1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <[email protected]> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <[email protected]> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @cpu: target cpu to queue this function 136 * @func: the function to be called 137 * @info: the function call argument 138 * 139 * Calls the function @func on the remote cpu. 140 * 141 * returns: @func return value or -ENXIO when the cpu is offline 142 */ 143 static int cpu_function_call(int cpu, remote_function_f func, void *info) 144 { 145 struct remote_function_call data = { 146 .p = NULL, 147 .func = func, 148 .info = info, 149 .ret = -ENXIO, /* No such CPU */ 150 }; 151 152 smp_call_function_single(cpu, remote_function, &data, 1); 153 154 return data.ret; 155 } 156 157 static inline struct perf_cpu_context * 158 __get_cpu_context(struct perf_event_context *ctx) 159 { 160 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 161 } 162 163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 164 struct perf_event_context *ctx) 165 { 166 raw_spin_lock(&cpuctx->ctx.lock); 167 if (ctx) 168 raw_spin_lock(&ctx->lock); 169 } 170 171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 172 struct perf_event_context *ctx) 173 { 174 if (ctx) 175 raw_spin_unlock(&ctx->lock); 176 raw_spin_unlock(&cpuctx->ctx.lock); 177 } 178 179 #define TASK_TOMBSTONE ((void *)-1L) 180 181 static bool is_kernel_event(struct perf_event *event) 182 { 183 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 184 } 185 186 /* 187 * On task ctx scheduling... 188 * 189 * When !ctx->nr_events a task context will not be scheduled. This means 190 * we can disable the scheduler hooks (for performance) without leaving 191 * pending task ctx state. 192 * 193 * This however results in two special cases: 194 * 195 * - removing the last event from a task ctx; this is relatively straight 196 * forward and is done in __perf_remove_from_context. 197 * 198 * - adding the first event to a task ctx; this is tricky because we cannot 199 * rely on ctx->is_active and therefore cannot use event_function_call(). 200 * See perf_install_in_context(). 201 * 202 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 203 */ 204 205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 206 struct perf_event_context *, void *); 207 208 struct event_function_struct { 209 struct perf_event *event; 210 event_f func; 211 void *data; 212 }; 213 214 static int event_function(void *info) 215 { 216 struct event_function_struct *efs = info; 217 struct perf_event *event = efs->event; 218 struct perf_event_context *ctx = event->ctx; 219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 220 struct perf_event_context *task_ctx = cpuctx->task_ctx; 221 int ret = 0; 222 223 lockdep_assert_irqs_disabled(); 224 225 perf_ctx_lock(cpuctx, task_ctx); 226 /* 227 * Since we do the IPI call without holding ctx->lock things can have 228 * changed, double check we hit the task we set out to hit. 229 */ 230 if (ctx->task) { 231 if (ctx->task != current) { 232 ret = -ESRCH; 233 goto unlock; 234 } 235 236 /* 237 * We only use event_function_call() on established contexts, 238 * and event_function() is only ever called when active (or 239 * rather, we'll have bailed in task_function_call() or the 240 * above ctx->task != current test), therefore we must have 241 * ctx->is_active here. 242 */ 243 WARN_ON_ONCE(!ctx->is_active); 244 /* 245 * And since we have ctx->is_active, cpuctx->task_ctx must 246 * match. 247 */ 248 WARN_ON_ONCE(task_ctx != ctx); 249 } else { 250 WARN_ON_ONCE(&cpuctx->ctx != ctx); 251 } 252 253 efs->func(event, cpuctx, ctx, efs->data); 254 unlock: 255 perf_ctx_unlock(cpuctx, task_ctx); 256 257 return ret; 258 } 259 260 static void event_function_call(struct perf_event *event, event_f func, void *data) 261 { 262 struct perf_event_context *ctx = event->ctx; 263 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 264 struct event_function_struct efs = { 265 .event = event, 266 .func = func, 267 .data = data, 268 }; 269 270 if (!event->parent) { 271 /* 272 * If this is a !child event, we must hold ctx::mutex to 273 * stabilize the event->ctx relation. See 274 * perf_event_ctx_lock(). 275 */ 276 lockdep_assert_held(&ctx->mutex); 277 } 278 279 if (!task) { 280 cpu_function_call(event->cpu, event_function, &efs); 281 return; 282 } 283 284 if (task == TASK_TOMBSTONE) 285 return; 286 287 again: 288 if (!task_function_call(task, event_function, &efs)) 289 return; 290 291 raw_spin_lock_irq(&ctx->lock); 292 /* 293 * Reload the task pointer, it might have been changed by 294 * a concurrent perf_event_context_sched_out(). 295 */ 296 task = ctx->task; 297 if (task == TASK_TOMBSTONE) { 298 raw_spin_unlock_irq(&ctx->lock); 299 return; 300 } 301 if (ctx->is_active) { 302 raw_spin_unlock_irq(&ctx->lock); 303 goto again; 304 } 305 func(event, NULL, ctx, data); 306 raw_spin_unlock_irq(&ctx->lock); 307 } 308 309 /* 310 * Similar to event_function_call() + event_function(), but hard assumes IRQs 311 * are already disabled and we're on the right CPU. 312 */ 313 static void event_function_local(struct perf_event *event, event_f func, void *data) 314 { 315 struct perf_event_context *ctx = event->ctx; 316 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 317 struct task_struct *task = READ_ONCE(ctx->task); 318 struct perf_event_context *task_ctx = NULL; 319 320 lockdep_assert_irqs_disabled(); 321 322 if (task) { 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 task_ctx = ctx; 327 } 328 329 perf_ctx_lock(cpuctx, task_ctx); 330 331 task = ctx->task; 332 if (task == TASK_TOMBSTONE) 333 goto unlock; 334 335 if (task) { 336 /* 337 * We must be either inactive or active and the right task, 338 * otherwise we're screwed, since we cannot IPI to somewhere 339 * else. 340 */ 341 if (ctx->is_active) { 342 if (WARN_ON_ONCE(task != current)) 343 goto unlock; 344 345 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 346 goto unlock; 347 } 348 } else { 349 WARN_ON_ONCE(&cpuctx->ctx != ctx); 350 } 351 352 func(event, cpuctx, ctx, data); 353 unlock: 354 perf_ctx_unlock(cpuctx, task_ctx); 355 } 356 357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 358 PERF_FLAG_FD_OUTPUT |\ 359 PERF_FLAG_PID_CGROUP |\ 360 PERF_FLAG_FD_CLOEXEC) 361 362 /* 363 * branch priv levels that need permission checks 364 */ 365 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 366 (PERF_SAMPLE_BRANCH_KERNEL |\ 367 PERF_SAMPLE_BRANCH_HV) 368 369 enum event_type_t { 370 EVENT_FLEXIBLE = 0x1, 371 EVENT_PINNED = 0x2, 372 EVENT_TIME = 0x4, 373 /* see ctx_resched() for details */ 374 EVENT_CPU = 0x8, 375 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 376 }; 377 378 /* 379 * perf_sched_events : >0 events exist 380 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 381 */ 382 383 static void perf_sched_delayed(struct work_struct *work); 384 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 386 static DEFINE_MUTEX(perf_sched_mutex); 387 static atomic_t perf_sched_count; 388 389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 390 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 574 enum event_type_t event_type); 575 576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 577 enum event_type_t event_type, 578 struct task_struct *task); 579 580 static void update_context_time(struct perf_event_context *ctx); 581 static u64 perf_event_time(struct perf_event *event); 582 583 void __weak perf_event_print_debug(void) { } 584 585 static inline u64 perf_clock(void) 586 { 587 return local_clock(); 588 } 589 590 static inline u64 perf_event_clock(struct perf_event *event) 591 { 592 return event->clock(); 593 } 594 595 /* 596 * State based event timekeeping... 597 * 598 * The basic idea is to use event->state to determine which (if any) time 599 * fields to increment with the current delta. This means we only need to 600 * update timestamps when we change state or when they are explicitly requested 601 * (read). 602 * 603 * Event groups make things a little more complicated, but not terribly so. The 604 * rules for a group are that if the group leader is OFF the entire group is 605 * OFF, irrespecive of what the group member states are. This results in 606 * __perf_effective_state(). 607 * 608 * A futher ramification is that when a group leader flips between OFF and 609 * !OFF, we need to update all group member times. 610 * 611 * 612 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 613 * need to make sure the relevant context time is updated before we try and 614 * update our timestamps. 615 */ 616 617 static __always_inline enum perf_event_state 618 __perf_effective_state(struct perf_event *event) 619 { 620 struct perf_event *leader = event->group_leader; 621 622 if (leader->state <= PERF_EVENT_STATE_OFF) 623 return leader->state; 624 625 return event->state; 626 } 627 628 static __always_inline void 629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 630 { 631 enum perf_event_state state = __perf_effective_state(event); 632 u64 delta = now - event->tstamp; 633 634 *enabled = event->total_time_enabled; 635 if (state >= PERF_EVENT_STATE_INACTIVE) 636 *enabled += delta; 637 638 *running = event->total_time_running; 639 if (state >= PERF_EVENT_STATE_ACTIVE) 640 *running += delta; 641 } 642 643 static void perf_event_update_time(struct perf_event *event) 644 { 645 u64 now = perf_event_time(event); 646 647 __perf_update_times(event, now, &event->total_time_enabled, 648 &event->total_time_running); 649 event->tstamp = now; 650 } 651 652 static void perf_event_update_sibling_time(struct perf_event *leader) 653 { 654 struct perf_event *sibling; 655 656 for_each_sibling_event(sibling, leader) 657 perf_event_update_time(sibling); 658 } 659 660 static void 661 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 662 { 663 if (event->state == state) 664 return; 665 666 perf_event_update_time(event); 667 /* 668 * If a group leader gets enabled/disabled all its siblings 669 * are affected too. 670 */ 671 if ((event->state < 0) ^ (state < 0)) 672 perf_event_update_sibling_time(event); 673 674 WRITE_ONCE(event->state, state); 675 } 676 677 #ifdef CONFIG_CGROUP_PERF 678 679 static inline bool 680 perf_cgroup_match(struct perf_event *event) 681 { 682 struct perf_event_context *ctx = event->ctx; 683 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 684 685 /* @event doesn't care about cgroup */ 686 if (!event->cgrp) 687 return true; 688 689 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 690 if (!cpuctx->cgrp) 691 return false; 692 693 /* 694 * Cgroup scoping is recursive. An event enabled for a cgroup is 695 * also enabled for all its descendant cgroups. If @cpuctx's 696 * cgroup is a descendant of @event's (the test covers identity 697 * case), it's a match. 698 */ 699 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 700 event->cgrp->css.cgroup); 701 } 702 703 static inline void perf_detach_cgroup(struct perf_event *event) 704 { 705 css_put(&event->cgrp->css); 706 event->cgrp = NULL; 707 } 708 709 static inline int is_cgroup_event(struct perf_event *event) 710 { 711 return event->cgrp != NULL; 712 } 713 714 static inline u64 perf_cgroup_event_time(struct perf_event *event) 715 { 716 struct perf_cgroup_info *t; 717 718 t = per_cpu_ptr(event->cgrp->info, event->cpu); 719 return t->time; 720 } 721 722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 723 { 724 struct perf_cgroup_info *info; 725 u64 now; 726 727 now = perf_clock(); 728 729 info = this_cpu_ptr(cgrp->info); 730 731 info->time += now - info->timestamp; 732 info->timestamp = now; 733 } 734 735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 736 { 737 struct perf_cgroup *cgrp = cpuctx->cgrp; 738 struct cgroup_subsys_state *css; 739 740 if (cgrp) { 741 for (css = &cgrp->css; css; css = css->parent) { 742 cgrp = container_of(css, struct perf_cgroup, css); 743 __update_cgrp_time(cgrp); 744 } 745 } 746 } 747 748 static inline void update_cgrp_time_from_event(struct perf_event *event) 749 { 750 struct perf_cgroup *cgrp; 751 752 /* 753 * ensure we access cgroup data only when needed and 754 * when we know the cgroup is pinned (css_get) 755 */ 756 if (!is_cgroup_event(event)) 757 return; 758 759 cgrp = perf_cgroup_from_task(current, event->ctx); 760 /* 761 * Do not update time when cgroup is not active 762 */ 763 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 764 __update_cgrp_time(event->cgrp); 765 } 766 767 static inline void 768 perf_cgroup_set_timestamp(struct task_struct *task, 769 struct perf_event_context *ctx) 770 { 771 struct perf_cgroup *cgrp; 772 struct perf_cgroup_info *info; 773 struct cgroup_subsys_state *css; 774 775 /* 776 * ctx->lock held by caller 777 * ensure we do not access cgroup data 778 * unless we have the cgroup pinned (css_get) 779 */ 780 if (!task || !ctx->nr_cgroups) 781 return; 782 783 cgrp = perf_cgroup_from_task(task, ctx); 784 785 for (css = &cgrp->css; css; css = css->parent) { 786 cgrp = container_of(css, struct perf_cgroup, css); 787 info = this_cpu_ptr(cgrp->info); 788 info->timestamp = ctx->timestamp; 789 } 790 } 791 792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 793 794 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 795 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 796 797 /* 798 * reschedule events based on the cgroup constraint of task. 799 * 800 * mode SWOUT : schedule out everything 801 * mode SWIN : schedule in based on cgroup for next 802 */ 803 static void perf_cgroup_switch(struct task_struct *task, int mode) 804 { 805 struct perf_cpu_context *cpuctx; 806 struct list_head *list; 807 unsigned long flags; 808 809 /* 810 * Disable interrupts and preemption to avoid this CPU's 811 * cgrp_cpuctx_entry to change under us. 812 */ 813 local_irq_save(flags); 814 815 list = this_cpu_ptr(&cgrp_cpuctx_list); 816 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 817 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 818 819 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 820 perf_pmu_disable(cpuctx->ctx.pmu); 821 822 if (mode & PERF_CGROUP_SWOUT) { 823 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 824 /* 825 * must not be done before ctxswout due 826 * to event_filter_match() in event_sched_out() 827 */ 828 cpuctx->cgrp = NULL; 829 } 830 831 if (mode & PERF_CGROUP_SWIN) { 832 WARN_ON_ONCE(cpuctx->cgrp); 833 /* 834 * set cgrp before ctxsw in to allow 835 * event_filter_match() to not have to pass 836 * task around 837 * we pass the cpuctx->ctx to perf_cgroup_from_task() 838 * because cgorup events are only per-cpu 839 */ 840 cpuctx->cgrp = perf_cgroup_from_task(task, 841 &cpuctx->ctx); 842 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 843 } 844 perf_pmu_enable(cpuctx->ctx.pmu); 845 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 846 } 847 848 local_irq_restore(flags); 849 } 850 851 static inline void perf_cgroup_sched_out(struct task_struct *task, 852 struct task_struct *next) 853 { 854 struct perf_cgroup *cgrp1; 855 struct perf_cgroup *cgrp2 = NULL; 856 857 rcu_read_lock(); 858 /* 859 * we come here when we know perf_cgroup_events > 0 860 * we do not need to pass the ctx here because we know 861 * we are holding the rcu lock 862 */ 863 cgrp1 = perf_cgroup_from_task(task, NULL); 864 cgrp2 = perf_cgroup_from_task(next, NULL); 865 866 /* 867 * only schedule out current cgroup events if we know 868 * that we are switching to a different cgroup. Otherwise, 869 * do no touch the cgroup events. 870 */ 871 if (cgrp1 != cgrp2) 872 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 873 874 rcu_read_unlock(); 875 } 876 877 static inline void perf_cgroup_sched_in(struct task_struct *prev, 878 struct task_struct *task) 879 { 880 struct perf_cgroup *cgrp1; 881 struct perf_cgroup *cgrp2 = NULL; 882 883 rcu_read_lock(); 884 /* 885 * we come here when we know perf_cgroup_events > 0 886 * we do not need to pass the ctx here because we know 887 * we are holding the rcu lock 888 */ 889 cgrp1 = perf_cgroup_from_task(task, NULL); 890 cgrp2 = perf_cgroup_from_task(prev, NULL); 891 892 /* 893 * only need to schedule in cgroup events if we are changing 894 * cgroup during ctxsw. Cgroup events were not scheduled 895 * out of ctxsw out if that was not the case. 896 */ 897 if (cgrp1 != cgrp2) 898 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 899 900 rcu_read_unlock(); 901 } 902 903 static int perf_cgroup_ensure_storage(struct perf_event *event, 904 struct cgroup_subsys_state *css) 905 { 906 struct perf_cpu_context *cpuctx; 907 struct perf_event **storage; 908 int cpu, heap_size, ret = 0; 909 910 /* 911 * Allow storage to have sufficent space for an iterator for each 912 * possibly nested cgroup plus an iterator for events with no cgroup. 913 */ 914 for (heap_size = 1; css; css = css->parent) 915 heap_size++; 916 917 for_each_possible_cpu(cpu) { 918 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 919 if (heap_size <= cpuctx->heap_size) 920 continue; 921 922 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 923 GFP_KERNEL, cpu_to_node(cpu)); 924 if (!storage) { 925 ret = -ENOMEM; 926 break; 927 } 928 929 raw_spin_lock_irq(&cpuctx->ctx.lock); 930 if (cpuctx->heap_size < heap_size) { 931 swap(cpuctx->heap, storage); 932 if (storage == cpuctx->heap_default) 933 storage = NULL; 934 cpuctx->heap_size = heap_size; 935 } 936 raw_spin_unlock_irq(&cpuctx->ctx.lock); 937 938 kfree(storage); 939 } 940 941 return ret; 942 } 943 944 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 945 struct perf_event_attr *attr, 946 struct perf_event *group_leader) 947 { 948 struct perf_cgroup *cgrp; 949 struct cgroup_subsys_state *css; 950 struct fd f = fdget(fd); 951 int ret = 0; 952 953 if (!f.file) 954 return -EBADF; 955 956 css = css_tryget_online_from_dir(f.file->f_path.dentry, 957 &perf_event_cgrp_subsys); 958 if (IS_ERR(css)) { 959 ret = PTR_ERR(css); 960 goto out; 961 } 962 963 ret = perf_cgroup_ensure_storage(event, css); 964 if (ret) 965 goto out; 966 967 cgrp = container_of(css, struct perf_cgroup, css); 968 event->cgrp = cgrp; 969 970 /* 971 * all events in a group must monitor 972 * the same cgroup because a task belongs 973 * to only one perf cgroup at a time 974 */ 975 if (group_leader && group_leader->cgrp != cgrp) { 976 perf_detach_cgroup(event); 977 ret = -EINVAL; 978 } 979 out: 980 fdput(f); 981 return ret; 982 } 983 984 static inline void 985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 986 { 987 struct perf_cgroup_info *t; 988 t = per_cpu_ptr(event->cgrp->info, event->cpu); 989 event->shadow_ctx_time = now - t->timestamp; 990 } 991 992 static inline void 993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 994 { 995 struct perf_cpu_context *cpuctx; 996 997 if (!is_cgroup_event(event)) 998 return; 999 1000 /* 1001 * Because cgroup events are always per-cpu events, 1002 * @ctx == &cpuctx->ctx. 1003 */ 1004 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1005 1006 /* 1007 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1008 * matching the event's cgroup, we must do this for every new event, 1009 * because if the first would mismatch, the second would not try again 1010 * and we would leave cpuctx->cgrp unset. 1011 */ 1012 if (ctx->is_active && !cpuctx->cgrp) { 1013 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1014 1015 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1016 cpuctx->cgrp = cgrp; 1017 } 1018 1019 if (ctx->nr_cgroups++) 1020 return; 1021 1022 list_add(&cpuctx->cgrp_cpuctx_entry, 1023 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1024 } 1025 1026 static inline void 1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1028 { 1029 struct perf_cpu_context *cpuctx; 1030 1031 if (!is_cgroup_event(event)) 1032 return; 1033 1034 /* 1035 * Because cgroup events are always per-cpu events, 1036 * @ctx == &cpuctx->ctx. 1037 */ 1038 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1039 1040 if (--ctx->nr_cgroups) 1041 return; 1042 1043 if (ctx->is_active && cpuctx->cgrp) 1044 cpuctx->cgrp = NULL; 1045 1046 list_del(&cpuctx->cgrp_cpuctx_entry); 1047 } 1048 1049 #else /* !CONFIG_CGROUP_PERF */ 1050 1051 static inline bool 1052 perf_cgroup_match(struct perf_event *event) 1053 { 1054 return true; 1055 } 1056 1057 static inline void perf_detach_cgroup(struct perf_event *event) 1058 {} 1059 1060 static inline int is_cgroup_event(struct perf_event *event) 1061 { 1062 return 0; 1063 } 1064 1065 static inline void update_cgrp_time_from_event(struct perf_event *event) 1066 { 1067 } 1068 1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1070 { 1071 } 1072 1073 static inline void perf_cgroup_sched_out(struct task_struct *task, 1074 struct task_struct *next) 1075 { 1076 } 1077 1078 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1079 struct task_struct *task) 1080 { 1081 } 1082 1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1084 struct perf_event_attr *attr, 1085 struct perf_event *group_leader) 1086 { 1087 return -EINVAL; 1088 } 1089 1090 static inline void 1091 perf_cgroup_set_timestamp(struct task_struct *task, 1092 struct perf_event_context *ctx) 1093 { 1094 } 1095 1096 static inline void 1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1098 { 1099 } 1100 1101 static inline void 1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1103 { 1104 } 1105 1106 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1107 { 1108 return 0; 1109 } 1110 1111 static inline void 1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1113 { 1114 } 1115 1116 static inline void 1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1118 { 1119 } 1120 #endif 1121 1122 /* 1123 * set default to be dependent on timer tick just 1124 * like original code 1125 */ 1126 #define PERF_CPU_HRTIMER (1000 / HZ) 1127 /* 1128 * function must be called with interrupts disabled 1129 */ 1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1131 { 1132 struct perf_cpu_context *cpuctx; 1133 bool rotations; 1134 1135 lockdep_assert_irqs_disabled(); 1136 1137 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1138 rotations = perf_rotate_context(cpuctx); 1139 1140 raw_spin_lock(&cpuctx->hrtimer_lock); 1141 if (rotations) 1142 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1143 else 1144 cpuctx->hrtimer_active = 0; 1145 raw_spin_unlock(&cpuctx->hrtimer_lock); 1146 1147 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1148 } 1149 1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1151 { 1152 struct hrtimer *timer = &cpuctx->hrtimer; 1153 struct pmu *pmu = cpuctx->ctx.pmu; 1154 u64 interval; 1155 1156 /* no multiplexing needed for SW PMU */ 1157 if (pmu->task_ctx_nr == perf_sw_context) 1158 return; 1159 1160 /* 1161 * check default is sane, if not set then force to 1162 * default interval (1/tick) 1163 */ 1164 interval = pmu->hrtimer_interval_ms; 1165 if (interval < 1) 1166 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1167 1168 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1169 1170 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1171 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1172 timer->function = perf_mux_hrtimer_handler; 1173 } 1174 1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1176 { 1177 struct hrtimer *timer = &cpuctx->hrtimer; 1178 struct pmu *pmu = cpuctx->ctx.pmu; 1179 unsigned long flags; 1180 1181 /* not for SW PMU */ 1182 if (pmu->task_ctx_nr == perf_sw_context) 1183 return 0; 1184 1185 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1186 if (!cpuctx->hrtimer_active) { 1187 cpuctx->hrtimer_active = 1; 1188 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1189 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1190 } 1191 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1192 1193 return 0; 1194 } 1195 1196 void perf_pmu_disable(struct pmu *pmu) 1197 { 1198 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1199 if (!(*count)++) 1200 pmu->pmu_disable(pmu); 1201 } 1202 1203 void perf_pmu_enable(struct pmu *pmu) 1204 { 1205 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1206 if (!--(*count)) 1207 pmu->pmu_enable(pmu); 1208 } 1209 1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1211 1212 /* 1213 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1214 * perf_event_task_tick() are fully serialized because they're strictly cpu 1215 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1216 * disabled, while perf_event_task_tick is called from IRQ context. 1217 */ 1218 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1219 { 1220 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1221 1222 lockdep_assert_irqs_disabled(); 1223 1224 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1225 1226 list_add(&ctx->active_ctx_list, head); 1227 } 1228 1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1230 { 1231 lockdep_assert_irqs_disabled(); 1232 1233 WARN_ON(list_empty(&ctx->active_ctx_list)); 1234 1235 list_del_init(&ctx->active_ctx_list); 1236 } 1237 1238 static void get_ctx(struct perf_event_context *ctx) 1239 { 1240 refcount_inc(&ctx->refcount); 1241 } 1242 1243 static void *alloc_task_ctx_data(struct pmu *pmu) 1244 { 1245 if (pmu->task_ctx_cache) 1246 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1247 1248 return NULL; 1249 } 1250 1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1252 { 1253 if (pmu->task_ctx_cache && task_ctx_data) 1254 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1255 } 1256 1257 static void free_ctx(struct rcu_head *head) 1258 { 1259 struct perf_event_context *ctx; 1260 1261 ctx = container_of(head, struct perf_event_context, rcu_head); 1262 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1263 kfree(ctx); 1264 } 1265 1266 static void put_ctx(struct perf_event_context *ctx) 1267 { 1268 if (refcount_dec_and_test(&ctx->refcount)) { 1269 if (ctx->parent_ctx) 1270 put_ctx(ctx->parent_ctx); 1271 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1272 put_task_struct(ctx->task); 1273 call_rcu(&ctx->rcu_head, free_ctx); 1274 } 1275 } 1276 1277 /* 1278 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1279 * perf_pmu_migrate_context() we need some magic. 1280 * 1281 * Those places that change perf_event::ctx will hold both 1282 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1283 * 1284 * Lock ordering is by mutex address. There are two other sites where 1285 * perf_event_context::mutex nests and those are: 1286 * 1287 * - perf_event_exit_task_context() [ child , 0 ] 1288 * perf_event_exit_event() 1289 * put_event() [ parent, 1 ] 1290 * 1291 * - perf_event_init_context() [ parent, 0 ] 1292 * inherit_task_group() 1293 * inherit_group() 1294 * inherit_event() 1295 * perf_event_alloc() 1296 * perf_init_event() 1297 * perf_try_init_event() [ child , 1 ] 1298 * 1299 * While it appears there is an obvious deadlock here -- the parent and child 1300 * nesting levels are inverted between the two. This is in fact safe because 1301 * life-time rules separate them. That is an exiting task cannot fork, and a 1302 * spawning task cannot (yet) exit. 1303 * 1304 * But remember that these are parent<->child context relations, and 1305 * migration does not affect children, therefore these two orderings should not 1306 * interact. 1307 * 1308 * The change in perf_event::ctx does not affect children (as claimed above) 1309 * because the sys_perf_event_open() case will install a new event and break 1310 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1311 * concerned with cpuctx and that doesn't have children. 1312 * 1313 * The places that change perf_event::ctx will issue: 1314 * 1315 * perf_remove_from_context(); 1316 * synchronize_rcu(); 1317 * perf_install_in_context(); 1318 * 1319 * to affect the change. The remove_from_context() + synchronize_rcu() should 1320 * quiesce the event, after which we can install it in the new location. This 1321 * means that only external vectors (perf_fops, prctl) can perturb the event 1322 * while in transit. Therefore all such accessors should also acquire 1323 * perf_event_context::mutex to serialize against this. 1324 * 1325 * However; because event->ctx can change while we're waiting to acquire 1326 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1327 * function. 1328 * 1329 * Lock order: 1330 * exec_update_lock 1331 * task_struct::perf_event_mutex 1332 * perf_event_context::mutex 1333 * perf_event::child_mutex; 1334 * perf_event_context::lock 1335 * perf_event::mmap_mutex 1336 * mmap_lock 1337 * perf_addr_filters_head::lock 1338 * 1339 * cpu_hotplug_lock 1340 * pmus_lock 1341 * cpuctx->mutex / perf_event_context::mutex 1342 */ 1343 static struct perf_event_context * 1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1345 { 1346 struct perf_event_context *ctx; 1347 1348 again: 1349 rcu_read_lock(); 1350 ctx = READ_ONCE(event->ctx); 1351 if (!refcount_inc_not_zero(&ctx->refcount)) { 1352 rcu_read_unlock(); 1353 goto again; 1354 } 1355 rcu_read_unlock(); 1356 1357 mutex_lock_nested(&ctx->mutex, nesting); 1358 if (event->ctx != ctx) { 1359 mutex_unlock(&ctx->mutex); 1360 put_ctx(ctx); 1361 goto again; 1362 } 1363 1364 return ctx; 1365 } 1366 1367 static inline struct perf_event_context * 1368 perf_event_ctx_lock(struct perf_event *event) 1369 { 1370 return perf_event_ctx_lock_nested(event, 0); 1371 } 1372 1373 static void perf_event_ctx_unlock(struct perf_event *event, 1374 struct perf_event_context *ctx) 1375 { 1376 mutex_unlock(&ctx->mutex); 1377 put_ctx(ctx); 1378 } 1379 1380 /* 1381 * This must be done under the ctx->lock, such as to serialize against 1382 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1383 * calling scheduler related locks and ctx->lock nests inside those. 1384 */ 1385 static __must_check struct perf_event_context * 1386 unclone_ctx(struct perf_event_context *ctx) 1387 { 1388 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1389 1390 lockdep_assert_held(&ctx->lock); 1391 1392 if (parent_ctx) 1393 ctx->parent_ctx = NULL; 1394 ctx->generation++; 1395 1396 return parent_ctx; 1397 } 1398 1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1400 enum pid_type type) 1401 { 1402 u32 nr; 1403 /* 1404 * only top level events have the pid namespace they were created in 1405 */ 1406 if (event->parent) 1407 event = event->parent; 1408 1409 nr = __task_pid_nr_ns(p, type, event->ns); 1410 /* avoid -1 if it is idle thread or runs in another ns */ 1411 if (!nr && !pid_alive(p)) 1412 nr = -1; 1413 return nr; 1414 } 1415 1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1417 { 1418 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1419 } 1420 1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1422 { 1423 return perf_event_pid_type(event, p, PIDTYPE_PID); 1424 } 1425 1426 /* 1427 * If we inherit events we want to return the parent event id 1428 * to userspace. 1429 */ 1430 static u64 primary_event_id(struct perf_event *event) 1431 { 1432 u64 id = event->id; 1433 1434 if (event->parent) 1435 id = event->parent->id; 1436 1437 return id; 1438 } 1439 1440 /* 1441 * Get the perf_event_context for a task and lock it. 1442 * 1443 * This has to cope with the fact that until it is locked, 1444 * the context could get moved to another task. 1445 */ 1446 static struct perf_event_context * 1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1448 { 1449 struct perf_event_context *ctx; 1450 1451 retry: 1452 /* 1453 * One of the few rules of preemptible RCU is that one cannot do 1454 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1455 * part of the read side critical section was irqs-enabled -- see 1456 * rcu_read_unlock_special(). 1457 * 1458 * Since ctx->lock nests under rq->lock we must ensure the entire read 1459 * side critical section has interrupts disabled. 1460 */ 1461 local_irq_save(*flags); 1462 rcu_read_lock(); 1463 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1464 if (ctx) { 1465 /* 1466 * If this context is a clone of another, it might 1467 * get swapped for another underneath us by 1468 * perf_event_task_sched_out, though the 1469 * rcu_read_lock() protects us from any context 1470 * getting freed. Lock the context and check if it 1471 * got swapped before we could get the lock, and retry 1472 * if so. If we locked the right context, then it 1473 * can't get swapped on us any more. 1474 */ 1475 raw_spin_lock(&ctx->lock); 1476 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1477 raw_spin_unlock(&ctx->lock); 1478 rcu_read_unlock(); 1479 local_irq_restore(*flags); 1480 goto retry; 1481 } 1482 1483 if (ctx->task == TASK_TOMBSTONE || 1484 !refcount_inc_not_zero(&ctx->refcount)) { 1485 raw_spin_unlock(&ctx->lock); 1486 ctx = NULL; 1487 } else { 1488 WARN_ON_ONCE(ctx->task != task); 1489 } 1490 } 1491 rcu_read_unlock(); 1492 if (!ctx) 1493 local_irq_restore(*flags); 1494 return ctx; 1495 } 1496 1497 /* 1498 * Get the context for a task and increment its pin_count so it 1499 * can't get swapped to another task. This also increments its 1500 * reference count so that the context can't get freed. 1501 */ 1502 static struct perf_event_context * 1503 perf_pin_task_context(struct task_struct *task, int ctxn) 1504 { 1505 struct perf_event_context *ctx; 1506 unsigned long flags; 1507 1508 ctx = perf_lock_task_context(task, ctxn, &flags); 1509 if (ctx) { 1510 ++ctx->pin_count; 1511 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1512 } 1513 return ctx; 1514 } 1515 1516 static void perf_unpin_context(struct perf_event_context *ctx) 1517 { 1518 unsigned long flags; 1519 1520 raw_spin_lock_irqsave(&ctx->lock, flags); 1521 --ctx->pin_count; 1522 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1523 } 1524 1525 /* 1526 * Update the record of the current time in a context. 1527 */ 1528 static void update_context_time(struct perf_event_context *ctx) 1529 { 1530 u64 now = perf_clock(); 1531 1532 ctx->time += now - ctx->timestamp; 1533 ctx->timestamp = now; 1534 } 1535 1536 static u64 perf_event_time(struct perf_event *event) 1537 { 1538 struct perf_event_context *ctx = event->ctx; 1539 1540 if (is_cgroup_event(event)) 1541 return perf_cgroup_event_time(event); 1542 1543 return ctx ? ctx->time : 0; 1544 } 1545 1546 static enum event_type_t get_event_type(struct perf_event *event) 1547 { 1548 struct perf_event_context *ctx = event->ctx; 1549 enum event_type_t event_type; 1550 1551 lockdep_assert_held(&ctx->lock); 1552 1553 /* 1554 * It's 'group type', really, because if our group leader is 1555 * pinned, so are we. 1556 */ 1557 if (event->group_leader != event) 1558 event = event->group_leader; 1559 1560 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1561 if (!ctx->task) 1562 event_type |= EVENT_CPU; 1563 1564 return event_type; 1565 } 1566 1567 /* 1568 * Helper function to initialize event group nodes. 1569 */ 1570 static void init_event_group(struct perf_event *event) 1571 { 1572 RB_CLEAR_NODE(&event->group_node); 1573 event->group_index = 0; 1574 } 1575 1576 /* 1577 * Extract pinned or flexible groups from the context 1578 * based on event attrs bits. 1579 */ 1580 static struct perf_event_groups * 1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1582 { 1583 if (event->attr.pinned) 1584 return &ctx->pinned_groups; 1585 else 1586 return &ctx->flexible_groups; 1587 } 1588 1589 /* 1590 * Helper function to initializes perf_event_group trees. 1591 */ 1592 static void perf_event_groups_init(struct perf_event_groups *groups) 1593 { 1594 groups->tree = RB_ROOT; 1595 groups->index = 0; 1596 } 1597 1598 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1599 { 1600 struct cgroup *cgroup = NULL; 1601 1602 #ifdef CONFIG_CGROUP_PERF 1603 if (event->cgrp) 1604 cgroup = event->cgrp->css.cgroup; 1605 #endif 1606 1607 return cgroup; 1608 } 1609 1610 /* 1611 * Compare function for event groups; 1612 * 1613 * Implements complex key that first sorts by CPU and then by virtual index 1614 * which provides ordering when rotating groups for the same CPU. 1615 */ 1616 static __always_inline int 1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1618 const u64 left_group_index, const struct perf_event *right) 1619 { 1620 if (left_cpu < right->cpu) 1621 return -1; 1622 if (left_cpu > right->cpu) 1623 return 1; 1624 1625 #ifdef CONFIG_CGROUP_PERF 1626 { 1627 const struct cgroup *right_cgroup = event_cgroup(right); 1628 1629 if (left_cgroup != right_cgroup) { 1630 if (!left_cgroup) { 1631 /* 1632 * Left has no cgroup but right does, no 1633 * cgroups come first. 1634 */ 1635 return -1; 1636 } 1637 if (!right_cgroup) { 1638 /* 1639 * Right has no cgroup but left does, no 1640 * cgroups come first. 1641 */ 1642 return 1; 1643 } 1644 /* Two dissimilar cgroups, order by id. */ 1645 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1646 return -1; 1647 1648 return 1; 1649 } 1650 } 1651 #endif 1652 1653 if (left_group_index < right->group_index) 1654 return -1; 1655 if (left_group_index > right->group_index) 1656 return 1; 1657 1658 return 0; 1659 } 1660 1661 #define __node_2_pe(node) \ 1662 rb_entry((node), struct perf_event, group_node) 1663 1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1665 { 1666 struct perf_event *e = __node_2_pe(a); 1667 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1668 __node_2_pe(b)) < 0; 1669 } 1670 1671 struct __group_key { 1672 int cpu; 1673 struct cgroup *cgroup; 1674 }; 1675 1676 static inline int __group_cmp(const void *key, const struct rb_node *node) 1677 { 1678 const struct __group_key *a = key; 1679 const struct perf_event *b = __node_2_pe(node); 1680 1681 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1682 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1683 } 1684 1685 /* 1686 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1687 * key (see perf_event_groups_less). This places it last inside the CPU 1688 * subtree. 