1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/blkdev.h> 53 #include <linux/task_work.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/kmsan.h> 64 #include <linux/random.h> 65 #include <linux/rcuwait.h> 66 #include <linux/compat.h> 67 #include <linux/io_uring.h> 68 #include <linux/kprobes.h> 69 #include <linux/rethook.h> 70 #include <linux/sysfs.h> 71 #include <linux/user_events.h> 72 #include <linux/uaccess.h> 73 74 #include <uapi/linux/wait.h> 75 76 #include <asm/unistd.h> 77 #include <asm/mmu_context.h> 78 79 #include "exit.h" 80 81 /* 82 * The default value should be high enough to not crash a system that randomly 83 * crashes its kernel from time to time, but low enough to at least not permit 84 * overflowing 32-bit refcounts or the ldsem writer count. 85 */ 86 static unsigned int oops_limit = 10000; 87 88 #ifdef CONFIG_SYSCTL 89 static struct ctl_table kern_exit_table[] = { 90 { 91 .procname = "oops_limit", 92 .data = &oops_limit, 93 .maxlen = sizeof(oops_limit), 94 .mode = 0644, 95 .proc_handler = proc_douintvec, 96 }, 97 }; 98 99 static __init int kernel_exit_sysctls_init(void) 100 { 101 register_sysctl_init("kernel", kern_exit_table); 102 return 0; 103 } 104 late_initcall(kernel_exit_sysctls_init); 105 #endif 106 107 static atomic_t oops_count = ATOMIC_INIT(0); 108 109 #ifdef CONFIG_SYSFS 110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 111 char *page) 112 { 113 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 114 } 115 116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 117 118 static __init int kernel_exit_sysfs_init(void) 119 { 120 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 121 return 0; 122 } 123 late_initcall(kernel_exit_sysfs_init); 124 #endif 125 126 static void __unhash_process(struct task_struct *p, bool group_dead) 127 { 128 nr_threads--; 129 detach_pid(p, PIDTYPE_PID); 130 if (group_dead) { 131 detach_pid(p, PIDTYPE_TGID); 132 detach_pid(p, PIDTYPE_PGID); 133 detach_pid(p, PIDTYPE_SID); 134 135 list_del_rcu(&p->tasks); 136 list_del_init(&p->sibling); 137 __this_cpu_dec(process_counts); 138 } 139 list_del_rcu(&p->thread_node); 140 } 141 142 /* 143 * This function expects the tasklist_lock write-locked. 144 */ 145 static void __exit_signal(struct task_struct *tsk) 146 { 147 struct signal_struct *sig = tsk->signal; 148 bool group_dead = thread_group_leader(tsk); 149 struct sighand_struct *sighand; 150 struct tty_struct *tty; 151 u64 utime, stime; 152 153 sighand = rcu_dereference_check(tsk->sighand, 154 lockdep_tasklist_lock_is_held()); 155 spin_lock(&sighand->siglock); 156 157 #ifdef CONFIG_POSIX_TIMERS 158 posix_cpu_timers_exit(tsk); 159 if (group_dead) 160 posix_cpu_timers_exit_group(tsk); 161 #endif 162 163 if (group_dead) { 164 tty = sig->tty; 165 sig->tty = NULL; 166 } else { 167 /* 168 * If there is any task waiting for the group exit 169 * then notify it: 170 */ 171 if (sig->notify_count > 0 && !--sig->notify_count) 172 wake_up_process(sig->group_exec_task); 173 174 if (tsk == sig->curr_target) 175 sig->curr_target = next_thread(tsk); 176 } 177 178 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 179 sizeof(unsigned long long)); 180 181 /* 182 * Accumulate here the counters for all threads as they die. We could 183 * skip the group leader because it is the last user of signal_struct, 184 * but we want to avoid the race with thread_group_cputime() which can 185 * see the empty ->thread_head list. 186 */ 187 task_cputime(tsk, &utime, &stime); 188 write_seqlock(&sig->stats_lock); 189 sig->utime += utime; 190 sig->stime += stime; 191 sig->gtime += task_gtime(tsk); 192 sig->min_flt += tsk->min_flt; 193 sig->maj_flt += tsk->maj_flt; 194 sig->nvcsw += tsk->nvcsw; 195 sig->nivcsw += tsk->nivcsw; 196 sig->inblock += task_io_get_inblock(tsk); 197 sig->oublock += task_io_get_oublock(tsk); 198 task_io_accounting_add(&sig->ioac, &tsk->ioac); 199 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 200 sig->nr_threads--; 201 __unhash_process(tsk, group_dead); 202 write_sequnlock(&sig->stats_lock); 203 204 /* 205 * Do this under ->siglock, we can race with another thread 206 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 207 */ 208 flush_sigqueue(&tsk->pending); 209 tsk->sighand = NULL; 210 spin_unlock(&sighand->siglock); 211 212 __cleanup_sighand(sighand); 213 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 214 if (group_dead) { 215 flush_sigqueue(&sig->shared_pending); 216 tty_kref_put(tty); 217 } 218 } 219 220 static void delayed_put_task_struct(struct rcu_head *rhp) 221 { 222 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 223 224 kprobe_flush_task(tsk); 225 rethook_flush_task(tsk); 226 perf_event_delayed_put(tsk); 227 trace_sched_process_free(tsk); 228 put_task_struct(tsk); 229 } 230 231 void put_task_struct_rcu_user(struct task_struct *task) 232 { 233 if (refcount_dec_and_test(&task->rcu_users)) 234 call_rcu(&task->rcu, delayed_put_task_struct); 235 } 236 237 void __weak release_thread(struct task_struct *dead_task) 238 { 239 } 240 241 void release_task(struct task_struct *p) 242 { 243 struct task_struct *leader; 244 struct pid *thread_pid; 245 int zap_leader; 246 repeat: 247 /* don't need to get the RCU readlock here - the process is dead and 248 * can't be modifying its own credentials. But shut RCU-lockdep up */ 249 rcu_read_lock(); 250 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 251 rcu_read_unlock(); 252 253 cgroup_release(p); 254 255 write_lock_irq(&tasklist_lock); 256 ptrace_release_task(p); 257 thread_pid = get_pid(p->thread_pid); 258 __exit_signal(p); 259 260 /* 261 * If we are the last non-leader member of the thread 262 * group, and the leader is zombie, then notify the 263 * group leader's parent process. (if it wants notification.) 264 */ 265 zap_leader = 0; 266 leader = p->group_leader; 267 if (leader != p && thread_group_empty(leader) 268 && leader->exit_state == EXIT_ZOMBIE) { 269 /* 270 * If we were the last child thread and the leader has 271 * exited already, and the leader's parent ignores SIGCHLD, 272 * then we are the one who should release the leader. 