1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/blkdev.h> 53 #include <linux/task_work.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/kmsan.h> 64 #include <linux/random.h> 65 #include <linux/rcuwait.h> 66 #include <linux/compat.h> 67 #include <linux/io_uring.h> 68 #include <linux/kprobes.h> 69 #include <linux/rethook.h> 70 #include <linux/sysfs.h> 71 #include <linux/user_events.h> 72 73 #include <linux/uaccess.h> 74 #include <asm/unistd.h> 75 #include <asm/mmu_context.h> 76 77 /* 78 * The default value should be high enough to not crash a system that randomly 79 * crashes its kernel from time to time, but low enough to at least not permit 80 * overflowing 32-bit refcounts or the ldsem writer count. 81 */ 82 static unsigned int oops_limit = 10000; 83 84 #ifdef CONFIG_SYSCTL 85 static struct ctl_table kern_exit_table[] = { 86 { 87 .procname = "oops_limit", 88 .data = &oops_limit, 89 .maxlen = sizeof(oops_limit), 90 .mode = 0644, 91 .proc_handler = proc_douintvec, 92 }, 93 { } 94 }; 95 96 static __init int kernel_exit_sysctls_init(void) 97 { 98 register_sysctl_init("kernel", kern_exit_table); 99 return 0; 100 } 101 late_initcall(kernel_exit_sysctls_init); 102 #endif 103 104 static atomic_t oops_count = ATOMIC_INIT(0); 105 106 #ifdef CONFIG_SYSFS 107 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 108 char *page) 109 { 110 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 111 } 112 113 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 114 115 static __init int kernel_exit_sysfs_init(void) 116 { 117 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 118 return 0; 119 } 120 late_initcall(kernel_exit_sysfs_init); 121 #endif 122 123 static void __unhash_process(struct task_struct *p, bool group_dead) 124 { 125 nr_threads--; 126 detach_pid(p, PIDTYPE_PID); 127 if (group_dead) { 128 detach_pid(p, PIDTYPE_TGID); 129 detach_pid(p, PIDTYPE_PGID); 130 detach_pid(p, PIDTYPE_SID); 131 132 list_del_rcu(&p->tasks); 133 list_del_init(&p->sibling); 134 __this_cpu_dec(process_counts); 135 } 136 list_del_rcu(&p->thread_group); 137 list_del_rcu(&p->thread_node); 138 } 139 140 /* 141 * This function expects the tasklist_lock write-locked. 142 */ 143 static void __exit_signal(struct task_struct *tsk) 144 { 145 struct signal_struct *sig = tsk->signal; 146 bool group_dead = thread_group_leader(tsk); 147 struct sighand_struct *sighand; 148 struct tty_struct *tty; 149 u64 utime, stime; 150 151 sighand = rcu_dereference_check(tsk->sighand, 152 lockdep_tasklist_lock_is_held()); 153 spin_lock(&sighand->siglock); 154 155 #ifdef CONFIG_POSIX_TIMERS 156 posix_cpu_timers_exit(tsk); 157 if (group_dead) 158 posix_cpu_timers_exit_group(tsk); 159 #endif 160 161 if (group_dead) { 162 tty = sig->tty; 163 sig->tty = NULL; 164 } else { 165 /* 166 * If there is any task waiting for the group exit 167 * then notify it: 168 */ 169 if (sig->notify_count > 0 && !--sig->notify_count) 170 wake_up_process(sig->group_exec_task); 171 172 if (tsk == sig->curr_target) 173 sig->curr_target = next_thread(tsk); 174 } 175 176 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 177 sizeof(unsigned long long)); 178 179 /* 180 * Accumulate here the counters for all threads as they die. We could 181 * skip the group leader because it is the last user of signal_struct, 182 * but we want to avoid the race with thread_group_cputime() which can 183 * see the empty ->thread_head list. 184 */ 185 task_cputime(tsk, &utime, &stime); 186 write_seqlock(&sig->stats_lock); 187 sig->utime += utime; 188 sig->stime += stime; 189 sig->gtime += task_gtime(tsk); 190 sig->min_flt += tsk->min_flt; 191 sig->maj_flt += tsk->maj_flt; 192 sig->nvcsw += tsk->nvcsw; 193 sig->nivcsw += tsk->nivcsw; 194 sig->inblock += task_io_get_inblock(tsk); 195 sig->oublock += task_io_get_oublock(tsk); 196 task_io_accounting_add(&sig->ioac, &tsk->ioac); 197 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 198 sig->nr_threads--; 199 __unhash_process(tsk, group_dead); 200 write_sequnlock(&sig->stats_lock); 201 202 /* 203 * Do this under ->siglock, we can race with another thread 204 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 205 */ 206 flush_sigqueue(&tsk->pending); 207 tsk->sighand = NULL; 208 spin_unlock(&sighand->siglock); 209 210 __cleanup_sighand(sighand); 211 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 212 if (group_dead) { 213 flush_sigqueue(&sig->shared_pending); 214 tty_kref_put(tty); 215 } 216 } 217 218 static void delayed_put_task_struct(struct rcu_head *rhp) 219 { 220 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 221 222 kprobe_flush_task(tsk); 223 rethook_flush_task(tsk); 224 perf_event_delayed_put(tsk); 225 trace_sched_process_free(tsk); 226 put_task_struct(tsk); 227 } 228 229 void put_task_struct_rcu_user(struct task_struct *task) 230 { 231 if (refcount_dec_and_test(&task->rcu_users)) 232 call_rcu(&task->rcu, delayed_put_task_struct); 233 } 234 235 void __weak release_thread(struct task_struct *dead_task) 236 { 237 } 238 239 void release_task(struct task_struct *p) 240 { 241 struct task_struct *leader; 242 struct pid *thread_pid; 243 int zap_leader; 244 repeat: 245 /* don't need to get the RCU readlock here - the process is dead and 246 * can't be modifying its own credentials. But shut RCU-lockdep up */ 247 rcu_read_lock(); 248 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 249 rcu_read_unlock(); 250 251 cgroup_release(p); 252 253 write_lock_irq(&tasklist_lock); 254 ptrace_release_task(p); 255 thread_pid = get_pid(p->thread_pid); 256 __exit_signal(p); 257 258 /* 259 * If we are the last non-leader member of the thread 260 * group, and the leader is zombie, then notify the 261 * group leader's parent process. (if it wants notification.) 262 */ 263 zap_leader = 0; 264 leader = p->group_leader; 265 if (leader != p && thread_group_empty(leader) 266 && leader->exit_state == EXIT_ZOMBIE) { 267 /* 268 * If we were the last child thread and the leader has 269 * exited already, and the leader's parent ignores SIGCHLD, 270 * then we are the one who should release the leader. 271 */ 272 zap_leader = do_notify_parent(leader, leader->exit_signal); 273 if (zap_leader) 274 leader->exit_state = EXIT_DEAD; 275 } 276 277 write_unlock_irq(&tasklist_lock); 278 seccomp_filter_release(p); 279 proc_flush_pid(thread_pid); 280 put_pid(thread_pid); 281 release_thread(p); 282 put_task_struct_rcu_user(p); 283 284 p = leader; 285 if (unlikely(zap_leader)) 286 goto repeat; 287 } 288 289 int rcuwait_wake_up(struct rcuwait *w) 290 { 291 int ret = 0; 292 struct task_struct *task; 293 294 rcu_read_lock(); 295 296 /* 297 * Order condition vs @task, such that everything prior to the load 298 * of @task is visible. This is the condition as to why the user called 299 * rcuwait_wake() in the first place. Pairs with set_current_state() 300 * barrier (A) in rcuwait_wait_event(). 