xref: /linux-6.15/kernel/exit.c (revision 247dbcdb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 
73 #include <linux/uaccess.h>
74 #include <asm/unistd.h>
75 #include <asm/mmu_context.h>
76 
77 /*
78  * The default value should be high enough to not crash a system that randomly
79  * crashes its kernel from time to time, but low enough to at least not permit
80  * overflowing 32-bit refcounts or the ldsem writer count.
81  */
82 static unsigned int oops_limit = 10000;
83 
84 #ifdef CONFIG_SYSCTL
85 static struct ctl_table kern_exit_table[] = {
86 	{
87 		.procname       = "oops_limit",
88 		.data           = &oops_limit,
89 		.maxlen         = sizeof(oops_limit),
90 		.mode           = 0644,
91 		.proc_handler   = proc_douintvec,
92 	},
93 	{ }
94 };
95 
96 static __init int kernel_exit_sysctls_init(void)
97 {
98 	register_sysctl_init("kernel", kern_exit_table);
99 	return 0;
100 }
101 late_initcall(kernel_exit_sysctls_init);
102 #endif
103 
104 static atomic_t oops_count = ATOMIC_INIT(0);
105 
106 #ifdef CONFIG_SYSFS
107 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
108 			       char *page)
109 {
110 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
111 }
112 
113 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
114 
115 static __init int kernel_exit_sysfs_init(void)
116 {
117 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
118 	return 0;
119 }
120 late_initcall(kernel_exit_sysfs_init);
121 #endif
122 
123 static void __unhash_process(struct task_struct *p, bool group_dead)
124 {
125 	nr_threads--;
126 	detach_pid(p, PIDTYPE_PID);
127 	if (group_dead) {
128 		detach_pid(p, PIDTYPE_TGID);
129 		detach_pid(p, PIDTYPE_PGID);
130 		detach_pid(p, PIDTYPE_SID);
131 
132 		list_del_rcu(&p->tasks);
133 		list_del_init(&p->sibling);
134 		__this_cpu_dec(process_counts);
135 	}
136 	list_del_rcu(&p->thread_group);
137 	list_del_rcu(&p->thread_node);
138 }
139 
140 /*
141  * This function expects the tasklist_lock write-locked.
142  */
143 static void __exit_signal(struct task_struct *tsk)
144 {
145 	struct signal_struct *sig = tsk->signal;
146 	bool group_dead = thread_group_leader(tsk);
147 	struct sighand_struct *sighand;
148 	struct tty_struct *tty;
149 	u64 utime, stime;
150 
151 	sighand = rcu_dereference_check(tsk->sighand,
152 					lockdep_tasklist_lock_is_held());
153 	spin_lock(&sighand->siglock);
154 
155 #ifdef CONFIG_POSIX_TIMERS
156 	posix_cpu_timers_exit(tsk);
157 	if (group_dead)
158 		posix_cpu_timers_exit_group(tsk);
159 #endif
160 
161 	if (group_dead) {
162 		tty = sig->tty;
163 		sig->tty = NULL;
164 	} else {
165 		/*
166 		 * If there is any task waiting for the group exit
167 		 * then notify it:
168 		 */
169 		if (sig->notify_count > 0 && !--sig->notify_count)
170 			wake_up_process(sig->group_exec_task);
171 
172 		if (tsk == sig->curr_target)
173 			sig->curr_target = next_thread(tsk);
174 	}
175 
176 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
177 			      sizeof(unsigned long long));
178 
179 	/*
180 	 * Accumulate here the counters for all threads as they die. We could
181 	 * skip the group leader because it is the last user of signal_struct,
182 	 * but we want to avoid the race with thread_group_cputime() which can
183 	 * see the empty ->thread_head list.
184 	 */
185 	task_cputime(tsk, &utime, &stime);
186 	write_seqlock(&sig->stats_lock);
187 	sig->utime += utime;
188 	sig->stime += stime;
189 	sig->gtime += task_gtime(tsk);
190 	sig->min_flt += tsk->min_flt;
191 	sig->maj_flt += tsk->maj_flt;
192 	sig->nvcsw += tsk->nvcsw;
193 	sig->nivcsw += tsk->nivcsw;
194 	sig->inblock += task_io_get_inblock(tsk);
195 	sig->oublock += task_io_get_oublock(tsk);
196 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
197 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
198 	sig->nr_threads--;
199 	__unhash_process(tsk, group_dead);
200 	write_sequnlock(&sig->stats_lock);
201 
202 	/*
203 	 * Do this under ->siglock, we can race with another thread
204 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
205 	 */
206 	flush_sigqueue(&tsk->pending);
207 	tsk->sighand = NULL;
208 	spin_unlock(&sighand->siglock);
209 
210 	__cleanup_sighand(sighand);
211 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
212 	if (group_dead) {
213 		flush_sigqueue(&sig->shared_pending);
214 		tty_kref_put(tty);
215 	}
216 }
217 
218 static void delayed_put_task_struct(struct rcu_head *rhp)
219 {
220 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
221 
222 	kprobe_flush_task(tsk);
223 	rethook_flush_task(tsk);
224 	perf_event_delayed_put(tsk);
225 	trace_sched_process_free(tsk);
226 	put_task_struct(tsk);
227 }
228 
229 void put_task_struct_rcu_user(struct task_struct *task)
230 {
231 	if (refcount_dec_and_test(&task->rcu_users))
232 		call_rcu(&task->rcu, delayed_put_task_struct);
233 }
234 
235 void __weak release_thread(struct task_struct *dead_task)
236 {
237 }
238 
239 void release_task(struct task_struct *p)
240 {
241 	struct task_struct *leader;
242 	struct pid *thread_pid;
243 	int zap_leader;
244 repeat:
245 	/* don't need to get the RCU readlock here - the process is dead and
246 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
247 	rcu_read_lock();
248 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
249 	rcu_read_unlock();
250 
251 	cgroup_release(p);
252 
253 	write_lock_irq(&tasklist_lock);
254 	ptrace_release_task(p);
255 	thread_pid = get_pid(p->thread_pid);
256 	__exit_signal(p);
257 
258 	/*
259 	 * If we are the last non-leader member of the thread
260 	 * group, and the leader is zombie, then notify the
261 	 * group leader's parent process. (if it wants notification.)
262 	 */
263 	zap_leader = 0;
264 	leader = p->group_leader;
265 	if (leader != p && thread_group_empty(leader)
266 			&& leader->exit_state == EXIT_ZOMBIE) {
267 		/*
268 		 * If we were the last child thread and the leader has
269 		 * exited already, and the leader's parent ignores SIGCHLD,
270 		 * then we are the one who should release the leader.
271 		 */
272 		zap_leader = do_notify_parent(leader, leader->exit_signal);
273 		if (zap_leader)
274 			leader->exit_state = EXIT_DEAD;
275 	}
276 
277 	write_unlock_irq(&tasklist_lock);
278 	seccomp_filter_release(p);
279 	proc_flush_pid(thread_pid);
280 	put_pid(thread_pid);
281 	release_thread(p);
282 	put_task_struct_rcu_user(p);
283 
284 	p = leader;
285 	if (unlikely(zap_leader))
286 		goto repeat;
287 }
288 
289 int rcuwait_wake_up(struct rcuwait *w)
290 {
291 	int ret = 0;
292 	struct task_struct *task;
293 
294 	rcu_read_lock();
295 
296 	/*
297 	 * Order condition vs @task, such that everything prior to the load
298 	 * of @task is visible. This is the condition as to why the user called
299 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
300 	 * barrier (A) in rcuwait_wait_event().