273 */ 274 zap_leader = do_notify_parent(leader, leader->exit_signal); 275 if (zap_leader) 276 leader->exit_state = EXIT_DEAD; 277 } 278 279 write_unlock_irq(&tasklist_lock); 280 seccomp_filter_release(p); 281 proc_flush_pid(thread_pid); 282 put_pid(thread_pid); 283 release_thread(p); 284 put_task_struct_rcu_user(p); 285 286 p = leader; 287 if (unlikely(zap_leader)) 288 goto repeat; 289 } 290 291 int rcuwait_wake_up(struct rcuwait *w) 292 { 293 int ret = 0; 294 struct task_struct *task; 295 296 rcu_read_lock(); 297 298 /* 299 * Order condition vs @task, such that everything prior to the load 300 * of @task is visible. This is the condition as to why the user called 301 * rcuwait_wake() in the first place. Pairs with set_current_state() 302 * barrier (A) in rcuwait_wait_event(). 303 * 304 * WAIT WAKE 305 * [S] tsk = current [S] cond = true 306 * MB (A) MB (B) 307 * [L] cond [L] tsk 308 */ 309 smp_mb(); /* (B) */ 310 311 task = rcu_dereference(w->task); 312 if (task) 313 ret = wake_up_process(task); 314 rcu_read_unlock(); 315 316 return ret; 317 } 318 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 319 320 /* 321 * Determine if a process group is "orphaned", according to the POSIX 322 * definition in 2.2.2.52. Orphaned process groups are not to be affected 323 * by terminal-generated stop signals. Newly orphaned process groups are 324 * to receive a SIGHUP and a SIGCONT. 325 * 326 * "I ask you, have you ever known what it is to be an orphan?" 327 */ 328 static int will_become_orphaned_pgrp(struct pid *pgrp, 329 struct task_struct *ignored_task) 330 { 331 struct task_struct *p; 332 333 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 334 if ((p == ignored_task) || 335 (p->exit_state && thread_group_empty(p)) || 336 is_global_init(p->real_parent)) 337 continue; 338 339 if (task_pgrp(p->real_parent) != pgrp && 340 task_session(p->real_parent) == task_session(p)) 341 return 0; 342 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 343 344 return 1; 345 } 346 347 int is_current_pgrp_orphaned(void) 348 { 349 int retval; 350 351 read_lock(&tasklist_lock); 352 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 353 read_unlock(&tasklist_lock); 354 355 return retval; 356 } 357 358 static bool has_stopped_jobs(struct pid *pgrp) 359 { 360 struct task_struct *p; 361 362 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 363 if (p->signal->flags & SIGNAL_STOP_STOPPED) 364 return true; 365 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 366 367 return false; 368 } 369 370 /* 371 * Check to see if any process groups have become orphaned as 372 * a result of our exiting, and if they have any stopped jobs, 373 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 374 */ 375 static void 376 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 377 { 378 struct pid *pgrp = task_pgrp(tsk); 379 struct task_struct *ignored_task = tsk; 380 381 if (!parent) 382 /* exit: our father is in a different pgrp than 383 * we are and we were the only connection outside. 384 */ 385 parent = tsk->real_parent; 386 else 387 /* reparent: our child is in a different pgrp than 388 * we are, and it was the only connection outside. 389 */ 390 ignored_task = NULL; 391 392 if (task_pgrp(parent) != pgrp && 393 task_session(parent) == task_session(tsk) && 394 will_become_orphaned_pgrp(pgrp, ignored_task) && 395 has_stopped_jobs(pgrp)) { 396 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 397 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 398 } 399 } 400 401 static void coredump_task_exit(struct task_struct *tsk) 402 { 403 struct core_state *core_state; 404 405 /* 406 * Serialize with any possible pending coredump. 407 * We must hold siglock around checking core_state 408 * and setting PF_POSTCOREDUMP. The core-inducing thread 409 * will increment ->nr_threads for each thread in the 410 * group without PF_POSTCOREDUMP set. 411 */ 412 spin_lock_irq(&tsk->sighand->siglock); 413 tsk->flags |= PF_POSTCOREDUMP; 414 core_state = tsk->signal->core_state; 415 spin_unlock_irq(&tsk->sighand->siglock); 416 if (core_state) { 417 struct core_thread self; 418 419 self.task = current; 420 if (self.task->flags & PF_SIGNALED) 421 self.next = xchg(&core_state->dumper.next, &self); 422 else 423 self.task = NULL; 424 /* 425 * Implies mb(), the result of xchg() must be visible 426 * to core_state->dumper. 427 */ 428 if (atomic_dec_and_test(&core_state->nr_threads)) 429 complete(&core_state->startup); 430 431 for (;;) { 432 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE); 433 if (!self.task) /* see coredump_finish() */ 434 break; 435 schedule(); 436 } 437 __set_current_state(TASK_RUNNING); 438 } 439 } 440 441 #ifdef CONFIG_MEMCG 442 /* drops tasklist_lock if succeeds */ 443 static bool try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm) 444 { 445 bool ret = false; 446 447 task_lock(tsk); 448 if (likely(tsk->mm == mm)) { 449 /* tsk can't pass exit_mm/exec_mmap and exit */ 450 read_unlock(&tasklist_lock); 451 WRITE_ONCE(mm->owner, tsk); 452 lru_gen_migrate_mm(mm); 453 ret = true; 454 } 455 task_unlock(tsk); 456 return ret; 457 } 458 459 /* 460 * A task is exiting. If it owned this mm, find a new owner for the mm. 461 */ 462 void mm_update_next_owner(struct mm_struct *mm) 463 { 464 struct task_struct *c, *g, *p = current; 465 466 /* 467 * If the exiting or execing task is not the owner, it's 468 * someone else's problem. 469 */ 470 if (mm->owner != p) 471 return; 472 /* 473 * The current owner is exiting/execing and there are no other 474 * candidates. Do not leave the mm pointing to a possibly 475 * freed task structure. 476 */ 477 if (atomic_read(&mm->mm_users) <= 1) { 478 WRITE_ONCE(mm->owner, NULL); 479 return; 480 } 481 482 read_lock(&tasklist_lock); 483 /* 484 * Search in the children 485 */ 486 list_for_each_entry(c, &p->children, sibling) { 487 if (c->mm == mm && try_to_set_owner(c, mm)) 488 goto ret; 489 } 490 491 /* 492 * Search in the siblings 493 */ 494 list_for_each_entry(c, &p->real_parent->children, sibling) { 495 if (c->mm == mm && try_to_set_owner(c, mm)) 496 goto ret; 497 } 498 499 /* 500 * Search through everything else, we should not get here often. 501 */ 502 for_each_process(g) { 503 if (atomic_read(&mm->mm_users) <= 1) 504 break; 505 if (g->flags & PF_KTHREAD) 506 continue; 507 for_each_thread(g, c) { 508 struct mm_struct *c_mm = READ_ONCE(c->mm); 509 if (c_mm == mm) { 510 if (try_to_set_owner(c, mm)) 511 goto ret; 512 } else if (c_mm) 513 break; 514 } 515 } 516 read_unlock(&tasklist_lock); 517 /* 518 * We found no owner yet mm_users > 1: this implies that we are 519 * most likely racing with swapoff (try_to_unuse()) or /proc or 520 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 521 */ 522 WRITE_ONCE(mm->owner, NULL); 523 ret: 524 return; 525 526 } 527 #endif /* CONFIG_MEMCG */ 528 529 /* 530 * Turn us into a lazy TLB process if we 531 * aren't already.. 