301 * 302 * WAIT WAKE 303 * [S] tsk = current [S] cond = true 304 * MB (A) MB (B) 305 * [L] cond [L] tsk 306 */ 307 smp_mb(); /* (B) */ 308 309 task = rcu_dereference(w->task); 310 if (task) 311 ret = wake_up_process(task); 312 rcu_read_unlock(); 313 314 return ret; 315 } 316 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 317 318 /* 319 * Determine if a process group is "orphaned", according to the POSIX 320 * definition in 2.2.2.52. Orphaned process groups are not to be affected 321 * by terminal-generated stop signals. Newly orphaned process groups are 322 * to receive a SIGHUP and a SIGCONT. 323 * 324 * "I ask you, have you ever known what it is to be an orphan?" 325 */ 326 static int will_become_orphaned_pgrp(struct pid *pgrp, 327 struct task_struct *ignored_task) 328 { 329 struct task_struct *p; 330 331 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 332 if ((p == ignored_task) || 333 (p->exit_state && thread_group_empty(p)) || 334 is_global_init(p->real_parent)) 335 continue; 336 337 if (task_pgrp(p->real_parent) != pgrp && 338 task_session(p->real_parent) == task_session(p)) 339 return 0; 340 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 341 342 return 1; 343 } 344 345 int is_current_pgrp_orphaned(void) 346 { 347 int retval; 348 349 read_lock(&tasklist_lock); 350 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 351 read_unlock(&tasklist_lock); 352 353 return retval; 354 } 355 356 static bool has_stopped_jobs(struct pid *pgrp) 357 { 358 struct task_struct *p; 359 360 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 361 if (p->signal->flags & SIGNAL_STOP_STOPPED) 362 return true; 363 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 364 365 return false; 366 } 367 368 /* 369 * Check to see if any process groups have become orphaned as 370 * a result of our exiting, and if they have any stopped jobs, 371 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 372 */ 373 static void 374 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 375 { 376 struct pid *pgrp = task_pgrp(tsk); 377 struct task_struct *ignored_task = tsk; 378 379 if (!parent) 380 /* exit: our father is in a different pgrp than 381 * we are and we were the only connection outside. 382 */ 383 parent = tsk->real_parent; 384 else 385 /* reparent: our child is in a different pgrp than 386 * we are, and it was the only connection outside. 387 */ 388 ignored_task = NULL; 389 390 if (task_pgrp(parent) != pgrp && 391 task_session(parent) == task_session(tsk) && 392 will_become_orphaned_pgrp(pgrp, ignored_task) && 393 has_stopped_jobs(pgrp)) { 394 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 395 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 396 } 397 } 398 399 static void coredump_task_exit(struct task_struct *tsk) 400 { 401 struct core_state *core_state; 402 403 /* 404 * Serialize with any possible pending coredump. 405 * We must hold siglock around checking core_state 406 * and setting PF_POSTCOREDUMP. The core-inducing thread 407 * will increment ->nr_threads for each thread in the 408 * group without PF_POSTCOREDUMP set. 409 */ 410 spin_lock_irq(&tsk->sighand->siglock); 411 tsk->flags |= PF_POSTCOREDUMP; 412 core_state = tsk->signal->core_state; 413 spin_unlock_irq(&tsk->sighand->siglock); 414 415 /* The vhost_worker does not particpate in coredumps */ 416 if (core_state && 417 ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) { 418 struct core_thread self; 419 420 self.task = current; 421 if (self.task->flags & PF_SIGNALED) 422 self.next = xchg(&core_state->dumper.next, &self); 423 else 424 self.task = NULL; 425 /* 426 * Implies mb(), the result of xchg() must be visible 427 * to core_state->dumper. 428 */ 429 if (atomic_dec_and_test(&core_state->nr_threads)) 430 complete(&core_state->startup); 431 432 for (;;) { 433 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE); 434 if (!self.task) /* see coredump_finish() */ 435 break; 436 schedule(); 437 } 438 __set_current_state(TASK_RUNNING); 439 } 440 } 441 442 #ifdef CONFIG_MEMCG 443 /* 444 * A task is exiting. If it owned this mm, find a new owner for the mm. 445 */ 446 void mm_update_next_owner(struct mm_struct *mm) 447 { 448 struct task_struct *c, *g, *p = current; 449 450 retry: 451 /* 452 * If the exiting or execing task is not the owner, it's 453 * someone else's problem. 454 */ 455 if (mm->owner != p) 456 return; 457 /* 458 * The current owner is exiting/execing and there are no other 459 * candidates. Do not leave the mm pointing to a possibly 460 * freed task structure. 461 */ 462 if (atomic_read(&mm->mm_users) <= 1) { 463 WRITE_ONCE(mm->owner, NULL); 464 return; 465 } 466 467 read_lock(&tasklist_lock); 468 /* 469 * Search in the children 470 */ 471 list_for_each_entry(c, &p->children, sibling) { 472 if (c->mm == mm) 473 goto assign_new_owner; 474 } 475 476 /* 477 * Search in the siblings 478 */ 479 list_for_each_entry(c, &p->real_parent->children, sibling) { 480 if (c->mm == mm) 481 goto assign_new_owner; 482 } 483 484 /* 485 * Search through everything else, we should not get here often. 486 */ 487 for_each_process(g) { 488 if (g->flags & PF_KTHREAD) 489 continue; 490 for_each_thread(g, c) { 491 if (c->mm == mm) 492 goto assign_new_owner; 493 if (c->mm) 494 break; 495 } 496 } 497 read_unlock(&tasklist_lock); 498 /* 499 * We found no owner yet mm_users > 1: this implies that we are 500 * most likely racing with swapoff (try_to_unuse()) or /proc or 501 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 502 */ 503 WRITE_ONCE(mm->owner, NULL); 504 return; 505 506 assign_new_owner: 507 BUG_ON(c == p); 508 get_task_struct(c); 509 /* 510 * The task_lock protects c->mm from changing. 511 * We always want mm->owner->mm == mm 512 */ 513 task_lock(c); 514 /* 515 * Delay read_unlock() till we have the task_lock() 516 * to ensure that c does not slip away underneath us 517 */ 518 read_unlock(&tasklist_lock); 519 if (c->mm != mm) { 520 task_unlock(c); 521 put_task_struct(c); 522 goto retry; 523 } 524 WRITE_ONCE(mm->owner, c); 525 lru_gen_migrate_mm(mm); 526 task_unlock(c); 527 put_task_struct(c); 528 } 529 #endif /* CONFIG_MEMCG */ 530 531 /* 532 * Turn us into a lazy TLB process if we 533 * aren't already.. 