301 	 *
302 	 *    WAIT                WAKE
303 	 *    [S] tsk = current	  [S] cond = true
304 	 *        MB (A)	      MB (B)
305 	 *    [L] cond		  [L] tsk
306 	 */
307 	smp_mb(); /* (B) */
308 
309 	task = rcu_dereference(w->task);
310 	if (task)
311 		ret = wake_up_process(task);
312 	rcu_read_unlock();
313 
314 	return ret;
315 }
316 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
317 
318 /*
319  * Determine if a process group is "orphaned", according to the POSIX
320  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
321  * by terminal-generated stop signals.  Newly orphaned process groups are
322  * to receive a SIGHUP and a SIGCONT.
323  *
324  * "I ask you, have you ever known what it is to be an orphan?"
325  */
326 static int will_become_orphaned_pgrp(struct pid *pgrp,
327 					struct task_struct *ignored_task)
328 {
329 	struct task_struct *p;
330 
331 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
332 		if ((p == ignored_task) ||
333 		    (p->exit_state && thread_group_empty(p)) ||
334 		    is_global_init(p->real_parent))
335 			continue;
336 
337 		if (task_pgrp(p->real_parent) != pgrp &&
338 		    task_session(p->real_parent) == task_session(p))
339 			return 0;
340 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
341 
342 	return 1;
343 }
344 
345 int is_current_pgrp_orphaned(void)
346 {
347 	int retval;
348 
349 	read_lock(&tasklist_lock);
350 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
351 	read_unlock(&tasklist_lock);
352 
353 	return retval;
354 }
355 
356 static bool has_stopped_jobs(struct pid *pgrp)
357 {
358 	struct task_struct *p;
359 
360 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
361 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
362 			return true;
363 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
364 
365 	return false;
366 }
367 
368 /*
369  * Check to see if any process groups have become orphaned as
370  * a result of our exiting, and if they have any stopped jobs,
371  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
372  */
373 static void
374 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
375 {
376 	struct pid *pgrp = task_pgrp(tsk);
377 	struct task_struct *ignored_task = tsk;
378 
379 	if (!parent)
380 		/* exit: our father is in a different pgrp than
381 		 * we are and we were the only connection outside.
382 		 */
383 		parent = tsk->real_parent;
384 	else
385 		/* reparent: our child is in a different pgrp than
386 		 * we are, and it was the only connection outside.
387 		 */
388 		ignored_task = NULL;
389 
390 	if (task_pgrp(parent) != pgrp &&
391 	    task_session(parent) == task_session(tsk) &&
392 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
393 	    has_stopped_jobs(pgrp)) {
394 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
395 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
396 	}
397 }
398 
399 static void coredump_task_exit(struct task_struct *tsk)
400 {
401 	struct core_state *core_state;
402 
403 	/*
404 	 * Serialize with any possible pending coredump.
405 	 * We must hold siglock around checking core_state
406 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
407 	 * will increment ->nr_threads for each thread in the
408 	 * group without PF_POSTCOREDUMP set.
409 	 */
410 	spin_lock_irq(&tsk->sighand->siglock);
411 	tsk->flags |= PF_POSTCOREDUMP;
412 	core_state = tsk->signal->core_state;
413 	spin_unlock_irq(&tsk->sighand->siglock);
414 
415 	/* The vhost_worker does not particpate in coredumps */
416 	if (core_state &&
417 	    ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
418 		struct core_thread self;
419 
420 		self.task = current;
421 		if (self.task->flags & PF_SIGNALED)
422 			self.next = xchg(&core_state->dumper.next, &self);
423 		else
424 			self.task = NULL;
425 		/*
426 		 * Implies mb(), the result of xchg() must be visible
427 		 * to core_state->dumper.
428 		 */
429 		if (atomic_dec_and_test(&core_state->nr_threads))
430 			complete(&core_state->startup);
431 
432 		for (;;) {
433 			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
434 			if (!self.task) /* see coredump_finish() */
435 				break;
436 			schedule();
437 		}
438 		__set_current_state(TASK_RUNNING);
439 	}
440 }
441 
442 #ifdef CONFIG_MEMCG
443 /*
444  * A task is exiting.   If it owned this mm, find a new owner for the mm.
445  */
446 void mm_update_next_owner(struct mm_struct *mm)
447 {
448 	struct task_struct *c, *g, *p = current;
449 
450 retry:
451 	/*
452 	 * If the exiting or execing task is not the owner, it's
453 	 * someone else's problem.
454 	 */
455 	if (mm->owner != p)
456 		return;
457 	/*
458 	 * The current owner is exiting/execing and there are no other
459 	 * candidates.  Do not leave the mm pointing to a possibly
460 	 * freed task structure.
461 	 */
462 	if (atomic_read(&mm->mm_users) <= 1) {
463 		WRITE_ONCE(mm->owner, NULL);
464 		return;
465 	}
466 
467 	read_lock(&tasklist_lock);
468 	/*
469 	 * Search in the children
470 	 */
471 	list_for_each_entry(c, &p->children, sibling) {
472 		if (c->mm == mm)
473 			goto assign_new_owner;
474 	}
475 
476 	/*
477 	 * Search in the siblings
478 	 */
479 	list_for_each_entry(c, &p->real_parent->children, sibling) {
480 		if (c->mm == mm)
481 			goto assign_new_owner;
482 	}
483 
484 	/*
485 	 * Search through everything else, we should not get here often.
486 	 */
487 	for_each_process(g) {
488 		if (g->flags & PF_KTHREAD)
489 			continue;
490 		for_each_thread(g, c) {
491 			if (c->mm == mm)
492 				goto assign_new_owner;
493 			if (c->mm)
494 				break;
495 		}
496 	}
497 	read_unlock(&tasklist_lock);
498 	/*
499 	 * We found no owner yet mm_users > 1: this implies that we are
500 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
501 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
502 	 */
503 	WRITE_ONCE(mm->owner, NULL);
504 	return;
505 
506 assign_new_owner:
507 	BUG_ON(c == p);
508 	get_task_struct(c);
509 	/*
510 	 * The task_lock protects c->mm from changing.
511 	 * We always want mm->owner->mm == mm
512 	 */
513 	task_lock(c);
514 	/*
515 	 * Delay read_unlock() till we have the task_lock()
516 	 * to ensure that c does not slip away underneath us
517 	 */
518 	read_unlock(&tasklist_lock);
519 	if (c->mm != mm) {
520 		task_unlock(c);
521 		put_task_struct(c);
522 		goto retry;
523 	}
524 	WRITE_ONCE(mm->owner, c);
525 	lru_gen_migrate_mm(mm);
526 	task_unlock(c);
527 	put_task_struct(c);
528 }
529 #endif /* CONFIG_MEMCG */
530 
531 /*
532  * Turn us into a lazy TLB process if we
533  * aren't already..
534  */
535 static void exit_mm(void)
536 {
537 	struct mm_struct *mm = current->mm;
538 
539 	exit_mm_release(current, mm);
540 	if (!mm)
541 		return;
542 	mmap_read_lock(mm);
543 	mmgrab_lazy_tlb(mm);
544 	BUG_ON(mm != current->active_mm);
545 	/* more a memory barrier than a real lock */
546 	task_lock(current);
547 	/*
548 	 * When a thread stops operating on an address space, the loop
549 	 * in membarrier_private_expedited() may not observe that
550 	 * tsk->mm, and the loop in membarrier_global_expedited() may
551 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
552 	 * rq->membarrier_state, so those would not issue an IPI.