532 */ 533 static void exit_mm(void) 534 { 535 struct mm_struct *mm = current->mm; 536 537 exit_mm_release(current, mm); 538 if (!mm) 539 return; 540 mmap_read_lock(mm); 541 mmgrab_lazy_tlb(mm); 542 BUG_ON(mm != current->active_mm); 543 /* more a memory barrier than a real lock */ 544 task_lock(current); 545 /* 546 * When a thread stops operating on an address space, the loop 547 * in membarrier_private_expedited() may not observe that 548 * tsk->mm, and the loop in membarrier_global_expedited() may 549 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 550 * rq->membarrier_state, so those would not issue an IPI. 551 * Membarrier requires a memory barrier after accessing 552 * user-space memory, before clearing tsk->mm or the 553 * rq->membarrier_state. 554 */ 555 smp_mb__after_spinlock(); 556 local_irq_disable(); 557 current->mm = NULL; 558 membarrier_update_current_mm(NULL); 559 enter_lazy_tlb(mm, current); 560 local_irq_enable(); 561 task_unlock(current); 562 mmap_read_unlock(mm); 563 mm_update_next_owner(mm); 564 mmput(mm); 565 if (test_thread_flag(TIF_MEMDIE)) 566 exit_oom_victim(); 567 } 568 569 static struct task_struct *find_alive_thread(struct task_struct *p) 570 { 571 struct task_struct *t; 572 573 for_each_thread(p, t) { 574 if (!(t->flags & PF_EXITING)) 575 return t; 576 } 577 return NULL; 578 } 579 580 static struct task_struct *find_child_reaper(struct task_struct *father, 581 struct list_head *dead) 582 __releases(&tasklist_lock) 583 __acquires(&tasklist_lock) 584 { 585 struct pid_namespace *pid_ns = task_active_pid_ns(father); 586 struct task_struct *reaper = pid_ns->child_reaper; 587 struct task_struct *p, *n; 588 589 if (likely(reaper != father)) 590 return reaper; 591 592 reaper = find_alive_thread(father); 593 if (reaper) { 594 pid_ns->child_reaper = reaper; 595 return reaper; 596 } 597 598 write_unlock_irq(&tasklist_lock); 599 600 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 601 list_del_init(&p->ptrace_entry); 602 release_task(p); 603 } 604 605 zap_pid_ns_processes(pid_ns); 606 write_lock_irq(&tasklist_lock); 607 608 return father; 609 } 610 611 /* 612 * When we die, we re-parent all our children, and try to: 613 * 1. give them to another thread in our thread group, if such a member exists 614 * 2. give it to the first ancestor process which prctl'd itself as a 615 * child_subreaper for its children (like a service manager) 616 * 3. give it to the init process (PID 1) in our pid namespace 617 */ 618 static struct task_struct *find_new_reaper(struct task_struct *father, 619 struct task_struct *child_reaper) 620 { 621 struct task_struct *thread, *reaper; 622 623 thread = find_alive_thread(father); 624 if (thread) 625 return thread; 626 627 if (father->signal->has_child_subreaper) { 628 unsigned int ns_level = task_pid(father)->level; 629 /* 630 * Find the first ->is_child_subreaper ancestor in our pid_ns. 631 * We can't check reaper != child_reaper to ensure we do not 632 * cross the namespaces, the exiting parent could be injected 633 * by setns() + fork(). 634 * We check pid->level, this is slightly more efficient than 635 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 636 */ 637 for (reaper = father->real_parent; 638 task_pid(reaper)->level == ns_level; 639 reaper = reaper->real_parent) { 640 if (reaper == &init_task) 641 break; 642 if (!reaper->signal->is_child_subreaper) 643 continue; 644 thread = find_alive_thread(reaper); 645 if (thread) 646 return thread; 647 } 648 } 649 650 return child_reaper; 651 } 652 653 /* 654 * Any that need to be release_task'd are put on the @dead list. 655 */ 656 static void reparent_leader(struct task_struct *father, struct task_struct *p, 657 struct list_head *dead) 658 { 659 if (unlikely(p->exit_state == EXIT_DEAD)) 660 return; 661 662 /* We don't want people slaying init. */ 663 p->exit_signal = SIGCHLD; 664 665 /* If it has exited notify the new parent about this child's death. */ 666 if (!p->ptrace && 667 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 668 if (do_notify_parent(p, p->exit_signal)) { 669 p->exit_state = EXIT_DEAD; 670 list_add(&p->ptrace_entry, dead); 671 } 672 } 673 674 kill_orphaned_pgrp(p, father); 675 } 676 677 /* 678 * This does two things: 679 * 680 * A. Make init inherit all the child processes 681 * B. Check to see if any process groups have become orphaned 682 * as a result of our exiting, and if they have any stopped 683 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 684 */ 685 static void forget_original_parent(struct task_struct *father, 686 struct list_head *dead) 687 { 688 struct task_struct *p, *t, *reaper; 689 690 if (unlikely(!list_empty(&father->ptraced))) 691 exit_ptrace(father, dead); 692 693 /* Can drop and reacquire tasklist_lock */ 694 reaper = find_child_reaper(father, dead); 695 if (list_empty(&father->children)) 696 return; 697 698 reaper = find_new_reaper(father, reaper); 699 list_for_each_entry(p, &father->children, sibling) { 700 for_each_thread(p, t) { 701 RCU_INIT_POINTER(t->real_parent, reaper); 702 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 703 if (likely(!t->ptrace)) 704 t->parent = t->real_parent; 705 if (t->pdeath_signal) 706 group_send_sig_info(t->pdeath_signal, 707 SEND_SIG_NOINFO, t, 708 PIDTYPE_TGID); 709 } 710 /* 711 * If this is a threaded reparent there is no need to 712 * notify anyone anything has happened. 713 */ 714 if (!same_thread_group(reaper, father)) 715 reparent_leader(father, p, dead); 716 } 717 list_splice_tail_init(&father->children, &reaper->children); 718 } 719 720 /* 721 * Send signals to all our closest relatives so that they know 722 * to properly mourn us.. 723 */ 724 static void exit_notify(struct task_struct *tsk, int group_dead) 725 { 726 bool autoreap; 727 struct task_struct *p, *n; 728 LIST_HEAD(dead); 729 730 write_lock_irq(&tasklist_lock); 731 forget_original_parent(tsk, &dead); 732 733 if (group_dead) 734 kill_orphaned_pgrp(tsk->group_leader, NULL); 735 736 tsk->exit_state = EXIT_ZOMBIE; 737 /* 738 * sub-thread or delay_group_leader(), wake up the 739 * PIDFD_THREAD waiters. 740 */ 741 if (!thread_group_empty(tsk)) 742 do_notify_pidfd(tsk); 743 744 if (unlikely(tsk->ptrace)) { 745 int sig = thread_group_leader(tsk) && 746 thread_group_empty(tsk) && 747 !ptrace_reparented(tsk) ? 