xref: /linux-6.15/kernel/events/core.c (revision f08046cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <[email protected]>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <[email protected]>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52 
53 #include "internal.h"
54 
55 #include <asm/irq_regs.h>
56 
57 typedef int (*remote_function_f)(void *);
58 
59 struct remote_function_call {
60 	struct task_struct	*p;
61 	remote_function_f	func;
62 	void			*info;
63 	int			ret;
64 };
65 
66 static void remote_function(void *data)
67 {
68 	struct remote_function_call *tfc = data;
69 	struct task_struct *p = tfc->p;
70 
71 	if (p) {
72 		/* -EAGAIN */
73 		if (task_cpu(p) != smp_processor_id())
74 			return;
75 
76 		/*
77 		 * Now that we're on right CPU with IRQs disabled, we can test
78 		 * if we hit the right task without races.
79 		 */
80 
81 		tfc->ret = -ESRCH; /* No such (running) process */
82 		if (p != current)
83 			return;
84 	}
85 
86 	tfc->ret = tfc->func(tfc->info);
87 }
88 
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:		the task to evaluate
92  * @func:	the function to be called
93  * @info:	the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *	    -ESRCH  - when the process isn't running
100  *	    -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= p,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -EAGAIN,
110 	};
111 	int ret;
112 
113 	do {
114 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 		if (!ret)
116 			ret = data.ret;
117 	} while (ret == -EAGAIN);
118 
119 	return ret;
120 }
121 
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:	the function to be called
125  * @info:	the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133 	struct remote_function_call data = {
134 		.p	= NULL,
135 		.func	= func,
136 		.info	= info,
137 		.ret	= -ENXIO, /* No such CPU */
138 	};
139 
140 	smp_call_function_single(cpu, remote_function, &data, 1);
141 
142 	return data.ret;
143 }
144 
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150 
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 			  struct perf_event_context *ctx)
153 {
154 	raw_spin_lock(&cpuctx->ctx.lock);
155 	if (ctx)
156 		raw_spin_lock(&ctx->lock);
157 }
158 
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 			    struct perf_event_context *ctx)
161 {
162 	if (ctx)
163 		raw_spin_unlock(&ctx->lock);
164 	raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166 
167 #define TASK_TOMBSTONE ((void *)-1L)
168 
169 static bool is_kernel_event(struct perf_event *event)
170 {
171 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173 
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192 
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 			struct perf_event_context *, void *);
195 
196 struct event_function_struct {
197 	struct perf_event *event;
198 	event_f func;
199 	void *data;
200 };
201 
202 static int event_function(void *info)
203 {
204 	struct event_function_struct *efs = info;
205 	struct perf_event *event = efs->event;
206 	struct perf_event_context *ctx = event->ctx;
207 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 	int ret = 0;
210 
211 	lockdep_assert_irqs_disabled();
212 
213 	perf_ctx_lock(cpuctx, task_ctx);
214 	/*
215 	 * Since we do the IPI call without holding ctx->lock things can have
216 	 * changed, double check we hit the task we set out to hit.
217 	 */
218 	if (ctx->task) {
219 		if (ctx->task != current) {
220 			ret = -ESRCH;
221 			goto unlock;
222 		}
223 
224 		/*
225 		 * We only use event_function_call() on established contexts,
226 		 * and event_function() is only ever called when active (or
227 		 * rather, we'll have bailed in task_function_call() or the
228 		 * above ctx->task != current test), therefore we must have
229 		 * ctx->is_active here.
230 		 */
231 		WARN_ON_ONCE(!ctx->is_active);
232 		/*
233 		 * And since we have ctx->is_active, cpuctx->task_ctx must
234 		 * match.
235 		 */
236 		WARN_ON_ONCE(task_ctx != ctx);
237 	} else {
238 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 	}
240 
241 	efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 	perf_ctx_unlock(cpuctx, task_ctx);
244 
245 	return ret;
246 }
247 
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 	struct event_function_struct efs = {
253 		.event = event,
254 		.func = func,
255 		.data = data,
256 	};
257 
258 	if (!event->parent) {
259 		/*
260 		 * If this is a !child event, we must hold ctx::mutex to
261 		 * stabilize the the event->ctx relation. See
262 		 * perf_event_ctx_lock().
263 		 */
264 		lockdep_assert_held(&ctx->mutex);
265 	}
266 
267 	if (!task) {
268 		cpu_function_call(event->cpu, event_function, &efs);
269 		return;
270 	}
271 
272 	if (task == TASK_TOMBSTONE)
273 		return;
274 
275 again:
276 	if (!task_function_call(task, event_function, &efs))
277 		return;
278 
279 	raw_spin_lock_irq(&ctx->lock);
280 	/*
281 	 * Reload the task pointer, it might have been changed by
282 	 * a concurrent perf_event_context_sched_out().
283 	 */
284 	task = ctx->task;
285 	if (task == TASK_TOMBSTONE) {
286 		raw_spin_unlock_irq(&ctx->lock);
287 		return;
288 	}
289 	if (ctx->is_active) {
290 		raw_spin_unlock_irq(&ctx->lock);
291 		goto again;
292 	}
293 	func(event, NULL, ctx, data);
294 	raw_spin_unlock_irq(&ctx->lock);
295 }
296 
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303 	struct perf_event_context *ctx = event->ctx;
304 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 	struct task_struct *task = READ_ONCE(ctx->task);
306 	struct perf_event_context *task_ctx = NULL;
307 
308 	lockdep_assert_irqs_disabled();
309 
310 	if (task) {
311 		if (task == TASK_TOMBSTONE)
312 			return;
313 
314 		task_ctx = ctx;
315 	}
316 
317 	perf_ctx_lock(cpuctx, task_ctx);
318 
319 	task = ctx->task;
320 	if (task == TASK_TOMBSTONE)
321 		goto unlock;
322 
323 	if (task) {
324 		/*
325 		 * We must be either inactive or active and the right task,
326 		 * otherwise we're screwed, since we cannot IPI to somewhere
327 		 * else.
328 		 */
329 		if (ctx->is_active) {
330 			if (WARN_ON_ONCE(task != current))
331 				goto unlock;
332 
333 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 				goto unlock;
335 		}
336 	} else {
337 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 	}
339 
340 	func(event, cpuctx, ctx, data);
341 unlock:
342 	perf_ctx_unlock(cpuctx, task_ctx);
343 }
344 
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 		       PERF_FLAG_FD_OUTPUT  |\
347 		       PERF_FLAG_PID_CGROUP |\
348 		       PERF_FLAG_FD_CLOEXEC)
349 
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 	(PERF_SAMPLE_BRANCH_KERNEL |\
355 	 PERF_SAMPLE_BRANCH_HV)
356 
357 enum event_type_t {
358 	EVENT_FLEXIBLE = 0x1,
359 	EVENT_PINNED = 0x2,
360 	EVENT_TIME = 0x4,
361 	/* see ctx_resched() for details */
362 	EVENT_CPU = 0x8,
363 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365 
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370 
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376 
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380 
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389 
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394 
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403 
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406 
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE		100000
411 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
413 
414 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
415 
416 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
418 
419 static int perf_sample_allowed_ns __read_mostly =
420 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 
422 static void update_perf_cpu_limits(void)
423 {
424 	u64 tmp = perf_sample_period_ns;
425 
426 	tmp *= sysctl_perf_cpu_time_max_percent;
427 	tmp = div_u64(tmp, 100);
428 	if (!tmp)
429 		tmp = 1;
430 
431 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433 
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435 
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 		void __user *buffer, size_t *lenp,
438 		loff_t *ppos)
439 {
440 	int ret;
441 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 	/*
443 	 * If throttling is disabled don't allow the write:
444 	 */
445 	if (write && (perf_cpu == 100 || perf_cpu == 0))
446 		return -EINVAL;
447 
448 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 	if (ret || !write)
450 		return ret;
451 
452 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 	update_perf_cpu_limits();
455 
456 	return 0;
457 }
458 
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 				void __user *buffer, size_t *lenp,
463 				loff_t *ppos)
464 {
465 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 
467 	if (ret || !write)
468 		return ret;
469 
470 	if (sysctl_perf_cpu_time_max_percent == 100 ||
471 	    sysctl_perf_cpu_time_max_percent == 0) {
472 		printk(KERN_WARNING
473 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 		WRITE_ONCE(perf_sample_allowed_ns, 0);
475 	} else {
476 		update_perf_cpu_limits();
477 	}
478 
479 	return 0;
480 }
481 
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490 
491 static u64 __report_avg;
492 static u64 __report_allowed;
493 
494 static void perf_duration_warn(struct irq_work *w)
495 {
496 	printk_ratelimited(KERN_INFO
497 		"perf: interrupt took too long (%lld > %lld), lowering "
498 		"kernel.perf_event_max_sample_rate to %d\n",
499 		__report_avg, __report_allowed,
500 		sysctl_perf_event_sample_rate);
501 }
502 
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 	u64 running_len;
509 	u64 avg_len;
510 	u32 max;
511 
512 	if (max_len == 0)
513 		return;
514 
515 	/* Decay the counter by 1 average sample. */
516 	running_len = __this_cpu_read(running_sample_length);
517 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 	running_len += sample_len_ns;
519 	__this_cpu_write(running_sample_length, running_len);
520 
521 	/*
522 	 * Note: this will be biased artifically low until we have
523 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 	 * from having to maintain a count.
525 	 */
526 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 	if (avg_len <= max_len)
528 		return;
529 
530 	__report_avg = avg_len;
531 	__report_allowed = max_len;
532 
533 	/*
534 	 * Compute a throttle threshold 25% below the current duration.
535 	 */
536 	avg_len += avg_len / 4;
537 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 	if (avg_len < max)
539 		max /= (u32)avg_len;
540 	else
541 		max = 1;
542 
543 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 	WRITE_ONCE(max_samples_per_tick, max);
545 
546 	sysctl_perf_event_sample_rate = max * HZ;
547 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 
549 	if (!irq_work_queue(&perf_duration_work)) {
550 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 			     "kernel.perf_event_max_sample_rate to %d\n",
552 			     __report_avg, __report_allowed,
553 			     sysctl_perf_event_sample_rate);
554 	}
555 }
556 
557 static atomic64_t perf_event_id;
558 
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 			      enum event_type_t event_type);
561 
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 			     enum event_type_t event_type,
564 			     struct task_struct *task);
565 
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568 
569 void __weak perf_event_print_debug(void)	{ }
570 
571 extern __weak const char *perf_pmu_name(void)
572 {
573 	return "pmu";
574 }
575 
576 static inline u64 perf_clock(void)
577 {
578 	return local_clock();
579 }
580 
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583 	return event->clock();
584 }
585 
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607 
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611 	struct perf_event *leader = event->group_leader;
612 
613 	if (leader->state <= PERF_EVENT_STATE_OFF)
614 		return leader->state;
615 
616 	return event->state;
617 }
618 
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622 	enum perf_event_state state = __perf_effective_state(event);
623 	u64 delta = now - event->tstamp;
624 
625 	*enabled = event->total_time_enabled;
626 	if (state >= PERF_EVENT_STATE_INACTIVE)
627 		*enabled += delta;
628 
629 	*running = event->total_time_running;
630 	if (state >= PERF_EVENT_STATE_ACTIVE)
631 		*running += delta;
632 }
633 
634 static void perf_event_update_time(struct perf_event *event)
635 {
636 	u64 now = perf_event_time(event);
637 
638 	__perf_update_times(event, now, &event->total_time_enabled,
639 					&event->total_time_running);
640 	event->tstamp = now;
641 }
642 
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645 	struct perf_event *sibling;
646 
647 	for_each_sibling_event(sibling, leader)
648 		perf_event_update_time(sibling);
649 }
650 
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654 	if (event->state == state)
655 		return;
656 
657 	perf_event_update_time(event);
658 	/*
659 	 * If a group leader gets enabled/disabled all its siblings
660 	 * are affected too.
661 	 */
662 	if ((event->state < 0) ^ (state < 0))
663 		perf_event_update_sibling_time(event);
664 
665 	WRITE_ONCE(event->state, state);
666 }
667 
668 #ifdef CONFIG_CGROUP_PERF
669 
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673 	struct perf_event_context *ctx = event->ctx;
674 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675 
676 	/* @event doesn't care about cgroup */
677 	if (!event->cgrp)
678 		return true;
679 
680 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
681 	if (!cpuctx->cgrp)
682 		return false;
683 
684 	/*
685 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
686 	 * also enabled for all its descendant cgroups.  If @cpuctx's
687 	 * cgroup is a descendant of @event's (the test covers identity
688 	 * case), it's a match.
689 	 */
690 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 				    event->cgrp->css.cgroup);
692 }
693 
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696 	css_put(&event->cgrp->css);
697 	event->cgrp = NULL;
698 }
699 
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702 	return event->cgrp != NULL;
703 }
704 
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707 	struct perf_cgroup_info *t;
708 
709 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 	return t->time;
711 }
712 
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715 	struct perf_cgroup_info *info;
716 	u64 now;
717 
718 	now = perf_clock();
719 
720 	info = this_cpu_ptr(cgrp->info);
721 
722 	info->time += now - info->timestamp;
723 	info->timestamp = now;
724 }
725 
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728 	struct perf_cgroup *cgrp = cpuctx->cgrp;
729 	struct cgroup_subsys_state *css;
730 
731 	if (cgrp) {
732 		for (css = &cgrp->css; css; css = css->parent) {
733 			cgrp = container_of(css, struct perf_cgroup, css);
734 			__update_cgrp_time(cgrp);
735 		}
736 	}
737 }
738 
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741 	struct perf_cgroup *cgrp;
742 
743 	/*
744 	 * ensure we access cgroup data only when needed and
745 	 * when we know the cgroup is pinned (css_get)
746 	 */
747 	if (!is_cgroup_event(event))
748 		return;
749 
750 	cgrp = perf_cgroup_from_task(current, event->ctx);
751 	/*
752 	 * Do not update time when cgroup is not active
753 	 */
754 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 		__update_cgrp_time(event->cgrp);
756 }
757 
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760 			  struct perf_event_context *ctx)
761 {
762 	struct perf_cgroup *cgrp;
763 	struct perf_cgroup_info *info;
764 	struct cgroup_subsys_state *css;
765 
766 	/*
767 	 * ctx->lock held by caller
768 	 * ensure we do not access cgroup data
769 	 * unless we have the cgroup pinned (css_get)
770 	 */
771 	if (!task || !ctx->nr_cgroups)
772 		return;
773 
774 	cgrp = perf_cgroup_from_task(task, ctx);
775 
776 	for (css = &cgrp->css; css; css = css->parent) {
777 		cgrp = container_of(css, struct perf_cgroup, css);
778 		info = this_cpu_ptr(cgrp->info);
779 		info->timestamp = ctx->timestamp;
780 	}
781 }
782 
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784 
785 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
787 
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796 	struct perf_cpu_context *cpuctx;
797 	struct list_head *list;
798 	unsigned long flags;
799 
800 	/*
801 	 * Disable interrupts and preemption to avoid this CPU's
802 	 * cgrp_cpuctx_entry to change under us.
803 	 */
804 	local_irq_save(flags);
805 
806 	list = this_cpu_ptr(&cgrp_cpuctx_list);
807 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809 
810 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 		perf_pmu_disable(cpuctx->ctx.pmu);
812 
813 		if (mode & PERF_CGROUP_SWOUT) {
814 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 			/*
816 			 * must not be done before ctxswout due
817 			 * to event_filter_match() in event_sched_out()
818 			 */
819 			cpuctx->cgrp = NULL;
820 		}
821 
822 		if (mode & PERF_CGROUP_SWIN) {
823 			WARN_ON_ONCE(cpuctx->cgrp);
824 			/*
825 			 * set cgrp before ctxsw in to allow
826 			 * event_filter_match() to not have to pass
827 			 * task around
828 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 			 * because cgorup events are only per-cpu
830 			 */
831 			cpuctx->cgrp = perf_cgroup_from_task(task,
832 							     &cpuctx->ctx);
833 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 		}
835 		perf_pmu_enable(cpuctx->ctx.pmu);
836 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 	}
838 
839 	local_irq_restore(flags);
840 }
841 
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 					 struct task_struct *next)
844 {
845 	struct perf_cgroup *cgrp1;
846 	struct perf_cgroup *cgrp2 = NULL;
847 
848 	rcu_read_lock();
849 	/*
850 	 * we come here when we know perf_cgroup_events > 0
851 	 * we do not need to pass the ctx here because we know
852 	 * we are holding the rcu lock
853 	 */
854 	cgrp1 = perf_cgroup_from_task(task, NULL);
855 	cgrp2 = perf_cgroup_from_task(next, NULL);
856 
857 	/*
858 	 * only schedule out current cgroup events if we know
859 	 * that we are switching to a different cgroup. Otherwise,
860 	 * do no touch the cgroup events.
861 	 */
862 	if (cgrp1 != cgrp2)
863 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864 
865 	rcu_read_unlock();
866 }
867 
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 					struct task_struct *task)
870 {
871 	struct perf_cgroup *cgrp1;
872 	struct perf_cgroup *cgrp2 = NULL;
873 
874 	rcu_read_lock();
875 	/*
876 	 * we come here when we know perf_cgroup_events > 0
877 	 * we do not need to pass the ctx here because we know
878 	 * we are holding the rcu lock
879 	 */
880 	cgrp1 = perf_cgroup_from_task(task, NULL);
881 	cgrp2 = perf_cgroup_from_task(prev, NULL);
882 
883 	/*
884 	 * only need to schedule in cgroup events if we are changing
885 	 * cgroup during ctxsw. Cgroup events were not scheduled
886 	 * out of ctxsw out if that was not the case.
887 	 */
888 	if (cgrp1 != cgrp2)
889 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890 
891 	rcu_read_unlock();
892 }
893 
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 				      struct perf_event_attr *attr,
896 				      struct perf_event *group_leader)
897 {
898 	struct perf_cgroup *cgrp;
899 	struct cgroup_subsys_state *css;
900 	struct fd f = fdget(fd);
901 	int ret = 0;
902 
903 	if (!f.file)
904 		return -EBADF;
905 
906 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 					 &perf_event_cgrp_subsys);
908 	if (IS_ERR(css)) {
909 		ret = PTR_ERR(css);
910 		goto out;
911 	}
912 
913 	cgrp = container_of(css, struct perf_cgroup, css);
914 	event->cgrp = cgrp;
915 
916 	/*
917 	 * all events in a group must monitor
918 	 * the same cgroup because a task belongs
919 	 * to only one perf cgroup at a time
920 	 */
921 	if (group_leader && group_leader->cgrp != cgrp) {
922 		perf_detach_cgroup(event);
923 		ret = -EINVAL;
924 	}
925 out:
926 	fdput(f);
927 	return ret;
928 }
929 
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933 	struct perf_cgroup_info *t;
934 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 	event->shadow_ctx_time = now - t->timestamp;
936 }
937 
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944 			 struct perf_event_context *ctx, bool add)
945 {
946 	struct perf_cpu_context *cpuctx;
947 	struct list_head *cpuctx_entry;
948 
949 	if (!is_cgroup_event(event))
950 		return;
951 
952 	/*
953 	 * Because cgroup events are always per-cpu events,
954 	 * this will always be called from the right CPU.
955 	 */
956 	cpuctx = __get_cpu_context(ctx);
957 
958 	/*
959 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 	 * matching the event's cgroup, we must do this for every new event,
961 	 * because if the first would mismatch, the second would not try again
962 	 * and we would leave cpuctx->cgrp unset.
963 	 */
964 	if (add && !cpuctx->cgrp) {
965 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966 
967 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 			cpuctx->cgrp = cgrp;
969 	}
970 
971 	if (add && ctx->nr_cgroups++)
972 		return;
973 	else if (!add && --ctx->nr_cgroups)
974 		return;
975 
976 	/* no cgroup running */
977 	if (!add)
978 		cpuctx->cgrp = NULL;
979 
980 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 	if (add)
982 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 	else
984 		list_del(cpuctx_entry);
985 }
986 
987 #else /* !CONFIG_CGROUP_PERF */
988 
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992 	return true;
993 }
994 
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997 
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000 	return 0;
1001 }
1002 
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006 
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010 
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 					 struct task_struct *next)
1013 {
1014 }
1015 
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 					struct task_struct *task)
1018 {
1019 }
1020 
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 				      struct perf_event_attr *attr,
1023 				      struct perf_event *group_leader)
1024 {
1025 	return -EINVAL;
1026 }
1027 
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030 			  struct perf_event_context *ctx)
1031 {
1032 }
1033 
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038 
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043 
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046 	return 0;
1047 }
1048 
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051 			 struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054 
1055 #endif
1056 
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067 	struct perf_cpu_context *cpuctx;
1068 	bool rotations;
1069 
1070 	lockdep_assert_irqs_disabled();
1071 
1072 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073 	rotations = perf_rotate_context(cpuctx);
1074 
1075 	raw_spin_lock(&cpuctx->hrtimer_lock);
1076 	if (rotations)
1077 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078 	else
1079 		cpuctx->hrtimer_active = 0;
1080 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1081 
1082 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084 
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087 	struct hrtimer *timer = &cpuctx->hrtimer;
1088 	struct pmu *pmu = cpuctx->ctx.pmu;
1089 	u64 interval;
1090 
1091 	/* no multiplexing needed for SW PMU */
1092 	if (pmu->task_ctx_nr == perf_sw_context)
1093 		return;
1094 
1095 	/*
1096 	 * check default is sane, if not set then force to
1097 	 * default interval (1/tick)
1098 	 */
1099 	interval = pmu->hrtimer_interval_ms;
1100 	if (interval < 1)
1101 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102 
1103 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104 
1105 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1107 	timer->function = perf_mux_hrtimer_handler;
1108 }
1109 
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112 	struct hrtimer *timer = &cpuctx->hrtimer;
1113 	struct pmu *pmu = cpuctx->ctx.pmu;
1114 	unsigned long flags;
1115 
1116 	/* not for SW PMU */
1117 	if (pmu->task_ctx_nr == perf_sw_context)
1118 		return 0;
1119 
1120 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 	if (!cpuctx->hrtimer_active) {
1122 		cpuctx->hrtimer_active = 1;
1123 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125 	}
1126 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127 
1128 	return 0;
1129 }
1130 
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 	if (!(*count)++)
1135 		pmu->pmu_disable(pmu);
1136 }
1137 
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 	if (!--(*count))
1142 		pmu->pmu_enable(pmu);
1143 }
1144 
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146 
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156 
1157 	lockdep_assert_irqs_disabled();
1158 
1159 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1160 
1161 	list_add(&ctx->active_ctx_list, head);
1162 }
1163 
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166 	lockdep_assert_irqs_disabled();
1167 
1168 	WARN_ON(list_empty(&ctx->active_ctx_list));
1169 
1170 	list_del_init(&ctx->active_ctx_list);
1171 }
1172 
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175 	refcount_inc(&ctx->refcount);
1176 }
1177 
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180 	struct perf_event_context *ctx;
1181 
1182 	ctx = container_of(head, struct perf_event_context, rcu_head);
1183 	kfree(ctx->task_ctx_data);
1184 	kfree(ctx);
1185 }
1186 
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189 	if (refcount_dec_and_test(&ctx->refcount)) {
1190 		if (ctx->parent_ctx)
1191 			put_ctx(ctx->parent_ctx);
1192 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193 			put_task_struct(ctx->task);
1194 		call_rcu(&ctx->rcu_head, free_ctx);
1195 	}
1196 }
1197 
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()	[ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()			[ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()		[ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event()	[ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *	task_struct::perf_event_mutex
1253  *	  perf_event_context::mutex
1254  *	    perf_event::child_mutex;
1255  *	      perf_event_context::lock
1256  *	    perf_event::mmap_mutex
1257  *	    mmap_sem
1258  *
1259  *    cpu_hotplug_lock
1260  *      pmus_lock
1261  *	  cpuctx->mutex / perf_event_context::mutex
1262  */
1263 static struct perf_event_context *
1264 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1265 {
1266 	struct perf_event_context *ctx;
1267 
1268 again:
1269 	rcu_read_lock();
1270 	ctx = READ_ONCE(event->ctx);
1271 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1272 		rcu_read_unlock();
1273 		goto again;
1274 	}
1275 	rcu_read_unlock();
1276 
1277 	mutex_lock_nested(&ctx->mutex, nesting);
1278 	if (event->ctx != ctx) {
1279 		mutex_unlock(&ctx->mutex);
1280 		put_ctx(ctx);
1281 		goto again;
1282 	}
1283 
1284 	return ctx;
1285 }
1286 
1287 static inline struct perf_event_context *
1288 perf_event_ctx_lock(struct perf_event *event)
1289 {
1290 	return perf_event_ctx_lock_nested(event, 0);
1291 }
1292 
1293 static void perf_event_ctx_unlock(struct perf_event *event,
1294 				  struct perf_event_context *ctx)
1295 {
1296 	mutex_unlock(&ctx->mutex);
1297 	put_ctx(ctx);
1298 }
1299 
1300 /*
1301  * This must be done under the ctx->lock, such as to serialize against
1302  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1303  * calling scheduler related locks and ctx->lock nests inside those.
1304  */
1305 static __must_check struct perf_event_context *
1306 unclone_ctx(struct perf_event_context *ctx)
1307 {
1308 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1309 
1310 	lockdep_assert_held(&ctx->lock);
1311 
1312 	if (parent_ctx)
1313 		ctx->parent_ctx = NULL;
1314 	ctx->generation++;
1315 
1316 	return parent_ctx;
1317 }
1318 
1319 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1320 				enum pid_type type)
1321 {
1322 	u32 nr;
1323 	/*
1324 	 * only top level events have the pid namespace they were created in
1325 	 */
1326 	if (event->parent)
1327 		event = event->parent;
1328 
1329 	nr = __task_pid_nr_ns(p, type, event->ns);
1330 	/* avoid -1 if it is idle thread or runs in another ns */
1331 	if (!nr && !pid_alive(p))
1332 		nr = -1;
1333 	return nr;
1334 }
1335 
1336 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1337 {
1338 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1339 }
1340 
1341 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1342 {
1343 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1344 }
1345 
1346 /*
1347  * If we inherit events we want to return the parent event id
1348  * to userspace.
1349  */
1350 static u64 primary_event_id(struct perf_event *event)
1351 {
1352 	u64 id = event->id;
1353 
1354 	if (event->parent)
1355 		id = event->parent->id;
1356 
1357 	return id;
1358 }
1359 
1360 /*
1361  * Get the perf_event_context for a task and lock it.
1362  *
1363  * This has to cope with with the fact that until it is locked,
1364  * the context could get moved to another task.
1365  */
1366 static struct perf_event_context *
1367 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1368 {
1369 	struct perf_event_context *ctx;
1370 
1371 retry:
1372 	/*
1373 	 * One of the few rules of preemptible RCU is that one cannot do
1374 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1375 	 * part of the read side critical section was irqs-enabled -- see
1376 	 * rcu_read_unlock_special().
1377 	 *
1378 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1379 	 * side critical section has interrupts disabled.
1380 	 */
1381 	local_irq_save(*flags);
1382 	rcu_read_lock();
1383 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1384 	if (ctx) {
1385 		/*
1386 		 * If this context is a clone of another, it might
1387 		 * get swapped for another underneath us by
1388 		 * perf_event_task_sched_out, though the
1389 		 * rcu_read_lock() protects us from any context
1390 		 * getting freed.  Lock the context and check if it
1391 		 * got swapped before we could get the lock, and retry
1392 		 * if so.  If we locked the right context, then it
1393 		 * can't get swapped on us any more.
1394 		 */
1395 		raw_spin_lock(&ctx->lock);
1396 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1397 			raw_spin_unlock(&ctx->lock);
1398 			rcu_read_unlock();
1399 			local_irq_restore(*flags);
1400 			goto retry;
1401 		}
1402 
1403 		if (ctx->task == TASK_TOMBSTONE ||
1404 		    !refcount_inc_not_zero(&ctx->refcount)) {
1405 			raw_spin_unlock(&ctx->lock);
1406 			ctx = NULL;
1407 		} else {
1408 			WARN_ON_ONCE(ctx->task != task);
1409 		}
1410 	}
1411 	rcu_read_unlock();
1412 	if (!ctx)
1413 		local_irq_restore(*flags);
1414 	return ctx;
1415 }
1416 
1417 /*
1418  * Get the context for a task and increment its pin_count so it
1419  * can't get swapped to another task.  This also increments its
1420  * reference count so that the context can't get freed.
1421  */
1422 static struct perf_event_context *
1423 perf_pin_task_context(struct task_struct *task, int ctxn)
1424 {
1425 	struct perf_event_context *ctx;
1426 	unsigned long flags;
1427 
1428 	ctx = perf_lock_task_context(task, ctxn, &flags);
1429 	if (ctx) {
1430 		++ctx->pin_count;
1431 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1432 	}
1433 	return ctx;
1434 }
1435 
1436 static void perf_unpin_context(struct perf_event_context *ctx)
1437 {
1438 	unsigned long flags;
1439 
1440 	raw_spin_lock_irqsave(&ctx->lock, flags);
1441 	--ctx->pin_count;
1442 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1443 }
1444 
1445 /*
1446  * Update the record of the current time in a context.
1447  */
1448 static void update_context_time(struct perf_event_context *ctx)
1449 {
1450 	u64 now = perf_clock();
1451 
1452 	ctx->time += now - ctx->timestamp;
1453 	ctx->timestamp = now;
1454 }
1455 
1456 static u64 perf_event_time(struct perf_event *event)
1457 {
1458 	struct perf_event_context *ctx = event->ctx;
1459 
1460 	if (is_cgroup_event(event))
1461 		return perf_cgroup_event_time(event);
1462 
1463 	return ctx ? ctx->time : 0;
1464 }
1465 
1466 static enum event_type_t get_event_type(struct perf_event *event)
1467 {
1468 	struct perf_event_context *ctx = event->ctx;
1469 	enum event_type_t event_type;
1470 
1471 	lockdep_assert_held(&ctx->lock);
1472 
1473 	/*
1474 	 * It's 'group type', really, because if our group leader is
1475 	 * pinned, so are we.
1476 	 */
1477 	if (event->group_leader != event)
1478 		event = event->group_leader;
1479 
1480 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1481 	if (!ctx->task)
1482 		event_type |= EVENT_CPU;
1483 
1484 	return event_type;
1485 }
1486 
1487 /*
1488  * Helper function to initialize event group nodes.
1489  */
1490 static void init_event_group(struct perf_event *event)
1491 {
1492 	RB_CLEAR_NODE(&event->group_node);
1493 	event->group_index = 0;
1494 }
1495 
1496 /*
1497  * Extract pinned or flexible groups from the context
1498  * based on event attrs bits.
1499  */
1500 static struct perf_event_groups *
1501 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1502 {
1503 	if (event->attr.pinned)
1504 		return &ctx->pinned_groups;
1505 	else
1506 		return &ctx->flexible_groups;
1507 }
1508 
1509 /*
1510  * Helper function to initializes perf_event_group trees.
1511  */
1512 static void perf_event_groups_init(struct perf_event_groups *groups)
1513 {
1514 	groups->tree = RB_ROOT;
1515 	groups->index = 0;
1516 }
1517 
1518 /*
1519  * Compare function for event groups;
1520  *
1521  * Implements complex key that first sorts by CPU and then by virtual index
1522  * which provides ordering when rotating groups for the same CPU.
1523  */
1524 static bool
1525 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1526 {
1527 	if (left->cpu < right->cpu)
1528 		return true;
1529 	if (left->cpu > right->cpu)
1530 		return false;
1531 
1532 	if (left->group_index < right->group_index)
1533 		return true;
1534 	if (left->group_index > right->group_index)
1535 		return false;
1536 
1537 	return false;
1538 }
1539 
1540 /*
1541  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1542  * key (see perf_event_groups_less). This places it last inside the CPU
1543  * subtree.
1544  */
1545 static void
1546 perf_event_groups_insert(struct perf_event_groups *groups,
1547 			 struct perf_event *event)
1548 {
1549 	struct perf_event *node_event;
1550 	struct rb_node *parent;
1551 	struct rb_node **node;
1552 
1553 	event->group_index = ++groups->index;
1554 
1555 	node = &groups->tree.rb_node;
1556 	parent = *node;
1557 
1558 	while (*node) {
1559 		parent = *node;
1560 		node_event = container_of(*node, struct perf_event, group_node);
1561 
1562 		if (perf_event_groups_less(event, node_event))
1563 			node = &parent->rb_left;
1564 		else
1565 			node = &parent->rb_right;
1566 	}
1567 
1568 	rb_link_node(&event->group_node, parent, node);
1569 	rb_insert_color(&event->group_node, &groups->tree);
1570 }
1571 
1572 /*
1573  * Helper function to insert event into the pinned or flexible groups.
1574  */
1575 static void
1576 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1577 {
1578 	struct perf_event_groups *groups;
1579 
1580 	groups = get_event_groups(event, ctx);
1581 	perf_event_groups_insert(groups, event);
1582 }
1583 
1584 /*
1585  * Delete a group from a tree.
1586  */
1587 static void
1588 perf_event_groups_delete(struct perf_event_groups *groups,
1589 			 struct perf_event *event)
1590 {
1591 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1592 		     RB_EMPTY_ROOT(&groups->tree));
1593 
1594 	rb_erase(&event->group_node, &groups->tree);
1595 	init_event_group(event);
1596 }
1597 
1598 /*
1599  * Helper function to delete event from its groups.
1600  */
1601 static void
1602 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1603 {
1604 	struct perf_event_groups *groups;
1605 
1606 	groups = get_event_groups(event, ctx);
1607 	perf_event_groups_delete(groups, event);
1608 }
1609 
1610 /*
1611  * Get the leftmost event in the @cpu subtree.
1612  */
1613 static struct perf_event *
1614 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1615 {
1616 	struct perf_event *node_event = NULL, *match = NULL;
1617 	struct rb_node *node = groups->tree.rb_node;
1618 
1619 	while (node) {
1620 		node_event = container_of(node, struct perf_event, group_node);
1621 
1622 		if (cpu < node_event->cpu) {
1623 			node = node->rb_left;
1624 		} else if (cpu > node_event->cpu) {
1625 			node = node->rb_right;
1626 		} else {
1627 			match = node_event;
1628 			node = node->rb_left;
1629 		}
1630 	}
1631 
1632 	return match;
1633 }
1634 
1635 /*
1636  * Like rb_entry_next_safe() for the @cpu subtree.
1637  */
1638 static struct perf_event *
1639 perf_event_groups_next(struct perf_event *event)
1640 {
1641 	struct perf_event *next;
1642 
1643 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1644 	if (next && next->cpu == event->cpu)
1645 		return next;
1646 
1647 	return NULL;
1648 }
1649 
1650 /*
1651  * Iterate through the whole groups tree.
1652  */
1653 #define perf_event_groups_for_each(event, groups)			\
1654 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1655 				typeof(*event), group_node); event;	\
1656 		event = rb_entry_safe(rb_next(&event->group_node),	\
1657 				typeof(*event), group_node))
1658 
1659 /*
1660  * Add an event from the lists for its context.
1661  * Must be called with ctx->mutex and ctx->lock held.
1662  */
1663 static void
1664 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1665 {
1666 	lockdep_assert_held(&ctx->lock);
1667 
1668 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1669 	event->attach_state |= PERF_ATTACH_CONTEXT;
1670 
1671 	event->tstamp = perf_event_time(event);
1672 
1673 	/*
1674 	 * If we're a stand alone event or group leader, we go to the context
1675 	 * list, group events are kept attached to the group so that
1676 	 * perf_group_detach can, at all times, locate all siblings.
1677 	 */
1678 	if (event->group_leader == event) {
1679 		event->group_caps = event->event_caps;
1680 		add_event_to_groups(event, ctx);
1681 	}
1682 
1683 	list_update_cgroup_event(event, ctx, true);
1684 
1685 	list_add_rcu(&event->event_entry, &ctx->event_list);
1686 	ctx->nr_events++;
1687 	if (event->attr.inherit_stat)
1688 		ctx->nr_stat++;
1689 
1690 	ctx->generation++;
1691 }
1692 
1693 /*
1694  * Initialize event state based on the perf_event_attr::disabled.
1695  */
1696 static inline void perf_event__state_init(struct perf_event *event)
1697 {
1698 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1699 					      PERF_EVENT_STATE_INACTIVE;
1700 }
1701 
1702 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1703 {
1704 	int entry = sizeof(u64); /* value */
1705 	int size = 0;
1706 	int nr = 1;
1707 
1708 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1709 		size += sizeof(u64);
1710 
1711 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1712 		size += sizeof(u64);
1713 
1714 	if (event->attr.read_format & PERF_FORMAT_ID)
1715 		entry += sizeof(u64);
1716 
1717 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1718 		nr += nr_siblings;
1719 		size += sizeof(u64);
1720 	}
1721 
1722 	size += entry * nr;
1723 	event->read_size = size;
1724 }
1725 
1726 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1727 {
1728 	struct perf_sample_data *data;
1729 	u16 size = 0;
1730 
1731 	if (sample_type & PERF_SAMPLE_IP)
1732 		size += sizeof(data->ip);
1733 
1734 	if (sample_type & PERF_SAMPLE_ADDR)
1735 		size += sizeof(data->addr);
1736 
1737 	if (sample_type & PERF_SAMPLE_PERIOD)
1738 		size += sizeof(data->period);
1739 
1740 	if (sample_type & PERF_SAMPLE_WEIGHT)
1741 		size += sizeof(data->weight);
1742 
1743 	if (sample_type & PERF_SAMPLE_READ)
1744 		size += event->read_size;
1745 
1746 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1747 		size += sizeof(data->data_src.val);
1748 
1749 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1750 		size += sizeof(data->txn);
1751 
1752 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1753 		size += sizeof(data->phys_addr);
1754 
1755 	event->header_size = size;
1756 }
1757 
1758 /*
1759  * Called at perf_event creation and when events are attached/detached from a
1760  * group.
1761  */
1762 static void perf_event__header_size(struct perf_event *event)
1763 {
1764 	__perf_event_read_size(event,
1765 			       event->group_leader->nr_siblings);
1766 	__perf_event_header_size(event, event->attr.sample_type);
1767 }
1768 
1769 static void perf_event__id_header_size(struct perf_event *event)
1770 {
1771 	struct perf_sample_data *data;
1772 	u64 sample_type = event->attr.sample_type;
1773 	u16 size = 0;
1774 
1775 	if (sample_type & PERF_SAMPLE_TID)
1776 		size += sizeof(data->tid_entry);
1777 
1778 	if (sample_type & PERF_SAMPLE_TIME)
1779 		size += sizeof(data->time);
1780 
1781 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1782 		size += sizeof(data->id);
1783 
1784 	if (sample_type & PERF_SAMPLE_ID)
1785 		size += sizeof(data->id);
1786 
1787 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1788 		size += sizeof(data->stream_id);
1789 
1790 	if (sample_type & PERF_SAMPLE_CPU)
1791 		size += sizeof(data->cpu_entry);
1792 
1793 	event->id_header_size = size;
1794 }
1795 
1796 static bool perf_event_validate_size(struct perf_event *event)
1797 {
1798 	/*
1799 	 * The values computed here will be over-written when we actually
1800 	 * attach the event.
1801 	 */
1802 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1803 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1804 	perf_event__id_header_size(event);
1805 
1806 	/*
1807 	 * Sum the lot; should not exceed the 64k limit we have on records.
1808 	 * Conservative limit to allow for callchains and other variable fields.
1809 	 */
1810 	if (event->read_size + event->header_size +
1811 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1812 		return false;
1813 
1814 	return true;
1815 }
1816 
1817 static void perf_group_attach(struct perf_event *event)
1818 {
1819 	struct perf_event *group_leader = event->group_leader, *pos;
1820 
1821 	lockdep_assert_held(&event->ctx->lock);
1822 
1823 	/*
1824 	 * We can have double attach due to group movement in perf_event_open.
1825 	 */
1826 	if (event->attach_state & PERF_ATTACH_GROUP)
1827 		return;
1828 
1829 	event->attach_state |= PERF_ATTACH_GROUP;
1830 
1831 	if (group_leader == event)
1832 		return;
1833 
1834 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1835 
1836 	group_leader->group_caps &= event->event_caps;
1837 
1838 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1839 	group_leader->nr_siblings++;
1840 
1841 	perf_event__header_size(group_leader);
1842 
1843 	for_each_sibling_event(pos, group_leader)
1844 		perf_event__header_size(pos);
1845 }
1846 
1847 /*
1848  * Remove an event from the lists for its context.
1849  * Must be called with ctx->mutex and ctx->lock held.
1850  */
1851 static void
1852 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1853 {
1854 	WARN_ON_ONCE(event->ctx != ctx);
1855 	lockdep_assert_held(&ctx->lock);
1856 
1857 	/*
1858 	 * We can have double detach due to exit/hot-unplug + close.
1859 	 */
1860 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1861 		return;
1862 
1863 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1864 
1865 	list_update_cgroup_event(event, ctx, false);
1866 
1867 	ctx->nr_events--;
1868 	if (event->attr.inherit_stat)
1869 		ctx->nr_stat--;
1870 
1871 	list_del_rcu(&event->event_entry);
1872 
1873 	if (event->group_leader == event)
1874 		del_event_from_groups(event, ctx);
1875 
1876 	/*
1877 	 * If event was in error state, then keep it
1878 	 * that way, otherwise bogus counts will be
1879 	 * returned on read(). The only way to get out
1880 	 * of error state is by explicit re-enabling
1881 	 * of the event
1882 	 */
1883 	if (event->state > PERF_EVENT_STATE_OFF)
1884 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1885 
1886 	ctx->generation++;
1887 }
1888 
1889 static void perf_group_detach(struct perf_event *event)
1890 {
1891 	struct perf_event *sibling, *tmp;
1892 	struct perf_event_context *ctx = event->ctx;
1893 
1894 	lockdep_assert_held(&ctx->lock);
1895 
1896 	/*
1897 	 * We can have double detach due to exit/hot-unplug + close.
1898 	 */
1899 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1900 		return;
1901 
1902 	event->attach_state &= ~PERF_ATTACH_GROUP;
1903 
1904 	/*
1905 	 * If this is a sibling, remove it from its group.
1906 	 */
1907 	if (event->group_leader != event) {
1908 		list_del_init(&event->sibling_list);
1909 		event->group_leader->nr_siblings--;
1910 		goto out;
1911 	}
1912 
1913 	/*
1914 	 * If this was a group event with sibling events then
1915 	 * upgrade the siblings to singleton events by adding them
1916 	 * to whatever list we are on.
1917 	 */
1918 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1919 
1920 		sibling->group_leader = sibling;
1921 		list_del_init(&sibling->sibling_list);
1922 
1923 		/* Inherit group flags from the previous leader */
1924 		sibling->group_caps = event->group_caps;
1925 
1926 		if (!RB_EMPTY_NODE(&event->group_node)) {
1927 			add_event_to_groups(sibling, event->ctx);
1928 
1929 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1930 				struct list_head *list = sibling->attr.pinned ?
