see account_group_exec_runtime(). 152 */ 153 task_rq_unlock_wait(tsk); 154 __cleanup_signal(sig); 155 } 156 } 157 158 static void delayed_put_task_struct(struct rcu_head *rhp) 159 { 160 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 161 162 trace_sched_process_free(tsk); 163 put_task_struct(tsk); 164 } 165 166 167 void release_task(struct task_struct * p) 168 { 169 struct task_struct *leader; 170 int zap_leader; 171 repeat: 172 tracehook_prepare_release_task(p); 173 /* don't need to get the RCU readlock here - the process is dead and 174 * can't be modifying its own credentials */ 175 atomic_dec(&__task_cred(p)->user->processes); 176 177 proc_flush_task(p); 178 write_lock_irq(&tasklist_lock); 179 tracehook_finish_release_task(p); 180 __exit_signal(p); 181 182 /* 183 * If we are the last non-leader member of the thread 184 * group, and the leader is zombie, then notify the 185 * group leader's parent process. (if it wants notification.) 186 */ 187 zap_leader = 0; 188 leader = p->group_leader; 189 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 190 BUG_ON(task_detached(leader)); 191 do_notify_parent(leader, leader->exit_signal); 192 /* 193 * If we were the last child thread and the leader has 194 * exited already, and the leader's parent ignores SIGCHLD, 195 * then we are the one who should release the leader. 196 * 197 * do_notify_parent() will have marked it self-reaping in 198 * that case. 199 */ 200 zap_leader = task_detached(leader); 201 202 /* 203 * This maintains the invariant that release_task() 204 * only runs on a task in EXIT_DEAD, just for sanity. 205 */ 206 if (zap_leader) 207 leader->exit_state = EXIT_DEAD; 208 } 209 210 write_unlock_irq(&tasklist_lock); 211 release_thread(p); 212 call_rcu(&p->rcu, delayed_put_task_struct); 213 214 p = leader; 215 if (unlikely(zap_leader)) 216 goto repeat; 217 } 218 219 /* 220 * This checks not only the pgrp, but falls back on the pid if no 221 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 222 * without this... 223 * 224 * The caller must hold rcu lock or the tasklist lock. 225 */ 226 struct pid *session_of_pgrp(struct pid *pgrp) 227 { 228 struct task_struct *p; 229 struct pid *sid = NULL; 230 231 p = pid_task(pgrp, PIDTYPE_PGID); 232 if (p == NULL) 233 p = pid_task(pgrp, PIDTYPE_PID); 234 if (p != NULL) 235 sid = task_session(p); 236 237 return sid; 238 } 239 240 /* 241 * Determine if a process group is "orphaned", according to the POSIX 242 * definition in 2.2.2.52. Orphaned process groups are not to be affected 243 * by terminal-generated stop signals. Newly orphaned process groups are 244 * to receive a SIGHUP and a SIGCONT. 245 * 246 * "I ask you, have you ever known what it is to be an orphan?" 247 */ 248 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 249 { 250 struct task_struct *p; 251 252 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 253 if ((p == ignored_task) || 254 (p->exit_state && thread_group_empty(p)) || 255 is_global_init(p->real_parent)) 256 continue; 257 258 if (task_pgrp(p->real_parent) != pgrp && 259 task_session(p->real_parent) == task_session(p)) 260 return 0; 261 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 262 263 return 1; 264 } 265 266 int is_current_pgrp_orphaned(void) 267 { 268 int retval; 269 270 read_lock(&tasklist_lock); 271 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 272 read_unlock(&tasklist_lock); 273 274 return retval; 275 } 276 277 static int has_stopped_jobs(struct pid *pgrp) 278 { 279 int retval = 0; 280 struct task_struct *p; 281 282 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 283 if (!task_is_stopped(p)) 284 continue; 285 retval = 1; 286 break; 287 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 288 return retval; 289 } 290 291 /* 292 * Check to see if any process groups have become orphaned as 293 * a result of our exiting, and if they have any stopped jobs, 294 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 295 */ 296 static void 297 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 298 { 299 struct pid *pgrp = task_pgrp(tsk); 300 struct task_struct *ignored_task = tsk; 301 302 if (!parent) 303 /* exit: our father is in a different pgrp than 304 * we are and we were the only connection outside. 305 */ 306 parent = tsk->real_parent; 307 else 308 /* reparent: our child is in a different pgrp than 309 * we are, and it was the only connection outside. 310 */ 311 ignored_task = NULL; 312 313 if (task_pgrp(parent) != pgrp && 314 task_session(parent) == task_session(tsk) && 315 will_become_orphaned_pgrp(pgrp, ignored_task) && 316 has_stopped_jobs(pgrp)) { 317 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 318 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 319 } 320 } 321 322 /** 323 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 324 * 325 * If a kernel thread is launched as a result of a system call, or if 326 * it ever exits, it should generally reparent itself to kthreadd so it 327 * isn't in the way of other processes and is correctly cleaned up on exit. 328 * 329 * The various task state such as scheduling policy and priority may have 330 * been inherited from a user process, so we reset them to sane values here. 331 * 332 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 333 */ 334 static void reparent_to_kthreadd(void) 335 { 336 write_lock_irq(&tasklist_lock); 337 338 ptrace_unlink(current); 339 /* Reparent to init */ 340 current->real_parent = current->parent = kthreadd_task; 341 list_move_tail(¤t->sibling, ¤t->real_parent->children); 342 343 /* Set the exit signal to SIGCHLD so we signal init on exit */ 344 current->exit_signal = SIGCHLD; 345 346 if (task_nice(current) < 0) 347 set_user_nice(current, 0); 348 /* cpus_allowed? */ 349 /* rt_priority? */ 350 /* signals? */ 351 memcpy(current->signal->rlim, init_task.signal->rlim, 352 sizeof(current->signal->rlim)); 353 354 atomic_inc(&init_cred.usage); 355 commit_creds(&init_cred); 356 write_unlock_irq(&tasklist_lock); 357 } 358 359 void __set_special_pids(struct pid *pid) 360 { 361 struct task_struct *curr = current->group_leader; 362 pid_t nr = pid_nr(pid); 363 364 if (task_session(curr) != pid) { 365 change_pid(curr, PIDTYPE_SID, pid); 366 set_task_session(curr, nr); 367 } 368 if (task_pgrp(curr) != pid) { 369 change_pid(curr, PIDTYPE_PGID, pid); 370 set_task_pgrp(curr, nr); 371 } 372 } 373 374 static void set_special_pids(struct pid *pid) 375 { 376 write_lock_irq(&tasklist_lock); 377 __set_special_pids(pid); 378 write_unlock_irq(&tasklist_lock); 379 } 380 381 /* 382 * Let kernel threads use this to say that they 383 * allow a certain signal (since daemonize() will 384 * have disabled all of them by default). 