748 tsk->exit_signal : SIGCHLD; 749 autoreap = do_notify_parent(tsk, sig); 750 } else if (thread_group_leader(tsk)) { 751 autoreap = thread_group_empty(tsk) && 752 do_notify_parent(tsk, tsk->exit_signal); 753 } else { 754 autoreap = true; 755 } 756 757 if (autoreap) { 758 tsk->exit_state = EXIT_DEAD; 759 list_add(&tsk->ptrace_entry, &dead); 760 } 761 762 /* mt-exec, de_thread() is waiting for group leader */ 763 if (unlikely(tsk->signal->notify_count < 0)) 764 wake_up_process(tsk->signal->group_exec_task); 765 write_unlock_irq(&tasklist_lock); 766 767 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 768 list_del_init(&p->ptrace_entry); 769 release_task(p); 770 } 771 } 772 773 #ifdef CONFIG_DEBUG_STACK_USAGE 774 static void check_stack_usage(void) 775 { 776 static DEFINE_SPINLOCK(low_water_lock); 777 static int lowest_to_date = THREAD_SIZE; 778 unsigned long free; 779 780 free = stack_not_used(current); 781 782 if (free >= lowest_to_date) 783 return; 784 785 spin_lock(&low_water_lock); 786 if (free < lowest_to_date) { 787 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 788 current->comm, task_pid_nr(current), free); 789 lowest_to_date = free; 790 } 791 spin_unlock(&low_water_lock); 792 } 793 #else 794 static inline void check_stack_usage(void) {} 795 #endif 796 797 static void synchronize_group_exit(struct task_struct *tsk, long code) 798 { 799 struct sighand_struct *sighand = tsk->sighand; 800 struct signal_struct *signal = tsk->signal; 801 802 spin_lock_irq(&sighand->siglock); 803 signal->quick_threads--; 804 if ((signal->quick_threads == 0) && 805 !(signal->flags & SIGNAL_GROUP_EXIT)) { 806 signal->flags = SIGNAL_GROUP_EXIT; 807 signal->group_exit_code = code; 808 signal->group_stop_count = 0; 809 } 810 spin_unlock_irq(&sighand->siglock); 811 } 812 813 void __noreturn do_exit(long code) 814 { 815 struct task_struct *tsk = current; 816 int group_dead; 817 818 WARN_ON(irqs_disabled()); 819 820 synchronize_group_exit(tsk, code); 821 822 WARN_ON(tsk->plug); 823 824 kcov_task_exit(tsk); 825 kmsan_task_exit(tsk); 826 827 coredump_task_exit(tsk); 828 ptrace_event(PTRACE_EVENT_EXIT, code); 829 user_events_exit(tsk); 830 831 io_uring_files_cancel(); 832 exit_signals(tsk); /* sets PF_EXITING */ 833 834 acct_update_integrals(tsk); 835 group_dead = atomic_dec_and_test(&tsk->signal->live); 836 if (group_dead) { 837 /* 838 * If the last thread of global init has exited, panic 839 * immediately to get a useable coredump. 840 */ 841 if (unlikely(is_global_init(tsk))) 842 panic("Attempted to kill init! exitcode=0x%08x\n", 843 tsk->signal->group_exit_code ?: (int)code); 844 845 #ifdef CONFIG_POSIX_TIMERS 846 hrtimer_cancel(&tsk->signal->real_timer); 847 exit_itimers(tsk); 848 #endif 849 if (tsk->mm) 850 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 851 } 852 acct_collect(code, group_dead); 853 if (group_dead) 854 tty_audit_exit(); 855 audit_free(tsk); 856 857 tsk->exit_code = code; 858 taskstats_exit(tsk, group_dead); 859 860 exit_mm(); 861 862 if (group_dead) 863 acct_process(); 864 trace_sched_process_exit(tsk); 865 866 exit_sem(tsk); 867 exit_shm(tsk); 868 exit_files(tsk); 869 exit_fs(tsk); 870 if (group_dead) 871 disassociate_ctty(1); 872 exit_task_namespaces(tsk); 873 exit_task_work(tsk); 874 exit_thread(tsk); 875 876 /* 877 * Flush inherited counters to the parent - before the parent 878 * gets woken up by child-exit notifications. 879 * 880 * because of cgroup mode, must be called before cgroup_exit() 881 */ 882 perf_event_exit_task(tsk); 883 884 sched_autogroup_exit_task(tsk); 885 cgroup_exit(tsk); 886 887 /* 888 * FIXME: do that only when needed, using sched_exit tracepoint 889 */ 890 flush_ptrace_hw_breakpoint(tsk); 891 892 exit_tasks_rcu_start(); 893 exit_notify(tsk, group_dead); 894 proc_exit_connector(tsk); 895 mpol_put_task_policy(tsk); 896 #ifdef CONFIG_FUTEX 897 if (unlikely(current->pi_state_cache)) 898 kfree(current->pi_state_cache); 899 #endif 900 /* 901 * Make sure we are holding no locks: 902 */ 903 debug_check_no_locks_held(); 904 905 if (tsk->io_context) 906 exit_io_context(tsk); 907 908 if (tsk->splice_pipe) 909 free_pipe_info(tsk->splice_pipe); 910 911 if (tsk->task_frag.page) 912 put_page(tsk->task_frag.page); 913 914 exit_task_stack_account(tsk); 915 916 check_stack_usage(); 917 preempt_disable(); 918 if (tsk->nr_dirtied) 919 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 920 exit_rcu(); 921 exit_tasks_rcu_finish(); 922 923 lockdep_free_task(tsk); 924 do_task_dead(); 925 } 926 927 void __noreturn make_task_dead(int signr) 928 { 929 /* 930 * Take the task off the cpu after something catastrophic has 931 * happened. 932 * 933 * We can get here from a kernel oops, sometimes with preemption off. 934 * Start by checking for critical errors. 935 * Then fix up important state like USER_DS and preemption. 936 * Then do everything else. 937 */ 938 struct task_struct *tsk = current; 939 unsigned int limit; 940 941 if (unlikely(in_interrupt())) 942 panic("Aiee, killing interrupt handler!"); 943 if (unlikely(!tsk->pid)) 944 panic("Attempted to kill the idle task!"); 945 946 if (unlikely(irqs_disabled())) { 947 pr_info("note: %s[%d] exited with irqs disabled\n", 948 current->comm, task_pid_nr(current)); 949 local_irq_enable(); 950 } 951 if (unlikely(in_atomic())) { 952 pr_info("note: %s[%d] exited with preempt_count %d\n", 953 current->comm, task_pid_nr(current), 954 preempt_count()); 955 preempt_count_set(PREEMPT_ENABLED); 956 } 957 958 /* 959 * Every time the system oopses, if the oops happens while a reference 960 * to an object was held, the reference leaks. 961 * If the oops doesn't also leak memory, repeated oopsing can cause 962 * reference counters to wrap around (if they're not using refcount_t). 963 * This means that repeated oopsing can make unexploitable-looking bugs 964 * exploitable through repeated oopsing. 965 * To make sure this can't happen, place an upper bound on how often the 966 * kernel may oops without panic(). 967 */ 968 limit = READ_ONCE(oops_limit); 969 if (atomic_inc_return(&oops_count) >= limit && limit) 970 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 971 972 /* 973 * We're taking recursive faults here in make_task_dead. Safest is to just 974 * leave this task alone and wait for reboot. 975 */ 976 if (unlikely(tsk->flags & PF_EXITING)) { 977 pr_alert("Fixing recursive fault but reboot is needed!\n"); 978 futex_exit_recursive(tsk); 979 tsk->exit_state = EXIT_DEAD; 980 refcount_inc(&tsk->rcu_users); 981 do_task_dead(); 982 } 983 984 do_exit(signr); 985 } 986 987 SYSCALL_DEFINE1(exit, int, error_code) 988 { 989 do_exit((error_code&0xff)<<8); 990 } 991 992 /* 993 * Take down every thread in the group. This is called by fatal signals 994 * as well as by sys_exit_group (below). 