1689 */ 1690 static void 1691 perf_event_groups_insert(struct perf_event_groups *groups, 1692 struct perf_event *event) 1693 { 1694 event->group_index = ++groups->index; 1695 1696 rb_add(&event->group_node, &groups->tree, __group_less); 1697 } 1698 1699 /* 1700 * Helper function to insert event into the pinned or flexible groups. 1701 */ 1702 static void 1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1704 { 1705 struct perf_event_groups *groups; 1706 1707 groups = get_event_groups(event, ctx); 1708 perf_event_groups_insert(groups, event); 1709 } 1710 1711 /* 1712 * Delete a group from a tree. 1713 */ 1714 static void 1715 perf_event_groups_delete(struct perf_event_groups *groups, 1716 struct perf_event *event) 1717 { 1718 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1719 RB_EMPTY_ROOT(&groups->tree)); 1720 1721 rb_erase(&event->group_node, &groups->tree); 1722 init_event_group(event); 1723 } 1724 1725 /* 1726 * Helper function to delete event from its groups. 1727 */ 1728 static void 1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1730 { 1731 struct perf_event_groups *groups; 1732 1733 groups = get_event_groups(event, ctx); 1734 perf_event_groups_delete(groups, event); 1735 } 1736 1737 /* 1738 * Get the leftmost event in the cpu/cgroup subtree. 1739 */ 1740 static struct perf_event * 1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1742 struct cgroup *cgrp) 1743 { 1744 struct __group_key key = { 1745 .cpu = cpu, 1746 .cgroup = cgrp, 1747 }; 1748 struct rb_node *node; 1749 1750 node = rb_find_first(&key, &groups->tree, __group_cmp); 1751 if (node) 1752 return __node_2_pe(node); 1753 1754 return NULL; 1755 } 1756 1757 /* 1758 * Like rb_entry_next_safe() for the @cpu subtree. 1759 */ 1760 static struct perf_event * 1761 perf_event_groups_next(struct perf_event *event) 1762 { 1763 struct __group_key key = { 1764 .cpu = event->cpu, 1765 .cgroup = event_cgroup(event), 1766 }; 1767 struct rb_node *next; 1768 1769 next = rb_next_match(&key, &event->group_node, __group_cmp); 1770 if (next) 1771 return __node_2_pe(next); 1772 1773 return NULL; 1774 } 1775 1776 /* 1777 * Iterate through the whole groups tree. 1778 */ 1779 #define perf_event_groups_for_each(event, groups) \ 1780 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1781 typeof(*event), group_node); event; \ 1782 event = rb_entry_safe(rb_next(&event->group_node), \ 1783 typeof(*event), group_node)) 1784 1785 /* 1786 * Add an event from the lists for its context. 1787 * Must be called with ctx->mutex and ctx->lock held. 1788 */ 1789 static void 1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1791 { 1792 lockdep_assert_held(&ctx->lock); 1793 1794 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1795 event->attach_state |= PERF_ATTACH_CONTEXT; 1796 1797 event->tstamp = perf_event_time(event); 1798 1799 /* 1800 * If we're a stand alone event or group leader, we go to the context 1801 * list, group events are kept attached to the group so that 1802 * perf_group_detach can, at all times, locate all siblings. 1803 */ 1804 if (event->group_leader == event) { 1805 event->group_caps = event->event_caps; 1806 add_event_to_groups(event, ctx); 1807 } 1808 1809 list_add_rcu(&event->event_entry, &ctx->event_list); 1810 ctx->nr_events++; 1811 if (event->attr.inherit_stat) 1812 ctx->nr_stat++; 1813 1814 if (event->state > PERF_EVENT_STATE_OFF) 1815 perf_cgroup_event_enable(event, ctx); 1816 1817 ctx->generation++; 1818 } 1819 1820 /* 1821 * Initialize event state based on the perf_event_attr::disabled. 1822 */ 1823 static inline void perf_event__state_init(struct perf_event *event) 1824 { 1825 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1826 PERF_EVENT_STATE_INACTIVE; 1827 } 1828 1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1830 { 1831 int entry = sizeof(u64); /* value */ 1832 int size = 0; 1833 int nr = 1; 1834 1835 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1836 size += sizeof(u64); 1837 1838 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1839 size += sizeof(u64); 1840 1841 if (event->attr.read_format & PERF_FORMAT_ID) 1842 entry += sizeof(u64); 1843 1844 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1845 nr += nr_siblings; 1846 size += sizeof(u64); 1847 } 1848 1849 size += entry * nr; 1850 event->read_size = size; 1851 } 1852 1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1854 { 1855 struct perf_sample_data *data; 1856 u16 size = 0; 1857 1858 if (sample_type & PERF_SAMPLE_IP) 1859 size += sizeof(data->ip); 1860 1861 if (sample_type & PERF_SAMPLE_ADDR) 1862 size += sizeof(data->addr); 1863 1864 if (sample_type & PERF_SAMPLE_PERIOD) 1865 size += sizeof(data->period); 1866 1867 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1868 size += sizeof(data->weight.full); 1869 1870 if (sample_type & PERF_SAMPLE_READ) 1871 size += event->read_size; 1872 1873 if (sample_type & PERF_SAMPLE_DATA_SRC) 1874 size += sizeof(data->data_src.val); 1875 1876 if (sample_type & PERF_SAMPLE_TRANSACTION) 1877 size += sizeof(data->txn); 1878 1879 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1880 size += sizeof(data->phys_addr); 1881 1882 if (sample_type & PERF_SAMPLE_CGROUP) 1883 size += sizeof(data->cgroup); 1884 1885 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1886 size += sizeof(data->data_page_size); 1887 1888 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1889 size += sizeof(data->code_page_size); 1890 1891 event->header_size = size; 1892 } 1893 1894 /* 1895 * Called at perf_event creation and when events are attached/detached from a 1896 * group. 1897 */ 1898 static void perf_event__header_size(struct perf_event *event) 1899 { 1900 __perf_event_read_size(event, 1901 event->group_leader->nr_siblings); 1902 __perf_event_header_size(event, event->attr.sample_type); 1903 } 1904 1905 static void perf_event__id_header_size(struct perf_event *event) 1906 { 1907 struct perf_sample_data *data; 1908 u64 sample_type = event->attr.sample_type; 1909 u16 size = 0; 1910 1911 if (sample_type & PERF_SAMPLE_TID) 1912 size += sizeof(data->tid_entry); 1913 1914 if (sample_type & PERF_SAMPLE_TIME) 1915 size += sizeof(data->time); 1916 1917 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1918 size += sizeof(data->id); 1919 1920 if (sample_type & PERF_SAMPLE_ID) 1921 size += sizeof(data->id); 1922 1923 if (sample_type & PERF_SAMPLE_STREAM_ID) 1924 size += sizeof(data->stream_id); 1925 1926 if (sample_type & PERF_SAMPLE_CPU) 1927 size += sizeof(data->cpu_entry); 1928 1929 event->id_header_size = size; 1930 } 1931 1932 static bool perf_event_validate_size(struct perf_event *event) 1933 { 1934 /* 1935 * The values computed here will be over-written when we actually 1936 * attach the event. 1937 */ 1938 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1939 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1940 perf_event__id_header_size(event); 1941 1942 /* 1943 * Sum the lot; should not exceed the 64k limit we have on records. 1944 * Conservative limit to allow for callchains and other variable fields. 1945 */ 1946 if (event->read_size + event->header_size + 1947 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1948 return false; 1949 1950 return true; 1951 } 1952 1953 static void perf_group_attach(struct perf_event *event) 1954 { 1955 struct perf_event *group_leader = event->group_leader, *pos; 1956 1957 lockdep_assert_held(&event->ctx->lock); 1958 1959 /* 1960 * We can have double attach due to group movement in perf_event_open. 1961 */ 1962 if (event->attach_state & PERF_ATTACH_GROUP) 1963 return; 1964 1965 event->attach_state |= PERF_ATTACH_GROUP; 1966 1967 if (group_leader == event) 1968 return; 1969 1970 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1971 1972 group_leader->group_caps &= event->event_caps; 1973 1974 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1975 group_leader->nr_siblings++; 1976 1977 perf_event__header_size(group_leader); 1978 1979 for_each_sibling_event(pos, group_leader) 1980 perf_event__header_size(pos); 1981 } 1982 1983 /* 1984 * Remove an event from the lists for its context. 1985 * Must be called with ctx->mutex and ctx->lock held. 1986 */ 1987 static void 1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1989 { 1990 WARN_ON_ONCE(event->ctx != ctx); 1991 lockdep_assert_held(&ctx->lock); 1992 1993 /* 1994 * We can have double detach due to exit/hot-unplug + close. 1995 */ 1996 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1997 return; 1998 1999 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2000 2001 ctx->nr_events--; 2002 if (event->attr.inherit_stat) 2003 ctx->nr_stat--; 2004 2005 list_del_rcu(&event->event_entry); 2006 2007 if (event->group_leader == event) 2008 del_event_from_groups(event, ctx); 2009 2010 /* 2011 * If event was in error state, then keep it 2012 * that way, otherwise bogus counts will be 2013 * returned on read(). The only way to get out 2014 * of error state is by explicit re-enabling 2015 * of the event 2016 */ 2017 if (event->state > PERF_EVENT_STATE_OFF) { 2018 perf_cgroup_event_disable(event, ctx); 2019 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2020 } 2021 2022 ctx->generation++; 2023 } 2024 2025 static int 2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2027 { 2028 if (!has_aux(aux_event)) 2029 return 0; 2030 2031 if (!event->pmu->aux_output_match) 2032 return 0; 2033 2034 return event->pmu->aux_output_match(aux_event); 2035 } 2036 2037 static void put_event(struct perf_event *event); 2038 static void event_sched_out(struct perf_event *event, 2039 struct perf_cpu_context *cpuctx, 2040 struct perf_event_context *ctx); 2041 2042 static void perf_put_aux_event(struct perf_event *event) 2043 { 2044 struct perf_event_context *ctx = event->ctx; 2045 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2046 struct perf_event *iter; 2047 2048 /* 2049 * If event uses aux_event tear down the link 2050 */ 2051 if (event->aux_event) { 2052 iter = event->aux_event; 2053 event->aux_event = NULL; 2054 put_event(iter); 2055 return; 2056 } 2057 2058 /* 2059 * If the event is an aux_event, tear down all links to 2060 * it from other events. 2061 */ 2062 for_each_sibling_event(iter, event->group_leader) { 2063 if (iter->aux_event != event) 2064 continue; 2065 2066 iter->aux_event = NULL; 2067 put_event(event); 2068 2069 /* 2070 * If it's ACTIVE, schedule it out and put it into ERROR 2071 * state so that we don't try to schedule it again. Note 2072 * that perf_event_enable() will clear the ERROR status. 2073 */ 2074 event_sched_out(iter, cpuctx, ctx); 2075 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2076 } 2077 } 2078 2079 static bool perf_need_aux_event(struct perf_event *event) 2080 { 2081 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2082 } 2083 2084 static int perf_get_aux_event(struct perf_event *event, 2085 struct perf_event *group_leader) 2086 { 2087 /* 2088 * Our group leader must be an aux event if we want to be 2089 * an aux_output. This way, the aux event will precede its 2090 * aux_output events in the group, and therefore will always 2091 * schedule first. 2092 */ 2093 if (!group_leader) 2094 return 0; 2095 2096 /* 2097 * aux_output and aux_sample_size are mutually exclusive. 2098 */ 2099 if (event->attr.aux_output && event->attr.aux_sample_size) 2100 return 0; 2101 2102 if (event->attr.aux_output && 2103 !perf_aux_output_match(event, group_leader)) 2104 return 0; 2105 2106 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2107 return 0; 2108 2109 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2110 return 0; 2111 2112 /* 2113 * Link aux_outputs to their aux event; this is undone in 2114 * perf_group_detach() by perf_put_aux_event(). When the 2115 * group in torn down, the aux_output events loose their 2116 * link to the aux_event and can't schedule any more. 2117 */ 2118 event->aux_event = group_leader; 2119 2120 return 1; 2121 } 2122 2123 static inline struct list_head *get_event_list(struct perf_event *event) 2124 { 2125 struct perf_event_context *ctx = event->ctx; 2126 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2127 } 2128 2129 /* 2130 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2131 * cannot exist on their own, schedule them out and move them into the ERROR 2132 * state. Also see _perf_event_enable(), it will not be able to recover 2133 * this ERROR state. 2134 */ 2135 static inline void perf_remove_sibling_event(struct perf_event *event) 2136 { 2137 struct perf_event_context *ctx = event->ctx; 2138 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2139 2140 event_sched_out(event, cpuctx, ctx); 2141 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2142 } 2143 2144 static void perf_group_detach(struct perf_event *event) 2145 { 2146 struct perf_event *leader = event->group_leader; 2147 struct perf_event *sibling, *tmp; 2148 struct perf_event_context *ctx = event->ctx; 2149 2150 lockdep_assert_held(&ctx->lock); 2151 2152 /* 2153 * We can have double detach due to exit/hot-unplug + close. 2154 */ 2155 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2156 return; 2157 2158 event->attach_state &= ~PERF_ATTACH_GROUP; 2159 2160 perf_put_aux_event(event); 2161 2162 /* 2163 * If this is a sibling, remove it from its group. 2164 */ 2165 if (leader != event) { 2166 list_del_init(&event->sibling_list); 2167 event->group_leader->nr_siblings--; 2168 goto out; 2169 } 2170 2171 /* 2172 * If this was a group event with sibling events then 2173 * upgrade the siblings to singleton events by adding them 2174 * to whatever list we are on. 2175 */ 2176 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2177 2178 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2179 perf_remove_sibling_event(sibling); 2180 2181 sibling->group_leader = sibling; 2182 list_del_init(&sibling->sibling_list); 2183 2184 /* Inherit group flags from the previous leader */ 2185 sibling->group_caps = event->group_caps; 2186 2187 if (!RB_EMPTY_NODE(&event->group_node)) { 2188 add_event_to_groups(sibling, event->ctx); 2189 2190 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2191 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2192 } 2193 2194 WARN_ON_ONCE(sibling->ctx != event->ctx); 2195 } 2196 2197 out: 2198 for_each_sibling_event(tmp, leader) 2199 perf_event__header_size(tmp); 2200 2201 perf_event__header_size(leader); 2202 } 2203 2204 static void sync_child_event(struct perf_event *child_event); 2205 2206 static void perf_child_detach(struct perf_event *event) 2207 { 2208 struct perf_event *parent_event = event->parent; 2209 2210 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2211 return; 2212 2213 event->attach_state &= ~PERF_ATTACH_CHILD; 2214 2215 if (WARN_ON_ONCE(!parent_event)) 2216 return; 2217 2218 lockdep_assert_held(&parent_event->child_mutex); 2219 2220 sync_child_event(event); 2221 list_del_init(&event->child_list); 2222 } 2223 2224 static bool is_orphaned_event(struct perf_event *event) 2225 { 2226 return event->state == PERF_EVENT_STATE_DEAD; 2227 } 2228 2229 static inline int __pmu_filter_match(struct perf_event *event) 2230 { 2231 struct pmu *pmu = event->pmu; 2232 return pmu->filter_match ? pmu->filter_match(event) : 1; 2233 } 2234 2235 /* 2236 * Check whether we should attempt to schedule an event group based on 2237 * PMU-specific filtering. An event group can consist of HW and SW events, 2238 * potentially with a SW leader, so we must check all the filters, to 2239 * determine whether a group is schedulable: 2240 */ 2241 static inline int pmu_filter_match(struct perf_event *event) 2242 { 2243 struct perf_event *sibling; 2244 2245 if (!__pmu_filter_match(event)) 2246 return 0; 2247 2248 for_each_sibling_event(sibling, event) { 2249 if (!__pmu_filter_match(sibling)) 2250 return 0; 2251 } 2252 2253 return 1; 2254 } 2255 2256 static inline int 2257 event_filter_match(struct perf_event *event) 2258 { 2259 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2260 perf_cgroup_match(event) && pmu_filter_match(event); 2261 } 2262 2263 static void 2264 event_sched_out(struct perf_event *event, 2265 struct perf_cpu_context *cpuctx, 2266 struct perf_event_context *ctx) 2267 { 2268 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2269 2270 WARN_ON_ONCE(event->ctx != ctx); 2271 lockdep_assert_held(&ctx->lock); 2272 2273 if (event->state != PERF_EVENT_STATE_ACTIVE) 2274 return; 2275 2276 /* 2277 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2278 * we can schedule events _OUT_ individually through things like 2279 * __perf_remove_from_context(). 2280 */ 2281 list_del_init(&event->active_list); 2282 2283 perf_pmu_disable(event->pmu); 2284 2285 event->pmu->del(event, 0); 2286 event->oncpu = -1; 2287 2288 if (READ_ONCE(event->pending_disable) >= 0) { 2289 WRITE_ONCE(event->pending_disable, -1); 2290 perf_cgroup_event_disable(event, ctx); 2291 state = PERF_EVENT_STATE_OFF; 2292 } 2293 perf_event_set_state(event, state); 2294 2295 if (!is_software_event(event)) 2296 cpuctx->active_oncpu--; 2297 if (!--ctx->nr_active) 2298 perf_event_ctx_deactivate(ctx); 2299 if (event->attr.freq && event->attr.sample_freq) 2300 ctx->nr_freq--; 2301 if (event->attr.exclusive || !cpuctx->active_oncpu) 2302 cpuctx->exclusive = 0; 2303 2304 perf_pmu_enable(event->pmu); 2305 } 2306 2307 static void 2308 group_sched_out(struct perf_event *group_event, 2309 struct perf_cpu_context *cpuctx, 2310 struct perf_event_context *ctx) 2311 { 2312 struct perf_event *event; 2313 2314 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2315 return; 2316 2317 perf_pmu_disable(ctx->pmu); 2318 2319 event_sched_out(group_event, cpuctx, ctx); 2320 2321 /* 2322 * Schedule out siblings (if any): 2323 */ 2324 for_each_sibling_event(event, group_event) 2325 event_sched_out(event, cpuctx, ctx); 2326 2327 perf_pmu_enable(ctx->pmu); 2328 } 2329 2330 #define DETACH_GROUP 0x01UL 2331 #define DETACH_CHILD 0x02UL 2332 2333 /* 2334 * Cross CPU call to remove a performance event 2335 * 2336 * We disable the event on the hardware level first. After that we 2337 * remove it from the context list. 2338 */ 2339 static void 2340 __perf_remove_from_context(struct perf_event *event, 2341 struct perf_cpu_context *cpuctx, 2342 struct perf_event_context *ctx, 2343 void *info) 2344 { 2345 unsigned long flags = (unsigned long)info; 2346 2347 if (ctx->is_active & EVENT_TIME) { 2348 update_context_time(ctx); 2349 update_cgrp_time_from_cpuctx(cpuctx); 2350 } 2351 2352 event_sched_out(event, cpuctx, ctx); 2353 if (flags & DETACH_GROUP) 2354 perf_group_detach(event); 2355 if (flags & DETACH_CHILD) 2356 perf_child_detach(event); 2357 list_del_event(event, ctx); 2358 2359 if (!ctx->nr_events && ctx->is_active) { 2360 ctx->is_active = 0; 2361 ctx->rotate_necessary = 0; 2362 if (ctx->task) { 2363 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2364 cpuctx->task_ctx = NULL; 2365 } 2366 } 2367 } 2368 2369 /* 2370 * Remove the event from a task's (or a CPU's) list of events. 2371 * 2372 * If event->ctx is a cloned context, callers must make sure that 2373 * every task struct that event->ctx->task could possibly point to 2374 * remains valid. This is OK when called from perf_release since 2375 * that only calls us on the top-level context, which can't be a clone. 2376 * When called from perf_event_exit_task, it's OK because the 2377 * context has been detached from its task. 2378 */ 2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2380 { 2381 struct perf_event_context *ctx = event->ctx; 2382 2383 lockdep_assert_held(&ctx->mutex); 2384 2385 /* 2386 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2387 * to work in the face of TASK_TOMBSTONE, unlike every other 2388 * event_function_call() user. 2389 */ 2390 raw_spin_lock_irq(&ctx->lock); 2391 if (!ctx->is_active) { 2392 __perf_remove_from_context(event, __get_cpu_context(ctx), 2393 ctx, (void *)flags); 2394 raw_spin_unlock_irq(&ctx->lock); 2395 return; 2396 } 2397 raw_spin_unlock_irq(&ctx->lock); 2398 2399 event_function_call(event, __perf_remove_from_context, (void *)flags); 2400 } 2401 2402 /* 2403 * Cross CPU call to disable a performance event 2404 */ 2405 static void __perf_event_disable(struct perf_event *event, 2406 struct perf_cpu_context *cpuctx, 2407 struct perf_event_context *ctx, 2408 void *info) 2409 { 2410 if (event->state < PERF_EVENT_STATE_INACTIVE) 2411 return; 2412 2413 if (ctx->is_active & EVENT_TIME) { 2414 update_context_time(ctx); 2415 update_cgrp_time_from_event(event); 2416 } 2417 2418 if (event == event->group_leader) 2419 group_sched_out(event, cpuctx, ctx); 2420 else 2421 event_sched_out(event, cpuctx, ctx); 2422 2423 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2424 perf_cgroup_event_disable(event, ctx); 2425 } 2426 2427 /* 2428 * Disable an event. 2429 * 2430 * If event->ctx is a cloned context, callers must make sure that 2431 * every task struct that event->ctx->task could possibly point to 2432 * remains valid. This condition is satisfied when called through 2433 * perf_event_for_each_child or perf_event_for_each because they 2434 * hold the top-level event's child_mutex, so any descendant that 2435 * goes to exit will block in perf_event_exit_event(). 2436 * 2437 * When called from perf_pending_event it's OK because event->ctx 2438 * is the current context on this CPU and preemption is disabled, 2439 * hence we can't get into perf_event_task_sched_out for this context. 2440 */ 2441 static void _perf_event_disable(struct perf_event *event) 2442 { 2443 struct perf_event_context *ctx = event->ctx; 2444 2445 raw_spin_lock_irq(&ctx->lock); 2446 if (event->state <= PERF_EVENT_STATE_OFF) { 2447 raw_spin_unlock_irq(&ctx->lock); 2448 return; 2449 } 2450 raw_spin_unlock_irq(&ctx->lock); 2451 2452 event_function_call(event, __perf_event_disable, NULL); 2453 } 2454 2455 void perf_event_disable_local(struct perf_event *event) 2456 { 2457 event_function_local(event, __perf_event_disable, NULL); 2458 } 2459 2460 /* 2461 * Strictly speaking kernel users cannot create groups and therefore this 2462 * interface does not need the perf_event_ctx_lock() magic. 2463 */ 2464 void perf_event_disable(struct perf_event *event) 2465 { 2466 struct perf_event_context *ctx; 2467 2468 ctx = perf_event_ctx_lock(event); 2469 _perf_event_disable(event); 2470 perf_event_ctx_unlock(event, ctx); 2471 } 2472 EXPORT_SYMBOL_GPL(perf_event_disable); 2473 2474 void perf_event_disable_inatomic(struct perf_event *event) 2475 { 2476 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2477 /* can fail, see perf_pending_event_disable() */ 2478 irq_work_queue(&event->pending); 2479 } 2480 2481 static void perf_set_shadow_time(struct perf_event *event, 2482 struct perf_event_context *ctx) 2483 { 2484 /* 2485 * use the correct time source for the time snapshot 2486 * 2487 * We could get by without this by leveraging the 2488 * fact that to get to this function, the caller 2489 * has most likely already called update_context_time() 2490 * and update_cgrp_time_xx() and thus both timestamp 2491 * are identical (or very close). Given that tstamp is, 2492 * already adjusted for cgroup, we could say that: 2493 * tstamp - ctx->timestamp 2494 * is equivalent to 2495 * tstamp - cgrp->timestamp. 2496 * 2497 * Then, in perf_output_read(), the calculation would 2498 * work with no changes because: 2499 * - event is guaranteed scheduled in 2500 * - no scheduled out in between 2501 * - thus the timestamp would be the same 2502 * 2503 * But this is a bit hairy. 2504 * 2505 * So instead, we have an explicit cgroup call to remain 2506 * within the time source all along. We believe it 2507 * is cleaner and simpler to understand. 2508 */ 2509 if (is_cgroup_event(event)) 2510 perf_cgroup_set_shadow_time(event, event->tstamp); 2511 else 2512 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2513 } 2514 2515 #define MAX_INTERRUPTS (~0ULL) 2516 2517 static void perf_log_throttle(struct perf_event *event, int enable); 2518 static void perf_log_itrace_start(struct perf_event *event); 2519 2520 static int 2521 event_sched_in(struct perf_event *event, 2522 struct perf_cpu_context *cpuctx, 2523 struct perf_event_context *ctx) 2524 { 2525 int ret = 0; 2526 2527 WARN_ON_ONCE(event->ctx != ctx); 2528 2529 lockdep_assert_held(&ctx->lock); 2530 2531 if (event->state <= PERF_EVENT_STATE_OFF) 2532 return 0; 2533 2534 WRITE_ONCE(event->oncpu, smp_processor_id()); 2535 /* 2536 * Order event::oncpu write to happen before the ACTIVE state is 2537 * visible. This allows perf_event_{stop,read}() to observe the correct 2538 * ->oncpu if it sees ACTIVE. 2539 */ 2540 smp_wmb(); 2541 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2542 2543 /* 2544 * Unthrottle events, since we scheduled we might have missed several 2545 * ticks already, also for a heavily scheduling task there is little 2546 * guarantee it'll get a tick in a timely manner. 2547 */ 2548 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2549 perf_log_throttle(event, 1); 2550 event->hw.interrupts = 0; 2551 } 2552 2553 perf_pmu_disable(event->pmu); 2554 2555 perf_set_shadow_time(event, ctx); 2556 2557 perf_log_itrace_start(event); 2558 2559 if (event->pmu->add(event, PERF_EF_START)) { 2560 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2561 event->oncpu = -1; 2562 ret = -EAGAIN; 2563 goto out; 2564 } 2565 2566 if (!is_software_event(event)) 2567 cpuctx->active_oncpu++; 2568 if (!ctx->nr_active++) 2569 perf_event_ctx_activate(ctx); 2570 if (event->attr.freq && event->attr.sample_freq) 2571 ctx->nr_freq++; 2572 2573 if (event->attr.exclusive) 2574 cpuctx->exclusive = 1; 2575 2576 out: 2577 perf_pmu_enable(event->pmu); 2578 2579 return ret; 2580 } 2581 2582 static int 2583 group_sched_in(struct perf_event *group_event, 2584 struct perf_cpu_context *cpuctx, 2585 struct perf_event_context *ctx) 2586 { 2587 struct perf_event *event, *partial_group = NULL; 2588 struct pmu *pmu = ctx->pmu; 2589 2590 if (group_event->state == PERF_EVENT_STATE_OFF) 2591 return 0; 2592 2593 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2594 2595 if (event_sched_in(group_event, cpuctx, ctx)) 2596 goto error; 2597 2598 /* 2599 * Schedule in siblings as one group (if any): 2600 */ 2601 for_each_sibling_event(event, group_event) { 2602 if (event_sched_in(event, cpuctx, ctx)) { 2603 partial_group = event; 2604 goto group_error; 2605 } 2606 } 2607 2608 if (!pmu->commit_txn(pmu)) 2609 return 0; 2610 2611 group_error: 2612 /* 2613 * Groups can be scheduled in as one unit only, so undo any 2614 * partial group before returning: 2615 * The events up to the failed event are scheduled out normally. 2616 */ 2617 for_each_sibling_event(event, group_event) { 2618 if (event == partial_group) 2619 break; 2620 2621 event_sched_out(event, cpuctx, ctx); 2622 } 2623 event_sched_out(group_event, cpuctx, ctx); 2624 2625 error: 2626 pmu->cancel_txn(pmu); 2627 return -EAGAIN; 2628 } 2629 2630 /* 2631 * Work out whether we can put this event group on the CPU now. 2632 */ 2633 static int group_can_go_on(struct perf_event *event, 2634 struct perf_cpu_context *cpuctx, 2635 int can_add_hw) 2636 { 2637 /* 2638 * Groups consisting entirely of software events can always go on. 2639 */ 2640 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2641 return 1; 2642 /* 2643 * If an exclusive group is already on, no other hardware 2644 * events can go on. 2645 */ 2646 if (cpuctx->exclusive) 2647 return 0; 2648 /* 2649 * If this group is exclusive and there are already 2650 * events on the CPU, it can't go on. 2651 */ 2652 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2653 return 0; 2654 /* 2655 * Otherwise, try to add it if all previous groups were able 2656 * to go on. 2657 */ 2658 return can_add_hw; 2659 } 2660 2661 static void add_event_to_ctx(struct perf_event *event, 2662 struct perf_event_context *ctx) 2663 { 2664 list_add_event(event, ctx); 2665 perf_group_attach(event); 2666 } 2667 2668 static void ctx_sched_out(struct perf_event_context *ctx, 2669 struct perf_cpu_context *cpuctx, 2670 enum event_type_t event_type); 2671 static void 2672 ctx_sched_in(struct perf_event_context *ctx, 2673 struct perf_cpu_context *cpuctx, 2674 enum event_type_t event_type, 2675 struct task_struct *task); 2676 2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2678 struct perf_event_context *ctx, 2679 enum event_type_t event_type) 2680 { 2681 if (!cpuctx->task_ctx) 2682 return; 2683 2684 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2685 return; 2686 2687 ctx_sched_out(ctx, cpuctx, event_type); 2688 } 2689 2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2691 struct perf_event_context *ctx, 2692 struct task_struct *task) 2693 { 2694 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2695 if (ctx) 2696 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2697 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2698 if (ctx) 2699 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2700 } 2701 2702 /* 2703 * We want to maintain the following priority of scheduling: 2704 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2705 * - task pinned (EVENT_PINNED) 2706 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2707 * - task flexible (EVENT_FLEXIBLE). 2708 * 2709 * In order to avoid unscheduling and scheduling back in everything every 2710 * time an event is added, only do it for the groups of equal priority and 2711 * below. 2712 * 2713 * This can be called after a batch operation on task events, in which case 2714 * event_type is a bit mask of the types of events involved. For CPU events, 2715 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2716 */ 2717 static void ctx_resched(struct perf_cpu_context *cpuctx, 2718 struct perf_event_context *task_ctx, 2719 enum event_type_t event_type) 2720 { 2721 enum event_type_t ctx_event_type; 2722 bool cpu_event = !!(event_type & EVENT_CPU); 2723 2724 /* 2725 * If pinned groups are involved, flexible groups also need to be 2726 * scheduled out. 2727 */ 2728 if (event_type & EVENT_PINNED) 2729 event_type |= EVENT_FLEXIBLE; 2730 2731 ctx_event_type = event_type & EVENT_ALL; 2732 2733 perf_pmu_disable(cpuctx->ctx.pmu); 2734 if (task_ctx) 2735 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2736 2737 /* 2738 * Decide which cpu ctx groups to schedule out based on the types 2739 * of events that caused rescheduling: 2740 * - EVENT_CPU: schedule out corresponding groups; 2741 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2742 * - otherwise, do nothing more. 2743 */ 2744 if (cpu_event) 2745 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2746 else if (ctx_event_type & EVENT_PINNED) 2747 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2748 2749 perf_event_sched_in(cpuctx, task_ctx, current); 2750 perf_pmu_enable(cpuctx->ctx.pmu); 2751 } 2752 2753 void perf_pmu_resched(struct pmu *pmu) 2754 { 2755 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2756 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2757 2758 perf_ctx_lock(cpuctx, task_ctx); 2759 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2760 perf_ctx_unlock(cpuctx, task_ctx); 2761 } 2762 2763 /* 2764 * Cross CPU call to install and enable a performance event 2765 * 2766 * Very similar to remote_function() + event_function() but cannot assume that 2767 * things like ctx->is_active and cpuctx->task_ctx are set. 2768 */ 2769 static int __perf_install_in_context(void *info) 2770 { 2771 struct perf_event *event = info; 2772 struct perf_event_context *ctx = event->ctx; 2773 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2774 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2775 bool reprogram = true; 2776 int ret = 0; 2777 2778 raw_spin_lock(&cpuctx->ctx.lock); 2779 if (ctx->task) { 2780 raw_spin_lock(&ctx->lock); 2781 task_ctx = ctx; 2782 2783 reprogram = (ctx->task == current); 2784 2785 /* 2786 * If the task is running, it must be running on this CPU, 2787 * otherwise we cannot reprogram things. 2788 * 2789 * If its not running, we don't care, ctx->lock will 2790 * serialize against it becoming runnable. 2791 */ 2792 if (task_curr(ctx->task) && !reprogram) { 2793 ret = -ESRCH; 2794 goto unlock; 2795 } 2796 2797 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2798 } else if (task_ctx) { 2799 raw_spin_lock(&task_ctx->lock); 2800 } 2801 2802 #ifdef CONFIG_CGROUP_PERF 2803 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2804 /* 2805 * If the current cgroup doesn't match the event's 2806 * cgroup, we should not try to schedule it. 2807 */ 2808 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2809 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2810 event->cgrp->css.cgroup); 2811 } 2812 #endif 2813 2814 if (reprogram) { 2815 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2816 add_event_to_ctx(event, ctx); 2817 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2818 } else { 2819 add_event_to_ctx(event, ctx); 2820 } 2821 2822 unlock: 2823 perf_ctx_unlock(cpuctx, task_ctx); 2824 2825 return ret; 2826 } 2827 2828 static bool exclusive_event_installable(struct perf_event *event, 2829 struct perf_event_context *ctx); 2830 2831 /* 2832 * Attach a performance event to a context. 2833 * 2834 * Very similar to event_function_call, see comment there. 2835 */ 2836 static void 2837 perf_install_in_context(struct perf_event_context *ctx, 2838 struct perf_event *event, 2839 int cpu) 2840 { 2841 struct task_struct *task = READ_ONCE(ctx->task); 2842 2843 lockdep_assert_held(&ctx->mutex); 2844 2845 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2846 2847 if (event->cpu != -1) 2848 event->cpu = cpu; 2849 2850 /* 2851 * Ensures that if we can observe event->ctx, both the event and ctx 2852 * will be 'complete'. See perf_iterate_sb_cpu(). 2853 */ 2854 smp_store_release(&event->ctx, ctx); 2855 2856 /* 2857 * perf_event_attr::disabled events will not run and can be initialized 2858 * without IPI. Except when this is the first event for the context, in 2859 * that case we need the magic of the IPI to set ctx->is_active. 2860 * 2861 * The IOC_ENABLE that is sure to follow the creation of a disabled 2862 * event will issue the IPI and reprogram the hardware. 2863 */ 2864 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2865 raw_spin_lock_irq(&ctx->lock); 2866 if (ctx->task == TASK_TOMBSTONE) { 2867 raw_spin_unlock_irq(&ctx->lock); 2868 return; 2869 } 2870 add_event_to_ctx(event, ctx); 2871 raw_spin_unlock_irq(&ctx->lock); 2872 return; 2873 } 2874 2875 if (!task) { 2876 cpu_function_call(cpu, __perf_install_in_context, event); 2877 return; 2878 } 2879 2880 /* 2881 * Should not happen, we validate the ctx is still alive before calling. 2882 */ 2883 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2884 return; 2885 2886 /* 2887 * Installing events is tricky because we cannot rely on ctx->is_active 2888 * to be set in case this is the nr_events 0 -> 1 transition. 2889 * 2890 * Instead we use task_curr(), which tells us if the task is running. 2891 * However, since we use task_curr() outside of rq::lock, we can race 2892 * against the actual state. This means the result can be wrong. 2893 * 2894 * If we get a false positive, we retry, this is harmless. 2895 * 2896 * If we get a false negative, things are complicated. If we are after 2897 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2898 * value must be correct. If we're before, it doesn't matter since 2899 * perf_event_context_sched_in() will program the counter. 2900 * 2901 * However, this hinges on the remote context switch having observed 2902 * our task->perf_event_ctxp[] store, such that it will in fact take 2903 * ctx::lock in perf_event_context_sched_in(). 2904 * 2905 * We do this by task_function_call(), if the IPI fails to hit the task 2906 * we know any future context switch of task must see the 2907 * perf_event_ctpx[] store. 2908 */ 2909 2910 /* 2911 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2912 * task_cpu() load, such that if the IPI then does not find the task 2913 * running, a future context switch of that task must observe the 2914 * store. 2915 */ 2916 smp_mb(); 2917 again: 2918 if (!task_function_call(task, __perf_install_in_context, event)) 2919 return; 2920 2921 raw_spin_lock_irq(&ctx->lock); 2922 task = ctx->task; 2923 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2924 /* 2925 * Cannot happen because we already checked above (which also 2926 * cannot happen), and we hold ctx->mutex, which serializes us 2927 * against perf_event_exit_task_context(). 2928 */ 2929 raw_spin_unlock_irq(&ctx->lock); 2930 return; 2931 } 2932 /* 2933 * If the task is not running, ctx->lock will avoid it becoming so, 2934 * thus we can safely install the event. 