xref: /linux-6.15/kernel/exit.c (revision 2a22b773)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 #include <linux/uaccess.h>
73 
74 #include <uapi/linux/wait.h>
75 
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78 
79 #include "exit.h"
80 
81 /*
82  * The default value should be high enough to not crash a system that randomly
83  * crashes its kernel from time to time, but low enough to at least not permit
84  * overflowing 32-bit refcounts or the ldsem writer count.
85  */
86 static unsigned int oops_limit = 10000;
87 
88 #ifdef CONFIG_SYSCTL
89 static struct ctl_table kern_exit_table[] = {
90 	{
91 		.procname       = "oops_limit",
92 		.data           = &oops_limit,
93 		.maxlen         = sizeof(oops_limit),
94 		.mode           = 0644,
95 		.proc_handler   = proc_douintvec,
96 	},
97 };
98 
99 static __init int kernel_exit_sysctls_init(void)
100 {
101 	register_sysctl_init("kernel", kern_exit_table);
102 	return 0;
103 }
104 late_initcall(kernel_exit_sysctls_init);
105 #endif
106 
107 static atomic_t oops_count = ATOMIC_INIT(0);
108 
109 #ifdef CONFIG_SYSFS
110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
111 			       char *page)
112 {
113 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
114 }
115 
116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
117 
118 static __init int kernel_exit_sysfs_init(void)
119 {
120 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
121 	return 0;
122 }
123 late_initcall(kernel_exit_sysfs_init);
124 #endif
125 
126 static void __unhash_process(struct task_struct *p, bool group_dead)
127 {
128 	nr_threads--;
129 	detach_pid(p, PIDTYPE_PID);
130 	if (group_dead) {
131 		detach_pid(p, PIDTYPE_TGID);
132 		detach_pid(p, PIDTYPE_PGID);
133 		detach_pid(p, PIDTYPE_SID);
134 
135 		list_del_rcu(&p->tasks);
136 		list_del_init(&p->sibling);
137 		__this_cpu_dec(process_counts);
138 	}
139 	list_del_rcu(&p->thread_node);
140 }
141 
142 /*
143  * This function expects the tasklist_lock write-locked.
144  */
145 static void __exit_signal(struct task_struct *tsk)
146 {
147 	struct signal_struct *sig = tsk->signal;
148 	bool group_dead = thread_group_leader(tsk);
149 	struct sighand_struct *sighand;
150 	struct tty_struct *tty;
151 	u64 utime, stime;
152 
153 	sighand = rcu_dereference_check(tsk->sighand,
154 					lockdep_tasklist_lock_is_held());
155 	spin_lock(&sighand->siglock);
156 
157 #ifdef CONFIG_POSIX_TIMERS
158 	posix_cpu_timers_exit(tsk);
159 	if (group_dead)
160 		posix_cpu_timers_exit_group(tsk);
161 #endif
162 
163 	if (group_dead) {
164 		tty = sig->tty;
165 		sig->tty = NULL;
166 	} else {
167 		/*
168 		 * If there is any task waiting for the group exit
169 		 * then notify it:
170 		 */
171 		if (sig->notify_count > 0 && !--sig->notify_count)
172 			wake_up_process(sig->group_exec_task);
173 
174 		if (tsk == sig->curr_target)
175 			sig->curr_target = next_thread(tsk);
176 	}
177 
178 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
179 			      sizeof(unsigned long long));
180 
181 	/*
182 	 * Accumulate here the counters for all threads as they die. We could
183 	 * skip the group leader because it is the last user of signal_struct,
184 	 * but we want to avoid the race with thread_group_cputime() which can
185 	 * see the empty ->thread_head list.
186 	 */
187 	task_cputime(tsk, &utime, &stime);
188 	write_seqlock(&sig->stats_lock);
189 	sig->utime += utime;
190 	sig->stime += stime;
191 	sig->gtime += task_gtime(tsk);
192 	sig->min_flt += tsk->min_flt;
193 	sig->maj_flt += tsk->maj_flt;
194 	sig->nvcsw += tsk->nvcsw;
195 	sig->nivcsw += tsk->nivcsw;
196 	sig->inblock += task_io_get_inblock(tsk);
197 	sig->oublock += task_io_get_oublock(tsk);
198 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
199 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
200 	sig->nr_threads--;
201 	__unhash_process(tsk, group_dead);
202 	write_sequnlock(&sig->stats_lock);
203 
204 	/*
205 	 * Do this under ->siglock, we can race with another thread
206 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
207 	 */
208 	flush_sigqueue(&tsk->pending);
209 	tsk->sighand = NULL;
210 	spin_unlock(&sighand->siglock);
211 
212 	__cleanup_sighand(sighand);
213 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
214 	if (group_dead) {
215 		flush_sigqueue(&sig->shared_pending);
216 		tty_kref_put(tty);
217 	}
218 }
219 
220 static void delayed_put_task_struct(struct rcu_head *rhp)
221 {
222 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
223 
224 	kprobe_flush_task(tsk);
225 	rethook_flush_task(tsk);
226 	perf_event_delayed_put(tsk);
227 	trace_sched_process_free(tsk);
228 	put_task_struct(tsk);
229 }
230 
231 void put_task_struct_rcu_user(struct task_struct *task)
232 {
233 	if (refcount_dec_and_test(&task->rcu_users))
234 		call_rcu(&task->rcu, delayed_put_task_struct);
235 }
236 
237 void __weak release_thread(struct task_struct *dead_task)
238 {
239 }
240 
241 void release_task(struct task_struct *p)
242 {
243 	struct task_struct *leader;
244 	struct pid *thread_pid;
245 	int zap_leader;
246 repeat:
247 	/* don't need to get the RCU readlock here - the process is dead and
248 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
249 	rcu_read_lock();
250 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
251 	rcu_read_unlock();
252 
253 	cgroup_release(p);
254 
255 	write_lock_irq(&tasklist_lock);
256 	ptrace_release_task(p);
257 	thread_pid = get_pid(p->thread_pid);
258 	__exit_signal(p);
259 
260 	/*
261 	 * If we are the last non-leader member of the thread
262 	 * group, and the leader is zombie, then notify the
263 	 * group leader's parent process. (if it wants notification.)
264 	 */
265 	zap_leader = 0;
266 	leader = p->group_leader;
267 	if (leader != p && thread_group_empty(leader)
268 			&& leader->exit_state == EXIT_ZOMBIE) {
269 		/*
270 		 * If we were the last child thread and the leader has
271 		 * exited already, and the leader's parent ignores SIGCHLD,
272 		 * then we are the one who should release the leader.
273 		 */
274 		zap_leader = do_notify_parent(leader, leader->exit_signal);
275 		if (zap_leader)
276 			leader->exit_state = EXIT_DEAD;
277 	}
278 
279 	write_unlock_irq(&tasklist_lock);
280 	seccomp_filter_release(p);
281 	proc_flush_pid(thread_pid);
282 	put_pid(thread_pid);
283 	release_thread(p);
284 	put_task_struct_rcu_user(p);
285 
286 	p = leader;
287 	if (unlikely(zap_leader))
288 		goto repeat;
289 }
290 
291 int rcuwait_wake_up(struct rcuwait *w)
292 {
293 	int ret = 0;
294 	struct task_struct *task;
295 
296 	rcu_read_lock();
297 
298 	/*
299 	 * Order condition vs @task, such that everything prior to the load
300 	 * of @task is visible. This is the condition as to why the user called
301 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
302 	 * barrier (A) in rcuwait_wait_event().