385 */ 386 int allow_signal(int sig) 387 { 388 if (!valid_signal(sig) || sig < 1) 389 return -EINVAL; 390 391 spin_lock_irq(¤t->sighand->siglock); 392 sigdelset(¤t->blocked, sig); 393 if (!current->mm) { 394 /* Kernel threads handle their own signals. 395 Let the signal code know it'll be handled, so 396 that they don't get converted to SIGKILL or 397 just silently dropped */ 398 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 399 } 400 recalc_sigpending(); 401 spin_unlock_irq(¤t->sighand->siglock); 402 return 0; 403 } 404 405 EXPORT_SYMBOL(allow_signal); 406 407 int disallow_signal(int sig) 408 { 409 if (!valid_signal(sig) || sig < 1) 410 return -EINVAL; 411 412 spin_lock_irq(¤t->sighand->siglock); 413 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 414 recalc_sigpending(); 415 spin_unlock_irq(¤t->sighand->siglock); 416 return 0; 417 } 418 419 EXPORT_SYMBOL(disallow_signal); 420 421 /* 422 * Put all the gunge required to become a kernel thread without 423 * attached user resources in one place where it belongs. 424 */ 425 426 void daemonize(const char *name, ...) 427 { 428 va_list args; 429 struct fs_struct *fs; 430 sigset_t blocked; 431 432 va_start(args, name); 433 vsnprintf(current->comm, sizeof(current->comm), name, args); 434 va_end(args); 435 436 /* 437 * If we were started as result of loading a module, close all of the 438 * user space pages. We don't need them, and if we didn't close them 439 * they would be locked into memory. 440 */ 441 exit_mm(current); 442 /* 443 * We don't want to have TIF_FREEZE set if the system-wide hibernation 444 * or suspend transition begins right now. 445 */ 446 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 447 448 if (current->nsproxy != &init_nsproxy) { 449 get_nsproxy(&init_nsproxy); 450 switch_task_namespaces(current, &init_nsproxy); 451 } 452 set_special_pids(&init_struct_pid); 453 proc_clear_tty(current); 454 455 /* Block and flush all signals */ 456 sigfillset(&blocked); 457 sigprocmask(SIG_BLOCK, &blocked, NULL); 458 flush_signals(current); 459 460 /* Become as one with the init task */ 461 462 exit_fs(current); /* current->fs->count--; */ 463 fs = init_task.fs; 464 current->fs = fs; 465 atomic_inc(&fs->count); 466 467 exit_files(current); 468 current->files = init_task.files; 469 atomic_inc(¤t->files->count); 470 471 reparent_to_kthreadd(); 472 } 473 474 EXPORT_SYMBOL(daemonize); 475 476 static void close_files(struct files_struct * files) 477 { 478 int i, j; 479 struct fdtable *fdt; 480 481 j = 0; 482 483 /* 484 * It is safe to dereference the fd table without RCU or 485 * ->file_lock because this is the last reference to the 486 * files structure. 487 */ 488 fdt = files_fdtable(files); 489 for (;;) { 490 unsigned long set; 491 i = j * __NFDBITS; 492 if (i >= fdt->max_fds) 493 break; 494 set = fdt->open_fds->fds_bits[j++]; 495 while (set) { 496 if (set & 1) { 497 struct file * file = xchg(&fdt->fd[i], NULL); 498 if (file) { 499 filp_close(file, files); 500 cond_resched(); 501 } 502 } 503 i++; 504 set >>= 1; 505 } 506 } 507 } 508 509 struct files_struct *get_files_struct(struct task_struct *task) 510 { 511 struct files_struct *files; 512 513 task_lock(task); 514 files = task->files; 515 if (files) 516 atomic_inc(&files->count); 517 task_unlock(task); 518 519 return files; 520 } 521 522 void put_files_struct(struct files_struct *files) 523 { 524 struct fdtable *fdt; 525 526 if (atomic_dec_and_test(&files->count)) { 527 close_files(files); 528 /* 529 * Free the fd and fdset arrays if we expanded them. 530 * If the fdtable was embedded, pass files for freeing 531 * at the end of the RCU grace period. Otherwise, 532 * you can free files immediately. 533 */ 534 fdt = files_fdtable(files); 535 if (fdt != &files->fdtab) 536 kmem_cache_free(files_cachep, files); 537 free_fdtable(fdt); 538 } 539 } 540 541 void reset_files_struct(struct files_struct *files) 542 { 543 struct task_struct *tsk = current; 544 struct files_struct *old; 545 546 old = tsk->files; 547 task_lock(tsk); 548 tsk->files = files; 549 task_unlock(tsk); 550 put_files_struct(old); 551 } 552 553 void exit_files(struct task_struct *tsk) 554 { 555 struct files_struct * files = tsk->files; 556 557 if (files) { 558 task_lock(tsk); 559 tsk->files = NULL; 560 task_unlock(tsk); 561 put_files_struct(files); 562 } 563 } 564 565 void put_fs_struct(struct fs_struct *fs) 566 { 567 /* No need to hold fs->lock if we are killing it */ 568 if (atomic_dec_and_test(&fs->count)) { 569 path_put(&fs->root); 570 path_put(&fs->pwd); 571 kmem_cache_free(fs_cachep, fs); 572 } 573 } 574 575 void exit_fs(struct task_struct *tsk) 576 { 577 struct fs_struct * fs = tsk->fs; 578 579 if (fs) { 580 task_lock(tsk); 581 tsk->fs = NULL; 582 task_unlock(tsk); 583 put_fs_struct(fs); 584 } 585 } 586 587 EXPORT_SYMBOL_GPL(exit_fs); 588 589 #ifdef CONFIG_MM_OWNER 590 /* 591 * Task p is exiting and it owned mm, lets find a new owner for it 592 */ 593 static inline int 594 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 595 { 596 /* 597 * If there are other users of the mm and the owner (us) is exiting 598 * we need to find a new owner to take on the responsibility. 