1931 					&ctx->pinned_active : &ctx->flexible_active;
1932 
1933 				list_add_tail(&sibling->active_list, list);
1934 			}
1935 		}
1936 
1937 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1938 	}
1939 
1940 out:
1941 	perf_event__header_size(event->group_leader);
1942 
1943 	for_each_sibling_event(tmp, event->group_leader)
1944 		perf_event__header_size(tmp);
1945 }
1946 
1947 static bool is_orphaned_event(struct perf_event *event)
1948 {
1949 	return event->state == PERF_EVENT_STATE_DEAD;
1950 }
1951 
1952 static inline int __pmu_filter_match(struct perf_event *event)
1953 {
1954 	struct pmu *pmu = event->pmu;
1955 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1956 }
1957 
1958 /*
1959  * Check whether we should attempt to schedule an event group based on
1960  * PMU-specific filtering. An event group can consist of HW and SW events,
1961  * potentially with a SW leader, so we must check all the filters, to
1962  * determine whether a group is schedulable:
1963  */
1964 static inline int pmu_filter_match(struct perf_event *event)
1965 {
1966 	struct perf_event *sibling;
1967 
1968 	if (!__pmu_filter_match(event))
1969 		return 0;
1970 
1971 	for_each_sibling_event(sibling, event) {
1972 		if (!__pmu_filter_match(sibling))
1973 			return 0;
1974 	}
1975 
1976 	return 1;
1977 }
1978 
1979 static inline int
1980 event_filter_match(struct perf_event *event)
1981 {
1982 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1983 	       perf_cgroup_match(event) && pmu_filter_match(event);
1984 }
1985 
1986 static void
1987 event_sched_out(struct perf_event *event,
1988 		  struct perf_cpu_context *cpuctx,
1989 		  struct perf_event_context *ctx)
1990 {
1991 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1992 
1993 	WARN_ON_ONCE(event->ctx != ctx);
1994 	lockdep_assert_held(&ctx->lock);
1995 
1996 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1997 		return;
1998 
1999 	/*
2000 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2001 	 * we can schedule events _OUT_ individually through things like
2002 	 * __perf_remove_from_context().
2003 	 */
2004 	list_del_init(&event->active_list);
2005 
2006 	perf_pmu_disable(event->pmu);
2007 
2008 	event->pmu->del(event, 0);
2009 	event->oncpu = -1;
2010 
2011 	if (event->pending_disable) {
2012 		event->pending_disable = 0;
2013 		state = PERF_EVENT_STATE_OFF;
2014 	}
2015 	perf_event_set_state(event, state);
2016 
2017 	if (!is_software_event(event))
2018 		cpuctx->active_oncpu--;
2019 	if (!--ctx->nr_active)
2020 		perf_event_ctx_deactivate(ctx);
2021 	if (event->attr.freq && event->attr.sample_freq)
2022 		ctx->nr_freq--;
2023 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2024 		cpuctx->exclusive = 0;
2025 
2026 	perf_pmu_enable(event->pmu);
2027 }
2028 
2029 static void
2030 group_sched_out(struct perf_event *group_event,
2031 		struct perf_cpu_context *cpuctx,
2032 		struct perf_event_context *ctx)
2033 {
2034 	struct perf_event *event;
2035 
2036 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2037 		return;
2038 
2039 	perf_pmu_disable(ctx->pmu);
2040 
2041 	event_sched_out(group_event, cpuctx, ctx);
2042 
2043 	/*
2044 	 * Schedule out siblings (if any):
2045 	 */
2046 	for_each_sibling_event(event, group_event)
2047 		event_sched_out(event, cpuctx, ctx);
2048 
2049 	perf_pmu_enable(ctx->pmu);
2050 
2051 	if (group_event->attr.exclusive)
2052 		cpuctx->exclusive = 0;
2053 }
2054 
2055 #define DETACH_GROUP	0x01UL
2056 
2057 /*
2058  * Cross CPU call to remove a performance event
2059  *
2060  * We disable the event on the hardware level first. After that we
2061  * remove it from the context list.
2062  */
2063 static void
2064 __perf_remove_from_context(struct perf_event *event,
2065 			   struct perf_cpu_context *cpuctx,
2066 			   struct perf_event_context *ctx,
2067 			   void *info)
2068 {
2069 	unsigned long flags = (unsigned long)info;
2070 
2071 	if (ctx->is_active & EVENT_TIME) {
2072 		update_context_time(ctx);
2073 		update_cgrp_time_from_cpuctx(cpuctx);
2074 	}
2075 
2076 	event_sched_out(event, cpuctx, ctx);
2077 	if (flags & DETACH_GROUP)
2078 		perf_group_detach(event);
2079 	list_del_event(event, ctx);
2080 
2081 	if (!ctx->nr_events && ctx->is_active) {
2082 		ctx->is_active = 0;
2083 		if (ctx->task) {
2084 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2085 			cpuctx->task_ctx = NULL;
2086 		}
2087 	}
2088 }
2089 
2090 /*
2091  * Remove the event from a task's (or a CPU's) list of events.
2092  *
2093  * If event->ctx is a cloned context, callers must make sure that
2094  * every task struct that event->ctx->task could possibly point to
2095  * remains valid.  This is OK when called from perf_release since
2096  * that only calls us on the top-level context, which can't be a clone.
2097  * When called from perf_event_exit_task, it's OK because the
2098  * context has been detached from its task.
2099  */
2100 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2101 {
2102 	struct perf_event_context *ctx = event->ctx;
2103 
2104 	lockdep_assert_held(&ctx->mutex);
2105 
2106 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2107 
2108 	/*
2109 	 * The above event_function_call() can NO-OP when it hits
2110 	 * TASK_TOMBSTONE. In that case we must already have been detached
2111 	 * from the context (by perf_event_exit_event()) but the grouping
2112 	 * might still be in-tact.
2113 	 */
2114 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2115 	if ((flags & DETACH_GROUP) &&
2116 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2117 		/*
2118 		 * Since in that case we cannot possibly be scheduled, simply
2119 		 * detach now.
2120 		 */
2121 		raw_spin_lock_irq(&ctx->lock);
2122 		perf_group_detach(event);
2123 		raw_spin_unlock_irq(&ctx->lock);
2124 	}
2125 }
2126 
2127 /*
2128  * Cross CPU call to disable a performance event
2129  */
2130 static void __perf_event_disable(struct perf_event *event,
2131 				 struct perf_cpu_context *cpuctx,
2132 				 struct perf_event_context *ctx,
2133 				 void *info)
2134 {
2135 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2136 		return;
2137 
2138 	if (ctx->is_active & EVENT_TIME) {
2139 		update_context_time(ctx);
2140 		update_cgrp_time_from_event(event);
2141 	}
2142 
2143 	if (event == event->group_leader)
2144 		group_sched_out(event, cpuctx, ctx);
2145 	else
2146 		event_sched_out(event, cpuctx, ctx);
2147 
2148 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2149 }
2150 
2151 /*
2152  * Disable an event.
2153  *
2154  * If event->ctx is a cloned context, callers must make sure that
2155  * every task struct that event->ctx->task could possibly point to
2156  * remains valid.  This condition is satisifed when called through
2157  * perf_event_for_each_child or perf_event_for_each because they
2158  * hold the top-level event's child_mutex, so any descendant that
2159  * goes to exit will block in perf_event_exit_event().
2160  *
2161  * When called from perf_pending_event it's OK because event->ctx
2162  * is the current context on this CPU and preemption is disabled,
2163  * hence we can't get into perf_event_task_sched_out for this context.
2164  */
2165 static void _perf_event_disable(struct perf_event *event)
2166 {
2167 	struct perf_event_context *ctx = event->ctx;
2168 
2169 	raw_spin_lock_irq(&ctx->lock);
2170 	if (event->state <= PERF_EVENT_STATE_OFF) {
2171 		raw_spin_unlock_irq(&ctx->lock);
2172 		return;
2173 	}
2174 	raw_spin_unlock_irq(&ctx->lock);
2175 
2176 	event_function_call(event, __perf_event_disable, NULL);
2177 }
2178 
2179 void perf_event_disable_local(struct perf_event *event)
2180 {
2181 	event_function_local(event, __perf_event_disable, NULL);
2182 }
2183 
2184 /*
2185  * Strictly speaking kernel users cannot create groups and therefore this
2186  * interface does not need the perf_event_ctx_lock() magic.
2187  */
2188 void perf_event_disable(struct perf_event *event)
2189 {
2190 	struct perf_event_context *ctx;
2191 
2192 	ctx = perf_event_ctx_lock(event);
2193 	_perf_event_disable(event);
2194 	perf_event_ctx_unlock(event, ctx);
2195 }
2196 EXPORT_SYMBOL_GPL(perf_event_disable);
2197 
2198 void perf_event_disable_inatomic(struct perf_event *event)
2199 {
2200 	event->pending_disable = 1;
2201 	irq_work_queue(&event->pending);
2202 }
2203 
2204 static void perf_set_shadow_time(struct perf_event *event,
2205 				 struct perf_event_context *ctx)
2206 {
2207 	/*
2208 	 * use the correct time source for the time snapshot
2209 	 *
2210 	 * We could get by without this by leveraging the
2211 	 * fact that to get to this function, the caller
2212 	 * has most likely already called update_context_time()
2213 	 * and update_cgrp_time_xx() and thus both timestamp
2214 	 * are identical (or very close). Given that tstamp is,
2215 	 * already adjusted for cgroup, we could say that:
2216 	 *    tstamp - ctx->timestamp
2217 	 * is equivalent to
2218 	 *    tstamp - cgrp->timestamp.
2219 	 *
2220 	 * Then, in perf_output_read(), the calculation would
2221 	 * work with no changes because:
2222 	 * - event is guaranteed scheduled in
2223 	 * - no scheduled out in between
2224 	 * - thus the timestamp would be the same
2225 	 *
2226 	 * But this is a bit hairy.
2227 	 *
2228 	 * So instead, we have an explicit cgroup call to remain
2229 	 * within the time time source all along. We believe it
2230 	 * is cleaner and simpler to understand.
2231 	 */
2232 	if (is_cgroup_event(event))
2233 		perf_cgroup_set_shadow_time(event, event->tstamp);
2234 	else
2235 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2236 }
2237 
2238 #define MAX_INTERRUPTS (~0ULL)
2239 
2240 static void perf_log_throttle(struct perf_event *event, int enable);
2241 static void perf_log_itrace_start(struct perf_event *event);
2242 
2243 static int
2244 event_sched_in(struct perf_event *event,
2245 		 struct perf_cpu_context *cpuctx,
2246 		 struct perf_event_context *ctx)
2247 {
2248 	int ret = 0;
2249 
2250 	lockdep_assert_held(&ctx->lock);
2251 
2252 	if (event->state <= PERF_EVENT_STATE_OFF)
2253 		return 0;
2254 
2255 	WRITE_ONCE(event->oncpu, smp_processor_id());
2256 	/*
2257 	 * Order event::oncpu write to happen before the ACTIVE state is
2258 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2259 	 * ->oncpu if it sees ACTIVE.
2260 	 */
2261 	smp_wmb();
2262 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2263 
2264 	/*
2265 	 * Unthrottle events, since we scheduled we might have missed several
2266 	 * ticks already, also for a heavily scheduling task there is little
2267 	 * guarantee it'll get a tick in a timely manner.
2268 	 */
2269 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2270 		perf_log_throttle(event, 1);
2271 		event->hw.interrupts = 0;
2272 	}
2273 
2274 	perf_pmu_disable(event->pmu);
2275 
2276 	perf_set_shadow_time(event, ctx);
2277 
2278 	perf_log_itrace_start(event);
2279 
2280 	if (event->pmu->add(event, PERF_EF_START)) {
2281 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2282 		event->oncpu = -1;
2283 		ret = -EAGAIN;
2284 		goto out;
2285 	}
2286 
2287 	if (!is_software_event(event))
2288 		cpuctx->active_oncpu++;
2289 	if (!ctx->nr_active++)
2290 		perf_event_ctx_activate(ctx);
2291 	if (event->attr.freq && event->attr.sample_freq)
2292 		ctx->nr_freq++;
2293 
2294 	if (event->attr.exclusive)
2295 		cpuctx->exclusive = 1;
2296 
2297 out:
2298 	perf_pmu_enable(event->pmu);
2299 
2300 	return ret;
2301 }
2302 
2303 static int
2304 group_sched_in(struct perf_event *group_event,
2305 	       struct perf_cpu_context *cpuctx,
2306 	       struct perf_event_context *ctx)
2307 {
2308 	struct perf_event *event, *partial_group = NULL;
2309 	struct pmu *pmu = ctx->pmu;
2310 
2311 	if (group_event->state == PERF_EVENT_STATE_OFF)
2312 		return 0;
2313 
2314 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2315 
2316 	if (event_sched_in(group_event, cpuctx, ctx)) {
2317 		pmu->cancel_txn(pmu);
2318 		perf_mux_hrtimer_restart(cpuctx);
2319 		return -EAGAIN;
2320 	}
2321 
2322 	/*
2323 	 * Schedule in siblings as one group (if any):
2324 	 */
2325 	for_each_sibling_event(event, group_event) {
2326 		if (event_sched_in(event, cpuctx, ctx)) {
2327 			partial_group = event;
2328 			goto group_error;
2329 		}
2330 	}
2331 
2332 	if (!pmu->commit_txn(pmu))
2333 		return 0;
2334 
2335 group_error:
2336 	/*
2337 	 * Groups can be scheduled in as one unit only, so undo any
2338 	 * partial group before returning:
2339 	 * The events up to the failed event are scheduled out normally.
2340 	 */
2341 	for_each_sibling_event(event, group_event) {
2342 		if (event == partial_group)
2343 			break;
2344 
2345 		event_sched_out(event, cpuctx, ctx);
2346 	}
2347 	event_sched_out(group_event, cpuctx, ctx);
2348 
2349 	pmu->cancel_txn(pmu);
2350 
2351 	perf_mux_hrtimer_restart(cpuctx);
2352 
2353 	return -EAGAIN;
2354 }
2355 
2356 /*
2357  * Work out whether we can put this event group on the CPU now.
2358  */
2359 static int group_can_go_on(struct perf_event *event,
2360 			   struct perf_cpu_context *cpuctx,
2361 			   int can_add_hw)
2362 {
2363 	/*
2364 	 * Groups consisting entirely of software events can always go on.
2365 	 */
2366 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2367 		return 1;
2368 	/*
2369 	 * If an exclusive group is already on, no other hardware
2370 	 * events can go on.
2371 	 */
2372 	if (cpuctx->exclusive)
2373 		return 0;
2374 	/*
2375 	 * If this group is exclusive and there are already
2376 	 * events on the CPU, it can't go on.
2377 	 */
2378 	if (event->attr.exclusive && cpuctx->active_oncpu)
2379 		return 0;
2380 	/*
2381 	 * Otherwise, try to add it if all previous groups were able
2382 	 * to go on.
2383 	 */
2384 	return can_add_hw;
2385 }
2386 
2387 static void add_event_to_ctx(struct perf_event *event,
2388 			       struct perf_event_context *ctx)
2389 {
2390 	list_add_event(event, ctx);
2391 	perf_group_attach(event);
2392 }
2393 
2394 static void ctx_sched_out(struct perf_event_context *ctx,
2395 			  struct perf_cpu_context *cpuctx,
2396 			  enum event_type_t event_type);
2397 static void
2398 ctx_sched_in(struct perf_event_context *ctx,
2399 	     struct perf_cpu_context *cpuctx,
2400 	     enum event_type_t event_type,
2401 	     struct task_struct *task);
2402 
2403 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2404 			       struct perf_event_context *ctx,
2405 			       enum event_type_t event_type)
2406 {
2407 	if (!cpuctx->task_ctx)
2408 		return;
2409 
2410 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2411 		return;
2412 
2413 	ctx_sched_out(ctx, cpuctx, event_type);
2414 }
2415 
2416 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2417 				struct perf_event_context *ctx,
2418 				struct task_struct *task)
2419 {
2420 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2421 	if (ctx)
2422 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2423 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2424 	if (ctx)
2425 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2426 }
2427 
2428 /*
2429  * We want to maintain the following priority of scheduling:
2430  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2431  *  - task pinned (EVENT_PINNED)
2432  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2433  *  - task flexible (EVENT_FLEXIBLE).
2434  *
2435  * In order to avoid unscheduling and scheduling back in everything every
2436  * time an event is added, only do it for the groups of equal priority and
2437  * below.
2438  *
2439  * This can be called after a batch operation on task events, in which case
2440  * event_type is a bit mask of the types of events involved. For CPU events,
2441  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2442  */
2443 static void ctx_resched(struct perf_cpu_context *cpuctx,
2444 			struct perf_event_context *task_ctx,
2445 			enum event_type_t event_type)
2446 {
2447 	enum event_type_t ctx_event_type;
2448 	bool cpu_event = !!(event_type & EVENT_CPU);
2449 
2450 	/*
2451 	 * If pinned groups are involved, flexible groups also need to be
2452 	 * scheduled out.
2453 	 */
2454 	if (event_type & EVENT_PINNED)
2455 		event_type |= EVENT_FLEXIBLE;
2456 
2457 	ctx_event_type = event_type & EVENT_ALL;
2458 
2459 	perf_pmu_disable(cpuctx->ctx.pmu);
2460 	if (task_ctx)
2461 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2462 
2463 	/*
2464 	 * Decide which cpu ctx groups to schedule out based on the types
2465 	 * of events that caused rescheduling:
2466 	 *  - EVENT_CPU: schedule out corresponding groups;
2467 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2468 	 *  - otherwise, do nothing more.
2469 	 */
2470 	if (cpu_event)
2471 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2472 	else if (ctx_event_type & EVENT_PINNED)
2473 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2474 
2475 	perf_event_sched_in(cpuctx, task_ctx, current);
2476 	perf_pmu_enable(cpuctx->ctx.pmu);
2477 }
2478 
2479 /*
2480  * Cross CPU call to install and enable a performance event
2481  *
2482  * Very similar to remote_function() + event_function() but cannot assume that
2483  * things like ctx->is_active and cpuctx->task_ctx are set.
2484  */
2485 static int  __perf_install_in_context(void *info)
2486 {
2487 	struct perf_event *event = info;
2488 	struct perf_event_context *ctx = event->ctx;
2489 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2490 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2491 	bool reprogram = true;
2492 	int ret = 0;
2493 
2494 	raw_spin_lock(&cpuctx->ctx.lock);
2495 	if (ctx->task) {
2496 		raw_spin_lock(&ctx->lock);
2497 		task_ctx = ctx;
2498 
2499 		reprogram = (ctx->task == current);
2500 
2501 		/*
2502 		 * If the task is running, it must be running on this CPU,
2503 		 * otherwise we cannot reprogram things.
2504 		 *
2505 		 * If its not running, we don't care, ctx->lock will
2506 		 * serialize against it becoming runnable.
2507 		 */
2508 		if (task_curr(ctx->task) && !reprogram) {
2509 			ret = -ESRCH;
2510 			goto unlock;
2511 		}
2512 
2513 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2514 	} else if (task_ctx) {
2515 		raw_spin_lock(&task_ctx->lock);
2516 	}
2517 
2518 #ifdef CONFIG_CGROUP_PERF
2519 	if (is_cgroup_event(event)) {
2520 		/*
2521 		 * If the current cgroup doesn't match the event's
2522 		 * cgroup, we should not try to schedule it.
2523 		 */
2524 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2525 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2526 					event->cgrp->css.cgroup);
2527 	}
2528 #endif
2529 
2530 	if (reprogram) {
2531 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2532 		add_event_to_ctx(event, ctx);
2533 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2534 	} else {
2535 		add_event_to_ctx(event, ctx);
2536 	}
2537 
2538 unlock:
2539 	perf_ctx_unlock(cpuctx, task_ctx);
2540 
2541 	return ret;
2542 }
2543 
2544 /*
2545  * Attach a performance event to a context.
2546  *
2547  * Very similar to event_function_call, see comment there.
2548  */
2549 static void
2550 perf_install_in_context(struct perf_event_context *ctx,
2551 			struct perf_event *event,
2552 			int cpu)
2553 {
2554 	struct task_struct *task = READ_ONCE(ctx->task);
2555 
2556 	lockdep_assert_held(&ctx->mutex);
2557 
2558 	if (event->cpu != -1)
2559 		event->cpu = cpu;
2560 
2561 	/*
2562 	 * Ensures that if we can observe event->ctx, both the event and ctx
2563 	 * will be 'complete'. See perf_iterate_sb_cpu().
2564 	 */
2565 	smp_store_release(&event->ctx, ctx);
2566 
2567 	if (!task) {
2568 		cpu_function_call(cpu, __perf_install_in_context, event);
2569 		return;
2570 	}
2571 
2572 	/*
2573 	 * Should not happen, we validate the ctx is still alive before calling.
2574 	 */
2575 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2576 		return;
2577 
2578 	/*
2579 	 * Installing events is tricky because we cannot rely on ctx->is_active
2580 	 * to be set in case this is the nr_events 0 -> 1 transition.
2581 	 *
2582 	 * Instead we use task_curr(), which tells us if the task is running.
2583 	 * However, since we use task_curr() outside of rq::lock, we can race
2584 	 * against the actual state. This means the result can be wrong.
2585 	 *
2586 	 * If we get a false positive, we retry, this is harmless.
2587 	 *
2588 	 * If we get a false negative, things are complicated. If we are after
2589 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2590 	 * value must be correct. If we're before, it doesn't matter since
2591 	 * perf_event_context_sched_in() will program the counter.
2592 	 *
2593 	 * However, this hinges on the remote context switch having observed
2594 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2595 	 * ctx::lock in perf_event_context_sched_in().
2596 	 *
2597 	 * We do this by task_function_call(), if the IPI fails to hit the task
2598 	 * we know any future context switch of task must see the
2599 	 * perf_event_ctpx[] store.
2600 	 */
2601 
2602 	/*
2603 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2604 	 * task_cpu() load, such that if the IPI then does not find the task
2605 	 * running, a future context switch of that task must observe the
2606 	 * store.
2607 	 */
2608 	smp_mb();
2609 again:
2610 	if (!task_function_call(task, __perf_install_in_context, event))
2611 		return;
2612 
2613 	raw_spin_lock_irq(&ctx->lock);
2614 	task = ctx->task;
2615 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2616 		/*
2617 		 * Cannot happen because we already checked above (which also
2618 		 * cannot happen), and we hold ctx->mutex, which serializes us
2619 		 * against perf_event_exit_task_context().
2620 		 */
2621 		raw_spin_unlock_irq(&ctx->lock);
2622 		return;
2623 	}
2624 	/*
2625 	 * If the task is not running, ctx->lock will avoid it becoming so,
2626 	 * thus we can safely install the event.
2627 	 */
2628 	if (task_curr(task)) {
2629 		raw_spin_unlock_irq(&ctx->lock);
2630 		goto again;
2631 	}
2632 	add_event_to_ctx(event, ctx);
2633 	raw_spin_unlock_irq(&ctx->lock);
2634 }
2635 
2636 /*
2637  * Cross CPU call to enable a performance event
2638  */
2639 static void __perf_event_enable(struct perf_event *event,
2640 				struct perf_cpu_context *cpuctx,
2641 				struct perf_event_context *ctx,
2642 				void *info)
2643 {
2644 	struct perf_event *leader = event->group_leader;
2645 	struct perf_event_context *task_ctx;
2646 
2647 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2648 	    event->state <= PERF_EVENT_STATE_ERROR)
2649 		return;
2650 
2651 	if (ctx->is_active)
2652 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2653 
2654 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2655 
2656 	if (!ctx->is_active)
2657 		return;
2658 
2659 	if (!event_filter_match(event)) {
2660 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2661 		return;
2662 	}
2663 
2664 	/*
2665 	 * If the event is in a group and isn't the group leader,
2666 	 * then don't put it on unless the group is on.
2667 	 */
2668 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2669 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2670 		return;
2671 	}
2672 
2673 	task_ctx = cpuctx->task_ctx;
2674 	if (ctx->task)
2675 		WARN_ON_ONCE(task_ctx != ctx);
2676 
2677 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2678 }
2679 
2680 /*
2681  * Enable an event.
2682  *
2683  * If event->ctx is a cloned context, callers must make sure that
2684  * every task struct that event->ctx->task could possibly point to
2685  * remains valid.  This condition is satisfied when called through
2686  * perf_event_for_each_child or perf_event_for_each as described
2687  * for perf_event_disable.
2688  */
2689 static void _perf_event_enable(struct perf_event *event)
2690 {
2691 	struct perf_event_context *ctx = event->ctx;
2692 
2693 	raw_spin_lock_irq(&ctx->lock);
2694 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2695 	    event->state <  PERF_EVENT_STATE_ERROR) {
2696 		raw_spin_unlock_irq(&ctx->lock);
2697 		return;
2698 	}
2699 
2700 	/*
2701 	 * If the event is in error state, clear that first.
2702 	 *
2703 	 * That way, if we see the event in error state below, we know that it
2704 	 * has gone back into error state, as distinct from the task having
2705 	 * been scheduled away before the cross-call arrived.
2706 	 */
2707 	if (event->state == PERF_EVENT_STATE_ERROR)
2708 		event->state = PERF_EVENT_STATE_OFF;
2709 	raw_spin_unlock_irq(&ctx->lock);
2710 
2711 	event_function_call(event, __perf_event_enable, NULL);
2712 }
2713 
2714 /*
2715  * See perf_event_disable();
2716  */
2717 void perf_event_enable(struct perf_event *event)
2718 {
2719 	struct perf_event_context *ctx;
2720 
2721 	ctx = perf_event_ctx_lock(event);
2722 	_perf_event_enable(event);
2723 	perf_event_ctx_unlock(event, ctx);
2724 }
2725 EXPORT_SYMBOL_GPL(perf_event_enable);
2726 
2727 struct stop_event_data {
2728 	struct perf_event	*event;
2729 	unsigned int		restart;
2730 };
2731 
2732 static int __perf_event_stop(void *info)
2733 {
2734 	struct stop_event_data *sd = info;
2735 	struct perf_event *event = sd->event;
2736 
2737 	/* if it's already INACTIVE, do nothing */
2738 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2739 		return 0;
2740 
2741 	/* matches smp_wmb() in event_sched_in() */
2742 	smp_rmb();
2743 
2744 	/*
2745 	 * There is a window with interrupts enabled before we get here,
2746 	 * so we need to check again lest we try to stop another CPU's event.
2747 	 */
2748 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2749 		return -EAGAIN;
2750 
2751 	event->pmu->stop(event, PERF_EF_UPDATE);
2752 
2753 	/*
2754 	 * May race with the actual stop (through perf_pmu_output_stop()),
2755 	 * but it is only used for events with AUX ring buffer, and such
2756 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2757 	 * see comments in perf_aux_output_begin().
2758 	 *
2759 	 * Since this is happening on an event-local CPU, no trace is lost
2760 	 * while restarting.
2761 	 */
2762 	if (sd->restart)
2763 		event->pmu->start(event, 0);
2764 
2765 	return 0;
2766 }
2767 
2768 static int perf_event_stop(struct perf_event *event, int restart)
2769 {
2770 	struct stop_event_data sd = {
2771 		.event		= event,
2772 		.restart	= restart,
2773 	};
2774 	int ret = 0;
2775 
2776 	do {
2777 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2778 			return 0;
2779 
2780 		/* matches smp_wmb() in event_sched_in() */
2781 		smp_rmb();
2782 
2783 		/*
2784 		 * We only want to restart ACTIVE events, so if the event goes
2785 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2786 		 * fall through with ret==-ENXIO.
2787 		 */
2788 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2789 					__perf_event_stop, &sd);
2790 	} while (ret == -EAGAIN);
2791 
2792 	return ret;
2793 }
2794 
2795 /*
2796  * In order to contain the amount of racy and tricky in the address filter
2797  * configuration management, it is a two part process:
2798  *
2799  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2800  *      we update the addresses of corresponding vmas in
2801  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2802  * (p2) when an event is scheduled in (pmu::add), it calls
2803  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2804  *      if the generation has changed since the previous call.
2805  *
2806  * If (p1) happens while the event is active, we restart it to force (p2).
2807  *
2808  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2809  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2810  *     ioctl;
2811  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2812  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2813  *     for reading;
2814  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2815  *     of exec.
2816  */
2817 void perf_event_addr_filters_sync(struct perf_event *event)
2818 {
2819 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2820 
2821 	if (!has_addr_filter(event))
2822 		return;
2823 
2824 	raw_spin_lock(&ifh->lock);
2825 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2826 		event->pmu->addr_filters_sync(event);
2827 		event->hw.addr_filters_gen = event->addr_filters_gen;
2828 	}
2829 	raw_spin_unlock(&ifh->lock);
2830 }
2831 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2832 
2833 static int _perf_event_refresh(struct perf_event *event, int refresh)
2834 {
2835 	/*
2836 	 * not supported on inherited events
2837 	 */
2838 	if (event->attr.inherit || !is_sampling_event(event))
2839 		return -EINVAL;
2840 
2841 	atomic_add(refresh, &event->event_limit);
2842 	_perf_event_enable(event);
2843 
2844 	return 0;
2845 }
2846 
2847 /*
2848  * See perf_event_disable()
2849  */
2850 int perf_event_refresh(struct perf_event *event, int refresh)
2851 {
2852 	struct perf_event_context *ctx;
2853 	int ret;
2854 
2855 	ctx = perf_event_ctx_lock(event);
2856 	ret = _perf_event_refresh(event, refresh);
2857 	perf_event_ctx_unlock(event, ctx);
2858 
2859 	return ret;
2860 }
2861 EXPORT_SYMBOL_GPL(perf_event_refresh);
2862 
2863 static int perf_event_modify_breakpoint(struct perf_event *bp,
2864 					 struct perf_event_attr *attr)
2865 {
2866 	int err;
2867 
2868 	_perf_event_disable(bp);
2869 
2870 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2871 
2872 	if (!bp->attr.disabled)
2873 		_perf_event_enable(bp);
2874 
2875 	return err;
2876 }
2877 
2878 static int perf_event_modify_attr(struct perf_event *event,
2879 				  struct perf_event_attr *attr)
2880 {
2881 	if (event->attr.type != attr->type)
2882 		return -EINVAL;
2883 
2884 	switch (event->attr.type) {
2885 	case PERF_TYPE_BREAKPOINT:
2886 		return perf_event_modify_breakpoint(event, attr);
2887 	default:
2888 		/* Place holder for future additions. */
2889 		return -EOPNOTSUPP;
2890 	}
2891 }
2892 
2893 static void ctx_sched_out(struct perf_event_context *ctx,
2894 			  struct perf_cpu_context *cpuctx,
2895 			  enum event_type_t event_type)
2896 {
2897 	struct perf_event *event, *tmp;
2898 	int is_active = ctx->is_active;
2899 
2900 	lockdep_assert_held(&ctx->lock);
2901 
2902 	if (likely(!ctx->nr_events)) {
2903 		/*
2904 		 * See __perf_remove_from_context().
2905 		 */
2906 		WARN_ON_ONCE(ctx->is_active);
2907 		if (ctx->task)
2908 			WARN_ON_ONCE(cpuctx->task_ctx);
2909 		return;
2910 	}
2911 
2912 	ctx->is_active &= ~event_type;
2913 	if (!(ctx->is_active & EVENT_ALL))
2914 		ctx->is_active = 0;
2915 
2916 	if (ctx->task) {
2917 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2918 		if (!ctx->is_active)
2919 			cpuctx->task_ctx = NULL;
2920 	}
2921 
2922 	/*
2923 	 * Always update time if it was set; not only when it changes.
2924 	 * Otherwise we can 'forget' to update time for any but the last
2925 	 * context we sched out. For example:
2926 	 *
2927 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2928 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2929 	 *
2930 	 * would only update time for the pinned events.
2931 	 */
2932 	if (is_active & EVENT_TIME) {
2933 		/* update (and stop) ctx time */
2934 		update_context_time(ctx);
2935 		update_cgrp_time_from_cpuctx(cpuctx);
2936 	}
2937 
2938 	is_active ^= ctx->is_active; /* changed bits */
2939 
2940 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2941 		return;
2942 
2943 	perf_pmu_disable(ctx->pmu);
2944 	if (is_active & EVENT_PINNED) {
2945 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2946 			group_sched_out(event, cpuctx, ctx);
2947 	}
2948 
2949 	if (is_active & EVENT_FLEXIBLE) {
2950 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2951 			group_sched_out(event, cpuctx, ctx);
2952 	}
2953 	perf_pmu_enable(ctx->pmu);
2954 }
2955 
2956 /*
2957  * Test whether two contexts are equivalent, i.e. whether they have both been
2958  * cloned from the same version of the same context.
2959  *
2960  * Equivalence is measured using a generation number in the context that is
2961  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2962  * and list_del_event().
2963  */
2964 static int context_equiv(struct perf_event_context *ctx1,
2965 			 struct perf_event_context *ctx2)
2966 {
2967 	lockdep_assert_held(&ctx1->lock);
2968 	lockdep_assert_held(&ctx2->lock);
2969 
2970 	/* Pinning disables the swap optimization */
2971 	if (ctx1->pin_count || ctx2->pin_count)
2972 		return 0;
2973 
2974 	/* If ctx1 is the parent of ctx2 */
2975 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2976 		return 1;
2977 
2978 	/* If ctx2 is the parent of ctx1 */
2979 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2980 		return 1;
2981 
2982 	/*
2983 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2984 	 * hierarchy, see perf_event_init_context().
2985 	 */
2986 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2987 			ctx1->parent_gen == ctx2->parent_gen)
2988 		return 1;
2989 
2990 	/* Unmatched */
2991 	return 0;
2992 }
2993 
2994 static void __perf_event_sync_stat(struct perf_event *event,
2995 				     struct perf_event *next_event)
2996 {
2997 	u64 value;
2998 
2999 	if (!event->attr.inherit_stat)
3000 		return;
3001 
3002 	/*
3003 	 * Update the event value, we cannot use perf_event_read()
3004 	 * because we're in the middle of a context switch and have IRQs
3005 	 * disabled, which upsets smp_call_function_single(), however
3006 	 * we know the event must be on the current CPU, therefore we
3007 	 * don't need to use it.
3008 	 */
3009 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3010 		event->pmu->read(event);
3011 
3012 	perf_event_update_time(event);
3013 
3014 	/*
3015 	 * In order to keep per-task stats reliable we need to flip the event
3016 	 * values when we flip the contexts.
3017 	 */
3018 	value = local64_read(&next_event->count);
3019 	value = local64_xchg(&event->count, value);
3020 	local64_set(&next_event->count, value);
3021 
3022 	swap(event->total_time_enabled, next_event->total_time_enabled);
3023 	swap(event->total_time_running, next_event->total_time_running);
3024 
3025 	/*
3026 	 * Since we swizzled the values, update the user visible data too.
3027 	 */
3028 	perf_event_update_userpage(event);
3029 	perf_event_update_userpage(next_event);
3030 }
3031 
3032 static void perf_event_sync_stat(struct perf_event_context *ctx,
3033 				   struct perf_event_context *next_ctx)
3034 {
3035 	struct perf_event *event, *next_event;
3036 
3037 	if (!ctx->nr_stat)
3038 		return;
3039 
3040 	update_context_time(ctx);
3041 
3042 	event = list_first_entry(&ctx->event_list,
3043 				   struct perf_event, event_entry);
3044 
3045 	next_event = list_first_entry(&next_ctx->event_list,
3046 					struct perf_event, event_entry);
3047 
3048 	while (&event->event_entry != &ctx->event_list &&
3049 	       &next_event->event_entry != &next_ctx->event_list) {
3050 
3051 		__perf_event_sync_stat(event, next_event);
3052 
3053 		event = list_next_entry(event, event_entry);
3054 		next_event = list_next_entry(next_event, event_entry);
3055 	}
3056 }
3057 
3058 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3059 					 struct task_struct *next)
3060 {
3061 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3062 	struct perf_event_context *next_ctx;
3063 	struct perf_event_context *parent, *next_parent;
3064 	struct perf_cpu_context *cpuctx;
3065 	int do_switch = 1;
3066 
3067 	if (likely(!ctx))
3068 		return;
3069 
3070 	cpuctx = __get_cpu_context(ctx);
3071 	if (!cpuctx->task_ctx)
3072 		return;
3073 
3074 	rcu_read_lock();
3075 	next_ctx = next->perf_event_ctxp[ctxn];
3076 	if (!next_ctx)
3077 		goto unlock;
3078 
3079 	parent = rcu_dereference(ctx->parent_ctx);
3080 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3081 
3082 	/* If neither context have a parent context; they cannot be clones. */
3083 	if (!parent && !next_parent)
3084 		goto unlock;
3085 
3086 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3087 		/*
3088 		 * Looks like the two contexts are clones, so we might be
3089 		 * able to optimize the context switch.  We lock both
3090 		 * contexts and check that they are clones under the
3091 		 * lock (including re-checking that neither has been
3092 		 * uncloned in the meantime).  It doesn't matter which
3093 		 * order we take the locks because no other cpu could
3094 		 * be trying to lock both of these tasks.
3095 		 */
3096 		raw_spin_lock(&ctx->lock);
3097 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3098 		if (context_equiv(ctx, next_ctx)) {
3099 			WRITE_ONCE(ctx->task, next);
3100 			WRITE_ONCE(next_ctx->task, task);
3101 
3102 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3103 
3104 			/*
3105 			 * RCU_INIT_POINTER here is safe because we've not
3106 			 * modified the ctx and the above modification of
3107 			 * ctx->task and ctx->task_ctx_data are immaterial
3108 			 * since those values are always verified under
3109 			 * ctx->lock which we're now holding.
3110 			 */
3111 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3112 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3113 
3114 			do_switch = 0;
3115 
3116 			perf_event_sync_stat(ctx, next_ctx);
3117 		}
3118 		raw_spin_unlock(&next_ctx->lock);
3119 		raw_spin_unlock(&ctx->lock);
3120 	}
3121 unlock:
3122 	rcu_read_unlock();
3123 
3124 	if (do_switch) {
3125 		raw_spin_lock(&ctx->lock);
3126 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3127 		raw_spin_unlock(&ctx->lock);
3128 	}
3129 }
3130 
3131 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3132 
3133 void perf_sched_cb_dec(struct pmu *pmu)
3134 {
3135 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3136 
3137 	this_cpu_dec(perf_sched_cb_usages);
3138 
3139 	if (!--cpuctx->sched_cb_usage)
3140 		list_del(&cpuctx->sched_cb_entry);
3141 }
3142 
3143 
3144 void perf_sched_cb_inc(struct pmu *pmu)
3145 {
3146 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3147 
3148 	if (!cpuctx->sched_cb_usage++)
3149 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3150 
3151 	this_cpu_inc(perf_sched_cb_usages);
3152 }
3153 
3154 /*
3155  * This function provides the context switch callback to the lower code
3156  * layer. It is invoked ONLY when the context switch callback is enabled.
3157  *
3158  * This callback is relevant even to per-cpu events; for example multi event
3159  * PEBS requires this to provide PID/TID information. This requires we flush
3160  * all queued PEBS records before we context switch to a new task.
3161  */
3162 static void perf_pmu_sched_task(struct task_struct *prev,
3163 				struct task_struct *next,
3164 				bool sched_in)
3165 {
3166 	struct perf_cpu_context *cpuctx;
3167 	struct pmu *pmu;
3168 
3169 	if (prev == next)
3170 		return;
3171 
3172 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3173 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3174 
3175 		if (WARN_ON_ONCE(!pmu->sched_task))
3176 			continue;
3177 
3178 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3179 		perf_pmu_disable(pmu);
3180 
3181 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3182 
3183 		perf_pmu_enable(pmu);
3184 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3185 	}
3186 }
3187 
3188 static void perf_event_switch(struct task_struct *task,
3189 			      struct task_struct *next_prev, bool sched_in);
3190 
3191 #define for_each_task_context_nr(ctxn)					\
3192 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3193 
3194 /*
3195  * Called from scheduler to remove the events of the current task,
3196  * with interrupts disabled.
3197  *
3198  * We stop each event and update the event value in event->count.
3199  *
3200  * This does not protect us against NMI, but disable()
3201  * sets the disabled bit in the control field of event _before_
3202  * accessing the event control register. If a NMI hits, then it will
3203  * not restart the event.
3204  */
3205 void __perf_event_task_sched_out(struct task_struct *task,
3206 				 struct task_struct *next)
3207 {
3208 	int ctxn;
3209 
3210 	if (__this_cpu_read(perf_sched_cb_usages))
3211 		perf_pmu_sched_task(task, next, false);
3212 
3213 	if (atomic_read(&nr_switch_events))
3214 		perf_event_switch(task, next, false);
3215 
3216 	for_each_task_context_nr(ctxn)
3217 		perf_event_context_sched_out(task, ctxn, next);
3218 
3219 	/*
3220 	 * if cgroup events exist on this CPU, then we need
3221 	 * to check if we have to switch out PMU state.
3222 	 * cgroup event are system-wide mode only
3223 	 */
3224 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3225 		perf_cgroup_sched_out(task, next);
3226 }
3227 
3228 /*
3229  * Called with IRQs disabled
3230  */
3231 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3232 			      enum event_type_t event_type)
3233 {
3234 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3235 }
3236 
3237 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3238 			      int (*func)(struct perf_event *, void *), void *data)
3239 {
3240 	struct perf_event **evt, *evt1, *evt2;
3241 	int ret;
3242 
3243 	evt1 = perf_event_groups_first(groups, -1);
3244 	evt2 = perf_event_groups_first(groups, cpu);
3245 
3246 	while (evt1 || evt2) {
3247 		if (evt1 && evt2) {
3248 			if (evt1->group_index < evt2->group_index)
3249 				evt = &evt1;
3250 			else
3251 				evt = &evt2;
3252 		} else if (evt1) {
3253 			evt = &evt1;
3254 		} else {
3255 			evt = &evt2;
3256 		}
3257 
3258 		ret = func(*evt, data);
3259 		if (ret)
3260 			return ret;
3261 
3262 		*evt = perf_event_groups_next(*evt);
3263 	}
3264 
3265 	return 0;
3266 }
3267 
3268 struct sched_in_data {
3269 	struct perf_event_context *ctx;
3270 	struct perf_cpu_context *cpuctx;
3271 	int can_add_hw;
3272 };
3273 
3274 static int pinned_sched_in(struct perf_event *event, void *data)
3275 {
3276 	struct sched_in_data *sid = data;
3277 
3278 	if (event->state <= PERF_EVENT_STATE_OFF)
3279 		return 0;
3280 
3281 	if (!event_filter_match(event))
3282 		return 0;
3283 
3284 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3285 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3286 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3287 	}
3288 
3289 	/*
3290 	 * If this pinned group hasn't been scheduled,
3291 	 * put it in error state.
3292 	 */
3293 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3294 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3295 
3296 	return 0;
3297 }
3298 
3299 static int flexible_sched_in(struct perf_event *event, void *data)
3300 {
3301 	struct sched_in_data *sid = data;
3302 
3303 	if (event->state <= PERF_EVENT_STATE_OFF)
3304 		return 0;
3305 
3306 	if (!event_filter_match(event))
3307 		return 0;
3308 
3309 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3310 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3311 			list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3312 		else
3313 			sid->can_add_hw = 0;
3314 	}
3315 
3316 	return 0;
3317 }
3318 
3319 static void
3320 ctx_pinned_sched_in(struct perf_event_context *ctx,
3321 		    struct perf_cpu_context *cpuctx)
3322 {
3323 	struct sched_in_data sid = {
3324 		.ctx = ctx,
3325 		.cpuctx = cpuctx,
3326 		.can_add_hw = 1,
3327 	};
3328 
3329 	visit_groups_merge(&ctx->pinned_groups,
3330 			   smp_processor_id(),
3331 			   pinned_sched_in, &sid);
3332 }
3333 
3334 static void
3335 ctx_flexible_sched_in(struct perf_event_context *ctx,
3336 		      struct perf_cpu_context *cpuctx)
3337 {
3338 	struct sched_in_data sid = {
3339 		.ctx = ctx,
3340 		.cpuctx = cpuctx,
3341 		.can_add_hw = 1,
3342 	};
3343 
3344 	visit_groups_merge(&ctx->flexible_groups,
3345 			   smp_processor_id(),
3346 			   flexible_sched_in, &sid);
3347 }
3348 
3349 static void
3350 ctx_sched_in(struct perf_event_context *ctx,
3351 	     struct perf_cpu_context *cpuctx,
3352 	     enum event_type_t event_type,
3353 	     struct task_struct *task)
3354 {
3355 	int is_active = ctx->is_active;
3356 	u64 now;
3357 
3358 	lockdep_assert_held(&ctx->lock);
3359 
3360 	if (likely(!ctx->nr_events))
3361 		return;
3362 
3363 	ctx->is_active |= (event_type | EVENT_TIME);
3364 	if (ctx->task) {
3365 		if (!is_active)
3366 			cpuctx->task_ctx = ctx;
3367 		else
3368 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3369 	}
3370 
3371 	is_active ^= ctx->is_active; /* changed bits */
3372 
3373 	if (is_active & EVENT_TIME) {
3374 		/* start ctx time */
3375 		now = perf_clock();
3376 		ctx->timestamp = now;
3377 		perf_cgroup_set_timestamp(task, ctx);
3378 	}
3379 
3380 	/*
3381 	 * First go through the list and put on any pinned groups
3382 	 * in order to give them the best chance of going on.