995 */ 996 void __noreturn 997 do_group_exit(int exit_code) 998 { 999 struct signal_struct *sig = current->signal; 1000 1001 if (sig->flags & SIGNAL_GROUP_EXIT) 1002 exit_code = sig->group_exit_code; 1003 else if (sig->group_exec_task) 1004 exit_code = 0; 1005 else { 1006 struct sighand_struct *const sighand = current->sighand; 1007 1008 spin_lock_irq(&sighand->siglock); 1009 if (sig->flags & SIGNAL_GROUP_EXIT) 1010 /* Another thread got here before we took the lock. */ 1011 exit_code = sig->group_exit_code; 1012 else if (sig->group_exec_task) 1013 exit_code = 0; 1014 else { 1015 sig->group_exit_code = exit_code; 1016 sig->flags = SIGNAL_GROUP_EXIT; 1017 zap_other_threads(current); 1018 } 1019 spin_unlock_irq(&sighand->siglock); 1020 } 1021 1022 do_exit(exit_code); 1023 /* NOTREACHED */ 1024 } 1025 1026 /* 1027 * this kills every thread in the thread group. Note that any externally 1028 * wait4()-ing process will get the correct exit code - even if this 1029 * thread is not the thread group leader. 1030 */ 1031 SYSCALL_DEFINE1(exit_group, int, error_code) 1032 { 1033 do_group_exit((error_code & 0xff) << 8); 1034 /* NOTREACHED */ 1035 return 0; 1036 } 1037 1038 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1039 { 1040 return wo->wo_type == PIDTYPE_MAX || 1041 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1042 } 1043 1044 static int 1045 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1046 { 1047 if (!eligible_pid(wo, p)) 1048 return 0; 1049 1050 /* 1051 * Wait for all children (clone and not) if __WALL is set or 1052 * if it is traced by us. 1053 */ 1054 if (ptrace || (wo->wo_flags & __WALL)) 1055 return 1; 1056 1057 /* 1058 * Otherwise, wait for clone children *only* if __WCLONE is set; 1059 * otherwise, wait for non-clone children *only*. 1060 * 1061 * Note: a "clone" child here is one that reports to its parent 1062 * using a signal other than SIGCHLD, or a non-leader thread which 1063 * we can only see if it is traced by us. 1064 */ 1065 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1066 return 0; 1067 1068 return 1; 1069 } 1070 1071 /* 1072 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1073 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1074 * the lock and this task is uninteresting. If we return nonzero, we have 1075 * released the lock and the system call should return. 1076 */ 1077 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1078 { 1079 int state, status; 1080 pid_t pid = task_pid_vnr(p); 1081 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1082 struct waitid_info *infop; 1083 1084 if (!likely(wo->wo_flags & WEXITED)) 1085 return 0; 1086 1087 if (unlikely(wo->wo_flags & WNOWAIT)) { 1088 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1089 ? p->signal->group_exit_code : p->exit_code; 1090 get_task_struct(p); 1091 read_unlock(&tasklist_lock); 1092 sched_annotate_sleep(); 1093 if (wo->wo_rusage) 1094 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1095 put_task_struct(p); 1096 goto out_info; 1097 } 1098 /* 1099 * Move the task's state to DEAD/TRACE, only one thread can do this. 1100 */ 1101 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1102 EXIT_TRACE : EXIT_DEAD; 1103 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1104 return 0; 1105 /* 1106 * We own this thread, nobody else can reap it. 1107 */ 1108 read_unlock(&tasklist_lock); 1109 sched_annotate_sleep(); 1110 1111 /* 1112 * Check thread_group_leader() to exclude the traced sub-threads. 1113 */ 1114 if (state == EXIT_DEAD && thread_group_leader(p)) { 1115 struct signal_struct *sig = p->signal; 1116 struct signal_struct *psig = current->signal; 1117 unsigned long maxrss; 1118 u64 tgutime, tgstime; 1119 1120 /* 1121 * The resource counters for the group leader are in its 1122 * own task_struct. Those for dead threads in the group 1123 * are in its signal_struct, as are those for the child 1124 * processes it has previously reaped. All these 1125 * accumulate in the parent's signal_struct c* fields. 1126 * 1127 * We don't bother to take a lock here to protect these 1128 * p->signal fields because the whole thread group is dead 1129 * and nobody can change them. 1130 * 1131 * psig->stats_lock also protects us from our sub-threads 1132 * which can reap other children at the same time. 1133 * 1134 * We use thread_group_cputime_adjusted() to get times for 1135 * the thread group, which consolidates times for all threads 1136 * in the group including the group leader. 1137 */ 1138 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1139 write_seqlock_irq(&psig->stats_lock); 1140 psig->cutime += tgutime + sig->cutime; 1141 psig->cstime += tgstime + sig->cstime; 1142 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1143 psig->cmin_flt += 1144 p->min_flt + sig->min_flt + sig->cmin_flt; 1145 psig->cmaj_flt += 1146 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1147 psig->cnvcsw += 1148 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1149 psig->cnivcsw += 1150 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1151 psig->cinblock += 1152 task_io_get_inblock(p) + 1153 sig->inblock + sig->cinblock; 1154 psig->coublock += 1155 task_io_get_oublock(p) + 1156 sig->oublock + sig->coublock; 1157 maxrss = max(sig->maxrss, sig->cmaxrss); 1158 if (psig->cmaxrss < maxrss) 1159 psig->cmaxrss = maxrss; 1160 task_io_accounting_add(&psig->ioac, &p->ioac); 1161 task_io_accounting_add(&psig->ioac, &sig->ioac); 1162 write_sequnlock_irq(&psig->stats_lock); 1163 } 1164 1165 if (wo->wo_rusage) 1166 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1167 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1168 ? p->signal->group_exit_code : p->exit_code; 1169 wo->wo_stat = status; 1170 1171 if (state == EXIT_TRACE) { 1172 write_lock_irq(&tasklist_lock); 1173 /* We dropped tasklist, ptracer could die and untrace */ 1174 ptrace_unlink(p); 1175 1176 /* If parent wants a zombie, don't release it now */ 1177 state = EXIT_ZOMBIE; 1178 if (do_notify_parent(p, p->exit_signal)) 1179 state = EXIT_DEAD; 1180 p->exit_state = state; 1181 write_unlock_irq(&tasklist_lock); 1182 } 1183 if (state == EXIT_DEAD) 1184 release_task(p); 1185 1186 out_info: 1187 infop = wo->wo_info; 1188 if (infop) { 1189 if ((status & 0x7f) == 0) { 1190 infop->cause = CLD_EXITED; 1191 infop->status = status >> 8; 1192 } else { 1193 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1194 infop->status = status & 0x7f; 1195 } 1196 infop->pid = pid; 1197 infop->uid = uid; 1198 } 1199 1200 return pid; 1201 } 1202 1203 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1204 { 1205 if (ptrace) { 1206 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1207 return &p->exit_code; 1208 } else { 1209 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1210 return &p->signal->group_exit_code; 1211 } 1212 return NULL; 1213 } 1214 1215 /** 1216 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1217 * @wo: wait options 1218 * @ptrace: is the wait for ptrace 1219 * @p: task to wait for 1220 * 1221 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1222 * 1223 * CONTEXT: 1224 * read_lock(&tasklist_lock), which is released if return value is 1225 * non-zero. Also, grabs and releases @p->sighand->siglock. 