599 */ 600 if (atomic_read(&mm->mm_users) <= 1) 601 return 0; 602 if (mm->owner != p) 603 return 0; 604 return 1; 605 } 606 607 void mm_update_next_owner(struct mm_struct *mm) 608 { 609 struct task_struct *c, *g, *p = current; 610 611 retry: 612 if (!mm_need_new_owner(mm, p)) 613 return; 614 615 read_lock(&tasklist_lock); 616 /* 617 * Search in the children 618 */ 619 list_for_each_entry(c, &p->children, sibling) { 620 if (c->mm == mm) 621 goto assign_new_owner; 622 } 623 624 /* 625 * Search in the siblings 626 */ 627 list_for_each_entry(c, &p->parent->children, sibling) { 628 if (c->mm == mm) 629 goto assign_new_owner; 630 } 631 632 /* 633 * Search through everything else. We should not get 634 * here often 635 */ 636 do_each_thread(g, c) { 637 if (c->mm == mm) 638 goto assign_new_owner; 639 } while_each_thread(g, c); 640 641 read_unlock(&tasklist_lock); 642 /* 643 * We found no owner yet mm_users > 1: this implies that we are 644 * most likely racing with swapoff (try_to_unuse()) or /proc or 645 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 646 */ 647 mm->owner = NULL; 648 return; 649 650 assign_new_owner: 651 BUG_ON(c == p); 652 get_task_struct(c); 653 /* 654 * The task_lock protects c->mm from changing. 655 * We always want mm->owner->mm == mm 656 */ 657 task_lock(c); 658 /* 659 * Delay read_unlock() till we have the task_lock() 660 * to ensure that c does not slip away underneath us 661 */ 662 read_unlock(&tasklist_lock); 663 if (c->mm != mm) { 664 task_unlock(c); 665 put_task_struct(c); 666 goto retry; 667 } 668 mm->owner = c; 669 task_unlock(c); 670 put_task_struct(c); 671 } 672 #endif /* CONFIG_MM_OWNER */ 673 674 /* 675 * Turn us into a lazy TLB process if we 676 * aren't already.. 677 */ 678 static void exit_mm(struct task_struct * tsk) 679 { 680 struct mm_struct *mm = tsk->mm; 681 struct core_state *core_state; 682 683 mm_release(tsk, mm); 684 if (!mm) 685 return; 686 /* 687 * Serialize with any possible pending coredump. 688 * We must hold mmap_sem around checking core_state 689 * and clearing tsk->mm. The core-inducing thread 690 * will increment ->nr_threads for each thread in the 691 * group with ->mm != NULL. 692 */ 693 down_read(&mm->mmap_sem); 694 core_state = mm->core_state; 695 if (core_state) { 696 struct core_thread self; 697 up_read(&mm->mmap_sem); 698 699 self.task = tsk; 700 self.next = xchg(&core_state->dumper.next, &self); 701 /* 702 * Implies mb(), the result of xchg() must be visible 703 * to core_state->dumper. 704 */ 705 if (atomic_dec_and_test(&core_state->nr_threads)) 706 complete(&core_state->startup); 707 708 for (;;) { 709 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 710 if (!self.task) /* see coredump_finish() */ 711 break; 712 schedule(); 713 } 714 __set_task_state(tsk, TASK_RUNNING); 715 down_read(&mm->mmap_sem); 716 } 717 atomic_inc(&mm->mm_count); 718 BUG_ON(mm != tsk->active_mm); 719 /* more a memory barrier than a real lock */ 720 task_lock(tsk); 721 tsk->mm = NULL; 722 up_read(&mm->mmap_sem); 723 enter_lazy_tlb(mm, current); 724 /* We don't want this task to be frozen prematurely */ 725 clear_freeze_flag(tsk); 726 task_unlock(tsk); 727 mm_update_next_owner(mm); 728 mmput(mm); 729 } 730 731 /* 732 * Return nonzero if @parent's children should reap themselves. 733 * 734 * Called with write_lock_irq(&tasklist_lock) held. 735 */ 736 static int ignoring_children(struct task_struct *parent) 737 { 738 int ret; 739 struct sighand_struct *psig = parent->sighand; 740 unsigned long flags; 741 spin_lock_irqsave(&psig->siglock, flags); 742 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 743 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT)); 744 spin_unlock_irqrestore(&psig->siglock, flags); 745 return ret; 746 } 747 748 /* 749 * Detach all tasks we were using ptrace on. 750 * Any that need to be release_task'd are put on the @dead list. 751 * 752 * Called with write_lock(&tasklist_lock) held. 753 */ 754 static void ptrace_exit(struct task_struct *parent, struct list_head *dead) 755 { 756 struct task_struct *p, *n; 757 int ign = -1; 758 759 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) { 760 __ptrace_unlink(p); 761 762 if (p->exit_state != EXIT_ZOMBIE) 763 continue; 764 765 /* 766 * If it's a zombie, our attachedness prevented normal 767 * parent notification or self-reaping. Do notification 768 * now if it would have happened earlier. If it should 769 * reap itself, add it to the @dead list. We can't call 770 * release_task() here because we already hold tasklist_lock. 771 * 772 * If it's our own child, there is no notification to do. 773 * But if our normal children self-reap, then this child 774 * was prevented by ptrace and we must reap it now. 775 */ 776 if (!task_detached(p) && thread_group_empty(p)) { 777 if (!same_thread_group(p->real_parent, parent)) 778 do_notify_parent(p, p->exit_signal); 779 else { 780 if (ign < 0) 781 ign = ignoring_children(parent); 782 if (ign) 783 p->exit_signal = -1; 784 } 785 } 786 787 if (task_detached(p)) { 788 /* 789 * Mark it as in the process of being reaped. 790 */ 791 p->exit_state = EXIT_DEAD; 792 list_add(&p->ptrace_entry, dead); 793 } 794 } 795 } 796 797 /* 798 * Finish up exit-time ptrace cleanup. 799 * 800 * Called without locks. 801 */ 802 static void ptrace_exit_finish(struct task_struct *parent, 803 struct list_head *dead) 804 { 805 struct task_struct *p, *n; 806 807 BUG_ON(!list_empty(&parent->ptraced)); 808 809 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 810 list_del_init(&p->ptrace_entry); 811 release_task(p); 812 } 813 } 814 815 static void reparent_thread(struct task_struct *p, struct task_struct *father) 816 { 817 if (p->pdeath_signal) 818 /* We already hold the tasklist_lock here. */ 819 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 820 821 list_move_tail(&p->sibling, &p->real_parent->children); 822 823 /* If this is a threaded reparent there is no need to 824 * notify anyone anything has happened. 