xref: /linux-6.15/kernel/exit.c (revision 2e4c77be)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
51 
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
57 
58 DEFINE_TRACE(sched_process_free);
59 DEFINE_TRACE(sched_process_exit);
60 DEFINE_TRACE(sched_process_wait);
61 
62 static void exit_mm(struct task_struct * tsk);
63 
64 static inline int task_detached(struct task_struct *p)
65 {
66 	return p->exit_signal == -1;
67 }
68 
69 static void __unhash_process(struct task_struct *p)
70 {
71 	nr_threads--;
72 	detach_pid(p, PIDTYPE_PID);
73 	if (thread_group_leader(p)) {
74 		detach_pid(p, PIDTYPE_PGID);
75 		detach_pid(p, PIDTYPE_SID);
76 
77 		list_del_rcu(&p->tasks);
78 		__get_cpu_var(process_counts)--;
79 	}
80 	list_del_rcu(&p->thread_group);
81 	list_del_init(&p->sibling);
82 }
83 
84 /*
85  * This function expects the tasklist_lock write-locked.
86  */
87 static void __exit_signal(struct task_struct *tsk)
88 {
89 	struct signal_struct *sig = tsk->signal;
90 	struct sighand_struct *sighand;
91 
92 	BUG_ON(!sig);
93 	BUG_ON(!atomic_read(&sig->count));
94 
95 	sighand = rcu_dereference(tsk->sighand);
96 	spin_lock(&sighand->siglock);
97 
98 	posix_cpu_timers_exit(tsk);
99 	if (atomic_dec_and_test(&sig->count))
100 		posix_cpu_timers_exit_group(tsk);
101 	else {
102 		/*
103 		 * If there is any task waiting for the group exit
104 		 * then notify it:
105 		 */
106 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
107 			wake_up_process(sig->group_exit_task);
108 
109 		if (tsk == sig->curr_target)
110 			sig->curr_target = next_thread(tsk);
111 		/*
112 		 * Accumulate here the counters for all threads but the
113 		 * group leader as they die, so they can be added into
114 		 * the process-wide totals when those are taken.
115 		 * The group leader stays around as a zombie as long
116 		 * as there are other threads.  When it gets reaped,
117 		 * the exit.c code will add its counts into these totals.
118 		 * We won't ever get here for the group leader, since it
119 		 * will have been the last reference on the signal_struct.
120 		 */
121 		sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
122 		sig->min_flt += tsk->min_flt;
123 		sig->maj_flt += tsk->maj_flt;
124 		sig->nvcsw += tsk->nvcsw;
125 		sig->nivcsw += tsk->nivcsw;
126 		sig->inblock += task_io_get_inblock(tsk);
127 		sig->oublock += task_io_get_oublock(tsk);
128 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
129 		sig = NULL; /* Marker for below. */
130 	}
131 
132 	__unhash_process(tsk);
133 
134 	/*
135 	 * Do this under ->siglock, we can race with another thread
136 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
137 	 */
138 	flush_sigqueue(&tsk->pending);
139 
140 	tsk->signal = NULL;
141 	tsk->sighand = NULL;
142 	spin_unlock(&sighand->siglock);
143 
144 	__cleanup_sighand(sighand);
145 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
146 	if (sig) {
147 		flush_sigqueue(&sig->shared_pending);
148 		taskstats_tgid_free(sig);
149 		/*
150 		 * Make sure ->signal can't go away under rq->lock,
151 		 * see account_group_exec_runtime().
152 		 */
153 		task_rq_unlock_wait(tsk);
154 		__cleanup_signal(sig);
155 	}
156 }
157 
158 static void delayed_put_task_struct(struct rcu_head *rhp)
159 {
160 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161 
162 	trace_sched_process_free(tsk);
163 	put_task_struct(tsk);
164 }
165 
166 
167 void release_task(struct task_struct * p)
168 {
169 	struct task_struct *leader;
170 	int zap_leader;
171 repeat:
172 	tracehook_prepare_release_task(p);
173 	/* don't need to get the RCU readlock here - the process is dead and
174 	 * can't be modifying its own credentials */
175 	atomic_dec(&__task_cred(p)->user->processes);
176 
177 	proc_flush_task(p);
178 	write_lock_irq(&tasklist_lock);
179 	tracehook_finish_release_task(p);
180 	__exit_signal(p);
181 
182 	/*
183 	 * If we are the last non-leader member of the thread
184 	 * group, and the leader is zombie, then notify the
185 	 * group leader's parent process. (if it wants notification.)
186 	 */
187 	zap_leader = 0;
188 	leader = p->group_leader;
189 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
190 		BUG_ON(task_detached(leader));
191 		do_notify_parent(leader, leader->exit_signal);
192 		/*
193 		 * If we were the last child thread and the leader has
194 		 * exited already, and the leader's parent ignores SIGCHLD,
195 		 * then we are the one who should release the leader.
196 		 *
197 		 * do_notify_parent() will have marked it self-reaping in
198 		 * that case.
199 		 */
200 		zap_leader = task_detached(leader);
201 
202 		/*
203 		 * This maintains the invariant that release_task()
204 		 * only runs on a task in EXIT_DEAD, just for sanity.
205 		 */
206 		if (zap_leader)
207 			leader->exit_state = EXIT_DEAD;
208 	}
209 
210 	write_unlock_irq(&tasklist_lock);
211 	release_thread(p);
212 	call_rcu(&p->rcu, delayed_put_task_struct);
213 
214 	p = leader;
215 	if (unlikely(zap_leader))
216 		goto repeat;
217 }
218 
219 /*
220  * This checks not only the pgrp, but falls back on the pid if no
221  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
222  * without this...
223  *
224  * The caller must hold rcu lock or the tasklist lock.
225  */
226 struct pid *session_of_pgrp(struct pid *pgrp)
227 {
228 	struct task_struct *p;
229 	struct pid *sid = NULL;
230 
231 	p = pid_task(pgrp, PIDTYPE_PGID);
232 	if (p == NULL)
233 		p = pid_task(pgrp, PIDTYPE_PID);
234 	if (p != NULL)
235 		sid = task_session(p);
236 
237 	return sid;
238 }
239 
240 /*
241  * Determine if a process group is "orphaned", according to the POSIX
242  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
243  * by terminal-generated stop signals.  Newly orphaned process groups are
244  * to receive a SIGHUP and a SIGCONT.
245  *
246  * "I ask you, have you ever known what it is to be an orphan?"
247  */
248 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
249 {
250 	struct task_struct *p;
251 
252 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
253 		if ((p == ignored_task) ||
254 		    (p->exit_state && thread_group_empty(p)) ||
255 		    is_global_init(p->real_parent))
256 			continue;
257 
258 		if (task_pgrp(p->real_parent) != pgrp &&
259 		    task_session(p->real_parent) == task_session(p))
260 			return 0;
261 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
262 
263 	return 1;
264 }
265 
266 int is_current_pgrp_orphaned(void)
267 {
268 	int retval;
269 
270 	read_lock(&tasklist_lock);
271 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
272 	read_unlock(&tasklist_lock);
273 
274 	return retval;
275 }
276 
277 static int has_stopped_jobs(struct pid *pgrp)
278 {
279 	int retval = 0;
280 	struct task_struct *p;
281 
282 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
283 		if (!task_is_stopped(p))
284 			continue;
285 		retval = 1;
286 		break;
287 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
288 	return retval;
289 }
290 
291 /*
292  * Check to see if any process groups have become orphaned as
293  * a result of our exiting, and if they have any stopped jobs,
294  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
295  */
296 static void
297 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
298 {
299 	struct pid *pgrp = task_pgrp(tsk);
300 	struct task_struct *ignored_task = tsk;
301 
302 	if (!parent)
303 		 /* exit: our father is in a different pgrp than
304 		  * we are and we were the only connection outside.