303 	 *
304 	 *    WAIT                WAKE
305 	 *    [S] tsk = current	  [S] cond = true
306 	 *        MB (A)	      MB (B)
307 	 *    [L] cond		  [L] tsk
308 	 */
309 	smp_mb(); /* (B) */
310 
311 	task = rcu_dereference(w->task);
312 	if (task)
313 		ret = wake_up_process(task);
314 	rcu_read_unlock();
315 
316 	return ret;
317 }
318 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
319 
320 /*
321  * Determine if a process group is "orphaned", according to the POSIX
322  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
323  * by terminal-generated stop signals.  Newly orphaned process groups are
324  * to receive a SIGHUP and a SIGCONT.
325  *
326  * "I ask you, have you ever known what it is to be an orphan?"
327  */
328 static int will_become_orphaned_pgrp(struct pid *pgrp,
329 					struct task_struct *ignored_task)
330 {
331 	struct task_struct *p;
332 
333 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
334 		if ((p == ignored_task) ||
335 		    (p->exit_state && thread_group_empty(p)) ||
336 		    is_global_init(p->real_parent))
337 			continue;
338 
339 		if (task_pgrp(p->real_parent) != pgrp &&
340 		    task_session(p->real_parent) == task_session(p))
341 			return 0;
342 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
343 
344 	return 1;
345 }
346 
347 int is_current_pgrp_orphaned(void)
348 {
349 	int retval;
350 
351 	read_lock(&tasklist_lock);
352 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
353 	read_unlock(&tasklist_lock);
354 
355 	return retval;
356 }
357 
358 static bool has_stopped_jobs(struct pid *pgrp)
359 {
360 	struct task_struct *p;
361 
362 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
363 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
364 			return true;
365 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
366 
367 	return false;
368 }
369 
370 /*
371  * Check to see if any process groups have become orphaned as
372  * a result of our exiting, and if they have any stopped jobs,
373  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
374  */
375 static void
376 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
377 {
378 	struct pid *pgrp = task_pgrp(tsk);
379 	struct task_struct *ignored_task = tsk;
380 
381 	if (!parent)
382 		/* exit: our father is in a different pgrp than
383 		 * we are and we were the only connection outside.
384 		 */
385 		parent = tsk->real_parent;
386 	else
387 		/* reparent: our child is in a different pgrp than
388 		 * we are, and it was the only connection outside.
389 		 */
390 		ignored_task = NULL;
391 
392 	if (task_pgrp(parent) != pgrp &&
393 	    task_session(parent) == task_session(tsk) &&
394 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
395 	    has_stopped_jobs(pgrp)) {
396 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
397 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
398 	}
399 }
400 
401 static void coredump_task_exit(struct task_struct *tsk)
402 {
403 	struct core_state *core_state;
404 
405 	/*
406 	 * Serialize with any possible pending coredump.
407 	 * We must hold siglock around checking core_state
408 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
409 	 * will increment ->nr_threads for each thread in the
410 	 * group without PF_POSTCOREDUMP set.
411 	 */
412 	spin_lock_irq(&tsk->sighand->siglock);
413 	tsk->flags |= PF_POSTCOREDUMP;
414 	core_state = tsk->signal->core_state;
415 	spin_unlock_irq(&tsk->sighand->siglock);
416 	if (core_state) {
417 		struct core_thread self;
418 
419 		self.task = current;
420 		if (self.task->flags & PF_SIGNALED)
421 			self.next = xchg(&core_state->dumper.next, &self);
422 		else
423 			self.task = NULL;
424 		/*
425 		 * Implies mb(), the result of xchg() must be visible
426 		 * to core_state->dumper.
427 		 */
428 		if (atomic_dec_and_test(&core_state->nr_threads))
429 			complete(&core_state->startup);
430 
431 		for (;;) {
432 			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
433 			if (!self.task) /* see coredump_finish() */
434 				break;
435 			schedule();
436 		}
437 		__set_current_state(TASK_RUNNING);
438 	}
439 }
440 
441 #ifdef CONFIG_MEMCG
442 /* drops tasklist_lock if succeeds */
443 static bool try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
444 {
445 	bool ret = false;
446 
447 	task_lock(tsk);
448 	if (likely(tsk->mm == mm)) {
449 		/* tsk can't pass exit_mm/exec_mmap and exit */
450 		read_unlock(&tasklist_lock);
451 		WRITE_ONCE(mm->owner, tsk);
452 		lru_gen_migrate_mm(mm);
453 		ret = true;
454 	}
455 	task_unlock(tsk);
456 	return ret;
457 }
458 
459 /*
460  * A task is exiting.   If it owned this mm, find a new owner for the mm.
461  */
462 void mm_update_next_owner(struct mm_struct *mm)
463 {
464 	struct task_struct *c, *g, *p = current;
465 
466 	/*
467 	 * If the exiting or execing task is not the owner, it's
468 	 * someone else's problem.
469 	 */
470 	if (mm->owner != p)
471 		return;
472 	/*
473 	 * The current owner is exiting/execing and there are no other
474 	 * candidates.  Do not leave the mm pointing to a possibly
475 	 * freed task structure.
476 	 */
477 	if (atomic_read(&mm->mm_users) <= 1) {
478 		WRITE_ONCE(mm->owner, NULL);
479 		return;
480 	}
481 
482 	read_lock(&tasklist_lock);
483 	/*
484 	 * Search in the children
485 	 */
486 	list_for_each_entry(c, &p->children, sibling) {
487 		if (c->mm == mm && try_to_set_owner(c, mm))
488 			goto ret;
489 	}
490 
491 	/*
492 	 * Search in the siblings
493 	 */
494 	list_for_each_entry(c, &p->real_parent->children, sibling) {
495 		if (c->mm == mm && try_to_set_owner(c, mm))
496 			goto ret;
497 	}
498 
499 	/*
500 	 * Search through everything else, we should not get here often.
501 	 */
502 	for_each_process(g) {
503 		if (atomic_read(&mm->mm_users) <= 1)
504 			break;
505 		if (g->flags & PF_KTHREAD)
506 			continue;
507 		for_each_thread(g, c) {
508 			struct mm_struct *c_mm = READ_ONCE(c->mm);
509 			if (c_mm == mm) {
510 				if (try_to_set_owner(c, mm))
511 					goto ret;
512 			} else if (c_mm)
513 				break;
514 		}
515 	}
516 	read_unlock(&tasklist_lock);
517 	/*
518 	 * We found no owner yet mm_users > 1: this implies that we are
519 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
520 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
521 	 */
522 	WRITE_ONCE(mm->owner, NULL);
523  ret:
524 	return;
525 
526 }
527 #endif /* CONFIG_MEMCG */
528 
529 /*
530  * Turn us into a lazy TLB process if we
531  * aren't already..