3383 	 */
3384 	if (is_active & EVENT_PINNED)
3385 		ctx_pinned_sched_in(ctx, cpuctx);
3386 
3387 	/* Then walk through the lower prio flexible groups */
3388 	if (is_active & EVENT_FLEXIBLE)
3389 		ctx_flexible_sched_in(ctx, cpuctx);
3390 }
3391 
3392 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3393 			     enum event_type_t event_type,
3394 			     struct task_struct *task)
3395 {
3396 	struct perf_event_context *ctx = &cpuctx->ctx;
3397 
3398 	ctx_sched_in(ctx, cpuctx, event_type, task);
3399 }
3400 
3401 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3402 					struct task_struct *task)
3403 {
3404 	struct perf_cpu_context *cpuctx;
3405 
3406 	cpuctx = __get_cpu_context(ctx);
3407 	if (cpuctx->task_ctx == ctx)
3408 		return;
3409 
3410 	perf_ctx_lock(cpuctx, ctx);
3411 	/*
3412 	 * We must check ctx->nr_events while holding ctx->lock, such
3413 	 * that we serialize against perf_install_in_context().
3414 	 */
3415 	if (!ctx->nr_events)
3416 		goto unlock;
3417 
3418 	perf_pmu_disable(ctx->pmu);
3419 	/*
3420 	 * We want to keep the following priority order:
3421 	 * cpu pinned (that don't need to move), task pinned,
3422 	 * cpu flexible, task flexible.
3423 	 *
3424 	 * However, if task's ctx is not carrying any pinned
3425 	 * events, no need to flip the cpuctx's events around.
3426 	 */
3427 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3428 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3429 	perf_event_sched_in(cpuctx, ctx, task);
3430 	perf_pmu_enable(ctx->pmu);
3431 
3432 unlock:
3433 	perf_ctx_unlock(cpuctx, ctx);
3434 }
3435 
3436 /*
3437  * Called from scheduler to add the events of the current task
3438  * with interrupts disabled.
3439  *
3440  * We restore the event value and then enable it.
3441  *
3442  * This does not protect us against NMI, but enable()
3443  * sets the enabled bit in the control field of event _before_
3444  * accessing the event control register. If a NMI hits, then it will
3445  * keep the event running.
3446  */
3447 void __perf_event_task_sched_in(struct task_struct *prev,
3448 				struct task_struct *task)
3449 {
3450 	struct perf_event_context *ctx;
3451 	int ctxn;
3452 
3453 	/*
3454 	 * If cgroup events exist on this CPU, then we need to check if we have
3455 	 * to switch in PMU state; cgroup event are system-wide mode only.
3456 	 *
3457 	 * Since cgroup events are CPU events, we must schedule these in before
3458 	 * we schedule in the task events.
3459 	 */
3460 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3461 		perf_cgroup_sched_in(prev, task);
3462 
3463 	for_each_task_context_nr(ctxn) {
3464 		ctx = task->perf_event_ctxp[ctxn];
3465 		if (likely(!ctx))
3466 			continue;
3467 
3468 		perf_event_context_sched_in(ctx, task);
3469 	}
3470 
3471 	if (atomic_read(&nr_switch_events))
3472 		perf_event_switch(task, prev, true);
3473 
3474 	if (__this_cpu_read(perf_sched_cb_usages))
3475 		perf_pmu_sched_task(prev, task, true);
3476 }
3477 
3478 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3479 {
3480 	u64 frequency = event->attr.sample_freq;
3481 	u64 sec = NSEC_PER_SEC;
3482 	u64 divisor, dividend;
3483 
3484 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3485 
3486 	count_fls = fls64(count);
3487 	nsec_fls = fls64(nsec);
3488 	frequency_fls = fls64(frequency);
3489 	sec_fls = 30;
3490 
3491 	/*
3492 	 * We got @count in @nsec, with a target of sample_freq HZ
3493 	 * the target period becomes:
3494 	 *
3495 	 *             @count * 10^9
3496 	 * period = -------------------
3497 	 *          @nsec * sample_freq
3498 	 *
3499 	 */
3500 
3501 	/*
3502 	 * Reduce accuracy by one bit such that @a and @b converge
3503 	 * to a similar magnitude.
3504 	 */
3505 #define REDUCE_FLS(a, b)		\
3506 do {					\
3507 	if (a##_fls > b##_fls) {	\
3508 		a >>= 1;		\
3509 		a##_fls--;		\
3510 	} else {			\
3511 		b >>= 1;		\
3512 		b##_fls--;		\
3513 	}				\
3514 } while (0)
3515 
3516 	/*
3517 	 * Reduce accuracy until either term fits in a u64, then proceed with
3518 	 * the other, so that finally we can do a u64/u64 division.
3519 	 */
3520 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3521 		REDUCE_FLS(nsec, frequency);
3522 		REDUCE_FLS(sec, count);
3523 	}
3524 
3525 	if (count_fls + sec_fls > 64) {
3526 		divisor = nsec * frequency;
3527 
3528 		while (count_fls + sec_fls > 64) {
3529 			REDUCE_FLS(count, sec);
3530 			divisor >>= 1;
3531 		}
3532 
3533 		dividend = count * sec;
3534 	} else {
3535 		dividend = count * sec;
3536 
3537 		while (nsec_fls + frequency_fls > 64) {
3538 			REDUCE_FLS(nsec, frequency);
3539 			dividend >>= 1;
3540 		}
3541 
3542 		divisor = nsec * frequency;
3543 	}
3544 
3545 	if (!divisor)
3546 		return dividend;
3547 
3548 	return div64_u64(dividend, divisor);
3549 }
3550 
3551 static DEFINE_PER_CPU(int, perf_throttled_count);
3552 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3553 
3554 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3555 {
3556 	struct hw_perf_event *hwc = &event->hw;
3557 	s64 period, sample_period;
3558 	s64 delta;
3559 
3560 	period = perf_calculate_period(event, nsec, count);
3561 
3562 	delta = (s64)(period - hwc->sample_period);
3563 	delta = (delta + 7) / 8; /* low pass filter */
3564 
3565 	sample_period = hwc->sample_period + delta;
3566 
3567 	if (!sample_period)
3568 		sample_period = 1;
3569 
3570 	hwc->sample_period = sample_period;
3571 
3572 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3573 		if (disable)
3574 			event->pmu->stop(event, PERF_EF_UPDATE);
3575 
3576 		local64_set(&hwc->period_left, 0);
3577 
3578 		if (disable)
3579 			event->pmu->start(event, PERF_EF_RELOAD);
3580 	}
3581 }
3582 
3583 /*
3584  * combine freq adjustment with unthrottling to avoid two passes over the
3585  * events. At the same time, make sure, having freq events does not change
3586  * the rate of unthrottling as that would introduce bias.
3587  */
3588 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3589 					   int needs_unthr)
3590 {
3591 	struct perf_event *event;
3592 	struct hw_perf_event *hwc;
3593 	u64 now, period = TICK_NSEC;
3594 	s64 delta;
3595 
3596 	/*
3597 	 * only need to iterate over all events iff:
3598 	 * - context have events in frequency mode (needs freq adjust)
3599 	 * - there are events to unthrottle on this cpu
3600 	 */
3601 	if (!(ctx->nr_freq || needs_unthr))
3602 		return;
3603 
3604 	raw_spin_lock(&ctx->lock);
3605 	perf_pmu_disable(ctx->pmu);
3606 
3607 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3608 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3609 			continue;
3610 
3611 		if (!event_filter_match(event))
3612 			continue;
3613 
3614 		perf_pmu_disable(event->pmu);
3615 
3616 		hwc = &event->hw;
3617 
3618 		if (hwc->interrupts == MAX_INTERRUPTS) {
3619 			hwc->interrupts = 0;
3620 			perf_log_throttle(event, 1);
3621 			event->pmu->start(event, 0);
3622 		}
3623 
3624 		if (!event->attr.freq || !event->attr.sample_freq)
3625 			goto next;
3626 
3627 		/*
3628 		 * stop the event and update event->count
3629 		 */
3630 		event->pmu->stop(event, PERF_EF_UPDATE);
3631 
3632 		now = local64_read(&event->count);
3633 		delta = now - hwc->freq_count_stamp;
3634 		hwc->freq_count_stamp = now;
3635 
3636 		/*
3637 		 * restart the event
3638 		 * reload only if value has changed
3639 		 * we have stopped the event so tell that
3640 		 * to perf_adjust_period() to avoid stopping it
3641 		 * twice.
3642 		 */
3643 		if (delta > 0)
3644 			perf_adjust_period(event, period, delta, false);
3645 
3646 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3647 	next:
3648 		perf_pmu_enable(event->pmu);
3649 	}
3650 
3651 	perf_pmu_enable(ctx->pmu);
3652 	raw_spin_unlock(&ctx->lock);
3653 }
3654 
3655 /*
3656  * Move @event to the tail of the @ctx's elegible events.
3657  */
3658 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3659 {
3660 	/*
3661 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3662 	 * disabled by the inheritance code.
3663 	 */
3664 	if (ctx->rotate_disable)
3665 		return;
3666 
3667 	perf_event_groups_delete(&ctx->flexible_groups, event);
3668 	perf_event_groups_insert(&ctx->flexible_groups, event);
3669 }
3670 
3671 static inline struct perf_event *
3672 ctx_first_active(struct perf_event_context *ctx)
3673 {
3674 	return list_first_entry_or_null(&ctx->flexible_active,
3675 					struct perf_event, active_list);
3676 }
3677 
3678 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3679 {
3680 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3681 	bool cpu_rotate = false, task_rotate = false;
3682 	struct perf_event_context *ctx = NULL;
3683 
3684 	/*
3685 	 * Since we run this from IRQ context, nobody can install new
3686 	 * events, thus the event count values are stable.
3687 	 */
3688 
3689 	if (cpuctx->ctx.nr_events) {
3690 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3691 			cpu_rotate = true;
3692 	}
3693 
3694 	ctx = cpuctx->task_ctx;
3695 	if (ctx && ctx->nr_events) {
3696 		if (ctx->nr_events != ctx->nr_active)
3697 			task_rotate = true;
3698 	}
3699 
3700 	if (!(cpu_rotate || task_rotate))
3701 		return false;
3702 
3703 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3704 	perf_pmu_disable(cpuctx->ctx.pmu);
3705 
3706 	if (task_rotate)
3707 		task_event = ctx_first_active(ctx);
3708 	if (cpu_rotate)
3709 		cpu_event = ctx_first_active(&cpuctx->ctx);
3710 
3711 	/*
3712 	 * As per the order given at ctx_resched() first 'pop' task flexible
3713 	 * and then, if needed CPU flexible.
3714 	 */
3715 	if (task_event || (ctx && cpu_event))
3716 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3717 	if (cpu_event)
3718 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3719 
3720 	if (task_event)
3721 		rotate_ctx(ctx, task_event);
3722 	if (cpu_event)
3723 		rotate_ctx(&cpuctx->ctx, cpu_event);
3724 
3725 	perf_event_sched_in(cpuctx, ctx, current);
3726 
3727 	perf_pmu_enable(cpuctx->ctx.pmu);
3728 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3729 
3730 	return true;
3731 }
3732 
3733 void perf_event_task_tick(void)
3734 {
3735 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3736 	struct perf_event_context *ctx, *tmp;
3737 	int throttled;
3738 
3739 	lockdep_assert_irqs_disabled();
3740 
3741 	__this_cpu_inc(perf_throttled_seq);
3742 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3743 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3744 
3745 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3746 		perf_adjust_freq_unthr_context(ctx, throttled);
3747 }
3748 
3749 static int event_enable_on_exec(struct perf_event *event,
3750 				struct perf_event_context *ctx)
3751 {
3752 	if (!event->attr.enable_on_exec)
3753 		return 0;
3754 
3755 	event->attr.enable_on_exec = 0;
3756 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3757 		return 0;
3758 
3759 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3760 
3761 	return 1;
3762 }
3763 
3764 /*
3765  * Enable all of a task's events that have been marked enable-on-exec.
3766  * This expects task == current.
3767  */
3768 static void perf_event_enable_on_exec(int ctxn)
3769 {
3770 	struct perf_event_context *ctx, *clone_ctx = NULL;
3771 	enum event_type_t event_type = 0;
3772 	struct perf_cpu_context *cpuctx;
3773 	struct perf_event *event;
3774 	unsigned long flags;
3775 	int enabled = 0;
3776 
3777 	local_irq_save(flags);
3778 	ctx = current->perf_event_ctxp[ctxn];
3779 	if (!ctx || !ctx->nr_events)
3780 		goto out;
3781 
3782 	cpuctx = __get_cpu_context(ctx);
3783 	perf_ctx_lock(cpuctx, ctx);
3784 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3785 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3786 		enabled |= event_enable_on_exec(event, ctx);
3787 		event_type |= get_event_type(event);
3788 	}
3789 
3790 	/*
3791 	 * Unclone and reschedule this context if we enabled any event.
3792 	 */
3793 	if (enabled) {
3794 		clone_ctx = unclone_ctx(ctx);
3795 		ctx_resched(cpuctx, ctx, event_type);
3796 	} else {
3797 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3798 	}
3799 	perf_ctx_unlock(cpuctx, ctx);
3800 
3801 out:
3802 	local_irq_restore(flags);
3803 
3804 	if (clone_ctx)
3805 		put_ctx(clone_ctx);
3806 }
3807 
3808 struct perf_read_data {
3809 	struct perf_event *event;
3810 	bool group;
3811 	int ret;
3812 };
3813 
3814 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3815 {
3816 	u16 local_pkg, event_pkg;
3817 
3818 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3819 		int local_cpu = smp_processor_id();
3820 
3821 		event_pkg = topology_physical_package_id(event_cpu);
3822 		local_pkg = topology_physical_package_id(local_cpu);
3823 
3824 		if (event_pkg == local_pkg)
3825 			return local_cpu;
3826 	}
3827 
3828 	return event_cpu;
3829 }
3830 
3831 /*
3832  * Cross CPU call to read the hardware event
3833  */
3834 static void __perf_event_read(void *info)
3835 {
3836 	struct perf_read_data *data = info;
3837 	struct perf_event *sub, *event = data->event;
3838 	struct perf_event_context *ctx = event->ctx;
3839 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3840 	struct pmu *pmu = event->pmu;
3841 
3842 	/*
3843 	 * If this is a task context, we need to check whether it is
3844 	 * the current task context of this cpu.  If not it has been
3845 	 * scheduled out before the smp call arrived.  In that case
3846 	 * event->count would have been updated to a recent sample
3847 	 * when the event was scheduled out.
3848 	 */
3849 	if (ctx->task && cpuctx->task_ctx != ctx)
3850 		return;
3851 
3852 	raw_spin_lock(&ctx->lock);
3853 	if (ctx->is_active & EVENT_TIME) {
3854 		update_context_time(ctx);
3855 		update_cgrp_time_from_event(event);
3856 	}
3857 
3858 	perf_event_update_time(event);
3859 	if (data->group)
3860 		perf_event_update_sibling_time(event);
3861 
3862 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3863 		goto unlock;
3864 
3865 	if (!data->group) {
3866 		pmu->read(event);
3867 		data->ret = 0;
3868 		goto unlock;
3869 	}
3870 
3871 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3872 
3873 	pmu->read(event);
3874 
3875 	for_each_sibling_event(sub, event) {
3876 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3877 			/*
3878 			 * Use sibling's PMU rather than @event's since
3879 			 * sibling could be on different (eg: software) PMU.
3880 			 */
3881 			sub->pmu->read(sub);
3882 		}
3883 	}
3884 
3885 	data->ret = pmu->commit_txn(pmu);
3886 
3887 unlock:
3888 	raw_spin_unlock(&ctx->lock);
3889 }
3890 
3891 static inline u64 perf_event_count(struct perf_event *event)
3892 {
3893 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3894 }
3895 
3896 /*
3897  * NMI-safe method to read a local event, that is an event that
3898  * is:
3899  *   - either for the current task, or for this CPU
3900  *   - does not have inherit set, for inherited task events
3901  *     will not be local and we cannot read them atomically
3902  *   - must not have a pmu::count method
3903  */
3904 int perf_event_read_local(struct perf_event *event, u64 *value,
3905 			  u64 *enabled, u64 *running)
3906 {
3907 	unsigned long flags;
3908 	int ret = 0;
3909 
3910 	/*
3911 	 * Disabling interrupts avoids all counter scheduling (context
3912 	 * switches, timer based rotation and IPIs).
3913 	 */
3914 	local_irq_save(flags);
3915 
3916 	/*
3917 	 * It must not be an event with inherit set, we cannot read
3918 	 * all child counters from atomic context.
3919 	 */
3920 	if (event->attr.inherit) {
3921 		ret = -EOPNOTSUPP;
3922 		goto out;
3923 	}
3924 
3925 	/* If this is a per-task event, it must be for current */
3926 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3927 	    event->hw.target != current) {
3928 		ret = -EINVAL;
3929 		goto out;
3930 	}
3931 
3932 	/* If this is a per-CPU event, it must be for this CPU */
3933 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3934 	    event->cpu != smp_processor_id()) {
3935 		ret = -EINVAL;
3936 		goto out;
3937 	}
3938 
3939 	/* If this is a pinned event it must be running on this CPU */
3940 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3941 		ret = -EBUSY;
3942 		goto out;
3943 	}
3944 
3945 	/*
3946 	 * If the event is currently on this CPU, its either a per-task event,
3947 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3948 	 * oncpu == -1).
3949 	 */
3950 	if (event->oncpu == smp_processor_id())
3951 		event->pmu->read(event);
3952 
3953 	*value = local64_read(&event->count);
3954 	if (enabled || running) {
3955 		u64 now = event->shadow_ctx_time + perf_clock();
3956 		u64 __enabled, __running;
3957 
3958 		__perf_update_times(event, now, &__enabled, &__running);
3959 		if (enabled)
3960 			*enabled = __enabled;
3961 		if (running)
3962 			*running = __running;
3963 	}
3964 out:
3965 	local_irq_restore(flags);
3966 
3967 	return ret;
3968 }
3969 
3970 static int perf_event_read(struct perf_event *event, bool group)
3971 {
3972 	enum perf_event_state state = READ_ONCE(event->state);
3973 	int event_cpu, ret = 0;
3974 
3975 	/*
3976 	 * If event is enabled and currently active on a CPU, update the
3977 	 * value in the event structure:
3978 	 */
3979 again:
3980 	if (state == PERF_EVENT_STATE_ACTIVE) {
3981 		struct perf_read_data data;
3982 
3983 		/*
3984 		 * Orders the ->state and ->oncpu loads such that if we see
3985 		 * ACTIVE we must also see the right ->oncpu.
3986 		 *
3987 		 * Matches the smp_wmb() from event_sched_in().
3988 		 */
3989 		smp_rmb();
3990 
3991 		event_cpu = READ_ONCE(event->oncpu);
3992 		if ((unsigned)event_cpu >= nr_cpu_ids)
3993 			return 0;
3994 
3995 		data = (struct perf_read_data){
3996 			.event = event,
3997 			.group = group,
3998 			.ret = 0,
3999 		};
4000 
4001 		preempt_disable();
4002 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4003 
4004 		/*
4005 		 * Purposely ignore the smp_call_function_single() return
4006 		 * value.
4007 		 *
4008 		 * If event_cpu isn't a valid CPU it means the event got
4009 		 * scheduled out and that will have updated the event count.
4010 		 *
4011 		 * Therefore, either way, we'll have an up-to-date event count
4012 		 * after this.
4013 		 */
4014 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4015 		preempt_enable();
4016 		ret = data.ret;
4017 
4018 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4019 		struct perf_event_context *ctx = event->ctx;
4020 		unsigned long flags;
4021 
4022 		raw_spin_lock_irqsave(&ctx->lock, flags);
4023 		state = event->state;
4024 		if (state != PERF_EVENT_STATE_INACTIVE) {
4025 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4026 			goto again;
4027 		}
4028 
4029 		/*
4030 		 * May read while context is not active (e.g., thread is
4031 		 * blocked), in that case we cannot update context time
4032 		 */
4033 		if (ctx->is_active & EVENT_TIME) {
4034 			update_context_time(ctx);
4035 			update_cgrp_time_from_event(event);
4036 		}
4037 
4038 		perf_event_update_time(event);
4039 		if (group)
4040 			perf_event_update_sibling_time(event);
4041 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4042 	}
4043 
4044 	return ret;
4045 }
4046 
4047 /*
4048  * Initialize the perf_event context in a task_struct:
4049  */
4050 static void __perf_event_init_context(struct perf_event_context *ctx)
4051 {
4052 	raw_spin_lock_init(&ctx->lock);
4053 	mutex_init(&ctx->mutex);
4054 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4055 	perf_event_groups_init(&ctx->pinned_groups);
4056 	perf_event_groups_init(&ctx->flexible_groups);
4057 	INIT_LIST_HEAD(&ctx->event_list);
4058 	INIT_LIST_HEAD(&ctx->pinned_active);
4059 	INIT_LIST_HEAD(&ctx->flexible_active);
4060 	refcount_set(&ctx->refcount, 1);
4061 }
4062 
4063 static struct perf_event_context *
4064 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4065 {
4066 	struct perf_event_context *ctx;
4067 
4068 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4069 	if (!ctx)
4070 		return NULL;
4071 
4072 	__perf_event_init_context(ctx);
4073 	if (task) {
4074 		ctx->task = task;
4075 		get_task_struct(task);
4076 	}
4077 	ctx->pmu = pmu;
4078 
4079 	return ctx;
4080 }
4081 
4082 static struct task_struct *
4083 find_lively_task_by_vpid(pid_t vpid)
4084 {
4085 	struct task_struct *task;
4086 
4087 	rcu_read_lock();
4088 	if (!vpid)
4089 		task = current;
4090 	else
4091 		task = find_task_by_vpid(vpid);
4092 	if (task)
4093 		get_task_struct(task);
4094 	rcu_read_unlock();
4095 
4096 	if (!task)
4097 		return ERR_PTR(-ESRCH);
4098 
4099 	return task;
4100 }
4101 
4102 /*
4103  * Returns a matching context with refcount and pincount.
4104  */
4105 static struct perf_event_context *
4106 find_get_context(struct pmu *pmu, struct task_struct *task,
4107 		struct perf_event *event)
4108 {
4109 	struct perf_event_context *ctx, *clone_ctx = NULL;
4110 	struct perf_cpu_context *cpuctx;
4111 	void *task_ctx_data = NULL;
4112 	unsigned long flags;
4113 	int ctxn, err;
4114 	int cpu = event->cpu;
4115 
4116 	if (!task) {
4117 		/* Must be root to operate on a CPU event: */
4118 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4119 			return ERR_PTR(-EACCES);
4120 
4121 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4122 		ctx = &cpuctx->ctx;
4123 		get_ctx(ctx);
4124 		++ctx->pin_count;
4125 
4126 		return ctx;
4127 	}
4128 
4129 	err = -EINVAL;
4130 	ctxn = pmu->task_ctx_nr;
4131 	if (ctxn < 0)
4132 		goto errout;
4133 
4134 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4135 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4136 		if (!task_ctx_data) {
4137 			err = -ENOMEM;
4138 			goto errout;
4139 		}
4140 	}
4141 
4142 retry:
4143 	ctx = perf_lock_task_context(task, ctxn, &flags);
4144 	if (ctx) {
4145 		clone_ctx = unclone_ctx(ctx);
4146 		++ctx->pin_count;
4147 
4148 		if (task_ctx_data && !ctx->task_ctx_data) {
4149 			ctx->task_ctx_data = task_ctx_data;
4150 			task_ctx_data = NULL;
4151 		}
4152 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4153 
4154 		if (clone_ctx)
4155 			put_ctx(clone_ctx);
4156 	} else {
4157 		ctx = alloc_perf_context(pmu, task);
4158 		err = -ENOMEM;
4159 		if (!ctx)
4160 			goto errout;
4161 
4162 		if (task_ctx_data) {
4163 			ctx->task_ctx_data = task_ctx_data;
4164 			task_ctx_data = NULL;
4165 		}
4166 
4167 		err = 0;
4168 		mutex_lock(&task->perf_event_mutex);
4169 		/*
4170 		 * If it has already passed perf_event_exit_task().
4171 		 * we must see PF_EXITING, it takes this mutex too.
4172 		 */
4173 		if (task->flags & PF_EXITING)
4174 			err = -ESRCH;
4175 		else if (task->perf_event_ctxp[ctxn])
4176 			err = -EAGAIN;
4177 		else {
4178 			get_ctx(ctx);
4179 			++ctx->pin_count;
4180 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4181 		}
4182 		mutex_unlock(&task->perf_event_mutex);
4183 
4184 		if (unlikely(err)) {
4185 			put_ctx(ctx);
4186 
4187 			if (err == -EAGAIN)
4188 				goto retry;
4189 			goto errout;
4190 		}
4191 	}
4192 
4193 	kfree(task_ctx_data);
4194 	return ctx;
4195 
4196 errout:
4197 	kfree(task_ctx_data);
4198 	return ERR_PTR(err);
4199 }
4200 
4201 static void perf_event_free_filter(struct perf_event *event);
4202 static void perf_event_free_bpf_prog(struct perf_event *event);
4203 
4204 static void free_event_rcu(struct rcu_head *head)
4205 {
4206 	struct perf_event *event;
4207 
4208 	event = container_of(head, struct perf_event, rcu_head);
4209 	if (event->ns)
4210 		put_pid_ns(event->ns);
4211 	perf_event_free_filter(event);
4212 	kfree(event);
4213 }
4214 
4215 static void ring_buffer_attach(struct perf_event *event,
4216 			       struct ring_buffer *rb);
4217 
4218 static void detach_sb_event(struct perf_event *event)
4219 {
4220 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4221 
4222 	raw_spin_lock(&pel->lock);
4223 	list_del_rcu(&event->sb_list);
4224 	raw_spin_unlock(&pel->lock);
4225 }
4226 
4227 static bool is_sb_event(struct perf_event *event)
4228 {
4229 	struct perf_event_attr *attr = &event->attr;
4230 
4231 	if (event->parent)
4232 		return false;
4233 
4234 	if (event->attach_state & PERF_ATTACH_TASK)
4235 		return false;
4236 
4237 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4238 	    attr->comm || attr->comm_exec ||
4239 	    attr->task || attr->ksymbol ||
4240 	    attr->context_switch)
4241 		return true;
4242 	return false;
4243 }
4244 
4245 static void unaccount_pmu_sb_event(struct perf_event *event)
4246 {
4247 	if (is_sb_event(event))
4248 		detach_sb_event(event);
4249 }
4250 
4251 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4252 {
4253 	if (event->parent)
4254 		return;
4255 
4256 	if (is_cgroup_event(event))
4257 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4258 }
4259 
4260 #ifdef CONFIG_NO_HZ_FULL
4261 static DEFINE_SPINLOCK(nr_freq_lock);
4262 #endif
4263 
4264 static void unaccount_freq_event_nohz(void)
4265 {
4266 #ifdef CONFIG_NO_HZ_FULL
4267 	spin_lock(&nr_freq_lock);
4268 	if (atomic_dec_and_test(&nr_freq_events))
4269 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4270 	spin_unlock(&nr_freq_lock);
4271 #endif
4272 }
4273 
4274 static void unaccount_freq_event(void)
4275 {
4276 	if (tick_nohz_full_enabled())
4277 		unaccount_freq_event_nohz();
4278 	else
4279 		atomic_dec(&nr_freq_events);
4280 }
4281 
4282 static void unaccount_event(struct perf_event *event)
4283 {
4284 	bool dec = false;
4285 
4286 	if (event->parent)
4287 		return;
4288 
4289 	if (event->attach_state & PERF_ATTACH_TASK)
4290 		dec = true;
4291 	if (event->attr.mmap || event->attr.mmap_data)
4292 		atomic_dec(&nr_mmap_events);
4293 	if (event->attr.comm)
4294 		atomic_dec(&nr_comm_events);
4295 	if (event->attr.namespaces)
4296 		atomic_dec(&nr_namespaces_events);
4297 	if (event->attr.task)
4298 		atomic_dec(&nr_task_events);
4299 	if (event->attr.freq)
4300 		unaccount_freq_event();
4301 	if (event->attr.context_switch) {
4302 		dec = true;
4303 		atomic_dec(&nr_switch_events);
4304 	}
4305 	if (is_cgroup_event(event))
4306 		dec = true;
4307 	if (has_branch_stack(event))
4308 		dec = true;
4309 	if (event->attr.ksymbol)
4310 		atomic_dec(&nr_ksymbol_events);
4311 	if (event->attr.bpf_event)
4312 		atomic_dec(&nr_bpf_events);
4313 
4314 	if (dec) {
4315 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4316 			schedule_delayed_work(&perf_sched_work, HZ);
4317 	}
4318 
4319 	unaccount_event_cpu(event, event->cpu);
4320 
4321 	unaccount_pmu_sb_event(event);
4322 }
4323 
4324 static void perf_sched_delayed(struct work_struct *work)
4325 {
4326 	mutex_lock(&perf_sched_mutex);
4327 	if (atomic_dec_and_test(&perf_sched_count))
4328 		static_branch_disable(&perf_sched_events);
4329 	mutex_unlock(&perf_sched_mutex);
4330 }
4331 
4332 /*
4333  * The following implement mutual exclusion of events on "exclusive" pmus
4334  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4335  * at a time, so we disallow creating events that might conflict, namely:
4336  *
4337  *  1) cpu-wide events in the presence of per-task events,
4338  *  2) per-task events in the presence of cpu-wide events,
4339  *  3) two matching events on the same context.
4340  *
4341  * The former two cases are handled in the allocation path (perf_event_alloc(),
4342  * _free_event()), the latter -- before the first perf_install_in_context().
4343  */
4344 static int exclusive_event_init(struct perf_event *event)
4345 {
4346 	struct pmu *pmu = event->pmu;
4347 
4348 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4349 		return 0;
4350 
4351 	/*
4352 	 * Prevent co-existence of per-task and cpu-wide events on the
4353 	 * same exclusive pmu.
4354 	 *
4355 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4356 	 * events on this "exclusive" pmu, positive means there are
4357 	 * per-task events.
4358 	 *
4359 	 * Since this is called in perf_event_alloc() path, event::ctx
4360 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4361 	 * to mean "per-task event", because unlike other attach states it
4362 	 * never gets cleared.
4363 	 */
4364 	if (event->attach_state & PERF_ATTACH_TASK) {
4365 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4366 			return -EBUSY;
4367 	} else {
4368 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4369 			return -EBUSY;
4370 	}
4371 
4372 	return 0;
4373 }
4374 
4375 static void exclusive_event_destroy(struct perf_event *event)
4376 {
4377 	struct pmu *pmu = event->pmu;
4378 
4379 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4380 		return;
4381 
4382 	/* see comment in exclusive_event_init() */
4383 	if (event->attach_state & PERF_ATTACH_TASK)
4384 		atomic_dec(&pmu->exclusive_cnt);
4385 	else
4386 		atomic_inc(&pmu->exclusive_cnt);
4387 }
4388 
4389 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4390 {
4391 	if ((e1->pmu == e2->pmu) &&
4392 	    (e1->cpu == e2->cpu ||
4393 	     e1->cpu == -1 ||
4394 	     e2->cpu == -1))
4395 		return true;
4396 	return false;
4397 }
4398 
4399 /* Called under the same ctx::mutex as perf_install_in_context() */
4400 static bool exclusive_event_installable(struct perf_event *event,
4401 					struct perf_event_context *ctx)
4402 {
4403 	struct perf_event *iter_event;
4404 	struct pmu *pmu = event->pmu;
4405 
4406 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4407 		return true;
4408 
4409 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4410 		if (exclusive_event_match(iter_event, event))
4411 			return false;
4412 	}
4413 
4414 	return true;
4415 }
4416 
4417 static void perf_addr_filters_splice(struct perf_event *event,
4418 				       struct list_head *head);
4419 
4420 static void _free_event(struct perf_event *event)
4421 {
4422 	irq_work_sync(&event->pending);
4423 
4424 	unaccount_event(event);
4425 
4426 	if (event->rb) {
4427 		/*
4428 		 * Can happen when we close an event with re-directed output.
4429 		 *
4430 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4431 		 * over us; possibly making our ring_buffer_put() the last.
4432 		 */
4433 		mutex_lock(&event->mmap_mutex);
4434 		ring_buffer_attach(event, NULL);
4435 		mutex_unlock(&event->mmap_mutex);
4436 	}
4437 
4438 	if (is_cgroup_event(event))
4439 		perf_detach_cgroup(event);
4440 
4441 	if (!event->parent) {
4442 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4443 			put_callchain_buffers();
4444 	}
4445 
4446 	perf_event_free_bpf_prog(event);
4447 	perf_addr_filters_splice(event, NULL);
4448 	kfree(event->addr_filters_offs);
4449 
4450 	if (event->destroy)
4451 		event->destroy(event);
4452 
4453 	if (event->ctx)
4454 		put_ctx(event->ctx);
4455 
4456 	if (event->hw.target)
4457 		put_task_struct(event->hw.target);
4458 
4459 	exclusive_event_destroy(event);
4460 	module_put(event->pmu->module);
4461 
4462 	call_rcu(&event->rcu_head, free_event_rcu);
4463 }
4464 
4465 /*
4466  * Used to free events which have a known refcount of 1, such as in error paths
4467  * where the event isn't exposed yet and inherited events.
4468  */
4469 static void free_event(struct perf_event *event)
4470 {
4471 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4472 				"unexpected event refcount: %ld; ptr=%p\n",
4473 				atomic_long_read(&event->refcount), event)) {
4474 		/* leak to avoid use-after-free */
4475 		return;
4476 	}
4477 
4478 	_free_event(event);
4479 }
4480 
4481 /*
4482  * Remove user event from the owner task.
4483  */
4484 static void perf_remove_from_owner(struct perf_event *event)
4485 {
4486 	struct task_struct *owner;
4487 
4488 	rcu_read_lock();
4489 	/*
4490 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4491 	 * observe !owner it means the list deletion is complete and we can
4492 	 * indeed free this event, otherwise we need to serialize on
4493 	 * owner->perf_event_mutex.
4494 	 */
4495 	owner = READ_ONCE(event->owner);
4496 	if (owner) {
4497 		/*
4498 		 * Since delayed_put_task_struct() also drops the last
4499 		 * task reference we can safely take a new reference
4500 		 * while holding the rcu_read_lock().
4501 		 */
4502 		get_task_struct(owner);
4503 	}
4504 	rcu_read_unlock();
4505 
4506 	if (owner) {
4507 		/*
4508 		 * If we're here through perf_event_exit_task() we're already
4509 		 * holding ctx->mutex which would be an inversion wrt. the
4510 		 * normal lock order.
4511 		 *
4512 		 * However we can safely take this lock because its the child
4513 		 * ctx->mutex.
4514 		 */
4515 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4516 
4517 		/*
4518 		 * We have to re-check the event->owner field, if it is cleared
4519 		 * we raced with perf_event_exit_task(), acquiring the mutex
4520 		 * ensured they're done, and we can proceed with freeing the
4521 		 * event.
4522 		 */
4523 		if (event->owner) {
4524 			list_del_init(&event->owner_entry);
4525 			smp_store_release(&event->owner, NULL);
4526 		}
4527 		mutex_unlock(&owner->perf_event_mutex);
4528 		put_task_struct(owner);
4529 	}
4530 }
4531 
4532 static void put_event(struct perf_event *event)
4533 {
4534 	if (!atomic_long_dec_and_test(&event->refcount))
4535 		return;
4536 
4537 	_free_event(event);
4538 }
4539 
4540 /*
4541  * Kill an event dead; while event:refcount will preserve the event
4542  * object, it will not preserve its functionality. Once the last 'user'
4543  * gives up the object, we'll destroy the thing.
4544  */
4545 int perf_event_release_kernel(struct perf_event *event)
4546 {
4547 	struct perf_event_context *ctx = event->ctx;
4548 	struct perf_event *child, *tmp;
4549 	LIST_HEAD(free_list);
4550 
4551 	/*
4552 	 * If we got here through err_file: fput(event_file); we will not have
4553 	 * attached to a context yet.
4554 	 */
4555 	if (!ctx) {
4556 		WARN_ON_ONCE(event->attach_state &
4557 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4558 		goto no_ctx;
4559 	}
4560 
4561 	if (!is_kernel_event(event))
4562 		perf_remove_from_owner(event);
4563 
4564 	ctx = perf_event_ctx_lock(event);
4565 	WARN_ON_ONCE(ctx->parent_ctx);
4566 	perf_remove_from_context(event, DETACH_GROUP);
4567 
4568 	raw_spin_lock_irq(&ctx->lock);
4569 	/*
4570 	 * Mark this event as STATE_DEAD, there is no external reference to it
4571 	 * anymore.
4572 	 *
4573 	 * Anybody acquiring event->child_mutex after the below loop _must_
4574 	 * also see this, most importantly inherit_event() which will avoid
4575 	 * placing more children on the list.
4576 	 *
4577 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4578 	 * child events.
4579 	 */
4580 	event->state = PERF_EVENT_STATE_DEAD;
4581 	raw_spin_unlock_irq(&ctx->lock);
4582 
4583 	perf_event_ctx_unlock(event, ctx);
4584 
4585 again:
4586 	mutex_lock(&event->child_mutex);
4587 	list_for_each_entry(child, &event->child_list, child_list) {
4588 
4589 		/*
4590 		 * Cannot change, child events are not migrated, see the
4591 		 * comment with perf_event_ctx_lock_nested().
4592 		 */
4593 		ctx = READ_ONCE(child->ctx);
4594 		/*
4595 		 * Since child_mutex nests inside ctx::mutex, we must jump
4596 		 * through hoops. We start by grabbing a reference on the ctx.
4597 		 *
4598 		 * Since the event cannot get freed while we hold the
4599 		 * child_mutex, the context must also exist and have a !0
4600 		 * reference count.
4601 		 */
4602 		get_ctx(ctx);
4603 
4604 		/*
4605 		 * Now that we have a ctx ref, we can drop child_mutex, and
4606 		 * acquire ctx::mutex without fear of it going away. Then we
4607 		 * can re-acquire child_mutex.
4608 		 */
4609 		mutex_unlock(&event->child_mutex);
4610 		mutex_lock(&ctx->mutex);
4611 		mutex_lock(&event->child_mutex);
4612 
4613 		/*
4614 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4615 		 * state, if child is still the first entry, it didn't get freed
4616 		 * and we can continue doing so.
4617 		 */
4618 		tmp = list_first_entry_or_null(&event->child_list,
4619 					       struct perf_event, child_list);
4620 		if (tmp == child) {
4621 			perf_remove_from_context(child, DETACH_GROUP);
4622 			list_move(&child->child_list, &free_list);
4623 			/*
4624 			 * This matches the refcount bump in inherit_event();
4625 			 * this can't be the last reference.
4626 			 */
4627 			put_event(event);
4628 		}
4629 
4630 		mutex_unlock(&event->child_mutex);
4631 		mutex_unlock(&ctx->mutex);
4632 		put_ctx(ctx);
4633 		goto again;
4634 	}
4635 	mutex_unlock(&event->child_mutex);
4636 
4637 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4638 		list_del(&child->child_list);
4639 		free_event(child);
4640 	}
4641 
4642 no_ctx:
4643 	put_event(event); /* Must be the 'last' reference */
4644 	return 0;
4645 }
4646 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4647 
4648 /*
4649  * Called when the last reference to the file is gone.
4650  */
4651 static int perf_release(struct inode *inode, struct file *file)
4652 {
4653 	perf_event_release_kernel(file->private_data);
4654 	return 0;
4655 }
4656 
4657 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4658 {
4659 	struct perf_event *child;
4660 	u64 total = 0;
4661 
4662 	*enabled = 0;
4663 	*running = 0;
4664 
4665 	mutex_lock(&event->child_mutex);
4666 
4667 	(void)perf_event_read(event, false);
4668 	total += perf_event_count(event);
4669 
4670 	*enabled += event->total_time_enabled +
4671 			atomic64_read(&event->child_total_time_enabled);
4672 	*running += event->total_time_running +
4673 			atomic64_read(&event->child_total_time_running);
4674 
4675 	list_for_each_entry(child, &event->child_list, child_list) {
4676 		(void)perf_event_read(child, false);
4677 		total += perf_event_count(child);
4678 		*enabled += child->total_time_enabled;
4679 		*running += child->total_time_running;
4680 	}
4681 	mutex_unlock(&event->child_mutex);
4682 
4683 	return total;
4684 }
4685 
4686 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4687 {
4688 	struct perf_event_context *ctx;
4689 	u64 count;
4690 
4691 	ctx = perf_event_ctx_lock(event);
4692 	count = __perf_event_read_value(event, enabled, running);
4693 	perf_event_ctx_unlock(event, ctx);
4694 
4695 	return count;
4696 }
4697 EXPORT_SYMBOL_GPL(perf_event_read_value);
4698 
4699 static int __perf_read_group_add(struct perf_event *leader,
4700 					u64 read_format, u64 *values)
4701 {
4702 	struct perf_event_context *ctx = leader->ctx;
4703 	struct perf_event *sub;
4704 	unsigned long flags;
4705 	int n = 1; /* skip @nr */
4706 	int ret;
4707 
4708 	ret = perf_event_read(leader, true);
4709 	if (ret)
4710 		return ret;
4711 
4712 	raw_spin_lock_irqsave(&ctx->lock, flags);
4713 
4714 	/*
4715 	 * Since we co-schedule groups, {enabled,running} times of siblings
4716 	 * will be identical to those of the leader, so we only publish one
4717 	 * set.
4718 	 */
4719 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4720 		values[n++] += leader->total_time_enabled +
4721 			atomic64_read(&leader->child_total_time_enabled);
4722 	}
4723 
4724 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4725 		values[n++] += leader->total_time_running +
4726 			atomic64_read(&leader->child_total_time_running);
4727 	}
4728 
4729 	/*
4730 	 * Write {count,id} tuples for every sibling.
4731 	 */
4732 	values[n++] += perf_event_count(leader);
4733 	if (read_format & PERF_FORMAT_ID)
4734 		values[n++] = primary_event_id(leader);
4735 
4736 	for_each_sibling_event(sub, leader) {
4737 		values[n++] += perf_event_count(sub);
4738 		if (read_format & PERF_FORMAT_ID)
4739 			values[n++] = primary_event_id(sub);
4740 	}
4741 
4742 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4743 	return 0;
4744 }
4745 
4746 static int perf_read_group(struct perf_event *event,
4747 				   u64 read_format, char __user *buf)
4748 {
4749 	struct perf_event *leader = event->group_leader, *child;
4750 	struct perf_event_context *ctx = leader->ctx;
4751 	int ret;
4752 	u64 *values;
4753 
4754 	lockdep_assert_held(&ctx->mutex);
4755 
4756 	values = kzalloc(event->read_size, GFP_KERNEL);
4757 	if (!values)
4758 		return -ENOMEM;
4759 
4760 	values[0] = 1 + leader->nr_siblings;
4761 
4762 	/*
4763 	 * By locking the child_mutex of the leader we effectively
4764 	 * lock the child list of all siblings.. XXX explain how.