305 		  */
306 		parent = tsk->real_parent;
307 	else
308 		/* reparent: our child is in a different pgrp than
309 		 * we are, and it was the only connection outside.
310 		 */
311 		ignored_task = NULL;
312 
313 	if (task_pgrp(parent) != pgrp &&
314 	    task_session(parent) == task_session(tsk) &&
315 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
316 	    has_stopped_jobs(pgrp)) {
317 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
318 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
319 	}
320 }
321 
322 /**
323  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
324  *
325  * If a kernel thread is launched as a result of a system call, or if
326  * it ever exits, it should generally reparent itself to kthreadd so it
327  * isn't in the way of other processes and is correctly cleaned up on exit.
328  *
329  * The various task state such as scheduling policy and priority may have
330  * been inherited from a user process, so we reset them to sane values here.
331  *
332  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
333  */
334 static void reparent_to_kthreadd(void)
335 {
336 	write_lock_irq(&tasklist_lock);
337 
338 	ptrace_unlink(current);
339 	/* Reparent to init */
340 	current->real_parent = current->parent = kthreadd_task;
341 	list_move_tail(&current->sibling, &current->real_parent->children);
342 
343 	/* Set the exit signal to SIGCHLD so we signal init on exit */
344 	current->exit_signal = SIGCHLD;
345 
346 	if (task_nice(current) < 0)
347 		set_user_nice(current, 0);
348 	/* cpus_allowed? */
349 	/* rt_priority? */
350 	/* signals? */
351 	memcpy(current->signal->rlim, init_task.signal->rlim,
352 	       sizeof(current->signal->rlim));
353 
354 	atomic_inc(&init_cred.usage);
355 	commit_creds(&init_cred);
356 	write_unlock_irq(&tasklist_lock);
357 }
358 
359 void __set_special_pids(struct pid *pid)
360 {
361 	struct task_struct *curr = current->group_leader;
362 	pid_t nr = pid_nr(pid);
363 
364 	if (task_session(curr) != pid) {
365 		change_pid(curr, PIDTYPE_SID, pid);
366 		set_task_session(curr, nr);
367 	}
368 	if (task_pgrp(curr) != pid) {
369 		change_pid(curr, PIDTYPE_PGID, pid);
370 		set_task_pgrp(curr, nr);
371 	}
372 }
373 
374 static void set_special_pids(struct pid *pid)
375 {
376 	write_lock_irq(&tasklist_lock);
377 	__set_special_pids(pid);
378 	write_unlock_irq(&tasklist_lock);
379 }
380 
381 /*
382  * Let kernel threads use this to say that they
383  * allow a certain signal (since daemonize() will
384  * have disabled all of them by default).
385  */
386 int allow_signal(int sig)
387 {
388 	if (!valid_signal(sig) || sig < 1)
389 		return -EINVAL;
390 
391 	spin_lock_irq(&current->sighand->siglock);
392 	sigdelset(&current->blocked, sig);
393 	if (!current->mm) {
394 		/* Kernel threads handle their own signals.
395 		   Let the signal code know it'll be handled, so
396 		   that they don't get converted to SIGKILL or
397 		   just silently dropped */
398 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
399 	}
400 	recalc_sigpending();
401 	spin_unlock_irq(&current->sighand->siglock);
402 	return 0;
403 }
404 
405 EXPORT_SYMBOL(allow_signal);
406 
407 int disallow_signal(int sig)
408 {
409 	if (!valid_signal(sig) || sig < 1)
410 		return -EINVAL;
411 
412 	spin_lock_irq(&current->sighand->siglock);
413 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
414 	recalc_sigpending();
415 	spin_unlock_irq(&current->sighand->siglock);
416 	return 0;
417 }
418 
419 EXPORT_SYMBOL(disallow_signal);
420 
421 /*
422  *	Put all the gunge required to become a kernel thread without
423  *	attached user resources in one place where it belongs.
424  */
425 
426 void daemonize(const char *name, ...)
427 {
428 	va_list args;
429 	struct fs_struct *fs;
430 	sigset_t blocked;
431 
432 	va_start(args, name);
433 	vsnprintf(current->comm, sizeof(current->comm), name, args);
434 	va_end(args);
435 
436 	/*
437 	 * If we were started as result of loading a module, close all of the
438 	 * user space pages.  We don't need them, and if we didn't close them
439 	 * they would be locked into memory.
440 	 */
441 	exit_mm(current);
442 	/*
443 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
444 	 * or suspend transition begins right now.
445 	 */
446 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
447 
448 	if (current->nsproxy != &init_nsproxy) {
449 		get_nsproxy(&init_nsproxy);
450 		switch_task_namespaces(current, &init_nsproxy);
451 	}
452 	set_special_pids(&init_struct_pid);
453 	proc_clear_tty(current);
454 
455 	/* Block and flush all signals */
456 	sigfillset(&blocked);
457 	sigprocmask(SIG_BLOCK, &blocked, NULL);
458 	flush_signals(current);
459 
460 	/* Become as one with the init task */
461 
462 	exit_fs(current);	/* current->fs->count--; */
463 	fs = init_task.fs;
464 	current->fs = fs;
465 	atomic_inc(&fs->count);
466 
467 	exit_files(current);
468 	current->files = init_task.files;
469 	atomic_inc(&current->files->count);
470 
471 	reparent_to_kthreadd();
472 }
473 
474 EXPORT_SYMBOL(daemonize);
475 
476 static void close_files(struct files_struct * files)
477 {
478 	int i, j;
479 	struct fdtable *fdt;
480 
481 	j = 0;
482 
483 	/*
484 	 * It is safe to dereference the fd table without RCU or
485 	 * ->file_lock because this is the last reference to the
486 	 * files structure.
487 	 */
488 	fdt = files_fdtable(files);
489 	for (;;) {
490 		unsigned long set;
491 		i = j * __NFDBITS;
492 		if (i >= fdt->max_fds)
493 			break;
494 		set = fdt->open_fds->fds_bits[j++];
495 		while (set) {
496 			if (set & 1) {
497 				struct file * file = xchg(&fdt->fd[i], NULL);
498 				if (file) {
499 					filp_close(file, files);
500 					cond_resched();
501 				}
502 			}
503 			i++;
504 			set >>= 1;
505 		}
506 	}
507 }
508 
509 struct files_struct *get_files_struct(struct task_struct *task)
510 {
511 	struct files_struct *files;
512 
513 	task_lock(task);
514 	files = task->files;
515 	if (files)
516 		atomic_inc(&files->count);
517 	task_unlock(task);
518 
519 	return files;
520 }
521 
522 void put_files_struct(struct files_struct *files)
523 {
524 	struct fdtable *fdt;
525 
526 	if (atomic_dec_and_test(&files->count)) {
527 		close_files(files);
528 		/*
529 		 * Free the fd and fdset arrays if we expanded them.
