1 /* 2 * Performance events ring-buffer code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <[email protected]> 7 * Copyright � 2009 Paul Mackerras, IBM Corp. <[email protected]> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/perf_event.h> 13 #include <linux/vmalloc.h> 14 #include <linux/slab.h> 15 16 #include "internal.h" 17 18 static bool perf_output_space(struct ring_buffer *rb, unsigned long tail, 19 unsigned long offset, unsigned long head) 20 { 21 unsigned long mask; 22 23 if (!rb->writable) 24 return true; 25 26 mask = perf_data_size(rb) - 1; 27 28 offset = (offset - tail) & mask; 29 head = (head - tail) & mask; 30 31 if ((int)(head - offset) < 0) 32 return false; 33 34 return true; 35 } 36 37 static void perf_output_wakeup(struct perf_output_handle *handle) 38 { 39 atomic_set(&handle->rb->poll, POLL_IN); 40 41 handle->event->pending_wakeup = 1; 42 irq_work_queue(&handle->event->pending); 43 } 44 45 /* 46 * We need to ensure a later event_id doesn't publish a head when a former 47 * event isn't done writing. However since we need to deal with NMIs we 48 * cannot fully serialize things. 49 * 50 * We only publish the head (and generate a wakeup) when the outer-most 51 * event completes. 52 */ 53 static void perf_output_get_handle(struct perf_output_handle *handle) 54 { 55 struct ring_buffer *rb = handle->rb; 56 57 preempt_disable(); 58 local_inc(&rb->nest); 59 handle->wakeup = local_read(&rb->wakeup); 60 } 61 62 static void perf_output_put_handle(struct perf_output_handle *handle) 63 { 64 struct ring_buffer *rb = handle->rb; 65 unsigned long head; 66 67 again: 68 head = local_read(&rb->head); 69 70 /* 71 * IRQ/NMI can happen here, which means we can miss a head update. 72 */ 73 74 if (!local_dec_and_test(&rb->nest)) 75 goto out; 76 77 /* 78 * Publish the known good head. Rely on the full barrier implied 79 * by atomic_dec_and_test() order the rb->head read and this 80 * write. 81 */ 82 rb->user_page->data_head = head; 83 84 /* 85 * Now check if we missed an update, rely on the (compiler) 86 * barrier in atomic_dec_and_test() to re-read rb->head. 87 */ 88 if (unlikely(head != local_read(&rb->head))) { 89 local_inc(&rb->nest); 90 goto again; 91 } 92 93 if (handle->wakeup != local_read(&rb->wakeup)) 94 perf_output_wakeup(handle); 95 96 out: 97 preempt_enable(); 98 } 99 100 int perf_output_begin(struct perf_output_handle *handle, 101 struct perf_event *event, unsigned int size, 102 int sample) 103 { 104 struct ring_buffer *rb; 105 unsigned long tail, offset, head; 106 int have_lost; 107 struct perf_sample_data sample_data; 108 struct { 109 struct perf_event_header header; 110 u64 id; 111 u64 lost; 112 } lost_event; 113 114 rcu_read_lock(); 115 /* 116 * For inherited events we send all the output towards the parent. 117 */ 118 if (event->parent) 119 event = event->parent; 120 121 rb = rcu_dereference(event->rb); 122 if (!rb) 123 goto out; 124 125 handle->rb = rb; 126 handle->event = event; 127 handle->sample = sample; 128 129 if (!rb->nr_pages) 130 goto out; 131 132 have_lost = local_read(&rb->lost); 133 if (have_lost) { 134 lost_event.header.size = sizeof(lost_event); 135 perf_event_header__init_id(&lost_event.header, &sample_data, 136 event); 137 size += lost_event.header.size; 138 } 139 140 perf_output_get_handle(handle); 141 142 do { 143 /* 144 * Userspace could choose to issue a mb() before updating the 145 * tail pointer. So that all reads will be completed before the 146 * write is issued. 147 */ 148 tail = ACCESS_ONCE(rb->user_page->data_tail); 149 smp_rmb(); 150 offset = head = local_read(&rb->head); 151 head += size; 152 if (unlikely(!perf_output_space(rb, tail, offset, head))) 153 goto fail; 154 } while (local_cmpxchg(&rb->head, offset, head) != offset); 155 156 if (head - local_read(&rb->wakeup) > rb->watermark) 157 local_add(rb->watermark, &rb->wakeup); 158 159 handle->page = offset >> (PAGE_SHIFT + page_order(rb)); 160 handle->page &= rb->nr_pages - 1; 161 handle->size = offset & ((PAGE_SIZE << page_order(rb)) - 1); 162 handle->addr = rb->data_pages[handle->page]; 163 handle->addr += handle->size; 164 handle->size = (PAGE_SIZE << page_order(rb)) - handle->size; 165 166 if (have_lost) { 167 lost_event.header.type = PERF_RECORD_LOST; 168 lost_event.header.misc = 0; 169 lost_event.id = event->id; 170 lost_event.lost = local_xchg(&rb->lost, 0); 171 172 perf_output_put(handle, lost_event); 173 perf_event__output_id_sample(event, handle, &sample_data); 174 } 175 176 return 0; 177 178 fail: 179 local_inc(&rb->lost); 180 perf_output_put_handle(handle); 181 out: 182 rcu_read_unlock(); 