4765 	 */
4766 	mutex_lock(&leader->child_mutex);
4767 
4768 	ret = __perf_read_group_add(leader, read_format, values);
4769 	if (ret)
4770 		goto unlock;
4771 
4772 	list_for_each_entry(child, &leader->child_list, child_list) {
4773 		ret = __perf_read_group_add(child, read_format, values);
4774 		if (ret)
4775 			goto unlock;
4776 	}
4777 
4778 	mutex_unlock(&leader->child_mutex);
4779 
4780 	ret = event->read_size;
4781 	if (copy_to_user(buf, values, event->read_size))
4782 		ret = -EFAULT;
4783 	goto out;
4784 
4785 unlock:
4786 	mutex_unlock(&leader->child_mutex);
4787 out:
4788 	kfree(values);
4789 	return ret;
4790 }
4791 
4792 static int perf_read_one(struct perf_event *event,
4793 				 u64 read_format, char __user *buf)
4794 {
4795 	u64 enabled, running;
4796 	u64 values[4];
4797 	int n = 0;
4798 
4799 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4800 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4801 		values[n++] = enabled;
4802 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4803 		values[n++] = running;
4804 	if (read_format & PERF_FORMAT_ID)
4805 		values[n++] = primary_event_id(event);
4806 
4807 	if (copy_to_user(buf, values, n * sizeof(u64)))
4808 		return -EFAULT;
4809 
4810 	return n * sizeof(u64);
4811 }
4812 
4813 static bool is_event_hup(struct perf_event *event)
4814 {
4815 	bool no_children;
4816 
4817 	if (event->state > PERF_EVENT_STATE_EXIT)
4818 		return false;
4819 
4820 	mutex_lock(&event->child_mutex);
4821 	no_children = list_empty(&event->child_list);
4822 	mutex_unlock(&event->child_mutex);
4823 	return no_children;
4824 }
4825 
4826 /*
4827  * Read the performance event - simple non blocking version for now
4828  */
4829 static ssize_t
4830 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4831 {
4832 	u64 read_format = event->attr.read_format;
4833 	int ret;
4834 
4835 	/*
4836 	 * Return end-of-file for a read on an event that is in
4837 	 * error state (i.e. because it was pinned but it couldn't be
4838 	 * scheduled on to the CPU at some point).
4839 	 */
4840 	if (event->state == PERF_EVENT_STATE_ERROR)
4841 		return 0;
4842 
4843 	if (count < event->read_size)
4844 		return -ENOSPC;
4845 
4846 	WARN_ON_ONCE(event->ctx->parent_ctx);
4847 	if (read_format & PERF_FORMAT_GROUP)
4848 		ret = perf_read_group(event, read_format, buf);
4849 	else
4850 		ret = perf_read_one(event, read_format, buf);
4851 
4852 	return ret;
4853 }
4854 
4855 static ssize_t
4856 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4857 {
4858 	struct perf_event *event = file->private_data;
4859 	struct perf_event_context *ctx;
4860 	int ret;
4861 
4862 	ctx = perf_event_ctx_lock(event);
4863 	ret = __perf_read(event, buf, count);
4864 	perf_event_ctx_unlock(event, ctx);
4865 
4866 	return ret;
4867 }
4868 
4869 static __poll_t perf_poll(struct file *file, poll_table *wait)
4870 {
4871 	struct perf_event *event = file->private_data;
4872 	struct ring_buffer *rb;
4873 	__poll_t events = EPOLLHUP;
4874 
4875 	poll_wait(file, &event->waitq, wait);
4876 
4877 	if (is_event_hup(event))
4878 		return events;
4879 
4880 	/*
4881 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4882 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4883 	 */
4884 	mutex_lock(&event->mmap_mutex);
4885 	rb = event->rb;
4886 	if (rb)
4887 		events = atomic_xchg(&rb->poll, 0);
4888 	mutex_unlock(&event->mmap_mutex);
4889 	return events;
4890 }
4891 
4892 static void _perf_event_reset(struct perf_event *event)
4893 {
4894 	(void)perf_event_read(event, false);
4895 	local64_set(&event->count, 0);
4896 	perf_event_update_userpage(event);
4897 }
4898 
4899 /*
4900  * Holding the top-level event's child_mutex means that any
4901  * descendant process that has inherited this event will block
4902  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4903  * task existence requirements of perf_event_enable/disable.
4904  */
4905 static void perf_event_for_each_child(struct perf_event *event,
4906 					void (*func)(struct perf_event *))
4907 {
4908 	struct perf_event *child;
4909 
4910 	WARN_ON_ONCE(event->ctx->parent_ctx);
4911 
4912 	mutex_lock(&event->child_mutex);
4913 	func(event);
4914 	list_for_each_entry(child, &event->child_list, child_list)
4915 		func(child);
4916 	mutex_unlock(&event->child_mutex);
4917 }
4918 
4919 static void perf_event_for_each(struct perf_event *event,
4920 				  void (*func)(struct perf_event *))
4921 {
4922 	struct perf_event_context *ctx = event->ctx;
4923 	struct perf_event *sibling;
4924 
4925 	lockdep_assert_held(&ctx->mutex);
4926 
4927 	event = event->group_leader;
4928 
4929 	perf_event_for_each_child(event, func);
4930 	for_each_sibling_event(sibling, event)
4931 		perf_event_for_each_child(sibling, func);
4932 }
4933 
4934 static void __perf_event_period(struct perf_event *event,
4935 				struct perf_cpu_context *cpuctx,
4936 				struct perf_event_context *ctx,
4937 				void *info)
4938 {
4939 	u64 value = *((u64 *)info);
4940 	bool active;
4941 
4942 	if (event->attr.freq) {
4943 		event->attr.sample_freq = value;
4944 	} else {
4945 		event->attr.sample_period = value;
4946 		event->hw.sample_period = value;
4947 	}
4948 
4949 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4950 	if (active) {
4951 		perf_pmu_disable(ctx->pmu);
4952 		/*
4953 		 * We could be throttled; unthrottle now to avoid the tick
4954 		 * trying to unthrottle while we already re-started the event.
4955 		 */
4956 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4957 			event->hw.interrupts = 0;
4958 			perf_log_throttle(event, 1);
4959 		}
4960 		event->pmu->stop(event, PERF_EF_UPDATE);
4961 	}
4962 
4963 	local64_set(&event->hw.period_left, 0);
4964 
4965 	if (active) {
4966 		event->pmu->start(event, PERF_EF_RELOAD);
4967 		perf_pmu_enable(ctx->pmu);
4968 	}
4969 }
4970 
4971 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4972 {
4973 	u64 value;
4974 
4975 	if (!is_sampling_event(event))
4976 		return -EINVAL;
4977 
4978 	if (copy_from_user(&value, arg, sizeof(value)))
4979 		return -EFAULT;
4980 
4981 	if (!value)
4982 		return -EINVAL;
4983 
4984 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4985 		return -EINVAL;
4986 
4987 	event_function_call(event, __perf_event_period, &value);
4988 
4989 	return 0;
4990 }
4991 
4992 static const struct file_operations perf_fops;
4993 
4994 static inline int perf_fget_light(int fd, struct fd *p)
4995 {
4996 	struct fd f = fdget(fd);
4997 	if (!f.file)
4998 		return -EBADF;
4999 
5000 	if (f.file->f_op != &perf_fops) {
5001 		fdput(f);
5002 		return -EBADF;
5003 	}
5004 	*p = f;
5005 	return 0;
5006 }
5007 
5008 static int perf_event_set_output(struct perf_event *event,
5009 				 struct perf_event *output_event);
5010 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5011 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5012 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5013 			  struct perf_event_attr *attr);
5014 
5015 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5016 {
5017 	void (*func)(struct perf_event *);
5018 	u32 flags = arg;
5019 
5020 	switch (cmd) {
5021 	case PERF_EVENT_IOC_ENABLE:
5022 		func = _perf_event_enable;
5023 		break;
5024 	case PERF_EVENT_IOC_DISABLE:
5025 		func = _perf_event_disable;
5026 		break;
5027 	case PERF_EVENT_IOC_RESET:
5028 		func = _perf_event_reset;
5029 		break;
5030 
5031 	case PERF_EVENT_IOC_REFRESH:
5032 		return _perf_event_refresh(event, arg);
5033 
5034 	case PERF_EVENT_IOC_PERIOD:
5035 		return perf_event_period(event, (u64 __user *)arg);
5036 
5037 	case PERF_EVENT_IOC_ID:
5038 	{
5039 		u64 id = primary_event_id(event);
5040 
5041 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5042 			return -EFAULT;
5043 		return 0;
5044 	}
5045 
5046 	case PERF_EVENT_IOC_SET_OUTPUT:
5047 	{
5048 		int ret;
5049 		if (arg != -1) {
5050 			struct perf_event *output_event;
5051 			struct fd output;
5052 			ret = perf_fget_light(arg, &output);
5053 			if (ret)
5054 				return ret;
5055 			output_event = output.file->private_data;
5056 			ret = perf_event_set_output(event, output_event);
5057 			fdput(output);
5058 		} else {
5059 			ret = perf_event_set_output(event, NULL);
5060 		}
5061 		return ret;
5062 	}
5063 
5064 	case PERF_EVENT_IOC_SET_FILTER:
5065 		return perf_event_set_filter(event, (void __user *)arg);
5066 
5067 	case PERF_EVENT_IOC_SET_BPF:
5068 		return perf_event_set_bpf_prog(event, arg);
5069 
5070 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5071 		struct ring_buffer *rb;
5072 
5073 		rcu_read_lock();
5074 		rb = rcu_dereference(event->rb);
5075 		if (!rb || !rb->nr_pages) {
5076 			rcu_read_unlock();
5077 			return -EINVAL;
5078 		}
5079 		rb_toggle_paused(rb, !!arg);
5080 		rcu_read_unlock();
5081 		return 0;
5082 	}
5083 
5084 	case PERF_EVENT_IOC_QUERY_BPF:
5085 		return perf_event_query_prog_array(event, (void __user *)arg);
5086 
5087 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5088 		struct perf_event_attr new_attr;
5089 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5090 					 &new_attr);
5091 
5092 		if (err)
5093 			return err;
5094 
5095 		return perf_event_modify_attr(event,  &new_attr);
5096 	}
5097 	default:
5098 		return -ENOTTY;
5099 	}
5100 
5101 	if (flags & PERF_IOC_FLAG_GROUP)
5102 		perf_event_for_each(event, func);
5103 	else
5104 		perf_event_for_each_child(event, func);
5105 
5106 	return 0;
5107 }
5108 
5109 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5110 {
5111 	struct perf_event *event = file->private_data;
5112 	struct perf_event_context *ctx;
5113 	long ret;
5114 
5115 	ctx = perf_event_ctx_lock(event);
5116 	ret = _perf_ioctl(event, cmd, arg);
5117 	perf_event_ctx_unlock(event, ctx);
5118 
5119 	return ret;
5120 }
5121 
5122 #ifdef CONFIG_COMPAT
5123 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5124 				unsigned long arg)
5125 {
5126 	switch (_IOC_NR(cmd)) {
5127 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5128 	case _IOC_NR(PERF_EVENT_IOC_ID):
5129 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5130 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5131 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5132 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5133 			cmd &= ~IOCSIZE_MASK;
5134 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5135 		}
5136 		break;
5137 	}
5138 	return perf_ioctl(file, cmd, arg);
5139 }
5140 #else
5141 # define perf_compat_ioctl NULL
5142 #endif
5143 
5144 int perf_event_task_enable(void)
5145 {
5146 	struct perf_event_context *ctx;
5147 	struct perf_event *event;
5148 
5149 	mutex_lock(&current->perf_event_mutex);
5150 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5151 		ctx = perf_event_ctx_lock(event);
5152 		perf_event_for_each_child(event, _perf_event_enable);
5153 		perf_event_ctx_unlock(event, ctx);
5154 	}
5155 	mutex_unlock(&current->perf_event_mutex);
5156 
5157 	return 0;
5158 }
5159 
5160 int perf_event_task_disable(void)
5161 {
5162 	struct perf_event_context *ctx;
5163 	struct perf_event *event;
5164 
5165 	mutex_lock(&current->perf_event_mutex);
5166 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5167 		ctx = perf_event_ctx_lock(event);
5168 		perf_event_for_each_child(event, _perf_event_disable);
5169 		perf_event_ctx_unlock(event, ctx);
5170 	}
5171 	mutex_unlock(&current->perf_event_mutex);
5172 
5173 	return 0;
5174 }
5175 
5176 static int perf_event_index(struct perf_event *event)
5177 {
5178 	if (event->hw.state & PERF_HES_STOPPED)
5179 		return 0;
5180 
5181 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5182 		return 0;
5183 
5184 	return event->pmu->event_idx(event);
5185 }
5186 
5187 static void calc_timer_values(struct perf_event *event,
5188 				u64 *now,
5189 				u64 *enabled,
5190 				u64 *running)
5191 {
5192 	u64 ctx_time;
5193 
5194 	*now = perf_clock();
5195 	ctx_time = event->shadow_ctx_time + *now;
5196 	__perf_update_times(event, ctx_time, enabled, running);
5197 }
5198 
5199 static void perf_event_init_userpage(struct perf_event *event)
5200 {
5201 	struct perf_event_mmap_page *userpg;
5202 	struct ring_buffer *rb;
5203 
5204 	rcu_read_lock();
5205 	rb = rcu_dereference(event->rb);
5206 	if (!rb)
5207 		goto unlock;
5208 
5209 	userpg = rb->user_page;
5210 
5211 	/* Allow new userspace to detect that bit 0 is deprecated */
5212 	userpg->cap_bit0_is_deprecated = 1;
5213 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5214 	userpg->data_offset = PAGE_SIZE;
5215 	userpg->data_size = perf_data_size(rb);
5216 
5217 unlock:
5218 	rcu_read_unlock();
5219 }
5220 
5221 void __weak arch_perf_update_userpage(
5222 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5223 {
5224 }
5225 
5226 /*
5227  * Callers need to ensure there can be no nesting of this function, otherwise
5228  * the seqlock logic goes bad. We can not serialize this because the arch
5229  * code calls this from NMI context.
5230  */
5231 void perf_event_update_userpage(struct perf_event *event)
5232 {
5233 	struct perf_event_mmap_page *userpg;
5234 	struct ring_buffer *rb;
5235 	u64 enabled, running, now;
5236 
5237 	rcu_read_lock();
5238 	rb = rcu_dereference(event->rb);
5239 	if (!rb)
5240 		goto unlock;
5241 
5242 	/*
5243 	 * compute total_time_enabled, total_time_running
5244 	 * based on snapshot values taken when the event
5245 	 * was last scheduled in.
5246 	 *
5247 	 * we cannot simply called update_context_time()
5248 	 * because of locking issue as we can be called in
5249 	 * NMI context
5250 	 */
5251 	calc_timer_values(event, &now, &enabled, &running);
5252 
5253 	userpg = rb->user_page;
5254 	/*
5255 	 * Disable preemption to guarantee consistent time stamps are stored to
5256 	 * the user page.
5257 	 */
5258 	preempt_disable();
5259 	++userpg->lock;
5260 	barrier();
5261 	userpg->index = perf_event_index(event);
5262 	userpg->offset = perf_event_count(event);
5263 	if (userpg->index)
5264 		userpg->offset -= local64_read(&event->hw.prev_count);
5265 
5266 	userpg->time_enabled = enabled +
5267 			atomic64_read(&event->child_total_time_enabled);
5268 
5269 	userpg->time_running = running +
5270 			atomic64_read(&event->child_total_time_running);
5271 
5272 	arch_perf_update_userpage(event, userpg, now);
5273 
5274 	barrier();
5275 	++userpg->lock;
5276 	preempt_enable();
5277 unlock:
5278 	rcu_read_unlock();
5279 }
5280 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5281 
5282 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5283 {
5284 	struct perf_event *event = vmf->vma->vm_file->private_data;
5285 	struct ring_buffer *rb;
5286 	vm_fault_t ret = VM_FAULT_SIGBUS;
5287 
5288 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5289 		if (vmf->pgoff == 0)
5290 			ret = 0;
5291 		return ret;
5292 	}
5293 
5294 	rcu_read_lock();
5295 	rb = rcu_dereference(event->rb);
5296 	if (!rb)
5297 		goto unlock;
5298 
5299 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5300 		goto unlock;
5301 
5302 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5303 	if (!vmf->page)
5304 		goto unlock;
5305 
5306 	get_page(vmf->page);
5307 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5308 	vmf->page->index   = vmf->pgoff;
5309 
5310 	ret = 0;
5311 unlock:
5312 	rcu_read_unlock();
5313 
5314 	return ret;
5315 }
5316 
5317 static void ring_buffer_attach(struct perf_event *event,
5318 			       struct ring_buffer *rb)
5319 {
5320 	struct ring_buffer *old_rb = NULL;
5321 	unsigned long flags;
5322 
5323 	if (event->rb) {
5324 		/*
5325 		 * Should be impossible, we set this when removing
5326 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5327 		 */
5328 		WARN_ON_ONCE(event->rcu_pending);
5329 
5330 		old_rb = event->rb;
5331 		spin_lock_irqsave(&old_rb->event_lock, flags);
5332 		list_del_rcu(&event->rb_entry);
5333 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5334 
5335 		event->rcu_batches = get_state_synchronize_rcu();
5336 		event->rcu_pending = 1;
5337 	}
5338 
5339 	if (rb) {
5340 		if (event->rcu_pending) {
5341 			cond_synchronize_rcu(event->rcu_batches);
5342 			event->rcu_pending = 0;
5343 		}
5344 
5345 		spin_lock_irqsave(&rb->event_lock, flags);
5346 		list_add_rcu(&event->rb_entry, &rb->event_list);
5347 		spin_unlock_irqrestore(&rb->event_lock, flags);
5348 	}
5349 
5350 	/*
5351 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5352 	 * before swizzling the event::rb pointer; if it's getting
5353 	 * unmapped, its aux_mmap_count will be 0 and it won't
5354 	 * restart. See the comment in __perf_pmu_output_stop().
5355 	 *
5356 	 * Data will inevitably be lost when set_output is done in
5357 	 * mid-air, but then again, whoever does it like this is
5358 	 * not in for the data anyway.
5359 	 */
5360 	if (has_aux(event))
5361 		perf_event_stop(event, 0);
5362 
5363 	rcu_assign_pointer(event->rb, rb);
5364 
5365 	if (old_rb) {
5366 		ring_buffer_put(old_rb);
5367 		/*
5368 		 * Since we detached before setting the new rb, so that we
5369 		 * could attach the new rb, we could have missed a wakeup.
5370 		 * Provide it now.
5371 		 */
5372 		wake_up_all(&event->waitq);
5373 	}
5374 }
5375 
5376 static void ring_buffer_wakeup(struct perf_event *event)
5377 {
5378 	struct ring_buffer *rb;
5379 
5380 	rcu_read_lock();
5381 	rb = rcu_dereference(event->rb);
5382 	if (rb) {
5383 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5384 			wake_up_all(&event->waitq);
5385 	}
5386 	rcu_read_unlock();
5387 }
5388 
5389 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5390 {
5391 	struct ring_buffer *rb;
5392 
5393 	rcu_read_lock();
5394 	rb = rcu_dereference(event->rb);
5395 	if (rb) {
5396 		if (!refcount_inc_not_zero(&rb->refcount))
5397 			rb = NULL;
5398 	}
5399 	rcu_read_unlock();
5400 
5401 	return rb;
5402 }
5403 
5404 void ring_buffer_put(struct ring_buffer *rb)
5405 {
5406 	if (!refcount_dec_and_test(&rb->refcount))
5407 		return;
5408 
5409 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5410 
5411 	call_rcu(&rb->rcu_head, rb_free_rcu);
5412 }
5413 
5414 static void perf_mmap_open(struct vm_area_struct *vma)
5415 {
5416 	struct perf_event *event = vma->vm_file->private_data;
5417 
5418 	atomic_inc(&event->mmap_count);
5419 	atomic_inc(&event->rb->mmap_count);
5420 
5421 	if (vma->vm_pgoff)
5422 		atomic_inc(&event->rb->aux_mmap_count);
5423 
5424 	if (event->pmu->event_mapped)
5425 		event->pmu->event_mapped(event, vma->vm_mm);
5426 }
5427 
5428 static void perf_pmu_output_stop(struct perf_event *event);
5429 
5430 /*
5431  * A buffer can be mmap()ed multiple times; either directly through the same
5432  * event, or through other events by use of perf_event_set_output().
5433  *
5434  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5435  * the buffer here, where we still have a VM context. This means we need
5436  * to detach all events redirecting to us.
5437  */
5438 static void perf_mmap_close(struct vm_area_struct *vma)
5439 {
5440 	struct perf_event *event = vma->vm_file->private_data;
5441 
5442 	struct ring_buffer *rb = ring_buffer_get(event);
5443 	struct user_struct *mmap_user = rb->mmap_user;
5444 	int mmap_locked = rb->mmap_locked;
5445 	unsigned long size = perf_data_size(rb);
5446 
5447 	if (event->pmu->event_unmapped)
5448 		event->pmu->event_unmapped(event, vma->vm_mm);
5449 
5450 	/*
5451 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5452 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5453 	 * serialize with perf_mmap here.
5454 	 */
5455 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5456 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5457 		/*
5458 		 * Stop all AUX events that are writing to this buffer,
5459 		 * so that we can free its AUX pages and corresponding PMU
5460 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5461 		 * they won't start any more (see perf_aux_output_begin()).
5462 		 */
5463 		perf_pmu_output_stop(event);
5464 
5465 		/* now it's safe to free the pages */
5466 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5467 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5468 
5469 		/* this has to be the last one */
5470 		rb_free_aux(rb);
5471 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5472 
5473 		mutex_unlock(&event->mmap_mutex);
5474 	}
5475 
5476 	atomic_dec(&rb->mmap_count);
5477 
5478 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5479 		goto out_put;
5480 
5481 	ring_buffer_attach(event, NULL);
5482 	mutex_unlock(&event->mmap_mutex);
5483 
5484 	/* If there's still other mmap()s of this buffer, we're done. */
5485 	if (atomic_read(&rb->mmap_count))
5486 		goto out_put;
5487 
5488 	/*
5489 	 * No other mmap()s, detach from all other events that might redirect
5490 	 * into the now unreachable buffer. Somewhat complicated by the
5491 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5492 	 */
5493 again:
5494 	rcu_read_lock();
5495 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5496 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5497 			/*
5498 			 * This event is en-route to free_event() which will
5499 			 * detach it and remove it from the list.
5500 			 */
5501 			continue;
5502 		}
5503 		rcu_read_unlock();
5504 
5505 		mutex_lock(&event->mmap_mutex);
5506 		/*
5507 		 * Check we didn't race with perf_event_set_output() which can
5508 		 * swizzle the rb from under us while we were waiting to
5509 		 * acquire mmap_mutex.
5510 		 *
5511 		 * If we find a different rb; ignore this event, a next
5512 		 * iteration will no longer find it on the list. We have to
5513 		 * still restart the iteration to make sure we're not now
5514 		 * iterating the wrong list.
5515 		 */
5516 		if (event->rb == rb)
5517 			ring_buffer_attach(event, NULL);
5518 
5519 		mutex_unlock(&event->mmap_mutex);
5520 		put_event(event);
5521 
5522 		/*
5523 		 * Restart the iteration; either we're on the wrong list or
5524 		 * destroyed its integrity by doing a deletion.
5525 		 */
5526 		goto again;
5527 	}
5528 	rcu_read_unlock();
5529 
5530 	/*
5531 	 * It could be there's still a few 0-ref events on the list; they'll
5532 	 * get cleaned up by free_event() -- they'll also still have their
5533 	 * ref on the rb and will free it whenever they are done with it.
5534 	 *
5535 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5536 	 * undo the VM accounting.
5537 	 */
5538 
5539 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5540 	vma->vm_mm->pinned_vm -= mmap_locked;
5541 	free_uid(mmap_user);
5542 
5543 out_put:
5544 	ring_buffer_put(rb); /* could be last */
5545 }
5546 
5547 static const struct vm_operations_struct perf_mmap_vmops = {
5548 	.open		= perf_mmap_open,
5549 	.close		= perf_mmap_close, /* non mergeable */
5550 	.fault		= perf_mmap_fault,
5551 	.page_mkwrite	= perf_mmap_fault,
5552 };
5553 
5554 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5555 {
5556 	struct perf_event *event = file->private_data;
5557 	unsigned long user_locked, user_lock_limit;
5558 	struct user_struct *user = current_user();
5559 	unsigned long locked, lock_limit;
5560 	struct ring_buffer *rb = NULL;
5561 	unsigned long vma_size;
5562 	unsigned long nr_pages;
5563 	long user_extra = 0, extra = 0;
5564 	int ret = 0, flags = 0;
5565 
5566 	/*
5567 	 * Don't allow mmap() of inherited per-task counters. This would
5568 	 * create a performance issue due to all children writing to the
5569 	 * same rb.
5570 	 */
5571 	if (event->cpu == -1 && event->attr.inherit)
5572 		return -EINVAL;
5573 
5574 	if (!(vma->vm_flags & VM_SHARED))
5575 		return -EINVAL;
5576 
5577 	vma_size = vma->vm_end - vma->vm_start;
5578 
5579 	if (vma->vm_pgoff == 0) {
5580 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5581 	} else {
5582 		/*
5583 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5584 		 * mapped, all subsequent mappings should have the same size
5585 		 * and offset. Must be above the normal perf buffer.
5586 		 */
5587 		u64 aux_offset, aux_size;
5588 
5589 		if (!event->rb)
5590 			return -EINVAL;
5591 
5592 		nr_pages = vma_size / PAGE_SIZE;
5593 
5594 		mutex_lock(&event->mmap_mutex);
5595 		ret = -EINVAL;
5596 
5597 		rb = event->rb;
5598 		if (!rb)
5599 			goto aux_unlock;
5600 
5601 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5602 		aux_size = READ_ONCE(rb->user_page->aux_size);
5603 
5604 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5605 			goto aux_unlock;
5606 
5607 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5608 			goto aux_unlock;
5609 
5610 		/* already mapped with a different offset */
5611 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5612 			goto aux_unlock;
5613 
5614 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5615 			goto aux_unlock;
5616 
5617 		/* already mapped with a different size */
5618 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5619 			goto aux_unlock;
5620 
5621 		if (!is_power_of_2(nr_pages))
5622 			goto aux_unlock;
5623 
5624 		if (!atomic_inc_not_zero(&rb->mmap_count))
5625 			goto aux_unlock;
5626 
5627 		if (rb_has_aux(rb)) {
5628 			atomic_inc(&rb->aux_mmap_count);
5629 			ret = 0;
5630 			goto unlock;
5631 		}
5632 
5633 		atomic_set(&rb->aux_mmap_count, 1);
5634 		user_extra = nr_pages;
5635 
5636 		goto accounting;
5637 	}
5638 
5639 	/*
5640 	 * If we have rb pages ensure they're a power-of-two number, so we
5641 	 * can do bitmasks instead of modulo.
5642 	 */
5643 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5644 		return -EINVAL;
5645 
5646 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5647 		return -EINVAL;
5648 
5649 	WARN_ON_ONCE(event->ctx->parent_ctx);
5650 again:
5651 	mutex_lock(&event->mmap_mutex);
5652 	if (event->rb) {
5653 		if (event->rb->nr_pages != nr_pages) {
5654 			ret = -EINVAL;
5655 			goto unlock;
5656 		}
5657 
5658 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5659 			/*
5660 			 * Raced against perf_mmap_close() through
5661 			 * perf_event_set_output(). Try again, hope for better
5662 			 * luck.
5663 			 */
5664 			mutex_unlock(&event->mmap_mutex);
5665 			goto again;
5666 		}
5667 
5668 		goto unlock;
5669 	}
5670 
5671 	user_extra = nr_pages + 1;
5672 
5673 accounting:
5674 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5675 
5676 	/*
5677 	 * Increase the limit linearly with more CPUs:
5678 	 */
5679 	user_lock_limit *= num_online_cpus();
5680 
5681 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5682 
5683 	if (user_locked > user_lock_limit)
5684 		extra = user_locked - user_lock_limit;
5685 
5686 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5687 	lock_limit >>= PAGE_SHIFT;
5688 	locked = vma->vm_mm->pinned_vm + extra;
5689 
5690 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5691 		!capable(CAP_IPC_LOCK)) {
5692 		ret = -EPERM;
5693 		goto unlock;
5694 	}
5695 
5696 	WARN_ON(!rb && event->rb);
5697 
5698 	if (vma->vm_flags & VM_WRITE)
5699 		flags |= RING_BUFFER_WRITABLE;
5700 
5701 	if (!rb) {
5702 		rb = rb_alloc(nr_pages,
5703 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5704 			      event->cpu, flags);
5705 
5706 		if (!rb) {
5707 			ret = -ENOMEM;
5708 			goto unlock;
5709 		}
5710 
5711 		atomic_set(&rb->mmap_count, 1);
5712 		rb->mmap_user = get_current_user();
5713 		rb->mmap_locked = extra;
5714 
5715 		ring_buffer_attach(event, rb);
5716 
5717 		perf_event_init_userpage(event);
5718 		perf_event_update_userpage(event);
5719 	} else {
5720 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5721 				   event->attr.aux_watermark, flags);
5722 		if (!ret)
5723 			rb->aux_mmap_locked = extra;
5724 	}
5725 
5726 unlock:
5727 	if (!ret) {
5728 		atomic_long_add(user_extra, &user->locked_vm);
5729 		vma->vm_mm->pinned_vm += extra;
5730 
5731 		atomic_inc(&event->mmap_count);
5732 	} else if (rb) {
5733 		atomic_dec(&rb->mmap_count);
5734 	}
5735 aux_unlock:
5736 	mutex_unlock(&event->mmap_mutex);
5737 
5738 	/*
5739 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5740 	 * vma.
5741 	 */
5742 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5743 	vma->vm_ops = &perf_mmap_vmops;
5744 
5745 	if (event->pmu->event_mapped)
5746 		event->pmu->event_mapped(event, vma->vm_mm);
5747 
5748 	return ret;
5749 }
5750 
5751 static int perf_fasync(int fd, struct file *filp, int on)
5752 {
5753 	struct inode *inode = file_inode(filp);
5754 	struct perf_event *event = filp->private_data;
5755 	int retval;
5756 
5757 	inode_lock(inode);
5758 	retval = fasync_helper(fd, filp, on, &event->fasync);
5759 	inode_unlock(inode);
5760 
5761 	if (retval < 0)
5762 		return retval;
5763 
5764 	return 0;
5765 }
5766 
5767 static const struct file_operations perf_fops = {
5768 	.llseek			= no_llseek,
5769 	.release		= perf_release,
5770 	.read			= perf_read,
5771 	.poll			= perf_poll,
5772 	.unlocked_ioctl		= perf_ioctl,
5773 	.compat_ioctl		= perf_compat_ioctl,
5774 	.mmap			= perf_mmap,
5775 	.fasync			= perf_fasync,
5776 };
5777 
5778 /*
5779  * Perf event wakeup
5780  *
5781  * If there's data, ensure we set the poll() state and publish everything
5782  * to user-space before waking everybody up.
5783  */
5784 
5785 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5786 {
5787 	/* only the parent has fasync state */
5788 	if (event->parent)
5789 		event = event->parent;
5790 	return &event->fasync;
5791 }
5792 
5793 void perf_event_wakeup(struct perf_event *event)
5794 {
5795 	ring_buffer_wakeup(event);
5796 
5797 	if (event->pending_kill) {
5798 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5799 		event->pending_kill = 0;
5800 	}
5801 }
5802 
5803 static void perf_pending_event(struct irq_work *entry)
5804 {
5805 	struct perf_event *event = container_of(entry,
5806 			struct perf_event, pending);
5807 	int rctx;
5808 
5809 	rctx = perf_swevent_get_recursion_context();
5810 	/*
5811 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5812 	 * and we won't recurse 'further'.
5813 	 */
5814 
5815 	if (event->pending_disable) {
5816 		event->pending_disable = 0;
5817 		perf_event_disable_local(event);
5818 	}
5819 
5820 	if (event->pending_wakeup) {
5821 		event->pending_wakeup = 0;
5822 		perf_event_wakeup(event);
5823 	}
5824 
5825 	if (rctx >= 0)
5826 		perf_swevent_put_recursion_context(rctx);
5827 }
5828 
5829 /*
5830  * We assume there is only KVM supporting the callbacks.
5831  * Later on, we might change it to a list if there is
5832  * another virtualization implementation supporting the callbacks.
5833  */
5834 struct perf_guest_info_callbacks *perf_guest_cbs;
5835 
5836 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5837 {
5838 	perf_guest_cbs = cbs;
5839 	return 0;
5840 }
5841 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5842 
5843 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5844 {
5845 	perf_guest_cbs = NULL;
5846 	return 0;
5847 }
5848 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5849 
5850 static void
5851 perf_output_sample_regs(struct perf_output_handle *handle,
5852 			struct pt_regs *regs, u64 mask)
5853 {
5854 	int bit;
5855 	DECLARE_BITMAP(_mask, 64);
5856 
5857 	bitmap_from_u64(_mask, mask);
5858 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5859 		u64 val;
5860 
5861 		val = perf_reg_value(regs, bit);
5862 		perf_output_put(handle, val);
5863 	}
5864 }
5865 
5866 static void perf_sample_regs_user(struct perf_regs *regs_user,
5867 				  struct pt_regs *regs,
5868 				  struct pt_regs *regs_user_copy)
5869 {
5870 	if (user_mode(regs)) {
5871 		regs_user->abi = perf_reg_abi(current);
5872 		regs_user->regs = regs;
5873 	} else if (current->mm) {
5874 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5875 	} else {
5876 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5877 		regs_user->regs = NULL;
5878 	}
5879 }
5880 
5881 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5882 				  struct pt_regs *regs)
5883 {
5884 	regs_intr->regs = regs;
5885 	regs_intr->abi  = perf_reg_abi(current);
5886 }
5887 
5888 
5889 /*
5890  * Get remaining task size from user stack pointer.
5891  *
5892  * It'd be better to take stack vma map and limit this more
5893  * precisly, but there's no way to get it safely under interrupt,
5894  * so using TASK_SIZE as limit.
5895  */
5896 static u64 perf_ustack_task_size(struct pt_regs *regs)
5897 {
5898 	unsigned long addr = perf_user_stack_pointer(regs);
5899 
5900 	if (!addr || addr >= TASK_SIZE)
5901 		return 0;
5902 
5903 	return TASK_SIZE - addr;
5904 }
5905 
5906 static u16
5907 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5908 			struct pt_regs *regs)
5909 {
5910 	u64 task_size;
5911 
5912 	/* No regs, no stack pointer, no dump. */
5913 	if (!regs)
5914 		return 0;
5915 
5916 	/*
5917 	 * Check if we fit in with the requested stack size into the:
5918 	 * - TASK_SIZE
5919 	 *   If we don't, we limit the size to the TASK_SIZE.
5920 	 *
5921 	 * - remaining sample size
5922 	 *   If we don't, we customize the stack size to
5923 	 *   fit in to the remaining sample size.
5924 	 */
5925 
5926 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5927 	stack_size = min(stack_size, (u16) task_size);
5928 
5929 	/* Current header size plus static size and dynamic size. */
5930 	header_size += 2 * sizeof(u64);
5931 
5932 	/* Do we fit in with the current stack dump size? */
5933 	if ((u16) (header_size + stack_size) < header_size) {
5934 		/*
5935 		 * If we overflow the maximum size for the sample,
5936 		 * we customize the stack dump size to fit in.
5937 		 */
5938 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5939 		stack_size = round_up(stack_size, sizeof(u64));
5940 	}
5941 
5942 	return stack_size;
5943 }
5944 
5945 static void
5946 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5947 			  struct pt_regs *regs)
5948 {
5949 	/* Case of a kernel thread, nothing to dump */
5950 	if (!regs) {
5951 		u64 size = 0;
5952 		perf_output_put(handle, size);
5953 	} else {
5954 		unsigned long sp;
5955 		unsigned int rem;
5956 		u64 dyn_size;
5957 		mm_segment_t fs;
5958 
5959 		/*
5960 		 * We dump:
5961 		 * static size
5962 		 *   - the size requested by user or the best one we can fit
5963 		 *     in to the sample max size
5964 		 * data
5965 		 *   - user stack dump data
5966 		 * dynamic size
5967 		 *   - the actual dumped size
5968 		 */
5969 
5970 		/* Static size. */
5971 		perf_output_put(handle, dump_size);
5972 
5973 		/* Data. */
5974 		sp = perf_user_stack_pointer(regs);
5975 		fs = get_fs();
5976 		set_fs(USER_DS);
5977 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5978 		set_fs(fs);
5979 		dyn_size = dump_size - rem;
5980 
5981 		perf_output_skip(handle, rem);
5982 
5983 		/* Dynamic size. */
5984 		perf_output_put(handle, dyn_size);
5985 	}
5986 }
5987 
5988 static void __perf_event_header__init_id(struct perf_event_header *header,
5989 					 struct perf_sample_data *data,
5990 					 struct perf_event *event)
5991 {
5992 	u64 sample_type = event->attr.sample_type;
5993 
5994 	data->type = sample_type;
5995 	header->size += event->id_header_size;
5996 
5997 	if (sample_type & PERF_SAMPLE_TID) {
5998 		/* namespace issues */
5999 		data->tid_entry.pid = perf_event_pid(event, current);
6000 		data->tid_entry.tid = perf_event_tid(event, current);
6001 	}
6002 
6003 	if (sample_type & PERF_SAMPLE_TIME)
6004 		data->time = perf_event_clock(event);
6005 
6006 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6007 		data->id = primary_event_id(event);
6008 
6009 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6010 		data->stream_id = event->id;
6011 
6012 	if (sample_type & PERF_SAMPLE_CPU) {
6013 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6014 		data->cpu_entry.reserved = 0;
6015 	}
6016 }
6017 
6018 void perf_event_header__init_id(struct perf_event_header *header,
6019 				struct perf_sample_data *data,
6020 				struct perf_event *event)
6021 {
6022 	if (event->attr.sample_id_all)
6023 		__perf_event_header__init_id(header, data, event);
6024 }
6025 
6026 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6027 					   struct perf_sample_data *data)
6028 {
6029 	u64 sample_type = data->type;
6030 
6031 	if (sample_type & PERF_SAMPLE_TID)
6032 		perf_output_put(handle, data->tid_entry);
6033 
6034 	if (sample_type & PERF_SAMPLE_TIME)
6035 		perf_output_put(handle, data->time);
6036 
6037 	if (sample_type & PERF_SAMPLE_ID)
6038 		perf_output_put(handle, data->id);
6039 
6040 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6041 		perf_output_put(handle, data->stream_id);
6042 
6043 	if (sample_type & PERF_SAMPLE_CPU)
6044 		perf_output_put(handle, data->cpu_entry);
6045 
6046 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6047 		perf_output_put(handle, data->id);
6048 }
6049 
6050 void perf_event__output_id_sample(struct perf_event *event,
6051 				  struct perf_output_handle *handle,
6052 				  struct perf_sample_data *sample)
6053 {
6054 	if (event->attr.sample_id_all)
6055 		__perf_event__output_id_sample(handle, sample);
6056 }
6057 
6058 static void perf_output_read_one(struct perf_output_handle *handle,
6059 				 struct perf_event *event,
6060 				 u64 enabled, u64 running)
6061 {
6062 	u64 read_format = event->attr.read_format;
6063 	u64 values[4];
6064 	int n = 0;
6065 
6066 	values[n++] = perf_event_count(event);
6067 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6068 		values[n++] = enabled +
6069 			atomic64_read(&event->child_total_time_enabled);
6070 	}
6071 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6072 		values[n++] = running +
6073 			atomic64_read(&event->child_total_time_running);
6074 	}
6075 	if (read_format & PERF_FORMAT_ID)
6076 		values[n++] = primary_event_id(event);
6077 
6078 	__output_copy(handle, values, n * sizeof(u64));
6079 }
6080 
6081 static void perf_output_read_group(struct perf_output_handle *handle,
6082 			    struct perf_event *event,
6083 			    u64 enabled, u64 running)
6084 {
6085 	struct perf_event *leader = event->group_leader, *sub;
6086 	u64 read_format = event->attr.read_format;
6087 	u64 values[5];
6088 	int n = 0;
6089 
6090 	values[n++] = 1 + leader->nr_siblings;
6091 
6092 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6093 		values[n++] = enabled;
6094 
6095 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6096 		values[n++] = running;
6097 
6098 	if ((leader != event) &&
6099 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6100 		leader->pmu->read(leader);
6101 
6102 	values[n++] = perf_event_count(leader);
6103 	if (read_format & PERF_FORMAT_ID)
6104 		values[n++] = primary_event_id(leader);
6105 
6106 	__output_copy(handle, values, n * sizeof(u64));
6107 
6108 	for_each_sibling_event(sub, leader) {
6109 		n = 0;
6110 
6111 		if ((sub != event) &&
6112 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6113 			sub->pmu->read(sub);
6114 
6115 		values[n++] = perf_event_count(sub);
6116 		if (read_format & PERF_FORMAT_ID)
6117 			values[n++] = primary_event_id(sub);
6118 
6119 		__output_copy(handle, values, n * sizeof(u64));
6120 	}
6121 }
6122 
6123 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6124 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6125 
6126 /*
6127  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6128  *
6129  * The problem is that its both hard and excessively expensive to iterate the
6130  * child list, not to mention that its impossible to IPI the children running
6131  * on another CPU, from interrupt/NMI context.
6132  */
6133 static void perf_output_read(struct perf_output_handle *handle,
6134 			     struct perf_event *event)
6135 {
6136 	u64 enabled = 0, running = 0, now;
6137 	u64 read_format = event->attr.read_format;
6138 
6139 	/*
6140 	 * compute total_time_enabled, total_time_running
6141 	 * based on snapshot values taken when the event
6142 	 * was last scheduled in.