2935 */ 2936 if (task_curr(task)) { 2937 raw_spin_unlock_irq(&ctx->lock); 2938 goto again; 2939 } 2940 add_event_to_ctx(event, ctx); 2941 raw_spin_unlock_irq(&ctx->lock); 2942 } 2943 2944 /* 2945 * Cross CPU call to enable a performance event 2946 */ 2947 static void __perf_event_enable(struct perf_event *event, 2948 struct perf_cpu_context *cpuctx, 2949 struct perf_event_context *ctx, 2950 void *info) 2951 { 2952 struct perf_event *leader = event->group_leader; 2953 struct perf_event_context *task_ctx; 2954 2955 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2956 event->state <= PERF_EVENT_STATE_ERROR) 2957 return; 2958 2959 if (ctx->is_active) 2960 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2961 2962 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2963 perf_cgroup_event_enable(event, ctx); 2964 2965 if (!ctx->is_active) 2966 return; 2967 2968 if (!event_filter_match(event)) { 2969 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2970 return; 2971 } 2972 2973 /* 2974 * If the event is in a group and isn't the group leader, 2975 * then don't put it on unless the group is on. 2976 */ 2977 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2978 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2979 return; 2980 } 2981 2982 task_ctx = cpuctx->task_ctx; 2983 if (ctx->task) 2984 WARN_ON_ONCE(task_ctx != ctx); 2985 2986 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2987 } 2988 2989 /* 2990 * Enable an event. 2991 * 2992 * If event->ctx is a cloned context, callers must make sure that 2993 * every task struct that event->ctx->task could possibly point to 2994 * remains valid. This condition is satisfied when called through 2995 * perf_event_for_each_child or perf_event_for_each as described 2996 * for perf_event_disable. 2997 */ 2998 static void _perf_event_enable(struct perf_event *event) 2999 { 3000 struct perf_event_context *ctx = event->ctx; 3001 3002 raw_spin_lock_irq(&ctx->lock); 3003 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3004 event->state < PERF_EVENT_STATE_ERROR) { 3005 out: 3006 raw_spin_unlock_irq(&ctx->lock); 3007 return; 3008 } 3009 3010 /* 3011 * If the event is in error state, clear that first. 3012 * 3013 * That way, if we see the event in error state below, we know that it 3014 * has gone back into error state, as distinct from the task having 3015 * been scheduled away before the cross-call arrived. 3016 */ 3017 if (event->state == PERF_EVENT_STATE_ERROR) { 3018 /* 3019 * Detached SIBLING events cannot leave ERROR state. 3020 */ 3021 if (event->event_caps & PERF_EV_CAP_SIBLING && 3022 event->group_leader == event) 3023 goto out; 3024 3025 event->state = PERF_EVENT_STATE_OFF; 3026 } 3027 raw_spin_unlock_irq(&ctx->lock); 3028 3029 event_function_call(event, __perf_event_enable, NULL); 3030 } 3031 3032 /* 3033 * See perf_event_disable(); 3034 */ 3035 void perf_event_enable(struct perf_event *event) 3036 { 3037 struct perf_event_context *ctx; 3038 3039 ctx = perf_event_ctx_lock(event); 3040 _perf_event_enable(event); 3041 perf_event_ctx_unlock(event, ctx); 3042 } 3043 EXPORT_SYMBOL_GPL(perf_event_enable); 3044 3045 struct stop_event_data { 3046 struct perf_event *event; 3047 unsigned int restart; 3048 }; 3049 3050 static int __perf_event_stop(void *info) 3051 { 3052 struct stop_event_data *sd = info; 3053 struct perf_event *event = sd->event; 3054 3055 /* if it's already INACTIVE, do nothing */ 3056 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3057 return 0; 3058 3059 /* matches smp_wmb() in event_sched_in() */ 3060 smp_rmb(); 3061 3062 /* 3063 * There is a window with interrupts enabled before we get here, 3064 * so we need to check again lest we try to stop another CPU's event. 3065 */ 3066 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3067 return -EAGAIN; 3068 3069 event->pmu->stop(event, PERF_EF_UPDATE); 3070 3071 /* 3072 * May race with the actual stop (through perf_pmu_output_stop()), 3073 * but it is only used for events with AUX ring buffer, and such 3074 * events will refuse to restart because of rb::aux_mmap_count==0, 3075 * see comments in perf_aux_output_begin(). 3076 * 3077 * Since this is happening on an event-local CPU, no trace is lost 3078 * while restarting. 3079 */ 3080 if (sd->restart) 3081 event->pmu->start(event, 0); 3082 3083 return 0; 3084 } 3085 3086 static int perf_event_stop(struct perf_event *event, int restart) 3087 { 3088 struct stop_event_data sd = { 3089 .event = event, 3090 .restart = restart, 3091 }; 3092 int ret = 0; 3093 3094 do { 3095 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3096 return 0; 3097 3098 /* matches smp_wmb() in event_sched_in() */ 3099 smp_rmb(); 3100 3101 /* 3102 * We only want to restart ACTIVE events, so if the event goes 3103 * inactive here (event->oncpu==-1), there's nothing more to do; 3104 * fall through with ret==-ENXIO. 3105 */ 3106 ret = cpu_function_call(READ_ONCE(event->oncpu), 3107 __perf_event_stop, &sd); 3108 } while (ret == -EAGAIN); 3109 3110 return ret; 3111 } 3112 3113 /* 3114 * In order to contain the amount of racy and tricky in the address filter 3115 * configuration management, it is a two part process: 3116 * 3117 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3118 * we update the addresses of corresponding vmas in 3119 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3120 * (p2) when an event is scheduled in (pmu::add), it calls 3121 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3122 * if the generation has changed since the previous call. 3123 * 3124 * If (p1) happens while the event is active, we restart it to force (p2). 3125 * 3126 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3127 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3128 * ioctl; 3129 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3130 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3131 * for reading; 3132 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3133 * of exec. 3134 */ 3135 void perf_event_addr_filters_sync(struct perf_event *event) 3136 { 3137 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3138 3139 if (!has_addr_filter(event)) 3140 return; 3141 3142 raw_spin_lock(&ifh->lock); 3143 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3144 event->pmu->addr_filters_sync(event); 3145 event->hw.addr_filters_gen = event->addr_filters_gen; 3146 } 3147 raw_spin_unlock(&ifh->lock); 3148 } 3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3150 3151 static int _perf_event_refresh(struct perf_event *event, int refresh) 3152 { 3153 /* 3154 * not supported on inherited events 3155 */ 3156 if (event->attr.inherit || !is_sampling_event(event)) 3157 return -EINVAL; 3158 3159 atomic_add(refresh, &event->event_limit); 3160 _perf_event_enable(event); 3161 3162 return 0; 3163 } 3164 3165 /* 3166 * See perf_event_disable() 3167 */ 3168 int perf_event_refresh(struct perf_event *event, int refresh) 3169 { 3170 struct perf_event_context *ctx; 3171 int ret; 3172 3173 ctx = perf_event_ctx_lock(event); 3174 ret = _perf_event_refresh(event, refresh); 3175 perf_event_ctx_unlock(event, ctx); 3176 3177 return ret; 3178 } 3179 EXPORT_SYMBOL_GPL(perf_event_refresh); 3180 3181 static int perf_event_modify_breakpoint(struct perf_event *bp, 3182 struct perf_event_attr *attr) 3183 { 3184 int err; 3185 3186 _perf_event_disable(bp); 3187 3188 err = modify_user_hw_breakpoint_check(bp, attr, true); 3189 3190 if (!bp->attr.disabled) 3191 _perf_event_enable(bp); 3192 3193 return err; 3194 } 3195 3196 static int perf_event_modify_attr(struct perf_event *event, 3197 struct perf_event_attr *attr) 3198 { 3199 int (*func)(struct perf_event *, struct perf_event_attr *); 3200 struct perf_event *child; 3201 int err; 3202 3203 if (event->attr.type != attr->type) 3204 return -EINVAL; 3205 3206 switch (event->attr.type) { 3207 case PERF_TYPE_BREAKPOINT: 3208 func = perf_event_modify_breakpoint; 3209 break; 3210 default: 3211 /* Place holder for future additions. */ 3212 return -EOPNOTSUPP; 3213 } 3214 3215 WARN_ON_ONCE(event->ctx->parent_ctx); 3216 3217 mutex_lock(&event->child_mutex); 3218 err = func(event, attr); 3219 if (err) 3220 goto out; 3221 list_for_each_entry(child, &event->child_list, child_list) { 3222 err = func(child, attr); 3223 if (err) 3224 goto out; 3225 } 3226 out: 3227 mutex_unlock(&event->child_mutex); 3228 return err; 3229 } 3230 3231 static void ctx_sched_out(struct perf_event_context *ctx, 3232 struct perf_cpu_context *cpuctx, 3233 enum event_type_t event_type) 3234 { 3235 struct perf_event *event, *tmp; 3236 int is_active = ctx->is_active; 3237 3238 lockdep_assert_held(&ctx->lock); 3239 3240 if (likely(!ctx->nr_events)) { 3241 /* 3242 * See __perf_remove_from_context(). 3243 */ 3244 WARN_ON_ONCE(ctx->is_active); 3245 if (ctx->task) 3246 WARN_ON_ONCE(cpuctx->task_ctx); 3247 return; 3248 } 3249 3250 ctx->is_active &= ~event_type; 3251 if (!(ctx->is_active & EVENT_ALL)) 3252 ctx->is_active = 0; 3253 3254 if (ctx->task) { 3255 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3256 if (!ctx->is_active) 3257 cpuctx->task_ctx = NULL; 3258 } 3259 3260 /* 3261 * Always update time if it was set; not only when it changes. 3262 * Otherwise we can 'forget' to update time for any but the last 3263 * context we sched out. For example: 3264 * 3265 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3266 * ctx_sched_out(.event_type = EVENT_PINNED) 3267 * 3268 * would only update time for the pinned events. 3269 */ 3270 if (is_active & EVENT_TIME) { 3271 /* update (and stop) ctx time */ 3272 update_context_time(ctx); 3273 update_cgrp_time_from_cpuctx(cpuctx); 3274 } 3275 3276 is_active ^= ctx->is_active; /* changed bits */ 3277 3278 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3279 return; 3280 3281 perf_pmu_disable(ctx->pmu); 3282 if (is_active & EVENT_PINNED) { 3283 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3284 group_sched_out(event, cpuctx, ctx); 3285 } 3286 3287 if (is_active & EVENT_FLEXIBLE) { 3288 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3289 group_sched_out(event, cpuctx, ctx); 3290 3291 /* 3292 * Since we cleared EVENT_FLEXIBLE, also clear 3293 * rotate_necessary, is will be reset by 3294 * ctx_flexible_sched_in() when needed. 3295 */ 3296 ctx->rotate_necessary = 0; 3297 } 3298 perf_pmu_enable(ctx->pmu); 3299 } 3300 3301 /* 3302 * Test whether two contexts are equivalent, i.e. whether they have both been 3303 * cloned from the same version of the same context. 3304 * 3305 * Equivalence is measured using a generation number in the context that is 3306 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3307 * and list_del_event(). 3308 */ 3309 static int context_equiv(struct perf_event_context *ctx1, 3310 struct perf_event_context *ctx2) 3311 { 3312 lockdep_assert_held(&ctx1->lock); 3313 lockdep_assert_held(&ctx2->lock); 3314 3315 /* Pinning disables the swap optimization */ 3316 if (ctx1->pin_count || ctx2->pin_count) 3317 return 0; 3318 3319 /* If ctx1 is the parent of ctx2 */ 3320 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3321 return 1; 3322 3323 /* If ctx2 is the parent of ctx1 */ 3324 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3325 return 1; 3326 3327 /* 3328 * If ctx1 and ctx2 have the same parent; we flatten the parent 3329 * hierarchy, see perf_event_init_context(). 3330 */ 3331 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3332 ctx1->parent_gen == ctx2->parent_gen) 3333 return 1; 3334 3335 /* Unmatched */ 3336 return 0; 3337 } 3338 3339 static void __perf_event_sync_stat(struct perf_event *event, 3340 struct perf_event *next_event) 3341 { 3342 u64 value; 3343 3344 if (!event->attr.inherit_stat) 3345 return; 3346 3347 /* 3348 * Update the event value, we cannot use perf_event_read() 3349 * because we're in the middle of a context switch and have IRQs 3350 * disabled, which upsets smp_call_function_single(), however 3351 * we know the event must be on the current CPU, therefore we 3352 * don't need to use it. 3353 */ 3354 if (event->state == PERF_EVENT_STATE_ACTIVE) 3355 event->pmu->read(event); 3356 3357 perf_event_update_time(event); 3358 3359 /* 3360 * In order to keep per-task stats reliable we need to flip the event 3361 * values when we flip the contexts. 3362 */ 3363 value = local64_read(&next_event->count); 3364 value = local64_xchg(&event->count, value); 3365 local64_set(&next_event->count, value); 3366 3367 swap(event->total_time_enabled, next_event->total_time_enabled); 3368 swap(event->total_time_running, next_event->total_time_running); 3369 3370 /* 3371 * Since we swizzled the values, update the user visible data too. 3372 */ 3373 perf_event_update_userpage(event); 3374 perf_event_update_userpage(next_event); 3375 } 3376 3377 static void perf_event_sync_stat(struct perf_event_context *ctx, 3378 struct perf_event_context *next_ctx) 3379 { 3380 struct perf_event *event, *next_event; 3381 3382 if (!ctx->nr_stat) 3383 return; 3384 3385 update_context_time(ctx); 3386 3387 event = list_first_entry(&ctx->event_list, 3388 struct perf_event, event_entry); 3389 3390 next_event = list_first_entry(&next_ctx->event_list, 3391 struct perf_event, event_entry); 3392 3393 while (&event->event_entry != &ctx->event_list && 3394 &next_event->event_entry != &next_ctx->event_list) { 3395 3396 __perf_event_sync_stat(event, next_event); 3397 3398 event = list_next_entry(event, event_entry); 3399 next_event = list_next_entry(next_event, event_entry); 3400 } 3401 } 3402 3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3404 struct task_struct *next) 3405 { 3406 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3407 struct perf_event_context *next_ctx; 3408 struct perf_event_context *parent, *next_parent; 3409 struct perf_cpu_context *cpuctx; 3410 int do_switch = 1; 3411 struct pmu *pmu; 3412 3413 if (likely(!ctx)) 3414 return; 3415 3416 pmu = ctx->pmu; 3417 cpuctx = __get_cpu_context(ctx); 3418 if (!cpuctx->task_ctx) 3419 return; 3420 3421 rcu_read_lock(); 3422 next_ctx = next->perf_event_ctxp[ctxn]; 3423 if (!next_ctx) 3424 goto unlock; 3425 3426 parent = rcu_dereference(ctx->parent_ctx); 3427 next_parent = rcu_dereference(next_ctx->parent_ctx); 3428 3429 /* If neither context have a parent context; they cannot be clones. */ 3430 if (!parent && !next_parent) 3431 goto unlock; 3432 3433 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3434 /* 3435 * Looks like the two contexts are clones, so we might be 3436 * able to optimize the context switch. We lock both 3437 * contexts and check that they are clones under the 3438 * lock (including re-checking that neither has been 3439 * uncloned in the meantime). It doesn't matter which 3440 * order we take the locks because no other cpu could 3441 * be trying to lock both of these tasks. 3442 */ 3443 raw_spin_lock(&ctx->lock); 3444 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3445 if (context_equiv(ctx, next_ctx)) { 3446 3447 WRITE_ONCE(ctx->task, next); 3448 WRITE_ONCE(next_ctx->task, task); 3449 3450 perf_pmu_disable(pmu); 3451 3452 if (cpuctx->sched_cb_usage && pmu->sched_task) 3453 pmu->sched_task(ctx, false); 3454 3455 /* 3456 * PMU specific parts of task perf context can require 3457 * additional synchronization. As an example of such 3458 * synchronization see implementation details of Intel 3459 * LBR call stack data profiling; 3460 */ 3461 if (pmu->swap_task_ctx) 3462 pmu->swap_task_ctx(ctx, next_ctx); 3463 else 3464 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3465 3466 perf_pmu_enable(pmu); 3467 3468 /* 3469 * RCU_INIT_POINTER here is safe because we've not 3470 * modified the ctx and the above modification of 3471 * ctx->task and ctx->task_ctx_data are immaterial 3472 * since those values are always verified under 3473 * ctx->lock which we're now holding. 3474 */ 3475 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3476 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3477 3478 do_switch = 0; 3479 3480 perf_event_sync_stat(ctx, next_ctx); 3481 } 3482 raw_spin_unlock(&next_ctx->lock); 3483 raw_spin_unlock(&ctx->lock); 3484 } 3485 unlock: 3486 rcu_read_unlock(); 3487 3488 if (do_switch) { 3489 raw_spin_lock(&ctx->lock); 3490 perf_pmu_disable(pmu); 3491 3492 if (cpuctx->sched_cb_usage && pmu->sched_task) 3493 pmu->sched_task(ctx, false); 3494 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3495 3496 perf_pmu_enable(pmu); 3497 raw_spin_unlock(&ctx->lock); 3498 } 3499 } 3500 3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3502 3503 void perf_sched_cb_dec(struct pmu *pmu) 3504 { 3505 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3506 3507 this_cpu_dec(perf_sched_cb_usages); 3508 3509 if (!--cpuctx->sched_cb_usage) 3510 list_del(&cpuctx->sched_cb_entry); 3511 } 3512 3513 3514 void perf_sched_cb_inc(struct pmu *pmu) 3515 { 3516 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3517 3518 if (!cpuctx->sched_cb_usage++) 3519 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3520 3521 this_cpu_inc(perf_sched_cb_usages); 3522 } 3523 3524 /* 3525 * This function provides the context switch callback to the lower code 3526 * layer. It is invoked ONLY when the context switch callback is enabled. 3527 * 3528 * This callback is relevant even to per-cpu events; for example multi event 3529 * PEBS requires this to provide PID/TID information. This requires we flush 3530 * all queued PEBS records before we context switch to a new task. 3531 */ 3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3533 { 3534 struct pmu *pmu; 3535 3536 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3537 3538 if (WARN_ON_ONCE(!pmu->sched_task)) 3539 return; 3540 3541 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3542 perf_pmu_disable(pmu); 3543 3544 pmu->sched_task(cpuctx->task_ctx, sched_in); 3545 3546 perf_pmu_enable(pmu); 3547 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3548 } 3549 3550 static void perf_pmu_sched_task(struct task_struct *prev, 3551 struct task_struct *next, 3552 bool sched_in) 3553 { 3554 struct perf_cpu_context *cpuctx; 3555 3556 if (prev == next) 3557 return; 3558 3559 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3560 /* will be handled in perf_event_context_sched_in/out */ 3561 if (cpuctx->task_ctx) 3562 continue; 3563 3564 __perf_pmu_sched_task(cpuctx, sched_in); 3565 } 3566 } 3567 3568 static void perf_event_switch(struct task_struct *task, 3569 struct task_struct *next_prev, bool sched_in); 3570 3571 #define for_each_task_context_nr(ctxn) \ 3572 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3573 3574 /* 3575 * Called from scheduler to remove the events of the current task, 3576 * with interrupts disabled. 3577 * 3578 * We stop each event and update the event value in event->count. 3579 * 3580 * This does not protect us against NMI, but disable() 3581 * sets the disabled bit in the control field of event _before_ 3582 * accessing the event control register. If a NMI hits, then it will 3583 * not restart the event. 3584 */ 3585 void __perf_event_task_sched_out(struct task_struct *task, 3586 struct task_struct *next) 3587 { 3588 int ctxn; 3589 3590 if (__this_cpu_read(perf_sched_cb_usages)) 3591 perf_pmu_sched_task(task, next, false); 3592 3593 if (atomic_read(&nr_switch_events)) 3594 perf_event_switch(task, next, false); 3595 3596 for_each_task_context_nr(ctxn) 3597 perf_event_context_sched_out(task, ctxn, next); 3598 3599 /* 3600 * if cgroup events exist on this CPU, then we need 3601 * to check if we have to switch out PMU state. 3602 * cgroup event are system-wide mode only 3603 */ 3604 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3605 perf_cgroup_sched_out(task, next); 3606 } 3607 3608 /* 3609 * Called with IRQs disabled 3610 */ 3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3612 enum event_type_t event_type) 3613 { 3614 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3615 } 3616 3617 static bool perf_less_group_idx(const void *l, const void *r) 3618 { 3619 const struct perf_event *le = *(const struct perf_event **)l; 3620 const struct perf_event *re = *(const struct perf_event **)r; 3621 3622 return le->group_index < re->group_index; 3623 } 3624 3625 static void swap_ptr(void *l, void *r) 3626 { 3627 void **lp = l, **rp = r; 3628 3629 swap(*lp, *rp); 3630 } 3631 3632 static const struct min_heap_callbacks perf_min_heap = { 3633 .elem_size = sizeof(struct perf_event *), 3634 .less = perf_less_group_idx, 3635 .swp = swap_ptr, 3636 }; 3637 3638 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3639 { 3640 struct perf_event **itrs = heap->data; 3641 3642 if (event) { 3643 itrs[heap->nr] = event; 3644 heap->nr++; 3645 } 3646 } 3647 3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3649 struct perf_event_groups *groups, int cpu, 3650 int (*func)(struct perf_event *, void *), 3651 void *data) 3652 { 3653 #ifdef CONFIG_CGROUP_PERF 3654 struct cgroup_subsys_state *css = NULL; 3655 #endif 3656 /* Space for per CPU and/or any CPU event iterators. */ 3657 struct perf_event *itrs[2]; 3658 struct min_heap event_heap; 3659 struct perf_event **evt; 3660 int ret; 3661 3662 if (cpuctx) { 3663 event_heap = (struct min_heap){ 3664 .data = cpuctx->heap, 3665 .nr = 0, 3666 .size = cpuctx->heap_size, 3667 }; 3668 3669 lockdep_assert_held(&cpuctx->ctx.lock); 3670 3671 #ifdef CONFIG_CGROUP_PERF 3672 if (cpuctx->cgrp) 3673 css = &cpuctx->cgrp->css; 3674 #endif 3675 } else { 3676 event_heap = (struct min_heap){ 3677 .data = itrs, 3678 .nr = 0, 3679 .size = ARRAY_SIZE(itrs), 3680 }; 3681 /* Events not within a CPU context may be on any CPU. */ 3682 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3683 } 3684 evt = event_heap.data; 3685 3686 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3687 3688 #ifdef CONFIG_CGROUP_PERF 3689 for (; css; css = css->parent) 3690 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3691 #endif 3692 3693 min_heapify_all(&event_heap, &perf_min_heap); 3694 3695 while (event_heap.nr) { 3696 ret = func(*evt, data); 3697 if (ret) 3698 return ret; 3699 3700 *evt = perf_event_groups_next(*evt); 3701 if (*evt) 3702 min_heapify(&event_heap, 0, &perf_min_heap); 3703 else 3704 min_heap_pop(&event_heap, &perf_min_heap); 3705 } 3706 3707 return 0; 3708 } 3709 3710 static int merge_sched_in(struct perf_event *event, void *data) 3711 { 3712 struct perf_event_context *ctx = event->ctx; 3713 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3714 int *can_add_hw = data; 3715 3716 if (event->state <= PERF_EVENT_STATE_OFF) 3717 return 0; 3718 3719 if (!event_filter_match(event)) 3720 return 0; 3721 3722 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3723 if (!group_sched_in(event, cpuctx, ctx)) 3724 list_add_tail(&event->active_list, get_event_list(event)); 3725 } 3726 3727 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3728 if (event->attr.pinned) { 3729 perf_cgroup_event_disable(event, ctx); 3730 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3731 } 3732 3733 *can_add_hw = 0; 3734 ctx->rotate_necessary = 1; 3735 perf_mux_hrtimer_restart(cpuctx); 3736 } 3737 3738 return 0; 3739 } 3740 3741 static void 3742 ctx_pinned_sched_in(struct perf_event_context *ctx, 3743 struct perf_cpu_context *cpuctx) 3744 { 3745 int can_add_hw = 1; 3746 3747 if (ctx != &cpuctx->ctx) 3748 cpuctx = NULL; 3749 3750 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3751 smp_processor_id(), 3752 merge_sched_in, &can_add_hw); 3753 } 3754 3755 static void 3756 ctx_flexible_sched_in(struct perf_event_context *ctx, 3757 struct perf_cpu_context *cpuctx) 3758 { 3759 int can_add_hw = 1; 3760 3761 if (ctx != &cpuctx->ctx) 3762 cpuctx = NULL; 3763 3764 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3765 smp_processor_id(), 3766 merge_sched_in, &can_add_hw); 3767 } 3768 3769 static void 3770 ctx_sched_in(struct perf_event_context *ctx, 3771 struct perf_cpu_context *cpuctx, 3772 enum event_type_t event_type, 3773 struct task_struct *task) 3774 { 3775 int is_active = ctx->is_active; 3776 u64 now; 3777 3778 lockdep_assert_held(&ctx->lock); 3779 3780 if (likely(!ctx->nr_events)) 3781 return; 3782 3783 ctx->is_active |= (event_type | EVENT_TIME); 3784 if (ctx->task) { 3785 if (!is_active) 3786 cpuctx->task_ctx = ctx; 3787 else 3788 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3789 } 3790 3791 is_active ^= ctx->is_active; /* changed bits */ 3792 3793 if (is_active & EVENT_TIME) { 3794 /* start ctx time */ 3795 now = perf_clock(); 3796 ctx->timestamp = now; 3797 perf_cgroup_set_timestamp(task, ctx); 3798 } 3799 3800 /* 3801 * First go through the list and put on any pinned groups 3802 * in order to give them the best chance of going on. 3803 */ 3804 if (is_active & EVENT_PINNED) 3805 ctx_pinned_sched_in(ctx, cpuctx); 3806 3807 /* Then walk through the lower prio flexible groups */ 3808 if (is_active & EVENT_FLEXIBLE) 3809 ctx_flexible_sched_in(ctx, cpuctx); 3810 } 3811 3812 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3813 enum event_type_t event_type, 3814 struct task_struct *task) 3815 { 3816 struct perf_event_context *ctx = &cpuctx->ctx; 3817 3818 ctx_sched_in(ctx, cpuctx, event_type, task); 3819 } 3820 3821 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3822 struct task_struct *task) 3823 { 3824 struct perf_cpu_context *cpuctx; 3825 struct pmu *pmu = ctx->pmu; 3826 3827 cpuctx = __get_cpu_context(ctx); 3828 if (cpuctx->task_ctx == ctx) { 3829 if (cpuctx->sched_cb_usage) 3830 __perf_pmu_sched_task(cpuctx, true); 3831 return; 3832 } 3833 3834 perf_ctx_lock(cpuctx, ctx); 3835 /* 3836 * We must check ctx->nr_events while holding ctx->lock, such 3837 * that we serialize against perf_install_in_context(). 3838 */ 3839 if (!ctx->nr_events) 3840 goto unlock; 3841 3842 perf_pmu_disable(pmu); 3843 /* 3844 * We want to keep the following priority order: 3845 * cpu pinned (that don't need to move), task pinned, 3846 * cpu flexible, task flexible. 3847 * 3848 * However, if task's ctx is not carrying any pinned 3849 * events, no need to flip the cpuctx's events around. 3850 */ 3851 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3852 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3853 perf_event_sched_in(cpuctx, ctx, task); 3854 3855 if (cpuctx->sched_cb_usage && pmu->sched_task) 3856 pmu->sched_task(cpuctx->task_ctx, true); 3857 3858 perf_pmu_enable(pmu); 3859 3860 unlock: 3861 perf_ctx_unlock(cpuctx, ctx); 3862 } 3863 3864 /* 3865 * Called from scheduler to add the events of the current task 3866 * with interrupts disabled. 3867 * 3868 * We restore the event value and then enable it. 3869 * 3870 * This does not protect us against NMI, but enable() 3871 * sets the enabled bit in the control field of event _before_ 3872 * accessing the event control register. If a NMI hits, then it will 3873 * keep the event running. 3874 */ 3875 void __perf_event_task_sched_in(struct task_struct *prev, 3876 struct task_struct *task) 3877 { 3878 struct perf_event_context *ctx; 3879 int ctxn; 3880 3881 /* 3882 * If cgroup events exist on this CPU, then we need to check if we have 3883 * to switch in PMU state; cgroup event are system-wide mode only. 3884 * 3885 * Since cgroup events are CPU events, we must schedule these in before 3886 * we schedule in the task events. 3887 */ 3888 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3889 perf_cgroup_sched_in(prev, task); 3890 3891 for_each_task_context_nr(ctxn) { 3892 ctx = task->perf_event_ctxp[ctxn]; 3893 if (likely(!ctx)) 3894 continue; 3895 3896 perf_event_context_sched_in(ctx, task); 3897 } 3898 3899 if (atomic_read(&nr_switch_events)) 3900 perf_event_switch(task, prev, true); 3901 3902 if (__this_cpu_read(perf_sched_cb_usages)) 3903 perf_pmu_sched_task(prev, task, true); 3904 } 3905 3906 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3907 { 3908 u64 frequency = event->attr.sample_freq; 3909 u64 sec = NSEC_PER_SEC; 3910 u64 divisor, dividend; 3911 3912 int count_fls, nsec_fls, frequency_fls, sec_fls; 3913 3914 count_fls = fls64(count); 3915 nsec_fls = fls64(nsec); 3916 frequency_fls = fls64(frequency); 3917 sec_fls = 30; 3918 3919 /* 3920 * We got @count in @nsec, with a target of sample_freq HZ 3921 * the target period becomes: 3922 * 3923 * @count * 10^9 3924 * period = ------------------- 3925 * @nsec * sample_freq 3926 * 3927 */ 3928 3929 /* 3930 * Reduce accuracy by one bit such that @a and @b converge 3931 * to a similar magnitude. 3932 */ 3933 #define REDUCE_FLS(a, b) \ 3934 do { \ 3935 if (a##_fls > b##_fls) { \ 3936 a >>= 1; \ 3937 a##_fls--; \ 3938 } else { \ 3939 b >>= 1; \ 3940 b##_fls--; \ 3941 } \ 3942 } while (0) 3943 3944 /* 3945 * Reduce accuracy until either term fits in a u64, then proceed with 3946 * the other, so that finally we can do a u64/u64 division. 3947 */ 3948 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3949 REDUCE_FLS(nsec, frequency); 3950 REDUCE_FLS(sec, count); 3951 } 3952 3953 if (count_fls + sec_fls > 64) { 3954 divisor = nsec * frequency; 3955 3956 while (count_fls + sec_fls > 64) { 3957 REDUCE_FLS(count, sec); 3958 divisor >>= 1; 3959 } 3960 3961 dividend = count * sec; 3962 } else { 3963 dividend = count * sec; 3964 3965 while (nsec_fls + frequency_fls > 64) { 3966 REDUCE_FLS(nsec, frequency); 3967 dividend >>= 1; 3968 } 3969 3970 divisor = nsec * frequency; 3971 } 3972 3973 if (!divisor) 3974 return dividend; 3975 3976 return div64_u64(dividend, divisor); 3977 } 3978 3979 static DEFINE_PER_CPU(int, perf_throttled_count); 3980 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3981 3982 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3983 { 3984 struct hw_perf_event *hwc = &event->hw; 3985 s64 period, sample_period; 3986 s64 delta; 3987 3988 period = perf_calculate_period(event, nsec, count); 3989 3990 delta = (s64)(period - hwc->sample_period); 3991 delta = (delta + 7) / 8; /* low pass filter */ 3992 3993 sample_period = hwc->sample_period + delta; 3994 3995 if (!sample_period) 3996 sample_period = 1; 3997 3998 hwc->sample_period = sample_period; 3999 4000 if (local64_read(&hwc->period_left) > 8*sample_period) { 4001 if (disable) 4002 event->pmu->stop(event, PERF_EF_UPDATE); 4003 4004 local64_set(&hwc->period_left, 0); 4005 4006 if (disable) 4007 event->pmu->start(event, PERF_EF_RELOAD); 4008 } 4009 } 4010 4011 /* 4012 * combine freq adjustment with unthrottling to avoid two passes over the 4013 * events. At the same time, make sure, having freq events does not change 4014 * the rate of unthrottling as that would introduce bias. 4015 */ 4016 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 4017 int needs_unthr) 4018 { 4019 struct perf_event *event; 4020 struct hw_perf_event *hwc; 4021 u64 now, period = TICK_NSEC; 4022 s64 delta; 4023 4024 /* 4025 * only need to iterate over all events iff: 4026 * - context have events in frequency mode (needs freq adjust) 4027 * - there are events to unthrottle on this cpu 4028 */ 4029 if (!(ctx->nr_freq || needs_unthr)) 4030 return; 4031 4032 raw_spin_lock(&ctx->lock); 4033 perf_pmu_disable(ctx->pmu); 4034 4035 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4036 if (event->state != PERF_EVENT_STATE_ACTIVE) 4037 continue; 4038 4039 if (!event_filter_match(event)) 4040 continue; 4041 4042 perf_pmu_disable(event->pmu); 4043 4044 hwc = &event->hw; 4045 4046 if (hwc->interrupts == MAX_INTERRUPTS) { 4047 hwc->interrupts = 0; 4048 perf_log_throttle(event, 1); 4049 event->pmu->start(event, 0); 4050 } 4051 4052 if (!event->attr.freq || !event->attr.sample_freq) 4053 goto next; 4054 4055 /* 4056 * stop the event and update event->count 4057 */ 4058 event->pmu->stop(event, PERF_EF_UPDATE); 4059 4060 now = local64_read(&event->count); 4061 delta = now - hwc->freq_count_stamp; 4062 hwc->freq_count_stamp = now; 4063 4064 /* 4065 * restart the event 4066 * reload only if value has changed 4067 * we have stopped the event so tell that 4068 * to perf_adjust_period() to avoid stopping it 4069 * twice. 4070 */ 4071 if (delta > 0) 4072 perf_adjust_period(event, period, delta, false); 4073 4074 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4075 next: 4076 perf_pmu_enable(event->pmu); 4077 } 4078 4079 perf_pmu_enable(ctx->pmu); 4080 raw_spin_unlock(&ctx->lock); 4081 } 4082 4083 /* 4084 * Move @event to the tail of the @ctx's elegible events. 4085 */ 4086 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4087 { 4088 /* 4089 * Rotate the first entry last of non-pinned groups. Rotation might be 4090 * disabled by the inheritance code. 4091 */ 4092 if (ctx->rotate_disable) 4093 return; 4094 4095 perf_event_groups_delete(&ctx->flexible_groups, event); 4096 perf_event_groups_insert(&ctx->flexible_groups, event); 4097 } 4098 4099 /* pick an event from the flexible_groups to rotate */ 4100 static inline struct perf_event * 4101 ctx_event_to_rotate(struct perf_event_context *ctx) 4102 { 4103 struct perf_event *event; 4104 4105 /* pick the first active flexible event */ 4106 event = list_first_entry_or_null(&ctx->flexible_active, 4107 struct perf_event, active_list); 4108 4109 /* if no active flexible event, pick the first event */ 4110 if (!event) { 4111 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4112 typeof(*event), group_node); 4113 } 4114 4115 /* 4116 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4117 * finds there are unschedulable events, it will set it again. 4118 */ 4119 ctx->rotate_necessary = 0; 4120 4121 return event; 4122 } 4123 4124 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4125 { 4126 struct perf_event *cpu_event = NULL, *task_event = NULL; 4127 struct perf_event_context *task_ctx = NULL; 4128 int cpu_rotate, task_rotate; 4129 4130 /* 4131 * Since we run this from IRQ context, nobody can install new 4132 * events, thus the event count values are stable. 4133 */ 4134 4135 cpu_rotate = cpuctx->ctx.rotate_necessary; 4136 task_ctx = cpuctx->task_ctx; 4137 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4138 4139 if (!(cpu_rotate || task_rotate)) 4140 return false; 4141 4142 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4143 perf_pmu_disable(cpuctx->ctx.pmu); 4144 4145 if (task_rotate) 4146 task_event = ctx_event_to_rotate(task_ctx); 4147 if (cpu_rotate) 4148 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4149 4150 /* 4151 * As per the order given at ctx_resched() first 'pop' task flexible 4152 * and then, if needed CPU flexible. 4153 */ 4154 if (task_event || (task_ctx && cpu_event)) 4155 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4156 if (cpu_event) 4157 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4158 4159 if (task_event) 4160 rotate_ctx(task_ctx, task_event); 4161 if (cpu_event) 4162 rotate_ctx(&cpuctx->ctx, cpu_event); 4163 4164 perf_event_sched_in(cpuctx, task_ctx, current); 4165 4166 perf_pmu_enable(cpuctx->ctx.pmu); 4167 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4168 4169 return true; 4170 } 4171 4172 void perf_event_task_tick(void) 4173 { 4174 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4175 struct perf_event_context *ctx, *tmp; 4176 int throttled; 4177 4178 lockdep_assert_irqs_disabled(); 4179 4180 __this_cpu_inc(perf_throttled_seq); 4181 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4182 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4183 4184 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4185 perf_adjust_freq_unthr_context(ctx, throttled); 4186 } 4187 4188 static int event_enable_on_exec(struct perf_event *event, 4189 struct perf_event_context *ctx) 4190 { 4191 if (!event->attr.enable_on_exec) 4192 return 0; 4193 4194 event->attr.enable_on_exec = 0; 4195 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4196 return 0; 4197 4198 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4199 4200 return 1; 4201 } 4202 4203 /* 4204 * Enable all of a task's events that have been marked enable-on-exec. 4205 * This expects task == current. 4206 */ 4207 static void perf_event_enable_on_exec(int ctxn) 4208 { 4209 struct perf_event_context *ctx, *clone_ctx = NULL; 4210 enum event_type_t event_type = 0; 4211 struct perf_cpu_context *cpuctx; 4212 struct perf_event *event; 4213 unsigned long flags; 4214 int enabled = 0; 4215 4216 local_irq_save(flags); 4217 ctx = current->perf_event_ctxp[ctxn]; 4218 if (!ctx || !ctx->nr_events) 4219 goto out; 4220 4221 cpuctx = __get_cpu_context(ctx); 4222 perf_ctx_lock(cpuctx, ctx); 4223 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4224 list_for_each_entry(event, &ctx->event_list, event_entry) { 4225 enabled |= event_enable_on_exec(event, ctx); 4226 event_type |= get_event_type(event); 4227 } 4228 4229 /* 4230 * Unclone and reschedule this context if we enabled any event. 4231 */ 4232 if (enabled) { 4233 clone_ctx = unclone_ctx(ctx); 4234 ctx_resched(cpuctx, ctx, event_type); 4235 } else { 4236 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4237 } 4238 perf_ctx_unlock(cpuctx, ctx); 4239 4240 out: 4241 local_irq_restore(flags); 4242 4243 if (clone_ctx) 4244 put_ctx(clone_ctx); 4245 } 4246 4247 static void perf_remove_from_owner(struct perf_event *event); 4248 static void perf_event_exit_event(struct perf_event *event, 4249 struct perf_event_context *ctx); 4250 4251 /* 4252 * Removes all events from the current task that have been marked 4253 * remove-on-exec, and feeds their values back to parent events. 