532  */
533 static void exit_mm(void)
534 {
535 	struct mm_struct *mm = current->mm;
536 
537 	exit_mm_release(current, mm);
538 	if (!mm)
539 		return;
540 	mmap_read_lock(mm);
541 	mmgrab_lazy_tlb(mm);
542 	BUG_ON(mm != current->active_mm);
543 	/* more a memory barrier than a real lock */
544 	task_lock(current);
545 	/*
546 	 * When a thread stops operating on an address space, the loop
547 	 * in membarrier_private_expedited() may not observe that
548 	 * tsk->mm, and the loop in membarrier_global_expedited() may
549 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
550 	 * rq->membarrier_state, so those would not issue an IPI.
551 	 * Membarrier requires a memory barrier after accessing
552 	 * user-space memory, before clearing tsk->mm or the
553 	 * rq->membarrier_state.
554 	 */
555 	smp_mb__after_spinlock();
556 	local_irq_disable();
557 	current->mm = NULL;
558 	membarrier_update_current_mm(NULL);
559 	enter_lazy_tlb(mm, current);
560 	local_irq_enable();
561 	task_unlock(current);
562 	mmap_read_unlock(mm);
563 	mm_update_next_owner(mm);
564 	mmput(mm);
565 	if (test_thread_flag(TIF_MEMDIE))
566 		exit_oom_victim();
567 }
568 
569 static struct task_struct *find_alive_thread(struct task_struct *p)
570 {
571 	struct task_struct *t;
572 
573 	for_each_thread(p, t) {
574 		if (!(t->flags & PF_EXITING))
575 			return t;
576 	}
577 	return NULL;
578 }
579 
580 static struct task_struct *find_child_reaper(struct task_struct *father,
581 						struct list_head *dead)
582 	__releases(&tasklist_lock)
583 	__acquires(&tasklist_lock)
584 {
585 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
586 	struct task_struct *reaper = pid_ns->child_reaper;
587 	struct task_struct *p, *n;
588 
589 	if (likely(reaper != father))
590 		return reaper;
591 
592 	reaper = find_alive_thread(father);
593 	if (reaper) {
594 		pid_ns->child_reaper = reaper;
595 		return reaper;
596 	}
597 
598 	write_unlock_irq(&tasklist_lock);
599 
600 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
601 		list_del_init(&p->ptrace_entry);
602 		release_task(p);
603 	}
604 
605 	zap_pid_ns_processes(pid_ns);
606 	write_lock_irq(&tasklist_lock);
607 
608 	return father;
609 }
610 
611 /*
612  * When we die, we re-parent all our children, and try to:
613  * 1. give them to another thread in our thread group, if such a member exists
614  * 2. give it to the first ancestor process which prctl'd itself as a
615  *    child_subreaper for its children (like a service manager)
616  * 3. give it to the init process (PID 1) in our pid namespace
617  */
618 static struct task_struct *find_new_reaper(struct task_struct *father,
619 					   struct task_struct *child_reaper)
620 {
621 	struct task_struct *thread, *reaper;
622 
623 	thread = find_alive_thread(father);
624 	if (thread)
625 		return thread;
626 
627 	if (father->signal->has_child_subreaper) {
628 		unsigned int ns_level = task_pid(father)->level;
629 		/*
630 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
631 		 * We can't check reaper != child_reaper to ensure we do not
632 		 * cross the namespaces, the exiting parent could be injected
633 		 * by setns() + fork().
634 		 * We check pid->level, this is slightly more efficient than
635 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
636 		 */
637 		for (reaper = father->real_parent;
638 		     task_pid(reaper)->level == ns_level;
639 		     reaper = reaper->real_parent) {
640 			if (reaper == &init_task)
641 				break;
642 			if (!reaper->signal->is_child_subreaper)
643 				continue;
644 			thread = find_alive_thread(reaper);
645 			if (thread)
646 				return thread;
647 		}
648 	}
649 
650 	return child_reaper;
651 }
652 
653 /*
654 * Any that need to be release_task'd are put on the @dead list.
655  */
656 static void reparent_leader(struct task_struct *father, struct task_struct *p,
657 				struct list_head *dead)
658 {
659 	if (unlikely(p->exit_state == EXIT_DEAD))
660 		return;
661 
662 	/* We don't want people slaying init. */
663 	p->exit_signal = SIGCHLD;
664 
665 	/* If it has exited notify the new parent about this child's death. */
666 	if (!p->ptrace &&
667 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
668 		if (do_notify_parent(p, p->exit_signal)) {
669 			p->exit_state = EXIT_DEAD;
670 			list_add(&p->ptrace_entry, dead);
671 		}
672 	}
673 
674 	kill_orphaned_pgrp(p, father);
675 }
676 
677 /*
678  * This does two things:
679  *
680  * A.  Make init inherit all the child processes
681  * B.  Check to see if any process groups have become orphaned
682  *	as a result of our exiting, and if they have any stopped
683  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
684  */
685 static void forget_original_parent(struct task_struct *father,
686 					struct list_head *dead)
687 {
688 	struct task_struct *p, *t, *reaper;
689 
690 	if (unlikely(!list_empty(&father->ptraced)))
691 		exit_ptrace(father, dead);
692 
693 	/* Can drop and reacquire tasklist_lock */
694 	reaper = find_child_reaper(father, dead);
695 	if (list_empty(&father->children))
696 		return;
697 
698 	reaper = find_new_reaper(father, reaper);
699 	list_for_each_entry(p, &father->children, sibling) {
700 		for_each_thread(p, t) {
701 			RCU_INIT_POINTER(t->real_parent, reaper);
702 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
703 			if (likely(!t->ptrace))
704 				t->parent = t->real_parent;
705 			if (t->pdeath_signal)
706 				group_send_sig_info(t->pdeath_signal,
707 						    SEND_SIG_NOINFO, t,
708 						    PIDTYPE_TGID);
709 		}
710 		/*
711 		 * If this is a threaded reparent there is no need to
712 		 * notify anyone anything has happened.
713 		 */
714 		if (!same_thread_group(reaper, father))
715 			reparent_leader(father, p, dead);
716 	}
717 	list_splice_tail_init(&father->children, &reaper->children);
718 }
719 
720 /*
721  * Send signals to all our closest relatives so that they know
722  * to properly mourn us..
723  */
724 static void exit_notify(struct task_struct *tsk, int group_dead)
725 {
726 	bool autoreap;
727 	struct task_struct *p, *n;
728 	LIST_HEAD(dead);
729 
730 	write_lock_irq(&tasklist_lock);
731 	forget_original_parent(tsk, &dead);
732 
733 	if (group_dead)
734 		kill_orphaned_pgrp(tsk->group_leader, NULL);
735 
736 	tsk->exit_state = EXIT_ZOMBIE;
737 	/*
738 	 * sub-thread or delay_group_leader(), wake up the
739 	 * PIDFD_THREAD waiters.
740 	 */
741 	if (!thread_group_empty(tsk))
742 		do_notify_pidfd(tsk);
743 
744 	if (unlikely(tsk->ptrace)) {
745 		int sig = thread_group_leader(tsk) &&
746 				thread_group_empty(tsk) &&
747 				!ptrace_reparented(tsk) ?