530 		 * If the fdtable was embedded, pass files for freeing
531 		 * at the end of the RCU grace period. Otherwise,
532 		 * you can free files immediately.
533 		 */
534 		fdt = files_fdtable(files);
535 		if (fdt != &files->fdtab)
536 			kmem_cache_free(files_cachep, files);
537 		free_fdtable(fdt);
538 	}
539 }
540 
541 void reset_files_struct(struct files_struct *files)
542 {
543 	struct task_struct *tsk = current;
544 	struct files_struct *old;
545 
546 	old = tsk->files;
547 	task_lock(tsk);
548 	tsk->files = files;
549 	task_unlock(tsk);
550 	put_files_struct(old);
551 }
552 
553 void exit_files(struct task_struct *tsk)
554 {
555 	struct files_struct * files = tsk->files;
556 
557 	if (files) {
558 		task_lock(tsk);
559 		tsk->files = NULL;
560 		task_unlock(tsk);
561 		put_files_struct(files);
562 	}
563 }
564 
565 void put_fs_struct(struct fs_struct *fs)
566 {
567 	/* No need to hold fs->lock if we are killing it */
568 	if (atomic_dec_and_test(&fs->count)) {
569 		path_put(&fs->root);
570 		path_put(&fs->pwd);
571 		kmem_cache_free(fs_cachep, fs);
572 	}
573 }
574 
575 void exit_fs(struct task_struct *tsk)
576 {
577 	struct fs_struct * fs = tsk->fs;
578 
579 	if (fs) {
580 		task_lock(tsk);
581 		tsk->fs = NULL;
582 		task_unlock(tsk);
583 		put_fs_struct(fs);
584 	}
585 }
586 
587 EXPORT_SYMBOL_GPL(exit_fs);
588 
589 #ifdef CONFIG_MM_OWNER
590 /*
591  * Task p is exiting and it owned mm, lets find a new owner for it
592  */
593 static inline int
594 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
595 {
596 	/*
597 	 * If there are other users of the mm and the owner (us) is exiting
598 	 * we need to find a new owner to take on the responsibility.
599 	 */
600 	if (atomic_read(&mm->mm_users) <= 1)
601 		return 0;
602 	if (mm->owner != p)
603 		return 0;
604 	return 1;
605 }
606 
607 void mm_update_next_owner(struct mm_struct *mm)
608 {
609 	struct task_struct *c, *g, *p = current;
610 
611 retry:
612 	if (!mm_need_new_owner(mm, p))
613 		return;
614 
615 	read_lock(&tasklist_lock);
616 	/*
617 	 * Search in the children
618 	 */
619 	list_for_each_entry(c, &p->children, sibling) {
620 		if (c->mm == mm)
621 			goto assign_new_owner;
622 	}
623 
624 	/*
625 	 * Search in the siblings
626 	 */
627 	list_for_each_entry(c, &p->parent->children, sibling) {
628 		if (c->mm == mm)
629 			goto assign_new_owner;
630 	}
631 
632 	/*
633 	 * Search through everything else. We should not get
634 	 * here often
635 	 */
636 	do_each_thread(g, c) {
637 		if (c->mm == mm)
638 			goto assign_new_owner;
639 	} while_each_thread(g, c);
640 
641 	read_unlock(&tasklist_lock);
642 	/*
643 	 * We found no owner yet mm_users > 1: this implies that we are
644 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
645 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
646 	 */
647 	mm->owner = NULL;
648 	return;
649 
650 assign_new_owner:
651 	BUG_ON(c == p);
652 	get_task_struct(c);
653 	/*
654 	 * The task_lock protects c->mm from changing.
655 	 * We always want mm->owner->mm == mm
656 	 */
657 	task_lock(c);
658 	/*
659 	 * Delay read_unlock() till we have the task_lock()
660 	 * to ensure that c does not slip away underneath us
661 	 */
662 	read_unlock(&tasklist_lock);
663 	if (c->mm != mm) {
664 		task_unlock(c);
665 		put_task_struct(c);
666 		goto retry;
667 	}
668 	mm->owner = c;
669 	task_unlock(c);
670 	put_task_struct(c);
671 }
672 #endif /* CONFIG_MM_OWNER */
673 
674 /*
675  * Turn us into a lazy TLB process if we
676  * aren't already..
677  */
678 static void exit_mm(struct task_struct * tsk)
679 {
680 	struct mm_struct *mm = tsk->mm;
681 	struct core_state *core_state;
682 
683 	mm_release(tsk, mm);
684 	if (!mm)
685 		return;
686 	/*
687 	 * Serialize with any possible pending coredump.
688 	 * We must hold mmap_sem around checking core_state
689 	 * and clearing tsk->mm.  The core-inducing thread
690 	 * will increment ->nr_threads for each thread in the
691 	 * group with ->mm != NULL.
692 	 */
693 	down_read(&mm->mmap_sem);
694 	core_state = mm->core_state;
695 	if (core_state) {
696 		struct core_thread self;
697 		up_read(&mm->mmap_sem);
698 
699 		self.task = tsk;
700 		self.next = xchg(&core_state->dumper.next, &self);
701 		/*
702 		 * Implies mb(), the result of xchg() must be visible
703 		 * to core_state->dumper.
704 		 */
705 		if (atomic_dec_and_test(&core_state->nr_threads))
706 			complete(&core_state->startup);
707 
708 		for (;;) {
709 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
710 			if (!self.task) /* see coredump_finish() */
711 				break;
712 			schedule();
713 		}
714 		__set_task_state(tsk, TASK_RUNNING);
715 		down_read(&mm->mmap_sem);
716 	}
717 	atomic_inc(&mm->mm_count);
718 	BUG_ON(mm != tsk->active_mm);
719 	/* more a memory barrier than a real lock */
720 	task_lock(tsk);
721 	tsk->mm = NULL;
722 	up_read(&mm->mmap_sem);
723 	enter_lazy_tlb(mm, current);
724 	/* We don't want this task to be frozen prematurely */
725 	clear_freeze_flag(tsk);
726 	task_unlock(tsk);
727 	mm_update_next_owner(mm);
728 	mmput(mm);
729 }
730 
731 /*
732  * Return nonzero if @parent's children should reap themselves.
733  *
734  * Called with write_lock_irq(&tasklist_lock) held.
735  */
736 static int ignoring_children(struct task_struct *parent)
737 {
738 	int ret;
739 	struct sighand_struct *psig = parent->sighand;
740 	unsigned long flags;
741 	spin_lock_irqsave(&psig->siglock, flags);
742 	ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
743 	       (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
744 	spin_unlock_irqrestore(&psig->siglock, flags);
745 	return ret;
746 }
747 
748 /*
749  * Detach all tasks we were using ptrace on.
750  * Any that need to be release_task'd are put on the @dead list.
751  *
752  * Called with write_lock(&tasklist_lock) held.
753  */
754 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
755 {
756 	struct task_struct *p, *n;
757 	int ign = -1;
758 
759 	list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
760 		__ptrace_unlink(p);
761 
762 		if (p->exit_state != EXIT_ZOMBIE)
763 			continue;
764 
765 		/*
766 		 * If it's a zombie, our attachedness prevented normal
767 		 * parent notification or self-reaping.  Do notification
768 		 * now if it would have happened earlier.  If it should
769 		 * reap itself, add it to the @dead list.  We can't call
770 		 * release_task() here because we already hold tasklist_lock.