825 */ 826 if (same_thread_group(p->real_parent, father)) 827 return; 828 829 /* We don't want people slaying init. */ 830 if (!task_detached(p)) 831 p->exit_signal = SIGCHLD; 832 833 /* If we'd notified the old parent about this child's death, 834 * also notify the new parent. 835 */ 836 if (!ptrace_reparented(p) && 837 p->exit_state == EXIT_ZOMBIE && 838 !task_detached(p) && thread_group_empty(p)) 839 do_notify_parent(p, p->exit_signal); 840 841 kill_orphaned_pgrp(p, father); 842 } 843 844 /* 845 * When we die, we re-parent all our children. 846 * Try to give them to another thread in our thread 847 * group, and if no such member exists, give it to 848 * the child reaper process (ie "init") in our pid 849 * space. 850 */ 851 static struct task_struct *find_new_reaper(struct task_struct *father) 852 { 853 struct pid_namespace *pid_ns = task_active_pid_ns(father); 854 struct task_struct *thread; 855 856 thread = father; 857 while_each_thread(father, thread) { 858 if (thread->flags & PF_EXITING) 859 continue; 860 if (unlikely(pid_ns->child_reaper == father)) 861 pid_ns->child_reaper = thread; 862 return thread; 863 } 864 865 if (unlikely(pid_ns->child_reaper == father)) { 866 write_unlock_irq(&tasklist_lock); 867 if (unlikely(pid_ns == &init_pid_ns)) 868 panic("Attempted to kill init!"); 869 870 zap_pid_ns_processes(pid_ns); 871 write_lock_irq(&tasklist_lock); 872 /* 873 * We can not clear ->child_reaper or leave it alone. 874 * There may by stealth EXIT_DEAD tasks on ->children, 875 * forget_original_parent() must move them somewhere. 876 */ 877 pid_ns->child_reaper = init_pid_ns.child_reaper; 878 } 879 880 return pid_ns->child_reaper; 881 } 882 883 static void forget_original_parent(struct task_struct *father) 884 { 885 struct task_struct *p, *n, *reaper; 886 LIST_HEAD(ptrace_dead); 887 888 write_lock_irq(&tasklist_lock); 889 reaper = find_new_reaper(father); 890 /* 891 * First clean up ptrace if we were using it. 892 */ 893 ptrace_exit(father, &ptrace_dead); 894 895 list_for_each_entry_safe(p, n, &father->children, sibling) { 896 p->real_parent = reaper; 897 if (p->parent == father) { 898 BUG_ON(p->ptrace); 899 p->parent = p->real_parent; 900 } 901 reparent_thread(p, father); 902 } 903 904 write_unlock_irq(&tasklist_lock); 905 BUG_ON(!list_empty(&father->children)); 906 907 ptrace_exit_finish(father, &ptrace_dead); 908 } 909 910 /* 911 * Send signals to all our closest relatives so that they know 912 * to properly mourn us.. 913 */ 914 static void exit_notify(struct task_struct *tsk, int group_dead) 915 { 916 int signal; 917 void *cookie; 918 919 /* 920 * This does two things: 921 * 922 * A. Make init inherit all the child processes 923 * B. Check to see if any process groups have become orphaned 924 * as a result of our exiting, and if they have any stopped 925 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 926 */ 927 forget_original_parent(tsk); 928 exit_task_namespaces(tsk); 929 930 write_lock_irq(&tasklist_lock); 931 if (group_dead) 932 kill_orphaned_pgrp(tsk->group_leader, NULL); 933 934 /* Let father know we died 935 * 936 * Thread signals are configurable, but you aren't going to use 937 * that to send signals to arbitary processes. 938 * That stops right now. 939 * 940 * If the parent exec id doesn't match the exec id we saved 941 * when we started then we know the parent has changed security 942 * domain. 943 * 944 * If our self_exec id doesn't match our parent_exec_id then 945 * we have changed execution domain as these two values started 946 * the same after a fork. 947 */ 948 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 949 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 950 tsk->self_exec_id != tsk->parent_exec_id) && 951 !capable(CAP_KILL)) 952 tsk->exit_signal = SIGCHLD; 953 954 signal = tracehook_notify_death(tsk, &cookie, group_dead); 955 if (signal >= 0) 956 signal = do_notify_parent(tsk, signal); 957 958 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 959 960 /* mt-exec, de_thread() is waiting for us */ 961 if (thread_group_leader(tsk) && 962 tsk->signal->group_exit_task && 963 tsk->signal->notify_count < 0) 964 wake_up_process(tsk->signal->group_exit_task); 965 966 write_unlock_irq(&tasklist_lock); 967 968 tracehook_report_death(tsk, signal, cookie, group_dead); 969 970 /* If the process is dead, release it - nobody will wait for it */ 971 if (signal == DEATH_REAP) 972 release_task(tsk); 973 } 974 975 #ifdef CONFIG_DEBUG_STACK_USAGE 976 static void check_stack_usage(void) 977 { 978 static DEFINE_SPINLOCK(low_water_lock); 979 static int lowest_to_date = THREAD_SIZE; 980 unsigned long *n = end_of_stack(current); 981 unsigned long free; 982 983 while (*n == 0) 984 n++; 985 free = (unsigned long)n - (unsigned long)end_of_stack(current); 986 987 if (free >= lowest_to_date) 988 return; 989 990 spin_lock(&low_water_lock); 991 if (free < lowest_to_date) { 992 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 993 "left\n", 994 current->comm, free); 995 lowest_to_date = free; 996 } 997 spin_unlock(&low_water_lock); 998 } 999 #else 1000 static inline void check_stack_usage(void) {} 1001 #endif 1002 1003 NORET_TYPE void do_exit(long code) 1004 { 1005 struct task_struct *tsk = current; 1006 int group_dead; 1007 1008 profile_task_exit(tsk); 1009 1010 WARN_ON(atomic_read(&tsk->fs_excl)); 1011 1012 if (unlikely(in_interrupt())) 1013 panic("Aiee, killing interrupt handler!"); 1014 if (unlikely(!tsk->pid)) 1015 panic("Attempted to kill the idle task!"); 1016 1017 tracehook_report_exit(&code); 1018 1019 /* 1020 * We're taking recursive faults here in do_exit. Safest is to just 1021 * leave this task alone and wait for reboot. 1022 */ 1023 if (unlikely(tsk->flags & PF_EXITING)) { 1024 printk(KERN_ALERT 1025 "Fixing recursive fault but reboot is needed!