553 	 * Membarrier requires a memory barrier after accessing
554 	 * user-space memory, before clearing tsk->mm or the
555 	 * rq->membarrier_state.
556 	 */
557 	smp_mb__after_spinlock();
558 	local_irq_disable();
559 	current->mm = NULL;
560 	membarrier_update_current_mm(NULL);
561 	enter_lazy_tlb(mm, current);
562 	local_irq_enable();
563 	task_unlock(current);
564 	mmap_read_unlock(mm);
565 	mm_update_next_owner(mm);
566 	mmput(mm);
567 	if (test_thread_flag(TIF_MEMDIE))
568 		exit_oom_victim();
569 }
570 
571 static struct task_struct *find_alive_thread(struct task_struct *p)
572 {
573 	struct task_struct *t;
574 
575 	for_each_thread(p, t) {
576 		if (!(t->flags & PF_EXITING))
577 			return t;
578 	}
579 	return NULL;
580 }
581 
582 static struct task_struct *find_child_reaper(struct task_struct *father,
583 						struct list_head *dead)
584 	__releases(&tasklist_lock)
585 	__acquires(&tasklist_lock)
586 {
587 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
588 	struct task_struct *reaper = pid_ns->child_reaper;
589 	struct task_struct *p, *n;
590 
591 	if (likely(reaper != father))
592 		return reaper;
593 
594 	reaper = find_alive_thread(father);
595 	if (reaper) {
596 		pid_ns->child_reaper = reaper;
597 		return reaper;
598 	}
599 
600 	write_unlock_irq(&tasklist_lock);
601 
602 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
603 		list_del_init(&p->ptrace_entry);
604 		release_task(p);
605 	}
606 
607 	zap_pid_ns_processes(pid_ns);
608 	write_lock_irq(&tasklist_lock);
609 
610 	return father;
611 }
612 
613 /*
614  * When we die, we re-parent all our children, and try to:
615  * 1. give them to another thread in our thread group, if such a member exists
616  * 2. give it to the first ancestor process which prctl'd itself as a
617  *    child_subreaper for its children (like a service manager)
618  * 3. give it to the init process (PID 1) in our pid namespace
619  */
620 static struct task_struct *find_new_reaper(struct task_struct *father,
621 					   struct task_struct *child_reaper)
622 {
623 	struct task_struct *thread, *reaper;
624 
625 	thread = find_alive_thread(father);
626 	if (thread)
627 		return thread;
628 
629 	if (father->signal->has_child_subreaper) {
630 		unsigned int ns_level = task_pid(father)->level;
631 		/*
632 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
633 		 * We can't check reaper != child_reaper to ensure we do not
634 		 * cross the namespaces, the exiting parent could be injected
635 		 * by setns() + fork().
636 		 * We check pid->level, this is slightly more efficient than
637 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
638 		 */
639 		for (reaper = father->real_parent;
640 		     task_pid(reaper)->level == ns_level;
641 		     reaper = reaper->real_parent) {
642 			if (reaper == &init_task)
643 				break;
644 			if (!reaper->signal->is_child_subreaper)
645 				continue;
646 			thread = find_alive_thread(reaper);
647 			if (thread)
648 				return thread;
649 		}
650 	}
651 
652 	return child_reaper;
653 }
654 
655 /*
656 * Any that need to be release_task'd are put on the @dead list.
657  */
658 static void reparent_leader(struct task_struct *father, struct task_struct *p,
659 				struct list_head *dead)
660 {
661 	if (unlikely(p->exit_state == EXIT_DEAD))
662 		return;
663 
664 	/* We don't want people slaying init. */
665 	p->exit_signal = SIGCHLD;
666 
667 	/* If it has exited notify the new parent about this child's death. */
668 	if (!p->ptrace &&
669 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
670 		if (do_notify_parent(p, p->exit_signal)) {
671 			p->exit_state = EXIT_DEAD;
672 			list_add(&p->ptrace_entry, dead);
673 		}
674 	}
675 
676 	kill_orphaned_pgrp(p, father);
677 }
678 
679 /*
680  * This does two things:
681  *
682  * A.  Make init inherit all the child processes
683  * B.  Check to see if any process groups have become orphaned
684  *	as a result of our exiting, and if they have any stopped
685  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
686  */
687 static void forget_original_parent(struct task_struct *father,
688 					struct list_head *dead)
689 {
690 	struct task_struct *p, *t, *reaper;
691 
692 	if (unlikely(!list_empty(&father->ptraced)))
693 		exit_ptrace(father, dead);
694 
695 	/* Can drop and reacquire tasklist_lock */
696 	reaper = find_child_reaper(father, dead);
697 	if (list_empty(&father->children))
698 		return;
699 
700 	reaper = find_new_reaper(father, reaper);
701 	list_for_each_entry(p, &father->children, sibling) {
702 		for_each_thread(p, t) {
703 			RCU_INIT_POINTER(t->real_parent, reaper);
704 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
705 			if (likely(!t->ptrace))
706 				t->parent = t->real_parent;
707 			if (t->pdeath_signal)
708 				group_send_sig_info(t->pdeath_signal,
709 						    SEND_SIG_NOINFO, t,
710 						    PIDTYPE_TGID);
711 		}
712 		/*
713 		 * If this is a threaded reparent there is no need to
714 		 * notify anyone anything has happened.
715 		 */
716 		if (!same_thread_group(reaper, father))
717 			reparent_leader(father, p, dead);
718 	}
719 	list_splice_tail_init(&father->children, &reaper->children);
720 }
721 
722 /*
723  * Send signals to all our closest relatives so that they know
724  * to properly mourn us..
725  */
726 static void exit_notify(struct task_struct *tsk, int group_dead)
727 {
728 	bool autoreap;
729 	struct task_struct *p, *n;
730 	LIST_HEAD(dead);
731 
732 	write_lock_irq(&tasklist_lock);
733 	forget_original_parent(tsk, &dead);
734 
735 	if (group_dead)
736 		kill_orphaned_pgrp(tsk->group_leader, NULL);
737 
738 	tsk->exit_state = EXIT_ZOMBIE;
739 	if (unlikely(tsk->ptrace)) {
740 		int sig = thread_group_leader(tsk) &&
741 				thread_group_empty(tsk) &&
742 				!ptrace_reparented(tsk) ?