4254 */ 4255 static void perf_event_remove_on_exec(int ctxn) 4256 { 4257 struct perf_event_context *ctx, *clone_ctx = NULL; 4258 struct perf_event *event, *next; 4259 LIST_HEAD(free_list); 4260 unsigned long flags; 4261 bool modified = false; 4262 4263 ctx = perf_pin_task_context(current, ctxn); 4264 if (!ctx) 4265 return; 4266 4267 mutex_lock(&ctx->mutex); 4268 4269 if (WARN_ON_ONCE(ctx->task != current)) 4270 goto unlock; 4271 4272 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4273 if (!event->attr.remove_on_exec) 4274 continue; 4275 4276 if (!is_kernel_event(event)) 4277 perf_remove_from_owner(event); 4278 4279 modified = true; 4280 4281 perf_event_exit_event(event, ctx); 4282 } 4283 4284 raw_spin_lock_irqsave(&ctx->lock, flags); 4285 if (modified) 4286 clone_ctx = unclone_ctx(ctx); 4287 --ctx->pin_count; 4288 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4289 4290 unlock: 4291 mutex_unlock(&ctx->mutex); 4292 4293 put_ctx(ctx); 4294 if (clone_ctx) 4295 put_ctx(clone_ctx); 4296 } 4297 4298 struct perf_read_data { 4299 struct perf_event *event; 4300 bool group; 4301 int ret; 4302 }; 4303 4304 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4305 { 4306 u16 local_pkg, event_pkg; 4307 4308 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4309 int local_cpu = smp_processor_id(); 4310 4311 event_pkg = topology_physical_package_id(event_cpu); 4312 local_pkg = topology_physical_package_id(local_cpu); 4313 4314 if (event_pkg == local_pkg) 4315 return local_cpu; 4316 } 4317 4318 return event_cpu; 4319 } 4320 4321 /* 4322 * Cross CPU call to read the hardware event 4323 */ 4324 static void __perf_event_read(void *info) 4325 { 4326 struct perf_read_data *data = info; 4327 struct perf_event *sub, *event = data->event; 4328 struct perf_event_context *ctx = event->ctx; 4329 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4330 struct pmu *pmu = event->pmu; 4331 4332 /* 4333 * If this is a task context, we need to check whether it is 4334 * the current task context of this cpu. If not it has been 4335 * scheduled out before the smp call arrived. In that case 4336 * event->count would have been updated to a recent sample 4337 * when the event was scheduled out. 4338 */ 4339 if (ctx->task && cpuctx->task_ctx != ctx) 4340 return; 4341 4342 raw_spin_lock(&ctx->lock); 4343 if (ctx->is_active & EVENT_TIME) { 4344 update_context_time(ctx); 4345 update_cgrp_time_from_event(event); 4346 } 4347 4348 perf_event_update_time(event); 4349 if (data->group) 4350 perf_event_update_sibling_time(event); 4351 4352 if (event->state != PERF_EVENT_STATE_ACTIVE) 4353 goto unlock; 4354 4355 if (!data->group) { 4356 pmu->read(event); 4357 data->ret = 0; 4358 goto unlock; 4359 } 4360 4361 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4362 4363 pmu->read(event); 4364 4365 for_each_sibling_event(sub, event) { 4366 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4367 /* 4368 * Use sibling's PMU rather than @event's since 4369 * sibling could be on different (eg: software) PMU. 4370 */ 4371 sub->pmu->read(sub); 4372 } 4373 } 4374 4375 data->ret = pmu->commit_txn(pmu); 4376 4377 unlock: 4378 raw_spin_unlock(&ctx->lock); 4379 } 4380 4381 static inline u64 perf_event_count(struct perf_event *event) 4382 { 4383 return local64_read(&event->count) + atomic64_read(&event->child_count); 4384 } 4385 4386 /* 4387 * NMI-safe method to read a local event, that is an event that 4388 * is: 4389 * - either for the current task, or for this CPU 4390 * - does not have inherit set, for inherited task events 4391 * will not be local and we cannot read them atomically 4392 * - must not have a pmu::count method 4393 */ 4394 int perf_event_read_local(struct perf_event *event, u64 *value, 4395 u64 *enabled, u64 *running) 4396 { 4397 unsigned long flags; 4398 int ret = 0; 4399 4400 /* 4401 * Disabling interrupts avoids all counter scheduling (context 4402 * switches, timer based rotation and IPIs). 4403 */ 4404 local_irq_save(flags); 4405 4406 /* 4407 * It must not be an event with inherit set, we cannot read 4408 * all child counters from atomic context. 4409 */ 4410 if (event->attr.inherit) { 4411 ret = -EOPNOTSUPP; 4412 goto out; 4413 } 4414 4415 /* If this is a per-task event, it must be for current */ 4416 if ((event->attach_state & PERF_ATTACH_TASK) && 4417 event->hw.target != current) { 4418 ret = -EINVAL; 4419 goto out; 4420 } 4421 4422 /* If this is a per-CPU event, it must be for this CPU */ 4423 if (!(event->attach_state & PERF_ATTACH_TASK) && 4424 event->cpu != smp_processor_id()) { 4425 ret = -EINVAL; 4426 goto out; 4427 } 4428 4429 /* If this is a pinned event it must be running on this CPU */ 4430 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4431 ret = -EBUSY; 4432 goto out; 4433 } 4434 4435 /* 4436 * If the event is currently on this CPU, its either a per-task event, 4437 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4438 * oncpu == -1). 4439 */ 4440 if (event->oncpu == smp_processor_id()) 4441 event->pmu->read(event); 4442 4443 *value = local64_read(&event->count); 4444 if (enabled || running) { 4445 u64 now = event->shadow_ctx_time + perf_clock(); 4446 u64 __enabled, __running; 4447 4448 __perf_update_times(event, now, &__enabled, &__running); 4449 if (enabled) 4450 *enabled = __enabled; 4451 if (running) 4452 *running = __running; 4453 } 4454 out: 4455 local_irq_restore(flags); 4456 4457 return ret; 4458 } 4459 4460 static int perf_event_read(struct perf_event *event, bool group) 4461 { 4462 enum perf_event_state state = READ_ONCE(event->state); 4463 int event_cpu, ret = 0; 4464 4465 /* 4466 * If event is enabled and currently active on a CPU, update the 4467 * value in the event structure: 4468 */ 4469 again: 4470 if (state == PERF_EVENT_STATE_ACTIVE) { 4471 struct perf_read_data data; 4472 4473 /* 4474 * Orders the ->state and ->oncpu loads such that if we see 4475 * ACTIVE we must also see the right ->oncpu. 4476 * 4477 * Matches the smp_wmb() from event_sched_in(). 4478 */ 4479 smp_rmb(); 4480 4481 event_cpu = READ_ONCE(event->oncpu); 4482 if ((unsigned)event_cpu >= nr_cpu_ids) 4483 return 0; 4484 4485 data = (struct perf_read_data){ 4486 .event = event, 4487 .group = group, 4488 .ret = 0, 4489 }; 4490 4491 preempt_disable(); 4492 event_cpu = __perf_event_read_cpu(event, event_cpu); 4493 4494 /* 4495 * Purposely ignore the smp_call_function_single() return 4496 * value. 4497 * 4498 * If event_cpu isn't a valid CPU it means the event got 4499 * scheduled out and that will have updated the event count. 4500 * 4501 * Therefore, either way, we'll have an up-to-date event count 4502 * after this. 4503 */ 4504 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4505 preempt_enable(); 4506 ret = data.ret; 4507 4508 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4509 struct perf_event_context *ctx = event->ctx; 4510 unsigned long flags; 4511 4512 raw_spin_lock_irqsave(&ctx->lock, flags); 4513 state = event->state; 4514 if (state != PERF_EVENT_STATE_INACTIVE) { 4515 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4516 goto again; 4517 } 4518 4519 /* 4520 * May read while context is not active (e.g., thread is 4521 * blocked), in that case we cannot update context time 4522 */ 4523 if (ctx->is_active & EVENT_TIME) { 4524 update_context_time(ctx); 4525 update_cgrp_time_from_event(event); 4526 } 4527 4528 perf_event_update_time(event); 4529 if (group) 4530 perf_event_update_sibling_time(event); 4531 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4532 } 4533 4534 return ret; 4535 } 4536 4537 /* 4538 * Initialize the perf_event context in a task_struct: 4539 */ 4540 static void __perf_event_init_context(struct perf_event_context *ctx) 4541 { 4542 raw_spin_lock_init(&ctx->lock); 4543 mutex_init(&ctx->mutex); 4544 INIT_LIST_HEAD(&ctx->active_ctx_list); 4545 perf_event_groups_init(&ctx->pinned_groups); 4546 perf_event_groups_init(&ctx->flexible_groups); 4547 INIT_LIST_HEAD(&ctx->event_list); 4548 INIT_LIST_HEAD(&ctx->pinned_active); 4549 INIT_LIST_HEAD(&ctx->flexible_active); 4550 refcount_set(&ctx->refcount, 1); 4551 } 4552 4553 static struct perf_event_context * 4554 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4555 { 4556 struct perf_event_context *ctx; 4557 4558 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4559 if (!ctx) 4560 return NULL; 4561 4562 __perf_event_init_context(ctx); 4563 if (task) 4564 ctx->task = get_task_struct(task); 4565 ctx->pmu = pmu; 4566 4567 return ctx; 4568 } 4569 4570 static struct task_struct * 4571 find_lively_task_by_vpid(pid_t vpid) 4572 { 4573 struct task_struct *task; 4574 4575 rcu_read_lock(); 4576 if (!vpid) 4577 task = current; 4578 else 4579 task = find_task_by_vpid(vpid); 4580 if (task) 4581 get_task_struct(task); 4582 rcu_read_unlock(); 4583 4584 if (!task) 4585 return ERR_PTR(-ESRCH); 4586 4587 return task; 4588 } 4589 4590 /* 4591 * Returns a matching context with refcount and pincount. 4592 */ 4593 static struct perf_event_context * 4594 find_get_context(struct pmu *pmu, struct task_struct *task, 4595 struct perf_event *event) 4596 { 4597 struct perf_event_context *ctx, *clone_ctx = NULL; 4598 struct perf_cpu_context *cpuctx; 4599 void *task_ctx_data = NULL; 4600 unsigned long flags; 4601 int ctxn, err; 4602 int cpu = event->cpu; 4603 4604 if (!task) { 4605 /* Must be root to operate on a CPU event: */ 4606 err = perf_allow_cpu(&event->attr); 4607 if (err) 4608 return ERR_PTR(err); 4609 4610 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4611 ctx = &cpuctx->ctx; 4612 get_ctx(ctx); 4613 ++ctx->pin_count; 4614 4615 return ctx; 4616 } 4617 4618 err = -EINVAL; 4619 ctxn = pmu->task_ctx_nr; 4620 if (ctxn < 0) 4621 goto errout; 4622 4623 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4624 task_ctx_data = alloc_task_ctx_data(pmu); 4625 if (!task_ctx_data) { 4626 err = -ENOMEM; 4627 goto errout; 4628 } 4629 } 4630 4631 retry: 4632 ctx = perf_lock_task_context(task, ctxn, &flags); 4633 if (ctx) { 4634 clone_ctx = unclone_ctx(ctx); 4635 ++ctx->pin_count; 4636 4637 if (task_ctx_data && !ctx->task_ctx_data) { 4638 ctx->task_ctx_data = task_ctx_data; 4639 task_ctx_data = NULL; 4640 } 4641 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4642 4643 if (clone_ctx) 4644 put_ctx(clone_ctx); 4645 } else { 4646 ctx = alloc_perf_context(pmu, task); 4647 err = -ENOMEM; 4648 if (!ctx) 4649 goto errout; 4650 4651 if (task_ctx_data) { 4652 ctx->task_ctx_data = task_ctx_data; 4653 task_ctx_data = NULL; 4654 } 4655 4656 err = 0; 4657 mutex_lock(&task->perf_event_mutex); 4658 /* 4659 * If it has already passed perf_event_exit_task(). 4660 * we must see PF_EXITING, it takes this mutex too. 4661 */ 4662 if (task->flags & PF_EXITING) 4663 err = -ESRCH; 4664 else if (task->perf_event_ctxp[ctxn]) 4665 err = -EAGAIN; 4666 else { 4667 get_ctx(ctx); 4668 ++ctx->pin_count; 4669 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4670 } 4671 mutex_unlock(&task->perf_event_mutex); 4672 4673 if (unlikely(err)) { 4674 put_ctx(ctx); 4675 4676 if (err == -EAGAIN) 4677 goto retry; 4678 goto errout; 4679 } 4680 } 4681 4682 free_task_ctx_data(pmu, task_ctx_data); 4683 return ctx; 4684 4685 errout: 4686 free_task_ctx_data(pmu, task_ctx_data); 4687 return ERR_PTR(err); 4688 } 4689 4690 static void perf_event_free_filter(struct perf_event *event); 4691 static void perf_event_free_bpf_prog(struct perf_event *event); 4692 4693 static void free_event_rcu(struct rcu_head *head) 4694 { 4695 struct perf_event *event; 4696 4697 event = container_of(head, struct perf_event, rcu_head); 4698 if (event->ns) 4699 put_pid_ns(event->ns); 4700 perf_event_free_filter(event); 4701 kmem_cache_free(perf_event_cache, event); 4702 } 4703 4704 static void ring_buffer_attach(struct perf_event *event, 4705 struct perf_buffer *rb); 4706 4707 static void detach_sb_event(struct perf_event *event) 4708 { 4709 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4710 4711 raw_spin_lock(&pel->lock); 4712 list_del_rcu(&event->sb_list); 4713 raw_spin_unlock(&pel->lock); 4714 } 4715 4716 static bool is_sb_event(struct perf_event *event) 4717 { 4718 struct perf_event_attr *attr = &event->attr; 4719 4720 if (event->parent) 4721 return false; 4722 4723 if (event->attach_state & PERF_ATTACH_TASK) 4724 return false; 4725 4726 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4727 attr->comm || attr->comm_exec || 4728 attr->task || attr->ksymbol || 4729 attr->context_switch || attr->text_poke || 4730 attr->bpf_event) 4731 return true; 4732 return false; 4733 } 4734 4735 static void unaccount_pmu_sb_event(struct perf_event *event) 4736 { 4737 if (is_sb_event(event)) 4738 detach_sb_event(event); 4739 } 4740 4741 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4742 { 4743 if (event->parent) 4744 return; 4745 4746 if (is_cgroup_event(event)) 4747 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4748 } 4749 4750 #ifdef CONFIG_NO_HZ_FULL 4751 static DEFINE_SPINLOCK(nr_freq_lock); 4752 #endif 4753 4754 static void unaccount_freq_event_nohz(void) 4755 { 4756 #ifdef CONFIG_NO_HZ_FULL 4757 spin_lock(&nr_freq_lock); 4758 if (atomic_dec_and_test(&nr_freq_events)) 4759 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4760 spin_unlock(&nr_freq_lock); 4761 #endif 4762 } 4763 4764 static void unaccount_freq_event(void) 4765 { 4766 if (tick_nohz_full_enabled()) 4767 unaccount_freq_event_nohz(); 4768 else 4769 atomic_dec(&nr_freq_events); 4770 } 4771 4772 static void unaccount_event(struct perf_event *event) 4773 { 4774 bool dec = false; 4775 4776 if (event->parent) 4777 return; 4778 4779 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4780 dec = true; 4781 if (event->attr.mmap || event->attr.mmap_data) 4782 atomic_dec(&nr_mmap_events); 4783 if (event->attr.build_id) 4784 atomic_dec(&nr_build_id_events); 4785 if (event->attr.comm) 4786 atomic_dec(&nr_comm_events); 4787 if (event->attr.namespaces) 4788 atomic_dec(&nr_namespaces_events); 4789 if (event->attr.cgroup) 4790 atomic_dec(&nr_cgroup_events); 4791 if (event->attr.task) 4792 atomic_dec(&nr_task_events); 4793 if (event->attr.freq) 4794 unaccount_freq_event(); 4795 if (event->attr.context_switch) { 4796 dec = true; 4797 atomic_dec(&nr_switch_events); 4798 } 4799 if (is_cgroup_event(event)) 4800 dec = true; 4801 if (has_branch_stack(event)) 4802 dec = true; 4803 if (event->attr.ksymbol) 4804 atomic_dec(&nr_ksymbol_events); 4805 if (event->attr.bpf_event) 4806 atomic_dec(&nr_bpf_events); 4807 if (event->attr.text_poke) 4808 atomic_dec(&nr_text_poke_events); 4809 4810 if (dec) { 4811 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4812 schedule_delayed_work(&perf_sched_work, HZ); 4813 } 4814 4815 unaccount_event_cpu(event, event->cpu); 4816 4817 unaccount_pmu_sb_event(event); 4818 } 4819 4820 static void perf_sched_delayed(struct work_struct *work) 4821 { 4822 mutex_lock(&perf_sched_mutex); 4823 if (atomic_dec_and_test(&perf_sched_count)) 4824 static_branch_disable(&perf_sched_events); 4825 mutex_unlock(&perf_sched_mutex); 4826 } 4827 4828 /* 4829 * The following implement mutual exclusion of events on "exclusive" pmus 4830 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4831 * at a time, so we disallow creating events that might conflict, namely: 4832 * 4833 * 1) cpu-wide events in the presence of per-task events, 4834 * 2) per-task events in the presence of cpu-wide events, 4835 * 3) two matching events on the same context. 4836 * 4837 * The former two cases are handled in the allocation path (perf_event_alloc(), 4838 * _free_event()), the latter -- before the first perf_install_in_context(). 4839 */ 4840 static int exclusive_event_init(struct perf_event *event) 4841 { 4842 struct pmu *pmu = event->pmu; 4843 4844 if (!is_exclusive_pmu(pmu)) 4845 return 0; 4846 4847 /* 4848 * Prevent co-existence of per-task and cpu-wide events on the 4849 * same exclusive pmu. 4850 * 4851 * Negative pmu::exclusive_cnt means there are cpu-wide 4852 * events on this "exclusive" pmu, positive means there are 4853 * per-task events. 4854 * 4855 * Since this is called in perf_event_alloc() path, event::ctx 4856 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4857 * to mean "per-task event", because unlike other attach states it 4858 * never gets cleared. 4859 */ 4860 if (event->attach_state & PERF_ATTACH_TASK) { 4861 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4862 return -EBUSY; 4863 } else { 4864 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4865 return -EBUSY; 4866 } 4867 4868 return 0; 4869 } 4870 4871 static void exclusive_event_destroy(struct perf_event *event) 4872 { 4873 struct pmu *pmu = event->pmu; 4874 4875 if (!is_exclusive_pmu(pmu)) 4876 return; 4877 4878 /* see comment in exclusive_event_init() */ 4879 if (event->attach_state & PERF_ATTACH_TASK) 4880 atomic_dec(&pmu->exclusive_cnt); 4881 else 4882 atomic_inc(&pmu->exclusive_cnt); 4883 } 4884 4885 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4886 { 4887 if ((e1->pmu == e2->pmu) && 4888 (e1->cpu == e2->cpu || 4889 e1->cpu == -1 || 4890 e2->cpu == -1)) 4891 return true; 4892 return false; 4893 } 4894 4895 static bool exclusive_event_installable(struct perf_event *event, 4896 struct perf_event_context *ctx) 4897 { 4898 struct perf_event *iter_event; 4899 struct pmu *pmu = event->pmu; 4900 4901 lockdep_assert_held(&ctx->mutex); 4902 4903 if (!is_exclusive_pmu(pmu)) 4904 return true; 4905 4906 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4907 if (exclusive_event_match(iter_event, event)) 4908 return false; 4909 } 4910 4911 return true; 4912 } 4913 4914 static void perf_addr_filters_splice(struct perf_event *event, 4915 struct list_head *head); 4916 4917 static void _free_event(struct perf_event *event) 4918 { 4919 irq_work_sync(&event->pending); 4920 4921 unaccount_event(event); 4922 4923 security_perf_event_free(event); 4924 4925 if (event->rb) { 4926 /* 4927 * Can happen when we close an event with re-directed output. 4928 * 4929 * Since we have a 0 refcount, perf_mmap_close() will skip 4930 * over us; possibly making our ring_buffer_put() the last. 4931 */ 4932 mutex_lock(&event->mmap_mutex); 4933 ring_buffer_attach(event, NULL); 4934 mutex_unlock(&event->mmap_mutex); 4935 } 4936 4937 if (is_cgroup_event(event)) 4938 perf_detach_cgroup(event); 4939 4940 if (!event->parent) { 4941 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4942 put_callchain_buffers(); 4943 } 4944 4945 perf_event_free_bpf_prog(event); 4946 perf_addr_filters_splice(event, NULL); 4947 kfree(event->addr_filter_ranges); 4948 4949 if (event->destroy) 4950 event->destroy(event); 4951 4952 /* 4953 * Must be after ->destroy(), due to uprobe_perf_close() using 4954 * hw.target. 4955 */ 4956 if (event->hw.target) 4957 put_task_struct(event->hw.target); 4958 4959 /* 4960 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4961 * all task references must be cleaned up. 4962 */ 4963 if (event->ctx) 4964 put_ctx(event->ctx); 4965 4966 exclusive_event_destroy(event); 4967 module_put(event->pmu->module); 4968 4969 call_rcu(&event->rcu_head, free_event_rcu); 4970 } 4971 4972 /* 4973 * Used to free events which have a known refcount of 1, such as in error paths 4974 * where the event isn't exposed yet and inherited events. 4975 */ 4976 static void free_event(struct perf_event *event) 4977 { 4978 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4979 "unexpected event refcount: %ld; ptr=%p\n", 4980 atomic_long_read(&event->refcount), event)) { 4981 /* leak to avoid use-after-free */ 4982 return; 4983 } 4984 4985 _free_event(event); 4986 } 4987 4988 /* 4989 * Remove user event from the owner task. 4990 */ 4991 static void perf_remove_from_owner(struct perf_event *event) 4992 { 4993 struct task_struct *owner; 4994 4995 rcu_read_lock(); 4996 /* 4997 * Matches the smp_store_release() in perf_event_exit_task(). If we 4998 * observe !owner it means the list deletion is complete and we can 4999 * indeed free this event, otherwise we need to serialize on 5000 * owner->perf_event_mutex. 5001 */ 5002 owner = READ_ONCE(event->owner); 5003 if (owner) { 5004 /* 5005 * Since delayed_put_task_struct() also drops the last 5006 * task reference we can safely take a new reference 5007 * while holding the rcu_read_lock(). 5008 */ 5009 get_task_struct(owner); 5010 } 5011 rcu_read_unlock(); 5012 5013 if (owner) { 5014 /* 5015 * If we're here through perf_event_exit_task() we're already 5016 * holding ctx->mutex which would be an inversion wrt. the 5017 * normal lock order. 5018 * 5019 * However we can safely take this lock because its the child 5020 * ctx->mutex. 5021 */ 5022 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5023 5024 /* 5025 * We have to re-check the event->owner field, if it is cleared 5026 * we raced with perf_event_exit_task(), acquiring the mutex 5027 * ensured they're done, and we can proceed with freeing the 5028 * event. 5029 */ 5030 if (event->owner) { 5031 list_del_init(&event->owner_entry); 5032 smp_store_release(&event->owner, NULL); 5033 } 5034 mutex_unlock(&owner->perf_event_mutex); 5035 put_task_struct(owner); 5036 } 5037 } 5038 5039 static void put_event(struct perf_event *event) 5040 { 5041 if (!atomic_long_dec_and_test(&event->refcount)) 5042 return; 5043 5044 _free_event(event); 5045 } 5046 5047 /* 5048 * Kill an event dead; while event:refcount will preserve the event 5049 * object, it will not preserve its functionality. Once the last 'user' 5050 * gives up the object, we'll destroy the thing. 5051 */ 5052 int perf_event_release_kernel(struct perf_event *event) 5053 { 5054 struct perf_event_context *ctx = event->ctx; 5055 struct perf_event *child, *tmp; 5056 LIST_HEAD(free_list); 5057 5058 /* 5059 * If we got here through err_file: fput(event_file); we will not have 5060 * attached to a context yet. 5061 */ 5062 if (!ctx) { 5063 WARN_ON_ONCE(event->attach_state & 5064 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5065 goto no_ctx; 5066 } 5067 5068 if (!is_kernel_event(event)) 5069 perf_remove_from_owner(event); 5070 5071 ctx = perf_event_ctx_lock(event); 5072 WARN_ON_ONCE(ctx->parent_ctx); 5073 perf_remove_from_context(event, DETACH_GROUP); 5074 5075 raw_spin_lock_irq(&ctx->lock); 5076 /* 5077 * Mark this event as STATE_DEAD, there is no external reference to it 5078 * anymore. 5079 * 5080 * Anybody acquiring event->child_mutex after the below loop _must_ 5081 * also see this, most importantly inherit_event() which will avoid 5082 * placing more children on the list. 5083 * 5084 * Thus this guarantees that we will in fact observe and kill _ALL_ 5085 * child events. 5086 */ 5087 event->state = PERF_EVENT_STATE_DEAD; 5088 raw_spin_unlock_irq(&ctx->lock); 5089 5090 perf_event_ctx_unlock(event, ctx); 5091 5092 again: 5093 mutex_lock(&event->child_mutex); 5094 list_for_each_entry(child, &event->child_list, child_list) { 5095 5096 /* 5097 * Cannot change, child events are not migrated, see the 5098 * comment with perf_event_ctx_lock_nested(). 5099 */ 5100 ctx = READ_ONCE(child->ctx); 5101 /* 5102 * Since child_mutex nests inside ctx::mutex, we must jump 5103 * through hoops. We start by grabbing a reference on the ctx. 5104 * 5105 * Since the event cannot get freed while we hold the 5106 * child_mutex, the context must also exist and have a !0 5107 * reference count. 5108 */ 5109 get_ctx(ctx); 5110 5111 /* 5112 * Now that we have a ctx ref, we can drop child_mutex, and 5113 * acquire ctx::mutex without fear of it going away. Then we 5114 * can re-acquire child_mutex. 5115 */ 5116 mutex_unlock(&event->child_mutex); 5117 mutex_lock(&ctx->mutex); 5118 mutex_lock(&event->child_mutex); 5119 5120 /* 5121 * Now that we hold ctx::mutex and child_mutex, revalidate our 5122 * state, if child is still the first entry, it didn't get freed 5123 * and we can continue doing so. 5124 */ 5125 tmp = list_first_entry_or_null(&event->child_list, 5126 struct perf_event, child_list); 5127 if (tmp == child) { 5128 perf_remove_from_context(child, DETACH_GROUP); 5129 list_move(&child->child_list, &free_list); 5130 /* 5131 * This matches the refcount bump in inherit_event(); 5132 * this can't be the last reference. 5133 */ 5134 put_event(event); 5135 } 5136 5137 mutex_unlock(&event->child_mutex); 5138 mutex_unlock(&ctx->mutex); 5139 put_ctx(ctx); 5140 goto again; 5141 } 5142 mutex_unlock(&event->child_mutex); 5143 5144 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5145 void *var = &child->ctx->refcount; 5146 5147 list_del(&child->child_list); 5148 free_event(child); 5149 5150 /* 5151 * Wake any perf_event_free_task() waiting for this event to be 5152 * freed. 5153 */ 5154 smp_mb(); /* pairs with wait_var_event() */ 5155 wake_up_var(var); 5156 } 5157 5158 no_ctx: 5159 put_event(event); /* Must be the 'last' reference */ 5160 return 0; 5161 } 5162 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5163 5164 /* 5165 * Called when the last reference to the file is gone. 5166 */ 5167 static int perf_release(struct inode *inode, struct file *file) 5168 { 5169 perf_event_release_kernel(file->private_data); 5170 return 0; 5171 } 5172 5173 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5174 { 5175 struct perf_event *child; 5176 u64 total = 0; 5177 5178 *enabled = 0; 5179 *running = 0; 5180 5181 mutex_lock(&event->child_mutex); 5182 5183 (void)perf_event_read(event, false); 5184 total += perf_event_count(event); 5185 5186 *enabled += event->total_time_enabled + 5187 atomic64_read(&event->child_total_time_enabled); 5188 *running += event->total_time_running + 5189 atomic64_read(&event->child_total_time_running); 5190 5191 list_for_each_entry(child, &event->child_list, child_list) { 5192 (void)perf_event_read(child, false); 5193 total += perf_event_count(child); 5194 *enabled += child->total_time_enabled; 5195 *running += child->total_time_running; 5196 } 5197 mutex_unlock(&event->child_mutex); 5198 5199 return total; 5200 } 5201 5202 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5203 { 5204 struct perf_event_context *ctx; 5205 u64 count; 5206 5207 ctx = perf_event_ctx_lock(event); 5208 count = __perf_event_read_value(event, enabled, running); 5209 perf_event_ctx_unlock(event, ctx); 5210 5211 return count; 5212 } 5213 EXPORT_SYMBOL_GPL(perf_event_read_value); 5214 5215 static int __perf_read_group_add(struct perf_event *leader, 5216 u64 read_format, u64 *values) 5217 { 5218 struct perf_event_context *ctx = leader->ctx; 5219 struct perf_event *sub; 5220 unsigned long flags; 5221 int n = 1; /* skip @nr */ 5222 int ret; 5223 5224 ret = perf_event_read(leader, true); 5225 if (ret) 5226 return ret; 5227 5228 raw_spin_lock_irqsave(&ctx->lock, flags); 5229 5230 /* 5231 * Since we co-schedule groups, {enabled,running} times of siblings 5232 * will be identical to those of the leader, so we only publish one 5233 * set. 5234 */ 5235 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5236 values[n++] += leader->total_time_enabled + 5237 atomic64_read(&leader->child_total_time_enabled); 5238 } 5239 5240 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5241 values[n++] += leader->total_time_running + 5242 atomic64_read(&leader->child_total_time_running); 5243 } 5244 5245 /* 5246 * Write {count,id} tuples for every sibling. 5247 */ 5248 values[n++] += perf_event_count(leader); 5249 if (read_format & PERF_FORMAT_ID) 5250 values[n++] = primary_event_id(leader); 5251 5252 for_each_sibling_event(sub, leader) { 5253 values[n++] += perf_event_count(sub); 5254 if (read_format & PERF_FORMAT_ID) 5255 values[n++] = primary_event_id(sub); 5256 } 5257 5258 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5259 return 0; 5260 } 5261 5262 static int perf_read_group(struct perf_event *event, 5263 u64 read_format, char __user *buf) 5264 { 5265 struct perf_event *leader = event->group_leader, *child; 5266 struct perf_event_context *ctx = leader->ctx; 5267 int ret; 5268 u64 *values; 5269 5270 lockdep_assert_held(&ctx->mutex); 5271 5272 values = kzalloc(event->read_size, GFP_KERNEL); 5273 if (!values) 5274 return -ENOMEM; 5275 5276 values[0] = 1 + leader->nr_siblings; 5277 5278 /* 5279 * By locking the child_mutex of the leader we effectively 5280 * lock the child list of all siblings.. XXX explain how. 5281 */ 5282 mutex_lock(&leader->child_mutex); 5283 5284 ret = __perf_read_group_add(leader, read_format, values); 5285 if (ret) 5286 goto unlock; 5287 5288 list_for_each_entry(child, &leader->child_list, child_list) { 5289 ret = __perf_read_group_add(child, read_format, values); 5290 if (ret) 5291 goto unlock; 5292 } 5293 5294 mutex_unlock(&leader->child_mutex); 5295 5296 ret = event->read_size; 5297 if (copy_to_user(buf, values, event->read_size)) 5298 ret = -EFAULT; 5299 goto out; 5300 5301 unlock: 5302 mutex_unlock(&leader->child_mutex); 5303 out: 5304 kfree(values); 5305 return ret; 5306 } 5307 5308 static int perf_read_one(struct perf_event *event, 5309 u64 read_format, char __user *buf) 5310 { 5311 u64 enabled, running; 5312 u64 values[4]; 5313 int n = 0; 5314 5315 values[n++] = __perf_event_read_value(event, &enabled, &running); 5316 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5317 values[n++] = enabled; 5318 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5319 values[n++] = running; 5320 if (read_format & PERF_FORMAT_ID) 5321 values[n++] = primary_event_id(event); 5322 5323 if (copy_to_user(buf, values, n * sizeof(u64))) 5324 return -EFAULT; 5325 5326 return n * sizeof(u64); 5327 } 5328 5329 static bool is_event_hup(struct perf_event *event) 5330 { 5331 bool no_children; 5332 5333 if (event->state > PERF_EVENT_STATE_EXIT) 5334 return false; 5335 5336 mutex_lock(&event->child_mutex); 5337 no_children = list_empty(&event->child_list); 5338 mutex_unlock(&event->child_mutex); 5339 return no_children; 5340 } 5341 5342 /* 5343 * Read the performance event - simple non blocking version for now 5344 */ 5345 static ssize_t 5346 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5347 { 5348 u64 read_format = event->attr.read_format; 5349 int ret; 5350 5351 /* 5352 * Return end-of-file for a read on an event that is in 5353 * error state (i.e. because it was pinned but it couldn't be 5354 * scheduled on to the CPU at some point). 5355 */ 5356 if (event->state == PERF_EVENT_STATE_ERROR) 5357 return 0; 5358 5359 if (count < event->read_size) 5360 return -ENOSPC; 5361 5362 WARN_ON_ONCE(event->ctx->parent_ctx); 5363 if (read_format & PERF_FORMAT_GROUP) 5364 ret = perf_read_group(event, read_format, buf); 5365 else 5366 ret = perf_read_one(event, read_format, buf); 5367 5368 return ret; 5369 } 5370 5371 static ssize_t 5372 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5373 { 5374 struct perf_event *event = file->private_data; 5375 struct perf_event_context *ctx; 5376 int ret; 5377 5378 ret = security_perf_event_read(event); 5379 if (ret) 5380 return ret; 5381 5382 ctx = perf_event_ctx_lock(event); 5383 ret = __perf_read(event, buf, count); 5384 perf_event_ctx_unlock(event, ctx); 5385 5386 return ret; 5387 } 5388 5389 static __poll_t perf_poll(struct file *file, poll_table *wait) 5390 { 5391 struct perf_event *event = file->private_data; 5392 struct perf_buffer *rb; 5393 __poll_t events = EPOLLHUP; 5394 5395 poll_wait(file, &event->waitq, wait); 5396 5397 if (is_event_hup(event)) 5398 return events; 5399 5400 /* 5401 * Pin the event->rb by taking event->mmap_mutex; otherwise 5402 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5403 */ 5404 mutex_lock(&event->mmap_mutex); 5405 rb = event->rb; 5406 if (rb) 5407 events = atomic_xchg(&rb->poll, 0); 5408 mutex_unlock(&event->mmap_mutex); 5409 return events; 5410 } 5411 5412 static void _perf_event_reset(struct perf_event *event) 5413 { 5414 (void)perf_event_read(event, false); 5415 local64_set(&event->count, 0); 5416 perf_event_update_userpage(event); 5417 } 5418 5419 /* Assume it's not an event with inherit set. */ 5420 u64 perf_event_pause(struct perf_event *event, bool reset) 5421 { 5422 struct perf_event_context *ctx; 5423 u64 count; 5424 5425 ctx = perf_event_ctx_lock(event); 5426 WARN_ON_ONCE(event->attr.inherit); 5427 _perf_event_disable(event); 5428 count = local64_read(&event->count); 5429 if (reset) 5430 local64_set(&event->count, 0); 5431 perf_event_ctx_unlock(event, ctx); 5432 5433 return count; 5434 } 5435 EXPORT_SYMBOL_GPL(perf_event_pause); 5436 5437 /* 5438 * Holding the top-level event's child_mutex means that any 5439 * descendant process that has inherited this event will block 5440 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5441 * task existence requirements of perf_event_enable/disable. 5442 */ 5443 static void perf_event_for_each_child(struct perf_event *event, 5444 void (*func)(struct perf_event *)) 5445 { 5446 struct perf_event *child; 5447 5448 WARN_ON_ONCE(event->ctx->parent_ctx); 5449 5450 mutex_lock(&event->child_mutex); 5451 func(event); 5452 list_for_each_entry(child, &event->child_list, child_list) 5453 func(child); 5454 mutex_unlock(&event->child_mutex); 5455 } 5456 5457 static void perf_event_for_each(struct perf_event *event, 5458 void (*func)(struct perf_event *)) 5459 { 5460 struct perf_event_context *ctx = event->ctx; 5461 struct perf_event *sibling; 5462 5463 lockdep_assert_held(&ctx->mutex); 5464 5465 event = event->group_leader; 5466 5467 perf_event_for_each_child(event, func); 5468 for_each_sibling_event(sibling, event) 5469 perf_event_for_each_child(sibling, func); 5470 } 5471 5472 static void __perf_event_period(struct perf_event *event, 5473 struct perf_cpu_context *cpuctx, 5474 struct perf_event_context *ctx, 5475 void *info) 5476 { 5477 u64 value = *((u64 *)info); 5478 bool active; 5479 5480 if (event->attr.freq) { 5481 event->attr.sample_freq = value; 5482 } else { 5483 event->attr.sample_period = value; 5484 event->hw.sample_period = value; 5485 } 5486 5487 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5488 if (active) { 5489 perf_pmu_disable(ctx->pmu); 5490 /* 5491 * We could be throttled; unthrottle now to avoid the tick 5492 * trying to unthrottle while we already re-started the event. 