\n"); 1026 /* 1027 * We can do this unlocked here. The futex code uses 1028 * this flag just to verify whether the pi state 1029 * cleanup has been done or not. In the worst case it 1030 * loops once more. We pretend that the cleanup was 1031 * done as there is no way to return. Either the 1032 * OWNER_DIED bit is set by now or we push the blocked 1033 * task into the wait for ever nirwana as well. 1034 */ 1035 tsk->flags |= PF_EXITPIDONE; 1036 set_current_state(TASK_UNINTERRUPTIBLE); 1037 schedule(); 1038 } 1039 1040 exit_signals(tsk); /* sets PF_EXITING */ 1041 /* 1042 * tsk->flags are checked in the futex code to protect against 1043 * an exiting task cleaning up the robust pi futexes. 1044 */ 1045 smp_mb(); 1046 spin_unlock_wait(&tsk->pi_lock); 1047 1048 if (unlikely(in_atomic())) 1049 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 1050 current->comm, task_pid_nr(current), 1051 preempt_count()); 1052 1053 acct_update_integrals(tsk); 1054 1055 group_dead = atomic_dec_and_test(&tsk->signal->live); 1056 if (group_dead) { 1057 hrtimer_cancel(&tsk->signal->real_timer); 1058 exit_itimers(tsk->signal); 1059 } 1060 acct_collect(code, group_dead); 1061 if (group_dead) 1062 tty_audit_exit(); 1063 if (unlikely(tsk->audit_context)) 1064 audit_free(tsk); 1065 1066 tsk->exit_code = code; 1067 taskstats_exit(tsk, group_dead); 1068 1069 exit_mm(tsk); 1070 1071 if (group_dead) 1072 acct_process(); 1073 trace_sched_process_exit(tsk); 1074 1075 exit_sem(tsk); 1076 exit_files(tsk); 1077 exit_fs(tsk); 1078 check_stack_usage(); 1079 exit_thread(); 1080 cgroup_exit(tsk, 1); 1081 1082 if (group_dead && tsk->signal->leader) 1083 disassociate_ctty(1); 1084 1085 module_put(task_thread_info(tsk)->exec_domain->module); 1086 if (tsk->binfmt) 1087 module_put(tsk->binfmt->module); 1088 1089 proc_exit_connector(tsk); 1090 exit_notify(tsk, group_dead); 1091 #ifdef CONFIG_NUMA 1092 mpol_put(tsk->mempolicy); 1093 tsk->mempolicy = NULL; 1094 #endif 1095 #ifdef CONFIG_FUTEX 1096 /* 1097 * This must happen late, after the PID is not 1098 * hashed anymore: 1099 */ 1100 if (unlikely(!list_empty(&tsk->pi_state_list))) 1101 exit_pi_state_list(tsk); 1102 if (unlikely(current->pi_state_cache)) 1103 kfree(current->pi_state_cache); 1104 #endif 1105 /* 1106 * Make sure we are holding no locks: 1107 */ 1108 debug_check_no_locks_held(tsk); 1109 /* 1110 * We can do this unlocked here. The futex code uses this flag 1111 * just to verify whether the pi state cleanup has been done 1112 * or not. In the worst case it loops once more. 1113 */ 1114 tsk->flags |= PF_EXITPIDONE; 1115 1116 if (tsk->io_context) 1117 exit_io_context(); 1118 1119 if (tsk->splice_pipe) 1120 __free_pipe_info(tsk->splice_pipe); 1121 1122 preempt_disable(); 1123 /* causes final put_task_struct in finish_task_switch(). */ 1124 tsk->state = TASK_DEAD; 1125 schedule(); 1126 BUG(); 1127 /* Avoid "noreturn function does return". */ 1128 for (;;) 1129 cpu_relax(); /* For when BUG is null */ 1130 } 1131 1132 EXPORT_SYMBOL_GPL(do_exit); 1133 1134 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1135 { 1136 if (comp) 1137 complete(comp); 1138 1139 do_exit(code); 1140 } 1141 1142 EXPORT_SYMBOL(complete_and_exit); 1143 1144 asmlinkage long sys_exit(int error_code) 1145 { 1146 do_exit((error_code&0xff)<<8); 1147 } 1148 1149 /* 1150 * Take down every thread in the group. This is called by fatal signals 1151 * as well as by sys_exit_group (below). 1152 */ 1153 NORET_TYPE void 1154 do_group_exit(int exit_code) 1155 { 1156 struct signal_struct *sig = current->signal; 1157 1158 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1159 1160 if (signal_group_exit(sig)) 1161 exit_code = sig->group_exit_code; 1162 else if (!thread_group_empty(current)) { 1163 struct sighand_struct *const sighand = current->sighand; 1164 spin_lock_irq(&sighand->siglock); 1165 if (signal_group_exit(sig)) 1166 /* Another thread got here before we took the lock. */ 1167 exit_code = sig->group_exit_code; 1168 else { 1169 sig->group_exit_code = exit_code; 1170 sig->flags = SIGNAL_GROUP_EXIT; 1171 zap_other_threads(current); 1172 } 1173 spin_unlock_irq(&sighand->siglock); 1174 } 1175 1176 do_exit(exit_code); 1177 /* NOTREACHED */ 1178 } 1179 1180 /* 1181 * this kills every thread in the thread group. Note that any externally 1182 * wait4()-ing process will get the correct exit code - even if this 1183 * thread is not the thread group leader. 1184 */ 1185 asmlinkage void sys_exit_group(int error_code) 1186 { 1187 do_group_exit((error_code & 0xff) << 8); 1188 } 1189 1190 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1191 { 1192 struct pid *pid = NULL; 1193 if (type == PIDTYPE_PID) 1194 pid = task->pids[type].pid; 1195 else if (type < PIDTYPE_MAX) 1196 pid = task->group_leader->pids[type].pid; 1197 return pid; 1198 } 1199 1200 static int eligible_child(enum pid_type type, struct pid *pid, int options, 1201 struct task_struct *p) 1202 { 1203 int err; 1204 1205 if (type < PIDTYPE_MAX) { 1206 if (task_pid_type(p, type) != pid) 1207 return 0; 1208 } 1209 1210 /* Wait for all children (clone and not) if __WALL is set; 1211 * otherwise, wait for clone children *only* if __WCLONE is 1212 * set; otherwise, wait for non-clone children *only*. (Note: 1213 * A "clone" child here is one that reports to its parent 1214 * using a signal other than SIGCHLD.) */ 1215 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1216 && !