534 */ 535 static void exit_mm(void) 536 { 537 struct mm_struct *mm = current->mm; 538 539 exit_mm_release(current, mm); 540 if (!mm) 541 return; 542 mmap_read_lock(mm); 543 mmgrab_lazy_tlb(mm); 544 BUG_ON(mm != current->active_mm); 545 /* more a memory barrier than a real lock */ 546 task_lock(current); 547 /* 548 * When a thread stops operating on an address space, the loop 549 * in membarrier_private_expedited() may not observe that 550 * tsk->mm, and the loop in membarrier_global_expedited() may 551 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 552 * rq->membarrier_state, so those would not issue an IPI. 553 * Membarrier requires a memory barrier after accessing 554 * user-space memory, before clearing tsk->mm or the 555 * rq->membarrier_state. 556 */ 557 smp_mb__after_spinlock(); 558 local_irq_disable(); 559 current->mm = NULL; 560 membarrier_update_current_mm(NULL); 561 enter_lazy_tlb(mm, current); 562 local_irq_enable(); 563 task_unlock(current); 564 mmap_read_unlock(mm); 565 mm_update_next_owner(mm); 566 mmput(mm); 567 if (test_thread_flag(TIF_MEMDIE)) 568 exit_oom_victim(); 569 } 570 571 static struct task_struct *find_alive_thread(struct task_struct *p) 572 { 573 struct task_struct *t; 574 575 for_each_thread(p, t) { 576 if (!(t->flags & PF_EXITING)) 577 return t; 578 } 579 return NULL; 580 } 581 582 static struct task_struct *find_child_reaper(struct task_struct *father, 583 struct list_head *dead) 584 __releases(&tasklist_lock) 585 __acquires(&tasklist_lock) 586 { 587 struct pid_namespace *pid_ns = task_active_pid_ns(father); 588 struct task_struct *reaper = pid_ns->child_reaper; 589 struct task_struct *p, *n; 590 591 if (likely(reaper != father)) 592 return reaper; 593 594 reaper = find_alive_thread(father); 595 if (reaper) { 596 pid_ns->child_reaper = reaper; 597 return reaper; 598 } 599 600 write_unlock_irq(&tasklist_lock); 601 602 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 603 list_del_init(&p->ptrace_entry); 604 release_task(p); 605 } 606 607 zap_pid_ns_processes(pid_ns); 608 write_lock_irq(&tasklist_lock); 609 610 return father; 611 } 612 613 /* 614 * When we die, we re-parent all our children, and try to: 615 * 1. give them to another thread in our thread group, if such a member exists 616 * 2. give it to the first ancestor process which prctl'd itself as a 617 * child_subreaper for its children (like a service manager) 618 * 3. give it to the init process (PID 1) in our pid namespace 619 */ 620 static struct task_struct *find_new_reaper(struct task_struct *father, 621 struct task_struct *child_reaper) 622 { 623 struct task_struct *thread, *reaper; 624 625 thread = find_alive_thread(father); 626 if (thread) 627 return thread; 628 629 if (father->signal->has_child_subreaper) { 630 unsigned int ns_level = task_pid(father)->level; 631 /* 632 * Find the first ->is_child_subreaper ancestor in our pid_ns. 633 * We can't check reaper != child_reaper to ensure we do not 634 * cross the namespaces, the exiting parent could be injected 635 * by setns() + fork(). 636 * We check pid->level, this is slightly more efficient than 637 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 638 */ 639 for (reaper = father->real_parent; 640 task_pid(reaper)->level == ns_level; 641 reaper = reaper->real_parent) { 642 if (reaper == &init_task) 643 break; 644 if (!reaper->signal->is_child_subreaper) 645 continue; 646 thread = find_alive_thread(reaper); 647 if (thread) 648 return thread; 649 } 650 } 651 652 return child_reaper; 653 } 654 655 /* 656 * Any that need to be release_task'd are put on the @dead list. 657 */ 658 static void reparent_leader(struct task_struct *father, struct task_struct *p, 659 struct list_head *dead) 660 { 661 if (unlikely(p->exit_state == EXIT_DEAD)) 662 return; 663 664 /* We don't want people slaying init. */ 665 p->exit_signal = SIGCHLD; 666 667 /* If it has exited notify the new parent about this child's death. */ 668 if (!p->ptrace && 669 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 670 if (do_notify_parent(p, p->exit_signal)) { 671 p->exit_state = EXIT_DEAD; 672 list_add(&p->ptrace_entry, dead); 673 } 674 } 675 676 kill_orphaned_pgrp(p, father); 677 } 678 679 /* 680 * This does two things: 681 * 682 * A. Make init inherit all the child processes 683 * B. Check to see if any process groups have become orphaned 684 * as a result of our exiting, and if they have any stopped 685 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 686 */ 687 static void forget_original_parent(struct task_struct *father, 688 struct list_head *dead) 689 { 690 struct task_struct *p, *t, *reaper; 691 692 if (unlikely(!list_empty(&father->ptraced))) 693 exit_ptrace(father, dead); 694 695 /* Can drop and reacquire tasklist_lock */ 696 reaper = find_child_reaper(father, dead); 697 if (list_empty(&father->children)) 698 return; 699 700 reaper = find_new_reaper(father, reaper); 701 list_for_each_entry(p, &father->children, sibling) { 702 for_each_thread(p, t) { 703 RCU_INIT_POINTER(t->real_parent, reaper); 704 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 705 if (likely(!t->ptrace)) 706 t->parent = t->real_parent; 707 if (t->pdeath_signal) 708 group_send_sig_info(t->pdeath_signal, 709 SEND_SIG_NOINFO, t, 710 PIDTYPE_TGID); 711 } 712 /* 713 * If this is a threaded reparent there is no need to 714 * notify anyone anything has happened. 715 */ 716 if (!same_thread_group(reaper, father)) 717 reparent_leader(father, p, dead); 718 } 719 list_splice_tail_init(&father->children, &reaper->children); 720 } 721 722 /* 723 * Send signals to all our closest relatives so that they know 724 * to properly mourn us.. 725 */ 726 static void exit_notify(struct task_struct *tsk, int group_dead) 727 { 728 bool autoreap; 729 struct task_struct *p, *n; 730 LIST_HEAD(dead); 731 732 write_lock_irq(&tasklist_lock); 733 forget_original_parent(tsk, &dead); 734 735 if (group_dead) 736 kill_orphaned_pgrp(tsk->group_leader, NULL); 737 738 tsk->exit_state = EXIT_ZOMBIE; 739 if (unlikely(tsk->ptrace)) { 740 int sig = thread_group_leader(tsk) && 741 thread_group_empty(tsk) && 742 !ptrace_reparented(tsk) ? 