743 			tsk->exit_signal : SIGCHLD;
744 		autoreap = do_notify_parent(tsk, sig);
745 	} else if (thread_group_leader(tsk)) {
746 		autoreap = thread_group_empty(tsk) &&
747 			do_notify_parent(tsk, tsk->exit_signal);
748 	} else {
749 		autoreap = true;
750 	}
751 
752 	if (autoreap) {
753 		tsk->exit_state = EXIT_DEAD;
754 		list_add(&tsk->ptrace_entry, &dead);
755 	}
756 
757 	/* mt-exec, de_thread() is waiting for group leader */
758 	if (unlikely(tsk->signal->notify_count < 0))
759 		wake_up_process(tsk->signal->group_exec_task);
760 	write_unlock_irq(&tasklist_lock);
761 
762 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
763 		list_del_init(&p->ptrace_entry);
764 		release_task(p);
765 	}
766 }
767 
768 #ifdef CONFIG_DEBUG_STACK_USAGE
769 static void check_stack_usage(void)
770 {
771 	static DEFINE_SPINLOCK(low_water_lock);
772 	static int lowest_to_date = THREAD_SIZE;
773 	unsigned long free;
774 
775 	free = stack_not_used(current);
776 
777 	if (free >= lowest_to_date)
778 		return;
779 
780 	spin_lock(&low_water_lock);
781 	if (free < lowest_to_date) {
782 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
783 			current->comm, task_pid_nr(current), free);
784 		lowest_to_date = free;
785 	}
786 	spin_unlock(&low_water_lock);
787 }
788 #else
789 static inline void check_stack_usage(void) {}
790 #endif
791 
792 static void synchronize_group_exit(struct task_struct *tsk, long code)
793 {
794 	struct sighand_struct *sighand = tsk->sighand;
795 	struct signal_struct *signal = tsk->signal;
796 
797 	spin_lock_irq(&sighand->siglock);
798 	signal->quick_threads--;
799 	if ((signal->quick_threads == 0) &&
800 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
801 		signal->flags = SIGNAL_GROUP_EXIT;
802 		signal->group_exit_code = code;
803 		signal->group_stop_count = 0;
804 	}
805 	spin_unlock_irq(&sighand->siglock);
806 }
807 
808 void __noreturn do_exit(long code)
809 {
810 	struct task_struct *tsk = current;
811 	int group_dead;
812 
813 	WARN_ON(irqs_disabled());
814 
815 	synchronize_group_exit(tsk, code);
816 
817 	WARN_ON(tsk->plug);
818 
819 	kcov_task_exit(tsk);
820 	kmsan_task_exit(tsk);
821 
822 	coredump_task_exit(tsk);
823 	ptrace_event(PTRACE_EVENT_EXIT, code);
824 	user_events_exit(tsk);
825 
826 	validate_creds_for_do_exit(tsk);
827 
828 	io_uring_files_cancel();
829 	exit_signals(tsk);  /* sets PF_EXITING */
830 
831 	acct_update_integrals(tsk);
832 	group_dead = atomic_dec_and_test(&tsk->signal->live);
833 	if (group_dead) {
834 		/*
835 		 * If the last thread of global init has exited, panic
836 		 * immediately to get a useable coredump.
837 		 */
838 		if (unlikely(is_global_init(tsk)))
839 			panic("Attempted to kill init! exitcode=0x%08x\n",
840 				tsk->signal->group_exit_code ?: (int)code);
841 
842 #ifdef CONFIG_POSIX_TIMERS
843 		hrtimer_cancel(&tsk->signal->real_timer);
844 		exit_itimers(tsk);
845 #endif
846 		if (tsk->mm)
847 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
848 	}
849 	acct_collect(code, group_dead);
850 	if (group_dead)
851 		tty_audit_exit();
852 	audit_free(tsk);
853 
854 	tsk->exit_code = code;
855 	taskstats_exit(tsk, group_dead);
856 
857 	exit_mm();
858 
859 	if (group_dead)
860 		acct_process();
861 	trace_sched_process_exit(tsk);
862 
863 	exit_sem(tsk);
864 	exit_shm(tsk);
865 	exit_files(tsk);
866 	exit_fs(tsk);
867 	if (group_dead)
868 		disassociate_ctty(1);
869 	exit_task_namespaces(tsk);
870 	exit_task_work(tsk);
871 	exit_thread(tsk);
872 
873 	/*
874 	 * Flush inherited counters to the parent - before the parent
875 	 * gets woken up by child-exit notifications.
876 	 *
877 	 * because of cgroup mode, must be called before cgroup_exit()
878 	 */
879 	perf_event_exit_task(tsk);
880 
881 	sched_autogroup_exit_task(tsk);
882 	cgroup_exit(tsk);
883 
884 	/*
885 	 * FIXME: do that only when needed, using sched_exit tracepoint
886 	 */
887 	flush_ptrace_hw_breakpoint(tsk);
888 
889 	exit_tasks_rcu_start();
890 	exit_notify(tsk, group_dead);
891 	proc_exit_connector(tsk);
892 	mpol_put_task_policy(tsk);
893 #ifdef CONFIG_FUTEX
894 	if (unlikely(current->pi_state_cache))
895 		kfree(current->pi_state_cache);
896 #endif
897 	/*
898 	 * Make sure we are holding no locks:
899 	 */
900 	debug_check_no_locks_held();
901 
902 	if (tsk->io_context)
903 		exit_io_context(tsk);
904 
905 	if (tsk->splice_pipe)
906 		free_pipe_info(tsk->splice_pipe);
907 
908 	if (tsk->task_frag.page)
909 		put_page(tsk->task_frag.page);
910 
911 	validate_creds_for_do_exit(tsk);
912 	exit_task_stack_account(tsk);
913 
914 	check_stack_usage();
915 	preempt_disable();
916 	if (tsk->nr_dirtied)
917 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
918 	exit_rcu();
919 	exit_tasks_rcu_finish();
920 
921 	lockdep_free_task(tsk);
922 	do_task_dead();
923 }
924 
925 void __noreturn make_task_dead(int signr)
926 {
927 	/*
928 	 * Take the task off the cpu after something catastrophic has
929 	 * happened.
930 	 *
931 	 * We can get here from a kernel oops, sometimes with preemption off.
932 	 * Start by checking for critical errors.
933 	 * Then fix up important state like USER_DS and preemption.
934 	 * Then do everything else.
935 	 */
936 	struct task_struct *tsk = current;
937 	unsigned int limit;
938 
939 	if (unlikely(in_interrupt()))
940 		panic("Aiee, killing interrupt handler!");
941 	if (unlikely(!tsk->pid))
942 		panic("Attempted to kill the idle task!");
943 
944 	if (unlikely(irqs_disabled())) {
945 		pr_info("note: %s[%d] exited with irqs disabled\n",
946 			current->comm, task_pid_nr(current));
947 		local_irq_enable();
948 	}
949 	if (unlikely(in_atomic())) {
950 		pr_info("note: %s[%d] exited with preempt_count %d\n",
951 			current->comm, task_pid_nr(current),
952 			preempt_count());
953 		preempt_count_set(PREEMPT_ENABLED);
954 	}
955 
956 	/*
957 	 * Every time the system oopses, if the oops happens while a reference
958 	 * to an object was held, the reference leaks.
959 	 * If the oops doesn't also leak memory, repeated oopsing can cause
960 	 * reference counters to wrap around (if they're not using refcount_t).
961 	 * This means that repeated oopsing can make unexploitable-looking bugs
962 	 * exploitable through repeated oopsing.
963 	 * To make sure this can't happen, place an upper bound on how often the
964 	 * kernel may oops without panic().
965 	 */
966 	limit = READ_ONCE(oops_limit);
967 	if (atomic_inc_return(&oops_count) >= limit && limit)
968 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
969 
970 	/*
971 	 * We're taking recursive faults here in make_task_dead. Safest is to just
972 	 * leave this task alone and wait for reboot.