771 		 *
772 		 * If it's our own child, there is no notification to do.
773 		 * But if our normal children self-reap, then this child
774 		 * was prevented by ptrace and we must reap it now.
775 		 */
776 		if (!task_detached(p) && thread_group_empty(p)) {
777 			if (!same_thread_group(p->real_parent, parent))
778 				do_notify_parent(p, p->exit_signal);
779 			else {
780 				if (ign < 0)
781 					ign = ignoring_children(parent);
782 				if (ign)
783 					p->exit_signal = -1;
784 			}
785 		}
786 
787 		if (task_detached(p)) {
788 			/*
789 			 * Mark it as in the process of being reaped.
790 			 */
791 			p->exit_state = EXIT_DEAD;
792 			list_add(&p->ptrace_entry, dead);
793 		}
794 	}
795 }
796 
797 /*
798  * Finish up exit-time ptrace cleanup.
799  *
800  * Called without locks.
801  */
802 static void ptrace_exit_finish(struct task_struct *parent,
803 			       struct list_head *dead)
804 {
805 	struct task_struct *p, *n;
806 
807 	BUG_ON(!list_empty(&parent->ptraced));
808 
809 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
810 		list_del_init(&p->ptrace_entry);
811 		release_task(p);
812 	}
813 }
814 
815 static void reparent_thread(struct task_struct *p, struct task_struct *father)
816 {
817 	if (p->pdeath_signal)
818 		/* We already hold the tasklist_lock here.  */
819 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
820 
821 	list_move_tail(&p->sibling, &p->real_parent->children);
822 
823 	/* If this is a threaded reparent there is no need to
824 	 * notify anyone anything has happened.
825 	 */
826 	if (same_thread_group(p->real_parent, father))
827 		return;
828 
829 	/* We don't want people slaying init.  */
830 	if (!task_detached(p))
831 		p->exit_signal = SIGCHLD;
832 
833 	/* If we'd notified the old parent about this child's death,
834 	 * also notify the new parent.
835 	 */
836 	if (!ptrace_reparented(p) &&
837 	    p->exit_state == EXIT_ZOMBIE &&
838 	    !task_detached(p) && thread_group_empty(p))
839 		do_notify_parent(p, p->exit_signal);
840 
841 	kill_orphaned_pgrp(p, father);
842 }
843 
844 /*
845  * When we die, we re-parent all our children.
846  * Try to give them to another thread in our thread
847  * group, and if no such member exists, give it to
848  * the child reaper process (ie "init") in our pid
849  * space.
850  */
851 static struct task_struct *find_new_reaper(struct task_struct *father)
852 {
853 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
854 	struct task_struct *thread;
855 
856 	thread = father;
857 	while_each_thread(father, thread) {
858 		if (thread->flags & PF_EXITING)
859 			continue;
860 		if (unlikely(pid_ns->child_reaper == father))
861 			pid_ns->child_reaper = thread;
862 		return thread;
863 	}
864 
865 	if (unlikely(pid_ns->child_reaper == father)) {
866 		write_unlock_irq(&tasklist_lock);
867 		if (unlikely(pid_ns == &init_pid_ns))
868 			panic("Attempted to kill init!");
869 
870 		zap_pid_ns_processes(pid_ns);
871 		write_lock_irq(&tasklist_lock);
872 		/*
873 		 * We can not clear ->child_reaper or leave it alone.
874 		 * There may by stealth EXIT_DEAD tasks on ->children,
875 		 * forget_original_parent() must move them somewhere.
876 		 */
877 		pid_ns->child_reaper = init_pid_ns.child_reaper;
878 	}
879 
880 	return pid_ns->child_reaper;
881 }
882 
883 static void forget_original_parent(struct task_struct *father)
884 {
885 	struct task_struct *p, *n, *reaper;
886 	LIST_HEAD(ptrace_dead);
887 
888 	write_lock_irq(&tasklist_lock);
889 	reaper = find_new_reaper(father);
890 	/*
891 	 * First clean up ptrace if we were using it.
892 	 */
893 	ptrace_exit(father, &ptrace_dead);
894 
895 	list_for_each_entry_safe(p, n, &father->children, sibling) {
896 		p->real_parent = reaper;
897 		if (p->parent == father) {
898 			BUG_ON(p->ptrace);
899 			p->parent = p->real_parent;
900 		}
901 		reparent_thread(p, father);
902 	}
903 
904 	write_unlock_irq(&tasklist_lock);
905 	BUG_ON(!list_empty(&father->children));
906 
907 	ptrace_exit_finish(father, &ptrace_dead);
908 }
909 
910 /*
911  * Send signals to all our closest relatives so that they know
912  * to properly mourn us..
913  */
914 static void exit_notify(struct task_struct *tsk, int group_dead)
915 {
916 	int signal;
917 	void *cookie;
918 
919 	/*
920 	 * This does two things:
921 	 *
922   	 * A.  Make init inherit all the child processes
923 	 * B.  Check to see if any process groups have become orphaned
924 	 *	as a result of our exiting, and if they have any stopped
925 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
926 	 */
927 	forget_original_parent(tsk);
928 	exit_task_namespaces(tsk);
929 
930 	write_lock_irq(&tasklist_lock);
931 	if (group_dead)
932 		kill_orphaned_pgrp(tsk->group_leader, NULL);
933 
934 	/* Let father know we died
935 	 *
936 	 * Thread signals are configurable, but you aren't going to use
937 	 * that to send signals to arbitary processes.
938 	 * That stops right now.
939 	 *
940 	 * If the parent exec id doesn't match the exec id we saved
941 	 * when we started then we know the parent has changed security
942 	 * domain.
943 	 *
944 	 * If our self_exec id doesn't match our parent_exec_id then
945 	 * we have changed execution domain as these two values started
946 	 * the same after a fork.
947 	 */
948 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
949 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
950 	     tsk->self_exec_id != tsk->parent_exec_id) &&
951 	    !capable(CAP_KILL))
952 		tsk->exit_signal = SIGCHLD;
953 
954 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
955 	if (signal >= 0)
956 		signal = do_notify_parent(tsk, signal);
957 
958 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
959 
960 	/* mt-exec, de_thread() is waiting for us */
961 	if (thread_group_leader(tsk) &&
962 	    tsk->signal->group_exit_task &&
963 	    tsk->signal->notify_count < 0)
964 		wake_up_process(tsk->signal->group_exit_task);
965 
966 	write_unlock_irq(&tasklist_lock);
967 
968 	tracehook_report_death(tsk, signal, cookie, group_dead);
969 
970 	/* If the process is dead, release it - nobody will wait for it */
971 	if (signal == DEATH_REAP)
972 		release_task(tsk);
973 }
974 
975 #ifdef CONFIG_DEBUG_STACK_USAGE
976 static void check_stack_usage(void)
977 {
978 	static DEFINE_SPINLOCK(low_water_lock);
979 	static int lowest_to_date = THREAD_SIZE;
980 	unsigned long *n = end_of_stack(current);
981 	unsigned long free;
982 
983 	while (*n == 0)
984 		n++;
985 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
986 
987 	if (free >= lowest_to_date)
988 		return;
989 
990 	spin_lock(&low_water_lock);
991 	if (free < lowest_to_date) {
992 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
993 				"left\n",
994 				current->comm, free);
995 		lowest_to_date = free;
996 	}
997 	spin_unlock(&low_water_lock);
998 }
999 #else
1000 static inline void check_stack_usage(void) {}
1001 #endif
1002 
1003 NORET_TYPE void do_exit(long code)
1004 {
1005 	struct task_struct *tsk = current;
1006 	int group_dead;
1007 
1008 	profile_task_exit(tsk);
1009 
1010 	WARN_ON(atomic_read(&tsk->fs_excl));
1011 
1012 	if (unlikely(in_interrupt()))
1013 		panic("Aiee, killing interrupt handler!");
1014 	if (unlikely(!tsk->pid))
1015 		panic("Attempted to kill the idle task!");
1016 
1017 	tracehook_report_exit(&code);
1018 
1019 	/*
1020 	 * We're taking recursive faults here in do_exit. Safest is to just
1021 	 * leave this task alone and wait for reboot.