6143 	 *
6144 	 * we cannot simply called update_context_time()
6145 	 * because of locking issue as we are called in
6146 	 * NMI context
6147 	 */
6148 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6149 		calc_timer_values(event, &now, &enabled, &running);
6150 
6151 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6152 		perf_output_read_group(handle, event, enabled, running);
6153 	else
6154 		perf_output_read_one(handle, event, enabled, running);
6155 }
6156 
6157 void perf_output_sample(struct perf_output_handle *handle,
6158 			struct perf_event_header *header,
6159 			struct perf_sample_data *data,
6160 			struct perf_event *event)
6161 {
6162 	u64 sample_type = data->type;
6163 
6164 	perf_output_put(handle, *header);
6165 
6166 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6167 		perf_output_put(handle, data->id);
6168 
6169 	if (sample_type & PERF_SAMPLE_IP)
6170 		perf_output_put(handle, data->ip);
6171 
6172 	if (sample_type & PERF_SAMPLE_TID)
6173 		perf_output_put(handle, data->tid_entry);
6174 
6175 	if (sample_type & PERF_SAMPLE_TIME)
6176 		perf_output_put(handle, data->time);
6177 
6178 	if (sample_type & PERF_SAMPLE_ADDR)
6179 		perf_output_put(handle, data->addr);
6180 
6181 	if (sample_type & PERF_SAMPLE_ID)
6182 		perf_output_put(handle, data->id);
6183 
6184 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6185 		perf_output_put(handle, data->stream_id);
6186 
6187 	if (sample_type & PERF_SAMPLE_CPU)
6188 		perf_output_put(handle, data->cpu_entry);
6189 
6190 	if (sample_type & PERF_SAMPLE_PERIOD)
6191 		perf_output_put(handle, data->period);
6192 
6193 	if (sample_type & PERF_SAMPLE_READ)
6194 		perf_output_read(handle, event);
6195 
6196 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6197 		int size = 1;
6198 
6199 		size += data->callchain->nr;
6200 		size *= sizeof(u64);
6201 		__output_copy(handle, data->callchain, size);
6202 	}
6203 
6204 	if (sample_type & PERF_SAMPLE_RAW) {
6205 		struct perf_raw_record *raw = data->raw;
6206 
6207 		if (raw) {
6208 			struct perf_raw_frag *frag = &raw->frag;
6209 
6210 			perf_output_put(handle, raw->size);
6211 			do {
6212 				if (frag->copy) {
6213 					__output_custom(handle, frag->copy,
6214 							frag->data, frag->size);
6215 				} else {
6216 					__output_copy(handle, frag->data,
6217 						      frag->size);
6218 				}
6219 				if (perf_raw_frag_last(frag))
6220 					break;
6221 				frag = frag->next;
6222 			} while (1);
6223 			if (frag->pad)
6224 				__output_skip(handle, NULL, frag->pad);
6225 		} else {
6226 			struct {
6227 				u32	size;
6228 				u32	data;
6229 			} raw = {
6230 				.size = sizeof(u32),
6231 				.data = 0,
6232 			};
6233 			perf_output_put(handle, raw);
6234 		}
6235 	}
6236 
6237 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6238 		if (data->br_stack) {
6239 			size_t size;
6240 
6241 			size = data->br_stack->nr
6242 			     * sizeof(struct perf_branch_entry);
6243 
6244 			perf_output_put(handle, data->br_stack->nr);
6245 			perf_output_copy(handle, data->br_stack->entries, size);
6246 		} else {
6247 			/*
6248 			 * we always store at least the value of nr
6249 			 */
6250 			u64 nr = 0;
6251 			perf_output_put(handle, nr);
6252 		}
6253 	}
6254 
6255 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6256 		u64 abi = data->regs_user.abi;
6257 
6258 		/*
6259 		 * If there are no regs to dump, notice it through
6260 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6261 		 */
6262 		perf_output_put(handle, abi);
6263 
6264 		if (abi) {
6265 			u64 mask = event->attr.sample_regs_user;
6266 			perf_output_sample_regs(handle,
6267 						data->regs_user.regs,
6268 						mask);
6269 		}
6270 	}
6271 
6272 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6273 		perf_output_sample_ustack(handle,
6274 					  data->stack_user_size,
6275 					  data->regs_user.regs);
6276 	}
6277 
6278 	if (sample_type & PERF_SAMPLE_WEIGHT)
6279 		perf_output_put(handle, data->weight);
6280 
6281 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6282 		perf_output_put(handle, data->data_src.val);
6283 
6284 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6285 		perf_output_put(handle, data->txn);
6286 
6287 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6288 		u64 abi = data->regs_intr.abi;
6289 		/*
6290 		 * If there are no regs to dump, notice it through
6291 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6292 		 */
6293 		perf_output_put(handle, abi);
6294 
6295 		if (abi) {
6296 			u64 mask = event->attr.sample_regs_intr;
6297 
6298 			perf_output_sample_regs(handle,
6299 						data->regs_intr.regs,
6300 						mask);
6301 		}
6302 	}
6303 
6304 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6305 		perf_output_put(handle, data->phys_addr);
6306 
6307 	if (!event->attr.watermark) {
6308 		int wakeup_events = event->attr.wakeup_events;
6309 
6310 		if (wakeup_events) {
6311 			struct ring_buffer *rb = handle->rb;
6312 			int events = local_inc_return(&rb->events);
6313 
6314 			if (events >= wakeup_events) {
6315 				local_sub(wakeup_events, &rb->events);
6316 				local_inc(&rb->wakeup);
6317 			}
6318 		}
6319 	}
6320 }
6321 
6322 static u64 perf_virt_to_phys(u64 virt)
6323 {
6324 	u64 phys_addr = 0;
6325 	struct page *p = NULL;
6326 
6327 	if (!virt)
6328 		return 0;
6329 
6330 	if (virt >= TASK_SIZE) {
6331 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6332 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6333 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6334 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6335 	} else {
6336 		/*
6337 		 * Walking the pages tables for user address.
6338 		 * Interrupts are disabled, so it prevents any tear down
6339 		 * of the page tables.
6340 		 * Try IRQ-safe __get_user_pages_fast first.
6341 		 * If failed, leave phys_addr as 0.
6342 		 */
6343 		if ((current->mm != NULL) &&
6344 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6345 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6346 
6347 		if (p)
6348 			put_page(p);
6349 	}
6350 
6351 	return phys_addr;
6352 }
6353 
6354 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6355 
6356 struct perf_callchain_entry *
6357 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6358 {
6359 	bool kernel = !event->attr.exclude_callchain_kernel;
6360 	bool user   = !event->attr.exclude_callchain_user;
6361 	/* Disallow cross-task user callchains. */
6362 	bool crosstask = event->ctx->task && event->ctx->task != current;
6363 	const u32 max_stack = event->attr.sample_max_stack;
6364 	struct perf_callchain_entry *callchain;
6365 
6366 	if (!kernel && !user)
6367 		return &__empty_callchain;
6368 
6369 	callchain = get_perf_callchain(regs, 0, kernel, user,
6370 				       max_stack, crosstask, true);
6371 	return callchain ?: &__empty_callchain;
6372 }
6373 
6374 void perf_prepare_sample(struct perf_event_header *header,
6375 			 struct perf_sample_data *data,
6376 			 struct perf_event *event,
6377 			 struct pt_regs *regs)
6378 {
6379 	u64 sample_type = event->attr.sample_type;
6380 
6381 	header->type = PERF_RECORD_SAMPLE;
6382 	header->size = sizeof(*header) + event->header_size;
6383 
6384 	header->misc = 0;
6385 	header->misc |= perf_misc_flags(regs);
6386 
6387 	__perf_event_header__init_id(header, data, event);
6388 
6389 	if (sample_type & PERF_SAMPLE_IP)
6390 		data->ip = perf_instruction_pointer(regs);
6391 
6392 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6393 		int size = 1;
6394 
6395 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6396 			data->callchain = perf_callchain(event, regs);
6397 
6398 		size += data->callchain->nr;
6399 
6400 		header->size += size * sizeof(u64);
6401 	}
6402 
6403 	if (sample_type & PERF_SAMPLE_RAW) {
6404 		struct perf_raw_record *raw = data->raw;
6405 		int size;
6406 
6407 		if (raw) {
6408 			struct perf_raw_frag *frag = &raw->frag;
6409 			u32 sum = 0;
6410 
6411 			do {
6412 				sum += frag->size;
6413 				if (perf_raw_frag_last(frag))
6414 					break;
6415 				frag = frag->next;
6416 			} while (1);
6417 
6418 			size = round_up(sum + sizeof(u32), sizeof(u64));
6419 			raw->size = size - sizeof(u32);
6420 			frag->pad = raw->size - sum;
6421 		} else {
6422 			size = sizeof(u64);
6423 		}
6424 
6425 		header->size += size;
6426 	}
6427 
6428 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6429 		int size = sizeof(u64); /* nr */
6430 		if (data->br_stack) {
6431 			size += data->br_stack->nr
6432 			      * sizeof(struct perf_branch_entry);
6433 		}
6434 		header->size += size;
6435 	}
6436 
6437 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6438 		perf_sample_regs_user(&data->regs_user, regs,
6439 				      &data->regs_user_copy);
6440 
6441 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6442 		/* regs dump ABI info */
6443 		int size = sizeof(u64);
6444 
6445 		if (data->regs_user.regs) {
6446 			u64 mask = event->attr.sample_regs_user;
6447 			size += hweight64(mask) * sizeof(u64);
6448 		}
6449 
6450 		header->size += size;
6451 	}
6452 
6453 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6454 		/*
6455 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6456 		 * processed as the last one or have additional check added
6457 		 * in case new sample type is added, because we could eat
6458 		 * up the rest of the sample size.
6459 		 */
6460 		u16 stack_size = event->attr.sample_stack_user;
6461 		u16 size = sizeof(u64);
6462 
6463 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6464 						     data->regs_user.regs);
6465 
6466 		/*
6467 		 * If there is something to dump, add space for the dump
6468 		 * itself and for the field that tells the dynamic size,
6469 		 * which is how many have been actually dumped.
6470 		 */
6471 		if (stack_size)
6472 			size += sizeof(u64) + stack_size;
6473 
6474 		data->stack_user_size = stack_size;
6475 		header->size += size;
6476 	}
6477 
6478 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6479 		/* regs dump ABI info */
6480 		int size = sizeof(u64);
6481 
6482 		perf_sample_regs_intr(&data->regs_intr, regs);
6483 
6484 		if (data->regs_intr.regs) {
6485 			u64 mask = event->attr.sample_regs_intr;
6486 
6487 			size += hweight64(mask) * sizeof(u64);
6488 		}
6489 
6490 		header->size += size;
6491 	}
6492 
6493 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6494 		data->phys_addr = perf_virt_to_phys(data->addr);
6495 }
6496 
6497 static __always_inline int
6498 __perf_event_output(struct perf_event *event,
6499 		    struct perf_sample_data *data,
6500 		    struct pt_regs *regs,
6501 		    int (*output_begin)(struct perf_output_handle *,
6502 					struct perf_event *,
6503 					unsigned int))
6504 {
6505 	struct perf_output_handle handle;
6506 	struct perf_event_header header;
6507 	int err;
6508 
6509 	/* protect the callchain buffers */
6510 	rcu_read_lock();
6511 
6512 	perf_prepare_sample(&header, data, event, regs);
6513 
6514 	err = output_begin(&handle, event, header.size);
6515 	if (err)
6516 		goto exit;
6517 
6518 	perf_output_sample(&handle, &header, data, event);
6519 
6520 	perf_output_end(&handle);
6521 
6522 exit:
6523 	rcu_read_unlock();
6524 	return err;
6525 }
6526 
6527 void
6528 perf_event_output_forward(struct perf_event *event,
6529 			 struct perf_sample_data *data,
6530 			 struct pt_regs *regs)
6531 {
6532 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6533 }
6534 
6535 void
6536 perf_event_output_backward(struct perf_event *event,
6537 			   struct perf_sample_data *data,
6538 			   struct pt_regs *regs)
6539 {
6540 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6541 }
6542 
6543 int
6544 perf_event_output(struct perf_event *event,
6545 		  struct perf_sample_data *data,
6546 		  struct pt_regs *regs)
6547 {
6548 	return __perf_event_output(event, data, regs, perf_output_begin);
6549 }
6550 
6551 /*
6552  * read event_id
6553  */
6554 
6555 struct perf_read_event {
6556 	struct perf_event_header	header;
6557 
6558 	u32				pid;
6559 	u32				tid;
6560 };
6561 
6562 static void
6563 perf_event_read_event(struct perf_event *event,
6564 			struct task_struct *task)
6565 {
6566 	struct perf_output_handle handle;
6567 	struct perf_sample_data sample;
6568 	struct perf_read_event read_event = {
6569 		.header = {
6570 			.type = PERF_RECORD_READ,
6571 			.misc = 0,
6572 			.size = sizeof(read_event) + event->read_size,
6573 		},
6574 		.pid = perf_event_pid(event, task),
6575 		.tid = perf_event_tid(event, task),
6576 	};
6577 	int ret;
6578 
6579 	perf_event_header__init_id(&read_event.header, &sample, event);
6580 	ret = perf_output_begin(&handle, event, read_event.header.size);
6581 	if (ret)
6582 		return;
6583 
6584 	perf_output_put(&handle, read_event);
6585 	perf_output_read(&handle, event);
6586 	perf_event__output_id_sample(event, &handle, &sample);
6587 
6588 	perf_output_end(&handle);
6589 }
6590 
6591 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6592 
6593 static void
6594 perf_iterate_ctx(struct perf_event_context *ctx,
6595 		   perf_iterate_f output,
6596 		   void *data, bool all)
6597 {
6598 	struct perf_event *event;
6599 
6600 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6601 		if (!all) {
6602 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6603 				continue;
6604 			if (!event_filter_match(event))
6605 				continue;
6606 		}
6607 
6608 		output(event, data);
6609 	}
6610 }
6611 
6612 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6613 {
6614 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6615 	struct perf_event *event;
6616 
6617 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6618 		/*
6619 		 * Skip events that are not fully formed yet; ensure that
6620 		 * if we observe event->ctx, both event and ctx will be
6621 		 * complete enough. See perf_install_in_context().
6622 		 */
6623 		if (!smp_load_acquire(&event->ctx))
6624 			continue;
6625 
6626 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6627 			continue;
6628 		if (!event_filter_match(event))
6629 			continue;
6630 		output(event, data);
6631 	}
6632 }
6633 
6634 /*
6635  * Iterate all events that need to receive side-band events.
6636  *
6637  * For new callers; ensure that account_pmu_sb_event() includes
6638  * your event, otherwise it might not get delivered.
6639  */
6640 static void
6641 perf_iterate_sb(perf_iterate_f output, void *data,
6642 	       struct perf_event_context *task_ctx)
6643 {
6644 	struct perf_event_context *ctx;
6645 	int ctxn;
6646 
6647 	rcu_read_lock();
6648 	preempt_disable();
6649 
6650 	/*
6651 	 * If we have task_ctx != NULL we only notify the task context itself.
6652 	 * The task_ctx is set only for EXIT events before releasing task
6653 	 * context.
6654 	 */
6655 	if (task_ctx) {
6656 		perf_iterate_ctx(task_ctx, output, data, false);
6657 		goto done;
6658 	}
6659 
6660 	perf_iterate_sb_cpu(output, data);
6661 
6662 	for_each_task_context_nr(ctxn) {
6663 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6664 		if (ctx)
6665 			perf_iterate_ctx(ctx, output, data, false);
6666 	}
6667 done:
6668 	preempt_enable();
6669 	rcu_read_unlock();
6670 }
6671 
6672 /*
6673  * Clear all file-based filters at exec, they'll have to be
6674  * re-instated when/if these objects are mmapped again.
6675  */
6676 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6677 {
6678 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6679 	struct perf_addr_filter *filter;
6680 	unsigned int restart = 0, count = 0;
6681 	unsigned long flags;
6682 
6683 	if (!has_addr_filter(event))
6684 		return;
6685 
6686 	raw_spin_lock_irqsave(&ifh->lock, flags);
6687 	list_for_each_entry(filter, &ifh->list, entry) {
6688 		if (filter->path.dentry) {
6689 			event->addr_filters_offs[count] = 0;
6690 			restart++;
6691 		}
6692 
6693 		count++;
6694 	}
6695 
6696 	if (restart)
6697 		event->addr_filters_gen++;
6698 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6699 
6700 	if (restart)
6701 		perf_event_stop(event, 1);
6702 }
6703 
6704 void perf_event_exec(void)
6705 {
6706 	struct perf_event_context *ctx;
6707 	int ctxn;
6708 
6709 	rcu_read_lock();
6710 	for_each_task_context_nr(ctxn) {
6711 		ctx = current->perf_event_ctxp[ctxn];
6712 		if (!ctx)
6713 			continue;
6714 
6715 		perf_event_enable_on_exec(ctxn);
6716 
6717 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6718 				   true);
6719 	}
6720 	rcu_read_unlock();
6721 }
6722 
6723 struct remote_output {
6724 	struct ring_buffer	*rb;
6725 	int			err;
6726 };
6727 
6728 static void __perf_event_output_stop(struct perf_event *event, void *data)
6729 {
6730 	struct perf_event *parent = event->parent;
6731 	struct remote_output *ro = data;
6732 	struct ring_buffer *rb = ro->rb;
6733 	struct stop_event_data sd = {
6734 		.event	= event,
6735 	};
6736 
6737 	if (!has_aux(event))
6738 		return;
6739 
6740 	if (!parent)
6741 		parent = event;
6742 
6743 	/*
6744 	 * In case of inheritance, it will be the parent that links to the
6745 	 * ring-buffer, but it will be the child that's actually using it.
6746 	 *
6747 	 * We are using event::rb to determine if the event should be stopped,
6748 	 * however this may race with ring_buffer_attach() (through set_output),
6749 	 * which will make us skip the event that actually needs to be stopped.
6750 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6751 	 * its rb pointer.
6752 	 */
6753 	if (rcu_dereference(parent->rb) == rb)
6754 		ro->err = __perf_event_stop(&sd);
6755 }
6756 
6757 static int __perf_pmu_output_stop(void *info)
6758 {
6759 	struct perf_event *event = info;
6760 	struct pmu *pmu = event->pmu;
6761 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6762 	struct remote_output ro = {
6763 		.rb	= event->rb,
6764 	};
6765 
6766 	rcu_read_lock();
6767 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6768 	if (cpuctx->task_ctx)
6769 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6770 				   &ro, false);
6771 	rcu_read_unlock();
6772 
6773 	return ro.err;
6774 }
6775 
6776 static void perf_pmu_output_stop(struct perf_event *event)
6777 {
6778 	struct perf_event *iter;
6779 	int err, cpu;
6780 
6781 restart:
6782 	rcu_read_lock();
6783 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6784 		/*
6785 		 * For per-CPU events, we need to make sure that neither they
6786 		 * nor their children are running; for cpu==-1 events it's
6787 		 * sufficient to stop the event itself if it's active, since
6788 		 * it can't have children.
6789 		 */
6790 		cpu = iter->cpu;
6791 		if (cpu == -1)
6792 			cpu = READ_ONCE(iter->oncpu);
6793 
6794 		if (cpu == -1)
6795 			continue;
6796 
6797 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6798 		if (err == -EAGAIN) {
6799 			rcu_read_unlock();
6800 			goto restart;
6801 		}
6802 	}
6803 	rcu_read_unlock();
6804 }
6805 
6806 /*
6807  * task tracking -- fork/exit
6808  *
6809  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6810  */
6811 
6812 struct perf_task_event {
6813 	struct task_struct		*task;
6814 	struct perf_event_context	*task_ctx;
6815 
6816 	struct {
6817 		struct perf_event_header	header;
6818 
6819 		u32				pid;
6820 		u32				ppid;
6821 		u32				tid;
6822 		u32				ptid;
6823 		u64				time;
6824 	} event_id;
6825 };
6826 
6827 static int perf_event_task_match(struct perf_event *event)
6828 {
6829 	return event->attr.comm  || event->attr.mmap ||
6830 	       event->attr.mmap2 || event->attr.mmap_data ||
6831 	       event->attr.task;
6832 }
6833 
6834 static void perf_event_task_output(struct perf_event *event,
6835 				   void *data)
6836 {
6837 	struct perf_task_event *task_event = data;
6838 	struct perf_output_handle handle;
6839 	struct perf_sample_data	sample;
6840 	struct task_struct *task = task_event->task;
6841 	int ret, size = task_event->event_id.header.size;
6842 
6843 	if (!perf_event_task_match(event))
6844 		return;
6845 
6846 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6847 
6848 	ret = perf_output_begin(&handle, event,
6849 				task_event->event_id.header.size);
6850 	if (ret)
6851 		goto out;
6852 
6853 	task_event->event_id.pid = perf_event_pid(event, task);
6854 	task_event->event_id.ppid = perf_event_pid(event, current);
6855 
6856 	task_event->event_id.tid = perf_event_tid(event, task);
6857 	task_event->event_id.ptid = perf_event_tid(event, current);
6858 
6859 	task_event->event_id.time = perf_event_clock(event);
6860 
6861 	perf_output_put(&handle, task_event->event_id);
6862 
6863 	perf_event__output_id_sample(event, &handle, &sample);
6864 
6865 	perf_output_end(&handle);
6866 out:
6867 	task_event->event_id.header.size = size;
6868 }
6869 
6870 static void perf_event_task(struct task_struct *task,
6871 			      struct perf_event_context *task_ctx,
6872 			      int new)
6873 {
6874 	struct perf_task_event task_event;
6875 
6876 	if (!atomic_read(&nr_comm_events) &&
6877 	    !atomic_read(&nr_mmap_events) &&
6878 	    !atomic_read(&nr_task_events))
6879 		return;
6880 
6881 	task_event = (struct perf_task_event){
6882 		.task	  = task,
6883 		.task_ctx = task_ctx,
6884 		.event_id    = {
6885 			.header = {
6886 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6887 				.misc = 0,
6888 				.size = sizeof(task_event.event_id),
6889 			},
6890 			/* .pid  */
6891 			/* .ppid */
6892 			/* .tid  */
6893 			/* .ptid */
6894 			/* .time */
6895 		},
6896 	};
6897 
6898 	perf_iterate_sb(perf_event_task_output,
6899 		       &task_event,
6900 		       task_ctx);
6901 }
6902 
6903 void perf_event_fork(struct task_struct *task)
6904 {
6905 	perf_event_task(task, NULL, 1);
6906 	perf_event_namespaces(task);
6907 }
6908 
6909 /*
6910  * comm tracking
6911  */
6912 
6913 struct perf_comm_event {
6914 	struct task_struct	*task;
6915 	char			*comm;
6916 	int			comm_size;
6917 
6918 	struct {
6919 		struct perf_event_header	header;
6920 
6921 		u32				pid;
6922 		u32				tid;
6923 	} event_id;
6924 };
6925 
6926 static int perf_event_comm_match(struct perf_event *event)
6927 {
6928 	return event->attr.comm;
6929 }
6930 
6931 static void perf_event_comm_output(struct perf_event *event,
6932 				   void *data)
6933 {
6934 	struct perf_comm_event *comm_event = data;
6935 	struct perf_output_handle handle;
6936 	struct perf_sample_data sample;
6937 	int size = comm_event->event_id.header.size;
6938 	int ret;
6939 
6940 	if (!perf_event_comm_match(event))
6941 		return;
6942 
6943 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6944 	ret = perf_output_begin(&handle, event,
6945 				comm_event->event_id.header.size);
6946 
6947 	if (ret)
6948 		goto out;
6949 
6950 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6951 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6952 
6953 	perf_output_put(&handle, comm_event->event_id);
6954 	__output_copy(&handle, comm_event->comm,
6955 				   comm_event->comm_size);
6956 
6957 	perf_event__output_id_sample(event, &handle, &sample);
6958 
6959 	perf_output_end(&handle);
6960 out:
6961 	comm_event->event_id.header.size = size;
6962 }
6963 
6964 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6965 {
6966 	char comm[TASK_COMM_LEN];
6967 	unsigned int size;
6968 
6969 	memset(comm, 0, sizeof(comm));
6970 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6971 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6972 
6973 	comm_event->comm = comm;
6974 	comm_event->comm_size = size;
6975 
6976 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6977 
6978 	perf_iterate_sb(perf_event_comm_output,
6979 		       comm_event,
6980 		       NULL);
6981 }
6982 
6983 void perf_event_comm(struct task_struct *task, bool exec)
6984 {
6985 	struct perf_comm_event comm_event;
6986 
6987 	if (!atomic_read(&nr_comm_events))
6988 		return;
6989 
6990 	comm_event = (struct perf_comm_event){
6991 		.task	= task,
6992 		/* .comm      */
6993 		/* .comm_size */
6994 		.event_id  = {
6995 			.header = {
6996 				.type = PERF_RECORD_COMM,
6997 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6998 				/* .size */
6999 			},
7000 			/* .pid */
7001 			/* .tid */
7002 		},
7003 	};
7004 
7005 	perf_event_comm_event(&comm_event);
7006 }
7007 
7008 /*
7009  * namespaces tracking
7010  */
7011 
7012 struct perf_namespaces_event {
7013 	struct task_struct		*task;
7014 
7015 	struct {
7016 		struct perf_event_header	header;
7017 
7018 		u32				pid;
7019 		u32				tid;
7020 		u64				nr_namespaces;
7021 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7022 	} event_id;
7023 };
7024 
7025 static int perf_event_namespaces_match(struct perf_event *event)
7026 {
7027 	return event->attr.namespaces;
7028 }
7029 
7030 static void perf_event_namespaces_output(struct perf_event *event,
7031 					 void *data)
7032 {
7033 	struct perf_namespaces_event *namespaces_event = data;
7034 	struct perf_output_handle handle;
7035 	struct perf_sample_data sample;
7036 	u16 header_size = namespaces_event->event_id.header.size;
7037 	int ret;
7038 
7039 	if (!perf_event_namespaces_match(event))
7040 		return;
7041 
7042 	perf_event_header__init_id(&namespaces_event->event_id.header,
7043 				   &sample, event);
7044 	ret = perf_output_begin(&handle, event,
7045 				namespaces_event->event_id.header.size);
7046 	if (ret)
7047 		goto out;
7048 
7049 	namespaces_event->event_id.pid = perf_event_pid(event,
7050 							namespaces_event->task);
7051 	namespaces_event->event_id.tid = perf_event_tid(event,
7052 							namespaces_event->task);
7053 
7054 	perf_output_put(&handle, namespaces_event->event_id);
7055 
7056 	perf_event__output_id_sample(event, &handle, &sample);
7057 
7058 	perf_output_end(&handle);
7059 out:
7060 	namespaces_event->event_id.header.size = header_size;
7061 }
7062 
7063 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7064 				   struct task_struct *task,
7065 				   const struct proc_ns_operations *ns_ops)
7066 {
7067 	struct path ns_path;
7068 	struct inode *ns_inode;
7069 	void *error;
7070 
7071 	error = ns_get_path(&ns_path, task, ns_ops);
7072 	if (!error) {
7073 		ns_inode = ns_path.dentry->d_inode;
7074 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7075 		ns_link_info->ino = ns_inode->i_ino;
7076 		path_put(&ns_path);
7077 	}
7078 }
7079 
7080 void perf_event_namespaces(struct task_struct *task)
7081 {
7082 	struct perf_namespaces_event namespaces_event;
7083 	struct perf_ns_link_info *ns_link_info;
7084 
7085 	if (!atomic_read(&nr_namespaces_events))
7086 		return;
7087 
7088 	namespaces_event = (struct perf_namespaces_event){
7089 		.task	= task,
7090 		.event_id  = {
7091 			.header = {
7092 				.type = PERF_RECORD_NAMESPACES,
7093 				.misc = 0,
7094 				.size = sizeof(namespaces_event.event_id),
7095 			},
7096 			/* .pid */
7097 			/* .tid */
7098 			.nr_namespaces = NR_NAMESPACES,
7099 			/* .link_info[NR_NAMESPACES] */
7100 		},
7101 	};
7102 
7103 	ns_link_info = namespaces_event.event_id.link_info;
7104 
7105 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7106 			       task, &mntns_operations);
7107 
7108 #ifdef CONFIG_USER_NS
7109 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7110 			       task, &userns_operations);
7111 #endif
7112 #ifdef CONFIG_NET_NS
7113 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7114 			       task, &netns_operations);
7115 #endif
7116 #ifdef CONFIG_UTS_NS
7117 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7118 			       task, &utsns_operations);
7119 #endif
7120 #ifdef CONFIG_IPC_NS
7121 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7122 			       task, &ipcns_operations);
7123 #endif
7124 #ifdef CONFIG_PID_NS
7125 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7126 			       task, &pidns_operations);
7127 #endif
7128 #ifdef CONFIG_CGROUPS
7129 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7130 			       task, &cgroupns_operations);
7131 #endif
7132 
7133 	perf_iterate_sb(perf_event_namespaces_output,
7134 			&namespaces_event,
7135 			NULL);
7136 }
7137 
7138 /*
7139  * mmap tracking
7140  */
7141 
7142 struct perf_mmap_event {
7143 	struct vm_area_struct	*vma;
7144 
7145 	const char		*file_name;
7146 	int			file_size;
7147 	int			maj, min;
7148 	u64			ino;
7149 	u64			ino_generation;
7150 	u32			prot, flags;
7151 
7152 	struct {
7153 		struct perf_event_header	header;
7154 
7155 		u32				pid;
7156 		u32				tid;
7157 		u64				start;
7158 		u64				len;
7159 		u64				pgoff;
7160 	} event_id;
7161 };
7162 
7163 static int perf_event_mmap_match(struct perf_event *event,
7164 				 void *data)
7165 {
7166 	struct perf_mmap_event *mmap_event = data;
7167 	struct vm_area_struct *vma = mmap_event->vma;
7168 	int executable = vma->vm_flags & VM_EXEC;
7169 
7170 	return (!executable && event->attr.mmap_data) ||
7171 	       (executable && (event->attr.mmap || event->attr.mmap2));
7172 }
7173 
7174 static void perf_event_mmap_output(struct perf_event *event,
7175 				   void *data)
7176 {
7177 	struct perf_mmap_event *mmap_event = data;
7178 	struct perf_output_handle handle;
7179 	struct perf_sample_data sample;
7180 	int size = mmap_event->event_id.header.size;
7181 	int ret;
7182 
7183 	if (!perf_event_mmap_match(event, data))
7184 		return;
7185 
7186 	if (event->attr.mmap2) {
7187 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7188 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7189 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7190 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7191 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7192 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7193 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7194 	}
7195 
7196 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7197 	ret = perf_output_begin(&handle, event,
7198 				mmap_event->event_id.header.size);
7199 	if (ret)
7200 		goto out;
7201 
7202 	mmap_event->event_id.pid = perf_event_pid(event, current);
7203 	mmap_event->event_id.tid = perf_event_tid(event, current);
7204 
7205 	perf_output_put(&handle, mmap_event->event_id);
7206 
7207 	if (event->attr.mmap2) {
7208 		perf_output_put(&handle, mmap_event->maj);
7209 		perf_output_put(&handle, mmap_event->min);
7210 		perf_output_put(&handle, mmap_event->ino);
7211 		perf_output_put(&handle, mmap_event->ino_generation);
7212 		perf_output_put(&handle, mmap_event->prot);
7213 		perf_output_put(&handle, mmap_event->flags);
7214 	}
7215 
7216 	__output_copy(&handle, mmap_event->file_name,
7217 				   mmap_event->file_size);
7218 
7219 	perf_event__output_id_sample(event, &handle, &sample);
7220 
7221 	perf_output_end(&handle);
7222 out:
7223 	mmap_event->event_id.header.size = size;
7224 }
7225 
7226 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7227 {
7228 	struct vm_area_struct *vma = mmap_event->vma;
7229 	struct file *file = vma->vm_file;
7230 	int maj = 0, min = 0;
7231 	u64 ino = 0, gen = 0;
7232 	u32 prot = 0, flags = 0;
7233 	unsigned int size;
7234 	char tmp[16];
7235 	char *buf = NULL;
7236 	char *name;
7237 
7238 	if (vma->vm_flags & VM_READ)
7239 		prot |= PROT_READ;
7240 	if (vma->vm_flags & VM_WRITE)
7241 		prot |= PROT_WRITE;
7242 	if (vma->vm_flags & VM_EXEC)
7243 		prot |= PROT_EXEC;
7244 
7245 	if (vma->vm_flags & VM_MAYSHARE)
7246 		flags = MAP_SHARED;
7247 	else
7248 		flags = MAP_PRIVATE;
7249 
7250 	if (vma->vm_flags & VM_DENYWRITE)
7251 		flags |= MAP_DENYWRITE;
7252 	if (vma->vm_flags & VM_MAYEXEC)
7253 		flags |= MAP_EXECUTABLE;
7254 	if (vma->vm_flags & VM_LOCKED)
7255 		flags |= MAP_LOCKED;
7256 	if (vma->vm_flags & VM_HUGETLB)
7257 		flags |= MAP_HUGETLB;
7258 
7259 	if (file) {
7260 		struct inode *inode;
7261 		dev_t dev;
7262 
7263 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7264 		if (!buf) {
7265 			name = "//enomem";
7266 			goto cpy_name;
7267 		}
7268 		/*
7269 		 * d_path() works from the end of the rb backwards, so we
7270 		 * need to add enough zero bytes after the string to handle
7271 		 * the 64bit alignment we do later.
7272 		 */
7273 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7274 		if (IS_ERR(name)) {
7275 			name = "//toolong";
7276 			goto cpy_name;
7277 		}
7278 		inode = file_inode(vma->vm_file);
7279 		dev = inode->i_sb->s_dev;
7280 		ino = inode->i_ino;
7281 		gen = inode->i_generation;
7282 		maj = MAJOR(dev);
7283 		min = MINOR(dev);
7284 
7285 		goto got_name;
7286 	} else {
7287 		if (vma->vm_ops && vma->vm_ops->name) {
7288 			name = (char *) vma->vm_ops->name(vma);
7289 			if (name)
7290 				goto cpy_name;
7291 		}
7292 
7293 		name = (char *)arch_vma_name(vma);
7294 		if (name)
7295 			goto cpy_name;
7296 
7297 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7298 				vma->vm_end >= vma->vm_mm->brk) {
7299 			name = "[heap]";
7300 			goto cpy_name;
7301 		}
7302 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7303 				vma->vm_end >= vma->vm_mm->start_stack) {
7304 			name = "[stack]";
7305 			goto cpy_name;
7306 		}
7307 
7308 		name = "//anon";
7309 		goto cpy_name;
7310 	}
7311 
7312 cpy_name:
7313 	strlcpy(tmp, name, sizeof(tmp));
7314 	name = tmp;
7315 got_name:
7316 	/*
7317 	 * Since our buffer works in 8 byte units we need to align our string
7318 	 * size to a multiple of 8. However, we must guarantee the tail end is
7319 	 * zero'd out to avoid leaking random bits to userspace.
7320 	 */
7321 	size = strlen(name)+1;
7322 	while (!IS_ALIGNED(size, sizeof(u64)))
7323 		name[size++] = '\0';
7324 
7325 	mmap_event->file_name = name;
7326 	mmap_event->file_size = size;
7327 	mmap_event->maj = maj;
7328 	mmap_event->min = min;
7329 	mmap_event->ino = ino;
7330 	mmap_event->ino_generation = gen;
7331 	mmap_event->prot = prot;
7332 	mmap_event->flags = flags;
7333 
7334 	if (!(vma->vm_flags & VM_EXEC))
7335 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7336 
7337 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7338 
7339 	perf_iterate_sb(perf_event_mmap_output,
7340 		       mmap_event,
7341 		       NULL);
7342 
7343 	kfree(buf);
7344 }
7345 
7346 /*
7347  * Check whether inode and address range match filter criteria.
7348  */
7349 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7350 				     struct file *file, unsigned long offset,
7351 				     unsigned long size)
7352 {
7353 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7354 	if (!filter->path.dentry)
7355 		return false;
7356 
7357 	if (d_inode(filter->path.dentry) != file_inode(file))
7358 		return false;
7359 
7360 	if (filter->offset > offset + size)
7361 		return false;
7362 
7363 	if (filter->offset + filter->size < offset)
7364 		return false;
7365 
7366 	return true;
7367 }
7368 
7369 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7370 {
7371 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7372 	struct vm_area_struct *vma = data;
7373 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7374 	struct file *file = vma->vm_file;
7375 	struct perf_addr_filter *filter;
7376 	unsigned int restart = 0, count = 0;
7377 
7378 	if (!has_addr_filter(event))
7379 		return;
7380 
7381 	if (!file)
7382 		return;
7383 
7384 	raw_spin_lock_irqsave(&ifh->lock, flags);
7385 	list_for_each_entry(filter, &ifh->list, entry) {
7386 		if (perf_addr_filter_match(filter, file, off,
7387 					     vma->vm_end - vma->vm_start)) {
7388 			event->addr_filters_offs[count] = vma->vm_start;
7389 			restart++;
7390 		}
7391 
7392 		count++;
7393 	}
7394 
7395 	if (restart)
7396 		event->addr_filters_gen++;
7397 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7398 
7399 	if (restart)
7400 		perf_event_stop(event, 1);
7401 }
7402 
7403 /*
7404  * Adjust all task's events' filters to the new vma
7405  */
7406 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7407 {
7408 	struct perf_event_context *ctx;
7409 	int ctxn;
7410 
7411 	/*
7412 	 * Data tracing isn't supported yet and as such there is no need
7413 	 * to keep track of anything that isn't related to executable code:
7414 	 */
7415 	if (!(vma->vm_flags & VM_EXEC))
7416 		return;
7417 
7418 	rcu_read_lock();
7419 	for_each_task_context_nr(ctxn) {
7420 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7421 		if (!ctx)
7422 			continue;
7423 
7424 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7425 	}
7426 	rcu_read_unlock();
7427 }
7428 
7429 void perf_event_mmap(struct vm_area_struct *vma)
7430 {
7431 	struct perf_mmap_event mmap_event;
7432 
7433 	if (!atomic_read(&nr_mmap_events))
7434 		return;
7435 
7436 	mmap_event = (struct perf_mmap_event){
7437 		.vma	= vma,
7438 		/* .file_name */
7439 		/* .file_size */
7440 		.event_id  = {
7441 			.header = {
7442 				.type = PERF_RECORD_MMAP,
7443 				.misc = PERF_RECORD_MISC_USER,
7444 				/* .size */
7445 			},
7446 			/* .pid */
7447 			/* .tid */
7448 			.start  = vma->vm_start,
7449 			.len    = vma->vm_end - vma->vm_start,
7450 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7451 		},
7452 		/* .maj (attr_mmap2 only) */
7453 		/* .min (attr_mmap2 only) */
7454 		/* .ino (attr_mmap2 only) */
7455 		/* .ino_generation (attr_mmap2 only) */
7456 		/* .prot (attr_mmap2 only) */
7457 		/* .flags (attr_mmap2 only) */
7458 	};
7459 
7460 	perf_addr_filters_adjust(vma);
7461 	perf_event_mmap_event(&mmap_event);
7462 }
7463 
7464 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7465 			  unsigned long size, u64 flags)
7466 {
7467 	struct perf_output_handle handle;
7468 	struct perf_sample_data sample;
7469 	struct perf_aux_event {
7470 		struct perf_event_header	header;
7471 		u64				offset;
7472 		u64				size;
7473 		u64				flags;
7474 	} rec = {
7475 		.header = {
7476 			.type = PERF_RECORD_AUX,
7477 			.misc = 0,
7478 			.size = sizeof(rec),
7479 		},
7480 		.offset		= head,
7481 		.size		= size,
7482 		.flags		= flags,
7483 	};
7484 	int ret;
7485 
7486 	perf_event_header__init_id(&rec.header, &sample, event);
7487 	ret = perf_output_begin(&handle, event, rec.header.size);
7488 
7489 	if (ret)
7490 		return;
7491 
7492 	perf_output_put(&handle, rec);
7493 	perf_event__output_id_sample(event, &handle, &sample);
7494 
7495 	perf_output_end(&handle);
7496 }
7497 
7498 /*
7499  * Lost/dropped samples logging
7500  */
7501 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7502 {
7503 	struct perf_output_handle handle;
7504 	struct perf_sample_data sample;
7505 	int ret;
7506 
7507 	struct {
7508 		struct perf_event_header	header;
7509 		u64				lost;
7510 	} lost_samples_event = {
7511 		.header = {
7512 			.type = PERF_RECORD_LOST_SAMPLES,
7513 			.misc = 0,
7514 			.size = sizeof(lost_samples_event),
7515 		},
7516 		.lost		= lost,
7517 	};
7518 
7519 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7520 
7521 	ret = perf_output_begin(&handle, event,
7522 				lost_samples_event.header.size);
7523 	if (ret)
7524 		return;
7525 
7526 	perf_output_put(&handle, lost_samples_event);
7527 	perf_event__output_id_sample(event, &handle, &sample);
7528 	perf_output_end(&handle);
7529 }
7530 
7531 /*
7532  * context_switch tracking
7533  */
7534 
7535 struct perf_switch_event {
7536 	struct task_struct	*task;
7537 	struct task_struct	*next_prev;
7538 
7539 	struct {
7540 		struct perf_event_header	header;
7541 		u32				next_prev_pid;
7542 		u32				next_prev_tid;
7543 	} event_id;
7544 };
7545 
7546 static int perf_event_switch_match(struct perf_event *event)
7547 {
7548 	return event->attr.context_switch;
7549 }
7550 
7551 static void perf_event_switch_output(struct perf_event *event, void *data)
7552 {
7553 	struct perf_switch_event *se = data;
7554 	struct perf_output_handle handle;
7555 	struct perf_sample_data sample;
7556 	int ret;
7557 
7558 	if (!perf_event_switch_match(event))
7559 		return;
7560 
7561 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7562 	if (event->ctx->task) {
7563 		se->event_id.header.type = PERF_RECORD_SWITCH;
7564 		se->event_id.header.size = sizeof(se->event_id.header);
7565 	} else {
7566 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7567 		se->event_id.header.size = sizeof(se->event_id);
7568 		se->event_id.next_prev_pid =
7569 					perf_event_pid(event, se->next_prev);
7570 		se->event_id.next_prev_tid =
7571 					perf_event_tid(event, se->next_prev);
7572 	}
7573 
7574 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7575 
7576 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7577 	if (ret)
7578 		return;
7579 
7580 	if (event->ctx->task)
7581 		perf_output_put(&handle, se->event_id.header);
7582 	else
7583 		perf_output_put(&handle, se->event_id);
7584 
7585 	perf_event__output_id_sample(event, &handle, &sample);
7586 
7587 	perf_output_end(&handle);
7588 }
7589 
7590 static void perf_event_switch(struct task_struct *task,
7591 			      struct task_struct *next_prev, bool sched_in)
7592 {
7593 	struct perf_switch_event switch_event;
7594 
7595 	/* N.B. caller checks nr_switch_events != 0 */
7596 
7597 	switch_event = (struct perf_switch_event){
7598 		.task		= task,
7599 		.next_prev	= next_prev,
7600 		.event_id	= {
7601 			.header = {
7602 				/* .type */
7603 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7604 				/* .size */
7605 			},
7606 			/* .next_prev_pid */
7607 			/* .next_prev_tid */
7608 		},
7609 	};
7610 
7611 	if (!sched_in && task->state == TASK_RUNNING)
7612 		switch_event.event_id.header.misc |=
7613 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7614 
7615 	perf_iterate_sb(perf_event_switch_output,
7616 		       &switch_event,
7617 		       NULL);
7618 }
7619 
7620 /*
7621  * IRQ throttle logging
7622  */
7623 
7624 static void perf_log_throttle(struct perf_event *event, int enable)
7625 {
7626 	struct perf_output_handle handle;
7627 	struct perf_sample_data sample;
7628 	int ret;
7629 
7630 	struct {
7631 		struct perf_event_header	header;
7632 		u64				time;
7633 		u64				id;
7634 		u64				stream_id;
7635 	} throttle_event = {
7636 		.header = {
7637 			.type = PERF_RECORD_THROTTLE,
7638 			.misc = 0,
7639 			.size = sizeof(throttle_event),
7640 		},
7641 		.time		= perf_event_clock(event),
7642 		.id		= primary_event_id(event),
7643 		.stream_id	= event->id,
7644 	};
7645 
7646 	if (enable)
7647 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7648 
7649 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7650 
7651 	ret = perf_output_begin(&handle, event,
7652 				throttle_event.header.size);
7653 	if (ret)
7654 		return;
7655 
7656 	perf_output_put(&handle, throttle_event);
7657 	perf_event__output_id_sample(event, &handle, &sample);
7658 	perf_output_end(&handle);
7659 }
7660 
7661 /*
7662  * ksymbol register/unregister tracking
7663  */
7664 
7665 struct perf_ksymbol_event {
7666 	const char	*name;
7667 	int		name_len;
7668 	struct {
7669 		struct perf_event_header        header;
7670 		u64				addr;
7671 		u32				len;
7672 		u16				ksym_type;
7673 		u16				flags;
7674 	} event_id;
7675 };
7676 
7677 static int perf_event_ksymbol_match(struct perf_event *event)
7678 {
7679 	return event->attr.ksymbol;
7680 }
7681 
7682 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7683 {
7684 	struct perf_ksymbol_event *ksymbol_event = data;
7685 	struct perf_output_handle handle;
7686 	struct perf_sample_data sample;
7687 	int ret;
7688 
7689 	if (!perf_event_ksymbol_match(event))
7690 		return;
7691 
7692 	perf_event_header__init_id(&ksymbol_event->event_id.header,
7693 				   &sample, event);
7694 	ret = perf_output_begin(&handle, event,
7695 				ksymbol_event->event_id.header.size);
7696 	if (ret)
7697 		return;
7698 
7699 	perf_output_put(&handle, ksymbol_event->event_id);
7700 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7701 	perf_event__output_id_sample(event, &handle, &sample);
7702 
7703 	perf_output_end(&handle);
7704 }
7705 
7706 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7707 			const char *sym)
7708 {
7709 	struct perf_ksymbol_event ksymbol_event;
7710 	char name[KSYM_NAME_LEN];
7711 	u16 flags = 0;
7712 	int name_len;
7713 
7714 	if (!atomic_read(&nr_ksymbol_events))
7715 		return;
7716 
7717 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7718 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7719 		goto err;
7720 
7721 	strlcpy(name, sym, KSYM_NAME_LEN);
7722 	name_len = strlen(name) + 1;
7723 	while (!IS_ALIGNED(name_len, sizeof(u64)))
7724 		name[name_len++] = '\0';
7725 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7726 
7727 	if (unregister)
7728 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7729 
7730 	ksymbol_event = (struct perf_ksymbol_event){
7731 		.name = name,
7732 		.name_len = name_len,
7733 		.event_id = {
7734 			.header = {
7735 				.type = PERF_RECORD_KSYMBOL,
7736 				.size = sizeof(ksymbol_event.event_id) +
7737 					name_len,
7738 			},
7739 			.addr = addr,
7740 			.len = len,
7741 			.ksym_type = ksym_type,
7742 			.flags = flags,
7743 		},
7744 	};
7745 
7746 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7747 	return;
7748 err:
7749 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7750 }
7751 
7752 /*
7753  * bpf program load/unload tracking
7754  */
7755 
7756 struct perf_bpf_event {
7757 	struct bpf_prog	*prog;
7758 	struct {
7759 		struct perf_event_header        header;
7760 		u16				type;
7761 		u16				flags;
7762 		u32				id;
7763 		u8				tag[BPF_TAG_SIZE];
7764 	} event_id;
7765 };
7766 
7767 static int perf_event_bpf_match(struct perf_event *event)
7768 {
7769 	return event->attr.bpf_event;
7770 }
7771 
7772 static void perf_event_bpf_output(struct perf_event *event, void *data)
7773 {
7774 	struct perf_bpf_event *bpf_event = data;
7775 	struct perf_output_handle handle;
7776 	struct perf_sample_data sample;
7777 	int ret;
7778 
7779 	if (!perf_event_bpf_match(event))
7780 		return;
7781 
7782 	perf_event_header__init_id(&bpf_event->event_id.header,
7783 				   &sample, event);
7784 	ret = perf_output_begin(&handle, event,
7785 				bpf_event->event_id.header.size);
7786 	if (ret)
7787 		return;
7788 
7789 	perf_output_put(&handle, bpf_event->event_id);
7790 	perf_event__output_id_sample(event, &handle, &sample);
7791 
7792 	perf_output_end(&handle);
7793 }
7794 
7795 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7796 					 enum perf_bpf_event_type type)
7797 {
7798 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7799 	char sym[KSYM_NAME_LEN];
7800 	int i;
7801 
7802 	if (prog->aux->func_cnt == 0) {
7803 		bpf_get_prog_name(prog, sym);
7804 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7805 				   (u64)(unsigned long)prog->bpf_func,
7806 				   prog->jited_len, unregister, sym);
7807 	} else {
7808 		for (i = 0; i < prog->aux->func_cnt; i++) {
7809 			struct bpf_prog *subprog = prog->aux->func[i];
7810 
7811 			bpf_get_prog_name(subprog, sym);
7812 			perf_event_ksymbol(
7813 				PERF_RECORD_KSYMBOL_TYPE_BPF,
7814 				(u64)(unsigned long)subprog->bpf_func,
7815 				subprog->jited_len, unregister, sym);
7816 		}
7817 	}
7818 }
7819 
7820 void perf_event_bpf_event(struct bpf_prog *prog,
7821 			  enum perf_bpf_event_type type,
7822 			  u16 flags)
7823 {
7824 	struct perf_bpf_event bpf_event;
7825 
7826 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
7827 	    type >= PERF_BPF_EVENT_MAX)
7828 		return;
7829 
7830 	switch (type) {
7831 	case PERF_BPF_EVENT_PROG_LOAD:
7832 	case PERF_BPF_EVENT_PROG_UNLOAD:
7833 		if (atomic_read(&nr_ksymbol_events))
7834 			perf_event_bpf_emit_ksymbols(prog, type);
7835 		break;
7836 	default:
7837 		break;
7838 	}
7839 
7840 	if (!atomic_read(&nr_bpf_events))
7841 		return;
7842 
7843 	bpf_event = (struct perf_bpf_event){
7844 		.prog = prog,
7845 		.event_id = {
7846 			.header = {
7847 				.type = PERF_RECORD_BPF_EVENT,
7848 				.size = sizeof(bpf_event.event_id),
7849 			},
7850 			.type = type,
7851 			.flags = flags,
7852 			.id = prog->aux->id,
7853 		},
7854 	};
7855 
7856 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7857 
7858 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7859 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7860 }
7861 
7862 void perf_event_itrace_started(struct perf_event *event)
7863 {
7864 	event->attach_state |= PERF_ATTACH_ITRACE;
7865 }
7866 
7867 static void perf_log_itrace_start(struct perf_event *event)
7868 {
7869 	struct perf_output_handle handle;
7870 	struct perf_sample_data sample;
7871 	struct perf_aux_event {
7872 		struct perf_event_header        header;
7873 		u32				pid;
7874 		u32				tid;
7875 	} rec;
7876 	int ret;
7877 
7878 	if (event->parent)
7879 		event = event->parent;
7880 
7881 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7882 	    event->attach_state & PERF_ATTACH_ITRACE)
7883 		return;
7884 
7885 	rec.header.type	= PERF_RECORD_ITRACE_START;
7886 	rec.header.misc	= 0;
7887 	rec.header.size	= sizeof(rec);
7888 	rec.pid	= perf_event_pid(event, current);
7889 	rec.tid	= perf_event_tid(event, current);
7890 
7891 	perf_event_header__init_id(&rec.header, &sample, event);
7892 	ret = perf_output_begin(&handle, event, rec.header.size);
7893 
7894 	if (ret)
7895 		return;
7896 
7897 	perf_output_put(&handle, rec);
7898 	perf_event__output_id_sample(event, &handle, &sample);
7899 
7900 	perf_output_end(&handle);
7901 }
7902 
7903 static int
7904 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7905 {
7906 	struct hw_perf_event *hwc = &event->hw;
7907 	int ret = 0;
7908 	u64 seq;
7909 
7910 	seq = __this_cpu_read(perf_throttled_seq);
7911 	if (seq != hwc->interrupts_seq) {
7912 		hwc->interrupts_seq = seq;
7913 		hwc->interrupts = 1;
7914 	} else {
7915 		hwc->interrupts++;
7916 		if (unlikely(throttle
7917 			     && hwc->interrupts >= max_samples_per_tick)) {
7918 			__this_cpu_inc(perf_throttled_count);
7919 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7920 			hwc->interrupts = MAX_INTERRUPTS;
7921 			perf_log_throttle(event, 0);
7922 			ret = 1;
7923 		}
7924 	}
7925 
7926 	if (event->attr.freq) {
7927 		u64 now = perf_clock();
7928 		s64 delta = now - hwc->freq_time_stamp;
7929 
7930 		hwc->freq_time_stamp = now;
7931 
7932 		if (delta > 0 && delta < 2*TICK_NSEC)
7933 			perf_adjust_period(event, delta, hwc->last_period, true);
7934 	}
7935 
7936 	return ret;
7937 }
7938 
7939 int perf_event_account_interrupt(struct perf_event *event)
7940 {
7941 	return __perf_event_account_interrupt(event, 1);
7942 }
7943 
7944 /*
7945  * Generic event overflow handling, sampling.