5493 */ 5494 if (event->hw.interrupts == MAX_INTERRUPTS) { 5495 event->hw.interrupts = 0; 5496 perf_log_throttle(event, 1); 5497 } 5498 event->pmu->stop(event, PERF_EF_UPDATE); 5499 } 5500 5501 local64_set(&event->hw.period_left, 0); 5502 5503 if (active) { 5504 event->pmu->start(event, PERF_EF_RELOAD); 5505 perf_pmu_enable(ctx->pmu); 5506 } 5507 } 5508 5509 static int perf_event_check_period(struct perf_event *event, u64 value) 5510 { 5511 return event->pmu->check_period(event, value); 5512 } 5513 5514 static int _perf_event_period(struct perf_event *event, u64 value) 5515 { 5516 if (!is_sampling_event(event)) 5517 return -EINVAL; 5518 5519 if (!value) 5520 return -EINVAL; 5521 5522 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5523 return -EINVAL; 5524 5525 if (perf_event_check_period(event, value)) 5526 return -EINVAL; 5527 5528 if (!event->attr.freq && (value & (1ULL << 63))) 5529 return -EINVAL; 5530 5531 event_function_call(event, __perf_event_period, &value); 5532 5533 return 0; 5534 } 5535 5536 int perf_event_period(struct perf_event *event, u64 value) 5537 { 5538 struct perf_event_context *ctx; 5539 int ret; 5540 5541 ctx = perf_event_ctx_lock(event); 5542 ret = _perf_event_period(event, value); 5543 perf_event_ctx_unlock(event, ctx); 5544 5545 return ret; 5546 } 5547 EXPORT_SYMBOL_GPL(perf_event_period); 5548 5549 static const struct file_operations perf_fops; 5550 5551 static inline int perf_fget_light(int fd, struct fd *p) 5552 { 5553 struct fd f = fdget(fd); 5554 if (!f.file) 5555 return -EBADF; 5556 5557 if (f.file->f_op != &perf_fops) { 5558 fdput(f); 5559 return -EBADF; 5560 } 5561 *p = f; 5562 return 0; 5563 } 5564 5565 static int perf_event_set_output(struct perf_event *event, 5566 struct perf_event *output_event); 5567 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5568 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5569 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5570 struct perf_event_attr *attr); 5571 5572 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5573 { 5574 void (*func)(struct perf_event *); 5575 u32 flags = arg; 5576 5577 switch (cmd) { 5578 case PERF_EVENT_IOC_ENABLE: 5579 func = _perf_event_enable; 5580 break; 5581 case PERF_EVENT_IOC_DISABLE: 5582 func = _perf_event_disable; 5583 break; 5584 case PERF_EVENT_IOC_RESET: 5585 func = _perf_event_reset; 5586 break; 5587 5588 case PERF_EVENT_IOC_REFRESH: 5589 return _perf_event_refresh(event, arg); 5590 5591 case PERF_EVENT_IOC_PERIOD: 5592 { 5593 u64 value; 5594 5595 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5596 return -EFAULT; 5597 5598 return _perf_event_period(event, value); 5599 } 5600 case PERF_EVENT_IOC_ID: 5601 { 5602 u64 id = primary_event_id(event); 5603 5604 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5605 return -EFAULT; 5606 return 0; 5607 } 5608 5609 case PERF_EVENT_IOC_SET_OUTPUT: 5610 { 5611 int ret; 5612 if (arg != -1) { 5613 struct perf_event *output_event; 5614 struct fd output; 5615 ret = perf_fget_light(arg, &output); 5616 if (ret) 5617 return ret; 5618 output_event = output.file->private_data; 5619 ret = perf_event_set_output(event, output_event); 5620 fdput(output); 5621 } else { 5622 ret = perf_event_set_output(event, NULL); 5623 } 5624 return ret; 5625 } 5626 5627 case PERF_EVENT_IOC_SET_FILTER: 5628 return perf_event_set_filter(event, (void __user *)arg); 5629 5630 case PERF_EVENT_IOC_SET_BPF: 5631 return perf_event_set_bpf_prog(event, arg); 5632 5633 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5634 struct perf_buffer *rb; 5635 5636 rcu_read_lock(); 5637 rb = rcu_dereference(event->rb); 5638 if (!rb || !rb->nr_pages) { 5639 rcu_read_unlock(); 5640 return -EINVAL; 5641 } 5642 rb_toggle_paused(rb, !!arg); 5643 rcu_read_unlock(); 5644 return 0; 5645 } 5646 5647 case PERF_EVENT_IOC_QUERY_BPF: 5648 return perf_event_query_prog_array(event, (void __user *)arg); 5649 5650 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5651 struct perf_event_attr new_attr; 5652 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5653 &new_attr); 5654 5655 if (err) 5656 return err; 5657 5658 return perf_event_modify_attr(event, &new_attr); 5659 } 5660 default: 5661 return -ENOTTY; 5662 } 5663 5664 if (flags & PERF_IOC_FLAG_GROUP) 5665 perf_event_for_each(event, func); 5666 else 5667 perf_event_for_each_child(event, func); 5668 5669 return 0; 5670 } 5671 5672 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5673 { 5674 struct perf_event *event = file->private_data; 5675 struct perf_event_context *ctx; 5676 long ret; 5677 5678 /* Treat ioctl like writes as it is likely a mutating operation. */ 5679 ret = security_perf_event_write(event); 5680 if (ret) 5681 return ret; 5682 5683 ctx = perf_event_ctx_lock(event); 5684 ret = _perf_ioctl(event, cmd, arg); 5685 perf_event_ctx_unlock(event, ctx); 5686 5687 return ret; 5688 } 5689 5690 #ifdef CONFIG_COMPAT 5691 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5692 unsigned long arg) 5693 { 5694 switch (_IOC_NR(cmd)) { 5695 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5696 case _IOC_NR(PERF_EVENT_IOC_ID): 5697 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5698 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5699 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5700 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5701 cmd &= ~IOCSIZE_MASK; 5702 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5703 } 5704 break; 5705 } 5706 return perf_ioctl(file, cmd, arg); 5707 } 5708 #else 5709 # define perf_compat_ioctl NULL 5710 #endif 5711 5712 int perf_event_task_enable(void) 5713 { 5714 struct perf_event_context *ctx; 5715 struct perf_event *event; 5716 5717 mutex_lock(¤t->perf_event_mutex); 5718 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5719 ctx = perf_event_ctx_lock(event); 5720 perf_event_for_each_child(event, _perf_event_enable); 5721 perf_event_ctx_unlock(event, ctx); 5722 } 5723 mutex_unlock(¤t->perf_event_mutex); 5724 5725 return 0; 5726 } 5727 5728 int perf_event_task_disable(void) 5729 { 5730 struct perf_event_context *ctx; 5731 struct perf_event *event; 5732 5733 mutex_lock(¤t->perf_event_mutex); 5734 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5735 ctx = perf_event_ctx_lock(event); 5736 perf_event_for_each_child(event, _perf_event_disable); 5737 perf_event_ctx_unlock(event, ctx); 5738 } 5739 mutex_unlock(¤t->perf_event_mutex); 5740 5741 return 0; 5742 } 5743 5744 static int perf_event_index(struct perf_event *event) 5745 { 5746 if (event->hw.state & PERF_HES_STOPPED) 5747 return 0; 5748 5749 if (event->state != PERF_EVENT_STATE_ACTIVE) 5750 return 0; 5751 5752 return event->pmu->event_idx(event); 5753 } 5754 5755 static void calc_timer_values(struct perf_event *event, 5756 u64 *now, 5757 u64 *enabled, 5758 u64 *running) 5759 { 5760 u64 ctx_time; 5761 5762 *now = perf_clock(); 5763 ctx_time = event->shadow_ctx_time + *now; 5764 __perf_update_times(event, ctx_time, enabled, running); 5765 } 5766 5767 static void perf_event_init_userpage(struct perf_event *event) 5768 { 5769 struct perf_event_mmap_page *userpg; 5770 struct perf_buffer *rb; 5771 5772 rcu_read_lock(); 5773 rb = rcu_dereference(event->rb); 5774 if (!rb) 5775 goto unlock; 5776 5777 userpg = rb->user_page; 5778 5779 /* Allow new userspace to detect that bit 0 is deprecated */ 5780 userpg->cap_bit0_is_deprecated = 1; 5781 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5782 userpg->data_offset = PAGE_SIZE; 5783 userpg->data_size = perf_data_size(rb); 5784 5785 unlock: 5786 rcu_read_unlock(); 5787 } 5788 5789 void __weak arch_perf_update_userpage( 5790 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5791 { 5792 } 5793 5794 /* 5795 * Callers need to ensure there can be no nesting of this function, otherwise 5796 * the seqlock logic goes bad. We can not serialize this because the arch 5797 * code calls this from NMI context. 5798 */ 5799 void perf_event_update_userpage(struct perf_event *event) 5800 { 5801 struct perf_event_mmap_page *userpg; 5802 struct perf_buffer *rb; 5803 u64 enabled, running, now; 5804 5805 rcu_read_lock(); 5806 rb = rcu_dereference(event->rb); 5807 if (!rb) 5808 goto unlock; 5809 5810 /* 5811 * compute total_time_enabled, total_time_running 5812 * based on snapshot values taken when the event 5813 * was last scheduled in. 5814 * 5815 * we cannot simply called update_context_time() 5816 * because of locking issue as we can be called in 5817 * NMI context 5818 */ 5819 calc_timer_values(event, &now, &enabled, &running); 5820 5821 userpg = rb->user_page; 5822 /* 5823 * Disable preemption to guarantee consistent time stamps are stored to 5824 * the user page. 5825 */ 5826 preempt_disable(); 5827 ++userpg->lock; 5828 barrier(); 5829 userpg->index = perf_event_index(event); 5830 userpg->offset = perf_event_count(event); 5831 if (userpg->index) 5832 userpg->offset -= local64_read(&event->hw.prev_count); 5833 5834 userpg->time_enabled = enabled + 5835 atomic64_read(&event->child_total_time_enabled); 5836 5837 userpg->time_running = running + 5838 atomic64_read(&event->child_total_time_running); 5839 5840 arch_perf_update_userpage(event, userpg, now); 5841 5842 barrier(); 5843 ++userpg->lock; 5844 preempt_enable(); 5845 unlock: 5846 rcu_read_unlock(); 5847 } 5848 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5849 5850 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5851 { 5852 struct perf_event *event = vmf->vma->vm_file->private_data; 5853 struct perf_buffer *rb; 5854 vm_fault_t ret = VM_FAULT_SIGBUS; 5855 5856 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5857 if (vmf->pgoff == 0) 5858 ret = 0; 5859 return ret; 5860 } 5861 5862 rcu_read_lock(); 5863 rb = rcu_dereference(event->rb); 5864 if (!rb) 5865 goto unlock; 5866 5867 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5868 goto unlock; 5869 5870 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5871 if (!vmf->page) 5872 goto unlock; 5873 5874 get_page(vmf->page); 5875 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5876 vmf->page->index = vmf->pgoff; 5877 5878 ret = 0; 5879 unlock: 5880 rcu_read_unlock(); 5881 5882 return ret; 5883 } 5884 5885 static void ring_buffer_attach(struct perf_event *event, 5886 struct perf_buffer *rb) 5887 { 5888 struct perf_buffer *old_rb = NULL; 5889 unsigned long flags; 5890 5891 if (event->rb) { 5892 /* 5893 * Should be impossible, we set this when removing 5894 * event->rb_entry and wait/clear when adding event->rb_entry. 5895 */ 5896 WARN_ON_ONCE(event->rcu_pending); 5897 5898 old_rb = event->rb; 5899 spin_lock_irqsave(&old_rb->event_lock, flags); 5900 list_del_rcu(&event->rb_entry); 5901 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5902 5903 event->rcu_batches = get_state_synchronize_rcu(); 5904 event->rcu_pending = 1; 5905 } 5906 5907 if (rb) { 5908 if (event->rcu_pending) { 5909 cond_synchronize_rcu(event->rcu_batches); 5910 event->rcu_pending = 0; 5911 } 5912 5913 spin_lock_irqsave(&rb->event_lock, flags); 5914 list_add_rcu(&event->rb_entry, &rb->event_list); 5915 spin_unlock_irqrestore(&rb->event_lock, flags); 5916 } 5917 5918 /* 5919 * Avoid racing with perf_mmap_close(AUX): stop the event 5920 * before swizzling the event::rb pointer; if it's getting 5921 * unmapped, its aux_mmap_count will be 0 and it won't 5922 * restart. See the comment in __perf_pmu_output_stop(). 5923 * 5924 * Data will inevitably be lost when set_output is done in 5925 * mid-air, but then again, whoever does it like this is 5926 * not in for the data anyway. 5927 */ 5928 if (has_aux(event)) 5929 perf_event_stop(event, 0); 5930 5931 rcu_assign_pointer(event->rb, rb); 5932 5933 if (old_rb) { 5934 ring_buffer_put(old_rb); 5935 /* 5936 * Since we detached before setting the new rb, so that we 5937 * could attach the new rb, we could have missed a wakeup. 5938 * Provide it now. 5939 */ 5940 wake_up_all(&event->waitq); 5941 } 5942 } 5943 5944 static void ring_buffer_wakeup(struct perf_event *event) 5945 { 5946 struct perf_buffer *rb; 5947 5948 rcu_read_lock(); 5949 rb = rcu_dereference(event->rb); 5950 if (rb) { 5951 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5952 wake_up_all(&event->waitq); 5953 } 5954 rcu_read_unlock(); 5955 } 5956 5957 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5958 { 5959 struct perf_buffer *rb; 5960 5961 rcu_read_lock(); 5962 rb = rcu_dereference(event->rb); 5963 if (rb) { 5964 if (!refcount_inc_not_zero(&rb->refcount)) 5965 rb = NULL; 5966 } 5967 rcu_read_unlock(); 5968 5969 return rb; 5970 } 5971 5972 void ring_buffer_put(struct perf_buffer *rb) 5973 { 5974 if (!refcount_dec_and_test(&rb->refcount)) 5975 return; 5976 5977 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5978 5979 call_rcu(&rb->rcu_head, rb_free_rcu); 5980 } 5981 5982 static void perf_mmap_open(struct vm_area_struct *vma) 5983 { 5984 struct perf_event *event = vma->vm_file->private_data; 5985 5986 atomic_inc(&event->mmap_count); 5987 atomic_inc(&event->rb->mmap_count); 5988 5989 if (vma->vm_pgoff) 5990 atomic_inc(&event->rb->aux_mmap_count); 5991 5992 if (event->pmu->event_mapped) 5993 event->pmu->event_mapped(event, vma->vm_mm); 5994 } 5995 5996 static void perf_pmu_output_stop(struct perf_event *event); 5997 5998 /* 5999 * A buffer can be mmap()ed multiple times; either directly through the same 6000 * event, or through other events by use of perf_event_set_output(). 6001 * 6002 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6003 * the buffer here, where we still have a VM context. This means we need 6004 * to detach all events redirecting to us. 6005 */ 6006 static void perf_mmap_close(struct vm_area_struct *vma) 6007 { 6008 struct perf_event *event = vma->vm_file->private_data; 6009 struct perf_buffer *rb = ring_buffer_get(event); 6010 struct user_struct *mmap_user = rb->mmap_user; 6011 int mmap_locked = rb->mmap_locked; 6012 unsigned long size = perf_data_size(rb); 6013 bool detach_rest = false; 6014 6015 if (event->pmu->event_unmapped) 6016 event->pmu->event_unmapped(event, vma->vm_mm); 6017 6018 /* 6019 * rb->aux_mmap_count will always drop before rb->mmap_count and 6020 * event->mmap_count, so it is ok to use event->mmap_mutex to 6021 * serialize with perf_mmap here. 6022 */ 6023 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6024 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6025 /* 6026 * Stop all AUX events that are writing to this buffer, 6027 * so that we can free its AUX pages and corresponding PMU 6028 * data. Note that after rb::aux_mmap_count dropped to zero, 6029 * they won't start any more (see perf_aux_output_begin()). 6030 */ 6031 perf_pmu_output_stop(event); 6032 6033 /* now it's safe to free the pages */ 6034 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6035 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6036 6037 /* this has to be the last one */ 6038 rb_free_aux(rb); 6039 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6040 6041 mutex_unlock(&event->mmap_mutex); 6042 } 6043 6044 if (atomic_dec_and_test(&rb->mmap_count)) 6045 detach_rest = true; 6046 6047 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6048 goto out_put; 6049 6050 ring_buffer_attach(event, NULL); 6051 mutex_unlock(&event->mmap_mutex); 6052 6053 /* If there's still other mmap()s of this buffer, we're done. */ 6054 if (!detach_rest) 6055 goto out_put; 6056 6057 /* 6058 * No other mmap()s, detach from all other events that might redirect 6059 * into the now unreachable buffer. Somewhat complicated by the 6060 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6061 */ 6062 again: 6063 rcu_read_lock(); 6064 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6065 if (!atomic_long_inc_not_zero(&event->refcount)) { 6066 /* 6067 * This event is en-route to free_event() which will 6068 * detach it and remove it from the list. 6069 */ 6070 continue; 6071 } 6072 rcu_read_unlock(); 6073 6074 mutex_lock(&event->mmap_mutex); 6075 /* 6076 * Check we didn't race with perf_event_set_output() which can 6077 * swizzle the rb from under us while we were waiting to 6078 * acquire mmap_mutex. 6079 * 6080 * If we find a different rb; ignore this event, a next 6081 * iteration will no longer find it on the list. We have to 6082 * still restart the iteration to make sure we're not now 6083 * iterating the wrong list. 6084 */ 6085 if (event->rb == rb) 6086 ring_buffer_attach(event, NULL); 6087 6088 mutex_unlock(&event->mmap_mutex); 6089 put_event(event); 6090 6091 /* 6092 * Restart the iteration; either we're on the wrong list or 6093 * destroyed its integrity by doing a deletion. 6094 */ 6095 goto again; 6096 } 6097 rcu_read_unlock(); 6098 6099 /* 6100 * It could be there's still a few 0-ref events on the list; they'll 6101 * get cleaned up by free_event() -- they'll also still have their 6102 * ref on the rb and will free it whenever they are done with it. 6103 * 6104 * Aside from that, this buffer is 'fully' detached and unmapped, 6105 * undo the VM accounting. 6106 */ 6107 6108 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6109 &mmap_user->locked_vm); 6110 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6111 free_uid(mmap_user); 6112 6113 out_put: 6114 ring_buffer_put(rb); /* could be last */ 6115 } 6116 6117 static const struct vm_operations_struct perf_mmap_vmops = { 6118 .open = perf_mmap_open, 6119 .close = perf_mmap_close, /* non mergeable */ 6120 .fault = perf_mmap_fault, 6121 .page_mkwrite = perf_mmap_fault, 6122 }; 6123 6124 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6125 { 6126 struct perf_event *event = file->private_data; 6127 unsigned long user_locked, user_lock_limit; 6128 struct user_struct *user = current_user(); 6129 struct perf_buffer *rb = NULL; 6130 unsigned long locked, lock_limit; 6131 unsigned long vma_size; 6132 unsigned long nr_pages; 6133 long user_extra = 0, extra = 0; 6134 int ret = 0, flags = 0; 6135 6136 /* 6137 * Don't allow mmap() of inherited per-task counters. This would 6138 * create a performance issue due to all children writing to the 6139 * same rb. 6140 */ 6141 if (event->cpu == -1 && event->attr.inherit) 6142 return -EINVAL; 6143 6144 if (!(vma->vm_flags & VM_SHARED)) 6145 return -EINVAL; 6146 6147 ret = security_perf_event_read(event); 6148 if (ret) 6149 return ret; 6150 6151 vma_size = vma->vm_end - vma->vm_start; 6152 6153 if (vma->vm_pgoff == 0) { 6154 nr_pages = (vma_size / PAGE_SIZE) - 1; 6155 } else { 6156 /* 6157 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6158 * mapped, all subsequent mappings should have the same size 6159 * and offset. Must be above the normal perf buffer. 6160 */ 6161 u64 aux_offset, aux_size; 6162 6163 if (!event->rb) 6164 return -EINVAL; 6165 6166 nr_pages = vma_size / PAGE_SIZE; 6167 6168 mutex_lock(&event->mmap_mutex); 6169 ret = -EINVAL; 6170 6171 rb = event->rb; 6172 if (!rb) 6173 goto aux_unlock; 6174 6175 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6176 aux_size = READ_ONCE(rb->user_page->aux_size); 6177 6178 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6179 goto aux_unlock; 6180 6181 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6182 goto aux_unlock; 6183 6184 /* already mapped with a different offset */ 6185 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6186 goto aux_unlock; 6187 6188 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6189 goto aux_unlock; 6190 6191 /* already mapped with a different size */ 6192 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6193 goto aux_unlock; 6194 6195 if (!is_power_of_2(nr_pages)) 6196 goto aux_unlock; 6197 6198 if (!atomic_inc_not_zero(&rb->mmap_count)) 6199 goto aux_unlock; 6200 6201 if (rb_has_aux(rb)) { 6202 atomic_inc(&rb->aux_mmap_count); 6203 ret = 0; 6204 goto unlock; 6205 } 6206 6207 atomic_set(&rb->aux_mmap_count, 1); 6208 user_extra = nr_pages; 6209 6210 goto accounting; 6211 } 6212 6213 /* 6214 * If we have rb pages ensure they're a power-of-two number, so we 6215 * can do bitmasks instead of modulo. 6216 */ 6217 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6218 return -EINVAL; 6219 6220 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6221 return -EINVAL; 6222 6223 WARN_ON_ONCE(event->ctx->parent_ctx); 6224 again: 6225 mutex_lock(&event->mmap_mutex); 6226 if (event->rb) { 6227 if (event->rb->nr_pages != nr_pages) { 6228 ret = -EINVAL; 6229 goto unlock; 6230 } 6231 6232 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6233 /* 6234 * Raced against perf_mmap_close() through 6235 * perf_event_set_output(). Try again, hope for better 6236 * luck. 6237 */ 6238 mutex_unlock(&event->mmap_mutex); 6239 goto again; 6240 } 6241 6242 goto unlock; 6243 } 6244 6245 user_extra = nr_pages + 1; 6246 6247 accounting: 6248 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6249 6250 /* 6251 * Increase the limit linearly with more CPUs: 6252 */ 6253 user_lock_limit *= num_online_cpus(); 6254 6255 user_locked = atomic_long_read(&user->locked_vm); 6256 6257 /* 6258 * sysctl_perf_event_mlock may have changed, so that 6259 * user->locked_vm > user_lock_limit 6260 */ 6261 if (user_locked > user_lock_limit) 6262 user_locked = user_lock_limit; 6263 user_locked += user_extra; 6264 6265 if (user_locked > user_lock_limit) { 6266 /* 6267 * charge locked_vm until it hits user_lock_limit; 6268 * charge the rest from pinned_vm 6269 */ 6270 extra = user_locked - user_lock_limit; 6271 user_extra -= extra; 6272 } 6273 6274 lock_limit = rlimit(RLIMIT_MEMLOCK); 6275 lock_limit >>= PAGE_SHIFT; 6276 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6277 6278 if ((locked > lock_limit) && perf_is_paranoid() && 6279 !capable(CAP_IPC_LOCK)) { 6280 ret = -EPERM; 6281 goto unlock; 6282 } 6283 6284 WARN_ON(!rb && event->rb); 6285 6286 if (vma->vm_flags & VM_WRITE) 6287 flags |= RING_BUFFER_WRITABLE; 6288 6289 if (!rb) { 6290 rb = rb_alloc(nr_pages, 6291 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6292 event->cpu, flags); 6293 6294 if (!rb) { 6295 ret = -ENOMEM; 6296 goto unlock; 6297 } 6298 6299 atomic_set(&rb->mmap_count, 1); 6300 rb->mmap_user = get_current_user(); 6301 rb->mmap_locked = extra; 6302 6303 ring_buffer_attach(event, rb); 6304 6305 perf_event_init_userpage(event); 6306 perf_event_update_userpage(event); 6307 } else { 6308 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6309 event->attr.aux_watermark, flags); 6310 if (!ret) 6311 rb->aux_mmap_locked = extra; 6312 } 6313 6314 unlock: 6315 if (!ret) { 6316 atomic_long_add(user_extra, &user->locked_vm); 6317 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6318 6319 atomic_inc(&event->mmap_count); 6320 } else if (rb) { 6321 atomic_dec(&rb->mmap_count); 6322 } 6323 aux_unlock: 6324 mutex_unlock(&event->mmap_mutex); 6325 6326 /* 6327 * Since pinned accounting is per vm we cannot allow fork() to copy our 6328 * vma. 6329 */ 6330 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6331 vma->vm_ops = &perf_mmap_vmops; 6332 6333 if (event->pmu->event_mapped) 6334 event->pmu->event_mapped(event, vma->vm_mm); 6335 6336 return ret; 6337 } 6338 6339 static int perf_fasync(int fd, struct file *filp, int on) 6340 { 6341 struct inode *inode = file_inode(filp); 6342 struct perf_event *event = filp->private_data; 6343 int retval; 6344 6345 inode_lock(inode); 6346 retval = fasync_helper(fd, filp, on, &event->fasync); 6347 inode_unlock(inode); 6348 6349 if (retval < 0) 6350 return retval; 6351 6352 return 0; 6353 } 6354 6355 static const struct file_operations perf_fops = { 6356 .llseek = no_llseek, 6357 .release = perf_release, 6358 .read = perf_read, 6359 .poll = perf_poll, 6360 .unlocked_ioctl = perf_ioctl, 6361 .compat_ioctl = perf_compat_ioctl, 6362 .mmap = perf_mmap, 6363 .fasync = perf_fasync, 6364 }; 6365 6366 /* 6367 * Perf event wakeup 6368 * 6369 * If there's data, ensure we set the poll() state and publish everything 6370 * to user-space before waking everybody up. 6371 */ 6372 6373 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6374 { 6375 /* only the parent has fasync state */ 6376 if (event->parent) 6377 event = event->parent; 6378 return &event->fasync; 6379 } 6380 6381 void perf_event_wakeup(struct perf_event *event) 6382 { 6383 ring_buffer_wakeup(event); 6384 6385 if (event->pending_kill) { 6386 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6387 event->pending_kill = 0; 6388 } 6389 } 6390 6391 static void perf_sigtrap(struct perf_event *event) 6392 { 6393 struct kernel_siginfo info; 6394 6395 /* 6396 * We'd expect this to only occur if the irq_work is delayed and either 6397 * ctx->task or current has changed in the meantime. This can be the 6398 * case on architectures that do not implement arch_irq_work_raise(). 6399 */ 6400 if (WARN_ON_ONCE(event->ctx->task != current)) 6401 return; 6402 6403 /* 6404 * perf_pending_event() can race with the task exiting. 6405 */ 6406 if (current->flags & PF_EXITING) 6407 return; 6408 6409 clear_siginfo(&info); 6410 info.si_signo = SIGTRAP; 6411 info.si_code = TRAP_PERF; 6412 info.si_errno = event->attr.type; 6413 info.si_perf = event->attr.sig_data; 6414 info.si_addr = (void __user *)event->pending_addr; 6415 force_sig_info(&info); 6416 } 6417 6418 static void perf_pending_event_disable(struct perf_event *event) 6419 { 6420 int cpu = READ_ONCE(event->pending_disable); 6421 6422 if (cpu < 0) 6423 return; 6424 6425 if (cpu == smp_processor_id()) { 6426 WRITE_ONCE(event->pending_disable, -1); 6427 6428 if (event->attr.sigtrap) { 6429 perf_sigtrap(event); 6430 atomic_set_release(&event->event_limit, 1); /* rearm event */ 6431 return; 6432 } 6433 6434 perf_event_disable_local(event); 6435 return; 6436 } 6437 6438 /* 6439 * CPU-A CPU-B 6440 * 6441 * perf_event_disable_inatomic() 6442 * @pending_disable = CPU-A; 6443 * irq_work_queue(); 6444 * 6445 * sched-out 6446 * @pending_disable = -1; 6447 * 6448 * sched-in 6449 * perf_event_disable_inatomic() 6450 * @pending_disable = CPU-B; 6451 * irq_work_queue(); // FAILS 6452 * 6453 * irq_work_run() 6454 * perf_pending_event() 6455 * 6456 * But the event runs on CPU-B and wants disabling there. 6457 */ 6458 irq_work_queue_on(&event->pending, cpu); 6459 } 6460 6461 static void perf_pending_event(struct irq_work *entry) 6462 { 6463 struct perf_event *event = container_of(entry, struct perf_event, pending); 6464 int rctx; 6465 6466 rctx = perf_swevent_get_recursion_context(); 6467 /* 6468 * If we 'fail' here, that's OK, it means recursion is already disabled 6469 * and we won't recurse 'further'. 6470 */ 6471 6472 perf_pending_event_disable(event); 6473 6474 if (event->pending_wakeup) { 6475 event->pending_wakeup = 0; 6476 perf_event_wakeup(event); 6477 } 6478 6479 if (rctx >= 0) 6480 perf_swevent_put_recursion_context(rctx); 6481 } 6482 6483 /* 6484 * We assume there is only KVM supporting the callbacks. 6485 * Later on, we might change it to a list if there is 6486 * another virtualization implementation supporting the callbacks. 6487 */ 6488 struct perf_guest_info_callbacks *perf_guest_cbs; 6489 6490 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6491 { 6492 perf_guest_cbs = cbs; 6493 return 0; 6494 } 6495 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6496 6497 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6498 { 6499 perf_guest_cbs = NULL; 6500 return 0; 6501 } 6502 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6503 6504 static void 6505 perf_output_sample_regs(struct perf_output_handle *handle, 6506 struct pt_regs *regs, u64 mask) 6507 { 6508 int bit; 6509 DECLARE_BITMAP(_mask, 64); 6510 6511 bitmap_from_u64(_mask, mask); 6512 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6513 u64 val; 6514 6515 val = perf_reg_value(regs, bit); 6516 perf_output_put(handle, val); 6517 } 6518 } 6519 6520 static void perf_sample_regs_user(struct perf_regs *regs_user, 6521 struct pt_regs *regs) 6522 { 6523 if (user_mode(regs)) { 6524 regs_user->abi = perf_reg_abi(current); 6525 regs_user->regs = regs; 6526 } else if (!(current->flags & PF_KTHREAD)) { 6527 perf_get_regs_user(regs_user, regs); 6528 } else { 6529 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6530 regs_user->regs = NULL; 6531 } 6532 } 6533 6534 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6535 struct pt_regs *regs) 6536 { 6537 regs_intr->regs = regs; 6538 regs_intr->abi = perf_reg_abi(current); 6539 } 6540 6541 6542 /* 6543 * Get remaining task size from user stack pointer. 6544 * 6545 * It'd be better to take stack vma map and limit this more 6546 * precisely, but there's no way to get it safely under interrupt, 6547 * so using TASK_SIZE as limit. 6548 */ 6549 static u64 perf_ustack_task_size(struct pt_regs *regs) 6550 { 6551 unsigned long addr = perf_user_stack_pointer(regs); 6552 6553 if (!addr || addr >= TASK_SIZE) 6554 return 0; 6555 6556 return TASK_SIZE - addr; 6557 } 6558 6559 static u16 6560 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6561 struct pt_regs *regs) 6562 { 6563 u64 task_size; 6564 6565 /* No regs, no stack pointer, no dump. */ 6566 if (!regs) 6567 return 0; 6568 6569 /* 6570 * Check if we fit in with the requested stack size into the: 6571 * - TASK_SIZE 6572 * If we don't, we limit the size to the TASK_SIZE. 6573 * 6574 * - remaining sample size 6575 * If we don't, we customize the stack size to 6576 * fit in to the remaining sample size. 6577 */ 6578 6579 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6580 stack_size = min(stack_size, (u16) task_size); 6581 6582 /* Current header size plus static size and dynamic size. */ 6583 header_size += 2 * sizeof(u64); 6584 6585 /* Do we fit in with the current stack dump size? */ 6586 if ((u16) (header_size + stack_size) < header_size) { 6587 /* 6588 * If we overflow the maximum size for the sample, 6589 * we customize the stack dump size to fit in. 6590 */ 6591 stack_size = USHRT_MAX - header_size - sizeof(u64); 6592 stack_size = round_up(stack_size, sizeof(u64)); 6593 } 6594 6595 return stack_size; 6596 } 6597 6598 static void 6599 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6600 struct pt_regs *regs) 6601 { 6602 /* Case of a kernel thread, nothing to dump */ 6603 if (!regs) { 6604 u64 size = 0; 6605 perf_output_put(handle, size); 6606 } else { 6607 unsigned long sp; 6608 unsigned int rem; 6609 u64 dyn_size; 6610 mm_segment_t fs; 6611 6612 /* 6613 * We dump: 6614 * static size 6615 * - the size requested by user or the best one we can fit 6616 * in to the sample max size 6617 * data 6618 * - user stack dump data 6619 * dynamic size 6620 * - the actual dumped size 6621 */ 6622 6623 /* Static size. */ 6624 perf_output_put(handle, dump_size); 6625 6626 /* Data. */ 6627 sp = perf_user_stack_pointer(regs); 6628 fs = force_uaccess_begin(); 6629 rem = __output_copy_user(handle, (void *) sp, dump_size); 6630 force_uaccess_end(fs); 6631 dyn_size = dump_size - rem; 6632 6633 perf_output_skip(handle, rem); 6634 6635 /* Dynamic size. */ 6636 perf_output_put(handle, dyn_size); 6637 } 6638 } 6639 6640 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6641 struct perf_sample_data *data, 6642 size_t size) 6643 { 6644 struct perf_event *sampler = event->aux_event; 6645 struct perf_buffer *rb; 6646 6647 data->aux_size = 0; 6648 6649 if (!sampler) 6650 goto out; 6651 6652 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6653 goto out; 6654 6655 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6656 goto out; 6657 6658 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6659 if (!rb) 6660 goto out; 6661 6662 /* 6663 * If this is an NMI hit inside sampling code, don't take 6664 * the sample. See also perf_aux_sample_output(). 6665 */ 6666 if (READ_ONCE(rb->aux_in_sampling)) { 6667 data->aux_size = 0; 6668 } else { 6669 size = min_t(size_t, size, perf_aux_size(rb)); 6670 data->aux_size = ALIGN(size, sizeof(u64)); 6671 } 6672 ring_buffer_put(rb); 6673 6674 out: 6675 return data->aux_size; 6676 } 6677 6678 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6679 struct perf_event *event, 6680 struct perf_output_handle *handle, 6681 unsigned long size) 6682 { 6683 unsigned long flags; 6684 long ret; 6685 6686 /* 6687 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6688 * paths. If we start calling them in NMI context, they may race with 6689 * the IRQ ones, that is, for example, re-starting an event that's just 6690 * been stopped, which is why we're using a separate callback that 6691 * doesn't change the event state. 6692 * 6693 * IRQs need to be disabled to prevent IPIs from racing with us. 6694 */ 6695 local_irq_save(flags); 6696 /* 6697 * Guard against NMI hits inside the critical section; 6698 * see also perf_prepare_sample_aux(). 6699 */ 6700 WRITE_ONCE(rb->aux_in_sampling, 1); 6701 barrier(); 6702 6703 ret = event->pmu->snapshot_aux(event, handle, size); 6704 6705 barrier(); 6706 WRITE_ONCE(rb->aux_in_sampling, 0); 6707 local_irq_restore(flags); 6708 6709 return ret; 6710 } 6711 6712 static void perf_aux_sample_output(struct perf_event *event, 6713 struct perf_output_handle *handle, 6714 struct perf_sample_data *data) 6715 { 6716 struct perf_event *sampler = event->aux_event; 6717 struct perf_buffer *rb; 6718 unsigned long pad; 6719 long size; 6720 6721 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6722 return; 6723 6724 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6725 if (!rb) 6726 return; 6727 6728 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6729 6730 /* 6731 * An error here means that perf_output_copy() failed (returned a 6732 * non-zero surplus that it didn't copy), which in its current 6733 * enlightened implementation is not possible. If that changes, we'd 6734 * like to know. 6735 */ 6736 if (WARN_ON_ONCE(size < 0)) 6737 goto out_put; 6738 6739 /* 6740 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6741 * perf_prepare_sample_aux(), so should not be more than that. 6742 */ 6743 pad = data->aux_size - size; 6744 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6745 pad = 8; 6746 6747 if (pad) { 6748 u64 zero = 0; 6749 perf_output_copy(handle, &zero, pad); 6750 } 6751 6752 out_put: 6753 ring_buffer_put(rb); 6754 } 6755 6756 static void __perf_event_header__init_id(struct perf_event_header *header, 6757 struct perf_sample_data *data, 6758 struct perf_event *event) 6759 { 6760 u64 sample_type = event->attr.sample_type; 6761 6762 data->type = sample_type; 6763 header->size += event->id_header_size; 6764 6765 if (sample_type & PERF_SAMPLE_TID) { 6766 /* namespace issues */ 6767 data->tid_entry.pid = perf_event_pid(event, current); 6768 data->tid_entry.tid = perf_event_tid(event, current); 6769 } 6770 6771 if (sample_type & PERF_SAMPLE_TIME) 6772 data->time = perf_event_clock(event); 6773 6774 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6775 data->id = primary_event_id(event); 6776 6777 if (sample_type & PERF_SAMPLE_STREAM_ID) 6778 data->stream_id = event->id; 6779 6780 if (sample_type & PERF_SAMPLE_CPU) { 6781 data->cpu_entry.cpu = raw_smp_processor_id(); 6782 data->cpu_entry.reserved = 0; 6783 } 6784 } 6785 6786 void perf_event_header__init_id(struct perf_event_header *header, 6787 struct perf_sample_data *data, 6788 struct perf_event *event) 6789 { 6790 if (event->attr.sample_id_all) 6791 __perf_event_header__init_id(header, data, event); 6792 } 6793 6794 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6795 struct perf_sample_data *data) 6796 { 6797 u64 sample_type = data->type; 6798 6799 if (sample_type & PERF_SAMPLE_TID) 6800 perf_output_put(handle, data->tid_entry); 6801 6802 if (sample_type & PERF_SAMPLE_TIME) 6803 perf_output_put(handle, data->time); 6804 6805 if (sample_type & PERF_SAMPLE_ID) 6806 perf_output_put(handle, data->id); 6807 6808 if (sample_type & PERF_SAMPLE_STREAM_ID) 6809 perf_output_put(handle, data->stream_id); 6810 6811 if (sample_type & PERF_SAMPLE_CPU) 6812 perf_output_put(handle, data->cpu_entry); 6813 6814 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6815 perf_output_put(handle, data->id); 6816 } 6817 6818 void perf_event__output_id_sample(struct perf_event *event, 6819 struct perf_output_handle *handle, 6820 struct perf_sample_data *sample) 6821 { 6822 if (event->attr.sample_id_all) 6823 __perf_event__output_id_sample(handle, sample); 6824 } 6825 6826 static void perf_output_read_one(struct perf_output_handle *handle, 6827 struct perf_event *event, 6828 u64 enabled, u64 running) 6829 { 6830 u64 read_format = event->attr.read_format; 6831 u64 values[4]; 6832 int n = 0; 6833 6834 values[n++] = perf_event_count(event); 6835 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6836 values[n++] = enabled + 6837 atomic64_read(&event->child_total_time_enabled); 6838 } 6839 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6840 values[n++] = running + 6841 atomic64_read(&event->child_total_time_running); 6842 } 6843 if (read_format & PERF_FORMAT_ID) 6844 values[n++] = primary_event_id(event); 6845 6846 __output_copy(handle, values, n * sizeof(u64)); 6847 } 6848 6849 static void perf_output_read_group(struct perf_output_handle *handle, 6850 struct perf_event *event, 6851 u64 enabled, u64 running) 6852 { 6853 struct perf_event *leader = event->group_leader, *sub; 6854 u64 read_format = event->attr.read_format; 6855 u64 values[5]; 6856 int n = 0; 6857 6858 values[n++] = 1 + leader->nr_siblings; 6859 6860 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6861 values[n++] = enabled; 6862 6863 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6864 values[n++] = running; 6865 6866 if ((leader != event) && 6867 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6868 leader->pmu->read(leader); 6869 6870 values[n++] = perf_event_count(leader); 6871 if (read_format & PERF_FORMAT_ID) 6872 values[n++] = primary_event_id(leader); 6873 6874 __output_copy(handle, values, n * sizeof(u64)); 6875 6876 for_each_sibling_event(sub, leader) { 6877 n = 0; 6878 6879 if ((sub != event) && 6880 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6881 sub->pmu->read(sub); 6882 6883 values[n++] = perf_event_count(sub); 6884 if (read_format & PERF_FORMAT_ID) 6885 values[n++] = primary_event_id(sub); 6886 6887 __output_copy(handle, values, n * sizeof(u64)); 6888 } 6889 } 6890 6891 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6892 PERF_FORMAT_TOTAL_TIME_RUNNING) 6893 6894 /* 6895 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6896 * 6897 * The problem is that its both hard and excessively expensive to iterate the 6898 * child list, not to mention that its impossible to IPI the children running 6899 * on another CPU, from interrupt/NMI context. 