748 			tsk->exit_signal : SIGCHLD;
749 		autoreap = do_notify_parent(tsk, sig);
750 	} else if (thread_group_leader(tsk)) {
751 		autoreap = thread_group_empty(tsk) &&
752 			do_notify_parent(tsk, tsk->exit_signal);
753 	} else {
754 		autoreap = true;
755 	}
756 
757 	if (autoreap) {
758 		tsk->exit_state = EXIT_DEAD;
759 		list_add(&tsk->ptrace_entry, &dead);
760 	}
761 
762 	/* mt-exec, de_thread() is waiting for group leader */
763 	if (unlikely(tsk->signal->notify_count < 0))
764 		wake_up_process(tsk->signal->group_exec_task);
765 	write_unlock_irq(&tasklist_lock);
766 
767 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
768 		list_del_init(&p->ptrace_entry);
769 		release_task(p);
770 	}
771 }
772 
773 #ifdef CONFIG_DEBUG_STACK_USAGE
774 static void check_stack_usage(void)
775 {
776 	static DEFINE_SPINLOCK(low_water_lock);
777 	static int lowest_to_date = THREAD_SIZE;
778 	unsigned long free;
779 
780 	free = stack_not_used(current);
781 
782 	if (free >= lowest_to_date)
783 		return;
784 
785 	spin_lock(&low_water_lock);
786 	if (free < lowest_to_date) {
787 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
788 			current->comm, task_pid_nr(current), free);
789 		lowest_to_date = free;
790 	}
791 	spin_unlock(&low_water_lock);
792 }
793 #else
794 static inline void check_stack_usage(void) {}
795 #endif
796 
797 static void synchronize_group_exit(struct task_struct *tsk, long code)
798 {
799 	struct sighand_struct *sighand = tsk->sighand;
800 	struct signal_struct *signal = tsk->signal;
801 
802 	spin_lock_irq(&sighand->siglock);
803 	signal->quick_threads--;
804 	if ((signal->quick_threads == 0) &&
805 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
806 		signal->flags = SIGNAL_GROUP_EXIT;
807 		signal->group_exit_code = code;
808 		signal->group_stop_count = 0;
809 	}
810 	spin_unlock_irq(&sighand->siglock);
811 }
812 
813 void __noreturn do_exit(long code)
814 {
815 	struct task_struct *tsk = current;
816 	int group_dead;
817 
818 	WARN_ON(irqs_disabled());
819 
820 	synchronize_group_exit(tsk, code);
821 
822 	WARN_ON(tsk->plug);
823 
824 	kcov_task_exit(tsk);
825 	kmsan_task_exit(tsk);
826 
827 	coredump_task_exit(tsk);
828 	ptrace_event(PTRACE_EVENT_EXIT, code);
829 	user_events_exit(tsk);
830 
831 	io_uring_files_cancel();
832 	exit_signals(tsk);  /* sets PF_EXITING */
833 
834 	acct_update_integrals(tsk);
835 	group_dead = atomic_dec_and_test(&tsk->signal->live);
836 	if (group_dead) {
837 		/*
838 		 * If the last thread of global init has exited, panic
839 		 * immediately to get a useable coredump.
840 		 */
841 		if (unlikely(is_global_init(tsk)))
842 			panic("Attempted to kill init! exitcode=0x%08x\n",
843 				tsk->signal->group_exit_code ?: (int)code);
844 
845 #ifdef CONFIG_POSIX_TIMERS
846 		hrtimer_cancel(&tsk->signal->real_timer);
847 		exit_itimers(tsk);
848 #endif
849 		if (tsk->mm)
850 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
851 	}
852 	acct_collect(code, group_dead);
853 	if (group_dead)
854 		tty_audit_exit();
855 	audit_free(tsk);
856 
857 	tsk->exit_code = code;
858 	taskstats_exit(tsk, group_dead);
859 
860 	exit_mm();
861 
862 	if (group_dead)
863 		acct_process();
864 	trace_sched_process_exit(tsk);
865 
866 	exit_sem(tsk);
867 	exit_shm(tsk);
868 	exit_files(tsk);
869 	exit_fs(tsk);
870 	if (group_dead)
871 		disassociate_ctty(1);
872 	exit_task_namespaces(tsk);
873 	exit_task_work(tsk);
874 	exit_thread(tsk);
875 
876 	/*
877 	 * Flush inherited counters to the parent - before the parent
878 	 * gets woken up by child-exit notifications.
879 	 *
880 	 * because of cgroup mode, must be called before cgroup_exit()
881 	 */
882 	perf_event_exit_task(tsk);
883 
884 	sched_autogroup_exit_task(tsk);
885 	cgroup_exit(tsk);
886 
887 	/*
888 	 * FIXME: do that only when needed, using sched_exit tracepoint
889 	 */
890 	flush_ptrace_hw_breakpoint(tsk);
891 
892 	exit_tasks_rcu_start();
893 	exit_notify(tsk, group_dead);
894 	proc_exit_connector(tsk);
895 	mpol_put_task_policy(tsk);
896 #ifdef CONFIG_FUTEX
897 	if (unlikely(current->pi_state_cache))
898 		kfree(current->pi_state_cache);
899 #endif
900 	/*
901 	 * Make sure we are holding no locks:
902 	 */
903 	debug_check_no_locks_held();
904 
905 	if (tsk->io_context)
906 		exit_io_context(tsk);
907 
908 	if (tsk->splice_pipe)
909 		free_pipe_info(tsk->splice_pipe);
910 
911 	if (tsk->task_frag.page)
912 		put_page(tsk->task_frag.page);
913 
914 	exit_task_stack_account(tsk);
915 
916 	check_stack_usage();
917 	preempt_disable();
918 	if (tsk->nr_dirtied)
919 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
920 	exit_rcu();
921 	exit_tasks_rcu_finish();
922 
923 	lockdep_free_task(tsk);
924 	do_task_dead();
925 }
926 
927 void __noreturn make_task_dead(int signr)
928 {
929 	/*
930 	 * Take the task off the cpu after something catastrophic has
931 	 * happened.
932 	 *
933 	 * We can get here from a kernel oops, sometimes with preemption off.
934 	 * Start by checking for critical errors.
935 	 * Then fix up important state like USER_DS and preemption.
936 	 * Then do everything else.
937 	 */
938 	struct task_struct *tsk = current;
939 	unsigned int limit;
940 
941 	if (unlikely(in_interrupt()))
942 		panic("Aiee, killing interrupt handler!");
943 	if (unlikely(!tsk->pid))
944 		panic("Attempted to kill the idle task!");
945 
946 	if (unlikely(irqs_disabled())) {
947 		pr_info("note: %s[%d] exited with irqs disabled\n",
948 			current->comm, task_pid_nr(current));
949 		local_irq_enable();
950 	}
951 	if (unlikely(in_atomic())) {
952 		pr_info("note: %s[%d] exited with preempt_count %d\n",
953 			current->comm, task_pid_nr(current),
954 			preempt_count());
955 		preempt_count_set(PREEMPT_ENABLED);
956 	}
957 
958 	/*
959 	 * Every time the system oopses, if the oops happens while a reference
960 	 * to an object was held, the reference leaks.
961 	 * If the oops doesn't also leak memory, repeated oopsing can cause
962 	 * reference counters to wrap around (if they're not using refcount_t).
963 	 * This means that repeated oopsing can make unexploitable-looking bugs
964 	 * exploitable through repeated oopsing.
965 	 * To make sure this can't happen, place an upper bound on how often the
966 	 * kernel may oops without panic().
967 	 */
968 	limit = READ_ONCE(oops_limit);
969 	if (atomic_inc_return(&oops_count) >= limit && limit)
970 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
971 
972 	/*
973 	 * We're taking recursive faults here in make_task_dead. Safest is to just
974 	 * leave this task alone and wait for reboot.