7946  */
7947 
7948 static int __perf_event_overflow(struct perf_event *event,
7949 				   int throttle, struct perf_sample_data *data,
7950 				   struct pt_regs *regs)
7951 {
7952 	int events = atomic_read(&event->event_limit);
7953 	int ret = 0;
7954 
7955 	/*
7956 	 * Non-sampling counters might still use the PMI to fold short
7957 	 * hardware counters, ignore those.
7958 	 */
7959 	if (unlikely(!is_sampling_event(event)))
7960 		return 0;
7961 
7962 	ret = __perf_event_account_interrupt(event, throttle);
7963 
7964 	/*
7965 	 * XXX event_limit might not quite work as expected on inherited
7966 	 * events
7967 	 */
7968 
7969 	event->pending_kill = POLL_IN;
7970 	if (events && atomic_dec_and_test(&event->event_limit)) {
7971 		ret = 1;
7972 		event->pending_kill = POLL_HUP;
7973 
7974 		perf_event_disable_inatomic(event);
7975 	}
7976 
7977 	READ_ONCE(event->overflow_handler)(event, data, regs);
7978 
7979 	if (*perf_event_fasync(event) && event->pending_kill) {
7980 		event->pending_wakeup = 1;
7981 		irq_work_queue(&event->pending);
7982 	}
7983 
7984 	return ret;
7985 }
7986 
7987 int perf_event_overflow(struct perf_event *event,
7988 			  struct perf_sample_data *data,
7989 			  struct pt_regs *regs)
7990 {
7991 	return __perf_event_overflow(event, 1, data, regs);
7992 }
7993 
7994 /*
7995  * Generic software event infrastructure
7996  */
7997 
7998 struct swevent_htable {
7999 	struct swevent_hlist		*swevent_hlist;
8000 	struct mutex			hlist_mutex;
8001 	int				hlist_refcount;
8002 
8003 	/* Recursion avoidance in each contexts */
8004 	int				recursion[PERF_NR_CONTEXTS];
8005 };
8006 
8007 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8008 
8009 /*
8010  * We directly increment event->count and keep a second value in
8011  * event->hw.period_left to count intervals. This period event
8012  * is kept in the range [-sample_period, 0] so that we can use the
8013  * sign as trigger.
8014  */
8015 
8016 u64 perf_swevent_set_period(struct perf_event *event)
8017 {
8018 	struct hw_perf_event *hwc = &event->hw;
8019 	u64 period = hwc->last_period;
8020 	u64 nr, offset;
8021 	s64 old, val;
8022 
8023 	hwc->last_period = hwc->sample_period;
8024 
8025 again:
8026 	old = val = local64_read(&hwc->period_left);
8027 	if (val < 0)
8028 		return 0;
8029 
8030 	nr = div64_u64(period + val, period);
8031 	offset = nr * period;
8032 	val -= offset;
8033 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8034 		goto again;
8035 
8036 	return nr;
8037 }
8038 
8039 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8040 				    struct perf_sample_data *data,
8041 				    struct pt_regs *regs)
8042 {
8043 	struct hw_perf_event *hwc = &event->hw;
8044 	int throttle = 0;
8045 
8046 	if (!overflow)
8047 		overflow = perf_swevent_set_period(event);
8048 
8049 	if (hwc->interrupts == MAX_INTERRUPTS)
8050 		return;
8051 
8052 	for (; overflow; overflow--) {
8053 		if (__perf_event_overflow(event, throttle,
8054 					    data, regs)) {
8055 			/*
8056 			 * We inhibit the overflow from happening when
8057 			 * hwc->interrupts == MAX_INTERRUPTS.
8058 			 */
8059 			break;
8060 		}
8061 		throttle = 1;
8062 	}
8063 }
8064 
8065 static void perf_swevent_event(struct perf_event *event, u64 nr,
8066 			       struct perf_sample_data *data,
8067 			       struct pt_regs *regs)
8068 {
8069 	struct hw_perf_event *hwc = &event->hw;
8070 
8071 	local64_add(nr, &event->count);
8072 
8073 	if (!regs)
8074 		return;
8075 
8076 	if (!is_sampling_event(event))
8077 		return;
8078 
8079 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8080 		data->period = nr;
8081 		return perf_swevent_overflow(event, 1, data, regs);
8082 	} else
8083 		data->period = event->hw.last_period;
8084 
8085 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8086 		return perf_swevent_overflow(event, 1, data, regs);
8087 
8088 	if (local64_add_negative(nr, &hwc->period_left))
8089 		return;
8090 
8091 	perf_swevent_overflow(event, 0, data, regs);
8092 }
8093 
8094 static int perf_exclude_event(struct perf_event *event,
8095 			      struct pt_regs *regs)
8096 {
8097 	if (event->hw.state & PERF_HES_STOPPED)
8098 		return 1;
8099 
8100 	if (regs) {
8101 		if (event->attr.exclude_user && user_mode(regs))
8102 			return 1;
8103 
8104 		if (event->attr.exclude_kernel && !user_mode(regs))
8105 			return 1;
8106 	}
8107 
8108 	return 0;
8109 }
8110 
8111 static int perf_swevent_match(struct perf_event *event,
8112 				enum perf_type_id type,
8113 				u32 event_id,
8114 				struct perf_sample_data *data,
8115 				struct pt_regs *regs)
8116 {
8117 	if (event->attr.type != type)
8118 		return 0;
8119 
8120 	if (event->attr.config != event_id)
8121 		return 0;
8122 
8123 	if (perf_exclude_event(event, regs))
8124 		return 0;
8125 
8126 	return 1;
8127 }
8128 
8129 static inline u64 swevent_hash(u64 type, u32 event_id)
8130 {
8131 	u64 val = event_id | (type << 32);
8132 
8133 	return hash_64(val, SWEVENT_HLIST_BITS);
8134 }
8135 
8136 static inline struct hlist_head *
8137 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8138 {
8139 	u64 hash = swevent_hash(type, event_id);
8140 
8141 	return &hlist->heads[hash];
8142 }
8143 
8144 /* For the read side: events when they trigger */
8145 static inline struct hlist_head *
8146 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8147 {
8148 	struct swevent_hlist *hlist;
8149 
8150 	hlist = rcu_dereference(swhash->swevent_hlist);
8151 	if (!hlist)
8152 		return NULL;
8153 
8154 	return __find_swevent_head(hlist, type, event_id);
8155 }
8156 
8157 /* For the event head insertion and removal in the hlist */
8158 static inline struct hlist_head *
8159 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8160 {
8161 	struct swevent_hlist *hlist;
8162 	u32 event_id = event->attr.config;
8163 	u64 type = event->attr.type;
8164 
8165 	/*
8166 	 * Event scheduling is always serialized against hlist allocation
8167 	 * and release. Which makes the protected version suitable here.
8168 	 * The context lock guarantees that.
8169 	 */
8170 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8171 					  lockdep_is_held(&event->ctx->lock));
8172 	if (!hlist)
8173 		return NULL;
8174 
8175 	return __find_swevent_head(hlist, type, event_id);
8176 }
8177 
8178 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8179 				    u64 nr,
8180 				    struct perf_sample_data *data,
8181 				    struct pt_regs *regs)
8182 {
8183 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8184 	struct perf_event *event;
8185 	struct hlist_head *head;
8186 
8187 	rcu_read_lock();
8188 	head = find_swevent_head_rcu(swhash, type, event_id);
8189 	if (!head)
8190 		goto end;
8191 
8192 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8193 		if (perf_swevent_match(event, type, event_id, data, regs))
8194 			perf_swevent_event(event, nr, data, regs);
8195 	}
8196 end:
8197 	rcu_read_unlock();
8198 }
8199 
8200 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8201 
8202 int perf_swevent_get_recursion_context(void)
8203 {
8204 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8205 
8206 	return get_recursion_context(swhash->recursion);
8207 }
8208 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8209 
8210 void perf_swevent_put_recursion_context(int rctx)
8211 {
8212 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8213 
8214 	put_recursion_context(swhash->recursion, rctx);
8215 }
8216 
8217 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8218 {
8219 	struct perf_sample_data data;
8220 
8221 	if (WARN_ON_ONCE(!regs))
8222 		return;
8223 
8224 	perf_sample_data_init(&data, addr, 0);
8225 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8226 }
8227 
8228 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8229 {
8230 	int rctx;
8231 
8232 	preempt_disable_notrace();
8233 	rctx = perf_swevent_get_recursion_context();
8234 	if (unlikely(rctx < 0))
8235 		goto fail;
8236 
8237 	___perf_sw_event(event_id, nr, regs, addr);
8238 
8239 	perf_swevent_put_recursion_context(rctx);
8240 fail:
8241 	preempt_enable_notrace();
8242 }
8243 
8244 static void perf_swevent_read(struct perf_event *event)
8245 {
8246 }
8247 
8248 static int perf_swevent_add(struct perf_event *event, int flags)
8249 {
8250 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8251 	struct hw_perf_event *hwc = &event->hw;
8252 	struct hlist_head *head;
8253 
8254 	if (is_sampling_event(event)) {
8255 		hwc->last_period = hwc->sample_period;
8256 		perf_swevent_set_period(event);
8257 	}
8258 
8259 	hwc->state = !(flags & PERF_EF_START);
8260 
8261 	head = find_swevent_head(swhash, event);
8262 	if (WARN_ON_ONCE(!head))
8263 		return -EINVAL;
8264 
8265 	hlist_add_head_rcu(&event->hlist_entry, head);
8266 	perf_event_update_userpage(event);
8267 
8268 	return 0;
8269 }
8270 
8271 static void perf_swevent_del(struct perf_event *event, int flags)
8272 {
8273 	hlist_del_rcu(&event->hlist_entry);
8274 }
8275 
8276 static void perf_swevent_start(struct perf_event *event, int flags)
8277 {
8278 	event->hw.state = 0;
8279 }
8280 
8281 static void perf_swevent_stop(struct perf_event *event, int flags)
8282 {
8283 	event->hw.state = PERF_HES_STOPPED;
8284 }
8285 
8286 /* Deref the hlist from the update side */
8287 static inline struct swevent_hlist *
8288 swevent_hlist_deref(struct swevent_htable *swhash)
8289 {
8290 	return rcu_dereference_protected(swhash->swevent_hlist,
8291 					 lockdep_is_held(&swhash->hlist_mutex));
8292 }
8293 
8294 static void swevent_hlist_release(struct swevent_htable *swhash)
8295 {
8296 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8297 
8298 	if (!hlist)
8299 		return;
8300 
8301 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8302 	kfree_rcu(hlist, rcu_head);
8303 }
8304 
8305 static void swevent_hlist_put_cpu(int cpu)
8306 {
8307 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8308 
8309 	mutex_lock(&swhash->hlist_mutex);
8310 
8311 	if (!--swhash->hlist_refcount)
8312 		swevent_hlist_release(swhash);
8313 
8314 	mutex_unlock(&swhash->hlist_mutex);
8315 }
8316 
8317 static void swevent_hlist_put(void)
8318 {
8319 	int cpu;
8320 
8321 	for_each_possible_cpu(cpu)
8322 		swevent_hlist_put_cpu(cpu);
8323 }
8324 
8325 static int swevent_hlist_get_cpu(int cpu)
8326 {
8327 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8328 	int err = 0;
8329 
8330 	mutex_lock(&swhash->hlist_mutex);
8331 	if (!swevent_hlist_deref(swhash) &&
8332 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8333 		struct swevent_hlist *hlist;
8334 
8335 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8336 		if (!hlist) {
8337 			err = -ENOMEM;
8338 			goto exit;
8339 		}
8340 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8341 	}
8342 	swhash->hlist_refcount++;
8343 exit:
8344 	mutex_unlock(&swhash->hlist_mutex);
8345 
8346 	return err;
8347 }
8348 
8349 static int swevent_hlist_get(void)
8350 {
8351 	int err, cpu, failed_cpu;
8352 
8353 	mutex_lock(&pmus_lock);
8354 	for_each_possible_cpu(cpu) {
8355 		err = swevent_hlist_get_cpu(cpu);
8356 		if (err) {
8357 			failed_cpu = cpu;
8358 			goto fail;
8359 		}
8360 	}
8361 	mutex_unlock(&pmus_lock);
8362 	return 0;
8363 fail:
8364 	for_each_possible_cpu(cpu) {
8365 		if (cpu == failed_cpu)
8366 			break;
8367 		swevent_hlist_put_cpu(cpu);
8368 	}
8369 	mutex_unlock(&pmus_lock);
8370 	return err;
8371 }
8372 
8373 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8374 
8375 static void sw_perf_event_destroy(struct perf_event *event)
8376 {
8377 	u64 event_id = event->attr.config;
8378 
8379 	WARN_ON(event->parent);
8380 
8381 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8382 	swevent_hlist_put();
8383 }
8384 
8385 static int perf_swevent_init(struct perf_event *event)
8386 {
8387 	u64 event_id = event->attr.config;
8388 
8389 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8390 		return -ENOENT;
8391 
8392 	/*
8393 	 * no branch sampling for software events
8394 	 */
8395 	if (has_branch_stack(event))
8396 		return -EOPNOTSUPP;
8397 
8398 	switch (event_id) {
8399 	case PERF_COUNT_SW_CPU_CLOCK:
8400 	case PERF_COUNT_SW_TASK_CLOCK:
8401 		return -ENOENT;
8402 
8403 	default:
8404 		break;
8405 	}
8406 
8407 	if (event_id >= PERF_COUNT_SW_MAX)
8408 		return -ENOENT;
8409 
8410 	if (!event->parent) {
8411 		int err;
8412 
8413 		err = swevent_hlist_get();
8414 		if (err)
8415 			return err;
8416 
8417 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8418 		event->destroy = sw_perf_event_destroy;
8419 	}
8420 
8421 	return 0;
8422 }
8423 
8424 static struct pmu perf_swevent = {
8425 	.task_ctx_nr	= perf_sw_context,
8426 
8427 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8428 
8429 	.event_init	= perf_swevent_init,
8430 	.add		= perf_swevent_add,
8431 	.del		= perf_swevent_del,
8432 	.start		= perf_swevent_start,
8433 	.stop		= perf_swevent_stop,
8434 	.read		= perf_swevent_read,
8435 };
8436 
8437 #ifdef CONFIG_EVENT_TRACING
8438 
8439 static int perf_tp_filter_match(struct perf_event *event,
8440 				struct perf_sample_data *data)
8441 {
8442 	void *record = data->raw->frag.data;
8443 
8444 	/* only top level events have filters set */
8445 	if (event->parent)
8446 		event = event->parent;
8447 
8448 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8449 		return 1;
8450 	return 0;
8451 }
8452 
8453 static int perf_tp_event_match(struct perf_event *event,
8454 				struct perf_sample_data *data,
8455 				struct pt_regs *regs)
8456 {
8457 	if (event->hw.state & PERF_HES_STOPPED)
8458 		return 0;
8459 	/*
8460 	 * All tracepoints are from kernel-space.
8461 	 */
8462 	if (event->attr.exclude_kernel)
8463 		return 0;
8464 
8465 	if (!perf_tp_filter_match(event, data))
8466 		return 0;
8467 
8468 	return 1;
8469 }
8470 
8471 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8472 			       struct trace_event_call *call, u64 count,
8473 			       struct pt_regs *regs, struct hlist_head *head,
8474 			       struct task_struct *task)
8475 {
8476 	if (bpf_prog_array_valid(call)) {
8477 		*(struct pt_regs **)raw_data = regs;
8478 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8479 			perf_swevent_put_recursion_context(rctx);
8480 			return;
8481 		}
8482 	}
8483 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8484 		      rctx, task);
8485 }
8486 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8487 
8488 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8489 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8490 		   struct task_struct *task)
8491 {
8492 	struct perf_sample_data data;
8493 	struct perf_event *event;
8494 
8495 	struct perf_raw_record raw = {
8496 		.frag = {
8497 			.size = entry_size,
8498 			.data = record,
8499 		},
8500 	};
8501 
8502 	perf_sample_data_init(&data, 0, 0);
8503 	data.raw = &raw;
8504 
8505 	perf_trace_buf_update(record, event_type);
8506 
8507 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8508 		if (perf_tp_event_match(event, &data, regs))
8509 			perf_swevent_event(event, count, &data, regs);
8510 	}
8511 
8512 	/*
8513 	 * If we got specified a target task, also iterate its context and
8514 	 * deliver this event there too.
8515 	 */
8516 	if (task && task != current) {
8517 		struct perf_event_context *ctx;
8518 		struct trace_entry *entry = record;
8519 
8520 		rcu_read_lock();
8521 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8522 		if (!ctx)
8523 			goto unlock;
8524 
8525 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8526 			if (event->cpu != smp_processor_id())
8527 				continue;
8528 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8529 				continue;
8530 			if (event->attr.config != entry->type)
8531 				continue;
8532 			if (perf_tp_event_match(event, &data, regs))
8533 				perf_swevent_event(event, count, &data, regs);
8534 		}
8535 unlock:
8536 		rcu_read_unlock();
8537 	}
8538 
8539 	perf_swevent_put_recursion_context(rctx);
8540 }
8541 EXPORT_SYMBOL_GPL(perf_tp_event);
8542 
8543 static void tp_perf_event_destroy(struct perf_event *event)
8544 {
8545 	perf_trace_destroy(event);
8546 }
8547 
8548 static int perf_tp_event_init(struct perf_event *event)
8549 {
8550 	int err;
8551 
8552 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8553 		return -ENOENT;
8554 
8555 	/*
8556 	 * no branch sampling for tracepoint events
8557 	 */
8558 	if (has_branch_stack(event))
8559 		return -EOPNOTSUPP;
8560 
8561 	err = perf_trace_init(event);
8562 	if (err)
8563 		return err;
8564 
8565 	event->destroy = tp_perf_event_destroy;
8566 
8567 	return 0;
8568 }
8569 
8570 static struct pmu perf_tracepoint = {
8571 	.task_ctx_nr	= perf_sw_context,
8572 
8573 	.event_init	= perf_tp_event_init,
8574 	.add		= perf_trace_add,
8575 	.del		= perf_trace_del,
8576 	.start		= perf_swevent_start,
8577 	.stop		= perf_swevent_stop,
8578 	.read		= perf_swevent_read,
8579 };
8580 
8581 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8582 /*
8583  * Flags in config, used by dynamic PMU kprobe and uprobe
8584  * The flags should match following PMU_FORMAT_ATTR().
8585  *
8586  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8587  *                               if not set, create kprobe/uprobe
8588  *
8589  * The following values specify a reference counter (or semaphore in the
8590  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8591  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8592  *
8593  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
8594  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
8595  */
8596 enum perf_probe_config {
8597 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8598 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8599 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8600 };
8601 
8602 PMU_FORMAT_ATTR(retprobe, "config:0");
8603 #endif
8604 
8605 #ifdef CONFIG_KPROBE_EVENTS
8606 static struct attribute *kprobe_attrs[] = {
8607 	&format_attr_retprobe.attr,
8608 	NULL,
8609 };
8610 
8611 static struct attribute_group kprobe_format_group = {
8612 	.name = "format",
8613 	.attrs = kprobe_attrs,
8614 };
8615 
8616 static const struct attribute_group *kprobe_attr_groups[] = {
8617 	&kprobe_format_group,
8618 	NULL,
8619 };
8620 
8621 static int perf_kprobe_event_init(struct perf_event *event);
8622 static struct pmu perf_kprobe = {
8623 	.task_ctx_nr	= perf_sw_context,
8624 	.event_init	= perf_kprobe_event_init,
8625 	.add		= perf_trace_add,
8626 	.del		= perf_trace_del,
8627 	.start		= perf_swevent_start,
8628 	.stop		= perf_swevent_stop,
8629 	.read		= perf_swevent_read,
8630 	.attr_groups	= kprobe_attr_groups,
8631 };
8632 
8633 static int perf_kprobe_event_init(struct perf_event *event)
8634 {
8635 	int err;
8636 	bool is_retprobe;
8637 
8638 	if (event->attr.type != perf_kprobe.type)
8639 		return -ENOENT;
8640 
8641 	if (!capable(CAP_SYS_ADMIN))
8642 		return -EACCES;
8643 
8644 	/*
8645 	 * no branch sampling for probe events
8646 	 */
8647 	if (has_branch_stack(event))
8648 		return -EOPNOTSUPP;
8649 
8650 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8651 	err = perf_kprobe_init(event, is_retprobe);
8652 	if (err)
8653 		return err;
8654 
8655 	event->destroy = perf_kprobe_destroy;
8656 
8657 	return 0;
8658 }
8659 #endif /* CONFIG_KPROBE_EVENTS */
8660 
8661 #ifdef CONFIG_UPROBE_EVENTS
8662 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8663 
8664 static struct attribute *uprobe_attrs[] = {
8665 	&format_attr_retprobe.attr,
8666 	&format_attr_ref_ctr_offset.attr,
8667 	NULL,
8668 };
8669 
8670 static struct attribute_group uprobe_format_group = {
8671 	.name = "format",
8672 	.attrs = uprobe_attrs,
8673 };
8674 
8675 static const struct attribute_group *uprobe_attr_groups[] = {
8676 	&uprobe_format_group,
8677 	NULL,
8678 };
8679 
8680 static int perf_uprobe_event_init(struct perf_event *event);
8681 static struct pmu perf_uprobe = {
8682 	.task_ctx_nr	= perf_sw_context,
8683 	.event_init	= perf_uprobe_event_init,
8684 	.add		= perf_trace_add,
8685 	.del		= perf_trace_del,
8686 	.start		= perf_swevent_start,
8687 	.stop		= perf_swevent_stop,
8688 	.read		= perf_swevent_read,
8689 	.attr_groups	= uprobe_attr_groups,
8690 };
8691 
8692 static int perf_uprobe_event_init(struct perf_event *event)
8693 {
8694 	int err;
8695 	unsigned long ref_ctr_offset;
8696 	bool is_retprobe;
8697 
8698 	if (event->attr.type != perf_uprobe.type)
8699 		return -ENOENT;
8700 
8701 	if (!capable(CAP_SYS_ADMIN))
8702 		return -EACCES;
8703 
8704 	/*
8705 	 * no branch sampling for probe events
8706 	 */
8707 	if (has_branch_stack(event))
8708 		return -EOPNOTSUPP;
8709 
8710 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8711 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8712 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8713 	if (err)
8714 		return err;
8715 
8716 	event->destroy = perf_uprobe_destroy;
8717 
8718 	return 0;
8719 }
8720 #endif /* CONFIG_UPROBE_EVENTS */
8721 
8722 static inline void perf_tp_register(void)
8723 {
8724 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8725 #ifdef CONFIG_KPROBE_EVENTS
8726 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8727 #endif
8728 #ifdef CONFIG_UPROBE_EVENTS
8729 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8730 #endif
8731 }
8732 
8733 static void perf_event_free_filter(struct perf_event *event)
8734 {
8735 	ftrace_profile_free_filter(event);
8736 }
8737 
8738 #ifdef CONFIG_BPF_SYSCALL
8739 static void bpf_overflow_handler(struct perf_event *event,
8740 				 struct perf_sample_data *data,
8741 				 struct pt_regs *regs)
8742 {
8743 	struct bpf_perf_event_data_kern ctx = {
8744 		.data = data,
8745 		.event = event,
8746 	};
8747 	int ret = 0;
8748 
8749 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8750 	preempt_disable();
8751 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8752 		goto out;
8753 	rcu_read_lock();
8754 	ret = BPF_PROG_RUN(event->prog, &ctx);
8755 	rcu_read_unlock();
8756 out:
8757 	__this_cpu_dec(bpf_prog_active);
8758 	preempt_enable();
8759 	if (!ret)
8760 		return;
8761 
8762 	event->orig_overflow_handler(event, data, regs);
8763 }
8764 
8765 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8766 {
8767 	struct bpf_prog *prog;
8768 
8769 	if (event->overflow_handler_context)
8770 		/* hw breakpoint or kernel counter */
8771 		return -EINVAL;
8772 
8773 	if (event->prog)
8774 		return -EEXIST;
8775 
8776 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8777 	if (IS_ERR(prog))
8778 		return PTR_ERR(prog);
8779 
8780 	event->prog = prog;
8781 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8782 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8783 	return 0;
8784 }
8785 
8786 static void perf_event_free_bpf_handler(struct perf_event *event)
8787 {
8788 	struct bpf_prog *prog = event->prog;
8789 
8790 	if (!prog)
8791 		return;
8792 
8793 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8794 	event->prog = NULL;
8795 	bpf_prog_put(prog);
8796 }
8797 #else
8798 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8799 {
8800 	return -EOPNOTSUPP;
8801 }
8802 static void perf_event_free_bpf_handler(struct perf_event *event)
8803 {
8804 }
8805 #endif
8806 
8807 /*
8808  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8809  * with perf_event_open()
8810  */
8811 static inline bool perf_event_is_tracing(struct perf_event *event)
8812 {
8813 	if (event->pmu == &perf_tracepoint)
8814 		return true;
8815 #ifdef CONFIG_KPROBE_EVENTS
8816 	if (event->pmu == &perf_kprobe)
8817 		return true;
8818 #endif
8819 #ifdef CONFIG_UPROBE_EVENTS
8820 	if (event->pmu == &perf_uprobe)
8821 		return true;
8822 #endif
8823 	return false;
8824 }
8825 
8826 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8827 {
8828 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8829 	struct bpf_prog *prog;
8830 	int ret;
8831 
8832 	if (!perf_event_is_tracing(event))
8833 		return perf_event_set_bpf_handler(event, prog_fd);
8834 
8835 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8836 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8837 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8838 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8839 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8840 		return -EINVAL;
8841 
8842 	prog = bpf_prog_get(prog_fd);
8843 	if (IS_ERR(prog))
8844 		return PTR_ERR(prog);
8845 
8846 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8847 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8848 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8849 		/* valid fd, but invalid bpf program type */
8850 		bpf_prog_put(prog);
8851 		return -EINVAL;
8852 	}
8853 
8854 	/* Kprobe override only works for kprobes, not uprobes. */
8855 	if (prog->kprobe_override &&
8856 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8857 		bpf_prog_put(prog);
8858 		return -EINVAL;
8859 	}
8860 
8861 	if (is_tracepoint || is_syscall_tp) {
8862 		int off = trace_event_get_offsets(event->tp_event);
8863 
8864 		if (prog->aux->max_ctx_offset > off) {
8865 			bpf_prog_put(prog);
8866 			return -EACCES;
8867 		}
8868 	}
8869 
8870 	ret = perf_event_attach_bpf_prog(event, prog);
8871 	if (ret)
8872 		bpf_prog_put(prog);
8873 	return ret;
8874 }
8875 
8876 static void perf_event_free_bpf_prog(struct perf_event *event)
8877 {
8878 	if (!perf_event_is_tracing(event)) {
8879 		perf_event_free_bpf_handler(event);
8880 		return;
8881 	}
8882 	perf_event_detach_bpf_prog(event);
8883 }
8884 
8885 #else
8886 
8887 static inline void perf_tp_register(void)
8888 {
8889 }
8890 
8891 static void perf_event_free_filter(struct perf_event *event)
8892 {
8893 }
8894 
8895 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8896 {
8897 	return -ENOENT;
8898 }
8899 
8900 static void perf_event_free_bpf_prog(struct perf_event *event)
8901 {
8902 }
8903 #endif /* CONFIG_EVENT_TRACING */
8904 
8905 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8906 void perf_bp_event(struct perf_event *bp, void *data)
8907 {
8908 	struct perf_sample_data sample;
8909 	struct pt_regs *regs = data;
8910 
8911 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8912 
8913 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8914 		perf_swevent_event(bp, 1, &sample, regs);
8915 }
8916 #endif
8917 
8918 /*
8919  * Allocate a new address filter
8920  */
8921 static struct perf_addr_filter *
8922 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8923 {
8924 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8925 	struct perf_addr_filter *filter;
8926 
8927 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8928 	if (!filter)
8929 		return NULL;
8930 
8931 	INIT_LIST_HEAD(&filter->entry);
8932 	list_add_tail(&filter->entry, filters);
8933 
8934 	return filter;
8935 }
8936 
8937 static void free_filters_list(struct list_head *filters)
8938 {
8939 	struct perf_addr_filter *filter, *iter;
8940 
8941 	list_for_each_entry_safe(filter, iter, filters, entry) {
8942 		path_put(&filter->path);
8943 		list_del(&filter->entry);
8944 		kfree(filter);
8945 	}
8946 }
8947 
8948 /*
8949  * Free existing address filters and optionally install new ones
8950  */
8951 static void perf_addr_filters_splice(struct perf_event *event,
8952 				     struct list_head *head)
8953 {
8954 	unsigned long flags;
8955 	LIST_HEAD(list);
8956 
8957 	if (!has_addr_filter(event))
8958 		return;
8959 
8960 	/* don't bother with children, they don't have their own filters */
8961 	if (event->parent)
8962 		return;
8963 
8964 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8965 
8966 	list_splice_init(&event->addr_filters.list, &list);
8967 	if (head)
8968 		list_splice(head, &event->addr_filters.list);
8969 
8970 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8971 
8972 	free_filters_list(&list);
8973 }
8974 
8975 /*
8976  * Scan through mm's vmas and see if one of them matches the
8977  * @filter; if so, adjust filter's address range.
8978  * Called with mm::mmap_sem down for reading.
8979  */
8980 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8981 					    struct mm_struct *mm)
8982 {
8983 	struct vm_area_struct *vma;
8984 
8985 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8986 		struct file *file = vma->vm_file;
8987 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8988 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8989 
8990 		if (!file)
8991 			continue;
8992 
8993 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8994 			continue;
8995 
8996 		return vma->vm_start;
8997 	}
8998 
8999 	return 0;
9000 }
9001 
9002 /*
9003  * Update event's address range filters based on the
9004  * task's existing mappings, if any.
9005  */
9006 static void perf_event_addr_filters_apply(struct perf_event *event)
9007 {
9008 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9009 	struct task_struct *task = READ_ONCE(event->ctx->task);
9010 	struct perf_addr_filter *filter;
9011 	struct mm_struct *mm = NULL;
9012 	unsigned int count = 0;
9013 	unsigned long flags;
9014 
9015 	/*
9016 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9017 	 * will stop on the parent's child_mutex that our caller is also holding
9018 	 */
9019 	if (task == TASK_TOMBSTONE)
9020 		return;
9021 
9022 	if (!ifh->nr_file_filters)
9023 		return;
9024 
9025 	mm = get_task_mm(event->ctx->task);
9026 	if (!mm)
9027 		goto restart;
9028 
9029 	down_read(&mm->mmap_sem);
9030 
9031 	raw_spin_lock_irqsave(&ifh->lock, flags);
9032 	list_for_each_entry(filter, &ifh->list, entry) {
9033 		event->addr_filters_offs[count] = 0;
9034 
9035 		/*
9036 		 * Adjust base offset if the filter is associated to a binary
9037 		 * that needs to be mapped:
9038 		 */
9039 		if (filter->path.dentry)
9040 			event->addr_filters_offs[count] =
9041 				perf_addr_filter_apply(filter, mm);
9042 
9043 		count++;
9044 	}
9045 
9046 	event->addr_filters_gen++;
9047 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9048 
9049 	up_read(&mm->mmap_sem);
9050 
9051 	mmput(mm);
9052 
9053 restart:
9054 	perf_event_stop(event, 1);
9055 }
9056 
9057 /*
9058  * Address range filtering: limiting the data to certain
9059  * instruction address ranges. Filters are ioctl()ed to us from
9060  * userspace as ascii strings.
9061  *
9062  * Filter string format:
9063  *
9064  * ACTION RANGE_SPEC
9065  * where ACTION is one of the
9066  *  * "filter": limit the trace to this region
9067  *  * "start": start tracing from this address
9068  *  * "stop": stop tracing at this address/region;
9069  * RANGE_SPEC is
9070  *  * for kernel addresses: <start address>[/<size>]
9071  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9072  *
9073  * if <size> is not specified or is zero, the range is treated as a single
9074  * address; not valid for ACTION=="filter".
9075  */
9076 enum {
9077 	IF_ACT_NONE = -1,
9078 	IF_ACT_FILTER,
9079 	IF_ACT_START,
9080 	IF_ACT_STOP,
9081 	IF_SRC_FILE,
9082 	IF_SRC_KERNEL,
9083 	IF_SRC_FILEADDR,
9084 	IF_SRC_KERNELADDR,
9085 };
9086 
9087 enum {
9088 	IF_STATE_ACTION = 0,
9089 	IF_STATE_SOURCE,
9090 	IF_STATE_END,
9091 };
9092 
9093 static const match_table_t if_tokens = {
9094 	{ IF_ACT_FILTER,	"filter" },
9095 	{ IF_ACT_START,		"start" },
9096 	{ IF_ACT_STOP,		"stop" },
9097 	{ IF_SRC_FILE,		"%u/%u@%s" },
9098 	{ IF_SRC_KERNEL,	"%u/%u" },
9099 	{ IF_SRC_FILEADDR,	"%u@%s" },
9100 	{ IF_SRC_KERNELADDR,	"%u" },
9101 	{ IF_ACT_NONE,		NULL },
9102 };
9103 
9104 /*
9105  * Address filter string parser
9106  */
9107 static int
9108 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9109 			     struct list_head *filters)
9110 {
9111 	struct perf_addr_filter *filter = NULL;
9112 	char *start, *orig, *filename = NULL;
9113 	substring_t args[MAX_OPT_ARGS];
9114 	int state = IF_STATE_ACTION, token;
9115 	unsigned int kernel = 0;
9116 	int ret = -EINVAL;
9117 
9118 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9119 	if (!fstr)
9120 		return -ENOMEM;
9121 
9122 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9123 		static const enum perf_addr_filter_action_t actions[] = {
9124 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9125 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9126 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9127 		};
9128 		ret = -EINVAL;
9129 
9130 		if (!*start)
9131 			continue;
9132 
9133 		/* filter definition begins */
9134 		if (state == IF_STATE_ACTION) {
9135 			filter = perf_addr_filter_new(event, filters);
9136 			if (!filter)
9137 				goto fail;
9138 		}
9139 
9140 		token = match_token(start, if_tokens, args);
9141 		switch (token) {
9142 		case IF_ACT_FILTER:
9143 		case IF_ACT_START:
9144 		case IF_ACT_STOP:
9145 			if (state != IF_STATE_ACTION)
9146 				goto fail;
9147 
9148 			filter->action = actions[token];
9149 			state = IF_STATE_SOURCE;
9150 			break;
9151 
9152 		case IF_SRC_KERNELADDR:
9153 		case IF_SRC_KERNEL:
9154 			kernel = 1;
9155 
9156 		case IF_SRC_FILEADDR:
9157 		case IF_SRC_FILE:
9158 			if (state != IF_STATE_SOURCE)
9159 				goto fail;
9160 
9161 			*args[0].to = 0;
9162 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9163 			if (ret)
9164 				goto fail;
9165 
9166 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9167 				*args[1].to = 0;
9168 				ret = kstrtoul(args[1].from, 0, &filter->size);
9169 				if (ret)
9170 					goto fail;
9171 			}
9172 
9173 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9174 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9175 
9176 				filename = match_strdup(&args[fpos]);
9177 				if (!filename) {
9178 					ret = -ENOMEM;
9179 					goto fail;
9180 				}
9181 			}
9182 
9183 			state = IF_STATE_END;
9184 			break;
9185 
9186 		default:
9187 			goto fail;
9188 		}
9189 
9190 		/*
9191 		 * Filter definition is fully parsed, validate and install it.
9192 		 * Make sure that it doesn't contradict itself or the event's
9193 		 * attribute.