(options & __WALL)) 1217 return 0; 1218 1219 err = security_task_wait(p); 1220 if (err) 1221 return err; 1222 1223 return 1; 1224 } 1225 1226 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1227 int why, int status, 1228 struct siginfo __user *infop, 1229 struct rusage __user *rusagep) 1230 { 1231 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1232 1233 put_task_struct(p); 1234 if (!retval) 1235 retval = put_user(SIGCHLD, &infop->si_signo); 1236 if (!retval) 1237 retval = put_user(0, &infop->si_errno); 1238 if (!retval) 1239 retval = put_user((short)why, &infop->si_code); 1240 if (!retval) 1241 retval = put_user(pid, &infop->si_pid); 1242 if (!retval) 1243 retval = put_user(uid, &infop->si_uid); 1244 if (!retval) 1245 retval = put_user(status, &infop->si_status); 1246 if (!retval) 1247 retval = pid; 1248 return retval; 1249 } 1250 1251 /* 1252 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1253 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1254 * the lock and this task is uninteresting. If we return nonzero, we have 1255 * released the lock and the system call should return. 1256 */ 1257 static int wait_task_zombie(struct task_struct *p, int options, 1258 struct siginfo __user *infop, 1259 int __user *stat_addr, struct rusage __user *ru) 1260 { 1261 unsigned long state; 1262 int retval, status, traced; 1263 pid_t pid = task_pid_vnr(p); 1264 uid_t uid = __task_cred(p)->uid; 1265 1266 if (!likely(options & WEXITED)) 1267 return 0; 1268 1269 if (unlikely(options & WNOWAIT)) { 1270 int exit_code = p->exit_code; 1271 int why, status; 1272 1273 get_task_struct(p); 1274 read_unlock(&tasklist_lock); 1275 if ((exit_code & 0x7f) == 0) { 1276 why = CLD_EXITED; 1277 status = exit_code >> 8; 1278 } else { 1279 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1280 status = exit_code & 0x7f; 1281 } 1282 return wait_noreap_copyout(p, pid, uid, why, 1283 status, infop, ru); 1284 } 1285 1286 /* 1287 * Try to move the task's state to DEAD 1288 * only one thread is allowed to do this: 1289 */ 1290 state = xchg(&p->exit_state, EXIT_DEAD); 1291 if (state != EXIT_ZOMBIE) { 1292 BUG_ON(state != EXIT_DEAD); 1293 return 0; 1294 } 1295 1296 traced = ptrace_reparented(p); 1297 1298 if (likely(!traced)) { 1299 struct signal_struct *psig; 1300 struct signal_struct *sig; 1301 struct task_cputime cputime; 1302 1303 /* 1304 * The resource counters for the group leader are in its 1305 * own task_struct. Those for dead threads in the group 1306 * are in its signal_struct, as are those for the child 1307 * processes it has previously reaped. All these 1308 * accumulate in the parent's signal_struct c* fields. 1309 * 1310 * We don't bother to take a lock here to protect these 1311 * p->signal fields, because they are only touched by 1312 * __exit_signal, which runs with tasklist_lock 1313 * write-locked anyway, and so is excluded here. We do 1314 * need to protect the access to p->parent->signal fields, 1315 * as other threads in the parent group can be right 1316 * here reaping other children at the same time. 1317 * 1318 * We use thread_group_cputime() to get times for the thread 1319 * group, which consolidates times for all threads in the 1320 * group including the group leader. 1321 */ 1322 thread_group_cputime(p, &cputime); 1323 spin_lock_irq(&p->parent->sighand->siglock); 1324 psig = p->parent->signal; 1325 sig = p->signal; 1326 psig->cutime = 1327 cputime_add(psig->cutime, 1328 cputime_add(cputime.utime, 1329 sig->cutime)); 1330 psig->cstime = 1331 cputime_add(psig->cstime, 1332 cputime_add(cputime.stime, 1333 sig->cstime)); 1334 psig->cgtime = 1335 cputime_add(psig->cgtime, 1336 cputime_add(p->gtime, 1337 cputime_add(sig->gtime, 1338 sig->cgtime))); 1339 psig->cmin_flt += 1340 p->min_flt + sig->min_flt + sig->cmin_flt; 1341 psig->cmaj_flt += 1342 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1343 psig->cnvcsw += 1344 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1345 psig->cnivcsw += 1346 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1347 psig->cinblock += 1348 task_io_get_inblock(p) + 1349 sig->inblock + sig->cinblock; 1350 psig->coublock += 1351 task_io_get_oublock(p) + 1352 sig->oublock + sig->coublock; 1353 task_io_accounting_add(&psig->ioac, &p->ioac); 1354 task_io_accounting_add(&psig->ioac, &sig->ioac); 1355 spin_unlock_irq(&p->parent->sighand->siglock); 1356 } 1357 1358 /* 1359 * Now we are sure this task is interesting, and no other 1360 * thread can reap it because we set its state to EXIT_DEAD. 1361 */ 1362 read_unlock(&tasklist_lock); 1363 1364 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1365 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1366 ? p->signal->group_exit_code : p->exit_code; 1367 if (!retval && stat_addr) 1368 retval = put_user(status, stat_addr); 1369 if (!retval && infop) 1370 retval = put_user(SIGCHLD, &infop->si_signo); 1371 if (!retval && infop) 1372 retval = put_user(0, &infop->si_errno); 1373 if (!retval && infop) { 1374 int why; 1375 1376 if ((status & 0x7f) == 0) { 1377 why = CLD_EXITED; 1378 status >>= 8; 1379 } else { 1380 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1381 status &= 0x7f; 1382 } 1383 retval = put_user((short)why, &infop->si_code); 1384 if (!retval) 1385 retval = put_user(status, &infop->si_status); 1386 } 1387 if (!retval && infop) 1388 retval = put_user(pid, &infop->si_pid); 1389 if (!retval && infop) 1390 retval = put_user(uid, &infop->si_uid); 1391 if (!retval) 1392 retval = pid; 1393 1394 if (traced) { 1395 write_lock_irq(&tasklist_lock); 1396 /* We dropped tasklist, ptracer could die and untrace */ 1397 ptrace_unlink(p); 1398 /* 1399 * If this is not a detached task, notify the parent. 1400 * If it's still not detached after that, don't release 1401 * it now. 1402 */ 1403 if (!task_detached(p)) { 1404 do_notify_parent(p, p->exit_signal); 1405 if (!task_detached(p)) { 1406 p->exit_state = EXIT_ZOMBIE; 1407 p = NULL; 1408 } 1409 } 1410 write_unlock_irq(&tasklist_lock); 1411 } 1412 if (p != NULL) 1413 release_task(p); 1414 1415 return retval; 1416 } 1417 1418 /* 1419 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1420 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1421 * the lock and this task is uninteresting. If we return nonzero, we have 1422 * released the lock and the system call should return. 