975 	 */
976 	if (unlikely(tsk->flags & PF_EXITING)) {
977 		pr_alert("Fixing recursive fault but reboot is needed!\n");
978 		futex_exit_recursive(tsk);
979 		tsk->exit_state = EXIT_DEAD;
980 		refcount_inc(&tsk->rcu_users);
981 		do_task_dead();
982 	}
983 
984 	do_exit(signr);
985 }
986 
987 SYSCALL_DEFINE1(exit, int, error_code)
988 {
989 	do_exit((error_code&0xff)<<8);
990 }
991 
992 /*
993  * Take down every thread in the group.  This is called by fatal signals
994  * as well as by sys_exit_group (below).
995  */
996 void __noreturn
997 do_group_exit(int exit_code)
998 {
999 	struct signal_struct *sig = current->signal;
1000 
1001 	if (sig->flags & SIGNAL_GROUP_EXIT)
1002 		exit_code = sig->group_exit_code;
1003 	else if (sig->group_exec_task)
1004 		exit_code = 0;
1005 	else {
1006 		struct sighand_struct *const sighand = current->sighand;
1007 
1008 		spin_lock_irq(&sighand->siglock);
1009 		if (sig->flags & SIGNAL_GROUP_EXIT)
1010 			/* Another thread got here before we took the lock.  */
1011 			exit_code = sig->group_exit_code;
1012 		else if (sig->group_exec_task)
1013 			exit_code = 0;
1014 		else {
1015 			sig->group_exit_code = exit_code;
1016 			sig->flags = SIGNAL_GROUP_EXIT;
1017 			zap_other_threads(current);
1018 		}
1019 		spin_unlock_irq(&sighand->siglock);
1020 	}
1021 
1022 	do_exit(exit_code);
1023 	/* NOTREACHED */
1024 }
1025 
1026 /*
1027  * this kills every thread in the thread group. Note that any externally
1028  * wait4()-ing process will get the correct exit code - even if this
1029  * thread is not the thread group leader.
1030  */
1031 SYSCALL_DEFINE1(exit_group, int, error_code)
1032 {
1033 	do_group_exit((error_code & 0xff) << 8);
1034 	/* NOTREACHED */
1035 	return 0;
1036 }
1037 
1038 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1039 {
1040 	return	wo->wo_type == PIDTYPE_MAX ||
1041 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1042 }
1043 
1044 static int
1045 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1046 {
1047 	if (!eligible_pid(wo, p))
1048 		return 0;
1049 
1050 	/*
1051 	 * Wait for all children (clone and not) if __WALL is set or
1052 	 * if it is traced by us.
1053 	 */
1054 	if (ptrace || (wo->wo_flags & __WALL))
1055 		return 1;
1056 
1057 	/*
1058 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1059 	 * otherwise, wait for non-clone children *only*.
1060 	 *
1061 	 * Note: a "clone" child here is one that reports to its parent
1062 	 * using a signal other than SIGCHLD, or a non-leader thread which
1063 	 * we can only see if it is traced by us.
1064 	 */
1065 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1066 		return 0;
1067 
1068 	return 1;
1069 }
1070 
1071 /*
1072  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1073  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1074  * the lock and this task is uninteresting.  If we return nonzero, we have
1075  * released the lock and the system call should return.
1076  */
1077 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1078 {
1079 	int state, status;
1080 	pid_t pid = task_pid_vnr(p);
1081 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1082 	struct waitid_info *infop;
1083 
1084 	if (!likely(wo->wo_flags & WEXITED))
1085 		return 0;
1086 
1087 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1088 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1089 			? p->signal->group_exit_code : p->exit_code;
1090 		get_task_struct(p);
1091 		read_unlock(&tasklist_lock);
1092 		sched_annotate_sleep();
1093 		if (wo->wo_rusage)
1094 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1095 		put_task_struct(p);
1096 		goto out_info;
1097 	}
1098 	/*
1099 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1100 	 */
1101 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1102 		EXIT_TRACE : EXIT_DEAD;
1103 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1104 		return 0;
1105 	/*
1106 	 * We own this thread, nobody else can reap it.
1107 	 */
1108 	read_unlock(&tasklist_lock);
1109 	sched_annotate_sleep();
1110 
1111 	/*
1112 	 * Check thread_group_leader() to exclude the traced sub-threads.
1113 	 */
1114 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1115 		struct signal_struct *sig = p->signal;
1116 		struct signal_struct *psig = current->signal;
1117 		unsigned long maxrss;
1118 		u64 tgutime, tgstime;
1119 
1120 		/*
1121 		 * The resource counters for the group leader are in its
1122 		 * own task_struct.  Those for dead threads in the group
1123 		 * are in its signal_struct, as are those for the child
1124 		 * processes it has previously reaped.  All these
1125 		 * accumulate in the parent's signal_struct c* fields.
1126 		 *
1127 		 * We don't bother to take a lock here to protect these
1128 		 * p->signal fields because the whole thread group is dead
1129 		 * and nobody can change them.
1130 		 *
1131 		 * psig->stats_lock also protects us from our sub-threads
1132 		 * which can reap other children at the same time.
1133 		 *
1134 		 * We use thread_group_cputime_adjusted() to get times for
1135 		 * the thread group, which consolidates times for all threads
1136 		 * in the group including the group leader.
1137 		 */
1138 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1139 		write_seqlock_irq(&psig->stats_lock);
1140 		psig->cutime += tgutime + sig->cutime;
1141 		psig->cstime += tgstime + sig->cstime;
1142 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1143 		psig->cmin_flt +=
1144 			p->min_flt + sig->min_flt + sig->cmin_flt;
1145 		psig->cmaj_flt +=
1146 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1147 		psig->cnvcsw +=
1148 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1149 		psig->cnivcsw +=
1150 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1151 		psig->cinblock +=
1152 			task_io_get_inblock(p) +
1153 			sig->inblock + sig->cinblock;
1154 		psig->coublock +=
1155 			task_io_get_oublock(p) +
1156 			sig->oublock + sig->coublock;
1157 		maxrss = max(sig->maxrss, sig->cmaxrss);
1158 		if (psig->cmaxrss < maxrss)
1159 			psig->cmaxrss = maxrss;
1160 		task_io_accounting_add(&psig->ioac, &p->ioac);
1161 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1162 		write_sequnlock_irq(&psig->stats_lock);
1163 	}
1164 
1165 	if (wo->wo_rusage)
1166 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1167 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1168 		? p->signal->group_exit_code : p->exit_code;
1169 	wo->wo_stat = status;
1170 
1171 	if (state == EXIT_TRACE) {
1172 		write_lock_irq(&tasklist_lock);
1173 		/* We dropped tasklist, ptracer could die and untrace */
1174 		ptrace_unlink(p);
1175 
1176 		/* If parent wants a zombie, don't release it now */
1177 		state = EXIT_ZOMBIE;
1178 		if (do_notify_parent(p, p->exit_signal))
1179 			state = EXIT_DEAD;
1180 		p->exit_state = state;
1181 		write_unlock_irq(&tasklist_lock);
1182 	}
1183 	if (state == EXIT_DEAD)
1184 		release_task(p);
1185 
1186 out_info:
1187 	infop = wo->wo_info;
1188 	if (infop) {
1189 		if ((status & 0x7f) == 0) {
1190 			infop->cause = CLD_EXITED;
1191 			infop->status = status >> 8;
1192 		} else {
1193 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1194 			infop->status = status & 0x7f;
1195 		}
1196 		infop->pid = pid;
1197 		infop->uid = uid;
1198 	}
1199 
1200 	return pid;
1201 }
1202 
1203 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1204 {
1205 	if (ptrace) {
1206 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1207 			return &p->exit_code;
1208 	} else {
1209 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1210 			return &p->signal->group_exit_code;
1211 	}
1212 	return NULL;
1213 }
1214 
1215 /**
1216  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1217  * @wo: wait options
1218  * @ptrace: is the wait for ptrace
1219  * @p: task to wait for
1220  *
1221  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1222  *
1223  * CONTEXT:
1224  * read_lock(&tasklist_lock), which is released if return value is
1225  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1226  *
1227  * RETURNS:
1228  * 0 if wait condition didn't exist and search for other wait conditions
1229  * should continue.  Non-zero return, -errno on failure and @p's pid on
1230  * success, implies that tasklist_lock is released and wait condition
1231  * search should terminate.