9194 		 */
9195 		if (state == IF_STATE_END) {
9196 			ret = -EINVAL;
9197 			if (kernel && event->attr.exclude_kernel)
9198 				goto fail;
9199 
9200 			/*
9201 			 * ACTION "filter" must have a non-zero length region
9202 			 * specified.
9203 			 */
9204 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9205 			    !filter->size)
9206 				goto fail;
9207 
9208 			if (!kernel) {
9209 				if (!filename)
9210 					goto fail;
9211 
9212 				/*
9213 				 * For now, we only support file-based filters
9214 				 * in per-task events; doing so for CPU-wide
9215 				 * events requires additional context switching
9216 				 * trickery, since same object code will be
9217 				 * mapped at different virtual addresses in
9218 				 * different processes.
9219 				 */
9220 				ret = -EOPNOTSUPP;
9221 				if (!event->ctx->task)
9222 					goto fail_free_name;
9223 
9224 				/* look up the path and grab its inode */
9225 				ret = kern_path(filename, LOOKUP_FOLLOW,
9226 						&filter->path);
9227 				if (ret)
9228 					goto fail_free_name;
9229 
9230 				kfree(filename);
9231 				filename = NULL;
9232 
9233 				ret = -EINVAL;
9234 				if (!filter->path.dentry ||
9235 				    !S_ISREG(d_inode(filter->path.dentry)
9236 					     ->i_mode))
9237 					goto fail;
9238 
9239 				event->addr_filters.nr_file_filters++;
9240 			}
9241 
9242 			/* ready to consume more filters */
9243 			state = IF_STATE_ACTION;
9244 			filter = NULL;
9245 		}
9246 	}
9247 
9248 	if (state != IF_STATE_ACTION)
9249 		goto fail;
9250 
9251 	kfree(orig);
9252 
9253 	return 0;
9254 
9255 fail_free_name:
9256 	kfree(filename);
9257 fail:
9258 	free_filters_list(filters);
9259 	kfree(orig);
9260 
9261 	return ret;
9262 }
9263 
9264 static int
9265 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9266 {
9267 	LIST_HEAD(filters);
9268 	int ret;
9269 
9270 	/*
9271 	 * Since this is called in perf_ioctl() path, we're already holding
9272 	 * ctx::mutex.
9273 	 */
9274 	lockdep_assert_held(&event->ctx->mutex);
9275 
9276 	if (WARN_ON_ONCE(event->parent))
9277 		return -EINVAL;
9278 
9279 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9280 	if (ret)
9281 		goto fail_clear_files;
9282 
9283 	ret = event->pmu->addr_filters_validate(&filters);
9284 	if (ret)
9285 		goto fail_free_filters;
9286 
9287 	/* remove existing filters, if any */
9288 	perf_addr_filters_splice(event, &filters);
9289 
9290 	/* install new filters */
9291 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9292 
9293 	return ret;
9294 
9295 fail_free_filters:
9296 	free_filters_list(&filters);
9297 
9298 fail_clear_files:
9299 	event->addr_filters.nr_file_filters = 0;
9300 
9301 	return ret;
9302 }
9303 
9304 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9305 {
9306 	int ret = -EINVAL;
9307 	char *filter_str;
9308 
9309 	filter_str = strndup_user(arg, PAGE_SIZE);
9310 	if (IS_ERR(filter_str))
9311 		return PTR_ERR(filter_str);
9312 
9313 #ifdef CONFIG_EVENT_TRACING
9314 	if (perf_event_is_tracing(event)) {
9315 		struct perf_event_context *ctx = event->ctx;
9316 
9317 		/*
9318 		 * Beware, here be dragons!!
9319 		 *
9320 		 * the tracepoint muck will deadlock against ctx->mutex, but
9321 		 * the tracepoint stuff does not actually need it. So
9322 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9323 		 * already have a reference on ctx.
9324 		 *
9325 		 * This can result in event getting moved to a different ctx,
9326 		 * but that does not affect the tracepoint state.
9327 		 */
9328 		mutex_unlock(&ctx->mutex);
9329 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9330 		mutex_lock(&ctx->mutex);
9331 	} else
9332 #endif
9333 	if (has_addr_filter(event))
9334 		ret = perf_event_set_addr_filter(event, filter_str);
9335 
9336 	kfree(filter_str);
9337 	return ret;
9338 }
9339 
9340 /*
9341  * hrtimer based swevent callback
9342  */
9343 
9344 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9345 {
9346 	enum hrtimer_restart ret = HRTIMER_RESTART;
9347 	struct perf_sample_data data;
9348 	struct pt_regs *regs;
9349 	struct perf_event *event;
9350 	u64 period;
9351 
9352 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9353 
9354 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9355 		return HRTIMER_NORESTART;
9356 
9357 	event->pmu->read(event);
9358 
9359 	perf_sample_data_init(&data, 0, event->hw.last_period);
9360 	regs = get_irq_regs();
9361 
9362 	if (regs && !perf_exclude_event(event, regs)) {
9363 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9364 			if (__perf_event_overflow(event, 1, &data, regs))
9365 				ret = HRTIMER_NORESTART;
9366 	}
9367 
9368 	period = max_t(u64, 10000, event->hw.sample_period);
9369 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9370 
9371 	return ret;
9372 }
9373 
9374 static void perf_swevent_start_hrtimer(struct perf_event *event)
9375 {
9376 	struct hw_perf_event *hwc = &event->hw;
9377 	s64 period;
9378 
9379 	if (!is_sampling_event(event))
9380 		return;
9381 
9382 	period = local64_read(&hwc->period_left);
9383 	if (period) {
9384 		if (period < 0)
9385 			period = 10000;
9386 
9387 		local64_set(&hwc->period_left, 0);
9388 	} else {
9389 		period = max_t(u64, 10000, hwc->sample_period);
9390 	}
9391 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9392 		      HRTIMER_MODE_REL_PINNED);
9393 }
9394 
9395 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9396 {
9397 	struct hw_perf_event *hwc = &event->hw;
9398 
9399 	if (is_sampling_event(event)) {
9400 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9401 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9402 
9403 		hrtimer_cancel(&hwc->hrtimer);
9404 	}
9405 }
9406 
9407 static void perf_swevent_init_hrtimer(struct perf_event *event)
9408 {
9409 	struct hw_perf_event *hwc = &event->hw;
9410 
9411 	if (!is_sampling_event(event))
9412 		return;
9413 
9414 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9415 	hwc->hrtimer.function = perf_swevent_hrtimer;
9416 
9417 	/*
9418 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9419 	 * mapping and avoid the whole period adjust feedback stuff.
9420 	 */
9421 	if (event->attr.freq) {
9422 		long freq = event->attr.sample_freq;
9423 
9424 		event->attr.sample_period = NSEC_PER_SEC / freq;
9425 		hwc->sample_period = event->attr.sample_period;
9426 		local64_set(&hwc->period_left, hwc->sample_period);
9427 		hwc->last_period = hwc->sample_period;
9428 		event->attr.freq = 0;
9429 	}
9430 }
9431 
9432 /*
9433  * Software event: cpu wall time clock
9434  */
9435 
9436 static void cpu_clock_event_update(struct perf_event *event)
9437 {
9438 	s64 prev;
9439 	u64 now;
9440 
9441 	now = local_clock();
9442 	prev = local64_xchg(&event->hw.prev_count, now);
9443 	local64_add(now - prev, &event->count);
9444 }
9445 
9446 static void cpu_clock_event_start(struct perf_event *event, int flags)
9447 {
9448 	local64_set(&event->hw.prev_count, local_clock());
9449 	perf_swevent_start_hrtimer(event);
9450 }
9451 
9452 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9453 {
9454 	perf_swevent_cancel_hrtimer(event);
9455 	cpu_clock_event_update(event);
9456 }
9457 
9458 static int cpu_clock_event_add(struct perf_event *event, int flags)
9459 {
9460 	if (flags & PERF_EF_START)
9461 		cpu_clock_event_start(event, flags);
9462 	perf_event_update_userpage(event);
9463 
9464 	return 0;
9465 }
9466 
9467 static void cpu_clock_event_del(struct perf_event *event, int flags)
9468 {
9469 	cpu_clock_event_stop(event, flags);
9470 }
9471 
9472 static void cpu_clock_event_read(struct perf_event *event)
9473 {
9474 	cpu_clock_event_update(event);
9475 }
9476 
9477 static int cpu_clock_event_init(struct perf_event *event)
9478 {
9479 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9480 		return -ENOENT;
9481 
9482 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9483 		return -ENOENT;
9484 
9485 	/*
9486 	 * no branch sampling for software events
9487 	 */
9488 	if (has_branch_stack(event))
9489 		return -EOPNOTSUPP;
9490 
9491 	perf_swevent_init_hrtimer(event);
9492 
9493 	return 0;
9494 }
9495 
9496 static struct pmu perf_cpu_clock = {
9497 	.task_ctx_nr	= perf_sw_context,
9498 
9499 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9500 
9501 	.event_init	= cpu_clock_event_init,
9502 	.add		= cpu_clock_event_add,
9503 	.del		= cpu_clock_event_del,
9504 	.start		= cpu_clock_event_start,
9505 	.stop		= cpu_clock_event_stop,
9506 	.read		= cpu_clock_event_read,
9507 };
9508 
9509 /*
9510  * Software event: task time clock
9511  */
9512 
9513 static void task_clock_event_update(struct perf_event *event, u64 now)
9514 {
9515 	u64 prev;
9516 	s64 delta;
9517 
9518 	prev = local64_xchg(&event->hw.prev_count, now);
9519 	delta = now - prev;
9520 	local64_add(delta, &event->count);
9521 }
9522 
9523 static void task_clock_event_start(struct perf_event *event, int flags)
9524 {
9525 	local64_set(&event->hw.prev_count, event->ctx->time);
9526 	perf_swevent_start_hrtimer(event);
9527 }
9528 
9529 static void task_clock_event_stop(struct perf_event *event, int flags)
9530 {
9531 	perf_swevent_cancel_hrtimer(event);
9532 	task_clock_event_update(event, event->ctx->time);
9533 }
9534 
9535 static int task_clock_event_add(struct perf_event *event, int flags)
9536 {
9537 	if (flags & PERF_EF_START)
9538 		task_clock_event_start(event, flags);
9539 	perf_event_update_userpage(event);
9540 
9541 	return 0;
9542 }
9543 
9544 static void task_clock_event_del(struct perf_event *event, int flags)
9545 {
9546 	task_clock_event_stop(event, PERF_EF_UPDATE);
9547 }
9548 
9549 static void task_clock_event_read(struct perf_event *event)
9550 {
9551 	u64 now = perf_clock();
9552 	u64 delta = now - event->ctx->timestamp;
9553 	u64 time = event->ctx->time + delta;
9554 
9555 	task_clock_event_update(event, time);
9556 }
9557 
9558 static int task_clock_event_init(struct perf_event *event)
9559 {
9560 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9561 		return -ENOENT;
9562 
9563 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9564 		return -ENOENT;
9565 
9566 	/*
9567 	 * no branch sampling for software events
9568 	 */
9569 	if (has_branch_stack(event))
9570 		return -EOPNOTSUPP;
9571 
9572 	perf_swevent_init_hrtimer(event);
9573 
9574 	return 0;
9575 }
9576 
9577 static struct pmu perf_task_clock = {
9578 	.task_ctx_nr	= perf_sw_context,
9579 
9580 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9581 
9582 	.event_init	= task_clock_event_init,
9583 	.add		= task_clock_event_add,
9584 	.del		= task_clock_event_del,
9585 	.start		= task_clock_event_start,
9586 	.stop		= task_clock_event_stop,
9587 	.read		= task_clock_event_read,
9588 };
9589 
9590 static void perf_pmu_nop_void(struct pmu *pmu)
9591 {
9592 }
9593 
9594 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9595 {
9596 }
9597 
9598 static int perf_pmu_nop_int(struct pmu *pmu)
9599 {
9600 	return 0;
9601 }
9602 
9603 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9604 
9605 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9606 {
9607 	__this_cpu_write(nop_txn_flags, flags);
9608 
9609 	if (flags & ~PERF_PMU_TXN_ADD)
9610 		return;
9611 
9612 	perf_pmu_disable(pmu);
9613 }
9614 
9615 static int perf_pmu_commit_txn(struct pmu *pmu)
9616 {
9617 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9618 
9619 	__this_cpu_write(nop_txn_flags, 0);
9620 
9621 	if (flags & ~PERF_PMU_TXN_ADD)
9622 		return 0;
9623 
9624 	perf_pmu_enable(pmu);
9625 	return 0;
9626 }
9627 
9628 static void perf_pmu_cancel_txn(struct pmu *pmu)
9629 {
9630 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9631 
9632 	__this_cpu_write(nop_txn_flags, 0);
9633 
9634 	if (flags & ~PERF_PMU_TXN_ADD)
9635 		return;
9636 
9637 	perf_pmu_enable(pmu);
9638 }
9639 
9640 static int perf_event_idx_default(struct perf_event *event)
9641 {
9642 	return 0;
9643 }
9644 
9645 /*
9646  * Ensures all contexts with the same task_ctx_nr have the same
9647  * pmu_cpu_context too.
9648  */
9649 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9650 {
9651 	struct pmu *pmu;
9652 
9653 	if (ctxn < 0)
9654 		return NULL;
9655 
9656 	list_for_each_entry(pmu, &pmus, entry) {
9657 		if (pmu->task_ctx_nr == ctxn)
9658 			return pmu->pmu_cpu_context;
9659 	}
9660 
9661 	return NULL;
9662 }
9663 
9664 static void free_pmu_context(struct pmu *pmu)
9665 {
9666 	/*
9667 	 * Static contexts such as perf_sw_context have a global lifetime
9668 	 * and may be shared between different PMUs. Avoid freeing them
9669 	 * when a single PMU is going away.
9670 	 */
9671 	if (pmu->task_ctx_nr > perf_invalid_context)
9672 		return;
9673 
9674 	free_percpu(pmu->pmu_cpu_context);
9675 }
9676 
9677 /*
9678  * Let userspace know that this PMU supports address range filtering:
9679  */
9680 static ssize_t nr_addr_filters_show(struct device *dev,
9681 				    struct device_attribute *attr,
9682 				    char *page)
9683 {
9684 	struct pmu *pmu = dev_get_drvdata(dev);
9685 
9686 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9687 }
9688 DEVICE_ATTR_RO(nr_addr_filters);
9689 
9690 static struct idr pmu_idr;
9691 
9692 static ssize_t
9693 type_show(struct device *dev, struct device_attribute *attr, char *page)
9694 {
9695 	struct pmu *pmu = dev_get_drvdata(dev);
9696 
9697 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9698 }
9699 static DEVICE_ATTR_RO(type);
9700 
9701 static ssize_t
9702 perf_event_mux_interval_ms_show(struct device *dev,
9703 				struct device_attribute *attr,
9704 				char *page)
9705 {
9706 	struct pmu *pmu = dev_get_drvdata(dev);
9707 
9708 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9709 }
9710 
9711 static DEFINE_MUTEX(mux_interval_mutex);
9712 
9713 static ssize_t
9714 perf_event_mux_interval_ms_store(struct device *dev,
9715 				 struct device_attribute *attr,
9716 				 const char *buf, size_t count)
9717 {
9718 	struct pmu *pmu = dev_get_drvdata(dev);
9719 	int timer, cpu, ret;
9720 
9721 	ret = kstrtoint(buf, 0, &timer);
9722 	if (ret)
9723 		return ret;
9724 
9725 	if (timer < 1)
9726 		return -EINVAL;
9727 
9728 	/* same value, noting to do */
9729 	if (timer == pmu->hrtimer_interval_ms)
9730 		return count;
9731 
9732 	mutex_lock(&mux_interval_mutex);
9733 	pmu->hrtimer_interval_ms = timer;
9734 
9735 	/* update all cpuctx for this PMU */
9736 	cpus_read_lock();
9737 	for_each_online_cpu(cpu) {
9738 		struct perf_cpu_context *cpuctx;
9739 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9740 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9741 
9742 		cpu_function_call(cpu,
9743 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9744 	}
9745 	cpus_read_unlock();
9746 	mutex_unlock(&mux_interval_mutex);
9747 
9748 	return count;
9749 }
9750 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9751 
9752 static struct attribute *pmu_dev_attrs[] = {
9753 	&dev_attr_type.attr,
9754 	&dev_attr_perf_event_mux_interval_ms.attr,
9755 	NULL,
9756 };
9757 ATTRIBUTE_GROUPS(pmu_dev);
9758 
9759 static int pmu_bus_running;
9760 static struct bus_type pmu_bus = {
9761 	.name		= "event_source",
9762 	.dev_groups	= pmu_dev_groups,
9763 };
9764 
9765 static void pmu_dev_release(struct device *dev)
9766 {
9767 	kfree(dev);
9768 }
9769 
9770 static int pmu_dev_alloc(struct pmu *pmu)
9771 {
9772 	int ret = -ENOMEM;
9773 
9774 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9775 	if (!pmu->dev)
9776 		goto out;
9777 
9778 	pmu->dev->groups = pmu->attr_groups;
9779 	device_initialize(pmu->dev);
9780 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9781 	if (ret)
9782 		goto free_dev;
9783 
9784 	dev_set_drvdata(pmu->dev, pmu);
9785 	pmu->dev->bus = &pmu_bus;
9786 	pmu->dev->release = pmu_dev_release;
9787 	ret = device_add(pmu->dev);
9788 	if (ret)
9789 		goto free_dev;
9790 
9791 	/* For PMUs with address filters, throw in an extra attribute: */
9792 	if (pmu->nr_addr_filters)
9793 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9794 
9795 	if (ret)
9796 		goto del_dev;
9797 
9798 out:
9799 	return ret;
9800 
9801 del_dev:
9802 	device_del(pmu->dev);
9803 
9804 free_dev:
9805 	put_device(pmu->dev);
9806 	goto out;
9807 }
9808 
9809 static struct lock_class_key cpuctx_mutex;
9810 static struct lock_class_key cpuctx_lock;
9811 
9812 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9813 {
9814 	int cpu, ret;
9815 
9816 	mutex_lock(&pmus_lock);
9817 	ret = -ENOMEM;
9818 	pmu->pmu_disable_count = alloc_percpu(int);
9819 	if (!pmu->pmu_disable_count)
9820 		goto unlock;
9821 
9822 	pmu->type = -1;
9823 	if (!name)
9824 		goto skip_type;
9825 	pmu->name = name;
9826 
9827 	if (type < 0) {
9828 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9829 		if (type < 0) {
9830 			ret = type;
9831 			goto free_pdc;
9832 		}
9833 	}
9834 	pmu->type = type;
9835 
9836 	if (pmu_bus_running) {
9837 		ret = pmu_dev_alloc(pmu);
9838 		if (ret)
9839 			goto free_idr;
9840 	}
9841 
9842 skip_type:
9843 	if (pmu->task_ctx_nr == perf_hw_context) {
9844 		static int hw_context_taken = 0;
9845 
9846 		/*
9847 		 * Other than systems with heterogeneous CPUs, it never makes
9848 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9849 		 * uncore must use perf_invalid_context.
9850 		 */
9851 		if (WARN_ON_ONCE(hw_context_taken &&
9852 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9853 			pmu->task_ctx_nr = perf_invalid_context;
9854 
9855 		hw_context_taken = 1;
9856 	}
9857 
9858 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9859 	if (pmu->pmu_cpu_context)
9860 		goto got_cpu_context;
9861 
9862 	ret = -ENOMEM;
9863 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9864 	if (!pmu->pmu_cpu_context)
9865 		goto free_dev;
9866 
9867 	for_each_possible_cpu(cpu) {
9868 		struct perf_cpu_context *cpuctx;
9869 
9870 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9871 		__perf_event_init_context(&cpuctx->ctx);
9872 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9873 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9874 		cpuctx->ctx.pmu = pmu;
9875 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9876 
9877 		__perf_mux_hrtimer_init(cpuctx, cpu);
9878 	}
9879 
9880 got_cpu_context:
9881 	if (!pmu->start_txn) {
9882 		if (pmu->pmu_enable) {
9883 			/*
9884 			 * If we have pmu_enable/pmu_disable calls, install
9885 			 * transaction stubs that use that to try and batch
9886 			 * hardware accesses.
9887 			 */
9888 			pmu->start_txn  = perf_pmu_start_txn;
9889 			pmu->commit_txn = perf_pmu_commit_txn;
9890 			pmu->cancel_txn = perf_pmu_cancel_txn;
9891 		} else {
9892 			pmu->start_txn  = perf_pmu_nop_txn;
9893 			pmu->commit_txn = perf_pmu_nop_int;
9894 			pmu->cancel_txn = perf_pmu_nop_void;
9895 		}
9896 	}
9897 
9898 	if (!pmu->pmu_enable) {
9899 		pmu->pmu_enable  = perf_pmu_nop_void;
9900 		pmu->pmu_disable = perf_pmu_nop_void;
9901 	}
9902 
9903 	if (!pmu->event_idx)
9904 		pmu->event_idx = perf_event_idx_default;
9905 
9906 	list_add_rcu(&pmu->entry, &pmus);
9907 	atomic_set(&pmu->exclusive_cnt, 0);
9908 	ret = 0;
9909 unlock:
9910 	mutex_unlock(&pmus_lock);
9911 
9912 	return ret;
9913 
9914 free_dev:
9915 	device_del(pmu->dev);
9916 	put_device(pmu->dev);
9917 
9918 free_idr:
9919 	if (pmu->type >= PERF_TYPE_MAX)
9920 		idr_remove(&pmu_idr, pmu->type);
9921 
9922 free_pdc:
9923 	free_percpu(pmu->pmu_disable_count);
9924 	goto unlock;
9925 }
9926 EXPORT_SYMBOL_GPL(perf_pmu_register);
9927 
9928 void perf_pmu_unregister(struct pmu *pmu)
9929 {
9930 	mutex_lock(&pmus_lock);
9931 	list_del_rcu(&pmu->entry);
9932 
9933 	/*
9934 	 * We dereference the pmu list under both SRCU and regular RCU, so
9935 	 * synchronize against both of those.
9936 	 */
9937 	synchronize_srcu(&pmus_srcu);
9938 	synchronize_rcu();
9939 
9940 	free_percpu(pmu->pmu_disable_count);
9941 	if (pmu->type >= PERF_TYPE_MAX)
9942 		idr_remove(&pmu_idr, pmu->type);
9943 	if (pmu_bus_running) {
9944 		if (pmu->nr_addr_filters)
9945 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9946 		device_del(pmu->dev);
9947 		put_device(pmu->dev);
9948 	}
9949 	free_pmu_context(pmu);
9950 	mutex_unlock(&pmus_lock);
9951 }
9952 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9953 
9954 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9955 {
9956 	struct perf_event_context *ctx = NULL;
9957 	int ret;
9958 
9959 	if (!try_module_get(pmu->module))
9960 		return -ENODEV;
9961 
9962 	/*
9963 	 * A number of pmu->event_init() methods iterate the sibling_list to,
9964 	 * for example, validate if the group fits on the PMU. Therefore,
9965 	 * if this is a sibling event, acquire the ctx->mutex to protect
9966 	 * the sibling_list.
9967 	 */
9968 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9969 		/*
9970 		 * This ctx->mutex can nest when we're called through
9971 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9972 		 */
9973 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9974 						 SINGLE_DEPTH_NESTING);
9975 		BUG_ON(!ctx);
9976 	}
9977 
9978 	event->pmu = pmu;
9979 	ret = pmu->event_init(event);
9980 
9981 	if (ctx)
9982 		perf_event_ctx_unlock(event->group_leader, ctx);
9983 
9984 	if (!ret) {
9985 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
9986 				event_has_any_exclude_flag(event)) {
9987 			if (event->destroy)
9988 				event->destroy(event);
9989 			ret = -EINVAL;
9990 		}
9991 	}
9992 
9993 	if (ret)
9994 		module_put(pmu->module);
9995 
9996 	return ret;
9997 }
9998 
9999 static struct pmu *perf_init_event(struct perf_event *event)
10000 {
10001 	struct pmu *pmu;
10002 	int idx;
10003 	int ret;
10004 
10005 	idx = srcu_read_lock(&pmus_srcu);
10006 
10007 	/* Try parent's PMU first: */
10008 	if (event->parent && event->parent->pmu) {
10009 		pmu = event->parent->pmu;
10010 		ret = perf_try_init_event(pmu, event);
10011 		if (!ret)
10012 			goto unlock;
10013 	}
10014 
10015 	rcu_read_lock();
10016 	pmu = idr_find(&pmu_idr, event->attr.type);
10017 	rcu_read_unlock();
10018 	if (pmu) {
10019 		ret = perf_try_init_event(pmu, event);
10020 		if (ret)
10021 			pmu = ERR_PTR(ret);
10022 		goto unlock;
10023 	}
10024 
10025 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10026 		ret = perf_try_init_event(pmu, event);
10027 		if (!ret)
10028 			goto unlock;
10029 
10030 		if (ret != -ENOENT) {
10031 			pmu = ERR_PTR(ret);
10032 			goto unlock;
10033 		}
10034 	}
10035 	pmu = ERR_PTR(-ENOENT);
10036 unlock:
10037 	srcu_read_unlock(&pmus_srcu, idx);
10038 
10039 	return pmu;
10040 }
10041 
10042 static void attach_sb_event(struct perf_event *event)
10043 {
10044 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10045 
10046 	raw_spin_lock(&pel->lock);
10047 	list_add_rcu(&event->sb_list, &pel->list);
10048 	raw_spin_unlock(&pel->lock);
10049 }
10050 
10051 /*
10052  * We keep a list of all !task (and therefore per-cpu) events
10053  * that need to receive side-band records.
10054  *
10055  * This avoids having to scan all the various PMU per-cpu contexts
10056  * looking for them.
10057  */
10058 static void account_pmu_sb_event(struct perf_event *event)
10059 {
10060 	if (is_sb_event(event))
10061 		attach_sb_event(event);
10062 }
10063 
10064 static void account_event_cpu(struct perf_event *event, int cpu)
10065 {
10066 	if (event->parent)
10067 		return;
10068 
10069 	if (is_cgroup_event(event))
10070 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10071 }
10072 
10073 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10074 static void account_freq_event_nohz(void)
10075 {
10076 #ifdef CONFIG_NO_HZ_FULL
10077 	/* Lock so we don't race with concurrent unaccount */
10078 	spin_lock(&nr_freq_lock);
10079 	if (atomic_inc_return(&nr_freq_events) == 1)
10080 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10081 	spin_unlock(&nr_freq_lock);
10082 #endif
10083 }
10084 
10085 static void account_freq_event(void)
10086 {
10087 	if (tick_nohz_full_enabled())
10088 		account_freq_event_nohz();
10089 	else
10090 		atomic_inc(&nr_freq_events);
10091 }
10092 
10093 
10094 static void account_event(struct perf_event *event)
10095 {
10096 	bool inc = false;
10097 
10098 	if (event->parent)
10099 		return;
10100 
10101 	if (event->attach_state & PERF_ATTACH_TASK)
10102 		inc = true;
10103 	if (event->attr.mmap || event->attr.mmap_data)
10104 		atomic_inc(&nr_mmap_events);
10105 	if (event->attr.comm)
10106 		atomic_inc(&nr_comm_events);
10107 	if (event->attr.namespaces)
10108 		atomic_inc(&nr_namespaces_events);
10109 	if (event->attr.task)
10110 		atomic_inc(&nr_task_events);
10111 	if (event->attr.freq)
10112 		account_freq_event();
10113 	if (event->attr.context_switch) {
10114 		atomic_inc(&nr_switch_events);
10115 		inc = true;
10116 	}
10117 	if (has_branch_stack(event))
10118 		inc = true;
10119 	if (is_cgroup_event(event))
10120 		inc = true;
10121 	if (event->attr.ksymbol)
10122 		atomic_inc(&nr_ksymbol_events);
10123 	if (event->attr.bpf_event)
10124 		atomic_inc(&nr_bpf_events);
10125 
10126 	if (inc) {
10127 		/*
10128 		 * We need the mutex here because static_branch_enable()
10129 		 * must complete *before* the perf_sched_count increment
10130 		 * becomes visible.
10131 		 */
10132 		if (atomic_inc_not_zero(&perf_sched_count))
10133 			goto enabled;
10134 
10135 		mutex_lock(&perf_sched_mutex);
10136 		if (!atomic_read(&perf_sched_count)) {
10137 			static_branch_enable(&perf_sched_events);
10138 			/*
10139 			 * Guarantee that all CPUs observe they key change and
10140 			 * call the perf scheduling hooks before proceeding to
10141 			 * install events that need them.
10142 			 */
10143 			synchronize_rcu();
10144 		}
10145 		/*
10146 		 * Now that we have waited for the sync_sched(), allow further
10147 		 * increments to by-pass the mutex.
10148 		 */
10149 		atomic_inc(&perf_sched_count);
10150 		mutex_unlock(&perf_sched_mutex);
10151 	}
10152 enabled:
10153 
10154 	account_event_cpu(event, event->cpu);
10155 
10156 	account_pmu_sb_event(event);
10157 }
10158 
10159 /*
10160  * Allocate and initialize an event structure
10161  */
10162 static struct perf_event *
10163 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10164 		 struct task_struct *task,
10165 		 struct perf_event *group_leader,
10166 		 struct perf_event *parent_event,
10167 		 perf_overflow_handler_t overflow_handler,
10168 		 void *context, int cgroup_fd)
10169 {
10170 	struct pmu *pmu;
10171 	struct perf_event *event;
10172 	struct hw_perf_event *hwc;
10173 	long err = -EINVAL;
10174 
10175 	if ((unsigned)cpu >= nr_cpu_ids) {
10176 		if (!task || cpu != -1)
10177 			return ERR_PTR(-EINVAL);
10178 	}
10179 
10180 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10181 	if (!event)
10182 		return ERR_PTR(-ENOMEM);
10183 
10184 	/*
10185 	 * Single events are their own group leaders, with an
10186 	 * empty sibling list:
10187 	 */
10188 	if (!group_leader)
10189 		group_leader = event;
10190 
10191 	mutex_init(&event->child_mutex);
10192 	INIT_LIST_HEAD(&event->child_list);
10193 
10194 	INIT_LIST_HEAD(&event->event_entry);
10195 	INIT_LIST_HEAD(&event->sibling_list);
10196 	INIT_LIST_HEAD(&event->active_list);
10197 	init_event_group(event);
10198 	INIT_LIST_HEAD(&event->rb_entry);
10199 	INIT_LIST_HEAD(&event->active_entry);
10200 	INIT_LIST_HEAD(&event->addr_filters.list);
10201 	INIT_HLIST_NODE(&event->hlist_entry);
10202 
10203 
10204 	init_waitqueue_head(&event->waitq);
10205 	init_irq_work(&event->pending, perf_pending_event);
10206 
10207 	mutex_init(&event->mmap_mutex);
10208 	raw_spin_lock_init(&event->addr_filters.lock);
10209 
10210 	atomic_long_set(&event->refcount, 1);
10211 	event->cpu		= cpu;
10212 	event->attr		= *attr;
10213 	event->group_leader	= group_leader;
10214 	event->pmu		= NULL;
10215 	event->oncpu		= -1;
10216 
10217 	event->parent		= parent_event;
10218 
10219 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10220 	event->id		= atomic64_inc_return(&perf_event_id);
10221 
10222 	event->state		= PERF_EVENT_STATE_INACTIVE;
10223 
10224 	if (task) {
10225 		event->attach_state = PERF_ATTACH_TASK;
10226 		/*
10227 		 * XXX pmu::event_init needs to know what task to account to
10228 		 * and we cannot use the ctx information because we need the
10229 		 * pmu before we get a ctx.
10230 		 */
10231 		get_task_struct(task);
10232 		event->hw.target = task;
10233 	}
10234 
10235 	event->clock = &local_clock;
10236 	if (parent_event)
10237 		event->clock = parent_event->clock;
10238 
10239 	if (!overflow_handler && parent_event) {
10240 		overflow_handler = parent_event->overflow_handler;
10241 		context = parent_event->overflow_handler_context;
10242 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10243 		if (overflow_handler == bpf_overflow_handler) {
10244 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10245 
10246 			if (IS_ERR(prog)) {
10247 				err = PTR_ERR(prog);
10248 				goto err_ns;
10249 			}
10250 			event->prog = prog;
10251 			event->orig_overflow_handler =
10252 				parent_event->orig_overflow_handler;
10253 		}
10254 #endif
10255 	}
10256 
10257 	if (overflow_handler) {
10258 		event->overflow_handler	= overflow_handler;
10259 		event->overflow_handler_context = context;
10260 	} else if (is_write_backward(event)){
10261 		event->overflow_handler = perf_event_output_backward;
10262 		event->overflow_handler_context = NULL;
10263 	} else {
10264 		event->overflow_handler = perf_event_output_forward;
10265 		event->overflow_handler_context = NULL;
10266 	}
10267 
10268 	perf_event__state_init(event);
10269 
10270 	pmu = NULL;
10271 
10272 	hwc = &event->hw;
10273 	hwc->sample_period = attr->sample_period;
10274 	if (attr->freq && attr->sample_freq)
10275 		hwc->sample_period = 1;
10276 	hwc->last_period = hwc->sample_period;
10277 
10278 	local64_set(&hwc->period_left, hwc->sample_period);
10279 
10280 	/*
10281 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10282 	 * See perf_output_read().
10283 	 */
10284 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10285 		goto err_ns;
10286 
10287 	if (!has_branch_stack(event))
10288 		event->attr.branch_sample_type = 0;
10289 
10290 	if (cgroup_fd != -1) {
10291 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10292 		if (err)
10293 			goto err_ns;
10294 	}
10295 
10296 	pmu = perf_init_event(event);
10297 	if (IS_ERR(pmu)) {
10298 		err = PTR_ERR(pmu);
10299 		goto err_ns;
10300 	}
10301 
10302 	err = exclusive_event_init(event);
10303 	if (err)
10304 		goto err_pmu;
10305 
10306 	if (has_addr_filter(event)) {
10307 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10308 						   sizeof(unsigned long),
10309 						   GFP_KERNEL);
10310 		if (!event->addr_filters_offs) {
10311 			err = -ENOMEM;
10312 			goto err_per_task;
10313 		}
10314 
10315 		/* force hw sync on the address filters */
10316 		event->addr_filters_gen = 1;
10317 	}
10318 
10319 	if (!event->parent) {
10320 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10321 			err = get_callchain_buffers(attr->sample_max_stack);
10322 			if (err)
10323 				goto err_addr_filters;
10324 		}
10325 	}
10326 
10327 	/* symmetric to unaccount_event() in _free_event() */
10328 	account_event(event);
10329 
10330 	return event;
10331 
10332 err_addr_filters:
10333 	kfree(event->addr_filters_offs);
10334 
10335 err_per_task:
10336 	exclusive_event_destroy(event);
10337 
10338 err_pmu:
10339 	if (event->destroy)
10340 		event->destroy(event);
10341 	module_put(pmu->module);
10342 err_ns:
10343 	if (is_cgroup_event(event))
10344 		perf_detach_cgroup(event);
10345 	if (event->ns)
10346 		put_pid_ns(event->ns);
10347 	if (event->hw.target)
10348 		put_task_struct(event->hw.target);
10349 	kfree(event);
10350 
10351 	return ERR_PTR(err);
10352 }
10353 
10354 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10355 			  struct perf_event_attr *attr)
10356 {
10357 	u32 size;
10358 	int ret;
10359 
10360 	if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10361 		return -EFAULT;
10362 
10363 	/*
10364 	 * zero the full structure, so that a short copy will be nice.
10365 	 */
10366 	memset(attr, 0, sizeof(*attr));
10367 
10368 	ret = get_user(size, &uattr->size);
10369 	if (ret)
10370 		return ret;
10371 
10372 	if (size > PAGE_SIZE)	/* silly large */
10373 		goto err_size;
10374 
10375 	if (!size)		/* abi compat */
10376 		size = PERF_ATTR_SIZE_VER0;
10377 
10378 	if (size < PERF_ATTR_SIZE_VER0)
10379 		goto err_size;
10380 
10381 	/*
10382 	 * If we're handed a bigger struct than we know of,
10383 	 * ensure all the unknown bits are 0 - i.e. new
10384 	 * user-space does not rely on any kernel feature
10385 	 * extensions we dont know about yet.
10386 	 */
10387 	if (size > sizeof(*attr)) {
10388 		unsigned char __user *addr;
10389 		unsigned char __user *end;
10390 		unsigned char val;
10391 
10392 		addr = (void __user *)uattr + sizeof(*attr);
10393 		end  = (void __user *)uattr + size;
10394 
10395 		for (; addr < end; addr++) {
10396 			ret = get_user(val, addr);
10397 			if (ret)
10398 				return ret;
10399 			if (val)
10400 				goto err_size;
10401 		}
10402 		size = sizeof(*attr);
10403 	}
10404 
10405 	ret = copy_from_user(attr, uattr, size);
10406 	if (ret)
10407 		return -EFAULT;
10408 
10409 	attr->size = size;
10410 
10411 	if (attr->__reserved_1)
10412 		return -EINVAL;
10413 
10414 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10415 		return -EINVAL;
10416 
10417 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10418 		return -EINVAL;
10419 
10420 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10421 		u64 mask = attr->branch_sample_type;
10422 
10423 		/* only using defined bits */
10424 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10425 			return -EINVAL;
10426 
10427 		/* at least one branch bit must be set */
10428 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10429 			return -EINVAL;
10430 
10431 		/* propagate priv level, when not set for branch */
10432 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10433 
10434 			/* exclude_kernel checked on syscall entry */
10435 			if (!attr->exclude_kernel)
10436 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10437 
10438 			if (!attr->exclude_user)
10439 				mask |= PERF_SAMPLE_BRANCH_USER;
10440 
10441 			if (!attr->exclude_hv)
10442 				mask |= PERF_SAMPLE_BRANCH_HV;
10443 			/*
10444 			 * adjust user setting (for HW filter setup)
10445 			 */
10446 			attr->branch_sample_type = mask;
10447 		}
10448 		/* privileged levels capture (kernel, hv): check permissions */
10449 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10450 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10451 			return -EACCES;
10452 	}
10453 
10454 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10455 		ret = perf_reg_validate(attr->sample_regs_user);
10456 		if (ret)
10457 			return ret;
10458 	}
10459 
10460 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10461 		if (!arch_perf_have_user_stack_dump())
10462 			return -ENOSYS;
10463 
10464 		/*
10465 		 * We have __u32 type for the size, but so far
10466 		 * we can only use __u16 as maximum due to the
10467 		 * __u16 sample size limit.
10468 		 */
10469 		if (attr->sample_stack_user >= USHRT_MAX)
10470 			return -EINVAL;
10471 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10472 			return -EINVAL;
10473 	}
10474 
10475 	if (!attr->sample_max_stack)
10476 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10477 
10478 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10479 		ret = perf_reg_validate(attr->sample_regs_intr);
10480 out:
10481 	return ret;
10482 
10483 err_size:
10484 	put_user(sizeof(*attr), &uattr->size);
10485 	ret = -E2BIG;
10486 	goto out;
10487 }
10488 
10489 static int
10490 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10491 {
10492 	struct ring_buffer *rb = NULL;
10493 	int ret = -EINVAL;
10494 
10495 	if (!output_event)
10496 		goto set;
10497 
10498 	/* don't allow circular references */
10499 	if (event == output_event)
10500 		goto out;
10501 
10502 	/*
10503 	 * Don't allow cross-cpu buffers
10504 	 */
10505 	if (output_event->cpu != event->cpu)
10506 		goto out;
10507 
10508 	/*
10509 	 * If its not a per-cpu rb, it must be the same task.
10510 	 */
10511 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10512 		goto out;
10513 
10514 	/*
10515 	 * Mixing clocks in the same buffer is trouble you don't need.
10516 	 */
10517 	if (output_event->clock != event->clock)
10518 		goto out;
10519 
10520 	/*
10521 	 * Either writing ring buffer from beginning or from end.
10522 	 * Mixing is not allowed.
10523 	 */
10524 	if (is_write_backward(output_event) != is_write_backward(event))
10525 		goto out;
10526 
10527 	/*
10528 	 * If both events generate aux data, they must be on the same PMU
10529 	 */
10530 	if (has_aux(event) && has_aux(output_event) &&
10531 	    event->pmu != output_event->pmu)
10532 		goto out;
10533 
10534 set:
10535 	mutex_lock(&event->mmap_mutex);
10536 	/* Can't redirect output if we've got an active mmap() */
10537 	if (atomic_read(&event->mmap_count))
10538 		goto unlock;
10539 
10540 	if (output_event) {
10541 		/* get the rb we want to redirect to */
10542 		rb = ring_buffer_get(output_event);
10543 		if (!rb)
10544 			goto unlock;
10545 	}
10546 
10547 	ring_buffer_attach(event, rb);
10548 
10549 	ret = 0;
10550 unlock:
10551 	mutex_unlock(&event->mmap_mutex);
10552 
10553 out:
10554 	return ret;
10555 }
10556 
10557 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10558 {
10559 	if (b < a)
10560 		swap(a, b);
10561 
10562 	mutex_lock(a);
10563 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10564 }
10565 
10566 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10567 {
10568 	bool nmi_safe = false;
10569 
10570 	switch (clk_id) {
10571 	case CLOCK_MONOTONIC:
10572 		event->clock = &ktime_get_mono_fast_ns;
10573 		nmi_safe = true;
10574 		break;
10575 
10576 	case CLOCK_MONOTONIC_RAW:
10577 		event->clock = &ktime_get_raw_fast_ns;
10578 		nmi_safe = true;
10579 		break;
10580 
10581 	case CLOCK_REALTIME:
10582 		event->clock = &ktime_get_real_ns;
10583 		break;
10584 
10585 	case CLOCK_BOOTTIME:
10586 		event->clock = &ktime_get_boot_ns;
10587 		break;
10588 
10589 	case CLOCK_TAI:
10590 		event->clock = &ktime_get_tai_ns;
10591 		break;
10592 
10593 	default:
10594 		return -EINVAL;
10595 	}
10596 
10597 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10598 		return -EINVAL;
10599 
10600 	return 0;
10601 }
10602 
10603 /*
10604  * Variation on perf_event_ctx_lock_nested(), except we take two context
10605  * mutexes.
10606  */
10607 static struct perf_event_context *
10608 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10609 			     struct perf_event_context *ctx)
10610 {
10611 	struct perf_event_context *gctx;
10612 
10613 again:
10614 	rcu_read_lock();
10615 	gctx = READ_ONCE(group_leader->ctx);
10616 	if (!refcount_inc_not_zero(&gctx->refcount)) {
10617 		rcu_read_unlock();
10618 		goto again;
10619 	}
10620 	rcu_read_unlock();
10621 
10622 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10623 
10624 	if (group_leader->ctx != gctx) {
10625 		mutex_unlock(&ctx->mutex);
10626 		mutex_unlock(&gctx->mutex);
10627 		put_ctx(gctx);
10628 		goto again;
10629 	}
10630 
10631 	return gctx;
10632 }
10633 
10634 /**
10635  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10636  *
10637  * @attr_uptr:	event_id type attributes for monitoring/sampling
10638  * @pid:		target pid
10639  * @cpu:		target cpu
10640  * @group_fd:		group leader event fd
10641  */
10642 SYSCALL_DEFINE5(perf_event_open,
10643 		struct perf_event_attr __user *, attr_uptr,
10644 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10645 {
10646 	struct perf_event *group_leader = NULL, *output_event = NULL;
10647 	struct perf_event *event, *sibling;
10648 	struct perf_event_attr attr;
10649 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10650 	struct file *event_file = NULL;
10651 	struct fd group = {NULL, 0};
10652 	struct task_struct *task = NULL;
10653 	struct pmu *pmu;
10654 	int event_fd;
10655 	int move_group = 0;
10656 	int err;
10657 	int f_flags = O_RDWR;
10658 	int cgroup_fd = -1;
10659 
10660 	/* for future expandability... */
10661 	if (flags & ~PERF_FLAG_ALL)
10662 		return -EINVAL;
10663 
10664 	err = perf_copy_attr(attr_uptr, &attr);
10665 	if (err)
10666 		return err;
10667 
10668 	if (!attr.exclude_kernel) {
10669 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10670 			return -EACCES;
10671 	}
10672 
10673 	if (attr.namespaces) {
10674 		if (!capable(CAP_SYS_ADMIN))
10675 			return -EACCES;
10676 	}
10677 
10678 	if (attr.freq) {
10679 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10680 			return -EINVAL;
10681 	} else {
10682 		if (attr.sample_period & (1ULL << 63))
10683 			return -EINVAL;
10684 	}
10685 
10686 	/* Only privileged users can get physical addresses */
10687 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10688 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10689 		return -EACCES;
10690 
10691 	/*
10692 	 * In cgroup mode, the pid argument is used to pass the fd
10693 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10694 	 * designates the cpu on which to monitor threads from that
10695 	 * cgroup.