1423 */ 1424 static int wait_task_stopped(int ptrace, struct task_struct *p, 1425 int options, struct siginfo __user *infop, 1426 int __user *stat_addr, struct rusage __user *ru) 1427 { 1428 int retval, exit_code, why; 1429 uid_t uid = 0; /* unneeded, required by compiler */ 1430 pid_t pid; 1431 1432 if (!(options & WUNTRACED)) 1433 return 0; 1434 1435 exit_code = 0; 1436 spin_lock_irq(&p->sighand->siglock); 1437 1438 if (unlikely(!task_is_stopped_or_traced(p))) 1439 goto unlock_sig; 1440 1441 if (!ptrace && p->signal->group_stop_count > 0) 1442 /* 1443 * A group stop is in progress and this is the group leader. 1444 * We won't report until all threads have stopped. 1445 */ 1446 goto unlock_sig; 1447 1448 exit_code = p->exit_code; 1449 if (!exit_code) 1450 goto unlock_sig; 1451 1452 if (!unlikely(options & WNOWAIT)) 1453 p->exit_code = 0; 1454 1455 /* don't need the RCU readlock here as we're holding a spinlock */ 1456 uid = __task_cred(p)->uid; 1457 unlock_sig: 1458 spin_unlock_irq(&p->sighand->siglock); 1459 if (!exit_code) 1460 return 0; 1461 1462 /* 1463 * Now we are pretty sure this task is interesting. 1464 * Make sure it doesn't get reaped out from under us while we 1465 * give up the lock and then examine it below. We don't want to 1466 * keep holding onto the tasklist_lock while we call getrusage and 1467 * possibly take page faults for user memory. 1468 */ 1469 get_task_struct(p); 1470 pid = task_pid_vnr(p); 1471 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1472 read_unlock(&tasklist_lock); 1473 1474 if (unlikely(options & WNOWAIT)) 1475 return wait_noreap_copyout(p, pid, uid, 1476 why, exit_code, 1477 infop, ru); 1478 1479 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1480 if (!retval && stat_addr) 1481 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1482 if (!retval && infop) 1483 retval = put_user(SIGCHLD, &infop->si_signo); 1484 if (!retval && infop) 1485 retval = put_user(0, &infop->si_errno); 1486 if (!retval && infop) 1487 retval = put_user((short)why, &infop->si_code); 1488 if (!retval && infop) 1489 retval = put_user(exit_code, &infop->si_status); 1490 if (!retval && infop) 1491 retval = put_user(pid, &infop->si_pid); 1492 if (!retval && infop) 1493 retval = put_user(uid, &infop->si_uid); 1494 if (!retval) 1495 retval = pid; 1496 put_task_struct(p); 1497 1498 BUG_ON(!retval); 1499 return retval; 1500 } 1501 1502 /* 1503 * Handle do_wait work for one task in a live, non-stopped state. 1504 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1505 * the lock and this task is uninteresting. If we return nonzero, we have 1506 * released the lock and the system call should return. 1507 */ 1508 static int wait_task_continued(struct task_struct *p, int options, 1509 struct siginfo __user *infop, 1510 int __user *stat_addr, struct rusage __user *ru) 1511 { 1512 int retval; 1513 pid_t pid; 1514 uid_t uid; 1515 1516 if (!unlikely(options & WCONTINUED)) 1517 return 0; 1518 1519 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1520 return 0; 1521 1522 spin_lock_irq(&p->sighand->siglock); 1523 /* Re-check with the lock held. */ 1524 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1525 spin_unlock_irq(&p->sighand->siglock); 1526 return 0; 1527 } 1528 if (!unlikely(options & WNOWAIT)) 1529 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1530 uid = __task_cred(p)->uid; 1531 spin_unlock_irq(&p->sighand->siglock); 1532 1533 pid = task_pid_vnr(p); 1534 get_task_struct(p); 1535 read_unlock(&tasklist_lock); 1536 1537 if (!infop) { 1538 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1539 put_task_struct(p); 1540 if (!retval && stat_addr) 1541 retval = put_user(0xffff, stat_addr); 1542 if (!retval) 1543 retval = pid; 1544 } else { 1545 retval = wait_noreap_copyout(p, pid, uid, 1546 CLD_CONTINUED, SIGCONT, 1547 infop, ru); 1548 BUG_ON(retval == 0); 1549 } 1550 1551 return retval; 1552 } 1553 1554 /* 1555 * Consider @p for a wait by @parent. 1556 * 1557 * -ECHILD should be in *@notask_error before the first call. 1558 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1559 * Returns zero if the search for a child should continue; 1560 * then *@notask_error is 0 if @p is an eligible child, 1561 * or another error from security_task_wait(), or still -ECHILD. 1562 */ 1563 static int wait_consider_task(struct task_struct *parent, int ptrace, 1564 struct task_struct *p, int *notask_error, 1565 enum pid_type type, struct pid *pid, int options, 1566 struct siginfo __user *infop, 1567 int __user *stat_addr, struct rusage __user *ru) 1568 { 1569 int ret = eligible_child(type, pid, options, p); 1570 if (!ret) 1571 return ret; 1572 1573 if (unlikely(ret < 0)) { 1574 /* 1575 * If we have not yet seen any eligible child, 1576 * then let this error code replace -ECHILD. 1577 * A permission error will give the user a clue 1578 * to look for security policy problems, rather 1579 * than for mysterious wait bugs. 1580 */ 1581 if (*notask_error) 1582 *notask_error = ret; 1583 } 1584 1585 if (likely(!ptrace) && unlikely(p->ptrace)) { 1586 /* 1587 * This child is hidden by ptrace. 1588 * We aren't allowed to see it now, but eventually we will. 1589 */ 1590 *notask_error = 0; 1591 return 0; 1592 } 1593 1594 if (p->exit_state == EXIT_DEAD) 1595 return 0; 1596 1597 /* 1598 * We don't reap group leaders with subthreads. 1599 */ 1600 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1601 return wait_task_zombie(p, options, infop, stat_addr, ru); 1602 1603 /* 1604 * It's stopped or running now, so it might 1605 * later continue, exit, or stop again. 1606 */ 1607 *notask_error = 0; 1608 1609 if (task_is_stopped_or_traced(p)) 1610 return wait_task_stopped(ptrace, p, options, 1611 infop, stat_addr, ru); 1612 1613 return wait_task_continued(p, options, infop, stat_addr, ru); 1614 } 1615 1616 /* 1617 * Do the work of do_wait() for one thread in the group, @tsk. 1618 * 1619 * -ECHILD should be in *@notask_error before the first call. 1620 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1621 * Returns zero if the search for a child should continue; then 1622 * *@notask_error is 0 if there were any eligible children, 1623 * or another error from security_task_wait(), or still -ECHILD. 