1232  */
1233 static int wait_task_stopped(struct wait_opts *wo,
1234 				int ptrace, struct task_struct *p)
1235 {
1236 	struct waitid_info *infop;
1237 	int exit_code, *p_code, why;
1238 	uid_t uid = 0; /* unneeded, required by compiler */
1239 	pid_t pid;
1240 
1241 	/*
1242 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1243 	 */
1244 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1245 		return 0;
1246 
1247 	if (!task_stopped_code(p, ptrace))
1248 		return 0;
1249 
1250 	exit_code = 0;
1251 	spin_lock_irq(&p->sighand->siglock);
1252 
1253 	p_code = task_stopped_code(p, ptrace);
1254 	if (unlikely(!p_code))
1255 		goto unlock_sig;
1256 
1257 	exit_code = *p_code;
1258 	if (!exit_code)
1259 		goto unlock_sig;
1260 
1261 	if (!unlikely(wo->wo_flags & WNOWAIT))
1262 		*p_code = 0;
1263 
1264 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1265 unlock_sig:
1266 	spin_unlock_irq(&p->sighand->siglock);
1267 	if (!exit_code)
1268 		return 0;
1269 
1270 	/*
1271 	 * Now we are pretty sure this task is interesting.
1272 	 * Make sure it doesn't get reaped out from under us while we
1273 	 * give up the lock and then examine it below.  We don't want to
1274 	 * keep holding onto the tasklist_lock while we call getrusage and
1275 	 * possibly take page faults for user memory.
1276 	 */
1277 	get_task_struct(p);
1278 	pid = task_pid_vnr(p);
1279 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1280 	read_unlock(&tasklist_lock);
1281 	sched_annotate_sleep();
1282 	if (wo->wo_rusage)
1283 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1284 	put_task_struct(p);
1285 
1286 	if (likely(!(wo->wo_flags & WNOWAIT)))
1287 		wo->wo_stat = (exit_code << 8) | 0x7f;
1288 
1289 	infop = wo->wo_info;
1290 	if (infop) {
1291 		infop->cause = why;
1292 		infop->status = exit_code;
1293 		infop->pid = pid;
1294 		infop->uid = uid;
1295 	}
1296 	return pid;
1297 }
1298 
1299 /*
1300  * Handle do_wait work for one task in a live, non-stopped state.
1301  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1302  * the lock and this task is uninteresting.  If we return nonzero, we have
1303  * released the lock and the system call should return.
1304  */
1305 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1306 {
1307 	struct waitid_info *infop;
1308 	pid_t pid;
1309 	uid_t uid;
1310 
1311 	if (!unlikely(wo->wo_flags & WCONTINUED))
1312 		return 0;
1313 
1314 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1315 		return 0;
1316 
1317 	spin_lock_irq(&p->sighand->siglock);
1318 	/* Re-check with the lock held.  */
1319 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1320 		spin_unlock_irq(&p->sighand->siglock);
1321 		return 0;
1322 	}
1323 	if (!unlikely(wo->wo_flags & WNOWAIT))
1324 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1325 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1326 	spin_unlock_irq(&p->sighand->siglock);
1327 
1328 	pid = task_pid_vnr(p);
1329 	get_task_struct(p);
1330 	read_unlock(&tasklist_lock);
1331 	sched_annotate_sleep();
1332 	if (wo->wo_rusage)
1333 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1334 	put_task_struct(p);
1335 
1336 	infop = wo->wo_info;
1337 	if (!infop) {
1338 		wo->wo_stat = 0xffff;
1339 	} else {
1340 		infop->cause = CLD_CONTINUED;
1341 		infop->pid = pid;
1342 		infop->uid = uid;
1343 		infop->status = SIGCONT;
1344 	}
1345 	return pid;
1346 }
1347 
1348 /*
1349  * Consider @p for a wait by @parent.
1350  *
1351  * -ECHILD should be in ->notask_error before the first call.
1352  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1353  * Returns zero if the search for a child should continue;
1354  * then ->notask_error is 0 if @p is an eligible child,
1355  * or still -ECHILD.
1356  */
1357 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1358 				struct task_struct *p)
1359 {
1360 	/*
1361 	 * We can race with wait_task_zombie() from another thread.
1362 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1363 	 * can't confuse the checks below.
1364 	 */
1365 	int exit_state = READ_ONCE(p->exit_state);
1366 	int ret;
1367 
1368 	if (unlikely(exit_state == EXIT_DEAD))
1369 		return 0;
1370 
1371 	ret = eligible_child(wo, ptrace, p);
1372 	if (!ret)
1373 		return ret;
1374 
1375 	if (unlikely(exit_state == EXIT_TRACE)) {
1376 		/*
1377 		 * ptrace == 0 means we are the natural parent. In this case
1378 		 * we should clear notask_error, debugger will notify us.
1379 		 */
1380 		if (likely(!ptrace))
1381 			wo->notask_error = 0;
1382 		return 0;
1383 	}
1384 
1385 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1386 		/*
1387 		 * If it is traced by its real parent's group, just pretend
1388 		 * the caller is ptrace_do_wait() and reap this child if it
1389 		 * is zombie.
1390 		 *
1391 		 * This also hides group stop state from real parent; otherwise
1392 		 * a single stop can be reported twice as group and ptrace stop.
1393 		 * If a ptracer wants to distinguish these two events for its
1394 		 * own children it should create a separate process which takes
1395 		 * the role of real parent.
1396 		 */
1397 		if (!ptrace_reparented(p))
1398 			ptrace = 1;
1399 	}
1400 
1401 	/* slay zombie? */
1402 	if (exit_state == EXIT_ZOMBIE) {
1403 		/* we don't reap group leaders with subthreads */
1404 		if (!delay_group_leader(p)) {
1405 			/*
1406 			 * A zombie ptracee is only visible to its ptracer.
1407 			 * Notification and reaping will be cascaded to the
1408 			 * real parent when the ptracer detaches.
1409 			 */
1410 			if (unlikely(ptrace) || likely(!p->ptrace))
1411 				return wait_task_zombie(wo, p);
1412 		}
1413 
1414 		/*
1415 		 * Allow access to stopped/continued state via zombie by
1416 		 * falling through.  Clearing of notask_error is complex.