1226 * 1227 * RETURNS: 1228 * 0 if wait condition didn't exist and search for other wait conditions 1229 * should continue. Non-zero return, -errno on failure and @p's pid on 1230 * success, implies that tasklist_lock is released and wait condition 1231 * search should terminate. 1232 */ 1233 static int wait_task_stopped(struct wait_opts *wo, 1234 int ptrace, struct task_struct *p) 1235 { 1236 struct waitid_info *infop; 1237 int exit_code, *p_code, why; 1238 uid_t uid = 0; /* unneeded, required by compiler */ 1239 pid_t pid; 1240 1241 /* 1242 * Traditionally we see ptrace'd stopped tasks regardless of options. 1243 */ 1244 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1245 return 0; 1246 1247 if (!task_stopped_code(p, ptrace)) 1248 return 0; 1249 1250 exit_code = 0; 1251 spin_lock_irq(&p->sighand->siglock); 1252 1253 p_code = task_stopped_code(p, ptrace); 1254 if (unlikely(!p_code)) 1255 goto unlock_sig; 1256 1257 exit_code = *p_code; 1258 if (!exit_code) 1259 goto unlock_sig; 1260 1261 if (!unlikely(wo->wo_flags & WNOWAIT)) 1262 *p_code = 0; 1263 1264 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1265 unlock_sig: 1266 spin_unlock_irq(&p->sighand->siglock); 1267 if (!exit_code) 1268 return 0; 1269 1270 /* 1271 * Now we are pretty sure this task is interesting. 1272 * Make sure it doesn't get reaped out from under us while we 1273 * give up the lock and then examine it below. We don't want to 1274 * keep holding onto the tasklist_lock while we call getrusage and 1275 * possibly take page faults for user memory. 1276 */ 1277 get_task_struct(p); 1278 pid = task_pid_vnr(p); 1279 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1280 read_unlock(&tasklist_lock); 1281 sched_annotate_sleep(); 1282 if (wo->wo_rusage) 1283 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1284 put_task_struct(p); 1285 1286 if (likely(!(wo->wo_flags & WNOWAIT))) 1287 wo->wo_stat = (exit_code << 8) | 0x7f; 1288 1289 infop = wo->wo_info; 1290 if (infop) { 1291 infop->cause = why; 1292 infop->status = exit_code; 1293 infop->pid = pid; 1294 infop->uid = uid; 1295 } 1296 return pid; 1297 } 1298 1299 /* 1300 * Handle do_wait work for one task in a live, non-stopped state. 1301 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1302 * the lock and this task is uninteresting. If we return nonzero, we have 1303 * released the lock and the system call should return. 1304 */ 1305 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1306 { 1307 struct waitid_info *infop; 1308 pid_t pid; 1309 uid_t uid; 1310 1311 if (!unlikely(wo->wo_flags & WCONTINUED)) 1312 return 0; 1313 1314 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1315 return 0; 1316 1317 spin_lock_irq(&p->sighand->siglock); 1318 /* Re-check with the lock held. */ 1319 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1320 spin_unlock_irq(&p->sighand->siglock); 1321 return 0; 1322 } 1323 if (!unlikely(wo->wo_flags & WNOWAIT)) 1324 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1325 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1326 spin_unlock_irq(&p->sighand->siglock); 1327 1328 pid = task_pid_vnr(p); 1329 get_task_struct(p); 1330 read_unlock(&tasklist_lock); 1331 sched_annotate_sleep(); 1332 if (wo->wo_rusage) 1333 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1334 put_task_struct(p); 1335 1336 infop = wo->wo_info; 1337 if (!infop) { 1338 wo->wo_stat = 0xffff; 1339 } else { 1340 infop->cause = CLD_CONTINUED; 1341 infop->pid = pid; 1342 infop->uid = uid; 1343 infop->status = SIGCONT; 1344 } 1345 return pid; 1346 } 1347 1348 /* 1349 * Consider @p for a wait by @parent. 1350 * 1351 * -ECHILD should be in ->notask_error before the first call. 1352 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1353 * Returns zero if the search for a child should continue; 1354 * then ->notask_error is 0 if @p is an eligible child, 1355 * or still -ECHILD. 1356 */ 1357 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1358 struct task_struct *p) 1359 { 1360 /* 1361 * We can race with wait_task_zombie() from another thread. 1362 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1363 * can't confuse the checks below. 1364 */ 1365 int exit_state = READ_ONCE(p->exit_state); 1366 int ret; 1367 1368 if (unlikely(exit_state == EXIT_DEAD)) 1369 return 0; 1370 1371 ret = eligible_child(wo, ptrace, p); 1372 if (!ret) 1373 return ret; 1374 1375 if (unlikely(exit_state == EXIT_TRACE)) { 1376 /* 1377 * ptrace == 0 means we are the natural parent. In this case 1378 * we should clear notask_error, debugger will notify us. 1379 */ 1380 if (likely(!ptrace)) 1381 wo->notask_error = 0; 1382 return 0; 1383 } 1384 1385 if (likely(!ptrace) && unlikely(p->ptrace)) { 1386 /* 1387 * If it is traced by its real parent's group, just pretend 1388 * the caller is ptrace_do_wait() and reap this child if it 1389 * is zombie. 1390 * 1391 * This also hides group stop state from real parent; otherwise 1392 * a single stop can be reported twice as group and ptrace stop. 1393 * If a ptracer wants to distinguish these two events for its 1394 * own children it should create a separate process which takes 1395 * the role of real parent. 1396 */ 1397 if (!ptrace_reparented(p)) 1398 ptrace = 1; 1399 } 1400 1401 /* slay zombie? */ 1402 if (exit_state == EXIT_ZOMBIE) { 1403 /* we don't reap group leaders with subthreads */ 1404 if (!delay_group_leader(p)) { 1405 /* 1406 * A zombie ptracee is only visible to its ptracer. 1407 * Notification and reaping will be cascaded to the 1408 * real parent when the ptracer detaches. 