743 tsk->exit_signal : SIGCHLD; 744 autoreap = do_notify_parent(tsk, sig); 745 } else if (thread_group_leader(tsk)) { 746 autoreap = thread_group_empty(tsk) && 747 do_notify_parent(tsk, tsk->exit_signal); 748 } else { 749 autoreap = true; 750 } 751 752 if (autoreap) { 753 tsk->exit_state = EXIT_DEAD; 754 list_add(&tsk->ptrace_entry, &dead); 755 } 756 757 /* mt-exec, de_thread() is waiting for group leader */ 758 if (unlikely(tsk->signal->notify_count < 0)) 759 wake_up_process(tsk->signal->group_exec_task); 760 write_unlock_irq(&tasklist_lock); 761 762 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 763 list_del_init(&p->ptrace_entry); 764 release_task(p); 765 } 766 } 767 768 #ifdef CONFIG_DEBUG_STACK_USAGE 769 static void check_stack_usage(void) 770 { 771 static DEFINE_SPINLOCK(low_water_lock); 772 static int lowest_to_date = THREAD_SIZE; 773 unsigned long free; 774 775 free = stack_not_used(current); 776 777 if (free >= lowest_to_date) 778 return; 779 780 spin_lock(&low_water_lock); 781 if (free < lowest_to_date) { 782 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 783 current->comm, task_pid_nr(current), free); 784 lowest_to_date = free; 785 } 786 spin_unlock(&low_water_lock); 787 } 788 #else 789 static inline void check_stack_usage(void) {} 790 #endif 791 792 static void synchronize_group_exit(struct task_struct *tsk, long code) 793 { 794 struct sighand_struct *sighand = tsk->sighand; 795 struct signal_struct *signal = tsk->signal; 796 797 spin_lock_irq(&sighand->siglock); 798 signal->quick_threads--; 799 if ((signal->quick_threads == 0) && 800 !(signal->flags & SIGNAL_GROUP_EXIT)) { 801 signal->flags = SIGNAL_GROUP_EXIT; 802 signal->group_exit_code = code; 803 signal->group_stop_count = 0; 804 } 805 spin_unlock_irq(&sighand->siglock); 806 } 807 808 void __noreturn do_exit(long code) 809 { 810 struct task_struct *tsk = current; 811 int group_dead; 812 813 WARN_ON(irqs_disabled()); 814 815 synchronize_group_exit(tsk, code); 816 817 WARN_ON(tsk->plug); 818 819 kcov_task_exit(tsk); 820 kmsan_task_exit(tsk); 821 822 coredump_task_exit(tsk); 823 ptrace_event(PTRACE_EVENT_EXIT, code); 824 user_events_exit(tsk); 825 826 validate_creds_for_do_exit(tsk); 827 828 io_uring_files_cancel(); 829 exit_signals(tsk); /* sets PF_EXITING */ 830 831 acct_update_integrals(tsk); 832 group_dead = atomic_dec_and_test(&tsk->signal->live); 833 if (group_dead) { 834 /* 835 * If the last thread of global init has exited, panic 836 * immediately to get a useable coredump. 837 */ 838 if (unlikely(is_global_init(tsk))) 839 panic("Attempted to kill init! exitcode=0x%08x\n", 840 tsk->signal->group_exit_code ?: (int)code); 841 842 #ifdef CONFIG_POSIX_TIMERS 843 hrtimer_cancel(&tsk->signal->real_timer); 844 exit_itimers(tsk); 845 #endif 846 if (tsk->mm) 847 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 848 } 849 acct_collect(code, group_dead); 850 if (group_dead) 851 tty_audit_exit(); 852 audit_free(tsk); 853 854 tsk->exit_code = code; 855 taskstats_exit(tsk, group_dead); 856 857 exit_mm(); 858 859 if (group_dead) 860 acct_process(); 861 trace_sched_process_exit(tsk); 862 863 exit_sem(tsk); 864 exit_shm(tsk); 865 exit_files(tsk); 866 exit_fs(tsk); 867 if (group_dead) 868 disassociate_ctty(1); 869 exit_task_namespaces(tsk); 870 exit_task_work(tsk); 871 exit_thread(tsk); 872 873 /* 874 * Flush inherited counters to the parent - before the parent 875 * gets woken up by child-exit notifications. 876 * 877 * because of cgroup mode, must be called before cgroup_exit() 878 */ 879 perf_event_exit_task(tsk); 880 881 sched_autogroup_exit_task(tsk); 882 cgroup_exit(tsk); 883 884 /* 885 * FIXME: do that only when needed, using sched_exit tracepoint 886 */ 887 flush_ptrace_hw_breakpoint(tsk); 888 889 exit_tasks_rcu_start(); 890 exit_notify(tsk, group_dead); 891 proc_exit_connector(tsk); 892 mpol_put_task_policy(tsk); 893 #ifdef CONFIG_FUTEX 894 if (unlikely(current->pi_state_cache)) 895 kfree(current->pi_state_cache); 896 #endif 897 /* 898 * Make sure we are holding no locks: 899 */ 900 debug_check_no_locks_held(); 901 902 if (tsk->io_context) 903 exit_io_context(tsk); 904 905 if (tsk->splice_pipe) 906 free_pipe_info(tsk->splice_pipe); 907 908 if (tsk->task_frag.page) 909 put_page(tsk->task_frag.page); 910 911 validate_creds_for_do_exit(tsk); 912 exit_task_stack_account(tsk); 913 914 check_stack_usage(); 915 preempt_disable(); 916 if (tsk->nr_dirtied) 917 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 918 exit_rcu(); 919 exit_tasks_rcu_finish(); 920 921 lockdep_free_task(tsk); 922 do_task_dead(); 923 } 924 925 void __noreturn make_task_dead(int signr) 926 { 927 /* 928 * Take the task off the cpu after something catastrophic has 929 * happened. 930 * 931 * We can get here from a kernel oops, sometimes with preemption off. 932 * Start by checking for critical errors. 933 * Then fix up important state like USER_DS and preemption. 934 * Then do everything else. 935 */ 936 struct task_struct *tsk = current; 937 unsigned int limit; 938 939 if (unlikely(in_interrupt())) 940 panic("Aiee, killing interrupt handler!"); 941 if (unlikely(!tsk->pid)) 942 panic("Attempted to kill the idle task!"); 943 944 if (unlikely(irqs_disabled())) { 945 pr_info("note: %s[%d] exited with irqs disabled\n", 946 current->comm, task_pid_nr(current)); 947 local_irq_enable(); 948 } 949 if (unlikely(in_atomic())) { 950 pr_info("note: %s[%d] exited with preempt_count %d\n", 951 current->comm, task_pid_nr(current), 952 preempt_count()); 953 preempt_count_set(PREEMPT_ENABLED); 954 } 955 956 /* 957 * Every time the system oopses, if the oops happens while a reference 958 * to an object was held, the reference leaks. 959 * If the oops doesn't also leak memory, repeated oopsing can cause 960 * reference counters to wrap around (if they're not using refcount_t). 961 * This means that repeated oopsing can make unexploitable-looking bugs 962 * exploitable through repeated oopsing. 963 * To make sure this can't happen, place an upper bound on how often the 964 * kernel may oops without panic(). 965 */ 966 limit = READ_ONCE(oops_limit); 967 if (atomic_inc_return(&oops_count) >= limit && limit) 968 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 969 970 /* 971 * We're taking recursive faults here in make_task_dead. Safest is to just 972 * leave this task alone and wait for reboot. 973 */ 974 if (unlikely(tsk->flags & PF_EXITING)) { 975 pr_alert("Fixing recursive fault but reboot is needed!\n"); 976 futex_exit_recursive(tsk); 977 tsk->exit_state = EXIT_DEAD; 978 refcount_inc(&tsk->rcu_users); 979 do_task_dead(); 980 } 981 982 do_exit(signr); 983 } 984 985 SYSCALL_DEFINE1(exit, int, error_code) 986 { 987 do_exit((error_code&0xff)<<8); 988 } 989 990 /* 991 * Take down every thread in the group. This is called by fatal signals 992 * as well as by sys_exit_group (below). 