1417 		 *
1418 		 * When !@ptrace:
1419 		 *
1420 		 * If WEXITED is set, notask_error should naturally be
1421 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1422 		 * so, if there are live subthreads, there are events to
1423 		 * wait for.  If all subthreads are dead, it's still safe
1424 		 * to clear - this function will be called again in finite
1425 		 * amount time once all the subthreads are released and
1426 		 * will then return without clearing.
1427 		 *
1428 		 * When @ptrace:
1429 		 *
1430 		 * Stopped state is per-task and thus can't change once the
1431 		 * target task dies.  Only continued and exited can happen.
1432 		 * Clear notask_error if WCONTINUED | WEXITED.
1433 		 */
1434 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1435 			wo->notask_error = 0;
1436 	} else {
1437 		/*
1438 		 * @p is alive and it's gonna stop, continue or exit, so
1439 		 * there always is something to wait for.
1440 		 */
1441 		wo->notask_error = 0;
1442 	}
1443 
1444 	/*
1445 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1446 	 * is used and the two don't interact with each other.
1447 	 */
1448 	ret = wait_task_stopped(wo, ptrace, p);
1449 	if (ret)
1450 		return ret;
1451 
1452 	/*
1453 	 * Wait for continued.  There's only one continued state and the
1454 	 * ptracer can consume it which can confuse the real parent.  Don't
1455 	 * use WCONTINUED from ptracer.  You don't need or want it.
1456 	 */
1457 	return wait_task_continued(wo, p);
1458 }
1459 
1460 /*
1461  * Do the work of do_wait() for one thread in the group, @tsk.
1462  *
1463  * -ECHILD should be in ->notask_error before the first call.
1464  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1465  * Returns zero if the search for a child should continue; then
1466  * ->notask_error is 0 if there were any eligible children,
1467  * or still -ECHILD.
1468  */
1469 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1470 {
1471 	struct task_struct *p;
1472 
1473 	list_for_each_entry(p, &tsk->children, sibling) {
1474 		int ret = wait_consider_task(wo, 0, p);
1475 
1476 		if (ret)
1477 			return ret;
1478 	}
1479 
1480 	return 0;
1481 }
1482 
1483 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1484 {
1485 	struct task_struct *p;
1486 
1487 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1488 		int ret = wait_consider_task(wo, 1, p);
1489 
1490 		if (ret)
1491 			return ret;
1492 	}
1493 
1494 	return 0;
1495 }
1496 
1497 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1498 {
1499 	if (!eligible_pid(wo, p))
1500 		return false;
1501 
1502 	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1503 		return false;
1504 
1505 	return true;
1506 }
1507 
1508 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1509 				int sync, void *key)
1510 {
1511 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1512 						child_wait);
1513 	struct task_struct *p = key;
1514 
1515 	if (pid_child_should_wake(wo, p))
1516 		return default_wake_function(wait, mode, sync, key);
1517 
1518 	return 0;
1519 }
1520 
1521 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1522 {
1523 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1524 			   TASK_INTERRUPTIBLE, p);
1525 }
1526 
1527 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1528 				 struct task_struct *target)
1529 {
1530 	struct task_struct *parent =
1531 		!ptrace ? target->real_parent : target->parent;
1532 
1533 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1534 				     same_thread_group(current, parent));
1535 }
1536 
1537 /*
1538  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1539  * and tracee lists to find the target task.
1540  */
1541 static int do_wait_pid(struct wait_opts *wo)
1542 {
1543 	bool ptrace;
1544 	struct task_struct *target;
1545 	int retval;
1546 
1547 	ptrace = false;
1548 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1549 	if (target && is_effectively_child(wo, ptrace, target)) {
1550 		retval = wait_consider_task(wo, ptrace, target);
1551 		if (retval)
1552 			return retval;
1553 	}
1554 
1555 	ptrace = true;
1556 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1557 	if (target && target->ptrace &&
1558 	    is_effectively_child(wo, ptrace, target)) {
1559 		retval = wait_consider_task(wo, ptrace, target);
1560 		if (retval)
1561 			return retval;
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 long __do_wait(struct wait_opts *wo)
1568 {
1569 	long retval;
1570 
1571 	/*
1572 	 * If there is nothing that can match our criteria, just get out.
1573 	 * We will clear ->notask_error to zero if we see any child that
1574 	 * might later match our criteria, even if we are not able to reap
1575 	 * it yet.
1576 	 */
1577 	wo->notask_error = -ECHILD;
1578 	if ((wo->wo_type < PIDTYPE_MAX) &&
1579 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1580 		goto notask;
1581 
1582 	read_lock(&tasklist_lock);
1583 
1584 	if (wo->wo_type == PIDTYPE_PID) {
1585 		retval = do_wait_pid(wo);
1586 		if (retval)
1587 			return retval;
1588 	} else {
1589 		struct task_struct *tsk = current;
1590 
1591 		do {
1592 			retval = do_wait_thread(wo, tsk);
1593 			if (retval)
1594 				return retval;
1595 
1596 			retval = ptrace_do_wait(wo, tsk);
1597 			if (retval)
1598 				return retval;
1599 
1600 			if (wo->wo_flags & __WNOTHREAD)
1601 				break;
1602 		} while_each_thread(current, tsk);
1603 	}
1604 	read_unlock(&tasklist_lock);
1605 
1606 notask:
1607 	retval = wo->notask_error;
1608 	if (!retval && !(wo->wo_flags & WNOHANG))
1609 		return -ERESTARTSYS;
1610 
1611 	return retval;
1612 }
1613 
1614 static long do_wait(struct wait_opts *wo)
1615 {
1616 	int retval;
1617 
1618 	trace_sched_process_wait(wo->wo_pid);
1619 
1620 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1621 	wo->child_wait.private = current;
1622 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1623 
1624 	do {
1625 		set_current_state(TASK_INTERRUPTIBLE);
1626 		retval = __do_wait(wo);
1627 		if (retval != -ERESTARTSYS)
1628 			break;
1629 		if (signal_pending(current))
1630 			break;
1631 		schedule();
1632 	} while (1);
1633 
1634 	__set_current_state(TASK_RUNNING);
1635 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1636 	return retval;
1637 }
1638 
1639 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1640 			  struct waitid_info *infop, int options,
1641 			  struct rusage *ru)
1642 {
1643 	unsigned int f_flags = 0;
1644 	struct pid *pid = NULL;
1645 	enum pid_type type;
1646 
1647 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1648 			__WNOTHREAD|__WCLONE|__WALL))
1649 		return -EINVAL;
1650 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1651 		return -EINVAL;