1624 */ 1625 static int do_wait_thread(struct task_struct *tsk, int *notask_error, 1626 enum pid_type type, struct pid *pid, int options, 1627 struct siginfo __user *infop, int __user *stat_addr, 1628 struct rusage __user *ru) 1629 { 1630 struct task_struct *p; 1631 1632 list_for_each_entry(p, &tsk->children, sibling) { 1633 /* 1634 * Do not consider detached threads. 1635 */ 1636 if (!task_detached(p)) { 1637 int ret = wait_consider_task(tsk, 0, p, notask_error, 1638 type, pid, options, 1639 infop, stat_addr, ru); 1640 if (ret) 1641 return ret; 1642 } 1643 } 1644 1645 return 0; 1646 } 1647 1648 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error, 1649 enum pid_type type, struct pid *pid, int options, 1650 struct siginfo __user *infop, int __user *stat_addr, 1651 struct rusage __user *ru) 1652 { 1653 struct task_struct *p; 1654 1655 /* 1656 * Traditionally we see ptrace'd stopped tasks regardless of options. 1657 */ 1658 options |= WUNTRACED; 1659 1660 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1661 int ret = wait_consider_task(tsk, 1, p, notask_error, 1662 type, pid, options, 1663 infop, stat_addr, ru); 1664 if (ret) 1665 return ret; 1666 } 1667 1668 return 0; 1669 } 1670 1671 static long do_wait(enum pid_type type, struct pid *pid, int options, 1672 struct siginfo __user *infop, int __user *stat_addr, 1673 struct rusage __user *ru) 1674 { 1675 DECLARE_WAITQUEUE(wait, current); 1676 struct task_struct *tsk; 1677 int retval; 1678 1679 trace_sched_process_wait(pid); 1680 1681 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1682 repeat: 1683 /* 1684 * If there is nothing that can match our critiera just get out. 1685 * We will clear @retval to zero if we see any child that might later 1686 * match our criteria, even if we are not able to reap it yet. 1687 */ 1688 retval = -ECHILD; 1689 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) 1690 goto end; 1691 1692 current->state = TASK_INTERRUPTIBLE; 1693 read_lock(&tasklist_lock); 1694 tsk = current; 1695 do { 1696 int tsk_result = do_wait_thread(tsk, &retval, 1697 type, pid, options, 1698 infop, stat_addr, ru); 1699 if (!tsk_result) 1700 tsk_result = ptrace_do_wait(tsk, &retval, 1701 type, pid, options, 1702 infop, stat_addr, ru); 1703 if (tsk_result) { 1704 /* 1705 * tasklist_lock is unlocked and we have a final result. 1706 */ 1707 retval = tsk_result; 1708 goto end; 1709 } 1710 1711 if (options & __WNOTHREAD) 1712 break; 1713 tsk = next_thread(tsk); 1714 BUG_ON(tsk->signal != current->signal); 1715 } while (tsk != current); 1716 read_unlock(&tasklist_lock); 1717 1718 if (!retval && !(options & WNOHANG)) { 1719 retval = -ERESTARTSYS; 1720 if (!signal_pending(current)) { 1721 schedule(); 1722 goto repeat; 1723 } 1724 } 1725 1726 end: 1727 current->state = TASK_RUNNING; 1728 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1729 if (infop) { 1730 if (retval > 0) 1731 retval = 0; 1732 else { 1733 /* 1734 * For a WNOHANG return, clear out all the fields 1735 * we would set so the user can easily tell the 1736 * difference. 1737 */ 1738 if (!retval) 1739 retval = put_user(0, &infop->si_signo); 1740 if (!retval) 1741 retval = put_user(0, &infop->si_errno); 1742 if (!retval) 1743 retval = put_user(0, &infop->si_code); 1744 if (!retval) 1745 retval = put_user(0, &infop->si_pid); 1746 if (!retval) 1747 retval = put_user(0, &infop->si_uid); 1748 if (!retval) 1749 retval = put_user(0, &infop->si_status); 1750 } 1751 } 1752 return retval; 1753 } 1754 1755 asmlinkage long sys_waitid(int which, pid_t upid, 1756 struct siginfo __user *infop, int options, 1757 struct rusage __user *ru) 1758 { 1759 struct pid *pid = NULL; 1760 enum pid_type type; 1761 long ret; 1762 1763 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1764 return -EINVAL; 1765 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1766 return -EINVAL; 1767 1768 switch (which) { 1769 case P_ALL: 1770 type = PIDTYPE_MAX; 1771 break; 1772 case P_PID: 1773 type = PIDTYPE_PID; 1774 if (upid <= 0) 1775 return -EINVAL; 1776 break; 1777 case P_PGID: 1778 type = PIDTYPE_PGID; 1779 if (upid <= 0) 1780 return -EINVAL; 1781 break; 1782 default: 1783 return -EINVAL; 1784 } 1785 1786 if (type < PIDTYPE_MAX) 1787 pid = find_get_pid(upid); 1788 ret = do_wait(type, pid, options, infop, NULL, ru); 1789 put_pid(pid); 1790 1791 /* avoid REGPARM breakage on x86: */ 1792 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1793 return ret; 1794 } 1795 1796 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr, 1797 int options, struct rusage __user *ru) 1798 { 1799 struct pid *pid = NULL; 1800 enum pid_type type; 1801 long ret; 1802 1803 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1804 __WNOTHREAD|__WCLONE|__WALL)) 1805 return -EINVAL; 1806 1807 if (upid == -1) 1808 type = PIDTYPE_MAX; 1809 else if (upid < 0) { 1810 type = PIDTYPE_PGID; 1811 pid = find_get_pid(-upid); 1812 } else if (upid == 0) { 1813 type = PIDTYPE_PGID; 1814 pid = get_pid(task_pgrp(current)); 1815 } else /* upid > 0 */ { 1816 type = PIDTYPE_PID; 1817 pid = find_get_pid(upid); 1818 } 1819 1820 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); 1821 put_pid(pid); 1822 1823 /* avoid REGPARM breakage on x86: */ 1824 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1825 return ret; 1826 } 1827 1828 #ifdef __ARCH_WANT_SYS_WAITPID 1829 1830 /* 1831 * sys_waitpid() remains for compatibility. waitpid() should be 1832 * implemented by calling sys_wait4() from libc.a. 1833 */ 1834 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1835 { 1836 return sys_wait4(pid, stat_addr, options, NULL); 1837 } 1838 1839 #endif 1840