993 */ 994 void __noreturn 995 do_group_exit(int exit_code) 996 { 997 struct signal_struct *sig = current->signal; 998 999 if (sig->flags & SIGNAL_GROUP_EXIT) 1000 exit_code = sig->group_exit_code; 1001 else if (sig->group_exec_task) 1002 exit_code = 0; 1003 else { 1004 struct sighand_struct *const sighand = current->sighand; 1005 1006 spin_lock_irq(&sighand->siglock); 1007 if (sig->flags & SIGNAL_GROUP_EXIT) 1008 /* Another thread got here before we took the lock. */ 1009 exit_code = sig->group_exit_code; 1010 else if (sig->group_exec_task) 1011 exit_code = 0; 1012 else { 1013 sig->group_exit_code = exit_code; 1014 sig->flags = SIGNAL_GROUP_EXIT; 1015 zap_other_threads(current); 1016 } 1017 spin_unlock_irq(&sighand->siglock); 1018 } 1019 1020 do_exit(exit_code); 1021 /* NOTREACHED */ 1022 } 1023 1024 /* 1025 * this kills every thread in the thread group. Note that any externally 1026 * wait4()-ing process will get the correct exit code - even if this 1027 * thread is not the thread group leader. 1028 */ 1029 SYSCALL_DEFINE1(exit_group, int, error_code) 1030 { 1031 do_group_exit((error_code & 0xff) << 8); 1032 /* NOTREACHED */ 1033 return 0; 1034 } 1035 1036 struct waitid_info { 1037 pid_t pid; 1038 uid_t uid; 1039 int status; 1040 int cause; 1041 }; 1042 1043 struct wait_opts { 1044 enum pid_type wo_type; 1045 int wo_flags; 1046 struct pid *wo_pid; 1047 1048 struct waitid_info *wo_info; 1049 int wo_stat; 1050 struct rusage *wo_rusage; 1051 1052 wait_queue_entry_t child_wait; 1053 int notask_error; 1054 }; 1055 1056 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1057 { 1058 return wo->wo_type == PIDTYPE_MAX || 1059 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1060 } 1061 1062 static int 1063 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1064 { 1065 if (!eligible_pid(wo, p)) 1066 return 0; 1067 1068 /* 1069 * Wait for all children (clone and not) if __WALL is set or 1070 * if it is traced by us. 1071 */ 1072 if (ptrace || (wo->wo_flags & __WALL)) 1073 return 1; 1074 1075 /* 1076 * Otherwise, wait for clone children *only* if __WCLONE is set; 1077 * otherwise, wait for non-clone children *only*. 1078 * 1079 * Note: a "clone" child here is one that reports to its parent 1080 * using a signal other than SIGCHLD, or a non-leader thread which 1081 * we can only see if it is traced by us. 1082 */ 1083 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1084 return 0; 1085 1086 return 1; 1087 } 1088 1089 /* 1090 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1091 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1092 * the lock and this task is uninteresting. If we return nonzero, we have 1093 * released the lock and the system call should return. 1094 */ 1095 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1096 { 1097 int state, status; 1098 pid_t pid = task_pid_vnr(p); 1099 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1100 struct waitid_info *infop; 1101 1102 if (!likely(wo->wo_flags & WEXITED)) 1103 return 0; 1104 1105 if (unlikely(wo->wo_flags & WNOWAIT)) { 1106 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1107 ? p->signal->group_exit_code : p->exit_code; 1108 get_task_struct(p); 1109 read_unlock(&tasklist_lock); 1110 sched_annotate_sleep(); 1111 if (wo->wo_rusage) 1112 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1113 put_task_struct(p); 1114 goto out_info; 1115 } 1116 /* 1117 * Move the task's state to DEAD/TRACE, only one thread can do this. 1118 */ 1119 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1120 EXIT_TRACE : EXIT_DEAD; 1121 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1122 return 0; 1123 /* 1124 * We own this thread, nobody else can reap it. 1125 */ 1126 read_unlock(&tasklist_lock); 1127 sched_annotate_sleep(); 1128 1129 /* 1130 * Check thread_group_leader() to exclude the traced sub-threads. 1131 */ 1132 if (state == EXIT_DEAD && thread_group_leader(p)) { 1133 struct signal_struct *sig = p->signal; 1134 struct signal_struct *psig = current->signal; 1135 unsigned long maxrss; 1136 u64 tgutime, tgstime; 1137 1138 /* 1139 * The resource counters for the group leader are in its 1140 * own task_struct. Those for dead threads in the group 1141 * are in its signal_struct, as are those for the child 1142 * processes it has previously reaped. All these 1143 * accumulate in the parent's signal_struct c* fields. 1144 * 1145 * We don't bother to take a lock here to protect these 1146 * p->signal fields because the whole thread group is dead 1147 * and nobody can change them. 1148 * 1149 * psig->stats_lock also protects us from our sub-threads 1150 * which can reap other children at the same time. Until 1151 * we change k_getrusage()-like users to rely on this lock 1152 * we have to take ->siglock as well. 1153 * 1154 * We use thread_group_cputime_adjusted() to get times for 1155 * the thread group, which consolidates times for all threads 1156 * in the group including the group leader. 1157 */ 1158 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1159 spin_lock_irq(¤t->sighand->siglock); 1160 write_seqlock(&psig->stats_lock); 1161 psig->cutime += tgutime + sig->cutime; 1162 psig->cstime += tgstime + sig->cstime; 1163 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1164 psig->cmin_flt += 1165 p->min_flt + sig->min_flt + sig->cmin_flt; 1166 psig->cmaj_flt += 1167 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1168 psig->cnvcsw += 1169 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1170 psig->cnivcsw += 1171 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1172 psig->cinblock += 1173 task_io_get_inblock(p) + 1174 sig->inblock + sig->cinblock; 1175 psig->coublock += 1176 task_io_get_oublock(p) + 1177 sig->oublock + sig->coublock; 1178 maxrss = max(sig->maxrss, sig->cmaxrss); 1179 if (psig->cmaxrss < maxrss) 1180 psig->cmaxrss = maxrss; 1181 task_io_accounting_add(&psig->ioac, &p->ioac); 1182 task_io_accounting_add(&psig->ioac, &sig->ioac); 1183 write_sequnlock(&psig->stats_lock); 1184 spin_unlock_irq(¤t->sighand->siglock); 1185 } 1186 1187 if (wo->wo_rusage) 1188 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1189 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1190 ? p->signal->group_exit_code : p->exit_code; 1191 wo->wo_stat = status; 1192 1193 if (state == EXIT_TRACE) { 1194 write_lock_irq(&tasklist_lock); 1195 /* We dropped tasklist, ptracer could die and untrace */ 1196 ptrace_unlink(p); 1197 1198 /* If parent wants a zombie, don't release it now */ 1199 state = EXIT_ZOMBIE; 1200 if (do_notify_parent(p, p->exit_signal)) 1201 state = EXIT_DEAD; 1202 p->exit_state = state; 1203 write_unlock_irq(&tasklist_lock); 1204 } 1205 if (state == EXIT_DEAD) 1206 release_task(p); 1207 1208 out_info: 