183 184 return -ENOSPC; 185 } 186 187 void perf_output_copy(struct perf_output_handle *handle, 188 const void *buf, unsigned int len) 189 { 190 __output_copy(handle, buf, len); 191 } 192 193 void perf_output_end(struct perf_output_handle *handle) 194 { 195 struct perf_event *event = handle->event; 196 struct ring_buffer *rb = handle->rb; 197 198 if (handle->sample && !event->attr.watermark) { 199 int wakeup_events = event->attr.wakeup_events; 200 201 if (wakeup_events) { 202 int events = local_inc_return(&rb->events); 203 if (events >= wakeup_events) { 204 local_sub(wakeup_events, &rb->events); 205 local_inc(&rb->wakeup); 206 } 207 } 208 } 209 210 perf_output_put_handle(handle); 211 rcu_read_unlock(); 212 } 213 214 static void 215 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags) 216 { 217 long max_size = perf_data_size(rb); 218 219 if (watermark) 220 rb->watermark = min(max_size, watermark); 221 222 if (!rb->watermark) 223 rb->watermark = max_size / 2; 224 225 if (flags & RING_BUFFER_WRITABLE) 226 rb->writable = 1; 227 228 atomic_set(&rb->refcount, 1); 229 } 230 231 #ifndef CONFIG_PERF_USE_VMALLOC 232 233 /* 234 * Back perf_mmap() with regular GFP_KERNEL-0 pages. 235 */ 236 237 struct page * 238 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 239 { 240 if (pgoff > rb->nr_pages) 241 return NULL; 242 243 if (pgoff == 0) 244 return virt_to_page(rb->user_page); 245 246 return virt_to_page(rb->data_pages[pgoff - 1]); 247 } 248 249 static void *perf_mmap_alloc_page(int cpu) 250 { 251 struct page *page; 252 int node; 253 254 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 255 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 256 if (!page) 257 return NULL; 258 259 return page_address(page); 260 } 261 262 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 263 { 264 struct ring_buffer *rb; 265 unsigned long size; 266 int i; 267 268 size = sizeof(struct ring_buffer); 269 size += nr_pages * sizeof(void *); 270 271 rb = kzalloc(size, GFP_KERNEL); 272 if (!rb) 273 goto fail; 274 275 rb->user_page = perf_mmap_alloc_page(cpu); 276 if (!rb->user_page) 277 goto fail_user_page; 278 279 for (i = 0; i < nr_pages; i++) { 280 rb->data_pages[i] = perf_mmap_alloc_page(cpu); 281 if (!rb->data_pages[i]) 282 goto fail_data_pages; 283 } 284 285 rb->nr_pages = nr_pages; 286 287 ring_buffer_init(rb, watermark, flags); 288 289 return rb; 290 291 fail_data_pages: 292 for (i--; i >= 0; i--) 293 free_page((unsigned long)rb->data_pages[i]); 294 295 free_page((unsigned long)rb->user_page); 296 297 fail_user_page: 298 kfree(rb); 299 300 fail: 301 return NULL; 302 } 303 304 static void perf_mmap_free_page(unsigned long addr) 305 { 306 struct page *page = virt_to_page((void *)addr); 307 308 page->mapping = NULL; 309 __free_page(page); 310 } 311 312 void rb_free(struct ring_buffer *rb) 313 { 314 int i; 315 316 perf_mmap_free_page((unsigned long)rb->user_page); 317 for (i = 0; i < rb->nr_pages; i++) 318 perf_mmap_free_page((unsigned long)rb->data_pages[i]); 319 kfree(rb); 320 } 321 322 #else 323 324 struct page * 325 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 326 { 327 if (pgoff > (1UL << page_order(rb))) 328 return NULL; 329 330 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); 331 } 332 333 static void perf_mmap_unmark_page(void *addr) 334 { 335 struct page *page = vmalloc_to_page(addr); 336 337 page->mapping = NULL; 338 } 339 340 static void rb_free_work(struct work_struct *work) 341 { 342 struct ring_buffer *rb; 343 void *base; 344 int i, nr; 345 346 rb = container_of(work, struct ring_buffer, work); 347 nr = 1 << page_order(rb); 348 349 base = rb->user_page; 350 for (i = 0; i < nr + 1; i++) 351 perf_mmap_unmark_page(base + (i * PAGE_SIZE)); 352 353 vfree(base); 354 kfree(rb); 355 } 356 357 void rb_free(struct ring_buffer *rb) 358 { 359 schedule_work(&rb->work); 360 } 361 362 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 363 { 364 struct ring_buffer *rb; 365 unsigned long size; 366 void *all_buf; 367 368 size = sizeof(struct ring_buffer); 369 size += sizeof(void *); 370 371 rb = kzalloc(size, GFP_KERNEL); 372 if (!rb) 373 goto fail; 374 375 INIT_WORK(&rb->work, rb_free_work); 376 377 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); 378 if (!all_buf) 379 goto fail_all_buf; 380 381 rb->user_page = all_buf; 382 rb->data_pages[0] = all_buf + PAGE_SIZE; 383 rb->page_order = ilog2(nr_pages); 384 rb->nr_pages = 1; 385 386 ring_buffer_init(rb, watermark, flags); 387 388 return rb; 389 390 fail_all_buf: 391 kfree(rb); 392 393 fail: 394 return NULL; 395 } 396 397 #endif 398