973 	 */
974 	if (unlikely(tsk->flags & PF_EXITING)) {
975 		pr_alert("Fixing recursive fault but reboot is needed!\n");
976 		futex_exit_recursive(tsk);
977 		tsk->exit_state = EXIT_DEAD;
978 		refcount_inc(&tsk->rcu_users);
979 		do_task_dead();
980 	}
981 
982 	do_exit(signr);
983 }
984 
985 SYSCALL_DEFINE1(exit, int, error_code)
986 {
987 	do_exit((error_code&0xff)<<8);
988 }
989 
990 /*
991  * Take down every thread in the group.  This is called by fatal signals
992  * as well as by sys_exit_group (below).
993  */
994 void __noreturn
995 do_group_exit(int exit_code)
996 {
997 	struct signal_struct *sig = current->signal;
998 
999 	if (sig->flags & SIGNAL_GROUP_EXIT)
1000 		exit_code = sig->group_exit_code;
1001 	else if (sig->group_exec_task)
1002 		exit_code = 0;
1003 	else {
1004 		struct sighand_struct *const sighand = current->sighand;
1005 
1006 		spin_lock_irq(&sighand->siglock);
1007 		if (sig->flags & SIGNAL_GROUP_EXIT)
1008 			/* Another thread got here before we took the lock.  */
1009 			exit_code = sig->group_exit_code;
1010 		else if (sig->group_exec_task)
1011 			exit_code = 0;
1012 		else {
1013 			sig->group_exit_code = exit_code;
1014 			sig->flags = SIGNAL_GROUP_EXIT;
1015 			zap_other_threads(current);
1016 		}
1017 		spin_unlock_irq(&sighand->siglock);
1018 	}
1019 
1020 	do_exit(exit_code);
1021 	/* NOTREACHED */
1022 }
1023 
1024 /*
1025  * this kills every thread in the thread group. Note that any externally
1026  * wait4()-ing process will get the correct exit code - even if this
1027  * thread is not the thread group leader.
1028  */
1029 SYSCALL_DEFINE1(exit_group, int, error_code)
1030 {
1031 	do_group_exit((error_code & 0xff) << 8);
1032 	/* NOTREACHED */
1033 	return 0;
1034 }
1035 
1036 struct waitid_info {
1037 	pid_t pid;
1038 	uid_t uid;
1039 	int status;
1040 	int cause;
1041 };
1042 
1043 struct wait_opts {
1044 	enum pid_type		wo_type;
1045 	int			wo_flags;
1046 	struct pid		*wo_pid;
1047 
1048 	struct waitid_info	*wo_info;
1049 	int			wo_stat;
1050 	struct rusage		*wo_rusage;
1051 
1052 	wait_queue_entry_t		child_wait;
1053 	int			notask_error;
1054 };
1055 
1056 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1057 {
1058 	return	wo->wo_type == PIDTYPE_MAX ||
1059 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1060 }
1061 
1062 static int
1063 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1064 {
1065 	if (!eligible_pid(wo, p))
1066 		return 0;
1067 
1068 	/*
1069 	 * Wait for all children (clone and not) if __WALL is set or
1070 	 * if it is traced by us.
1071 	 */
1072 	if (ptrace || (wo->wo_flags & __WALL))
1073 		return 1;
1074 
1075 	/*
1076 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1077 	 * otherwise, wait for non-clone children *only*.
1078 	 *
1079 	 * Note: a "clone" child here is one that reports to its parent
1080 	 * using a signal other than SIGCHLD, or a non-leader thread which
1081 	 * we can only see if it is traced by us.
1082 	 */
1083 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1084 		return 0;
1085 
1086 	return 1;
1087 }
1088 
1089 /*
1090  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1091  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1092  * the lock and this task is uninteresting.  If we return nonzero, we have
1093  * released the lock and the system call should return.
1094  */
1095 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1096 {
1097 	int state, status;
1098 	pid_t pid = task_pid_vnr(p);
1099 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1100 	struct waitid_info *infop;
1101 
1102 	if (!likely(wo->wo_flags & WEXITED))
1103 		return 0;
1104 
1105 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1106 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1107 			? p->signal->group_exit_code : p->exit_code;
1108 		get_task_struct(p);
1109 		read_unlock(&tasklist_lock);
1110 		sched_annotate_sleep();
1111 		if (wo->wo_rusage)
1112 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1113 		put_task_struct(p);
1114 		goto out_info;
1115 	}
1116 	/*
1117 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1118 	 */
1119 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1120 		EXIT_TRACE : EXIT_DEAD;
1121 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1122 		return 0;
1123 	/*
1124 	 * We own this thread, nobody else can reap it.
1125 	 */
1126 	read_unlock(&tasklist_lock);
1127 	sched_annotate_sleep();
1128 
1129 	/*
1130 	 * Check thread_group_leader() to exclude the traced sub-threads.
1131 	 */
1132 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1133 		struct signal_struct *sig = p->signal;
1134 		struct signal_struct *psig = current->signal;
1135 		unsigned long maxrss;
1136 		u64 tgutime, tgstime;
1137 
1138 		/*
1139 		 * The resource counters for the group leader are in its
1140 		 * own task_struct.  Those for dead threads in the group
1141 		 * are in its signal_struct, as are those for the child
1142 		 * processes it has previously reaped.  All these
1143 		 * accumulate in the parent's signal_struct c* fields.
1144 		 *
1145 		 * We don't bother to take a lock here to protect these
1146 		 * p->signal fields because the whole thread group is dead
1147 		 * and nobody can change them.
1148 		 *
1149 		 * psig->stats_lock also protects us from our sub-threads
1150 		 * which can reap other children at the same time. Until
1151 		 * we change k_getrusage()-like users to rely on this lock
1152 		 * we have to take ->siglock as well.
1153 		 *
1154 		 * We use thread_group_cputime_adjusted() to get times for
1155 		 * the thread group, which consolidates times for all threads
1156 		 * in the group including the group leader.
1157 		 */
1158 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1159 		spin_lock_irq(&current->sighand->siglock);
1160 		write_seqlock(&psig->stats_lock);
1161 		psig->cutime += tgutime + sig->cutime;
1162 		psig->cstime += tgstime + sig->cstime;
1163 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1164 		psig->cmin_flt +=
1165 			p->min_flt + sig->min_flt + sig->cmin_flt;
1166 		psig->cmaj_flt +=
1167 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1168 		psig->cnvcsw +=
1169 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1170 		psig->cnivcsw +=
1171 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1172 		psig->cinblock +=
1173 			task_io_get_inblock(p) +
1174 			sig->inblock + sig->cinblock;
1175 		psig->coublock +=
1176 			task_io_get_oublock(p) +
1177 			sig->oublock + sig->coublock;
1178 		maxrss = max(sig->maxrss, sig->cmaxrss);
1179 		if (psig->cmaxrss < maxrss)
1180 			psig->cmaxrss = maxrss;
1181 		task_io_accounting_add(&psig->ioac, &p->ioac);
1182 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1183 		write_sequnlock(&psig->stats_lock);
1184 		spin_unlock_irq(&current->sighand->siglock);
1185 	}
1186 
1187 	if (wo->wo_rusage)
1188 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1189 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1190 		? p->signal->group_exit_code : p->exit_code;
1191 	wo->wo_stat = status;
1192 
1193 	if (state == EXIT_TRACE) {
1194 		write_lock_irq(&tasklist_lock);
1195 		/* We dropped tasklist, ptracer could die and untrace */
1196 		ptrace_unlink(p);
1197 
1198 		/* If parent wants a zombie, don't release it now */
1199 		state = EXIT_ZOMBIE;
1200 		if (do_notify_parent(p, p->exit_signal))
1201 			state = EXIT_DEAD;
1202 		p->exit_state = state;
1203 		write_unlock_irq(&tasklist_lock);
1204 	}
1205 	if (state == EXIT_DEAD)
1206 		release_task(p);
1207 
1208 out_info:
1209 	infop = wo->wo_info;
1210 	if (infop) {
1211 		if ((status & 0x7f) == 0) {
1212 			infop->cause = CLD_EXITED;
1213 			infop->status = status >> 8;
1214 		} else {
1215 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1216 			infop->status = status & 0x7f;
1217 		}
1218 		infop->pid = pid;
1219 		infop->uid = uid;
1220 	}
1221 
1222 	return pid;
1223 }
1224 
1225 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1226 {
1227 	if (ptrace) {
1228 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1229 			return &p->exit_code;
1230 	} else {
1231 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1232 			return &p->signal->group_exit_code;
1233 	}
1234 	return NULL;
1235 }
1236 
1237 /**
1238  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1239  * @wo: wait options
1240  * @ptrace: is the wait for ptrace
1241  * @p: task to wait for
1242  *
1243  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1244  *
1245  * CONTEXT:
1246  * read_lock(&tasklist_lock), which is released if return value is
1247  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1248  *
1249  * RETURNS:
1250  * 0 if wait condition didn't exist and search for other wait conditions
1251  * should continue.  Non-zero return, -errno on failure and @p's pid on
1252  * success, implies that tasklist_lock is released and wait condition
1253  * search should terminate.