1409 */ 1410 if (unlikely(ptrace) || likely(!p->ptrace)) 1411 return wait_task_zombie(wo, p); 1412 } 1413 1414 /* 1415 * Allow access to stopped/continued state via zombie by 1416 * falling through. Clearing of notask_error is complex. 1417 * 1418 * When !@ptrace: 1419 * 1420 * If WEXITED is set, notask_error should naturally be 1421 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1422 * so, if there are live subthreads, there are events to 1423 * wait for. If all subthreads are dead, it's still safe 1424 * to clear - this function will be called again in finite 1425 * amount time once all the subthreads are released and 1426 * will then return without clearing. 1427 * 1428 * When @ptrace: 1429 * 1430 * Stopped state is per-task and thus can't change once the 1431 * target task dies. Only continued and exited can happen. 1432 * Clear notask_error if WCONTINUED | WEXITED. 1433 */ 1434 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1435 wo->notask_error = 0; 1436 } else { 1437 /* 1438 * @p is alive and it's gonna stop, continue or exit, so 1439 * there always is something to wait for. 1440 */ 1441 wo->notask_error = 0; 1442 } 1443 1444 /* 1445 * Wait for stopped. Depending on @ptrace, different stopped state 1446 * is used and the two don't interact with each other. 1447 */ 1448 ret = wait_task_stopped(wo, ptrace, p); 1449 if (ret) 1450 return ret; 1451 1452 /* 1453 * Wait for continued. There's only one continued state and the 1454 * ptracer can consume it which can confuse the real parent. Don't 1455 * use WCONTINUED from ptracer. You don't need or want it. 1456 */ 1457 return wait_task_continued(wo, p); 1458 } 1459 1460 /* 1461 * Do the work of do_wait() for one thread in the group, @tsk. 1462 * 1463 * -ECHILD should be in ->notask_error before the first call. 1464 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1465 * Returns zero if the search for a child should continue; then 1466 * ->notask_error is 0 if there were any eligible children, 1467 * or still -ECHILD. 1468 */ 1469 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1470 { 1471 struct task_struct *p; 1472 1473 list_for_each_entry(p, &tsk->children, sibling) { 1474 int ret = wait_consider_task(wo, 0, p); 1475 1476 if (ret) 1477 return ret; 1478 } 1479 1480 return 0; 1481 } 1482 1483 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1484 { 1485 struct task_struct *p; 1486 1487 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1488 int ret = wait_consider_task(wo, 1, p); 1489 1490 if (ret) 1491 return ret; 1492 } 1493 1494 return 0; 1495 } 1496 1497 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p) 1498 { 1499 if (!eligible_pid(wo, p)) 1500 return false; 1501 1502 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent) 1503 return false; 1504 1505 return true; 1506 } 1507 1508 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1509 int sync, void *key) 1510 { 1511 struct wait_opts *wo = container_of(wait, struct wait_opts, 1512 child_wait); 1513 struct task_struct *p = key; 1514 1515 if (pid_child_should_wake(wo, p)) 1516 return default_wake_function(wait, mode, sync, key); 1517 1518 return 0; 1519 } 1520 1521 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1522 { 1523 __wake_up_sync_key(&parent->signal->wait_chldexit, 1524 TASK_INTERRUPTIBLE, p); 1525 } 1526 1527 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1528 struct task_struct *target) 1529 { 1530 struct task_struct *parent = 1531 !ptrace ? target->real_parent : target->parent; 1532 1533 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1534 same_thread_group(current, parent)); 1535 } 1536 1537 /* 1538 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1539 * and tracee lists to find the target task. 1540 */ 1541 static int do_wait_pid(struct wait_opts *wo) 1542 { 1543 bool ptrace; 1544 struct task_struct *target; 1545 int retval; 1546 1547 ptrace = false; 1548 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1549 if (target && is_effectively_child(wo, ptrace, target)) { 1550 retval = wait_consider_task(wo, ptrace, target); 1551 if (retval) 1552 return retval; 1553 } 1554 1555 ptrace = true; 1556 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1557 if (target && target->ptrace && 1558 is_effectively_child(wo, ptrace, target)) { 1559 retval = wait_consider_task(wo, ptrace, target); 1560 if (retval) 1561 return retval; 1562 } 1563 1564 return 0; 1565 } 1566 1567 long __do_wait(struct wait_opts *wo) 1568 { 1569 long retval; 1570 1571 /* 1572 * If there is nothing that can match our criteria, just get out. 1573 * We will clear ->notask_error to zero if we see any child that 1574 * might later match our criteria, even if we are not able to reap 1575 * it yet. 1576 */ 1577 wo->notask_error = -ECHILD; 1578 if ((wo->wo_type < PIDTYPE_MAX) && 1579 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1580 goto notask; 1581 1582 read_lock(&tasklist_lock); 1583 1584 if (wo->wo_type == PIDTYPE_PID) { 1585 retval = do_wait_pid(wo); 1586 if (retval) 1587 return retval; 1588 } else { 1589 struct task_struct *tsk = current; 1590 1591 do { 1592 retval = do_wait_thread(wo, tsk); 1593 if (retval) 1594 return retval; 1595 1596 retval = ptrace_do_wait(wo, tsk); 1597 if (retval) 1598 return retval; 1599 1600 if (wo->wo_flags & __WNOTHREAD) 1601 break; 1602 } while_each_thread(current, tsk); 1603 } 1604 read_unlock(&tasklist_lock); 1605 1606 notask: 1607 retval = wo->notask_error; 1608 if (!retval && !(wo->wo_flags & WNOHANG)) 1609 return -ERESTARTSYS; 1610 1611 return retval; 1612 } 1613 1614 static long do_wait(struct wait_opts *wo) 1615 { 1616 int retval; 1617 1618 trace_sched_process_wait(wo->wo_pid); 1619 1620 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1621 wo->child_wait.private = current; 1622 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1623 1624 do { 1625 set_current_state(TASK_INTERRUPTIBLE); 1626 retval = __do_wait(wo); 1627 if (retval != -ERESTARTSYS) 1628 break; 1629 if (signal_pending(current)) 1630 break; 1631 schedule(); 1632 } while (1); 1633 1634 __set_current_state(TASK_RUNNING); 1635 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1636 return retval; 1637 } 1638 1639 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid, 1640 struct waitid_info *infop, int options, 1641 struct rusage *ru) 1642 { 1643 unsigned int f_flags = 0; 1644 struct pid *pid = NULL; 1645 enum pid_type type; 1646 1647 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1648 __WNOTHREAD|__WCLONE|__WALL)) 1649 return -EINVAL; 