10696 	 */
10697 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10698 		return -EINVAL;
10699 
10700 	if (flags & PERF_FLAG_FD_CLOEXEC)
10701 		f_flags |= O_CLOEXEC;
10702 
10703 	event_fd = get_unused_fd_flags(f_flags);
10704 	if (event_fd < 0)
10705 		return event_fd;
10706 
10707 	if (group_fd != -1) {
10708 		err = perf_fget_light(group_fd, &group);
10709 		if (err)
10710 			goto err_fd;
10711 		group_leader = group.file->private_data;
10712 		if (flags & PERF_FLAG_FD_OUTPUT)
10713 			output_event = group_leader;
10714 		if (flags & PERF_FLAG_FD_NO_GROUP)
10715 			group_leader = NULL;
10716 	}
10717 
10718 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10719 		task = find_lively_task_by_vpid(pid);
10720 		if (IS_ERR(task)) {
10721 			err = PTR_ERR(task);
10722 			goto err_group_fd;
10723 		}
10724 	}
10725 
10726 	if (task && group_leader &&
10727 	    group_leader->attr.inherit != attr.inherit) {
10728 		err = -EINVAL;
10729 		goto err_task;
10730 	}
10731 
10732 	if (task) {
10733 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10734 		if (err)
10735 			goto err_task;
10736 
10737 		/*
10738 		 * Reuse ptrace permission checks for now.
10739 		 *
10740 		 * We must hold cred_guard_mutex across this and any potential
10741 		 * perf_install_in_context() call for this new event to
10742 		 * serialize against exec() altering our credentials (and the
10743 		 * perf_event_exit_task() that could imply).
10744 		 */
10745 		err = -EACCES;
10746 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10747 			goto err_cred;
10748 	}
10749 
10750 	if (flags & PERF_FLAG_PID_CGROUP)
10751 		cgroup_fd = pid;
10752 
10753 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10754 				 NULL, NULL, cgroup_fd);
10755 	if (IS_ERR(event)) {
10756 		err = PTR_ERR(event);
10757 		goto err_cred;
10758 	}
10759 
10760 	if (is_sampling_event(event)) {
10761 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10762 			err = -EOPNOTSUPP;
10763 			goto err_alloc;
10764 		}
10765 	}
10766 
10767 	/*
10768 	 * Special case software events and allow them to be part of
10769 	 * any hardware group.
10770 	 */
10771 	pmu = event->pmu;
10772 
10773 	if (attr.use_clockid) {
10774 		err = perf_event_set_clock(event, attr.clockid);
10775 		if (err)
10776 			goto err_alloc;
10777 	}
10778 
10779 	if (pmu->task_ctx_nr == perf_sw_context)
10780 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10781 
10782 	if (group_leader) {
10783 		if (is_software_event(event) &&
10784 		    !in_software_context(group_leader)) {
10785 			/*
10786 			 * If the event is a sw event, but the group_leader
10787 			 * is on hw context.
10788 			 *
10789 			 * Allow the addition of software events to hw
10790 			 * groups, this is safe because software events
10791 			 * never fail to schedule.
10792 			 */
10793 			pmu = group_leader->ctx->pmu;
10794 		} else if (!is_software_event(event) &&
10795 			   is_software_event(group_leader) &&
10796 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10797 			/*
10798 			 * In case the group is a pure software group, and we
10799 			 * try to add a hardware event, move the whole group to
10800 			 * the hardware context.
10801 			 */
10802 			move_group = 1;
10803 		}
10804 	}
10805 
10806 	/*
10807 	 * Get the target context (task or percpu):
10808 	 */
10809 	ctx = find_get_context(pmu, task, event);
10810 	if (IS_ERR(ctx)) {
10811 		err = PTR_ERR(ctx);
10812 		goto err_alloc;
10813 	}
10814 
10815 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10816 		err = -EBUSY;
10817 		goto err_context;
10818 	}
10819 
10820 	/*
10821 	 * Look up the group leader (we will attach this event to it):
10822 	 */
10823 	if (group_leader) {
10824 		err = -EINVAL;
10825 
10826 		/*
10827 		 * Do not allow a recursive hierarchy (this new sibling
10828 		 * becoming part of another group-sibling):
10829 		 */
10830 		if (group_leader->group_leader != group_leader)
10831 			goto err_context;
10832 
10833 		/* All events in a group should have the same clock */
10834 		if (group_leader->clock != event->clock)
10835 			goto err_context;
10836 
10837 		/*
10838 		 * Make sure we're both events for the same CPU;
10839 		 * grouping events for different CPUs is broken; since
10840 		 * you can never concurrently schedule them anyhow.
10841 		 */
10842 		if (group_leader->cpu != event->cpu)
10843 			goto err_context;
10844 
10845 		/*
10846 		 * Make sure we're both on the same task, or both
10847 		 * per-CPU events.
10848 		 */
10849 		if (group_leader->ctx->task != ctx->task)
10850 			goto err_context;
10851 
10852 		/*
10853 		 * Do not allow to attach to a group in a different task
10854 		 * or CPU context. If we're moving SW events, we'll fix
10855 		 * this up later, so allow that.
10856 		 */
10857 		if (!move_group && group_leader->ctx != ctx)
10858 			goto err_context;
10859 
10860 		/*
10861 		 * Only a group leader can be exclusive or pinned
10862 		 */
10863 		if (attr.exclusive || attr.pinned)
10864 			goto err_context;
10865 	}
10866 
10867 	if (output_event) {
10868 		err = perf_event_set_output(event, output_event);
10869 		if (err)
10870 			goto err_context;
10871 	}
10872 
10873 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10874 					f_flags);
10875 	if (IS_ERR(event_file)) {
10876 		err = PTR_ERR(event_file);
10877 		event_file = NULL;
10878 		goto err_context;
10879 	}
10880 
10881 	if (move_group) {
10882 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10883 
10884 		if (gctx->task == TASK_TOMBSTONE) {
10885 			err = -ESRCH;
10886 			goto err_locked;
10887 		}
10888 
10889 		/*
10890 		 * Check if we raced against another sys_perf_event_open() call
10891 		 * moving the software group underneath us.
10892 		 */
10893 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10894 			/*
10895 			 * If someone moved the group out from under us, check
10896 			 * if this new event wound up on the same ctx, if so
10897 			 * its the regular !move_group case, otherwise fail.
10898 			 */
10899 			if (gctx != ctx) {
10900 				err = -EINVAL;
10901 				goto err_locked;
10902 			} else {
10903 				perf_event_ctx_unlock(group_leader, gctx);
10904 				move_group = 0;
10905 			}
10906 		}
10907 	} else {
10908 		mutex_lock(&ctx->mutex);
10909 	}
10910 
10911 	if (ctx->task == TASK_TOMBSTONE) {
10912 		err = -ESRCH;
10913 		goto err_locked;
10914 	}
10915 
10916 	if (!perf_event_validate_size(event)) {
10917 		err = -E2BIG;
10918 		goto err_locked;
10919 	}
10920 
10921 	if (!task) {
10922 		/*
10923 		 * Check if the @cpu we're creating an event for is online.
10924 		 *
10925 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10926 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10927 		 */
10928 		struct perf_cpu_context *cpuctx =
10929 			container_of(ctx, struct perf_cpu_context, ctx);
10930 
10931 		if (!cpuctx->online) {
10932 			err = -ENODEV;
10933 			goto err_locked;
10934 		}
10935 	}
10936 
10937 
10938 	/*
10939 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10940 	 * because we need to serialize with concurrent event creation.
10941 	 */
10942 	if (!exclusive_event_installable(event, ctx)) {
10943 		/* exclusive and group stuff are assumed mutually exclusive */
10944 		WARN_ON_ONCE(move_group);
10945 
10946 		err = -EBUSY;
10947 		goto err_locked;
10948 	}
10949 
10950 	WARN_ON_ONCE(ctx->parent_ctx);
10951 
10952 	/*
10953 	 * This is the point on no return; we cannot fail hereafter. This is
10954 	 * where we start modifying current state.
10955 	 */
10956 
10957 	if (move_group) {
10958 		/*
10959 		 * See perf_event_ctx_lock() for comments on the details
10960 		 * of swizzling perf_event::ctx.
10961 		 */
10962 		perf_remove_from_context(group_leader, 0);
10963 		put_ctx(gctx);
10964 
10965 		for_each_sibling_event(sibling, group_leader) {
10966 			perf_remove_from_context(sibling, 0);
10967 			put_ctx(gctx);
10968 		}
10969 
10970 		/*
10971 		 * Wait for everybody to stop referencing the events through
10972 		 * the old lists, before installing it on new lists.
10973 		 */
10974 		synchronize_rcu();
10975 
10976 		/*
10977 		 * Install the group siblings before the group leader.
10978 		 *
10979 		 * Because a group leader will try and install the entire group
10980 		 * (through the sibling list, which is still in-tact), we can
10981 		 * end up with siblings installed in the wrong context.
10982 		 *
10983 		 * By installing siblings first we NO-OP because they're not
10984 		 * reachable through the group lists.
10985 		 */
10986 		for_each_sibling_event(sibling, group_leader) {
10987 			perf_event__state_init(sibling);
10988 			perf_install_in_context(ctx, sibling, sibling->cpu);
10989 			get_ctx(ctx);
10990 		}
10991 
10992 		/*
10993 		 * Removing from the context ends up with disabled
10994 		 * event. What we want here is event in the initial
10995 		 * startup state, ready to be add into new context.
10996 		 */
10997 		perf_event__state_init(group_leader);
10998 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10999 		get_ctx(ctx);
11000 	}
11001 
11002 	/*
11003 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11004 	 * that we're serialized against further additions and before
11005 	 * perf_install_in_context() which is the point the event is active and
11006 	 * can use these values.
11007 	 */
11008 	perf_event__header_size(event);
11009 	perf_event__id_header_size(event);
11010 
11011 	event->owner = current;
11012 
11013 	perf_install_in_context(ctx, event, event->cpu);
11014 	perf_unpin_context(ctx);
11015 
11016 	if (move_group)
11017 		perf_event_ctx_unlock(group_leader, gctx);
11018 	mutex_unlock(&ctx->mutex);
11019 
11020 	if (task) {
11021 		mutex_unlock(&task->signal->cred_guard_mutex);
11022 		put_task_struct(task);
11023 	}
11024 
11025 	mutex_lock(&current->perf_event_mutex);
11026 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11027 	mutex_unlock(&current->perf_event_mutex);
11028 
11029 	/*
11030 	 * Drop the reference on the group_event after placing the
11031 	 * new event on the sibling_list. This ensures destruction
11032 	 * of the group leader will find the pointer to itself in
11033 	 * perf_group_detach().
11034 	 */
11035 	fdput(group);
11036 	fd_install(event_fd, event_file);
11037 	return event_fd;
11038 
11039 err_locked:
11040 	if (move_group)
11041 		perf_event_ctx_unlock(group_leader, gctx);
11042 	mutex_unlock(&ctx->mutex);
11043 /* err_file: */
11044 	fput(event_file);
11045 err_context:
11046 	perf_unpin_context(ctx);
11047 	put_ctx(ctx);
11048 err_alloc:
11049 	/*
11050 	 * If event_file is set, the fput() above will have called ->release()
11051 	 * and that will take care of freeing the event.
11052 	 */
11053 	if (!event_file)
11054 		free_event(event);
11055 err_cred:
11056 	if (task)
11057 		mutex_unlock(&task->signal->cred_guard_mutex);
11058 err_task:
11059 	if (task)
11060 		put_task_struct(task);
11061 err_group_fd:
11062 	fdput(group);
11063 err_fd:
11064 	put_unused_fd(event_fd);
11065 	return err;
11066 }
11067 
11068 /**
11069  * perf_event_create_kernel_counter
11070  *
11071  * @attr: attributes of the counter to create
11072  * @cpu: cpu in which the counter is bound
11073  * @task: task to profile (NULL for percpu)
11074  */
11075 struct perf_event *
11076 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11077 				 struct task_struct *task,
11078 				 perf_overflow_handler_t overflow_handler,
11079 				 void *context)
11080 {
11081 	struct perf_event_context *ctx;
11082 	struct perf_event *event;
11083 	int err;
11084 
11085 	/*
11086 	 * Get the target context (task or percpu):
11087 	 */
11088 
11089 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11090 				 overflow_handler, context, -1);
11091 	if (IS_ERR(event)) {
11092 		err = PTR_ERR(event);
11093 		goto err;
11094 	}
11095 
11096 	/* Mark owner so we could distinguish it from user events. */
11097 	event->owner = TASK_TOMBSTONE;
11098 
11099 	ctx = find_get_context(event->pmu, task, event);
11100 	if (IS_ERR(ctx)) {
11101 		err = PTR_ERR(ctx);
11102 		goto err_free;
11103 	}
11104 
11105 	WARN_ON_ONCE(ctx->parent_ctx);
11106 	mutex_lock(&ctx->mutex);
11107 	if (ctx->task == TASK_TOMBSTONE) {
11108 		err = -ESRCH;
11109 		goto err_unlock;
11110 	}
11111 
11112 	if (!task) {
11113 		/*
11114 		 * Check if the @cpu we're creating an event for is online.
11115 		 *
11116 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11117 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11118 		 */
11119 		struct perf_cpu_context *cpuctx =
11120 			container_of(ctx, struct perf_cpu_context, ctx);
11121 		if (!cpuctx->online) {
11122 			err = -ENODEV;
11123 			goto err_unlock;
11124 		}
11125 	}
11126 
11127 	if (!exclusive_event_installable(event, ctx)) {
11128 		err = -EBUSY;
11129 		goto err_unlock;
11130 	}
11131 
11132 	perf_install_in_context(ctx, event, cpu);
11133 	perf_unpin_context(ctx);
11134 	mutex_unlock(&ctx->mutex);
11135 
11136 	return event;
11137 
11138 err_unlock:
11139 	mutex_unlock(&ctx->mutex);
11140 	perf_unpin_context(ctx);
11141 	put_ctx(ctx);
11142 err_free:
11143 	free_event(event);
11144 err:
11145 	return ERR_PTR(err);
11146 }
11147 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11148 
11149 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11150 {
11151 	struct perf_event_context *src_ctx;
11152 	struct perf_event_context *dst_ctx;
11153 	struct perf_event *event, *tmp;
11154 	LIST_HEAD(events);
11155 
11156 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11157 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11158 
11159 	/*
11160 	 * See perf_event_ctx_lock() for comments on the details
11161 	 * of swizzling perf_event::ctx.
11162 	 */
11163 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11164 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11165 				 event_entry) {
11166 		perf_remove_from_context(event, 0);
11167 		unaccount_event_cpu(event, src_cpu);
11168 		put_ctx(src_ctx);
11169 		list_add(&event->migrate_entry, &events);
11170 	}
11171 
11172 	/*
11173 	 * Wait for the events to quiesce before re-instating them.
11174 	 */
11175 	synchronize_rcu();
11176 
11177 	/*
11178 	 * Re-instate events in 2 passes.
11179 	 *
11180 	 * Skip over group leaders and only install siblings on this first
11181 	 * pass, siblings will not get enabled without a leader, however a
11182 	 * leader will enable its siblings, even if those are still on the old
11183 	 * context.
11184 	 */
11185 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11186 		if (event->group_leader == event)
11187 			continue;
11188 
11189 		list_del(&event->migrate_entry);
11190 		if (event->state >= PERF_EVENT_STATE_OFF)
11191 			event->state = PERF_EVENT_STATE_INACTIVE;
11192 		account_event_cpu(event, dst_cpu);
11193 		perf_install_in_context(dst_ctx, event, dst_cpu);
11194 		get_ctx(dst_ctx);
11195 	}
11196 
11197 	/*
11198 	 * Once all the siblings are setup properly, install the group leaders
11199 	 * to make it go.
11200 	 */
11201 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11202 		list_del(&event->migrate_entry);
11203 		if (event->state >= PERF_EVENT_STATE_OFF)
11204 			event->state = PERF_EVENT_STATE_INACTIVE;
11205 		account_event_cpu(event, dst_cpu);
11206 		perf_install_in_context(dst_ctx, event, dst_cpu);
11207 		get_ctx(dst_ctx);
11208 	}
11209 	mutex_unlock(&dst_ctx->mutex);
11210 	mutex_unlock(&src_ctx->mutex);
11211 }
11212 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11213 
11214 static void sync_child_event(struct perf_event *child_event,
11215 			       struct task_struct *child)
11216 {
11217 	struct perf_event *parent_event = child_event->parent;
11218 	u64 child_val;
11219 
11220 	if (child_event->attr.inherit_stat)
11221 		perf_event_read_event(child_event, child);
11222 
11223 	child_val = perf_event_count(child_event);
11224 
11225 	/*
11226 	 * Add back the child's count to the parent's count:
11227 	 */
11228 	atomic64_add(child_val, &parent_event->child_count);
11229 	atomic64_add(child_event->total_time_enabled,
11230 		     &parent_event->child_total_time_enabled);
11231 	atomic64_add(child_event->total_time_running,
11232 		     &parent_event->child_total_time_running);
11233 }
11234 
11235 static void
11236 perf_event_exit_event(struct perf_event *child_event,
11237 		      struct perf_event_context *child_ctx,
11238 		      struct task_struct *child)
11239 {
11240 	struct perf_event *parent_event = child_event->parent;
11241 
11242 	/*
11243 	 * Do not destroy the 'original' grouping; because of the context
11244 	 * switch optimization the original events could've ended up in a
11245 	 * random child task.
11246 	 *
11247 	 * If we were to destroy the original group, all group related
11248 	 * operations would cease to function properly after this random
11249 	 * child dies.
11250 	 *
11251 	 * Do destroy all inherited groups, we don't care about those
11252 	 * and being thorough is better.
11253 	 */
11254 	raw_spin_lock_irq(&child_ctx->lock);
11255 	WARN_ON_ONCE(child_ctx->is_active);
11256 
11257 	if (parent_event)
11258 		perf_group_detach(child_event);
11259 	list_del_event(child_event, child_ctx);
11260 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11261 	raw_spin_unlock_irq(&child_ctx->lock);
11262 
11263 	/*
11264 	 * Parent events are governed by their filedesc, retain them.
11265 	 */
11266 	if (!parent_event) {
11267 		perf_event_wakeup(child_event);
11268 		return;
11269 	}
11270 	/*
11271 	 * Child events can be cleaned up.
11272 	 */
11273 
11274 	sync_child_event(child_event, child);
11275 
11276 	/*
11277 	 * Remove this event from the parent's list
11278 	 */
11279 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11280 	mutex_lock(&parent_event->child_mutex);
11281 	list_del_init(&child_event->child_list);
11282 	mutex_unlock(&parent_event->child_mutex);
11283 
11284 	/*
11285 	 * Kick perf_poll() for is_event_hup().
11286 	 */
11287 	perf_event_wakeup(parent_event);
11288 	free_event(child_event);
11289 	put_event(parent_event);
11290 }
11291 
11292 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11293 {
11294 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11295 	struct perf_event *child_event, *next;
11296 
11297 	WARN_ON_ONCE(child != current);
11298 
11299 	child_ctx = perf_pin_task_context(child, ctxn);
11300 	if (!child_ctx)
11301 		return;
11302 
11303 	/*
11304 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11305 	 * ctx::mutex over the entire thing. This serializes against almost
11306 	 * everything that wants to access the ctx.
11307 	 *
11308 	 * The exception is sys_perf_event_open() /
11309 	 * perf_event_create_kernel_count() which does find_get_context()
11310 	 * without ctx::mutex (it cannot because of the move_group double mutex
11311 	 * lock thing). See the comments in perf_install_in_context().
11312 	 */
11313 	mutex_lock(&child_ctx->mutex);
11314 
11315 	/*
11316 	 * In a single ctx::lock section, de-schedule the events and detach the
11317 	 * context from the task such that we cannot ever get it scheduled back
11318 	 * in.
11319 	 */
11320 	raw_spin_lock_irq(&child_ctx->lock);
11321 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11322 
11323 	/*
11324 	 * Now that the context is inactive, destroy the task <-> ctx relation
11325 	 * and mark the context dead.
11326 	 */
11327 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11328 	put_ctx(child_ctx); /* cannot be last */
11329 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11330 	put_task_struct(current); /* cannot be last */
11331 
11332 	clone_ctx = unclone_ctx(child_ctx);
11333 	raw_spin_unlock_irq(&child_ctx->lock);
11334 
11335 	if (clone_ctx)
11336 		put_ctx(clone_ctx);
11337 
11338 	/*
11339 	 * Report the task dead after unscheduling the events so that we
11340 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11341 	 * get a few PERF_RECORD_READ events.
11342 	 */
11343 	perf_event_task(child, child_ctx, 0);
11344 
11345 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11346 		perf_event_exit_event(child_event, child_ctx, child);
11347 
11348 	mutex_unlock(&child_ctx->mutex);
11349 
11350 	put_ctx(child_ctx);
11351 }
11352 
11353 /*
11354  * When a child task exits, feed back event values to parent events.
11355  *
11356  * Can be called with cred_guard_mutex held when called from
11357  * install_exec_creds().
11358  */
11359 void perf_event_exit_task(struct task_struct *child)
11360 {
11361 	struct perf_event *event, *tmp;
11362 	int ctxn;
11363 
11364 	mutex_lock(&child->perf_event_mutex);
11365 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11366 				 owner_entry) {
11367 		list_del_init(&event->owner_entry);
11368 
11369 		/*
11370 		 * Ensure the list deletion is visible before we clear
11371 		 * the owner, closes a race against perf_release() where
11372 		 * we need to serialize on the owner->perf_event_mutex.
11373 		 */
11374 		smp_store_release(&event->owner, NULL);
11375 	}
11376 	mutex_unlock(&child->perf_event_mutex);
11377 
11378 	for_each_task_context_nr(ctxn)
11379 		perf_event_exit_task_context(child, ctxn);
11380 
11381 	/*
11382 	 * The perf_event_exit_task_context calls perf_event_task
11383 	 * with child's task_ctx, which generates EXIT events for
11384 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11385 	 * At this point we need to send EXIT events to cpu contexts.
11386 	 */
11387 	perf_event_task(child, NULL, 0);
11388 }
11389 
11390 static void perf_free_event(struct perf_event *event,
11391 			    struct perf_event_context *ctx)
11392 {
11393 	struct perf_event *parent = event->parent;
11394 
11395 	if (WARN_ON_ONCE(!parent))
11396 		return;
11397 
11398 	mutex_lock(&parent->child_mutex);
11399 	list_del_init(&event->child_list);
11400 	mutex_unlock(&parent->child_mutex);
11401 
11402 	put_event(parent);
11403 
11404 	raw_spin_lock_irq(&ctx->lock);
11405 	perf_group_detach(event);
11406 	list_del_event(event, ctx);
11407 	raw_spin_unlock_irq(&ctx->lock);
11408 	free_event(event);
11409 }
11410 
11411 /*
11412  * Free an unexposed, unused context as created by inheritance by
11413  * perf_event_init_task below, used by fork() in case of fail.
11414  *
11415  * Not all locks are strictly required, but take them anyway to be nice and
11416  * help out with the lockdep assertions.
11417  */
11418 void perf_event_free_task(struct task_struct *task)
11419 {
11420 	struct perf_event_context *ctx;
11421 	struct perf_event *event, *tmp;
11422 	int ctxn;
11423 
11424 	for_each_task_context_nr(ctxn) {
11425 		ctx = task->perf_event_ctxp[ctxn];
11426 		if (!ctx)
11427 			continue;
11428 
11429 		mutex_lock(&ctx->mutex);
11430 		raw_spin_lock_irq(&ctx->lock);
11431 		/*
11432 		 * Destroy the task <-> ctx relation and mark the context dead.
11433 		 *
11434 		 * This is important because even though the task hasn't been
11435 		 * exposed yet the context has been (through child_list).
11436 		 */
11437 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11438 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11439 		put_task_struct(task); /* cannot be last */
11440 		raw_spin_unlock_irq(&ctx->lock);
11441 
11442 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11443 			perf_free_event(event, ctx);
11444 
11445 		mutex_unlock(&ctx->mutex);
11446 		put_ctx(ctx);
11447 	}
11448 }
11449 
11450 void perf_event_delayed_put(struct task_struct *task)
11451 {
11452 	int ctxn;
11453 
11454 	for_each_task_context_nr(ctxn)
11455 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11456 }
11457 
11458 struct file *perf_event_get(unsigned int fd)
11459 {
11460 	struct file *file;
11461 
11462 	file = fget_raw(fd);
11463 	if (!file)
11464 		return ERR_PTR(-EBADF);
11465 
11466 	if (file->f_op != &perf_fops) {
11467 		fput(file);
11468 		return ERR_PTR(-EBADF);
11469 	}
11470 
11471 	return file;
11472 }
11473 
11474 const struct perf_event *perf_get_event(struct file *file)
11475 {
11476 	if (file->f_op != &perf_fops)
11477 		return ERR_PTR(-EINVAL);
11478 
11479 	return file->private_data;
11480 }
11481 
11482 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11483 {
11484 	if (!event)
11485 		return ERR_PTR(-EINVAL);
11486 
11487 	return &event->attr;
11488 }
11489 
11490 /*
11491  * Inherit an event from parent task to child task.
11492  *
11493  * Returns:
11494  *  - valid pointer on success
11495  *  - NULL for orphaned events
11496  *  - IS_ERR() on error
11497  */
11498 static struct perf_event *
11499 inherit_event(struct perf_event *parent_event,
11500 	      struct task_struct *parent,
11501 	      struct perf_event_context *parent_ctx,
11502 	      struct task_struct *child,
11503 	      struct perf_event *group_leader,
11504 	      struct perf_event_context *child_ctx)
11505 {
11506 	enum perf_event_state parent_state = parent_event->state;
11507 	struct perf_event *child_event;
11508 	unsigned long flags;
11509 
11510 	/*
11511 	 * Instead of creating recursive hierarchies of events,
11512 	 * we link inherited events back to the original parent,
11513 	 * which has a filp for sure, which we use as the reference
11514 	 * count:
11515 	 */
11516 	if (parent_event->parent)
11517 		parent_event = parent_event->parent;
11518 
11519 	child_event = perf_event_alloc(&parent_event->attr,
11520 					   parent_event->cpu,
11521 					   child,
11522 					   group_leader, parent_event,
11523 					   NULL, NULL, -1);
11524 	if (IS_ERR(child_event))
11525 		return child_event;
11526 
11527 
11528 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11529 	    !child_ctx->task_ctx_data) {
11530 		struct pmu *pmu = child_event->pmu;
11531 
11532 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11533 						   GFP_KERNEL);
11534 		if (!child_ctx->task_ctx_data) {
11535 			free_event(child_event);
11536 			return NULL;
11537 		}
11538 	}
11539 
11540 	/*
11541 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11542 	 * must be under the same lock in order to serialize against
11543 	 * perf_event_release_kernel(), such that either we must observe
11544 	 * is_orphaned_event() or they will observe us on the child_list.
11545 	 */
11546 	mutex_lock(&parent_event->child_mutex);
11547 	if (is_orphaned_event(parent_event) ||
11548 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11549 		mutex_unlock(&parent_event->child_mutex);
11550 		/* task_ctx_data is freed with child_ctx */
11551 		free_event(child_event);
11552 		return NULL;
11553 	}
11554 
11555 	get_ctx(child_ctx);
11556 
11557 	/*
11558 	 * Make the child state follow the state of the parent event,
11559 	 * not its attr.disabled bit.  We hold the parent's mutex,
11560 	 * so we won't race with perf_event_{en, dis}able_family.
11561 	 */
11562 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11563 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11564 	else
11565 		child_event->state = PERF_EVENT_STATE_OFF;
11566 
11567 	if (parent_event->attr.freq) {
11568 		u64 sample_period = parent_event->hw.sample_period;
11569 		struct hw_perf_event *hwc = &child_event->hw;
11570 
11571 		hwc->sample_period = sample_period;
11572 		hwc->last_period   = sample_period;
11573 
11574 		local64_set(&hwc->period_left, sample_period);
11575 	}
11576 
11577 	child_event->ctx = child_ctx;
11578 	child_event->overflow_handler = parent_event->overflow_handler;
11579 	child_event->overflow_handler_context
11580 		= parent_event->overflow_handler_context;
11581 
11582 	/*
11583 	 * Precalculate sample_data sizes
11584 	 */
11585 	perf_event__header_size(child_event);
11586 	perf_event__id_header_size(child_event);
11587 
11588 	/*
11589 	 * Link it up in the child's context:
11590 	 */
11591 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11592 	add_event_to_ctx(child_event, child_ctx);
11593 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11594 
11595 	/*
11596 	 * Link this into the parent event's child list
11597 	 */
11598 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11599 	mutex_unlock(&parent_event->child_mutex);
11600 
11601 	return child_event;
11602 }
11603 
11604 /*
11605  * Inherits an event group.
11606  *
11607  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11608  * This matches with perf_event_release_kernel() removing all child events.
11609  *
11610  * Returns:
11611  *  - 0 on success
11612  *  - <0 on error
11613  */
11614 static int inherit_group(struct perf_event *parent_event,
11615 	      struct task_struct *parent,
11616 	      struct perf_event_context *parent_ctx,
11617 	      struct task_struct *child,
11618 	      struct perf_event_context *child_ctx)
11619 {
11620 	struct perf_event *leader;
11621 	struct perf_event *sub;
11622 	struct perf_event *child_ctr;
11623 
11624 	leader = inherit_event(parent_event, parent, parent_ctx,
11625 				 child, NULL, child_ctx);
11626 	if (IS_ERR(leader))
11627 		return PTR_ERR(leader);
11628 	/*
11629 	 * @leader can be NULL here because of is_orphaned_event(). In this
11630 	 * case inherit_event() will create individual events, similar to what
11631 	 * perf_group_detach() would do anyway.
11632 	 */
11633 	for_each_sibling_event(sub, parent_event) {
11634 		child_ctr = inherit_event(sub, parent, parent_ctx,
11635 					    child, leader, child_ctx);
11636 		if (IS_ERR(child_ctr))
11637 			return PTR_ERR(child_ctr);
11638 	}
11639 	return 0;
11640 }
11641 
11642 /*
11643  * Creates the child task context and tries to inherit the event-group.
11644  *
11645  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11646  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11647  * consistent with perf_event_release_kernel() removing all child events.
11648  *
11649  * Returns:
11650  *  - 0 on success
11651  *  - <0 on error
11652  */
11653 static int
11654 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11655 		   struct perf_event_context *parent_ctx,
11656 		   struct task_struct *child, int ctxn,
11657 		   int *inherited_all)
11658 {
11659 	int ret;
11660 	struct perf_event_context *child_ctx;
11661 
11662 	if (!event->attr.inherit) {
11663 		*inherited_all = 0;
11664 		return 0;
11665 	}
11666 
11667 	child_ctx = child->perf_event_ctxp[ctxn];
11668 	if (!child_ctx) {
11669 		/*
11670 		 * This is executed from the parent task context, so
11671 		 * inherit events that have been marked for cloning.
11672 		 * First allocate and initialize a context for the
11673 		 * child.
11674 		 */
11675 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11676 		if (!child_ctx)
11677 			return -ENOMEM;
11678 
11679 		child->perf_event_ctxp[ctxn] = child_ctx;
11680 	}
11681 
11682 	ret = inherit_group(event, parent, parent_ctx,
11683 			    child, child_ctx);
11684 
11685 	if (ret)
11686 		*inherited_all = 0;
11687 
11688 	return ret;
11689 }
11690 
11691 /*
11692  * Initialize the perf_event context in task_struct
11693  */
11694 static int perf_event_init_context(struct task_struct *child, int ctxn)
11695 {
11696 	struct perf_event_context *child_ctx, *parent_ctx;
11697 	struct perf_event_context *cloned_ctx;
11698 	struct perf_event *event;
11699 	struct task_struct *parent = current;
11700 	int inherited_all = 1;
11701 	unsigned long flags;
11702 	int ret = 0;
11703 
11704 	if (likely(!parent->perf_event_ctxp[ctxn]))
11705 		return 0;
11706 
11707 	/*
11708 	 * If the parent's context is a clone, pin it so it won't get
11709 	 * swapped under us.
11710 	 */
11711 	parent_ctx = perf_pin_task_context(parent, ctxn);
11712 	if (!parent_ctx)
11713 		return 0;
11714 
11715 	/*
11716 	 * No need to check if parent_ctx != NULL here; since we saw
11717 	 * it non-NULL earlier, the only reason for it to become NULL
11718 	 * is if we exit, and since we're currently in the middle of
11719 	 * a fork we can't be exiting at the same time.
11720 	 */
11721 
11722 	/*
11723 	 * Lock the parent list. No need to lock the child - not PID
11724 	 * hashed yet and not running, so nobody can access it.
11725 	 */
11726 	mutex_lock(&parent_ctx->mutex);
11727 
11728 	/*
11729 	 * We dont have to disable NMIs - we are only looking at
11730 	 * the list, not manipulating it:
11731 	 */
11732 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11733 		ret = inherit_task_group(event, parent, parent_ctx,
11734 					 child, ctxn, &inherited_all);
11735 		if (ret)
11736 			goto out_unlock;
11737 	}
11738 
11739 	/*
11740 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
11741 	 * to allocations, but we need to prevent rotation because
11742 	 * rotate_ctx() will change the list from interrupt context.
11743 	 */
11744 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11745 	parent_ctx->rotate_disable = 1;
11746 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11747 
11748 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11749 		ret = inherit_task_group(event, parent, parent_ctx,
11750 					 child, ctxn, &inherited_all);
11751 		if (ret)
11752 			goto out_unlock;
11753 	}
11754 
11755 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11756 	parent_ctx->rotate_disable = 0;
11757 
11758 	child_ctx = child->perf_event_ctxp[ctxn];
11759 
11760 	if (child_ctx && inherited_all) {
11761 		/*
11762 		 * Mark the child context as a clone of the parent
11763 		 * context, or of whatever the parent is a clone of.
11764 		 *
11765 		 * Note that if the parent is a clone, the holding of
11766 		 * parent_ctx->lock avoids it from being uncloned.
11767 		 */
11768 		cloned_ctx = parent_ctx->parent_ctx;
11769 		if (cloned_ctx) {
11770 			child_ctx->parent_ctx = cloned_ctx;
11771 			child_ctx->parent_gen = parent_ctx->parent_gen;
11772 		} else {
11773 			child_ctx->parent_ctx = parent_ctx;
11774 			child_ctx->parent_gen = parent_ctx->generation;
11775 		}
11776 		get_ctx(child_ctx->parent_ctx);
11777 	}
11778 
11779 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11780 out_unlock:
11781 	mutex_unlock(&parent_ctx->mutex);
11782 
11783 	perf_unpin_context(parent_ctx);
11784 	put_ctx(parent_ctx);
11785 
11786 	return ret;
11787 }
11788 
11789 /*
11790  * Initialize the perf_event context in task_struct
11791  */
11792 int perf_event_init_task(struct task_struct *child)
11793 {
11794 	int ctxn, ret;
11795 
11796 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11797 	mutex_init(&child->perf_event_mutex);
11798 	INIT_LIST_HEAD(&child->perf_event_list);
11799 
11800 	for_each_task_context_nr(ctxn) {
11801 		ret = perf_event_init_context(child, ctxn);
11802 		if (ret) {
11803 			perf_event_free_task(child);
11804 			return ret;
11805 		}
11806 	}
11807 
11808 	return 0;
11809 }
11810 
11811 static void __init perf_event_init_all_cpus(void)
11812 {
11813 	struct swevent_htable *swhash;
11814 	int cpu;
11815 
11816 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11817 
11818 	for_each_possible_cpu(cpu) {
11819 		swhash = &per_cpu(swevent_htable, cpu);
11820 		mutex_init(&swhash->hlist_mutex);
11821 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11822 
11823 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11824 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11825 
11826 #ifdef CONFIG_CGROUP_PERF
11827 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11828 #endif
11829 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11830 	}
11831 }
11832 
11833 void perf_swevent_init_cpu(unsigned int cpu)
11834 {
11835 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11836 
11837 	mutex_lock(&swhash->hlist_mutex);
11838 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11839 		struct swevent_hlist *hlist;
11840 
11841 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11842 		WARN_ON(!hlist);
11843 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11844 	}
11845 	mutex_unlock(&swhash->hlist_mutex);
11846 }
11847 
11848 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11849 static void __perf_event_exit_context(void *__info)
11850 {
11851 	struct perf_event_context *ctx = __info;
11852 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11853 	struct perf_event *event;
11854 
11855 	raw_spin_lock(&ctx->lock);
11856 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11857 	list_for_each_entry(event, &ctx->event_list, event_entry)
11858 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11859 	raw_spin_unlock(&ctx->lock);
11860 }
11861 
11862 static void perf_event_exit_cpu_context(int cpu)
11863 {
11864 	struct perf_cpu_context *cpuctx;
11865 	struct perf_event_context *ctx;
11866 	struct pmu *pmu;
11867 
11868 	mutex_lock(&pmus_lock);
11869 	list_for_each_entry(pmu, &pmus, entry) {
11870 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11871 		ctx = &cpuctx->ctx;
11872 
11873 		mutex_lock(&ctx->mutex);
11874 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11875 		cpuctx->online = 0;
11876 		mutex_unlock(&ctx->mutex);
11877 	}
11878 	cpumask_clear_cpu(cpu, perf_online_mask);
11879 	mutex_unlock(&pmus_lock);
11880 }
11881 #else
11882 
11883 static void perf_event_exit_cpu_context(int cpu) { }
11884 
11885 #endif
11886 
11887 int perf_event_init_cpu(unsigned int cpu)
11888 {
11889 	struct perf_cpu_context *cpuctx;
11890 	struct perf_event_context *ctx;
11891 	struct pmu *pmu;
11892 
11893 	perf_swevent_init_cpu(cpu);
11894 
11895 	mutex_lock(&pmus_lock);
11896 	cpumask_set_cpu(cpu, perf_online_mask);
11897 	list_for_each_entry(pmu, &pmus, entry) {
11898 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11899 		ctx = &cpuctx->ctx;
11900 
11901 		mutex_lock(&ctx->mutex);
11902 		cpuctx->online = 1;
11903 		mutex_unlock(&ctx->mutex);
11904 	}
11905 	mutex_unlock(&pmus_lock);
11906 
11907 	return 0;
11908 }
11909 
11910 int perf_event_exit_cpu(unsigned int cpu)
11911 {
11912 	perf_event_exit_cpu_context(cpu);
11913 	return 0;
11914 }
11915 
11916 static int
11917 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11918 {
11919 	int cpu;
11920 
11921 	for_each_online_cpu(cpu)
11922 		perf_event_exit_cpu(cpu);
11923 
11924 	return NOTIFY_OK;
11925 }
11926 
11927 /*
11928  * Run the perf reboot notifier at the very last possible moment so that
11929  * the generic watchdog code runs as long as possible.
11930  */
11931 static struct notifier_block perf_reboot_notifier = {
11932 	.notifier_call = perf_reboot,
11933 	.priority = INT_MIN,
11934 };
11935 
11936 void __init perf_event_init(void)
11937 {
11938 	int ret;
11939 
11940 	idr_init(&pmu_idr);
11941 
11942 	perf_event_init_all_cpus();
11943 	init_srcu_struct(&pmus_srcu);
11944 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11945 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11946 	perf_pmu_register(&perf_task_clock, NULL, -1);
11947 	perf_tp_register();
11948 	perf_event_init_cpu(smp_processor_id());
11949 	register_reboot_notifier(&perf_reboot_notifier);
11950 
11951 	ret = init_hw_breakpoint();
11952 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11953 
11954 	/*
11955 	 * Build time assertion that we keep the data_head at the intended
11956 	 * location.  IOW, validation we got the __reserved[] size right.
11957 	 */
11958 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11959 		     != 1024);
11960 }
11961 
11962 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11963 			      char *page)
11964 {
11965 	struct perf_pmu_events_attr *pmu_attr =
11966 		container_of(attr, struct perf_pmu_events_attr, attr);
11967 
11968 	if (pmu_attr->event_str)
11969 		return sprintf(page, "%s\n", pmu_attr->event_str);
11970 
11971 	return 0;
11972 }
11973 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11974 
11975 static int __init perf_event_sysfs_init(void)
11976 {
11977 	struct pmu *pmu;
11978 	int ret;
11979 
11980 	mutex_lock(&pmus_lock);
11981 
11982 	ret = bus_register(&pmu_bus);
11983 	if (ret)
11984 		goto unlock;
11985 
11986 	list_for_each_entry(pmu, &pmus, entry) {
11987 		if (!pmu->name || pmu->type < 0)
11988 			continue;
11989 
11990 		ret = pmu_dev_alloc(pmu);
11991 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11992 	}
11993 	pmu_bus_running = 1;
11994 	ret = 0;
11995 
11996 unlock:
11997 	mutex_unlock(&pmus_lock);
11998 
11999 	return ret;
12000 }
12001 device_initcall(perf_event_sysfs_init);
12002 
12003 #ifdef CONFIG_CGROUP_PERF
12004 static struct cgroup_subsys_state *
12005 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12006 {
12007 	struct perf_cgroup *jc;
12008 
12009 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12010 	if (!jc)
12011 		return ERR_PTR(-ENOMEM);
12012 
12013 	jc->info = alloc_percpu(struct perf_cgroup_info);
12014 	if (!jc->info) {
12015 		kfree(jc);
12016 		return ERR_PTR(-ENOMEM);
12017 	}
12018 
12019 	return &jc->css;
12020 }
12021 
12022 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12023 {
12024 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12025 
12026 	free_percpu(jc->info);
12027 	kfree(jc);
12028 }
12029 
12030 static int __perf_cgroup_move(void *info)
12031 {
12032 	struct task_struct *task = info;
12033 	rcu_read_lock();
12034 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12035 	rcu_read_unlock();
12036 	return 0;
12037 }
12038 
12039 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12040 {
12041 	struct task_struct *task;
12042 	struct cgroup_subsys_state *css;
12043 
12044 	cgroup_taskset_for_each(task, css, tset)
12045 		task_function_call(task, __perf_cgroup_move, task);
12046 }
12047 
12048 struct cgroup_subsys perf_event_cgrp_subsys = {
12049 	.css_alloc	= perf_cgroup_css_alloc,
12050 	.css_free	= perf_cgroup_css_free,
12051 	.attach		= perf_cgroup_attach,
12052 	/*
12053 	 * Implicitly enable on dfl hierarchy so that perf events can
12054 	 * always be filtered by cgroup2 path as long as perf_event
12055 	 * controller is not mounted on a legacy hierarchy.
12056 	 */
12057 	.implicit_on_dfl = true,
12058 	.threaded	= true,
12059 };
12060 #endif /* CONFIG_CGROUP_PERF */
12061