1022 	 */
1023 	if (unlikely(tsk->flags & PF_EXITING)) {
1024 		printk(KERN_ALERT
1025 			"Fixing recursive fault but reboot is needed!\n");
1026 		/*
1027 		 * We can do this unlocked here. The futex code uses
1028 		 * this flag just to verify whether the pi state
1029 		 * cleanup has been done or not. In the worst case it
1030 		 * loops once more. We pretend that the cleanup was
1031 		 * done as there is no way to return. Either the
1032 		 * OWNER_DIED bit is set by now or we push the blocked
1033 		 * task into the wait for ever nirwana as well.
1034 		 */
1035 		tsk->flags |= PF_EXITPIDONE;
1036 		set_current_state(TASK_UNINTERRUPTIBLE);
1037 		schedule();
1038 	}
1039 
1040 	exit_signals(tsk);  /* sets PF_EXITING */
1041 	/*
1042 	 * tsk->flags are checked in the futex code to protect against
1043 	 * an exiting task cleaning up the robust pi futexes.
1044 	 */
1045 	smp_mb();
1046 	spin_unlock_wait(&tsk->pi_lock);
1047 
1048 	if (unlikely(in_atomic()))
1049 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1050 				current->comm, task_pid_nr(current),
1051 				preempt_count());
1052 
1053 	acct_update_integrals(tsk);
1054 
1055 	group_dead = atomic_dec_and_test(&tsk->signal->live);
1056 	if (group_dead) {
1057 		hrtimer_cancel(&tsk->signal->real_timer);
1058 		exit_itimers(tsk->signal);
1059 	}
1060 	acct_collect(code, group_dead);
1061 	if (group_dead)
1062 		tty_audit_exit();
1063 	if (unlikely(tsk->audit_context))
1064 		audit_free(tsk);
1065 
1066 	tsk->exit_code = code;
1067 	taskstats_exit(tsk, group_dead);
1068 
1069 	exit_mm(tsk);
1070 
1071 	if (group_dead)
1072 		acct_process();
1073 	trace_sched_process_exit(tsk);
1074 
1075 	exit_sem(tsk);
1076 	exit_files(tsk);
1077 	exit_fs(tsk);
1078 	check_stack_usage();
1079 	exit_thread();
1080 	cgroup_exit(tsk, 1);
1081 
1082 	if (group_dead && tsk->signal->leader)
1083 		disassociate_ctty(1);
1084 
1085 	module_put(task_thread_info(tsk)->exec_domain->module);
1086 	if (tsk->binfmt)
1087 		module_put(tsk->binfmt->module);
1088 
1089 	proc_exit_connector(tsk);
1090 	exit_notify(tsk, group_dead);
1091 #ifdef CONFIG_NUMA
1092 	mpol_put(tsk->mempolicy);
1093 	tsk->mempolicy = NULL;
1094 #endif
1095 #ifdef CONFIG_FUTEX
1096 	/*
1097 	 * This must happen late, after the PID is not
1098 	 * hashed anymore:
1099 	 */
1100 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1101 		exit_pi_state_list(tsk);
1102 	if (unlikely(current->pi_state_cache))
1103 		kfree(current->pi_state_cache);
1104 #endif
1105 	/*
1106 	 * Make sure we are holding no locks:
1107 	 */
1108 	debug_check_no_locks_held(tsk);
1109 	/*
1110 	 * We can do this unlocked here. The futex code uses this flag
1111 	 * just to verify whether the pi state cleanup has been done
1112 	 * or not. In the worst case it loops once more.
1113 	 */
1114 	tsk->flags |= PF_EXITPIDONE;
1115 
1116 	if (tsk->io_context)
1117 		exit_io_context();
1118 
1119 	if (tsk->splice_pipe)
1120 		__free_pipe_info(tsk->splice_pipe);
1121 
1122 	preempt_disable();
1123 	/* causes final put_task_struct in finish_task_switch(). */
1124 	tsk->state = TASK_DEAD;
1125 	schedule();
1126 	BUG();
1127 	/* Avoid "noreturn function does return".  */
1128 	for (;;)
1129 		cpu_relax();	/* For when BUG is null */
1130 }
1131 
1132 EXPORT_SYMBOL_GPL(do_exit);
1133 
1134 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1135 {
1136 	if (comp)
1137 		complete(comp);
1138 
1139 	do_exit(code);
1140 }
1141 
1142 EXPORT_SYMBOL(complete_and_exit);
1143 
1144 asmlinkage long sys_exit(int error_code)
1145 {
1146 	do_exit((error_code&0xff)<<8);
1147 }
1148 
1149 /*
1150  * Take down every thread in the group.  This is called by fatal signals
1151  * as well as by sys_exit_group (below).
1152  */
1153 NORET_TYPE void
1154 do_group_exit(int exit_code)
1155 {
1156 	struct signal_struct *sig = current->signal;
1157 
1158 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1159 
1160 	if (signal_group_exit(sig))
1161 		exit_code = sig->group_exit_code;
1162 	else if (!thread_group_empty(current)) {
1163 		struct sighand_struct *const sighand = current->sighand;
1164 		spin_lock_irq(&sighand->siglock);
1165 		if (signal_group_exit(sig))
1166 			/* Another thread got here before we took the lock.  */
1167 			exit_code = sig->group_exit_code;
1168 		else {
1169 			sig->group_exit_code = exit_code;
1170 			sig->flags = SIGNAL_GROUP_EXIT;
1171 			zap_other_threads(current);
1172 		}
1173 		spin_unlock_irq(&sighand->siglock);
1174 	}
1175 
1176 	do_exit(exit_code);
1177 	/* NOTREACHED */
1178 }
1179 
1180 /*
1181  * this kills every thread in the thread group. Note that any externally
1182  * wait4()-ing process will get the correct exit code - even if this
1183  * thread is not the thread group leader.