1209 infop = wo->wo_info; 1210 if (infop) { 1211 if ((status & 0x7f) == 0) { 1212 infop->cause = CLD_EXITED; 1213 infop->status = status >> 8; 1214 } else { 1215 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1216 infop->status = status & 0x7f; 1217 } 1218 infop->pid = pid; 1219 infop->uid = uid; 1220 } 1221 1222 return pid; 1223 } 1224 1225 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1226 { 1227 if (ptrace) { 1228 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1229 return &p->exit_code; 1230 } else { 1231 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1232 return &p->signal->group_exit_code; 1233 } 1234 return NULL; 1235 } 1236 1237 /** 1238 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1239 * @wo: wait options 1240 * @ptrace: is the wait for ptrace 1241 * @p: task to wait for 1242 * 1243 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1244 * 1245 * CONTEXT: 1246 * read_lock(&tasklist_lock), which is released if return value is 1247 * non-zero. Also, grabs and releases @p->sighand->siglock. 1248 * 1249 * RETURNS: 1250 * 0 if wait condition didn't exist and search for other wait conditions 1251 * should continue. Non-zero return, -errno on failure and @p's pid on 1252 * success, implies that tasklist_lock is released and wait condition 1253 * search should terminate. 1254 */ 1255 static int wait_task_stopped(struct wait_opts *wo, 1256 int ptrace, struct task_struct *p) 1257 { 1258 struct waitid_info *infop; 1259 int exit_code, *p_code, why; 1260 uid_t uid = 0; /* unneeded, required by compiler */ 1261 pid_t pid; 1262 1263 /* 1264 * Traditionally we see ptrace'd stopped tasks regardless of options. 1265 */ 1266 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1267 return 0; 1268 1269 if (!task_stopped_code(p, ptrace)) 1270 return 0; 1271 1272 exit_code = 0; 1273 spin_lock_irq(&p->sighand->siglock); 1274 1275 p_code = task_stopped_code(p, ptrace); 1276 if (unlikely(!p_code)) 1277 goto unlock_sig; 1278 1279 exit_code = *p_code; 1280 if (!exit_code) 1281 goto unlock_sig; 1282 1283 if (!unlikely(wo->wo_flags & WNOWAIT)) 1284 *p_code = 0; 1285 1286 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1287 unlock_sig: 1288 spin_unlock_irq(&p->sighand->siglock); 1289 if (!exit_code) 1290 return 0; 1291 1292 /* 1293 * Now we are pretty sure this task is interesting. 1294 * Make sure it doesn't get reaped out from under us while we 1295 * give up the lock and then examine it below. We don't want to 1296 * keep holding onto the tasklist_lock while we call getrusage and 1297 * possibly take page faults for user memory. 1298 */ 1299 get_task_struct(p); 1300 pid = task_pid_vnr(p); 1301 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1302 read_unlock(&tasklist_lock); 1303 sched_annotate_sleep(); 1304 if (wo->wo_rusage) 1305 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1306 put_task_struct(p); 1307 1308 if (likely(!(wo->wo_flags & WNOWAIT))) 1309 wo->wo_stat = (exit_code << 8) | 0x7f; 1310 1311 infop = wo->wo_info; 1312 if (infop) { 1313 infop->cause = why; 1314 infop->status = exit_code; 1315 infop->pid = pid; 1316 infop->uid = uid; 1317 } 1318 return pid; 1319 } 1320 1321 /* 1322 * Handle do_wait work for one task in a live, non-stopped state. 1323 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1324 * the lock and this task is uninteresting. If we return nonzero, we have 1325 * released the lock and the system call should return. 1326 */ 1327 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1328 { 1329 struct waitid_info *infop; 1330 pid_t pid; 1331 uid_t uid; 1332 1333 if (!unlikely(wo->wo_flags & WCONTINUED)) 1334 return 0; 1335 1336 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1337 return 0; 1338 1339 spin_lock_irq(&p->sighand->siglock); 1340 /* Re-check with the lock held. */ 1341 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1342 spin_unlock_irq(&p->sighand->siglock); 1343 return 0; 1344 } 1345 if (!unlikely(wo->wo_flags & WNOWAIT)) 1346 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1347 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1348 spin_unlock_irq(&p->sighand->siglock); 1349 1350 pid = task_pid_vnr(p); 1351 get_task_struct(p); 1352 read_unlock(&tasklist_lock); 1353 sched_annotate_sleep(); 1354 if (wo->wo_rusage) 1355 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1356 put_task_struct(p); 1357 1358 infop = wo->wo_info; 1359 if (!infop) { 1360 wo->wo_stat = 0xffff; 1361 } else { 1362 infop->cause = CLD_CONTINUED; 1363 infop->pid = pid; 1364 infop->uid = uid; 1365 infop->status = SIGCONT; 1366 } 1367 return pid; 1368 } 1369 1370 /* 1371 * Consider @p for a wait by @parent. 1372 * 1373 * -ECHILD should be in ->notask_error before the first call. 1374 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1375 * Returns zero if the search for a child should continue; 1376 * then ->notask_error is 0 if @p is an eligible child, 1377 * or still -ECHILD. 1378 */ 1379 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1380 struct task_struct *p) 1381 { 1382 /* 1383 * We can race with wait_task_zombie() from another thread. 1384 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1385 * can't confuse the checks below. 1386 */ 1387 int exit_state = READ_ONCE(p->exit_state); 1388 int ret; 1389 1390 if (unlikely(exit_state == EXIT_DEAD)) 1391 return 0; 1392 1393 ret = eligible_child(wo, ptrace, p); 1394 if (!ret) 1395 return ret; 1396 1397 if (unlikely(exit_state == EXIT_TRACE)) { 1398 /* 1399 * ptrace == 0 means we are the natural parent. In this case 1400 * we should clear notask_error, debugger will notify us. 1401 */ 1402 if (likely(!ptrace)) 1403 wo->notask_error = 0; 1404 return 0; 1405 } 1406 1407 if (likely(!ptrace) && unlikely(p->ptrace)) { 1408 /* 1409 * If it is traced by its real parent's group, just pretend 1410 * the caller is ptrace_do_wait() and reap this child if it 1411 * is zombie. 1412 * 1413 * This also hides group stop state from real parent; otherwise 1414 * a single stop can be reported twice as group and ptrace stop. 1415 * If a ptracer wants to distinguish these two events for its 1416 * own children it should create a separate process which takes 1417 * the role of real parent. 1418 */ 1419 if (!ptrace_reparented(p)) 1420 ptrace = 1; 1421 } 1422 1423 /* slay zombie? */ 1424 if (exit_state == EXIT_ZOMBIE) { 1425 /* we don't reap group leaders with subthreads */ 1426 if (!delay_group_leader(p)) { 1427 /* 1428 * A zombie ptracee is only visible to its ptracer. 1429 * Notification and reaping will be cascaded to the 1430 * real parent when the ptracer detaches. 