1652 
1653 	switch (which) {
1654 	case P_ALL:
1655 		type = PIDTYPE_MAX;
1656 		break;
1657 	case P_PID:
1658 		type = PIDTYPE_PID;
1659 		if (upid <= 0)
1660 			return -EINVAL;
1661 
1662 		pid = find_get_pid(upid);
1663 		break;
1664 	case P_PGID:
1665 		type = PIDTYPE_PGID;
1666 		if (upid < 0)
1667 			return -EINVAL;
1668 
1669 		if (upid)
1670 			pid = find_get_pid(upid);
1671 		else
1672 			pid = get_task_pid(current, PIDTYPE_PGID);
1673 		break;
1674 	case P_PIDFD:
1675 		type = PIDTYPE_PID;
1676 		if (upid < 0)
1677 			return -EINVAL;
1678 
1679 		pid = pidfd_get_pid(upid, &f_flags);
1680 		if (IS_ERR(pid))
1681 			return PTR_ERR(pid);
1682 
1683 		break;
1684 	default:
1685 		return -EINVAL;
1686 	}
1687 
1688 	wo->wo_type	= type;
1689 	wo->wo_pid	= pid;
1690 	wo->wo_flags	= options;
1691 	wo->wo_info	= infop;
1692 	wo->wo_rusage	= ru;
1693 	if (f_flags & O_NONBLOCK)
1694 		wo->wo_flags |= WNOHANG;
1695 
1696 	return 0;
1697 }
1698 
1699 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1700 			  int options, struct rusage *ru)
1701 {
1702 	struct wait_opts wo;
1703 	long ret;
1704 
1705 	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1706 	if (ret)
1707 		return ret;
1708 
1709 	ret = do_wait(&wo);
1710 	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1711 		ret = -EAGAIN;
1712 
1713 	put_pid(wo.wo_pid);
1714 	return ret;
1715 }
1716 
1717 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1718 		infop, int, options, struct rusage __user *, ru)
1719 {
1720 	struct rusage r;
1721 	struct waitid_info info = {.status = 0};
1722 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1723 	int signo = 0;
1724 
1725 	if (err > 0) {
1726 		signo = SIGCHLD;
1727 		err = 0;
1728 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1729 			return -EFAULT;
1730 	}
1731 	if (!infop)
1732 		return err;
1733 
1734 	if (!user_write_access_begin(infop, sizeof(*infop)))
1735 		return -EFAULT;
1736 
1737 	unsafe_put_user(signo, &infop->si_signo, Efault);
1738 	unsafe_put_user(0, &infop->si_errno, Efault);
1739 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1740 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1741 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1742 	unsafe_put_user(info.status, &infop->si_status, Efault);
1743 	user_write_access_end();
1744 	return err;
1745 Efault:
1746 	user_write_access_end();
1747 	return -EFAULT;
1748 }
1749 
1750 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1751 		  struct rusage *ru)
1752 {
1753 	struct wait_opts wo;
1754 	struct pid *pid = NULL;
1755 	enum pid_type type;
1756 	long ret;
1757 
1758 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1759 			__WNOTHREAD|__WCLONE|__WALL))
1760 		return -EINVAL;
1761 
1762 	/* -INT_MIN is not defined */
1763 	if (upid == INT_MIN)
1764 		return -ESRCH;
1765 
1766 	if (upid == -1)
1767 		type = PIDTYPE_MAX;
1768 	else if (upid < 0) {
1769 		type = PIDTYPE_PGID;
1770 		pid = find_get_pid(-upid);
1771 	} else if (upid == 0) {
1772 		type = PIDTYPE_PGID;
1773 		pid = get_task_pid(current, PIDTYPE_PGID);
1774 	} else /* upid > 0 */ {
1775 		type = PIDTYPE_PID;
1776 		pid = find_get_pid(upid);
1777 	}
1778 
1779 	wo.wo_type	= type;
1780 	wo.wo_pid	= pid;
1781 	wo.wo_flags	= options | WEXITED;
1782 	wo.wo_info	= NULL;
1783 	wo.wo_stat	= 0;
1784 	wo.wo_rusage	= ru;
1785 	ret = do_wait(&wo);
1786 	put_pid(pid);
1787 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1788 		ret = -EFAULT;
1789 
1790 	return ret;
1791 }
1792 
1793 int kernel_wait(pid_t pid, int *stat)
1794 {
1795 	struct wait_opts wo = {
1796 		.wo_type	= PIDTYPE_PID,
1797 		.wo_pid		= find_get_pid(pid),
1798 		.wo_flags	= WEXITED,
1799 	};
1800 	int ret;
1801 
1802 	ret = do_wait(&wo);
1803 	if (ret > 0 && wo.wo_stat)
1804 		*stat = wo.wo_stat;
1805 	put_pid(wo.wo_pid);
1806 	return ret;
1807 }
1808 
1809 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1810 		int, options, struct rusage __user *, ru)
1811 {
1812 	struct rusage r;
1813 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1814 
1815 	if (err > 0) {
1816 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1817 			return -EFAULT;
1818 	}
1819 	return err;
1820 }
1821 
1822 #ifdef __ARCH_WANT_SYS_WAITPID
1823 
1824 /*
1825  * sys_waitpid() remains for compatibility. waitpid() should be
1826  * implemented by calling sys_wait4() from libc.a.
1827  */
1828 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1829 {
1830 	return kernel_wait4(pid, stat_addr, options, NULL);
1831 }
1832 
1833 #endif
1834 
1835 #ifdef CONFIG_COMPAT
1836 COMPAT_SYSCALL_DEFINE4(wait4,
1837 	compat_pid_t, pid,
1838 	compat_uint_t __user *, stat_addr,
1839 	int, options,
1840 	struct compat_rusage __user *, ru)
1841 {
1842 	struct rusage r;
1843 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1844 	if (err > 0) {
1845 		if (ru && put_compat_rusage(&r, ru))
1846 			return -EFAULT;
1847 	}
1848 	return err;
1849 }
1850 
1851 COMPAT_SYSCALL_DEFINE5(waitid,
1852 		int, which, compat_pid_t, pid,
1853 		struct compat_siginfo __user *, infop, int, options,
1854 		struct compat_rusage __user *, uru)
1855 {
1856 	struct rusage ru;
1857 	struct waitid_info info = {.status = 0};
1858 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1859 	int signo = 0;
1860 	if (err > 0) {
1861 		signo = SIGCHLD;
1862 		err = 0;
1863 		if (uru) {
1864 			/* kernel_waitid() overwrites everything in ru */
1865 			if (COMPAT_USE_64BIT_TIME)
1866 				err = copy_to_user(uru, &ru, sizeof(ru));
1867 			else
1868 				err = put_compat_rusage(&ru, uru);
1869 			if (err)
1870 				return -EFAULT;
1871 		}
1872 	}
1873 
1874 	if (!infop)
1875 		return err;
1876 
1877 	if (!user_write_access_begin(infop, sizeof(*infop)))
1878 		return -EFAULT;
1879 
1880 	unsafe_put_user(signo, &infop->si_signo, Efault);
1881 	unsafe_put_user(0, &infop->si_errno, Efault);
1882 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1883 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1884 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1885 	unsafe_put_user(info.status, &infop->si_status, Efault);
1886 	user_write_access_end();
1887 	return err;
1888 Efault:
1889 	user_write_access_end();
1890 	return -EFAULT;
1891 }
1892 #endif
1893 
1894 /*
1895  * This needs to be __function_aligned as GCC implicitly makes any
1896  * implementation of abort() cold and drops alignment specified by
1897  * -falign-functions=N.
1898  *
1899  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1900  */
1901 __weak __function_aligned void abort(void)
1902 {
1903 	BUG();
1904 
1905 	/* if that doesn't kill us, halt */
1906 	panic("Oops failed to kill thread");
1907 }
1908 EXPORT_SYMBOL(abort);
1909