1184  */
1185 asmlinkage void sys_exit_group(int error_code)
1186 {
1187 	do_group_exit((error_code & 0xff) << 8);
1188 }
1189 
1190 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1191 {
1192 	struct pid *pid = NULL;
1193 	if (type == PIDTYPE_PID)
1194 		pid = task->pids[type].pid;
1195 	else if (type < PIDTYPE_MAX)
1196 		pid = task->group_leader->pids[type].pid;
1197 	return pid;
1198 }
1199 
1200 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1201 			  struct task_struct *p)
1202 {
1203 	int err;
1204 
1205 	if (type < PIDTYPE_MAX) {
1206 		if (task_pid_type(p, type) != pid)
1207 			return 0;
1208 	}
1209 
1210 	/* Wait for all children (clone and not) if __WALL is set;
1211 	 * otherwise, wait for clone children *only* if __WCLONE is
1212 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1213 	 * A "clone" child here is one that reports to its parent
1214 	 * using a signal other than SIGCHLD.) */
1215 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1216 	    && !(options & __WALL))
1217 		return 0;
1218 
1219 	err = security_task_wait(p);
1220 	if (err)
1221 		return err;
1222 
1223 	return 1;
1224 }
1225 
1226 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1227 			       int why, int status,
1228 			       struct siginfo __user *infop,
1229 			       struct rusage __user *rusagep)
1230 {
1231 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1232 
1233 	put_task_struct(p);
1234 	if (!retval)
1235 		retval = put_user(SIGCHLD, &infop->si_signo);
1236 	if (!retval)
1237 		retval = put_user(0, &infop->si_errno);
1238 	if (!retval)
1239 		retval = put_user((short)why, &infop->si_code);
1240 	if (!retval)
1241 		retval = put_user(pid, &infop->si_pid);
1242 	if (!retval)
1243 		retval = put_user(uid, &infop->si_uid);
1244 	if (!retval)
1245 		retval = put_user(status, &infop->si_status);
1246 	if (!retval)
1247 		retval = pid;
1248 	return retval;
1249 }
1250 
1251 /*
1252  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1253  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1254  * the lock and this task is uninteresting.  If we return nonzero, we have
1255  * released the lock and the system call should return.
1256  */
1257 static int wait_task_zombie(struct task_struct *p, int options,
1258 			    struct siginfo __user *infop,
1259 			    int __user *stat_addr, struct rusage __user *ru)
1260 {
1261 	unsigned long state;
1262 	int retval, status, traced;
1263 	pid_t pid = task_pid_vnr(p);
1264 	uid_t uid = __task_cred(p)->uid;
1265 
1266 	if (!likely(options & WEXITED))
1267 		return 0;
1268 
1269 	if (unlikely(options & WNOWAIT)) {
1270 		int exit_code = p->exit_code;
1271 		int why, status;
1272 
1273 		get_task_struct(p);
1274 		read_unlock(&tasklist_lock);
1275 		if ((exit_code & 0x7f) == 0) {
1276 			why = CLD_EXITED;
1277 			status = exit_code >> 8;
1278 		} else {
1279 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1280 			status = exit_code & 0x7f;
1281 		}
1282 		return wait_noreap_copyout(p, pid, uid, why,
1283 					   status, infop, ru);
1284 	}
1285 
1286 	/*
1287 	 * Try to move the task's state to DEAD
1288 	 * only one thread is allowed to do this:
1289 	 */
1290 	state = xchg(&p->exit_state, EXIT_DEAD);
1291 	if (state != EXIT_ZOMBIE) {
1292 		BUG_ON(state != EXIT_DEAD);
1293 		return 0;
1294 	}
1295 
1296 	traced = ptrace_reparented(p);
1297 
1298 	if (likely(!traced)) {
1299 		struct signal_struct *psig;
1300 		struct signal_struct *sig;
1301 		struct task_cputime cputime;
1302 
1303 		/*
1304 		 * The resource counters for the group leader are in its
1305 		 * own task_struct.  Those for dead threads in the group
1306 		 * are in its signal_struct, as are those for the child
1307 		 * processes it has previously reaped.  All these
1308 		 * accumulate in the parent's signal_struct c* fields.
1309 		 *
1310 		 * We don't bother to take a lock here to protect these
1311 		 * p->signal fields, because they are only touched by
1312 		 * __exit_signal, which runs with tasklist_lock
1313 		 * write-locked anyway, and so is excluded here.  We do
1314 		 * need to protect the access to p->parent->signal fields,
1315 		 * as other threads in the parent group can be right
1316 		 * here reaping other children at the same time.
1317 		 *
1318 		 * We use thread_group_cputime() to get times for the thread
1319 		 * group, which consolidates times for all threads in the
1320 		 * group including the group leader.
1321 		 */
1322 		thread_group_cputime(p, &cputime);
1323 		spin_lock_irq(&p->parent->sighand->siglock);
1324 		psig = p->parent->signal;
1325 		sig = p->signal;
1326 		psig->cutime =
1327 			cputime_add(psig->cutime,
1328 			cputime_add(cputime.utime,
1329 				    sig->cutime));
1330 		psig->cstime =
1331 			cputime_add(psig->cstime,
1332 			cputime_add(cputime.stime,
1333 				    sig->cstime));
1334 		psig->cgtime =
1335 			cputime_add(psig->cgtime,
1336 			cputime_add(p->gtime,
1337 			cputime_add(sig->gtime,
1338 				    sig->cgtime)));
1339 		psig->cmin_flt +=
1340 			p->min_flt + sig->min_flt + sig->cmin_flt;
1341 		psig->cmaj_flt +=
1342 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1343 		psig->cnvcsw +=
1344 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1345 		psig->cnivcsw +=
1346 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1347 		psig->cinblock +=
1348 			task_io_get_inblock(p) +
1349 			sig->inblock + sig->cinblock;
1350 		psig->coublock +=
1351 			task_io_get_oublock(p) +
1352 			sig->oublock + sig->coublock;
1353 		task_io_accounting_add(&psig->ioac, &p->ioac);
1354 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1355 		spin_unlock_irq(&p->parent->sighand->siglock);
1356 	}
1357 
1358 	/*
1359 	 * Now we are sure this task is interesting, and no other
1360 	 * thread can reap it because we set its state to EXIT_DEAD.
1361 	 */
1362 	read_unlock(&tasklist_lock);
1363 
1364 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1365 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1366 		? p->signal->group_exit_code : p->exit_code;
1367 	if (!retval && stat_addr)
1368 		retval = put_user(status, stat_addr);
1369 	if (!retval && infop)
1370 		retval = put_user(SIGCHLD, &infop->si_signo);
1371 	if (!retval && infop)
1372 		retval = put_user(0, &infop->si_errno);
1373 	if (!retval && infop) {
1374 		int why;
1375 
1376 		if ((status & 0x7f) == 0) {
1377 			why = CLD_EXITED;
1378 			status >>= 8;
1379 		} else {
1380 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1381 			status &= 0x7f;
1382 		}
1383 		retval = put_user((short)why, &infop->si_code);
1384 		if (!retval)
1385 			retval = put_user(status, &infop->si_status);
1386 	}
1387 	if (!retval && infop)
1388 		retval = put_user(pid, &infop->si_pid);
1389 	if (!retval && infop)
1390 		retval = put_user(uid, &infop->si_uid);
1391 	if (!retval)
1392 		retval = pid;
1393 
1394 	if (traced) {
1395 		write_lock_irq(&tasklist_lock);
1396 		/* We dropped tasklist, ptracer could die and untrace */
1397 		ptrace_unlink(p);
1398 		/*
1399 		 * If this is not a detached task, notify the parent.