1431 */ 1432 if (unlikely(ptrace) || likely(!p->ptrace)) 1433 return wait_task_zombie(wo, p); 1434 } 1435 1436 /* 1437 * Allow access to stopped/continued state via zombie by 1438 * falling through. Clearing of notask_error is complex. 1439 * 1440 * When !@ptrace: 1441 * 1442 * If WEXITED is set, notask_error should naturally be 1443 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1444 * so, if there are live subthreads, there are events to 1445 * wait for. If all subthreads are dead, it's still safe 1446 * to clear - this function will be called again in finite 1447 * amount time once all the subthreads are released and 1448 * will then return without clearing. 1449 * 1450 * When @ptrace: 1451 * 1452 * Stopped state is per-task and thus can't change once the 1453 * target task dies. Only continued and exited can happen. 1454 * Clear notask_error if WCONTINUED | WEXITED. 1455 */ 1456 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1457 wo->notask_error = 0; 1458 } else { 1459 /* 1460 * @p is alive and it's gonna stop, continue or exit, so 1461 * there always is something to wait for. 1462 */ 1463 wo->notask_error = 0; 1464 } 1465 1466 /* 1467 * Wait for stopped. Depending on @ptrace, different stopped state 1468 * is used and the two don't interact with each other. 1469 */ 1470 ret = wait_task_stopped(wo, ptrace, p); 1471 if (ret) 1472 return ret; 1473 1474 /* 1475 * Wait for continued. There's only one continued state and the 1476 * ptracer can consume it which can confuse the real parent. Don't 1477 * use WCONTINUED from ptracer. You don't need or want it. 1478 */ 1479 return wait_task_continued(wo, p); 1480 } 1481 1482 /* 1483 * Do the work of do_wait() for one thread in the group, @tsk. 1484 * 1485 * -ECHILD should be in ->notask_error before the first call. 1486 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1487 * Returns zero if the search for a child should continue; then 1488 * ->notask_error is 0 if there were any eligible children, 1489 * or still -ECHILD. 1490 */ 1491 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1492 { 1493 struct task_struct *p; 1494 1495 list_for_each_entry(p, &tsk->children, sibling) { 1496 int ret = wait_consider_task(wo, 0, p); 1497 1498 if (ret) 1499 return ret; 1500 } 1501 1502 return 0; 1503 } 1504 1505 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1506 { 1507 struct task_struct *p; 1508 1509 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1510 int ret = wait_consider_task(wo, 1, p); 1511 1512 if (ret) 1513 return ret; 1514 } 1515 1516 return 0; 1517 } 1518 1519 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1520 int sync, void *key) 1521 { 1522 struct wait_opts *wo = container_of(wait, struct wait_opts, 1523 child_wait); 1524 struct task_struct *p = key; 1525 1526 if (!eligible_pid(wo, p)) 1527 return 0; 1528 1529 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1530 return 0; 1531 1532 return default_wake_function(wait, mode, sync, key); 1533 } 1534 1535 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1536 { 1537 __wake_up_sync_key(&parent->signal->wait_chldexit, 1538 TASK_INTERRUPTIBLE, p); 1539 } 1540 1541 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1542 struct task_struct *target) 1543 { 1544 struct task_struct *parent = 1545 !ptrace ? target->real_parent : target->parent; 1546 1547 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1548 same_thread_group(current, parent)); 1549 } 1550 1551 /* 1552 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1553 * and tracee lists to find the target task. 1554 */ 1555 static int do_wait_pid(struct wait_opts *wo) 1556 { 1557 bool ptrace; 1558 struct task_struct *target; 1559 int retval; 1560 1561 ptrace = false; 1562 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1563 if (target && is_effectively_child(wo, ptrace, target)) { 1564 retval = wait_consider_task(wo, ptrace, target); 1565 if (retval) 1566 return retval; 1567 } 1568 1569 ptrace = true; 1570 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1571 if (target && target->ptrace && 1572 is_effectively_child(wo, ptrace, target)) { 1573 retval = wait_consider_task(wo, ptrace, target); 1574 if (retval) 1575 return retval; 1576 } 1577 1578 return 0; 1579 } 1580 1581 static long do_wait(struct wait_opts *wo) 1582 { 1583 int retval; 1584 1585 trace_sched_process_wait(wo->wo_pid); 1586 1587 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1588 wo->child_wait.private = current; 1589 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1590 repeat: 1591 /* 1592 * If there is nothing that can match our criteria, just get out. 1593 * We will clear ->notask_error to zero if we see any child that 1594 * might later match our criteria, even if we are not able to reap 1595 * it yet. 1596 */ 1597 wo->notask_error = -ECHILD; 1598 if ((wo->wo_type < PIDTYPE_MAX) && 1599 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1600 goto notask; 1601 1602 set_current_state(TASK_INTERRUPTIBLE); 1603 read_lock(&tasklist_lock); 1604 1605 if (wo->wo_type == PIDTYPE_PID) { 1606 retval = do_wait_pid(wo); 1607 if (retval) 1608 goto end; 1609 } else { 1610 struct task_struct *tsk = current; 1611 1612 do { 1613 retval = do_wait_thread(wo, tsk); 1614 if (retval) 1615 goto end; 1616 1617 retval = ptrace_do_wait(wo, tsk); 1618 if (retval) 1619 goto end; 1620 1621 if (wo->wo_flags & __WNOTHREAD) 1622 break; 1623 } while_each_thread(current, tsk); 1624 } 1625 read_unlock(&tasklist_lock); 1626 1627 notask: 1628 retval = wo->notask_error; 1629 if (!retval && !