1650 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1651 return -EINVAL; 1652 1653 switch (which) { 1654 case P_ALL: 1655 type = PIDTYPE_MAX; 1656 break; 1657 case P_PID: 1658 type = PIDTYPE_PID; 1659 if (upid <= 0) 1660 return -EINVAL; 1661 1662 pid = find_get_pid(upid); 1663 break; 1664 case P_PGID: 1665 type = PIDTYPE_PGID; 1666 if (upid < 0) 1667 return -EINVAL; 1668 1669 if (upid) 1670 pid = find_get_pid(upid); 1671 else 1672 pid = get_task_pid(current, PIDTYPE_PGID); 1673 break; 1674 case P_PIDFD: 1675 type = PIDTYPE_PID; 1676 if (upid < 0) 1677 return -EINVAL; 1678 1679 pid = pidfd_get_pid(upid, &f_flags); 1680 if (IS_ERR(pid)) 1681 return PTR_ERR(pid); 1682 1683 break; 1684 default: 1685 return -EINVAL; 1686 } 1687 1688 wo->wo_type = type; 1689 wo->wo_pid = pid; 1690 wo->wo_flags = options; 1691 wo->wo_info = infop; 1692 wo->wo_rusage = ru; 1693 if (f_flags & O_NONBLOCK) 1694 wo->wo_flags |= WNOHANG; 1695 1696 return 0; 1697 } 1698 1699 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1700 int options, struct rusage *ru) 1701 { 1702 struct wait_opts wo; 1703 long ret; 1704 1705 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru); 1706 if (ret) 1707 return ret; 1708 1709 ret = do_wait(&wo); 1710 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG)) 1711 ret = -EAGAIN; 1712 1713 put_pid(wo.wo_pid); 1714 return ret; 1715 } 1716 1717 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1718 infop, int, options, struct rusage __user *, ru) 1719 { 1720 struct rusage r; 1721 struct waitid_info info = {.status = 0}; 1722 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1723 int signo = 0; 1724 1725 if (err > 0) { 1726 signo = SIGCHLD; 1727 err = 0; 1728 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1729 return -EFAULT; 1730 } 1731 if (!infop) 1732 return err; 1733 1734 if (!user_write_access_begin(infop, sizeof(*infop))) 1735 return -EFAULT; 1736 1737 unsafe_put_user(signo, &infop->si_signo, Efault); 1738 unsafe_put_user(0, &infop->si_errno, Efault); 1739 unsafe_put_user(info.cause, &infop->si_code, Efault); 1740 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1741 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1742 unsafe_put_user(info.status, &infop->si_status, Efault); 1743 user_write_access_end(); 1744 return err; 1745 Efault: 1746 user_write_access_end(); 1747 return -EFAULT; 1748 } 1749 1750 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1751 struct rusage *ru) 1752 { 1753 struct wait_opts wo; 1754 struct pid *pid = NULL; 1755 enum pid_type type; 1756 long ret; 1757 1758 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1759 __WNOTHREAD|__WCLONE|__WALL)) 1760 return -EINVAL; 1761 1762 /* -INT_MIN is not defined */ 1763 if (upid == INT_MIN) 1764 return -ESRCH; 1765 1766 if (upid == -1) 1767 type = PIDTYPE_MAX; 1768 else if (upid < 0) { 1769 type = PIDTYPE_PGID; 1770 pid = find_get_pid(-upid); 1771 } else if (upid == 0) { 1772 type = PIDTYPE_PGID; 1773 pid = get_task_pid(current, PIDTYPE_PGID); 1774 } else /* upid > 0 */ { 1775 type = PIDTYPE_PID; 1776 pid = find_get_pid(upid); 1777 } 1778 1779 wo.wo_type = type; 1780 wo.wo_pid = pid; 1781 wo.wo_flags = options | WEXITED; 1782 wo.wo_info = NULL; 1783 wo.wo_stat = 0; 1784 wo.wo_rusage = ru; 1785 ret = do_wait(&wo); 1786 put_pid(pid); 1787 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1788 ret = -EFAULT; 1789 1790 return ret; 1791 } 1792 1793 int kernel_wait(pid_t pid, int *stat) 1794 { 1795 struct wait_opts wo = { 1796 .wo_type = PIDTYPE_PID, 1797 .wo_pid = find_get_pid(pid), 1798 .wo_flags = WEXITED, 1799 }; 1800 int ret; 1801 1802 ret = do_wait(&wo); 1803 if (ret > 0 && wo.wo_stat) 1804 *stat = wo.wo_stat; 1805 put_pid(wo.wo_pid); 1806 return ret; 1807 } 1808 1809 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1810 int, options, struct rusage __user *, ru) 1811 { 1812 struct rusage r; 1813 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1814 1815 if (err > 0) { 1816 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1817 return -EFAULT; 1818 } 1819 return err; 1820 } 1821 1822 #ifdef __ARCH_WANT_SYS_WAITPID 1823 1824 /* 1825 * sys_waitpid() remains for compatibility. waitpid() should be 1826 * implemented by calling sys_wait4() from libc.a. 1827 */ 1828 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1829 { 1830 return kernel_wait4(pid, stat_addr, options, NULL); 1831 } 1832 1833 #endif 1834 1835 #ifdef CONFIG_COMPAT 1836 COMPAT_SYSCALL_DEFINE4(wait4, 1837 compat_pid_t, pid, 1838 compat_uint_t __user *, stat_addr, 1839 int, options, 1840 struct compat_rusage __user *, ru) 1841 { 1842 struct rusage r; 1843 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1844 if (err > 0) { 1845 if (ru && put_compat_rusage(&r, ru)) 1846 return -EFAULT; 1847 } 1848 return err; 1849 } 1850 1851 COMPAT_SYSCALL_DEFINE5(waitid, 1852 int, which, compat_pid_t, pid, 1853 struct compat_siginfo __user *, infop, int, options, 1854 struct compat_rusage __user *, uru) 1855 { 1856 struct rusage ru; 1857 struct waitid_info info = {.status = 0}; 1858 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1859 int signo = 0; 1860 if (err > 0) { 1861 signo = SIGCHLD; 1862 err = 0; 1863 if (uru) { 1864 /* kernel_waitid() overwrites everything in ru */ 1865 if (COMPAT_USE_64BIT_TIME) 1866 err = copy_to_user(uru, &ru, sizeof(ru)); 1867 else 1868 err = put_compat_rusage(&ru, uru); 1869 if (err) 1870 return -EFAULT; 1871 } 1872 } 1873 1874 if (!infop) 1875 return err; 1876 1877 if (!user_write_access_begin(infop, sizeof(*infop))) 1878 return -EFAULT; 1879 1880 unsafe_put_user(signo, &infop->si_signo, Efault); 1881 unsafe_put_user(0, &infop->si_errno, Efault); 1882 unsafe_put_user(info.cause, &infop->si_code, Efault); 1883 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1884 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1885 unsafe_put_user(info.status, &infop->si_status, Efault); 1886 user_write_access_end(); 1887 return err; 1888 Efault: 1889 user_write_access_end(); 1890 return -EFAULT; 1891 } 1892 #endif 1893 1894 /* 1895 * This needs to be __function_aligned as GCC implicitly makes any 1896 * implementation of abort() cold and drops alignment specified by 1897 * -falign-functions=N. 1898 * 1899 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1900 */ 1901 __weak __function_aligned void abort(void) 1902 { 1903 BUG(); 1904 1905 /* if that doesn't kill us, halt */ 1906 panic("Oops failed to kill thread"); 1907 } 1908 EXPORT_SYMBOL(abort); 1909