6900 */ 6901 static void perf_output_read(struct perf_output_handle *handle, 6902 struct perf_event *event) 6903 { 6904 u64 enabled = 0, running = 0, now; 6905 u64 read_format = event->attr.read_format; 6906 6907 /* 6908 * compute total_time_enabled, total_time_running 6909 * based on snapshot values taken when the event 6910 * was last scheduled in. 6911 * 6912 * we cannot simply called update_context_time() 6913 * because of locking issue as we are called in 6914 * NMI context 6915 */ 6916 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6917 calc_timer_values(event, &now, &enabled, &running); 6918 6919 if (event->attr.read_format & PERF_FORMAT_GROUP) 6920 perf_output_read_group(handle, event, enabled, running); 6921 else 6922 perf_output_read_one(handle, event, enabled, running); 6923 } 6924 6925 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6926 { 6927 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6928 } 6929 6930 void perf_output_sample(struct perf_output_handle *handle, 6931 struct perf_event_header *header, 6932 struct perf_sample_data *data, 6933 struct perf_event *event) 6934 { 6935 u64 sample_type = data->type; 6936 6937 perf_output_put(handle, *header); 6938 6939 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6940 perf_output_put(handle, data->id); 6941 6942 if (sample_type & PERF_SAMPLE_IP) 6943 perf_output_put(handle, data->ip); 6944 6945 if (sample_type & PERF_SAMPLE_TID) 6946 perf_output_put(handle, data->tid_entry); 6947 6948 if (sample_type & PERF_SAMPLE_TIME) 6949 perf_output_put(handle, data->time); 6950 6951 if (sample_type & PERF_SAMPLE_ADDR) 6952 perf_output_put(handle, data->addr); 6953 6954 if (sample_type & PERF_SAMPLE_ID) 6955 perf_output_put(handle, data->id); 6956 6957 if (sample_type & PERF_SAMPLE_STREAM_ID) 6958 perf_output_put(handle, data->stream_id); 6959 6960 if (sample_type & PERF_SAMPLE_CPU) 6961 perf_output_put(handle, data->cpu_entry); 6962 6963 if (sample_type & PERF_SAMPLE_PERIOD) 6964 perf_output_put(handle, data->period); 6965 6966 if (sample_type & PERF_SAMPLE_READ) 6967 perf_output_read(handle, event); 6968 6969 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6970 int size = 1; 6971 6972 size += data->callchain->nr; 6973 size *= sizeof(u64); 6974 __output_copy(handle, data->callchain, size); 6975 } 6976 6977 if (sample_type & PERF_SAMPLE_RAW) { 6978 struct perf_raw_record *raw = data->raw; 6979 6980 if (raw) { 6981 struct perf_raw_frag *frag = &raw->frag; 6982 6983 perf_output_put(handle, raw->size); 6984 do { 6985 if (frag->copy) { 6986 __output_custom(handle, frag->copy, 6987 frag->data, frag->size); 6988 } else { 6989 __output_copy(handle, frag->data, 6990 frag->size); 6991 } 6992 if (perf_raw_frag_last(frag)) 6993 break; 6994 frag = frag->next; 6995 } while (1); 6996 if (frag->pad) 6997 __output_skip(handle, NULL, frag->pad); 6998 } else { 6999 struct { 7000 u32 size; 7001 u32 data; 7002 } raw = { 7003 .size = sizeof(u32), 7004 .data = 0, 7005 }; 7006 perf_output_put(handle, raw); 7007 } 7008 } 7009 7010 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7011 if (data->br_stack) { 7012 size_t size; 7013 7014 size = data->br_stack->nr 7015 * sizeof(struct perf_branch_entry); 7016 7017 perf_output_put(handle, data->br_stack->nr); 7018 if (perf_sample_save_hw_index(event)) 7019 perf_output_put(handle, data->br_stack->hw_idx); 7020 perf_output_copy(handle, data->br_stack->entries, size); 7021 } else { 7022 /* 7023 * we always store at least the value of nr 7024 */ 7025 u64 nr = 0; 7026 perf_output_put(handle, nr); 7027 } 7028 } 7029 7030 if (sample_type & PERF_SAMPLE_REGS_USER) { 7031 u64 abi = data->regs_user.abi; 7032 7033 /* 7034 * If there are no regs to dump, notice it through 7035 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7036 */ 7037 perf_output_put(handle, abi); 7038 7039 if (abi) { 7040 u64 mask = event->attr.sample_regs_user; 7041 perf_output_sample_regs(handle, 7042 data->regs_user.regs, 7043 mask); 7044 } 7045 } 7046 7047 if (sample_type & PERF_SAMPLE_STACK_USER) { 7048 perf_output_sample_ustack(handle, 7049 data->stack_user_size, 7050 data->regs_user.regs); 7051 } 7052 7053 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7054 perf_output_put(handle, data->weight.full); 7055 7056 if (sample_type & PERF_SAMPLE_DATA_SRC) 7057 perf_output_put(handle, data->data_src.val); 7058 7059 if (sample_type & PERF_SAMPLE_TRANSACTION) 7060 perf_output_put(handle, data->txn); 7061 7062 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7063 u64 abi = data->regs_intr.abi; 7064 /* 7065 * If there are no regs to dump, notice it through 7066 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7067 */ 7068 perf_output_put(handle, abi); 7069 7070 if (abi) { 7071 u64 mask = event->attr.sample_regs_intr; 7072 7073 perf_output_sample_regs(handle, 7074 data->regs_intr.regs, 7075 mask); 7076 } 7077 } 7078 7079 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7080 perf_output_put(handle, data->phys_addr); 7081 7082 if (sample_type & PERF_SAMPLE_CGROUP) 7083 perf_output_put(handle, data->cgroup); 7084 7085 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7086 perf_output_put(handle, data->data_page_size); 7087 7088 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7089 perf_output_put(handle, data->code_page_size); 7090 7091 if (sample_type & PERF_SAMPLE_AUX) { 7092 perf_output_put(handle, data->aux_size); 7093 7094 if (data->aux_size) 7095 perf_aux_sample_output(event, handle, data); 7096 } 7097 7098 if (!event->attr.watermark) { 7099 int wakeup_events = event->attr.wakeup_events; 7100 7101 if (wakeup_events) { 7102 struct perf_buffer *rb = handle->rb; 7103 int events = local_inc_return(&rb->events); 7104 7105 if (events >= wakeup_events) { 7106 local_sub(wakeup_events, &rb->events); 7107 local_inc(&rb->wakeup); 7108 } 7109 } 7110 } 7111 } 7112 7113 static u64 perf_virt_to_phys(u64 virt) 7114 { 7115 u64 phys_addr = 0; 7116 struct page *p = NULL; 7117 7118 if (!virt) 7119 return 0; 7120 7121 if (virt >= TASK_SIZE) { 7122 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7123 if (virt_addr_valid((void *)(uintptr_t)virt) && 7124 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7125 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7126 } else { 7127 /* 7128 * Walking the pages tables for user address. 7129 * Interrupts are disabled, so it prevents any tear down 7130 * of the page tables. 7131 * Try IRQ-safe get_user_page_fast_only first. 7132 * If failed, leave phys_addr as 0. 7133 */ 7134 if (current->mm != NULL) { 7135 pagefault_disable(); 7136 if (get_user_page_fast_only(virt, 0, &p)) 7137 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7138 pagefault_enable(); 7139 } 7140 7141 if (p) 7142 put_page(p); 7143 } 7144 7145 return phys_addr; 7146 } 7147 7148 /* 7149 * Return the pagetable size of a given virtual address. 7150 */ 7151 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7152 { 7153 u64 size = 0; 7154 7155 #ifdef CONFIG_HAVE_FAST_GUP 7156 pgd_t *pgdp, pgd; 7157 p4d_t *p4dp, p4d; 7158 pud_t *pudp, pud; 7159 pmd_t *pmdp, pmd; 7160 pte_t *ptep, pte; 7161 7162 pgdp = pgd_offset(mm, addr); 7163 pgd = READ_ONCE(*pgdp); 7164 if (pgd_none(pgd)) 7165 return 0; 7166 7167 if (pgd_leaf(pgd)) 7168 return pgd_leaf_size(pgd); 7169 7170 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7171 p4d = READ_ONCE(*p4dp); 7172 if (!p4d_present(p4d)) 7173 return 0; 7174 7175 if (p4d_leaf(p4d)) 7176 return p4d_leaf_size(p4d); 7177 7178 pudp = pud_offset_lockless(p4dp, p4d, addr); 7179 pud = READ_ONCE(*pudp); 7180 if (!pud_present(pud)) 7181 return 0; 7182 7183 if (pud_leaf(pud)) 7184 return pud_leaf_size(pud); 7185 7186 pmdp = pmd_offset_lockless(pudp, pud, addr); 7187 pmd = READ_ONCE(*pmdp); 7188 if (!pmd_present(pmd)) 7189 return 0; 7190 7191 if (pmd_leaf(pmd)) 7192 return pmd_leaf_size(pmd); 7193 7194 ptep = pte_offset_map(&pmd, addr); 7195 pte = ptep_get_lockless(ptep); 7196 if (pte_present(pte)) 7197 size = pte_leaf_size(pte); 7198 pte_unmap(ptep); 7199 #endif /* CONFIG_HAVE_FAST_GUP */ 7200 7201 return size; 7202 } 7203 7204 static u64 perf_get_page_size(unsigned long addr) 7205 { 7206 struct mm_struct *mm; 7207 unsigned long flags; 7208 u64 size; 7209 7210 if (!addr) 7211 return 0; 7212 7213 /* 7214 * Software page-table walkers must disable IRQs, 7215 * which prevents any tear down of the page tables. 7216 */ 7217 local_irq_save(flags); 7218 7219 mm = current->mm; 7220 if (!mm) { 7221 /* 7222 * For kernel threads and the like, use init_mm so that 7223 * we can find kernel memory. 7224 */ 7225 mm = &init_mm; 7226 } 7227 7228 size = perf_get_pgtable_size(mm, addr); 7229 7230 local_irq_restore(flags); 7231 7232 return size; 7233 } 7234 7235 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7236 7237 struct perf_callchain_entry * 7238 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7239 { 7240 bool kernel = !event->attr.exclude_callchain_kernel; 7241 bool user = !event->attr.exclude_callchain_user; 7242 /* Disallow cross-task user callchains. */ 7243 bool crosstask = event->ctx->task && event->ctx->task != current; 7244 const u32 max_stack = event->attr.sample_max_stack; 7245 struct perf_callchain_entry *callchain; 7246 7247 if (!kernel && !user) 7248 return &__empty_callchain; 7249 7250 callchain = get_perf_callchain(regs, 0, kernel, user, 7251 max_stack, crosstask, true); 7252 return callchain ?: &__empty_callchain; 7253 } 7254 7255 void perf_prepare_sample(struct perf_event_header *header, 7256 struct perf_sample_data *data, 7257 struct perf_event *event, 7258 struct pt_regs *regs) 7259 { 7260 u64 sample_type = event->attr.sample_type; 7261 7262 header->type = PERF_RECORD_SAMPLE; 7263 header->size = sizeof(*header) + event->header_size; 7264 7265 header->misc = 0; 7266 header->misc |= perf_misc_flags(regs); 7267 7268 __perf_event_header__init_id(header, data, event); 7269 7270 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7271 data->ip = perf_instruction_pointer(regs); 7272 7273 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7274 int size = 1; 7275 7276 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7277 data->callchain = perf_callchain(event, regs); 7278 7279 size += data->callchain->nr; 7280 7281 header->size += size * sizeof(u64); 7282 } 7283 7284 if (sample_type & PERF_SAMPLE_RAW) { 7285 struct perf_raw_record *raw = data->raw; 7286 int size; 7287 7288 if (raw) { 7289 struct perf_raw_frag *frag = &raw->frag; 7290 u32 sum = 0; 7291 7292 do { 7293 sum += frag->size; 7294 if (perf_raw_frag_last(frag)) 7295 break; 7296 frag = frag->next; 7297 } while (1); 7298 7299 size = round_up(sum + sizeof(u32), sizeof(u64)); 7300 raw->size = size - sizeof(u32); 7301 frag->pad = raw->size - sum; 7302 } else { 7303 size = sizeof(u64); 7304 } 7305 7306 header->size += size; 7307 } 7308 7309 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7310 int size = sizeof(u64); /* nr */ 7311 if (data->br_stack) { 7312 if (perf_sample_save_hw_index(event)) 7313 size += sizeof(u64); 7314 7315 size += data->br_stack->nr 7316 * sizeof(struct perf_branch_entry); 7317 } 7318 header->size += size; 7319 } 7320 7321 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7322 perf_sample_regs_user(&data->regs_user, regs); 7323 7324 if (sample_type & PERF_SAMPLE_REGS_USER) { 7325 /* regs dump ABI info */ 7326 int size = sizeof(u64); 7327 7328 if (data->regs_user.regs) { 7329 u64 mask = event->attr.sample_regs_user; 7330 size += hweight64(mask) * sizeof(u64); 7331 } 7332 7333 header->size += size; 7334 } 7335 7336 if (sample_type & PERF_SAMPLE_STACK_USER) { 7337 /* 7338 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7339 * processed as the last one or have additional check added 7340 * in case new sample type is added, because we could eat 7341 * up the rest of the sample size. 7342 */ 7343 u16 stack_size = event->attr.sample_stack_user; 7344 u16 size = sizeof(u64); 7345 7346 stack_size = perf_sample_ustack_size(stack_size, header->size, 7347 data->regs_user.regs); 7348 7349 /* 7350 * If there is something to dump, add space for the dump 7351 * itself and for the field that tells the dynamic size, 7352 * which is how many have been actually dumped. 7353 */ 7354 if (stack_size) 7355 size += sizeof(u64) + stack_size; 7356 7357 data->stack_user_size = stack_size; 7358 header->size += size; 7359 } 7360 7361 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7362 /* regs dump ABI info */ 7363 int size = sizeof(u64); 7364 7365 perf_sample_regs_intr(&data->regs_intr, regs); 7366 7367 if (data->regs_intr.regs) { 7368 u64 mask = event->attr.sample_regs_intr; 7369 7370 size += hweight64(mask) * sizeof(u64); 7371 } 7372 7373 header->size += size; 7374 } 7375 7376 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7377 data->phys_addr = perf_virt_to_phys(data->addr); 7378 7379 #ifdef CONFIG_CGROUP_PERF 7380 if (sample_type & PERF_SAMPLE_CGROUP) { 7381 struct cgroup *cgrp; 7382 7383 /* protected by RCU */ 7384 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7385 data->cgroup = cgroup_id(cgrp); 7386 } 7387 #endif 7388 7389 /* 7390 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7391 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7392 * but the value will not dump to the userspace. 7393 */ 7394 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7395 data->data_page_size = perf_get_page_size(data->addr); 7396 7397 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7398 data->code_page_size = perf_get_page_size(data->ip); 7399 7400 if (sample_type & PERF_SAMPLE_AUX) { 7401 u64 size; 7402 7403 header->size += sizeof(u64); /* size */ 7404 7405 /* 7406 * Given the 16bit nature of header::size, an AUX sample can 7407 * easily overflow it, what with all the preceding sample bits. 7408 * Make sure this doesn't happen by using up to U16_MAX bytes 7409 * per sample in total (rounded down to 8 byte boundary). 7410 */ 7411 size = min_t(size_t, U16_MAX - header->size, 7412 event->attr.aux_sample_size); 7413 size = rounddown(size, 8); 7414 size = perf_prepare_sample_aux(event, data, size); 7415 7416 WARN_ON_ONCE(size + header->size > U16_MAX); 7417 header->size += size; 7418 } 7419 /* 7420 * If you're adding more sample types here, you likely need to do 7421 * something about the overflowing header::size, like repurpose the 7422 * lowest 3 bits of size, which should be always zero at the moment. 7423 * This raises a more important question, do we really need 512k sized 7424 * samples and why, so good argumentation is in order for whatever you 7425 * do here next. 7426 */ 7427 WARN_ON_ONCE(header->size & 7); 7428 } 7429 7430 static __always_inline int 7431 __perf_event_output(struct perf_event *event, 7432 struct perf_sample_data *data, 7433 struct pt_regs *regs, 7434 int (*output_begin)(struct perf_output_handle *, 7435 struct perf_sample_data *, 7436 struct perf_event *, 7437 unsigned int)) 7438 { 7439 struct perf_output_handle handle; 7440 struct perf_event_header header; 7441 int err; 7442 7443 /* protect the callchain buffers */ 7444 rcu_read_lock(); 7445 7446 perf_prepare_sample(&header, data, event, regs); 7447 7448 err = output_begin(&handle, data, event, header.size); 7449 if (err) 7450 goto exit; 7451 7452 perf_output_sample(&handle, &header, data, event); 7453 7454 perf_output_end(&handle); 7455 7456 exit: 7457 rcu_read_unlock(); 7458 return err; 7459 } 7460 7461 void 7462 perf_event_output_forward(struct perf_event *event, 7463 struct perf_sample_data *data, 7464 struct pt_regs *regs) 7465 { 7466 __perf_event_output(event, data, regs, perf_output_begin_forward); 7467 } 7468 7469 void 7470 perf_event_output_backward(struct perf_event *event, 7471 struct perf_sample_data *data, 7472 struct pt_regs *regs) 7473 { 7474 __perf_event_output(event, data, regs, perf_output_begin_backward); 7475 } 7476 7477 int 7478 perf_event_output(struct perf_event *event, 7479 struct perf_sample_data *data, 7480 struct pt_regs *regs) 7481 { 7482 return __perf_event_output(event, data, regs, perf_output_begin); 7483 } 7484 7485 /* 7486 * read event_id 7487 */ 7488 7489 struct perf_read_event { 7490 struct perf_event_header header; 7491 7492 u32 pid; 7493 u32 tid; 7494 }; 7495 7496 static void 7497 perf_event_read_event(struct perf_event *event, 7498 struct task_struct *task) 7499 { 7500 struct perf_output_handle handle; 7501 struct perf_sample_data sample; 7502 struct perf_read_event read_event = { 7503 .header = { 7504 .type = PERF_RECORD_READ, 7505 .misc = 0, 7506 .size = sizeof(read_event) + event->read_size, 7507 }, 7508 .pid = perf_event_pid(event, task), 7509 .tid = perf_event_tid(event, task), 7510 }; 7511 int ret; 7512 7513 perf_event_header__init_id(&read_event.header, &sample, event); 7514 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7515 if (ret) 7516 return; 7517 7518 perf_output_put(&handle, read_event); 7519 perf_output_read(&handle, event); 7520 perf_event__output_id_sample(event, &handle, &sample); 7521 7522 perf_output_end(&handle); 7523 } 7524 7525 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7526 7527 static void 7528 perf_iterate_ctx(struct perf_event_context *ctx, 7529 perf_iterate_f output, 7530 void *data, bool all) 7531 { 7532 struct perf_event *event; 7533 7534 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7535 if (!all) { 7536 if (event->state < PERF_EVENT_STATE_INACTIVE) 7537 continue; 7538 if (!event_filter_match(event)) 7539 continue; 7540 } 7541 7542 output(event, data); 7543 } 7544 } 7545 7546 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7547 { 7548 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7549 struct perf_event *event; 7550 7551 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7552 /* 7553 * Skip events that are not fully formed yet; ensure that 7554 * if we observe event->ctx, both event and ctx will be 7555 * complete enough. See perf_install_in_context(). 7556 */ 7557 if (!smp_load_acquire(&event->ctx)) 7558 continue; 7559 7560 if (event->state < PERF_EVENT_STATE_INACTIVE) 7561 continue; 7562 if (!event_filter_match(event)) 7563 continue; 7564 output(event, data); 7565 } 7566 } 7567 7568 /* 7569 * Iterate all events that need to receive side-band events. 7570 * 7571 * For new callers; ensure that account_pmu_sb_event() includes 7572 * your event, otherwise it might not get delivered. 7573 */ 7574 static void 7575 perf_iterate_sb(perf_iterate_f output, void *data, 7576 struct perf_event_context *task_ctx) 7577 { 7578 struct perf_event_context *ctx; 7579 int ctxn; 7580 7581 rcu_read_lock(); 7582 preempt_disable(); 7583 7584 /* 7585 * If we have task_ctx != NULL we only notify the task context itself. 7586 * The task_ctx is set only for EXIT events before releasing task 7587 * context. 7588 */ 7589 if (task_ctx) { 7590 perf_iterate_ctx(task_ctx, output, data, false); 7591 goto done; 7592 } 7593 7594 perf_iterate_sb_cpu(output, data); 7595 7596 for_each_task_context_nr(ctxn) { 7597 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7598 if (ctx) 7599 perf_iterate_ctx(ctx, output, data, false); 7600 } 7601 done: 7602 preempt_enable(); 7603 rcu_read_unlock(); 7604 } 7605 7606 /* 7607 * Clear all file-based filters at exec, they'll have to be 7608 * re-instated when/if these objects are mmapped again. 7609 */ 7610 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7611 { 7612 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7613 struct perf_addr_filter *filter; 7614 unsigned int restart = 0, count = 0; 7615 unsigned long flags; 7616 7617 if (!has_addr_filter(event)) 7618 return; 7619 7620 raw_spin_lock_irqsave(&ifh->lock, flags); 7621 list_for_each_entry(filter, &ifh->list, entry) { 7622 if (filter->path.dentry) { 7623 event->addr_filter_ranges[count].start = 0; 7624 event->addr_filter_ranges[count].size = 0; 7625 restart++; 7626 } 7627 7628 count++; 7629 } 7630 7631 if (restart) 7632 event->addr_filters_gen++; 7633 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7634 7635 if (restart) 7636 perf_event_stop(event, 1); 7637 } 7638 7639 void perf_event_exec(void) 7640 { 7641 struct perf_event_context *ctx; 7642 int ctxn; 7643 7644 for_each_task_context_nr(ctxn) { 7645 perf_event_enable_on_exec(ctxn); 7646 perf_event_remove_on_exec(ctxn); 7647 7648 rcu_read_lock(); 7649 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7650 if (ctx) { 7651 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, 7652 NULL, true); 7653 } 7654 rcu_read_unlock(); 7655 } 7656 } 7657 7658 struct remote_output { 7659 struct perf_buffer *rb; 7660 int err; 7661 }; 7662 7663 static void __perf_event_output_stop(struct perf_event *event, void *data) 7664 { 7665 struct perf_event *parent = event->parent; 7666 struct remote_output *ro = data; 7667 struct perf_buffer *rb = ro->rb; 7668 struct stop_event_data sd = { 7669 .event = event, 7670 }; 7671 7672 if (!has_aux(event)) 7673 return; 7674 7675 if (!parent) 7676 parent = event; 7677 7678 /* 7679 * In case of inheritance, it will be the parent that links to the 7680 * ring-buffer, but it will be the child that's actually using it. 7681 * 7682 * We are using event::rb to determine if the event should be stopped, 7683 * however this may race with ring_buffer_attach() (through set_output), 7684 * which will make us skip the event that actually needs to be stopped. 7685 * So ring_buffer_attach() has to stop an aux event before re-assigning 7686 * its rb pointer. 7687 */ 7688 if (rcu_dereference(parent->rb) == rb) 7689 ro->err = __perf_event_stop(&sd); 7690 } 7691 7692 static int __perf_pmu_output_stop(void *info) 7693 { 7694 struct perf_event *event = info; 7695 struct pmu *pmu = event->ctx->pmu; 7696 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7697 struct remote_output ro = { 7698 .rb = event->rb, 7699 }; 7700 7701 rcu_read_lock(); 7702 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7703 if (cpuctx->task_ctx) 7704 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7705 &ro, false); 7706 rcu_read_unlock(); 7707 7708 return ro.err; 7709 } 7710 7711 static void perf_pmu_output_stop(struct perf_event *event) 7712 { 7713 struct perf_event *iter; 7714 int err, cpu; 7715 7716 restart: 7717 rcu_read_lock(); 7718 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7719 /* 7720 * For per-CPU events, we need to make sure that neither they 7721 * nor their children are running; for cpu==-1 events it's 7722 * sufficient to stop the event itself if it's active, since 7723 * it can't have children. 7724 */ 7725 cpu = iter->cpu; 7726 if (cpu == -1) 7727 cpu = READ_ONCE(iter->oncpu); 7728 7729 if (cpu == -1) 7730 continue; 7731 7732 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7733 if (err == -EAGAIN) { 7734 rcu_read_unlock(); 7735 goto restart; 7736 } 7737 } 7738 rcu_read_unlock(); 7739 } 7740 7741 /* 7742 * task tracking -- fork/exit 7743 * 7744 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7745 */ 7746 7747 struct perf_task_event { 7748 struct task_struct *task; 7749 struct perf_event_context *task_ctx; 7750 7751 struct { 7752 struct perf_event_header header; 7753 7754 u32 pid; 7755 u32 ppid; 7756 u32 tid; 7757 u32 ptid; 7758 u64 time; 7759 } event_id; 7760 }; 7761 7762 static int perf_event_task_match(struct perf_event *event) 7763 { 7764 return event->attr.comm || event->attr.mmap || 7765 event->attr.mmap2 || event->attr.mmap_data || 7766 event->attr.task; 7767 } 7768 7769 static void perf_event_task_output(struct perf_event *event, 7770 void *data) 7771 { 7772 struct perf_task_event *task_event = data; 7773 struct perf_output_handle handle; 7774 struct perf_sample_data sample; 7775 struct task_struct *task = task_event->task; 7776 int ret, size = task_event->event_id.header.size; 7777 7778 if (!perf_event_task_match(event)) 7779 return; 7780 7781 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7782 7783 ret = perf_output_begin(&handle, &sample, event, 7784 task_event->event_id.header.size); 7785 if (ret) 7786 goto out; 7787 7788 task_event->event_id.pid = perf_event_pid(event, task); 7789 task_event->event_id.tid = perf_event_tid(event, task); 7790 7791 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7792 task_event->event_id.ppid = perf_event_pid(event, 7793 task->real_parent); 7794 task_event->event_id.ptid = perf_event_pid(event, 7795 task->real_parent); 7796 } else { /* PERF_RECORD_FORK */ 7797 task_event->event_id.ppid = perf_event_pid(event, current); 7798 task_event->event_id.ptid = perf_event_tid(event, current); 7799 } 7800 7801 task_event->event_id.time = perf_event_clock(event); 7802 7803 perf_output_put(&handle, task_event->event_id); 7804 7805 perf_event__output_id_sample(event, &handle, &sample); 7806 7807 perf_output_end(&handle); 7808 out: 7809 task_event->event_id.header.size = size; 7810 } 7811 7812 static void perf_event_task(struct task_struct *task, 7813 struct perf_event_context *task_ctx, 7814 int new) 7815 { 7816 struct perf_task_event task_event; 7817 7818 if (!atomic_read(&nr_comm_events) && 7819 !atomic_read(&nr_mmap_events) && 7820 !atomic_read(&nr_task_events)) 7821 return; 7822 7823 task_event = (struct perf_task_event){ 7824 .task = task, 7825 .task_ctx = task_ctx, 7826 .event_id = { 7827 .header = { 7828 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7829 .misc = 0, 7830 .size = sizeof(task_event.event_id), 7831 }, 7832 /* .pid */ 7833 /* .ppid */ 7834 /* .tid */ 7835 /* .ptid */ 7836 /* .time */ 7837 }, 7838 }; 7839 7840 perf_iterate_sb(perf_event_task_output, 7841 &task_event, 7842 task_ctx); 7843 } 7844 7845 void perf_event_fork(struct task_struct *task) 7846 { 7847 perf_event_task(task, NULL, 1); 7848 perf_event_namespaces(task); 7849 } 7850 7851 /* 7852 * comm tracking 7853 */ 7854 7855 struct perf_comm_event { 7856 struct task_struct *task; 7857 char *comm; 7858 int comm_size; 7859 7860 struct { 7861 struct perf_event_header header; 7862 7863 u32 pid; 7864 u32 tid; 7865 } event_id; 7866 }; 7867 7868 static int perf_event_comm_match(struct perf_event *event) 7869 { 7870 return event->attr.comm; 7871 } 7872 7873 static void perf_event_comm_output(struct perf_event *event, 7874 void *data) 7875 { 7876 struct perf_comm_event *comm_event = data; 7877 struct perf_output_handle handle; 7878 struct perf_sample_data sample; 7879 int size = comm_event->event_id.header.size; 7880 int ret; 7881 7882 if (!perf_event_comm_match(event)) 7883 return; 7884 7885 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7886 ret = perf_output_begin(&handle, &sample, event, 7887 comm_event->event_id.header.size); 7888 7889 if (ret) 7890 goto out; 7891 7892 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7893 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7894 7895 perf_output_put(&handle, comm_event->event_id); 7896 __output_copy(&handle, comm_event->comm, 7897 comm_event->comm_size); 7898 7899 perf_event__output_id_sample(event, &handle, &sample); 7900 7901 perf_output_end(&handle); 7902 out: 7903 comm_event->event_id.header.size = size; 7904 } 7905 7906 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7907 { 7908 char comm[TASK_COMM_LEN]; 7909 unsigned int size; 7910 7911 memset(comm, 0, sizeof(comm)); 7912 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7913 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7914 7915 comm_event->comm = comm; 7916 comm_event->comm_size = size; 7917 7918 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7919 7920 perf_iterate_sb(perf_event_comm_output, 7921 comm_event, 7922 NULL); 7923 } 7924 7925 void perf_event_comm(struct task_struct *task, bool exec) 7926 { 7927 struct perf_comm_event comm_event; 7928 7929 if (!atomic_read(&nr_comm_events)) 7930 return; 7931 7932 comm_event = (struct perf_comm_event){ 7933 .task = task, 7934 /* .comm */ 7935 /* .comm_size */ 7936 .event_id = { 7937 .header = { 7938 .type = PERF_RECORD_COMM, 7939 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7940 /* .size */ 7941 }, 7942 /* .pid */ 7943 /* .tid */ 7944 }, 7945 }; 7946 7947 perf_event_comm_event(&comm_event); 7948 } 7949 7950 /* 7951 * namespaces tracking 7952 */ 7953 7954 struct perf_namespaces_event { 7955 struct task_struct *task; 7956 7957 struct { 7958 struct perf_event_header header; 7959 7960 u32 pid; 7961 u32 tid; 7962 u64 nr_namespaces; 7963 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7964 } event_id; 7965 }; 7966 7967 static int perf_event_namespaces_match(struct perf_event *event) 7968 { 7969 return event->attr.namespaces; 7970 } 7971 7972 static void perf_event_namespaces_output(struct perf_event *event, 7973 void *data) 7974 { 7975 struct perf_namespaces_event *namespaces_event = data; 7976 struct perf_output_handle handle; 7977 struct perf_sample_data sample; 7978 u16 header_size = namespaces_event->event_id.header.size; 7979 int ret; 7980 7981 if (!perf_event_namespaces_match(event)) 7982 return; 7983 7984 perf_event_header__init_id(&namespaces_event->event_id.header, 7985 &sample, event); 7986 ret = perf_output_begin(&handle, &sample, event, 7987 namespaces_event->event_id.header.size); 7988 if (ret) 7989 goto out; 7990 7991 namespaces_event->event_id.pid = perf_event_pid(event, 7992 namespaces_event->task); 7993 namespaces_event->event_id.tid = perf_event_tid(event, 7994 namespaces_event->task); 7995 7996 perf_output_put(&handle, namespaces_event->event_id); 7997 7998 perf_event__output_id_sample(event, &handle, &sample); 7999 8000 perf_output_end(&handle); 8001 out: 8002 namespaces_event->event_id.header.size = header_size; 8003 } 8004 8005 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8006 struct task_struct *task, 8007 const struct proc_ns_operations *ns_ops) 8008 { 8009 struct path ns_path; 8010 struct inode *ns_inode; 8011 int error; 8012 8013 error = ns_get_path(&ns_path, task, ns_ops); 8014 if (!error) { 8015 ns_inode = ns_path.dentry->d_inode; 8016 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8017 ns_link_info->ino = ns_inode->i_ino; 8018 path_put(&ns_path); 8019 } 8020 } 8021 8022 void perf_event_namespaces(struct task_struct *task) 8023 { 8024 struct perf_namespaces_event namespaces_event; 8025 struct perf_ns_link_info *ns_link_info; 8026 8027 if (!atomic_read(&nr_namespaces_events)) 8028 return; 8029 8030 namespaces_event = (struct perf_namespaces_event){ 8031 .task = task, 8032 .event_id = { 8033 .header = { 8034 .type = PERF_RECORD_NAMESPACES, 8035 .misc = 0, 8036 .size = sizeof(namespaces_event.event_id), 8037 }, 8038 /* .pid */ 8039 /* .tid */ 8040 .nr_namespaces = NR_NAMESPACES, 8041 /* .link_info[NR_NAMESPACES] */ 8042 }, 8043 }; 8044 8045 ns_link_info = namespaces_event.event_id.link_info; 8046 8047 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8048 task, &mntns_operations); 8049 8050 #ifdef CONFIG_USER_NS 8051 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8052 task, &userns_operations); 8053 #endif 8054 #ifdef CONFIG_NET_NS 8055 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8056 task, &netns_operations); 8057 #endif 8058 #ifdef CONFIG_UTS_NS 8059 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8060 task, &utsns_operations); 8061 #endif 8062 #ifdef CONFIG_IPC_NS 8063 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8064 task, &ipcns_operations); 8065 #endif 8066 #ifdef CONFIG_PID_NS 8067 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8068 task, &pidns_operations); 8069 #endif 8070 #ifdef CONFIG_CGROUPS 8071 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8072 task, &cgroupns_operations); 8073 #endif 8074 8075 perf_iterate_sb(perf_event_namespaces_output, 8076 &namespaces_event, 8077 NULL); 8078 } 8079 8080 /* 8081 * cgroup tracking 8082 */ 8083 #ifdef CONFIG_CGROUP_PERF 8084 8085 struct perf_cgroup_event { 8086 char *path; 8087 int path_size; 8088 struct { 8089 struct perf_event_header header; 8090 u64 id; 8091 char path[]; 8092 } event_id; 8093 }; 8094 8095 static int perf_event_cgroup_match(struct perf_event *event) 8096 { 8097 return event->attr.cgroup; 8098 } 8099 8100 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8101 { 8102 struct perf_cgroup_event *cgroup_event = data; 8103 struct perf_output_handle handle; 8104 struct perf_sample_data sample; 8105 u16 header_size = cgroup_event->event_id.header.size; 8106 int ret; 8107 8108 if (!perf_event_cgroup_match(event)) 8109 return; 8110 8111 perf_event_header__init_id(&cgroup_event->event_id.header, 8112 &sample, event); 8113 ret = perf_output_begin(&handle, &sample, event, 8114 cgroup_event->event_id.header.size); 8115 if (ret) 8116 goto out; 8117 8118 perf_output_put(&handle, cgroup_event->event_id); 8119 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8120 8121 perf_event__output_id_sample(event, &handle, &sample); 8122 8123 perf_output_end(&handle); 8124 out: 8125 cgroup_event->event_id.header.size = header_size; 8126 } 8127 8128 static void perf_event_cgroup(struct cgroup *cgrp) 8129 { 8130 struct perf_cgroup_event cgroup_event; 8131 char path_enomem[16] = "//enomem"; 8132 char *pathname; 8133 size_t size; 8134 8135 if (!atomic_read(&nr_cgroup_events)) 8136 return; 8137 8138 cgroup_event = (struct perf_cgroup_event){ 8139 .event_id = { 8140 .header = { 8141 .type = PERF_RECORD_CGROUP, 8142 .misc = 0, 8143 .size = sizeof(cgroup_event.event_id), 8144 }, 8145 .id = cgroup_id(cgrp), 8146 }, 8147 }; 8148 8149 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8150 if (pathname == NULL) { 8151 cgroup_event.path = path_enomem; 8152 } else { 8153 /* just to be sure to have enough space for alignment */ 8154 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8155 cgroup_event.path = pathname; 8156 } 8157 8158 /* 8159 * Since our buffer works in 8 byte units we need to align our string 8160 * size to a multiple of 8. However, we must guarantee the tail end is 8161 * zero'd out to avoid leaking random bits to userspace. 8162 */ 8163 size = strlen(cgroup_event.path) + 1; 8164 while (!IS_ALIGNED(size, sizeof(u64))) 8165 cgroup_event.path[size++] = '\0'; 8166 8167 cgroup_event.event_id.header.size += size; 8168 cgroup_event.path_size = size; 8169 8170 perf_iterate_sb(perf_event_cgroup_output, 8171 &cgroup_event, 8172 NULL); 8173 8174 kfree(pathname); 8175 } 8176 8177 #endif 8178 8179 /* 8180 * mmap tracking 8181 */ 8182 8183 struct perf_mmap_event { 8184 struct vm_area_struct *vma; 8185 8186 const char *file_name; 8187 int file_size; 8188 int maj, min; 8189 u64 ino; 8190 u64 ino_generation; 8191 u32 prot, flags; 8192 u8 build_id[BUILD_ID_SIZE_MAX]; 8193 u32 build_id_size; 8194 8195 struct { 8196 struct perf_event_header header; 8197 8198 u32 pid; 8199 u32 tid; 8200 u64 start; 8201 u64 len; 8202 u64 pgoff; 8203 } event_id; 8204 }; 8205 8206 static int perf_event_mmap_match(struct perf_event *event, 8207 void *data) 8208 { 8209 struct perf_mmap_event *mmap_event = data; 8210 struct vm_area_struct *vma = mmap_event->vma; 8211 int executable = vma->vm_flags & VM_EXEC; 8212 8213 return (!executable && event->attr.mmap_data) || 8214 (executable && (event->attr.mmap || event->attr.mmap2)); 8215 } 8216 8217 static void perf_event_mmap_output(struct perf_event *event, 8218 void *data) 8219 { 8220 struct perf_mmap_event *mmap_event = data; 8221 struct perf_output_handle handle; 8222 struct perf_sample_data sample; 8223 int size = mmap_event->event_id.header.size; 8224 u32 type = mmap_event->event_id.header.type; 8225 bool use_build_id; 8226 int ret; 8227 8228 if (!perf_event_mmap_match(event, data)) 8229 return; 8230 8231 if (event->attr.mmap2) { 8232 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8233 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8234 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8235 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8236 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8237 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8238 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8239 } 8240 8241 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8242 ret = perf_output_begin(&handle, &sample, event, 8243 mmap_event->event_id.header.size); 8244 if (ret) 8245 goto out; 8246 8247 mmap_event->event_id.pid = perf_event_pid(event, current); 8248 mmap_event->event_id.tid = perf_event_tid(event, current); 8249 8250 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8251 8252 if (event->attr.mmap2 && use_build_id) 8253 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8254 8255 perf_output_put(&handle, mmap_event->event_id); 8256 8257 if (event->attr.mmap2) { 8258 if (use_build_id) { 8259 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8260 8261 __output_copy(&handle, size, 4); 8262 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8263 } else { 8264 perf_output_put(&handle, mmap_event->maj); 8265 perf_output_put(&handle, mmap_event->min); 8266 perf_output_put(&handle, mmap_event->ino); 8267 perf_output_put(&handle, mmap_event->ino_generation); 8268 } 8269 perf_output_put(&handle, mmap_event->prot); 8270 perf_output_put(&handle, mmap_event->flags); 8271 } 8272 8273 __output_copy(&handle, mmap_event->file_name, 8274 mmap_event->file_size); 8275 8276 perf_event__output_id_sample(event, &handle, &sample); 8277 8278 perf_output_end(&handle); 8279 out: 8280 mmap_event->event_id.header.size = size; 8281 mmap_event->event_id.header.type = type; 8282 } 8283 8284 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8285 { 8286 struct vm_area_struct *vma = mmap_event->vma; 8287 struct file *file = vma->vm_file; 8288 int maj = 0, min = 0; 8289 u64 ino = 0, gen = 0; 8290 u32 prot = 0, flags = 0; 8291 unsigned int size; 8292 char tmp[16]; 8293 char *buf = NULL; 8294 char *name; 8295 8296 if (vma->vm_flags & VM_READ) 8297 prot |= PROT_READ; 8298 if (vma->vm_flags & VM_WRITE) 8299 prot |= PROT_WRITE; 8300 if (vma->vm_flags & VM_EXEC) 8301 prot |= PROT_EXEC; 8302 8303 if (vma->vm_flags & VM_MAYSHARE) 8304 flags = MAP_SHARED; 8305 else 8306 flags = MAP_PRIVATE; 8307 8308 if (vma->vm_flags & VM_DENYWRITE) 8309 flags |= MAP_DENYWRITE; 8310 if (vma->vm_flags & VM_MAYEXEC) 8311 flags |= MAP_EXECUTABLE; 8312 if (vma->vm_flags & VM_LOCKED) 8313 flags |= MAP_LOCKED; 8314 if (is_vm_hugetlb_page(vma)) 8315 flags |= MAP_HUGETLB; 8316 8317 if (file) { 8318 struct inode *inode; 8319 dev_t dev; 8320 8321 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8322 if (!buf) { 8323 name = "//enomem"; 8324 goto cpy_name; 8325 } 8326 /* 8327 * d_path() works from the end of the rb backwards, so we 8328 * need to add enough zero bytes after the string to handle 8329 * the 64bit alignment we do later. 8330 */ 8331 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8332 if (IS_ERR(name)) { 8333 name = "//toolong"; 8334 goto cpy_name; 8335 } 8336 inode = file_inode(vma->vm_file); 8337 dev = inode->i_sb->s_dev; 8338 ino = inode->i_ino; 8339 gen = inode->i_generation; 8340 maj = MAJOR(dev); 8341 min = MINOR(dev); 8342 8343 goto got_name; 8344 } else { 8345 if (vma->vm_ops && vma->vm_ops->name) { 8346 name = (char *) vma->vm_ops->name(vma); 8347 if (name) 8348 goto cpy_name; 8349 } 8350 8351 name = (char *)arch_vma_name(vma); 8352 if (name) 8353 goto cpy_name; 8354 8355 if (vma->vm_start <= vma->vm_mm->start_brk && 8356 vma->vm_end >= vma->vm_mm->brk) { 8357 name = "[heap]"; 8358 goto cpy_name; 8359 } 8360 if (vma->vm_start <= vma->vm_mm->start_stack && 8361 vma->vm_end >= vma->vm_mm->start_stack) { 8362 name = "[stack]"; 8363 goto cpy_name; 8364 } 8365 8366 name = "//anon"; 8367 goto cpy_name; 8368 } 8369 8370 cpy_name: 8371 strlcpy(tmp, name, sizeof(tmp)); 8372 name = tmp; 8373 got_name: 8374 /* 8375 * Since our buffer works in 8 byte units we need to align our string 8376 * size to a multiple of 8. However, we must guarantee the tail end is 8377 * zero'd out to avoid leaking random bits to userspace. 8378 */ 8379 size = strlen(name)+1; 8380 while (!IS_ALIGNED(size, sizeof(u64))) 8381 name[size++] = '\0'; 8382 8383 mmap_event->file_name = name; 8384 mmap_event->file_size = size; 8385 mmap_event->maj = maj; 8386 mmap_event->min = min; 8387 mmap_event->ino = ino; 8388 mmap_event->ino_generation = gen; 8389 mmap_event->prot = prot; 8390 mmap_event->flags = flags; 8391 8392 if (!