(wo->wo_flags & WNOHANG)) { 1630 retval = -ERESTARTSYS; 1631 if (!signal_pending(current)) { 1632 schedule(); 1633 goto repeat; 1634 } 1635 } 1636 end: 1637 __set_current_state(TASK_RUNNING); 1638 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1639 return retval; 1640 } 1641 1642 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1643 int options, struct rusage *ru) 1644 { 1645 struct wait_opts wo; 1646 struct pid *pid = NULL; 1647 enum pid_type type; 1648 long ret; 1649 unsigned int f_flags = 0; 1650 1651 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1652 __WNOTHREAD|__WCLONE|__WALL)) 1653 return -EINVAL; 1654 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1655 return -EINVAL; 1656 1657 switch (which) { 1658 case P_ALL: 1659 type = PIDTYPE_MAX; 1660 break; 1661 case P_PID: 1662 type = PIDTYPE_PID; 1663 if (upid <= 0) 1664 return -EINVAL; 1665 1666 pid = find_get_pid(upid); 1667 break; 1668 case P_PGID: 1669 type = PIDTYPE_PGID; 1670 if (upid < 0) 1671 return -EINVAL; 1672 1673 if (upid) 1674 pid = find_get_pid(upid); 1675 else 1676 pid = get_task_pid(current, PIDTYPE_PGID); 1677 break; 1678 case P_PIDFD: 1679 type = PIDTYPE_PID; 1680 if (upid < 0) 1681 return -EINVAL; 1682 1683 pid = pidfd_get_pid(upid, &f_flags); 1684 if (IS_ERR(pid)) 1685 return PTR_ERR(pid); 1686 1687 break; 1688 default: 1689 return -EINVAL; 1690 } 1691 1692 wo.wo_type = type; 1693 wo.wo_pid = pid; 1694 wo.wo_flags = options; 1695 wo.wo_info = infop; 1696 wo.wo_rusage = ru; 1697 if (f_flags & O_NONBLOCK) 1698 wo.wo_flags |= WNOHANG; 1699 1700 ret = do_wait(&wo); 1701 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK)) 1702 ret = -EAGAIN; 1703 1704 put_pid(pid); 1705 return ret; 1706 } 1707 1708 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1709 infop, int, options, struct rusage __user *, ru) 1710 { 1711 struct rusage r; 1712 struct waitid_info info = {.status = 0}; 1713 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1714 int signo = 0; 1715 1716 if (err > 0) { 1717 signo = SIGCHLD; 1718 err = 0; 1719 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1720 return -EFAULT; 1721 } 1722 if (!infop) 1723 return err; 1724 1725 if (!user_write_access_begin(infop, sizeof(*infop))) 1726 return -EFAULT; 1727 1728 unsafe_put_user(signo, &infop->si_signo, Efault); 1729 unsafe_put_user(0, &infop->si_errno, Efault); 1730 unsafe_put_user(info.cause, &infop->si_code, Efault); 1731 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1732 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1733 unsafe_put_user(info.status, &infop->si_status, Efault); 1734 user_write_access_end(); 1735 return err; 1736 Efault: 1737 user_write_access_end(); 1738 return -EFAULT; 1739 } 1740 1741 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1742 struct rusage *ru) 1743 { 1744 struct wait_opts wo; 1745 struct pid *pid = NULL; 1746 enum pid_type type; 1747 long ret; 1748 1749 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1750 __WNOTHREAD|__WCLONE|__WALL)) 1751 return -EINVAL; 1752 1753 /* -INT_MIN is not defined */ 1754 if (upid == INT_MIN) 1755 return -ESRCH; 1756 1757 if (upid == -1) 1758 type = PIDTYPE_MAX; 1759 else if (upid < 0) { 1760 type = PIDTYPE_PGID; 1761 pid = find_get_pid(-upid); 1762 } else if (upid == 0) { 1763 type = PIDTYPE_PGID; 1764 pid = get_task_pid(current, PIDTYPE_PGID); 1765 } else /* upid > 0 */ { 1766 type = PIDTYPE_PID; 1767 pid = find_get_pid(upid); 1768 } 1769 1770 wo.wo_type = type; 1771 wo.wo_pid = pid; 1772 wo.wo_flags = options | WEXITED; 1773 wo.wo_info = NULL; 1774 wo.wo_stat = 0; 1775 wo.wo_rusage = ru; 1776 ret = do_wait(&wo); 1777 put_pid(pid); 1778 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1779 ret = -EFAULT; 1780 1781 return ret; 1782 } 1783 1784 int kernel_wait(pid_t pid, int *stat) 1785 { 1786 struct wait_opts wo = { 1787 .wo_type = PIDTYPE_PID, 1788 .wo_pid = find_get_pid(pid), 1789 .wo_flags = WEXITED, 1790 }; 1791 int ret; 1792 1793 ret = do_wait(&wo); 1794 if (ret > 0 && wo.wo_stat) 1795 *stat = wo.wo_stat; 1796 put_pid(wo.wo_pid); 1797 return ret; 1798 } 1799 1800 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1801 int, options, struct rusage __user *, ru) 1802 { 1803 struct rusage r; 1804 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1805 1806 if (err > 0) { 1807 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1808 return -EFAULT; 1809 } 1810 return err; 1811 } 1812 1813 #ifdef __ARCH_WANT_SYS_WAITPID 1814 1815 /* 1816 * sys_waitpid() remains for compatibility. waitpid() should be 1817 * implemented by calling sys_wait4() from libc.a. 1818 */ 1819 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1820 { 1821 return kernel_wait4(pid, stat_addr, options, NULL); 1822 } 1823 1824 #endif 1825 1826 #ifdef CONFIG_COMPAT 1827 COMPAT_SYSCALL_DEFINE4(wait4, 1828 compat_pid_t, pid, 1829 compat_uint_t __user *, stat_addr, 1830 int, options, 1831 struct compat_rusage __user *, ru) 1832 { 1833 struct rusage r; 1834 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1835 if (err > 0) { 1836 if (ru && put_compat_rusage(&r, ru)) 1837 return -EFAULT; 1838 } 1839 return err; 1840 } 1841 1842 COMPAT_SYSCALL_DEFINE5(waitid, 1843 int, which, compat_pid_t, pid, 1844 struct compat_siginfo __user *, infop, int, options, 1845 struct compat_rusage __user *, uru) 1846 { 1847 struct rusage ru; 1848 struct waitid_info info = {.status = 0}; 1849 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1850 int signo = 0; 1851 if (err > 0) { 1852 signo = SIGCHLD; 1853 err = 0; 1854 if (uru) { 1855 /* kernel_waitid() overwrites everything in ru */ 1856 if (COMPAT_USE_64BIT_TIME) 1857 err = copy_to_user(uru, &ru, sizeof(ru)); 1858 else 1859 err = put_compat_rusage(&ru, uru); 1860 if (err) 1861 return -EFAULT; 1862 } 1863 } 1864 1865 if (!infop) 1866 return err; 1867 1868 if (!user_write_access_begin(infop, sizeof(*infop))) 1869 return -EFAULT; 1870 1871 unsafe_put_user(signo, &infop->si_signo, Efault); 1872 unsafe_put_user(0, &infop->si_errno, Efault); 1873 unsafe_put_user(info.cause, &infop->si_code, Efault); 1874 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1875 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1876 unsafe_put_user(info.status, &infop->si_status, Efault); 1877 user_write_access_end(); 1878 return err; 1879 Efault: 1880 user_write_access_end(); 1881 return -EFAULT; 1882 } 1883 #endif 1884 1885 /** 1886 * thread_group_exited - check that a thread group has exited 1887 * @pid: tgid of thread group to be checked. 1888 * 1889 * Test if the thread group represented by tgid has exited (all 1890 * threads are zombies, dead or completely gone). 1891 * 1892 * Return: true if the thread group has exited. false otherwise. 1893 */ 1894 bool thread_group_exited(struct pid *pid) 1895 { 1896 struct task_struct *task; 1897 bool exited; 1898 1899 rcu_read_lock(); 1900 task = pid_task(pid, PIDTYPE_PID); 1901 exited = !task || 1902 (READ_ONCE(task->exit_state) && thread_group_empty(task)); 1903 rcu_read_unlock(); 1904 1905 return exited; 1906 } 1907 EXPORT_SYMBOL(thread_group_exited); 1908 1909 /* 1910 * This needs to be __function_aligned as GCC implicitly makes any 1911 * implementation of abort() cold and drops alignment specified by 1912 * -falign-functions=N. 1913 * 1914 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1915 */ 1916 __weak __function_aligned void abort(void) 1917 { 1918 BUG(); 1919 1920 /* if that doesn't kill us, halt */ 1921 panic("Oops failed to kill thread"); 1922 } 1923 EXPORT_SYMBOL(abort); 1924