1254  */
1255 static int wait_task_stopped(struct wait_opts *wo,
1256 				int ptrace, struct task_struct *p)
1257 {
1258 	struct waitid_info *infop;
1259 	int exit_code, *p_code, why;
1260 	uid_t uid = 0; /* unneeded, required by compiler */
1261 	pid_t pid;
1262 
1263 	/*
1264 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1265 	 */
1266 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1267 		return 0;
1268 
1269 	if (!task_stopped_code(p, ptrace))
1270 		return 0;
1271 
1272 	exit_code = 0;
1273 	spin_lock_irq(&p->sighand->siglock);
1274 
1275 	p_code = task_stopped_code(p, ptrace);
1276 	if (unlikely(!p_code))
1277 		goto unlock_sig;
1278 
1279 	exit_code = *p_code;
1280 	if (!exit_code)
1281 		goto unlock_sig;
1282 
1283 	if (!unlikely(wo->wo_flags & WNOWAIT))
1284 		*p_code = 0;
1285 
1286 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1287 unlock_sig:
1288 	spin_unlock_irq(&p->sighand->siglock);
1289 	if (!exit_code)
1290 		return 0;
1291 
1292 	/*
1293 	 * Now we are pretty sure this task is interesting.
1294 	 * Make sure it doesn't get reaped out from under us while we
1295 	 * give up the lock and then examine it below.  We don't want to
1296 	 * keep holding onto the tasklist_lock while we call getrusage and
1297 	 * possibly take page faults for user memory.
1298 	 */
1299 	get_task_struct(p);
1300 	pid = task_pid_vnr(p);
1301 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1302 	read_unlock(&tasklist_lock);
1303 	sched_annotate_sleep();
1304 	if (wo->wo_rusage)
1305 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1306 	put_task_struct(p);
1307 
1308 	if (likely(!(wo->wo_flags & WNOWAIT)))
1309 		wo->wo_stat = (exit_code << 8) | 0x7f;
1310 
1311 	infop = wo->wo_info;
1312 	if (infop) {
1313 		infop->cause = why;
1314 		infop->status = exit_code;
1315 		infop->pid = pid;
1316 		infop->uid = uid;
1317 	}
1318 	return pid;
1319 }
1320 
1321 /*
1322  * Handle do_wait work for one task in a live, non-stopped state.
1323  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1324  * the lock and this task is uninteresting.  If we return nonzero, we have
1325  * released the lock and the system call should return.
1326  */
1327 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1328 {
1329 	struct waitid_info *infop;
1330 	pid_t pid;
1331 	uid_t uid;
1332 
1333 	if (!unlikely(wo->wo_flags & WCONTINUED))
1334 		return 0;
1335 
1336 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1337 		return 0;
1338 
1339 	spin_lock_irq(&p->sighand->siglock);
1340 	/* Re-check with the lock held.  */
1341 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1342 		spin_unlock_irq(&p->sighand->siglock);
1343 		return 0;
1344 	}
1345 	if (!unlikely(wo->wo_flags & WNOWAIT))
1346 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1347 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1348 	spin_unlock_irq(&p->sighand->siglock);
1349 
1350 	pid = task_pid_vnr(p);
1351 	get_task_struct(p);
1352 	read_unlock(&tasklist_lock);
1353 	sched_annotate_sleep();
1354 	if (wo->wo_rusage)
1355 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1356 	put_task_struct(p);
1357 
1358 	infop = wo->wo_info;
1359 	if (!infop) {
1360 		wo->wo_stat = 0xffff;
1361 	} else {
1362 		infop->cause = CLD_CONTINUED;
1363 		infop->pid = pid;
1364 		infop->uid = uid;
1365 		infop->status = SIGCONT;
1366 	}
1367 	return pid;
1368 }
1369 
1370 /*
1371  * Consider @p for a wait by @parent.
1372  *
1373  * -ECHILD should be in ->notask_error before the first call.
1374  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1375  * Returns zero if the search for a child should continue;
1376  * then ->notask_error is 0 if @p is an eligible child,
1377  * or still -ECHILD.
1378  */
1379 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1380 				struct task_struct *p)
1381 {
1382 	/*
1383 	 * We can race with wait_task_zombie() from another thread.
1384 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1385 	 * can't confuse the checks below.
1386 	 */
1387 	int exit_state = READ_ONCE(p->exit_state);
1388 	int ret;
1389 
1390 	if (unlikely(exit_state == EXIT_DEAD))
1391 		return 0;
1392 
1393 	ret = eligible_child(wo, ptrace, p);
1394 	if (!ret)
1395 		return ret;
1396 
1397 	if (unlikely(exit_state == EXIT_TRACE)) {
1398 		/*
1399 		 * ptrace == 0 means we are the natural parent. In this case
1400 		 * we should clear notask_error, debugger will notify us.
1401 		 */
1402 		if (likely(!ptrace))
1403 			wo->notask_error = 0;
1404 		return 0;
1405 	}
1406 
1407 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1408 		/*
1409 		 * If it is traced by its real parent's group, just pretend
1410 		 * the caller is ptrace_do_wait() and reap this child if it
1411 		 * is zombie.
1412 		 *
1413 		 * This also hides group stop state from real parent; otherwise
1414 		 * a single stop can be reported twice as group and ptrace stop.
1415 		 * If a ptracer wants to distinguish these two events for its
1416 		 * own children it should create a separate process which takes
1417 		 * the role of real parent.
1418 		 */
1419 		if (!ptrace_reparented(p))
1420 			ptrace = 1;
1421 	}
1422 
1423 	/* slay zombie? */
1424 	if (exit_state == EXIT_ZOMBIE) {
1425 		/* we don't reap group leaders with subthreads */
1426 		if (!delay_group_leader(p)) {
1427 			/*
1428 			 * A zombie ptracee is only visible to its ptracer.
1429 			 * Notification and reaping will be cascaded to the
1430 			 * real parent when the ptracer detaches.