(vma->vm_flags & VM_EXEC)) 8393 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8394 8395 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8396 8397 if (atomic_read(&nr_build_id_events)) 8398 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8399 8400 perf_iterate_sb(perf_event_mmap_output, 8401 mmap_event, 8402 NULL); 8403 8404 kfree(buf); 8405 } 8406 8407 /* 8408 * Check whether inode and address range match filter criteria. 8409 */ 8410 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8411 struct file *file, unsigned long offset, 8412 unsigned long size) 8413 { 8414 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8415 if (!filter->path.dentry) 8416 return false; 8417 8418 if (d_inode(filter->path.dentry) != file_inode(file)) 8419 return false; 8420 8421 if (filter->offset > offset + size) 8422 return false; 8423 8424 if (filter->offset + filter->size < offset) 8425 return false; 8426 8427 return true; 8428 } 8429 8430 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8431 struct vm_area_struct *vma, 8432 struct perf_addr_filter_range *fr) 8433 { 8434 unsigned long vma_size = vma->vm_end - vma->vm_start; 8435 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8436 struct file *file = vma->vm_file; 8437 8438 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8439 return false; 8440 8441 if (filter->offset < off) { 8442 fr->start = vma->vm_start; 8443 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8444 } else { 8445 fr->start = vma->vm_start + filter->offset - off; 8446 fr->size = min(vma->vm_end - fr->start, filter->size); 8447 } 8448 8449 return true; 8450 } 8451 8452 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8453 { 8454 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8455 struct vm_area_struct *vma = data; 8456 struct perf_addr_filter *filter; 8457 unsigned int restart = 0, count = 0; 8458 unsigned long flags; 8459 8460 if (!has_addr_filter(event)) 8461 return; 8462 8463 if (!vma->vm_file) 8464 return; 8465 8466 raw_spin_lock_irqsave(&ifh->lock, flags); 8467 list_for_each_entry(filter, &ifh->list, entry) { 8468 if (perf_addr_filter_vma_adjust(filter, vma, 8469 &event->addr_filter_ranges[count])) 8470 restart++; 8471 8472 count++; 8473 } 8474 8475 if (restart) 8476 event->addr_filters_gen++; 8477 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8478 8479 if (restart) 8480 perf_event_stop(event, 1); 8481 } 8482 8483 /* 8484 * Adjust all task's events' filters to the new vma 8485 */ 8486 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8487 { 8488 struct perf_event_context *ctx; 8489 int ctxn; 8490 8491 /* 8492 * Data tracing isn't supported yet and as such there is no need 8493 * to keep track of anything that isn't related to executable code: 8494 */ 8495 if (!(vma->vm_flags & VM_EXEC)) 8496 return; 8497 8498 rcu_read_lock(); 8499 for_each_task_context_nr(ctxn) { 8500 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8501 if (!ctx) 8502 continue; 8503 8504 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8505 } 8506 rcu_read_unlock(); 8507 } 8508 8509 void perf_event_mmap(struct vm_area_struct *vma) 8510 { 8511 struct perf_mmap_event mmap_event; 8512 8513 if (!atomic_read(&nr_mmap_events)) 8514 return; 8515 8516 mmap_event = (struct perf_mmap_event){ 8517 .vma = vma, 8518 /* .file_name */ 8519 /* .file_size */ 8520 .event_id = { 8521 .header = { 8522 .type = PERF_RECORD_MMAP, 8523 .misc = PERF_RECORD_MISC_USER, 8524 /* .size */ 8525 }, 8526 /* .pid */ 8527 /* .tid */ 8528 .start = vma->vm_start, 8529 .len = vma->vm_end - vma->vm_start, 8530 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8531 }, 8532 /* .maj (attr_mmap2 only) */ 8533 /* .min (attr_mmap2 only) */ 8534 /* .ino (attr_mmap2 only) */ 8535 /* .ino_generation (attr_mmap2 only) */ 8536 /* .prot (attr_mmap2 only) */ 8537 /* .flags (attr_mmap2 only) */ 8538 }; 8539 8540 perf_addr_filters_adjust(vma); 8541 perf_event_mmap_event(&mmap_event); 8542 } 8543 8544 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8545 unsigned long size, u64 flags) 8546 { 8547 struct perf_output_handle handle; 8548 struct perf_sample_data sample; 8549 struct perf_aux_event { 8550 struct perf_event_header header; 8551 u64 offset; 8552 u64 size; 8553 u64 flags; 8554 } rec = { 8555 .header = { 8556 .type = PERF_RECORD_AUX, 8557 .misc = 0, 8558 .size = sizeof(rec), 8559 }, 8560 .offset = head, 8561 .size = size, 8562 .flags = flags, 8563 }; 8564 int ret; 8565 8566 perf_event_header__init_id(&rec.header, &sample, event); 8567 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8568 8569 if (ret) 8570 return; 8571 8572 perf_output_put(&handle, rec); 8573 perf_event__output_id_sample(event, &handle, &sample); 8574 8575 perf_output_end(&handle); 8576 } 8577 8578 /* 8579 * Lost/dropped samples logging 8580 */ 8581 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8582 { 8583 struct perf_output_handle handle; 8584 struct perf_sample_data sample; 8585 int ret; 8586 8587 struct { 8588 struct perf_event_header header; 8589 u64 lost; 8590 } lost_samples_event = { 8591 .header = { 8592 .type = PERF_RECORD_LOST_SAMPLES, 8593 .misc = 0, 8594 .size = sizeof(lost_samples_event), 8595 }, 8596 .lost = lost, 8597 }; 8598 8599 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8600 8601 ret = perf_output_begin(&handle, &sample, event, 8602 lost_samples_event.header.size); 8603 if (ret) 8604 return; 8605 8606 perf_output_put(&handle, lost_samples_event); 8607 perf_event__output_id_sample(event, &handle, &sample); 8608 perf_output_end(&handle); 8609 } 8610 8611 /* 8612 * context_switch tracking 8613 */ 8614 8615 struct perf_switch_event { 8616 struct task_struct *task; 8617 struct task_struct *next_prev; 8618 8619 struct { 8620 struct perf_event_header header; 8621 u32 next_prev_pid; 8622 u32 next_prev_tid; 8623 } event_id; 8624 }; 8625 8626 static int perf_event_switch_match(struct perf_event *event) 8627 { 8628 return event->attr.context_switch; 8629 } 8630 8631 static void perf_event_switch_output(struct perf_event *event, void *data) 8632 { 8633 struct perf_switch_event *se = data; 8634 struct perf_output_handle handle; 8635 struct perf_sample_data sample; 8636 int ret; 8637 8638 if (!perf_event_switch_match(event)) 8639 return; 8640 8641 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8642 if (event->ctx->task) { 8643 se->event_id.header.type = PERF_RECORD_SWITCH; 8644 se->event_id.header.size = sizeof(se->event_id.header); 8645 } else { 8646 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8647 se->event_id.header.size = sizeof(se->event_id); 8648 se->event_id.next_prev_pid = 8649 perf_event_pid(event, se->next_prev); 8650 se->event_id.next_prev_tid = 8651 perf_event_tid(event, se->next_prev); 8652 } 8653 8654 perf_event_header__init_id(&se->event_id.header, &sample, event); 8655 8656 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8657 if (ret) 8658 return; 8659 8660 if (event->ctx->task) 8661 perf_output_put(&handle, se->event_id.header); 8662 else 8663 perf_output_put(&handle, se->event_id); 8664 8665 perf_event__output_id_sample(event, &handle, &sample); 8666 8667 perf_output_end(&handle); 8668 } 8669 8670 static void perf_event_switch(struct task_struct *task, 8671 struct task_struct *next_prev, bool sched_in) 8672 { 8673 struct perf_switch_event switch_event; 8674 8675 /* N.B. caller checks nr_switch_events != 0 */ 8676 8677 switch_event = (struct perf_switch_event){ 8678 .task = task, 8679 .next_prev = next_prev, 8680 .event_id = { 8681 .header = { 8682 /* .type */ 8683 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8684 /* .size */ 8685 }, 8686 /* .next_prev_pid */ 8687 /* .next_prev_tid */ 8688 }, 8689 }; 8690 8691 if (!sched_in && task->state == TASK_RUNNING) 8692 switch_event.event_id.header.misc |= 8693 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8694 8695 perf_iterate_sb(perf_event_switch_output, 8696 &switch_event, 8697 NULL); 8698 } 8699 8700 /* 8701 * IRQ throttle logging 8702 */ 8703 8704 static void perf_log_throttle(struct perf_event *event, int enable) 8705 { 8706 struct perf_output_handle handle; 8707 struct perf_sample_data sample; 8708 int ret; 8709 8710 struct { 8711 struct perf_event_header header; 8712 u64 time; 8713 u64 id; 8714 u64 stream_id; 8715 } throttle_event = { 8716 .header = { 8717 .type = PERF_RECORD_THROTTLE, 8718 .misc = 0, 8719 .size = sizeof(throttle_event), 8720 }, 8721 .time = perf_event_clock(event), 8722 .id = primary_event_id(event), 8723 .stream_id = event->id, 8724 }; 8725 8726 if (enable) 8727 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8728 8729 perf_event_header__init_id(&throttle_event.header, &sample, event); 8730 8731 ret = perf_output_begin(&handle, &sample, event, 8732 throttle_event.header.size); 8733 if (ret) 8734 return; 8735 8736 perf_output_put(&handle, throttle_event); 8737 perf_event__output_id_sample(event, &handle, &sample); 8738 perf_output_end(&handle); 8739 } 8740 8741 /* 8742 * ksymbol register/unregister tracking 8743 */ 8744 8745 struct perf_ksymbol_event { 8746 const char *name; 8747 int name_len; 8748 struct { 8749 struct perf_event_header header; 8750 u64 addr; 8751 u32 len; 8752 u16 ksym_type; 8753 u16 flags; 8754 } event_id; 8755 }; 8756 8757 static int perf_event_ksymbol_match(struct perf_event *event) 8758 { 8759 return event->attr.ksymbol; 8760 } 8761 8762 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8763 { 8764 struct perf_ksymbol_event *ksymbol_event = data; 8765 struct perf_output_handle handle; 8766 struct perf_sample_data sample; 8767 int ret; 8768 8769 if (!perf_event_ksymbol_match(event)) 8770 return; 8771 8772 perf_event_header__init_id(&ksymbol_event->event_id.header, 8773 &sample, event); 8774 ret = perf_output_begin(&handle, &sample, event, 8775 ksymbol_event->event_id.header.size); 8776 if (ret) 8777 return; 8778 8779 perf_output_put(&handle, ksymbol_event->event_id); 8780 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8781 perf_event__output_id_sample(event, &handle, &sample); 8782 8783 perf_output_end(&handle); 8784 } 8785 8786 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8787 const char *sym) 8788 { 8789 struct perf_ksymbol_event ksymbol_event; 8790 char name[KSYM_NAME_LEN]; 8791 u16 flags = 0; 8792 int name_len; 8793 8794 if (!atomic_read(&nr_ksymbol_events)) 8795 return; 8796 8797 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8798 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8799 goto err; 8800 8801 strlcpy(name, sym, KSYM_NAME_LEN); 8802 name_len = strlen(name) + 1; 8803 while (!IS_ALIGNED(name_len, sizeof(u64))) 8804 name[name_len++] = '\0'; 8805 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8806 8807 if (unregister) 8808 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8809 8810 ksymbol_event = (struct perf_ksymbol_event){ 8811 .name = name, 8812 .name_len = name_len, 8813 .event_id = { 8814 .header = { 8815 .type = PERF_RECORD_KSYMBOL, 8816 .size = sizeof(ksymbol_event.event_id) + 8817 name_len, 8818 }, 8819 .addr = addr, 8820 .len = len, 8821 .ksym_type = ksym_type, 8822 .flags = flags, 8823 }, 8824 }; 8825 8826 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8827 return; 8828 err: 8829 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8830 } 8831 8832 /* 8833 * bpf program load/unload tracking 8834 */ 8835 8836 struct perf_bpf_event { 8837 struct bpf_prog *prog; 8838 struct { 8839 struct perf_event_header header; 8840 u16 type; 8841 u16 flags; 8842 u32 id; 8843 u8 tag[BPF_TAG_SIZE]; 8844 } event_id; 8845 }; 8846 8847 static int perf_event_bpf_match(struct perf_event *event) 8848 { 8849 return event->attr.bpf_event; 8850 } 8851 8852 static void perf_event_bpf_output(struct perf_event *event, void *data) 8853 { 8854 struct perf_bpf_event *bpf_event = data; 8855 struct perf_output_handle handle; 8856 struct perf_sample_data sample; 8857 int ret; 8858 8859 if (!perf_event_bpf_match(event)) 8860 return; 8861 8862 perf_event_header__init_id(&bpf_event->event_id.header, 8863 &sample, event); 8864 ret = perf_output_begin(&handle, data, event, 8865 bpf_event->event_id.header.size); 8866 if (ret) 8867 return; 8868 8869 perf_output_put(&handle, bpf_event->event_id); 8870 perf_event__output_id_sample(event, &handle, &sample); 8871 8872 perf_output_end(&handle); 8873 } 8874 8875 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8876 enum perf_bpf_event_type type) 8877 { 8878 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8879 int i; 8880 8881 if (prog->aux->func_cnt == 0) { 8882 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8883 (u64)(unsigned long)prog->bpf_func, 8884 prog->jited_len, unregister, 8885 prog->aux->ksym.name); 8886 } else { 8887 for (i = 0; i < prog->aux->func_cnt; i++) { 8888 struct bpf_prog *subprog = prog->aux->func[i]; 8889 8890 perf_event_ksymbol( 8891 PERF_RECORD_KSYMBOL_TYPE_BPF, 8892 (u64)(unsigned long)subprog->bpf_func, 8893 subprog->jited_len, unregister, 8894 prog->aux->ksym.name); 8895 } 8896 } 8897 } 8898 8899 void perf_event_bpf_event(struct bpf_prog *prog, 8900 enum perf_bpf_event_type type, 8901 u16 flags) 8902 { 8903 struct perf_bpf_event bpf_event; 8904 8905 if (type <= PERF_BPF_EVENT_UNKNOWN || 8906 type >= PERF_BPF_EVENT_MAX) 8907 return; 8908 8909 switch (type) { 8910 case PERF_BPF_EVENT_PROG_LOAD: 8911 case PERF_BPF_EVENT_PROG_UNLOAD: 8912 if (atomic_read(&nr_ksymbol_events)) 8913 perf_event_bpf_emit_ksymbols(prog, type); 8914 break; 8915 default: 8916 break; 8917 } 8918 8919 if (!atomic_read(&nr_bpf_events)) 8920 return; 8921 8922 bpf_event = (struct perf_bpf_event){ 8923 .prog = prog, 8924 .event_id = { 8925 .header = { 8926 .type = PERF_RECORD_BPF_EVENT, 8927 .size = sizeof(bpf_event.event_id), 8928 }, 8929 .type = type, 8930 .flags = flags, 8931 .id = prog->aux->id, 8932 }, 8933 }; 8934 8935 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8936 8937 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8938 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8939 } 8940 8941 struct perf_text_poke_event { 8942 const void *old_bytes; 8943 const void *new_bytes; 8944 size_t pad; 8945 u16 old_len; 8946 u16 new_len; 8947 8948 struct { 8949 struct perf_event_header header; 8950 8951 u64 addr; 8952 } event_id; 8953 }; 8954 8955 static int perf_event_text_poke_match(struct perf_event *event) 8956 { 8957 return event->attr.text_poke; 8958 } 8959 8960 static void perf_event_text_poke_output(struct perf_event *event, void *data) 8961 { 8962 struct perf_text_poke_event *text_poke_event = data; 8963 struct perf_output_handle handle; 8964 struct perf_sample_data sample; 8965 u64 padding = 0; 8966 int ret; 8967 8968 if (!perf_event_text_poke_match(event)) 8969 return; 8970 8971 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 8972 8973 ret = perf_output_begin(&handle, &sample, event, 8974 text_poke_event->event_id.header.size); 8975 if (ret) 8976 return; 8977 8978 perf_output_put(&handle, text_poke_event->event_id); 8979 perf_output_put(&handle, text_poke_event->old_len); 8980 perf_output_put(&handle, text_poke_event->new_len); 8981 8982 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 8983 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 8984 8985 if (text_poke_event->pad) 8986 __output_copy(&handle, &padding, text_poke_event->pad); 8987 8988 perf_event__output_id_sample(event, &handle, &sample); 8989 8990 perf_output_end(&handle); 8991 } 8992 8993 void perf_event_text_poke(const void *addr, const void *old_bytes, 8994 size_t old_len, const void *new_bytes, size_t new_len) 8995 { 8996 struct perf_text_poke_event text_poke_event; 8997 size_t tot, pad; 8998 8999 if (!atomic_read(&nr_text_poke_events)) 9000 return; 9001 9002 tot = sizeof(text_poke_event.old_len) + old_len; 9003 tot += sizeof(text_poke_event.new_len) + new_len; 9004 pad = ALIGN(tot, sizeof(u64)) - tot; 9005 9006 text_poke_event = (struct perf_text_poke_event){ 9007 .old_bytes = old_bytes, 9008 .new_bytes = new_bytes, 9009 .pad = pad, 9010 .old_len = old_len, 9011 .new_len = new_len, 9012 .event_id = { 9013 .header = { 9014 .type = PERF_RECORD_TEXT_POKE, 9015 .misc = PERF_RECORD_MISC_KERNEL, 9016 .size = sizeof(text_poke_event.event_id) + tot + pad, 9017 }, 9018 .addr = (unsigned long)addr, 9019 }, 9020 }; 9021 9022 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9023 } 9024 9025 void perf_event_itrace_started(struct perf_event *event) 9026 { 9027 event->attach_state |= PERF_ATTACH_ITRACE; 9028 } 9029 9030 static void perf_log_itrace_start(struct perf_event *event) 9031 { 9032 struct perf_output_handle handle; 9033 struct perf_sample_data sample; 9034 struct perf_aux_event { 9035 struct perf_event_header header; 9036 u32 pid; 9037 u32 tid; 9038 } rec; 9039 int ret; 9040 9041 if (event->parent) 9042 event = event->parent; 9043 9044 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9045 event->attach_state & PERF_ATTACH_ITRACE) 9046 return; 9047 9048 rec.header.type = PERF_RECORD_ITRACE_START; 9049 rec.header.misc = 0; 9050 rec.header.size = sizeof(rec); 9051 rec.pid = perf_event_pid(event, current); 9052 rec.tid = perf_event_tid(event, current); 9053 9054 perf_event_header__init_id(&rec.header, &sample, event); 9055 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9056 9057 if (ret) 9058 return; 9059 9060 perf_output_put(&handle, rec); 9061 perf_event__output_id_sample(event, &handle, &sample); 9062 9063 perf_output_end(&handle); 9064 } 9065 9066 static int 9067 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9068 { 9069 struct hw_perf_event *hwc = &event->hw; 9070 int ret = 0; 9071 u64 seq; 9072 9073 seq = __this_cpu_read(perf_throttled_seq); 9074 if (seq != hwc->interrupts_seq) { 9075 hwc->interrupts_seq = seq; 9076 hwc->interrupts = 1; 9077 } else { 9078 hwc->interrupts++; 9079 if (unlikely(throttle 9080 && hwc->interrupts >= max_samples_per_tick)) { 9081 __this_cpu_inc(perf_throttled_count); 9082 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9083 hwc->interrupts = MAX_INTERRUPTS; 9084 perf_log_throttle(event, 0); 9085 ret = 1; 9086 } 9087 } 9088 9089 if (event->attr.freq) { 9090 u64 now = perf_clock(); 9091 s64 delta = now - hwc->freq_time_stamp; 9092 9093 hwc->freq_time_stamp = now; 9094 9095 if (delta > 0 && delta < 2*TICK_NSEC) 9096 perf_adjust_period(event, delta, hwc->last_period, true); 9097 } 9098 9099 return ret; 9100 } 9101 9102 int perf_event_account_interrupt(struct perf_event *event) 9103 { 9104 return __perf_event_account_interrupt(event, 1); 9105 } 9106 9107 /* 9108 * Generic event overflow handling, sampling. 9109 */ 9110 9111 static int __perf_event_overflow(struct perf_event *event, 9112 int throttle, struct perf_sample_data *data, 9113 struct pt_regs *regs) 9114 { 9115 int events = atomic_read(&event->event_limit); 9116 int ret = 0; 9117 9118 /* 9119 * Non-sampling counters might still use the PMI to fold short 9120 * hardware counters, ignore those. 9121 */ 9122 if (unlikely(!is_sampling_event(event))) 9123 return 0; 9124 9125 ret = __perf_event_account_interrupt(event, throttle); 9126 9127 /* 9128 * XXX event_limit might not quite work as expected on inherited 9129 * events 9130 */ 9131 9132 event->pending_kill = POLL_IN; 9133 if (events && atomic_dec_and_test(&event->event_limit)) { 9134 ret = 1; 9135 event->pending_kill = POLL_HUP; 9136 event->pending_addr = data->addr; 9137 9138 perf_event_disable_inatomic(event); 9139 } 9140 9141 READ_ONCE(event->overflow_handler)(event, data, regs); 9142 9143 if (*perf_event_fasync(event) && event->pending_kill) { 9144 event->pending_wakeup = 1; 9145 irq_work_queue(&event->pending); 9146 } 9147 9148 return ret; 9149 } 9150 9151 int perf_event_overflow(struct perf_event *event, 9152 struct perf_sample_data *data, 9153 struct pt_regs *regs) 9154 { 9155 return __perf_event_overflow(event, 1, data, regs); 9156 } 9157 9158 /* 9159 * Generic software event infrastructure 9160 */ 9161 9162 struct swevent_htable { 9163 struct swevent_hlist *swevent_hlist; 9164 struct mutex hlist_mutex; 9165 int hlist_refcount; 9166 9167 /* Recursion avoidance in each contexts */ 9168 int recursion[PERF_NR_CONTEXTS]; 9169 }; 9170 9171 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9172 9173 /* 9174 * We directly increment event->count and keep a second value in 9175 * event->hw.period_left to count intervals. This period event 9176 * is kept in the range [-sample_period, 0] so that we can use the 9177 * sign as trigger. 9178 */ 9179 9180 u64 perf_swevent_set_period(struct perf_event *event) 9181 { 9182 struct hw_perf_event *hwc = &event->hw; 9183 u64 period = hwc->last_period; 9184 u64 nr, offset; 9185 s64 old, val; 9186 9187 hwc->last_period = hwc->sample_period; 9188 9189 again: 9190 old = val = local64_read(&hwc->period_left); 9191 if (val < 0) 9192 return 0; 9193 9194 nr = div64_u64(period + val, period); 9195 offset = nr * period; 9196 val -= offset; 9197 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9198 goto again; 9199 9200 return nr; 9201 } 9202 9203 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9204 struct perf_sample_data *data, 9205 struct pt_regs *regs) 9206 { 9207 struct hw_perf_event *hwc = &event->hw; 9208 int throttle = 0; 9209 9210 if (!overflow) 9211 overflow = perf_swevent_set_period(event); 9212 9213 if (hwc->interrupts == MAX_INTERRUPTS) 9214 return; 9215 9216 for (; overflow; overflow--) { 9217 if (__perf_event_overflow(event, throttle, 9218 data, regs)) { 9219 /* 9220 * We inhibit the overflow from happening when 9221 * hwc->interrupts == MAX_INTERRUPTS. 9222 */ 9223 break; 9224 } 9225 throttle = 1; 9226 } 9227 } 9228 9229 static void perf_swevent_event(struct perf_event *event, u64 nr, 9230 struct perf_sample_data *data, 9231 struct pt_regs *regs) 9232 { 9233 struct hw_perf_event *hwc = &event->hw; 9234 9235 local64_add(nr, &event->count); 9236 9237 if (!regs) 9238 return; 9239 9240 if (!is_sampling_event(event)) 9241 return; 9242 9243 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9244 data->period = nr; 9245 return perf_swevent_overflow(event, 1, data, regs); 9246 } else 9247 data->period = event->hw.last_period; 9248 9249 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9250 return perf_swevent_overflow(event, 1, data, regs); 9251 9252 if (local64_add_negative(nr, &hwc->period_left)) 9253 return; 9254 9255 perf_swevent_overflow(event, 0, data, regs); 9256 } 9257 9258 static int perf_exclude_event(struct perf_event *event, 9259 struct pt_regs *regs) 9260 { 9261 if (event->hw.state & PERF_HES_STOPPED) 9262 return 1; 9263 9264 if (regs) { 9265 if (event->attr.exclude_user && user_mode(regs)) 9266 return 1; 9267 9268 if (event->attr.exclude_kernel && !user_mode(regs)) 9269 return 1; 9270 } 9271 9272 return 0; 9273 } 9274 9275 static int perf_swevent_match(struct perf_event *event, 9276 enum perf_type_id type, 9277 u32 event_id, 9278 struct perf_sample_data *data, 9279 struct pt_regs *regs) 9280 { 9281 if (event->attr.type != type) 9282 return 0; 9283 9284 if (event->attr.config != event_id) 9285 return 0; 9286 9287 if (perf_exclude_event(event, regs)) 9288 return 0; 9289 9290 return 1; 9291 } 9292 9293 static inline u64 swevent_hash(u64 type, u32 event_id) 9294 { 9295 u64 val = event_id | (type << 32); 9296 9297 return hash_64(val, SWEVENT_HLIST_BITS); 9298 } 9299 9300 static inline struct hlist_head * 9301 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9302 { 9303 u64 hash = swevent_hash(type, event_id); 9304 9305 return &hlist->heads[hash]; 9306 } 9307 9308 /* For the read side: events when they trigger */ 9309 static inline struct hlist_head * 9310 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9311 { 9312 struct swevent_hlist *hlist; 9313 9314 hlist = rcu_dereference(swhash->swevent_hlist); 9315 if (!hlist) 9316 return NULL; 9317 9318 return __find_swevent_head(hlist, type, event_id); 9319 } 9320 9321 /* For the event head insertion and removal in the hlist */ 9322 static inline struct hlist_head * 9323 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9324 { 9325 struct swevent_hlist *hlist; 9326 u32 event_id = event->attr.config; 9327 u64 type = event->attr.type; 9328 9329 /* 9330 * Event scheduling is always serialized against hlist allocation 9331 * and release. Which makes the protected version suitable here. 9332 * The context lock guarantees that. 9333 */ 9334 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9335 lockdep_is_held(&event->ctx->lock)); 9336 if (!hlist) 9337 return NULL; 9338 9339 return __find_swevent_head(hlist, type, event_id); 9340 } 9341 9342 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9343 u64 nr, 9344 struct perf_sample_data *data, 9345 struct pt_regs *regs) 9346 { 9347 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9348 struct perf_event *event; 9349 struct hlist_head *head; 9350 9351 rcu_read_lock(); 9352 head = find_swevent_head_rcu(swhash, type, event_id); 9353 if (!head) 9354 goto end; 9355 9356 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9357 if (perf_swevent_match(event, type, event_id, data, regs)) 9358 perf_swevent_event(event, nr, data, regs); 9359 } 9360 end: 9361 rcu_read_unlock(); 9362 } 9363 9364 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9365 9366 int perf_swevent_get_recursion_context(void) 9367 { 9368 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9369 9370 return get_recursion_context(swhash->recursion); 9371 } 9372 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9373 9374 void perf_swevent_put_recursion_context(int rctx) 9375 { 9376 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9377 9378 put_recursion_context(swhash->recursion, rctx); 9379 } 9380 9381 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9382 { 9383 struct perf_sample_data data; 9384 9385 if (WARN_ON_ONCE(!regs)) 9386 return; 9387 9388 perf_sample_data_init(&data, addr, 0); 9389 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9390 } 9391 9392 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9393 { 9394 int rctx; 9395 9396 preempt_disable_notrace(); 9397 rctx = perf_swevent_get_recursion_context(); 9398 if (unlikely(rctx < 0)) 9399 goto fail; 9400 9401 ___perf_sw_event(event_id, nr, regs, addr); 9402 9403 perf_swevent_put_recursion_context(rctx); 9404 fail: 9405 preempt_enable_notrace(); 9406 } 9407 9408 static void perf_swevent_read(struct perf_event *event) 9409 { 9410 } 9411 9412 static int perf_swevent_add(struct perf_event *event, int flags) 9413 { 9414 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9415 struct hw_perf_event *hwc = &event->hw; 9416 struct hlist_head *head; 9417 9418 if (is_sampling_event(event)) { 9419 hwc->last_period = hwc->sample_period; 9420 perf_swevent_set_period(event); 9421 } 9422 9423 hwc->state = !(flags & PERF_EF_START); 9424 9425 head = find_swevent_head(swhash, event); 9426 if (WARN_ON_ONCE(!head)) 9427 return -EINVAL; 9428 9429 hlist_add_head_rcu(&event->hlist_entry, head); 9430 perf_event_update_userpage(event); 9431 9432 return 0; 9433 } 9434 9435 static void perf_swevent_del(struct perf_event *event, int flags) 9436 { 9437 hlist_del_rcu(&event->hlist_entry); 9438 } 9439 9440 static void perf_swevent_start(struct perf_event *event, int flags) 9441 { 9442 event->hw.state = 0; 9443 } 9444 9445 static void perf_swevent_stop(struct perf_event *event, int flags) 9446 { 9447 event->hw.state = PERF_HES_STOPPED; 9448 } 9449 9450 /* Deref the hlist from the update side */ 9451 static inline struct swevent_hlist * 9452 swevent_hlist_deref(struct swevent_htable *swhash) 9453 { 9454 return rcu_dereference_protected(swhash->swevent_hlist, 9455 lockdep_is_held(&swhash->hlist_mutex)); 9456 } 9457 9458 static void swevent_hlist_release(struct swevent_htable *swhash) 9459 { 9460 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9461 9462 if (!hlist) 9463 return; 9464 9465 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9466 kfree_rcu(hlist, rcu_head); 9467 } 9468 9469 static void swevent_hlist_put_cpu(int cpu) 9470 { 9471 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9472 9473 mutex_lock(&swhash->hlist_mutex); 9474 9475 if (!--swhash->hlist_refcount) 9476 swevent_hlist_release(swhash); 9477 9478 mutex_unlock(&swhash->hlist_mutex); 9479 } 9480 9481 static void swevent_hlist_put(void) 9482 { 9483 int cpu; 9484 9485 for_each_possible_cpu(cpu) 9486 swevent_hlist_put_cpu(cpu); 9487 } 9488 9489 static int swevent_hlist_get_cpu(int cpu) 9490 { 9491 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9492 int err = 0; 9493 9494 mutex_lock(&swhash->hlist_mutex); 9495 if (!swevent_hlist_deref(swhash) && 9496 cpumask_test_cpu(cpu, perf_online_mask)) { 9497 struct swevent_hlist *hlist; 9498 9499 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9500 if (!hlist) { 9501 err = -ENOMEM; 9502 goto exit; 9503 } 9504 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9505 } 9506 swhash->hlist_refcount++; 9507 exit: 9508 mutex_unlock(&swhash->hlist_mutex); 9509 9510 return err; 9511 } 9512 9513 static int swevent_hlist_get(void) 9514 { 9515 int err, cpu, failed_cpu; 9516 9517 mutex_lock(&pmus_lock); 9518 for_each_possible_cpu(cpu) { 9519 err = swevent_hlist_get_cpu(cpu); 9520 if (err) { 9521 failed_cpu = cpu; 9522 goto fail; 9523 } 9524 } 9525 mutex_unlock(&pmus_lock); 9526 return 0; 9527 fail: 9528 for_each_possible_cpu(cpu) { 9529 if (cpu == failed_cpu) 9530 break; 9531 swevent_hlist_put_cpu(cpu); 9532 } 9533 mutex_unlock(&pmus_lock); 9534 return err; 9535 } 9536 9537 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9538 9539 static void sw_perf_event_destroy(struct perf_event *event) 9540 { 9541 u64 event_id = event->attr.config; 9542 9543 WARN_ON(event->parent); 9544 9545 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9546 swevent_hlist_put(); 9547 } 9548 9549 static int perf_swevent_init(struct perf_event *event) 9550 { 9551 u64 event_id = event->attr.config; 9552 9553 if (event->attr.type != PERF_TYPE_SOFTWARE) 9554 return -ENOENT; 9555 9556 /* 9557 * no branch sampling for software events 9558 */ 9559 if (has_branch_stack(event)) 9560 return -EOPNOTSUPP; 9561 9562 switch (event_id) { 9563 case PERF_COUNT_SW_CPU_CLOCK: 9564 case PERF_COUNT_SW_TASK_CLOCK: 9565 return -ENOENT; 9566 9567 default: 9568 break; 9569 } 9570 9571 if (event_id >= PERF_COUNT_SW_MAX) 9572 return -ENOENT; 9573 9574 if (!event->parent) { 9575 int err; 9576 9577 err = swevent_hlist_get(); 9578 if (err) 9579 return err; 9580 9581 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9582 event->destroy = sw_perf_event_destroy; 9583 } 9584 9585 return 0; 9586 } 9587 9588 static struct pmu perf_swevent = { 9589 .task_ctx_nr = perf_sw_context, 9590 9591 .capabilities = PERF_PMU_CAP_NO_NMI, 9592 9593 .event_init = perf_swevent_init, 9594 .add = perf_swevent_add, 9595 .del = perf_swevent_del, 9596 .start = perf_swevent_start, 9597 .stop = perf_swevent_stop, 9598 .read = perf_swevent_read, 9599 }; 9600 9601 #ifdef CONFIG_EVENT_TRACING 9602 9603 static int perf_tp_filter_match(struct perf_event *event, 9604 struct perf_sample_data *data) 9605 { 9606 void *record = data->raw->frag.data; 9607 9608 /* only top level events have filters set */ 9609 if (event->parent) 9610 event = event->parent; 9611 9612 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9613 return 1; 9614 return 0; 9615 } 9616 9617 static int perf_tp_event_match(struct perf_event *event, 9618 struct perf_sample_data *data, 9619 struct pt_regs *regs) 9620 { 9621 if (event->hw.state & PERF_HES_STOPPED) 9622 return 0; 9623 /* 9624 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9625 */ 9626 if (event->attr.exclude_kernel && !user_mode(regs)) 9627 return 0; 9628 9629 if (!perf_tp_filter_match(event, data)) 9630 return 0; 9631 9632 return 1; 9633 } 9634 9635 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9636 struct trace_event_call *call, u64 count, 9637 struct pt_regs *regs, struct hlist_head *head, 9638 struct task_struct *task) 9639 { 9640 if (bpf_prog_array_valid(call)) { 9641 *(struct pt_regs **)raw_data = regs; 9642 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9643 perf_swevent_put_recursion_context(rctx); 9644 return; 9645 } 9646 } 9647 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9648 rctx, task); 9649 } 9650 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9651 9652 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9653 struct pt_regs *regs, struct hlist_head *head, int rctx, 9654 struct task_struct *task) 9655 { 9656 struct perf_sample_data data; 9657 struct perf_event *event; 9658 9659 struct perf_raw_record raw = { 9660 .frag = { 9661 .size = entry_size, 9662 .data = record, 9663 }, 9664 }; 9665 9666 perf_sample_data_init(&data, 0, 0); 9667 data.raw = &raw; 9668 9669 perf_trace_buf_update(record, event_type); 9670 9671 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9672 if (perf_tp_event_match(event, &data, regs)) 9673 perf_swevent_event(event, count, &data, regs); 9674 } 9675 9676 /* 9677 * If we got specified a target task, also iterate its context and 9678 * deliver this event there too. 9679 */ 9680 if (task && task != current) { 9681 struct perf_event_context *ctx; 9682 struct trace_entry *entry = record; 9683 9684 rcu_read_lock(); 9685 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9686 if (!ctx) 9687 goto unlock; 9688 9689 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9690 if (event->cpu != smp_processor_id()) 9691 continue; 9692 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9693 continue; 9694 if (event->attr.config != entry->type) 9695 continue; 9696 if (perf_tp_event_match(event, &data, regs)) 9697 perf_swevent_event(event, count, &data, regs); 9698 } 9699 unlock: 9700 rcu_read_unlock(); 9701 } 9702 9703 perf_swevent_put_recursion_context(rctx); 9704 } 9705 EXPORT_SYMBOL_GPL(perf_tp_event); 9706 9707 static void tp_perf_event_destroy(struct perf_event *event) 9708 { 9709 perf_trace_destroy(event); 9710 } 9711 9712 static int perf_tp_event_init(struct perf_event *event) 9713 { 9714 int err; 9715 9716 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9717 return -ENOENT; 9718 9719 /* 9720 * no branch sampling for tracepoint events 9721 */ 9722 if (has_branch_stack(event)) 9723 return -EOPNOTSUPP; 9724 9725 err = perf_trace_init(event); 9726 if (err) 9727 return err; 9728 9729 event->destroy = tp_perf_event_destroy; 9730 9731 return 0; 9732 } 9733 9734 static struct pmu perf_tracepoint = { 9735 .task_ctx_nr = perf_sw_context, 9736 9737 .event_init = perf_tp_event_init, 9738 .add = perf_trace_add, 9739 .del = perf_trace_del, 9740 .start = perf_swevent_start, 9741 .stop = perf_swevent_stop, 9742 .read = perf_swevent_read, 9743 }; 9744 9745 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9746 /* 9747 * Flags in config, used by dynamic PMU kprobe and uprobe 9748 * The flags should match following PMU_FORMAT_ATTR(). 