1400 		 * If it's still not detached after that, don't release
1401 		 * it now.
1402 		 */
1403 		if (!task_detached(p)) {
1404 			do_notify_parent(p, p->exit_signal);
1405 			if (!task_detached(p)) {
1406 				p->exit_state = EXIT_ZOMBIE;
1407 				p = NULL;
1408 			}
1409 		}
1410 		write_unlock_irq(&tasklist_lock);
1411 	}
1412 	if (p != NULL)
1413 		release_task(p);
1414 
1415 	return retval;
1416 }
1417 
1418 /*
1419  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1420  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1421  * the lock and this task is uninteresting.  If we return nonzero, we have
1422  * released the lock and the system call should return.
1423  */
1424 static int wait_task_stopped(int ptrace, struct task_struct *p,
1425 			     int options, struct siginfo __user *infop,
1426 			     int __user *stat_addr, struct rusage __user *ru)
1427 {
1428 	int retval, exit_code, why;
1429 	uid_t uid = 0; /* unneeded, required by compiler */
1430 	pid_t pid;
1431 
1432 	if (!(options & WUNTRACED))
1433 		return 0;
1434 
1435 	exit_code = 0;
1436 	spin_lock_irq(&p->sighand->siglock);
1437 
1438 	if (unlikely(!task_is_stopped_or_traced(p)))
1439 		goto unlock_sig;
1440 
1441 	if (!ptrace && p->signal->group_stop_count > 0)
1442 		/*
1443 		 * A group stop is in progress and this is the group leader.
1444 		 * We won't report until all threads have stopped.
1445 		 */
1446 		goto unlock_sig;
1447 
1448 	exit_code = p->exit_code;
1449 	if (!exit_code)
1450 		goto unlock_sig;
1451 
1452 	if (!unlikely(options & WNOWAIT))
1453 		p->exit_code = 0;
1454 
1455 	/* don't need the RCU readlock here as we're holding a spinlock */
1456 	uid = __task_cred(p)->uid;
1457 unlock_sig:
1458 	spin_unlock_irq(&p->sighand->siglock);
1459 	if (!exit_code)
1460 		return 0;
1461 
1462 	/*
1463 	 * Now we are pretty sure this task is interesting.
1464 	 * Make sure it doesn't get reaped out from under us while we
1465 	 * give up the lock and then examine it below.  We don't want to
1466 	 * keep holding onto the tasklist_lock while we call getrusage and
1467 	 * possibly take page faults for user memory.
1468 	 */
1469 	get_task_struct(p);
1470 	pid = task_pid_vnr(p);
1471 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1472 	read_unlock(&tasklist_lock);
1473 
1474 	if (unlikely(options & WNOWAIT))
1475 		return wait_noreap_copyout(p, pid, uid,
1476 					   why, exit_code,
1477 					   infop, ru);
1478 
1479 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1480 	if (!retval && stat_addr)
1481 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1482 	if (!retval && infop)
1483 		retval = put_user(SIGCHLD, &infop->si_signo);
1484 	if (!retval && infop)
1485 		retval = put_user(0, &infop->si_errno);
1486 	if (!retval && infop)
1487 		retval = put_user((short)why, &infop->si_code);
1488 	if (!retval && infop)
1489 		retval = put_user(exit_code, &infop->si_status);
1490 	if (!retval && infop)
1491 		retval = put_user(pid, &infop->si_pid);
1492 	if (!retval && infop)
1493 		retval = put_user(uid, &infop->si_uid);
1494 	if (!retval)
1495 		retval = pid;
1496 	put_task_struct(p);
1497 
1498 	BUG_ON(!retval);
1499 	return retval;
1500 }
1501 
1502 /*
1503  * Handle do_wait work for one task in a live, non-stopped state.
1504  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1505  * the lock and this task is uninteresting.  If we return nonzero, we have
1506  * released the lock and the system call should return.
1507  */
1508 static int wait_task_continued(struct task_struct *p, int options,
1509 			       struct siginfo __user *infop,
1510 			       int __user *stat_addr, struct rusage __user *ru)
1511 {
1512 	int retval;
1513 	pid_t pid;
1514 	uid_t uid;
1515 
1516 	if (!unlikely(options & WCONTINUED))
1517 		return 0;
1518 
1519 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1520 		return 0;
1521 
1522 	spin_lock_irq(&p->sighand->siglock);
1523 	/* Re-check with the lock held.  */
1524 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1525 		spin_unlock_irq(&p->sighand->siglock);
1526 		return 0;
1527 	}
1528 	if (!unlikely(options & WNOWAIT))
1529 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1530 	uid = __task_cred(p)->uid;
1531 	spin_unlock_irq(&p->sighand->siglock);
1532 
1533 	pid = task_pid_vnr(p);
1534 	get_task_struct(p);
1535 	read_unlock(&tasklist_lock);
1536 
1537 	if (!infop) {
1538 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1539 		put_task_struct(p);
1540 		if (!retval && stat_addr)
1541 			retval = put_user(0xffff, stat_addr);
1542 		if (!retval)
1543 			retval = pid;
1544 	} else {
1545 		retval = wait_noreap_copyout(p, pid, uid,
1546 					     CLD_CONTINUED, SIGCONT,
1547 					     infop, ru);
1548 		BUG_ON(retval == 0);
1549 	}
1550 
1551 	return retval;
1552 }
1553 
1554 /*
1555  * Consider @p for a wait by @parent.
1556  *
1557  * -ECHILD should be in *@notask_error before the first call.
1558  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1559  * Returns zero if the search for a child should continue;
1560  * then *@notask_error is 0 if @p is an eligible child,
1561  * or another error from security_task_wait(), or still -ECHILD.
1562  */
1563 static int wait_consider_task(struct task_struct *parent, int ptrace,
1564 			      struct task_struct *p, int *notask_error,
1565 			      enum pid_type type, struct pid *pid, int options,
1566 			      struct siginfo __user *infop,
1567 			      int __user *stat_addr, struct rusage __user *ru)
1568 {
1569 	int ret = eligible_child(type, pid, options, p);
1570 	if (!ret)
1571 		return ret;
1572 
1573 	if (unlikely(ret < 0)) {
1574 		/*
1575 		 * If we have not yet seen any eligible child,
1576 		 * then let this error code replace -ECHILD.
1577 		 * A permission error will give the user a clue
1578 		 * to look for security policy problems, rather
1579 		 * than for mysterious wait bugs.
1580 		 */
1581 		if (*notask_error)
1582 			*notask_error = ret;
1583 	}
1584 
1585 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1586 		/*
1587 		 * This child is hidden by ptrace.
1588 		 * We aren't allowed to see it now, but eventually we will.
1589 		 */
1590 		*notask_error = 0;
1591 		return 0;
1592 	}
1593 
1594 	if (p->exit_state == EXIT_DEAD)
1595 		return 0;
1596 
1597 	/*
1598 	 * We don't reap group leaders with subthreads.
1599 	 */
1600 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1601 		return wait_task_zombie(p, options, infop, stat_addr, ru);
1602 
1603 	/*
1604 	 * It's stopped or running now, so it might
1605 	 * later continue, exit, or stop again.