1431 			 */
1432 			if (unlikely(ptrace) || likely(!p->ptrace))
1433 				return wait_task_zombie(wo, p);
1434 		}
1435 
1436 		/*
1437 		 * Allow access to stopped/continued state via zombie by
1438 		 * falling through.  Clearing of notask_error is complex.
1439 		 *
1440 		 * When !@ptrace:
1441 		 *
1442 		 * If WEXITED is set, notask_error should naturally be
1443 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1444 		 * so, if there are live subthreads, there are events to
1445 		 * wait for.  If all subthreads are dead, it's still safe
1446 		 * to clear - this function will be called again in finite
1447 		 * amount time once all the subthreads are released and
1448 		 * will then return without clearing.
1449 		 *
1450 		 * When @ptrace:
1451 		 *
1452 		 * Stopped state is per-task and thus can't change once the
1453 		 * target task dies.  Only continued and exited can happen.
1454 		 * Clear notask_error if WCONTINUED | WEXITED.
1455 		 */
1456 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1457 			wo->notask_error = 0;
1458 	} else {
1459 		/*
1460 		 * @p is alive and it's gonna stop, continue or exit, so
1461 		 * there always is something to wait for.
1462 		 */
1463 		wo->notask_error = 0;
1464 	}
1465 
1466 	/*
1467 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1468 	 * is used and the two don't interact with each other.
1469 	 */
1470 	ret = wait_task_stopped(wo, ptrace, p);
1471 	if (ret)
1472 		return ret;
1473 
1474 	/*
1475 	 * Wait for continued.  There's only one continued state and the
1476 	 * ptracer can consume it which can confuse the real parent.  Don't
1477 	 * use WCONTINUED from ptracer.  You don't need or want it.
1478 	 */
1479 	return wait_task_continued(wo, p);
1480 }
1481 
1482 /*
1483  * Do the work of do_wait() for one thread in the group, @tsk.
1484  *
1485  * -ECHILD should be in ->notask_error before the first call.
1486  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1487  * Returns zero if the search for a child should continue; then
1488  * ->notask_error is 0 if there were any eligible children,
1489  * or still -ECHILD.
1490  */
1491 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1492 {
1493 	struct task_struct *p;
1494 
1495 	list_for_each_entry(p, &tsk->children, sibling) {
1496 		int ret = wait_consider_task(wo, 0, p);
1497 
1498 		if (ret)
1499 			return ret;
1500 	}
1501 
1502 	return 0;
1503 }
1504 
1505 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1506 {
1507 	struct task_struct *p;
1508 
1509 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1510 		int ret = wait_consider_task(wo, 1, p);
1511 
1512 		if (ret)
1513 			return ret;
1514 	}
1515 
1516 	return 0;
1517 }
1518 
1519 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1520 				int sync, void *key)
1521 {
1522 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1523 						child_wait);
1524 	struct task_struct *p = key;
1525 
1526 	if (!eligible_pid(wo, p))
1527 		return 0;
1528 
1529 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1530 		return 0;
1531 
1532 	return default_wake_function(wait, mode, sync, key);
1533 }
1534 
1535 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1536 {
1537 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1538 			   TASK_INTERRUPTIBLE, p);
1539 }
1540 
1541 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1542 				 struct task_struct *target)
1543 {
1544 	struct task_struct *parent =
1545 		!ptrace ? target->real_parent : target->parent;
1546 
1547 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1548 				     same_thread_group(current, parent));
1549 }
1550 
1551 /*
1552  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1553  * and tracee lists to find the target task.
1554  */
1555 static int do_wait_pid(struct wait_opts *wo)
1556 {
1557 	bool ptrace;
1558 	struct task_struct *target;
1559 	int retval;
1560 
1561 	ptrace = false;
1562 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1563 	if (target && is_effectively_child(wo, ptrace, target)) {
1564 		retval = wait_consider_task(wo, ptrace, target);
1565 		if (retval)
1566 			return retval;
1567 	}
1568 
1569 	ptrace = true;
1570 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1571 	if (target && target->ptrace &&
1572 	    is_effectively_child(wo, ptrace, target)) {
1573 		retval = wait_consider_task(wo, ptrace, target);
1574 		if (retval)
1575 			return retval;
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 static long do_wait(struct wait_opts *wo)
1582 {
1583 	int retval;
1584 
1585 	trace_sched_process_wait(wo->wo_pid);
1586 
1587 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1588 	wo->child_wait.private = current;
1589 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1590 repeat:
1591 	/*
1592 	 * If there is nothing that can match our criteria, just get out.
1593 	 * We will clear ->notask_error to zero if we see any child that
1594 	 * might later match our criteria, even if we are not able to reap
1595 	 * it yet.
1596 	 */
1597 	wo->notask_error = -ECHILD;
1598 	if ((wo->wo_type < PIDTYPE_MAX) &&
1599 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1600 		goto notask;
1601 
1602 	set_current_state(TASK_INTERRUPTIBLE);
1603 	read_lock(&tasklist_lock);
1604 
1605 	if (wo->wo_type == PIDTYPE_PID) {
1606 		retval = do_wait_pid(wo);
1607 		if (retval)
1608 			goto end;
1609 	} else {
1610 		struct task_struct *tsk = current;
1611 
1612 		do {
1613 			retval = do_wait_thread(wo, tsk);
1614 			if (retval)
1615 				goto end;
1616 
1617 			retval = ptrace_do_wait(wo, tsk);
1618 			if (retval)
1619 				goto end;
1620 
1621 			if (wo->wo_flags & __WNOTHREAD)
1622 				break;
1623 		} while_each_thread(current, tsk);
1624 	}
1625 	read_unlock(&tasklist_lock);
1626 
1627 notask:
1628 	retval = wo->notask_error;
1629 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1630 		retval = -ERESTARTSYS;
1631 		if (!signal_pending(current)) {
1632 			schedule();
1633 			goto repeat;
1634 		}
1635 	}
1636 end:
1637 	__set_current_state(TASK_RUNNING);
1638 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1639 	return retval;
1640 }
1641 
1642 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1643 			  int options, struct rusage *ru)
1644 {
1645 	struct wait_opts wo;
1646 	struct pid *pid = NULL;
1647 	enum pid_type type;
1648 	long ret;
1649 	unsigned int f_flags = 0;
1650 
1651 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1652 			__WNOTHREAD|__WCLONE|__WALL))
1653 		return -EINVAL;
1654 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1655 		return -EINVAL;
1656 
1657 	switch (which) {
1658 	case P_ALL:
1659 		type = PIDTYPE_MAX;
1660 		break;
1661 	case P_PID:
1662 		type = PIDTYPE_PID;
1663 		if (upid <= 0)
1664 			return -EINVAL;
1665 
1666 		pid = find_get_pid(upid);
1667 		break;
1668 	case P_PGID:
1669 		type = PIDTYPE_PGID;
1670 		if (upid < 0)
1671 			return -EINVAL;
1672 
1673 		if (upid)
1674 			pid = find_get_pid(upid);
1675 		else
1676 			pid = get_task_pid(current, PIDTYPE_PGID);
1677 		break;
1678 	case P_PIDFD:
1679 		type = PIDTYPE_PID;
1680 		if (upid < 0)
1681 			return -EINVAL;
1682 
1683 		pid = pidfd_get_pid(upid, &f_flags);
1684 		if (IS_ERR(pid))
1685 			return PTR_ERR(pid);
1686 
1687 		break;
1688 	default:
1689 		return -EINVAL;
1690 	}
1691 
1692 	wo.wo_type	= type;
1693 	wo.wo_pid	= pid;
1694 	wo.wo_flags	= options;
1695 	wo.wo_info	= infop;
1696 	wo.wo_rusage	= ru;
1697 	if (f_flags & O_NONBLOCK)
1698 		wo.wo_flags |= WNOHANG;
1699 
1700 	ret = do_wait(&wo);
1701 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1702 		ret = -EAGAIN;
1703 
1704 	put_pid(pid);
1705 	return ret;
1706 }
1707 
1708 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1709 		infop, int, options, struct rusage __user *, ru)
1710 {
1711 	struct rusage r;
1712 	struct waitid_info info = {.status = 0};
1713 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1714 	int signo = 0;
1715 
1716 	if (err > 0) {
1717 		signo = SIGCHLD;
1718 		err = 0;
1719 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1720 			return -EFAULT;
1721 	}
1722 	if (!infop)
1723 		return err;
1724 
1725 	if (!user_write_access_begin(infop, sizeof(*infop)))
1726 		return -EFAULT;
1727 
1728 	unsafe_put_user(signo, &infop->si_signo, Efault);
1729 	unsafe_put_user(0, &infop->si_errno, Efault);
1730 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1731 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1732 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1733 	unsafe_put_user(info.status, &infop->si_status, Efault);
1734 	user_write_access_end();
1735 	return err;
1736 Efault:
1737 	user_write_access_end();
1738 	return -EFAULT;
1739 }
1740 
1741 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1742 		  struct rusage *ru)
1743 {
1744 	struct wait_opts wo;
1745 	struct pid *pid = NULL;
1746 	enum pid_type type;
1747 	long ret;
1748 
1749 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1750 			__WNOTHREAD|__WCLONE|__WALL))
1751 		return -EINVAL;
1752 
1753 	/* -INT_MIN is not defined */
1754 	if (upid == INT_MIN)
1755 		return -ESRCH;
1756 
1757 	if (upid == -1)
1758 		type = PIDTYPE_MAX;
1759 	else if (upid < 0) {
1760 		type = PIDTYPE_PGID;
1761 		pid = find_get_pid(-upid);
1762 	} else if (upid == 0) {
1763 		type = PIDTYPE_PGID;
1764 		pid = get_task_pid(current, PIDTYPE_PGID);
1765 	} else /* upid > 0 */ {
1766 		type = PIDTYPE_PID;
1767 		pid = find_get_pid(upid);
1768 	}
1769 
1770 	wo.wo_type	= type;
1771 	wo.wo_pid	= pid;
1772 	wo.wo_flags	= options | WEXITED;
1773 	wo.wo_info	= NULL;
1774 	wo.wo_stat	= 0;
1775 	wo.wo_rusage	= ru;
1776 	ret = do_wait(&wo);
1777 	put_pid(pid);
1778 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1779 		ret = -EFAULT;
1780 
1781 	return ret;
1782 }
1783 
1784 int kernel_wait(pid_t pid, int *stat)
1785 {
1786 	struct wait_opts wo = {
1787 		.wo_type	= PIDTYPE_PID,
1788 		.wo_pid		= find_get_pid(pid),
1789 		.wo_flags	= WEXITED,
1790 	};
1791 	int ret;
1792 
1793 	ret = do_wait(&wo);
1794 	if (ret > 0 && wo.wo_stat)
1795 		*stat = wo.wo_stat;
1796 	put_pid(wo.wo_pid);
1797 	return ret;
1798 }
1799 
1800 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1801 		int, options, struct rusage __user *, ru)
1802 {
1803 	struct rusage r;
1804 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1805 
1806 	if (err > 0) {
1807 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1808 			return -EFAULT;
1809 	}
1810 	return err;
1811 }
1812 
1813 #ifdef __ARCH_WANT_SYS_WAITPID
1814 
1815 /*
1816  * sys_waitpid() remains for compatibility. waitpid() should be
1817  * implemented by calling sys_wait4() from libc.a.
1818  */
1819 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1820 {
1821 	return kernel_wait4(pid, stat_addr, options, NULL);
1822 }
1823 
1824 #endif
1825 
1826 #ifdef CONFIG_COMPAT
1827 COMPAT_SYSCALL_DEFINE4(wait4,
1828 	compat_pid_t, pid,
1829 	compat_uint_t __user *, stat_addr,
1830 	int, options,
1831 	struct compat_rusage __user *, ru)
1832 {
1833 	struct rusage r;
1834 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1835 	if (err > 0) {
1836 		if (ru && put_compat_rusage(&r, ru))
1837 			return -EFAULT;
1838 	}
1839 	return err;
1840 }
1841 
1842 COMPAT_SYSCALL_DEFINE5(waitid,
1843 		int, which, compat_pid_t, pid,
1844 		struct compat_siginfo __user *, infop, int, options,
1845 		struct compat_rusage __user *, uru)
1846 {
1847 	struct rusage ru;
1848 	struct waitid_info info = {.status = 0};
1849 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1850 	int signo = 0;
1851 	if (err > 0) {
1852 		signo = SIGCHLD;
1853 		err = 0;
1854 		if (uru) {
1855 			/* kernel_waitid() overwrites everything in ru */
1856 			if (COMPAT_USE_64BIT_TIME)
1857 				err = copy_to_user(uru, &ru, sizeof(ru));
1858 			else
1859 				err = put_compat_rusage(&ru, uru);
1860 			if (err)
1861 				return -EFAULT;
1862 		}
1863 	}
1864 
1865 	if (!infop)
1866 		return err;
1867 
1868 	if (!user_write_access_begin(infop, sizeof(*infop)))
1869 		return -EFAULT;
1870 
1871 	unsafe_put_user(signo, &infop->si_signo, Efault);
1872 	unsafe_put_user(0, &infop->si_errno, Efault);
1873 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1874 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1875 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1876 	unsafe_put_user(info.status, &infop->si_status, Efault);
1877 	user_write_access_end();
1878 	return err;
1879 Efault:
1880 	user_write_access_end();
1881 	return -EFAULT;
1882 }
1883 #endif
1884 
1885 /**
1886  * thread_group_exited - check that a thread group has exited
1887  * @pid: tgid of thread group to be checked.
1888  *
1889  * Test if the thread group represented by tgid has exited (all
1890  * threads are zombies, dead or completely gone).
1891  *
1892  * Return: true if the thread group has exited. false otherwise.
1893  */
1894 bool thread_group_exited(struct pid *pid)
1895 {
1896 	struct task_struct *task;
1897 	bool exited;
1898 
1899 	rcu_read_lock();
1900 	task = pid_task(pid, PIDTYPE_PID);
1901 	exited = !task ||
1902 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1903 	rcu_read_unlock();
1904 
1905 	return exited;
1906 }
1907 EXPORT_SYMBOL(thread_group_exited);
1908 
1909 /*
1910  * This needs to be __function_aligned as GCC implicitly makes any
1911  * implementation of abort() cold and drops alignment specified by
1912  * -falign-functions=N.
1913  *
1914  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1915  */
1916 __weak __function_aligned void abort(void)
1917 {
1918 	BUG();
1919 
1920 	/* if that doesn't kill us, halt */
1921 	panic("Oops failed to kill thread");
1922 }
1923 EXPORT_SYMBOL(abort);
1924