1606 	 */
1607 	*notask_error = 0;
1608 
1609 	if (task_is_stopped_or_traced(p))
1610 		return wait_task_stopped(ptrace, p, options,
1611 					 infop, stat_addr, ru);
1612 
1613 	return wait_task_continued(p, options, infop, stat_addr, ru);
1614 }
1615 
1616 /*
1617  * Do the work of do_wait() for one thread in the group, @tsk.
1618  *
1619  * -ECHILD should be in *@notask_error before the first call.
1620  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1621  * Returns zero if the search for a child should continue; then
1622  * *@notask_error is 0 if there were any eligible children,
1623  * or another error from security_task_wait(), or still -ECHILD.
1624  */
1625 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1626 			  enum pid_type type, struct pid *pid, int options,
1627 			  struct siginfo __user *infop, int __user *stat_addr,
1628 			  struct rusage __user *ru)
1629 {
1630 	struct task_struct *p;
1631 
1632 	list_for_each_entry(p, &tsk->children, sibling) {
1633 		/*
1634 		 * Do not consider detached threads.
1635 		 */
1636 		if (!task_detached(p)) {
1637 			int ret = wait_consider_task(tsk, 0, p, notask_error,
1638 						     type, pid, options,
1639 						     infop, stat_addr, ru);
1640 			if (ret)
1641 				return ret;
1642 		}
1643 	}
1644 
1645 	return 0;
1646 }
1647 
1648 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1649 			  enum pid_type type, struct pid *pid, int options,
1650 			  struct siginfo __user *infop, int __user *stat_addr,
1651 			  struct rusage __user *ru)
1652 {
1653 	struct task_struct *p;
1654 
1655 	/*
1656 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1657 	 */
1658 	options |= WUNTRACED;
1659 
1660 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1661 		int ret = wait_consider_task(tsk, 1, p, notask_error,
1662 					     type, pid, options,
1663 					     infop, stat_addr, ru);
1664 		if (ret)
1665 			return ret;
1666 	}
1667 
1668 	return 0;
1669 }
1670 
1671 static long do_wait(enum pid_type type, struct pid *pid, int options,
1672 		    struct siginfo __user *infop, int __user *stat_addr,
1673 		    struct rusage __user *ru)
1674 {
1675 	DECLARE_WAITQUEUE(wait, current);
1676 	struct task_struct *tsk;
1677 	int retval;
1678 
1679 	trace_sched_process_wait(pid);
1680 
1681 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1682 repeat:
1683 	/*
1684 	 * If there is nothing that can match our critiera just get out.
1685 	 * We will clear @retval to zero if we see any child that might later
1686 	 * match our criteria, even if we are not able to reap it yet.
1687 	 */
1688 	retval = -ECHILD;
1689 	if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1690 		goto end;
1691 
1692 	current->state = TASK_INTERRUPTIBLE;
1693 	read_lock(&tasklist_lock);
1694 	tsk = current;
1695 	do {
1696 		int tsk_result = do_wait_thread(tsk, &retval,
1697 						type, pid, options,
1698 						infop, stat_addr, ru);
1699 		if (!tsk_result)
1700 			tsk_result = ptrace_do_wait(tsk, &retval,
1701 						    type, pid, options,
1702 						    infop, stat_addr, ru);
1703 		if (tsk_result) {
1704 			/*
1705 			 * tasklist_lock is unlocked and we have a final result.
1706 			 */
1707 			retval = tsk_result;
1708 			goto end;
1709 		}
1710 
1711 		if (options & __WNOTHREAD)
1712 			break;
1713 		tsk = next_thread(tsk);
1714 		BUG_ON(tsk->signal != current->signal);
1715 	} while (tsk != current);
1716 	read_unlock(&tasklist_lock);
1717 
1718 	if (!retval && !(options & WNOHANG)) {
1719 		retval = -ERESTARTSYS;
1720 		if (!signal_pending(current)) {
1721 			schedule();
1722 			goto repeat;
1723 		}
1724 	}
1725 
1726 end:
1727 	current->state = TASK_RUNNING;
1728 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1729 	if (infop) {
1730 		if (retval > 0)
1731 			retval = 0;
1732 		else {
1733 			/*
1734 			 * For a WNOHANG return, clear out all the fields
1735 			 * we would set so the user can easily tell the
1736 			 * difference.
1737 			 */
1738 			if (!retval)
1739 				retval = put_user(0, &infop->si_signo);
1740 			if (!retval)
1741 				retval = put_user(0, &infop->si_errno);
1742 			if (!retval)
1743 				retval = put_user(0, &infop->si_code);
1744 			if (!retval)
1745 				retval = put_user(0, &infop->si_pid);
1746 			if (!retval)
1747 				retval = put_user(0, &infop->si_uid);
1748 			if (!retval)
1749 				retval = put_user(0, &infop->si_status);
1750 		}
1751 	}
1752 	return retval;
1753 }
1754 
1755 asmlinkage long sys_waitid(int which, pid_t upid,
1756 			   struct siginfo __user *infop, int options,
1757 			   struct rusage __user *ru)
1758 {
1759 	struct pid *pid = NULL;
1760 	enum pid_type type;
1761 	long ret;
1762 
1763 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1764 		return -EINVAL;
1765 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1766 		return -EINVAL;
1767 
1768 	switch (which) {
1769 	case P_ALL:
1770 		type = PIDTYPE_MAX;
1771 		break;
1772 	case P_PID:
1773 		type = PIDTYPE_PID;
1774 		if (upid <= 0)
1775 			return -EINVAL;
1776 		break;
1777 	case P_PGID:
1778 		type = PIDTYPE_PGID;
1779 		if (upid <= 0)
1780 			return -EINVAL;
1781 		break;
1782 	default:
1783 		return -EINVAL;
1784 	}
1785 
1786 	if (type < PIDTYPE_MAX)
1787 		pid = find_get_pid(upid);
1788 	ret = do_wait(type, pid, options, infop, NULL, ru);
1789 	put_pid(pid);
1790 
1791 	/* avoid REGPARM breakage on x86: */
1792 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1793 	return ret;
1794 }
1795 
1796 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1797 			  int options, struct rusage __user *ru)
1798 {
1799 	struct pid *pid = NULL;
1800 	enum pid_type type;
1801 	long ret;
1802 
1803 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1804 			__WNOTHREAD|__WCLONE|__WALL))
1805 		return -EINVAL;
1806 
1807 	if (upid == -1)
1808 		type = PIDTYPE_MAX;
1809 	else if (upid < 0) {
1810 		type = PIDTYPE_PGID;
1811 		pid = find_get_pid(-upid);
1812 	} else if (upid == 0) {
1813 		type = PIDTYPE_PGID;
1814 		pid = get_pid(task_pgrp(current));
1815 	} else /* upid > 0 */ {
1816 		type = PIDTYPE_PID;
1817 		pid = find_get_pid(upid);
1818 	}
1819 
1820 	ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1821 	put_pid(pid);
1822 
1823 	/* avoid REGPARM breakage on x86: */
1824 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1825 	return ret;
1826 }
1827 
1828 #ifdef __ARCH_WANT_SYS_WAITPID
1829 
1830 /*
1831  * sys_waitpid() remains for compatibility. waitpid() should be
1832  * implemented by calling sys_wait4() from libc.a.
1833  */
1834 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1835 {
1836 	return sys_wait4(pid, stat_addr, options, NULL);
1837 }
1838 
1839 #endif
1840