9749 * 9750 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9751 * if not set, create kprobe/uprobe 9752 * 9753 * The following values specify a reference counter (or semaphore in the 9754 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9755 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9756 * 9757 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9758 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9759 */ 9760 enum perf_probe_config { 9761 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9762 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9763 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9764 }; 9765 9766 PMU_FORMAT_ATTR(retprobe, "config:0"); 9767 #endif 9768 9769 #ifdef CONFIG_KPROBE_EVENTS 9770 static struct attribute *kprobe_attrs[] = { 9771 &format_attr_retprobe.attr, 9772 NULL, 9773 }; 9774 9775 static struct attribute_group kprobe_format_group = { 9776 .name = "format", 9777 .attrs = kprobe_attrs, 9778 }; 9779 9780 static const struct attribute_group *kprobe_attr_groups[] = { 9781 &kprobe_format_group, 9782 NULL, 9783 }; 9784 9785 static int perf_kprobe_event_init(struct perf_event *event); 9786 static struct pmu perf_kprobe = { 9787 .task_ctx_nr = perf_sw_context, 9788 .event_init = perf_kprobe_event_init, 9789 .add = perf_trace_add, 9790 .del = perf_trace_del, 9791 .start = perf_swevent_start, 9792 .stop = perf_swevent_stop, 9793 .read = perf_swevent_read, 9794 .attr_groups = kprobe_attr_groups, 9795 }; 9796 9797 static int perf_kprobe_event_init(struct perf_event *event) 9798 { 9799 int err; 9800 bool is_retprobe; 9801 9802 if (event->attr.type != perf_kprobe.type) 9803 return -ENOENT; 9804 9805 if (!perfmon_capable()) 9806 return -EACCES; 9807 9808 /* 9809 * no branch sampling for probe events 9810 */ 9811 if (has_branch_stack(event)) 9812 return -EOPNOTSUPP; 9813 9814 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9815 err = perf_kprobe_init(event, is_retprobe); 9816 if (err) 9817 return err; 9818 9819 event->destroy = perf_kprobe_destroy; 9820 9821 return 0; 9822 } 9823 #endif /* CONFIG_KPROBE_EVENTS */ 9824 9825 #ifdef CONFIG_UPROBE_EVENTS 9826 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9827 9828 static struct attribute *uprobe_attrs[] = { 9829 &format_attr_retprobe.attr, 9830 &format_attr_ref_ctr_offset.attr, 9831 NULL, 9832 }; 9833 9834 static struct attribute_group uprobe_format_group = { 9835 .name = "format", 9836 .attrs = uprobe_attrs, 9837 }; 9838 9839 static const struct attribute_group *uprobe_attr_groups[] = { 9840 &uprobe_format_group, 9841 NULL, 9842 }; 9843 9844 static int perf_uprobe_event_init(struct perf_event *event); 9845 static struct pmu perf_uprobe = { 9846 .task_ctx_nr = perf_sw_context, 9847 .event_init = perf_uprobe_event_init, 9848 .add = perf_trace_add, 9849 .del = perf_trace_del, 9850 .start = perf_swevent_start, 9851 .stop = perf_swevent_stop, 9852 .read = perf_swevent_read, 9853 .attr_groups = uprobe_attr_groups, 9854 }; 9855 9856 static int perf_uprobe_event_init(struct perf_event *event) 9857 { 9858 int err; 9859 unsigned long ref_ctr_offset; 9860 bool is_retprobe; 9861 9862 if (event->attr.type != perf_uprobe.type) 9863 return -ENOENT; 9864 9865 if (!perfmon_capable()) 9866 return -EACCES; 9867 9868 /* 9869 * no branch sampling for probe events 9870 */ 9871 if (has_branch_stack(event)) 9872 return -EOPNOTSUPP; 9873 9874 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9875 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9876 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9877 if (err) 9878 return err; 9879 9880 event->destroy = perf_uprobe_destroy; 9881 9882 return 0; 9883 } 9884 #endif /* CONFIG_UPROBE_EVENTS */ 9885 9886 static inline void perf_tp_register(void) 9887 { 9888 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9889 #ifdef CONFIG_KPROBE_EVENTS 9890 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9891 #endif 9892 #ifdef CONFIG_UPROBE_EVENTS 9893 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9894 #endif 9895 } 9896 9897 static void perf_event_free_filter(struct perf_event *event) 9898 { 9899 ftrace_profile_free_filter(event); 9900 } 9901 9902 #ifdef CONFIG_BPF_SYSCALL 9903 static void bpf_overflow_handler(struct perf_event *event, 9904 struct perf_sample_data *data, 9905 struct pt_regs *regs) 9906 { 9907 struct bpf_perf_event_data_kern ctx = { 9908 .data = data, 9909 .event = event, 9910 }; 9911 int ret = 0; 9912 9913 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9914 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9915 goto out; 9916 rcu_read_lock(); 9917 ret = BPF_PROG_RUN(event->prog, &ctx); 9918 rcu_read_unlock(); 9919 out: 9920 __this_cpu_dec(bpf_prog_active); 9921 if (!ret) 9922 return; 9923 9924 event->orig_overflow_handler(event, data, regs); 9925 } 9926 9927 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9928 { 9929 struct bpf_prog *prog; 9930 9931 if (event->overflow_handler_context) 9932 /* hw breakpoint or kernel counter */ 9933 return -EINVAL; 9934 9935 if (event->prog) 9936 return -EEXIST; 9937 9938 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9939 if (IS_ERR(prog)) 9940 return PTR_ERR(prog); 9941 9942 if (event->attr.precise_ip && 9943 prog->call_get_stack && 9944 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 9945 event->attr.exclude_callchain_kernel || 9946 event->attr.exclude_callchain_user)) { 9947 /* 9948 * On perf_event with precise_ip, calling bpf_get_stack() 9949 * may trigger unwinder warnings and occasional crashes. 9950 * bpf_get_[stack|stackid] works around this issue by using 9951 * callchain attached to perf_sample_data. If the 9952 * perf_event does not full (kernel and user) callchain 9953 * attached to perf_sample_data, do not allow attaching BPF 9954 * program that calls bpf_get_[stack|stackid]. 9955 */ 9956 bpf_prog_put(prog); 9957 return -EPROTO; 9958 } 9959 9960 event->prog = prog; 9961 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9962 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9963 return 0; 9964 } 9965 9966 static void perf_event_free_bpf_handler(struct perf_event *event) 9967 { 9968 struct bpf_prog *prog = event->prog; 9969 9970 if (!prog) 9971 return; 9972 9973 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9974 event->prog = NULL; 9975 bpf_prog_put(prog); 9976 } 9977 #else 9978 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9979 { 9980 return -EOPNOTSUPP; 9981 } 9982 static void perf_event_free_bpf_handler(struct perf_event *event) 9983 { 9984 } 9985 #endif 9986 9987 /* 9988 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9989 * with perf_event_open() 9990 */ 9991 static inline bool perf_event_is_tracing(struct perf_event *event) 9992 { 9993 if (event->pmu == &perf_tracepoint) 9994 return true; 9995 #ifdef CONFIG_KPROBE_EVENTS 9996 if (event->pmu == &perf_kprobe) 9997 return true; 9998 #endif 9999 #ifdef CONFIG_UPROBE_EVENTS 10000 if (event->pmu == &perf_uprobe) 10001 return true; 10002 #endif 10003 return false; 10004 } 10005 10006 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 10007 { 10008 bool is_kprobe, is_tracepoint, is_syscall_tp; 10009 struct bpf_prog *prog; 10010 int ret; 10011 10012 if (!perf_event_is_tracing(event)) 10013 return perf_event_set_bpf_handler(event, prog_fd); 10014 10015 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 10016 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10017 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10018 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 10019 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10020 return -EINVAL; 10021 10022 prog = bpf_prog_get(prog_fd); 10023 if (IS_ERR(prog)) 10024 return PTR_ERR(prog); 10025 10026 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 10027 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10028 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 10029 /* valid fd, but invalid bpf program type */ 10030 bpf_prog_put(prog); 10031 return -EINVAL; 10032 } 10033 10034 /* Kprobe override only works for kprobes, not uprobes. */ 10035 if (prog->kprobe_override && 10036 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 10037 bpf_prog_put(prog); 10038 return -EINVAL; 10039 } 10040 10041 if (is_tracepoint || is_syscall_tp) { 10042 int off = trace_event_get_offsets(event->tp_event); 10043 10044 if (prog->aux->max_ctx_offset > off) { 10045 bpf_prog_put(prog); 10046 return -EACCES; 10047 } 10048 } 10049 10050 ret = perf_event_attach_bpf_prog(event, prog); 10051 if (ret) 10052 bpf_prog_put(prog); 10053 return ret; 10054 } 10055 10056 static void perf_event_free_bpf_prog(struct perf_event *event) 10057 { 10058 if (!perf_event_is_tracing(event)) { 10059 perf_event_free_bpf_handler(event); 10060 return; 10061 } 10062 perf_event_detach_bpf_prog(event); 10063 } 10064 10065 #else 10066 10067 static inline void perf_tp_register(void) 10068 { 10069 } 10070 10071 static void perf_event_free_filter(struct perf_event *event) 10072 { 10073 } 10074 10075 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 10076 { 10077 return -ENOENT; 10078 } 10079 10080 static void perf_event_free_bpf_prog(struct perf_event *event) 10081 { 10082 } 10083 #endif /* CONFIG_EVENT_TRACING */ 10084 10085 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10086 void perf_bp_event(struct perf_event *bp, void *data) 10087 { 10088 struct perf_sample_data sample; 10089 struct pt_regs *regs = data; 10090 10091 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10092 10093 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10094 perf_swevent_event(bp, 1, &sample, regs); 10095 } 10096 #endif 10097 10098 /* 10099 * Allocate a new address filter 10100 */ 10101 static struct perf_addr_filter * 10102 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10103 { 10104 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10105 struct perf_addr_filter *filter; 10106 10107 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10108 if (!filter) 10109 return NULL; 10110 10111 INIT_LIST_HEAD(&filter->entry); 10112 list_add_tail(&filter->entry, filters); 10113 10114 return filter; 10115 } 10116 10117 static void free_filters_list(struct list_head *filters) 10118 { 10119 struct perf_addr_filter *filter, *iter; 10120 10121 list_for_each_entry_safe(filter, iter, filters, entry) { 10122 path_put(&filter->path); 10123 list_del(&filter->entry); 10124 kfree(filter); 10125 } 10126 } 10127 10128 /* 10129 * Free existing address filters and optionally install new ones 10130 */ 10131 static void perf_addr_filters_splice(struct perf_event *event, 10132 struct list_head *head) 10133 { 10134 unsigned long flags; 10135 LIST_HEAD(list); 10136 10137 if (!has_addr_filter(event)) 10138 return; 10139 10140 /* don't bother with children, they don't have their own filters */ 10141 if (event->parent) 10142 return; 10143 10144 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10145 10146 list_splice_init(&event->addr_filters.list, &list); 10147 if (head) 10148 list_splice(head, &event->addr_filters.list); 10149 10150 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10151 10152 free_filters_list(&list); 10153 } 10154 10155 /* 10156 * Scan through mm's vmas and see if one of them matches the 10157 * @filter; if so, adjust filter's address range. 10158 * Called with mm::mmap_lock down for reading. 10159 */ 10160 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10161 struct mm_struct *mm, 10162 struct perf_addr_filter_range *fr) 10163 { 10164 struct vm_area_struct *vma; 10165 10166 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10167 if (!vma->vm_file) 10168 continue; 10169 10170 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10171 return; 10172 } 10173 } 10174 10175 /* 10176 * Update event's address range filters based on the 10177 * task's existing mappings, if any. 10178 */ 10179 static void perf_event_addr_filters_apply(struct perf_event *event) 10180 { 10181 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10182 struct task_struct *task = READ_ONCE(event->ctx->task); 10183 struct perf_addr_filter *filter; 10184 struct mm_struct *mm = NULL; 10185 unsigned int count = 0; 10186 unsigned long flags; 10187 10188 /* 10189 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10190 * will stop on the parent's child_mutex that our caller is also holding 10191 */ 10192 if (task == TASK_TOMBSTONE) 10193 return; 10194 10195 if (ifh->nr_file_filters) { 10196 mm = get_task_mm(event->ctx->task); 10197 if (!mm) 10198 goto restart; 10199 10200 mmap_read_lock(mm); 10201 } 10202 10203 raw_spin_lock_irqsave(&ifh->lock, flags); 10204 list_for_each_entry(filter, &ifh->list, entry) { 10205 if (filter->path.dentry) { 10206 /* 10207 * Adjust base offset if the filter is associated to a 10208 * binary that needs to be mapped: 10209 */ 10210 event->addr_filter_ranges[count].start = 0; 10211 event->addr_filter_ranges[count].size = 0; 10212 10213 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10214 } else { 10215 event->addr_filter_ranges[count].start = filter->offset; 10216 event->addr_filter_ranges[count].size = filter->size; 10217 } 10218 10219 count++; 10220 } 10221 10222 event->addr_filters_gen++; 10223 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10224 10225 if (ifh->nr_file_filters) { 10226 mmap_read_unlock(mm); 10227 10228 mmput(mm); 10229 } 10230 10231 restart: 10232 perf_event_stop(event, 1); 10233 } 10234 10235 /* 10236 * Address range filtering: limiting the data to certain 10237 * instruction address ranges. Filters are ioctl()ed to us from 10238 * userspace as ascii strings. 10239 * 10240 * Filter string format: 10241 * 10242 * ACTION RANGE_SPEC 10243 * where ACTION is one of the 10244 * * "filter": limit the trace to this region 10245 * * "start": start tracing from this address 10246 * * "stop": stop tracing at this address/region; 10247 * RANGE_SPEC is 10248 * * for kernel addresses: <start address>[/<size>] 10249 * * for object files: <start address>[/<size>]@</path/to/object/file> 10250 * 10251 * if <size> is not specified or is zero, the range is treated as a single 10252 * address; not valid for ACTION=="filter". 10253 */ 10254 enum { 10255 IF_ACT_NONE = -1, 10256 IF_ACT_FILTER, 10257 IF_ACT_START, 10258 IF_ACT_STOP, 10259 IF_SRC_FILE, 10260 IF_SRC_KERNEL, 10261 IF_SRC_FILEADDR, 10262 IF_SRC_KERNELADDR, 10263 }; 10264 10265 enum { 10266 IF_STATE_ACTION = 0, 10267 IF_STATE_SOURCE, 10268 IF_STATE_END, 10269 }; 10270 10271 static const match_table_t if_tokens = { 10272 { IF_ACT_FILTER, "filter" }, 10273 { IF_ACT_START, "start" }, 10274 { IF_ACT_STOP, "stop" }, 10275 { IF_SRC_FILE, "%u/%u@%s" }, 10276 { IF_SRC_KERNEL, "%u/%u" }, 10277 { IF_SRC_FILEADDR, "%u@%s" }, 10278 { IF_SRC_KERNELADDR, "%u" }, 10279 { IF_ACT_NONE, NULL }, 10280 }; 10281 10282 /* 10283 * Address filter string parser 10284 */ 10285 static int 10286 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10287 struct list_head *filters) 10288 { 10289 struct perf_addr_filter *filter = NULL; 10290 char *start, *orig, *filename = NULL; 10291 substring_t args[MAX_OPT_ARGS]; 10292 int state = IF_STATE_ACTION, token; 10293 unsigned int kernel = 0; 10294 int ret = -EINVAL; 10295 10296 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10297 if (!fstr) 10298 return -ENOMEM; 10299 10300 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10301 static const enum perf_addr_filter_action_t actions[] = { 10302 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10303 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10304 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10305 }; 10306 ret = -EINVAL; 10307 10308 if (!*start) 10309 continue; 10310 10311 /* filter definition begins */ 10312 if (state == IF_STATE_ACTION) { 10313 filter = perf_addr_filter_new(event, filters); 10314 if (!filter) 10315 goto fail; 10316 } 10317 10318 token = match_token(start, if_tokens, args); 10319 switch (token) { 10320 case IF_ACT_FILTER: 10321 case IF_ACT_START: 10322 case IF_ACT_STOP: 10323 if (state != IF_STATE_ACTION) 10324 goto fail; 10325 10326 filter->action = actions[token]; 10327 state = IF_STATE_SOURCE; 10328 break; 10329 10330 case IF_SRC_KERNELADDR: 10331 case IF_SRC_KERNEL: 10332 kernel = 1; 10333 fallthrough; 10334 10335 case IF_SRC_FILEADDR: 10336 case IF_SRC_FILE: 10337 if (state != IF_STATE_SOURCE) 10338 goto fail; 10339 10340 *args[0].to = 0; 10341 ret = kstrtoul(args[0].from, 0, &filter->offset); 10342 if (ret) 10343 goto fail; 10344 10345 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10346 *args[1].to = 0; 10347 ret = kstrtoul(args[1].from, 0, &filter->size); 10348 if (ret) 10349 goto fail; 10350 } 10351 10352 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10353 int fpos = token == IF_SRC_FILE ? 2 : 1; 10354 10355 kfree(filename); 10356 filename = match_strdup(&args[fpos]); 10357 if (!filename) { 10358 ret = -ENOMEM; 10359 goto fail; 10360 } 10361 } 10362 10363 state = IF_STATE_END; 10364 break; 10365 10366 default: 10367 goto fail; 10368 } 10369 10370 /* 10371 * Filter definition is fully parsed, validate and install it. 10372 * Make sure that it doesn't contradict itself or the event's 10373 * attribute. 10374 */ 10375 if (state == IF_STATE_END) { 10376 ret = -EINVAL; 10377 if (kernel && event->attr.exclude_kernel) 10378 goto fail; 10379 10380 /* 10381 * ACTION "filter" must have a non-zero length region 10382 * specified. 10383 */ 10384 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10385 !filter->size) 10386 goto fail; 10387 10388 if (!kernel) { 10389 if (!filename) 10390 goto fail; 10391 10392 /* 10393 * For now, we only support file-based filters 10394 * in per-task events; doing so for CPU-wide 10395 * events requires additional context switching 10396 * trickery, since same object code will be 10397 * mapped at different virtual addresses in 10398 * different processes. 10399 */ 10400 ret = -EOPNOTSUPP; 10401 if (!event->ctx->task) 10402 goto fail; 10403 10404 /* look up the path and grab its inode */ 10405 ret = kern_path(filename, LOOKUP_FOLLOW, 10406 &filter->path); 10407 if (ret) 10408 goto fail; 10409 10410 ret = -EINVAL; 10411 if (!filter->path.dentry || 10412 !S_ISREG(d_inode(filter->path.dentry) 10413 ->i_mode)) 10414 goto fail; 10415 10416 event->addr_filters.nr_file_filters++; 10417 } 10418 10419 /* ready to consume more filters */ 10420 state = IF_STATE_ACTION; 10421 filter = NULL; 10422 } 10423 } 10424 10425 if (state != IF_STATE_ACTION) 10426 goto fail; 10427 10428 kfree(filename); 10429 kfree(orig); 10430 10431 return 0; 10432 10433 fail: 10434 kfree(filename); 10435 free_filters_list(filters); 10436 kfree(orig); 10437 10438 return ret; 10439 } 10440 10441 static int 10442 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10443 { 10444 LIST_HEAD(filters); 10445 int ret; 10446 10447 /* 10448 * Since this is called in perf_ioctl() path, we're already holding 10449 * ctx::mutex. 10450 */ 10451 lockdep_assert_held(&event->ctx->mutex); 10452 10453 if (WARN_ON_ONCE(event->parent)) 10454 return -EINVAL; 10455 10456 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10457 if (ret) 10458 goto fail_clear_files; 10459 10460 ret = event->pmu->addr_filters_validate(&filters); 10461 if (ret) 10462 goto fail_free_filters; 10463 10464 /* remove existing filters, if any */ 10465 perf_addr_filters_splice(event, &filters); 10466 10467 /* install new filters */ 10468 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10469 10470 return ret; 10471 10472 fail_free_filters: 10473 free_filters_list(&filters); 10474 10475 fail_clear_files: 10476 event->addr_filters.nr_file_filters = 0; 10477 10478 return ret; 10479 } 10480 10481 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10482 { 10483 int ret = -EINVAL; 10484 char *filter_str; 10485 10486 filter_str = strndup_user(arg, PAGE_SIZE); 10487 if (IS_ERR(filter_str)) 10488 return PTR_ERR(filter_str); 10489 10490 #ifdef CONFIG_EVENT_TRACING 10491 if (perf_event_is_tracing(event)) { 10492 struct perf_event_context *ctx = event->ctx; 10493 10494 /* 10495 * Beware, here be dragons!! 10496 * 10497 * the tracepoint muck will deadlock against ctx->mutex, but 10498 * the tracepoint stuff does not actually need it. So 10499 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10500 * already have a reference on ctx. 10501 * 10502 * This can result in event getting moved to a different ctx, 10503 * but that does not affect the tracepoint state. 10504 */ 10505 mutex_unlock(&ctx->mutex); 10506 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10507 mutex_lock(&ctx->mutex); 10508 } else 10509 #endif 10510 if (has_addr_filter(event)) 10511 ret = perf_event_set_addr_filter(event, filter_str); 10512 10513 kfree(filter_str); 10514 return ret; 10515 } 10516 10517 /* 10518 * hrtimer based swevent callback 10519 */ 10520 10521 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10522 { 10523 enum hrtimer_restart ret = HRTIMER_RESTART; 10524 struct perf_sample_data data; 10525 struct pt_regs *regs; 10526 struct perf_event *event; 10527 u64 period; 10528 10529 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10530 10531 if (event->state != PERF_EVENT_STATE_ACTIVE) 10532 return HRTIMER_NORESTART; 10533 10534 event->pmu->read(event); 10535 10536 perf_sample_data_init(&data, 0, event->hw.last_period); 10537 regs = get_irq_regs(); 10538 10539 if (regs && !perf_exclude_event(event, regs)) { 10540 if (!(event->attr.exclude_idle && is_idle_task(current))) 10541 if (__perf_event_overflow(event, 1, &data, regs)) 10542 ret = HRTIMER_NORESTART; 10543 } 10544 10545 period = max_t(u64, 10000, event->hw.sample_period); 10546 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10547 10548 return ret; 10549 } 10550 10551 static void perf_swevent_start_hrtimer(struct perf_event *event) 10552 { 10553 struct hw_perf_event *hwc = &event->hw; 10554 s64 period; 10555 10556 if (!is_sampling_event(event)) 10557 return; 10558 10559 period = local64_read(&hwc->period_left); 10560 if (period) { 10561 if (period < 0) 10562 period = 10000; 10563 10564 local64_set(&hwc->period_left, 0); 10565 } else { 10566 period = max_t(u64, 10000, hwc->sample_period); 10567 } 10568 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10569 HRTIMER_MODE_REL_PINNED_HARD); 10570 } 10571 10572 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10573 { 10574 struct hw_perf_event *hwc = &event->hw; 10575 10576 if (is_sampling_event(event)) { 10577 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10578 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10579 10580 hrtimer_cancel(&hwc->hrtimer); 10581 } 10582 } 10583 10584 static void perf_swevent_init_hrtimer(struct perf_event *event) 10585 { 10586 struct hw_perf_event *hwc = &event->hw; 10587 10588 if (!is_sampling_event(event)) 10589 return; 10590 10591 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10592 hwc->hrtimer.function = perf_swevent_hrtimer; 10593 10594 /* 10595 * Since hrtimers have a fixed rate, we can do a static freq->period 10596 * mapping and avoid the whole period adjust feedback stuff. 10597 */ 10598 if (event->attr.freq) { 10599 long freq = event->attr.sample_freq; 10600 10601 event->attr.sample_period = NSEC_PER_SEC / freq; 10602 hwc->sample_period = event->attr.sample_period; 10603 local64_set(&hwc->period_left, hwc->sample_period); 10604 hwc->last_period = hwc->sample_period; 10605 event->attr.freq = 0; 10606 } 10607 } 10608 10609 /* 10610 * Software event: cpu wall time clock 10611 */ 10612 10613 static void cpu_clock_event_update(struct perf_event *event) 10614 { 10615 s64 prev; 10616 u64 now; 10617 10618 now = local_clock(); 10619 prev = local64_xchg(&event->hw.prev_count, now); 10620 local64_add(now - prev, &event->count); 10621 } 10622 10623 static void cpu_clock_event_start(struct perf_event *event, int flags) 10624 { 10625 local64_set(&event->hw.prev_count, local_clock()); 10626 perf_swevent_start_hrtimer(event); 10627 } 10628 10629 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10630 { 10631 perf_swevent_cancel_hrtimer(event); 10632 cpu_clock_event_update(event); 10633 } 10634 10635 static int cpu_clock_event_add(struct perf_event *event, int flags) 10636 { 10637 if (flags & PERF_EF_START) 10638 cpu_clock_event_start(event, flags); 10639 perf_event_update_userpage(event); 10640 10641 return 0; 10642 } 10643 10644 static void cpu_clock_event_del(struct perf_event *event, int flags) 10645 { 10646 cpu_clock_event_stop(event, flags); 10647 } 10648 10649 static void cpu_clock_event_read(struct perf_event *event) 10650 { 10651 cpu_clock_event_update(event); 10652 } 10653 10654 static int cpu_clock_event_init(struct perf_event *event) 10655 { 10656 if (event->attr.type != PERF_TYPE_SOFTWARE) 10657 return -ENOENT; 10658 10659 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10660 return -ENOENT; 10661 10662 /* 10663 * no branch sampling for software events 10664 */ 10665 if (has_branch_stack(event)) 10666 return -EOPNOTSUPP; 10667 10668 perf_swevent_init_hrtimer(event); 10669 10670 return 0; 10671 } 10672 10673 static struct pmu perf_cpu_clock = { 10674 .task_ctx_nr = perf_sw_context, 10675 10676 .capabilities = PERF_PMU_CAP_NO_NMI, 10677 10678 .event_init = cpu_clock_event_init, 10679 .add = cpu_clock_event_add, 10680 .del = cpu_clock_event_del, 10681 .start = cpu_clock_event_start, 10682 .stop = cpu_clock_event_stop, 10683 .read = cpu_clock_event_read, 10684 }; 10685 10686 /* 10687 * Software event: task time clock 10688 */ 10689 10690 static void task_clock_event_update(struct perf_event *event, u64 now) 10691 { 10692 u64 prev; 10693 s64 delta; 10694 10695 prev = local64_xchg(&event->hw.prev_count, now); 10696 delta = now - prev; 10697 local64_add(delta, &event->count); 10698 } 10699 10700 static void task_clock_event_start(struct perf_event *event, int flags) 10701 { 10702 local64_set(&event->hw.prev_count, event->ctx->time); 10703 perf_swevent_start_hrtimer(event); 10704 } 10705 10706 static void task_clock_event_stop(struct perf_event *event, int flags) 10707 { 10708 perf_swevent_cancel_hrtimer(event); 10709 task_clock_event_update(event, event->ctx->time); 10710 } 10711 10712 static int task_clock_event_add(struct perf_event *event, int flags) 10713 { 10714 if (flags & PERF_EF_START) 10715 task_clock_event_start(event, flags); 10716 perf_event_update_userpage(event); 10717 10718 return 0; 10719 } 10720 10721 static void task_clock_event_del(struct perf_event *event, int flags) 10722 { 10723 task_clock_event_stop(event, PERF_EF_UPDATE); 10724 } 10725 10726 static void task_clock_event_read(struct perf_event *event) 10727 { 10728 u64 now = perf_clock(); 10729 u64 delta = now - event->ctx->timestamp; 10730 u64 time = event->ctx->time + delta; 10731 10732 task_clock_event_update(event, time); 10733 } 10734 10735 static int task_clock_event_init(struct perf_event *event) 10736 { 10737 if (event->attr.type != PERF_TYPE_SOFTWARE) 10738 return -ENOENT; 10739 10740 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10741 return -ENOENT; 10742 10743 /* 10744 * no branch sampling for software events 10745 */ 10746 if (has_branch_stack(event)) 10747 return -EOPNOTSUPP; 10748 10749 perf_swevent_init_hrtimer(event); 10750 10751 return 0; 10752 } 10753 10754 static struct pmu perf_task_clock = { 10755 .task_ctx_nr = perf_sw_context, 10756 10757 .capabilities = PERF_PMU_CAP_NO_NMI, 10758 10759 .event_init = task_clock_event_init, 10760 .add = task_clock_event_add, 10761 .del = task_clock_event_del, 10762 .start = task_clock_event_start, 10763 .stop = task_clock_event_stop, 10764 .read = task_clock_event_read, 10765 }; 10766 10767 static void perf_pmu_nop_void(struct pmu *pmu) 10768 { 10769 } 10770 10771 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10772 { 10773 } 10774 10775 static int perf_pmu_nop_int(struct pmu *pmu) 10776 { 10777 return 0; 10778 } 10779 10780 static int perf_event_nop_int(struct perf_event *event, u64 value) 10781 { 10782 return 0; 10783 } 10784 10785 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10786 10787 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10788 { 10789 __this_cpu_write(nop_txn_flags, flags); 10790 10791 if (flags & ~PERF_PMU_TXN_ADD) 10792 return; 10793 10794 perf_pmu_disable(pmu); 10795 } 10796 10797 static int perf_pmu_commit_txn(struct pmu *pmu) 10798 { 10799 unsigned int flags = __this_cpu_read(nop_txn_flags); 10800 10801 __this_cpu_write(nop_txn_flags, 0); 10802 10803 if (flags & ~PERF_PMU_TXN_ADD) 10804 return 0; 10805 10806 perf_pmu_enable(pmu); 10807 return 0; 10808 } 10809 10810 static void perf_pmu_cancel_txn(struct pmu *pmu) 10811 { 10812 unsigned int flags = __this_cpu_read(nop_txn_flags); 10813 10814 __this_cpu_write(nop_txn_flags, 0); 10815 10816 if (flags & ~PERF_PMU_TXN_ADD) 10817 return; 10818 10819 perf_pmu_enable(pmu); 10820 } 10821 10822 static int perf_event_idx_default(struct perf_event *event) 10823 { 10824 return 0; 10825 } 10826 10827 /* 10828 * Ensures all contexts with the same task_ctx_nr have the same 10829 * pmu_cpu_context too. 10830 */ 10831 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10832 { 10833 struct pmu *pmu; 10834 10835 if (ctxn < 0) 10836 return NULL; 10837 10838 list_for_each_entry(pmu, &pmus, entry) { 10839 if (pmu->task_ctx_nr == ctxn) 10840 return pmu->pmu_cpu_context; 10841 } 10842 10843 return NULL; 10844 } 10845 10846 static void free_pmu_context(struct pmu *pmu) 10847 { 10848 /* 10849 * Static contexts such as perf_sw_context have a global lifetime 10850 * and may be shared between different PMUs. Avoid freeing them 10851 * when a single PMU is going away. 10852 */ 10853 if (pmu->task_ctx_nr > perf_invalid_context) 10854 return; 10855 10856 free_percpu(pmu->pmu_cpu_context); 10857 } 10858 10859 /* 10860 * Let userspace know that this PMU supports address range filtering: 10861 */ 10862 static ssize_t nr_addr_filters_show(struct device *dev, 10863 struct device_attribute *attr, 10864 char *page) 10865 { 10866 struct pmu *pmu = dev_get_drvdata(dev); 10867 10868 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10869 } 10870 DEVICE_ATTR_RO(nr_addr_filters); 10871 10872 static struct idr pmu_idr; 10873 10874 static ssize_t 10875 type_show(struct device *dev, struct device_attribute *attr, char *page) 10876 { 10877 struct pmu *pmu = dev_get_drvdata(dev); 10878 10879 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10880 } 10881 static DEVICE_ATTR_RO(type); 10882 10883 static ssize_t 10884 perf_event_mux_interval_ms_show(struct device *dev, 10885 struct device_attribute *attr, 10886 char *page) 10887 { 10888 struct pmu *pmu = dev_get_drvdata(dev); 10889 10890 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10891 } 10892 10893 static DEFINE_MUTEX(mux_interval_mutex); 10894 10895 static ssize_t 10896 perf_event_mux_interval_ms_store(struct device *dev, 10897 struct device_attribute *attr, 10898 const char *buf, size_t count) 10899 { 10900 struct pmu *pmu = dev_get_drvdata(dev); 10901 int timer, cpu, ret; 10902 10903 ret = kstrtoint(buf, 0, &timer); 10904 if (ret) 10905 return ret; 10906 10907 if (timer < 1) 10908 return -EINVAL; 10909 10910 /* same value, noting to do */ 10911 if (timer == pmu->hrtimer_interval_ms) 10912 return count; 10913 10914 mutex_lock(&mux_interval_mutex); 10915 pmu->hrtimer_interval_ms = timer; 10916 10917 /* update all cpuctx for this PMU */ 10918 cpus_read_lock(); 10919 for_each_online_cpu(cpu) { 10920 struct perf_cpu_context *cpuctx; 10921 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10922 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10923 10924 cpu_function_call(cpu, 10925 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10926 } 10927 cpus_read_unlock(); 10928 mutex_unlock(&mux_interval_mutex); 10929 10930 return count; 10931 } 10932 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10933 10934 static struct attribute *pmu_dev_attrs[] = { 10935 &dev_attr_type.attr, 10936 &dev_attr_perf_event_mux_interval_ms.attr, 10937 NULL, 10938 }; 10939 ATTRIBUTE_GROUPS(pmu_dev); 10940 10941 static int pmu_bus_running; 10942 static struct bus_type pmu_bus = { 10943 .name = "event_source", 10944 .dev_groups = pmu_dev_groups, 10945 }; 10946 10947 static void pmu_dev_release(struct device *dev) 10948 { 10949 kfree(dev); 10950 } 10951 10952 static int pmu_dev_alloc(struct pmu *pmu) 10953 { 10954 int ret = -ENOMEM; 10955 10956 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10957 if (!pmu->dev) 10958 goto out; 10959 10960 pmu->dev->groups = pmu->attr_groups; 10961 device_initialize(pmu->dev); 10962 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10963 if (ret) 10964 goto free_dev; 10965 10966 dev_set_drvdata(pmu->dev, pmu); 10967 pmu->dev->bus = &pmu_bus; 10968 pmu->dev->release = pmu_dev_release; 10969 ret = device_add(pmu->dev); 10970 if (ret) 10971 goto free_dev; 10972 10973 /* For PMUs with address filters, throw in an extra attribute: */ 10974 if (pmu->nr_addr_filters) 10975 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10976 10977 if (ret) 10978 goto del_dev; 10979 10980 if (pmu->attr_update) 10981 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10982 10983 if (ret) 10984 goto del_dev; 10985 10986 out: 10987 return ret; 10988 10989 del_dev: 10990 device_del(pmu->dev); 10991 10992 free_dev: 10993 put_device(pmu->dev); 10994 goto out; 10995 } 10996 10997 static struct lock_class_key cpuctx_mutex; 10998 static struct lock_class_key cpuctx_lock; 10999 11000 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11001 { 11002 int cpu, ret, max = PERF_TYPE_MAX; 11003 11004 mutex_lock(&pmus_lock); 11005 ret = -ENOMEM; 11006 pmu->pmu_disable_count = alloc_percpu(int); 11007 if (!pmu->pmu_disable_count) 11008 goto unlock; 11009 11010 pmu->type = -1; 11011 if (!name) 11012 goto skip_type; 11013 pmu->name = name; 11014 11015 if (type != PERF_TYPE_SOFTWARE) { 11016 if (type >= 0) 11017 max = type; 11018 11019 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11020 if (ret < 0) 11021 goto free_pdc; 11022 11023 WARN_ON(type >= 0 && ret != type); 11024 11025 type = ret; 11026 } 11027 pmu->type = type; 11028 11029 if (pmu_bus_running) { 11030 ret = pmu_dev_alloc(pmu); 11031 if (ret) 11032 goto free_idr; 11033 } 11034 11035 skip_type: 11036 if (pmu->task_ctx_nr == perf_hw_context) { 11037 static int hw_context_taken = 0; 11038 11039 /* 11040 * Other than systems with heterogeneous CPUs, it never makes 11041 * sense for two PMUs to share perf_hw_context. PMUs which are 11042 * uncore must use perf_invalid_context. 11043 */ 11044 if (WARN_ON_ONCE(hw_context_taken && 11045 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 11046 pmu->task_ctx_nr = perf_invalid_context; 11047 11048 hw_context_taken = 1; 11049 } 11050 11051 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 11052 if (pmu->pmu_cpu_context) 11053 goto got_cpu_context; 11054 11055 ret = -ENOMEM; 11056 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 11057 if (!pmu->pmu_cpu_context) 11058 goto free_dev; 11059 11060 for_each_possible_cpu(cpu) { 11061 struct perf_cpu_context *cpuctx; 11062 11063 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11064 __perf_event_init_context(&cpuctx->ctx); 11065 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 11066 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 11067 cpuctx->ctx.pmu = pmu; 11068 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 11069 11070 __perf_mux_hrtimer_init(cpuctx, cpu); 11071 11072 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 11073 cpuctx->heap = cpuctx->heap_default; 11074 } 11075 11076 got_cpu_context: 11077 if (!pmu->start_txn) { 11078 if (pmu->pmu_enable) { 11079 /* 11080 * If we have pmu_enable/pmu_disable calls, install 11081 * transaction stubs that use that to try and batch 11082 * hardware accesses. 11083 */ 11084 pmu->start_txn = perf_pmu_start_txn; 11085 pmu->commit_txn = perf_pmu_commit_txn; 11086 pmu->cancel_txn = perf_pmu_cancel_txn; 11087 } else { 11088 pmu->start_txn = perf_pmu_nop_txn; 11089 pmu->commit_txn = perf_pmu_nop_int; 11090 pmu->cancel_txn = perf_pmu_nop_void; 11091 } 11092 } 11093 11094 if (!pmu->pmu_enable) { 11095 pmu->pmu_enable = perf_pmu_nop_void; 11096 pmu->pmu_disable = perf_pmu_nop_void; 11097 } 11098 11099 if (!pmu->check_period) 11100 pmu->check_period = perf_event_nop_int; 11101 11102 if (!pmu->event_idx) 11103 pmu->event_idx = perf_event_idx_default; 11104 11105 /* 11106 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11107 * since these cannot be in the IDR. This way the linear search 11108 * is fast, provided a valid software event is provided. 11109 */ 11110 if (type == PERF_TYPE_SOFTWARE || !name) 11111 list_add_rcu(&pmu->entry, &pmus); 11112 else 11113 list_add_tail_rcu(&pmu->entry, &pmus); 11114 11115 atomic_set(&pmu->exclusive_cnt, 0); 11116 ret = 0; 11117 unlock: 11118 mutex_unlock(&pmus_lock); 11119 11120 return ret; 11121 11122 free_dev: 11123 device_del(pmu->dev); 11124 put_device(pmu->dev); 11125 11126 free_idr: 11127 if (pmu->type != PERF_TYPE_SOFTWARE) 11128 idr_remove(&pmu_idr, pmu->type); 11129 11130 free_pdc: 11131 free_percpu(pmu->pmu_disable_count); 11132 goto unlock; 11133 } 11134 EXPORT_SYMBOL_GPL(perf_pmu_register); 11135 11136 void perf_pmu_unregister(struct pmu *pmu) 11137 { 11138 mutex_lock(&pmus_lock); 11139 list_del_rcu(&pmu->entry); 11140 11141 /* 11142 * We dereference the pmu list under both SRCU and regular RCU, so 11143 * synchronize against both of those. 11144 */ 11145 synchronize_srcu(&pmus_srcu); 11146 synchronize_rcu(); 11147 11148 free_percpu(pmu->pmu_disable_count); 11149 if (pmu->type != PERF_TYPE_SOFTWARE) 11150 idr_remove(&pmu_idr, pmu->type); 11151 if (pmu_bus_running) { 11152 if (pmu->nr_addr_filters) 11153 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11154 device_del(pmu->dev); 11155 put_device(pmu->dev); 11156 } 11157 free_pmu_context(pmu); 11158 mutex_unlock(&pmus_lock); 11159 } 11160 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11161 11162 static inline bool has_extended_regs(struct perf_event *event) 11163 { 11164 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11165 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11166 } 11167 11168 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11169 { 11170 struct perf_event_context *ctx = NULL; 11171 int ret; 11172 11173 if (!try_module_get(pmu->module)) 11174 return -ENODEV; 11175 11176 /* 11177 * A number of pmu->event_init() methods iterate the sibling_list to, 11178 * for example, validate if the group fits on the PMU. Therefore, 11179 * if this is a sibling event, acquire the ctx->mutex to protect 11180 * the sibling_list. 11181 */ 11182 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11183 /* 11184 * This ctx->mutex can nest when we're called through 11185 * inheritance. See the perf_event_ctx_lock_nested() comment. 11186 */ 11187 ctx = perf_event_ctx_lock_nested(event->group_leader, 11188 SINGLE_DEPTH_NESTING); 11189 BUG_ON(!ctx); 11190 } 11191 11192 event->pmu = pmu; 11193 ret = pmu->event_init(event); 11194 11195 if (ctx) 11196 perf_event_ctx_unlock(event->group_leader, ctx); 11197 11198 if (!ret) { 11199 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11200 has_extended_regs(event)) 11201 ret = -EOPNOTSUPP; 11202 11203 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11204 event_has_any_exclude_flag(event)) 11205 ret = -EINVAL; 11206 11207 if (ret && event->destroy) 11208 event->destroy(event); 11209 } 11210 11211 if (ret) 11212 module_put(pmu->module); 11213 11214 return ret; 11215 } 11216 11217 static struct pmu *perf_init_event(struct perf_event *event) 11218 { 11219 bool extended_type = false; 11220 int idx, type, ret; 11221 struct pmu *pmu; 11222 11223 idx = srcu_read_lock(&pmus_srcu); 11224 11225 /* Try parent's PMU first: */ 11226 if (event->parent && event->parent->pmu) { 11227 pmu = event->parent->pmu; 11228 ret = perf_try_init_event(pmu, event); 11229 if (!ret) 11230 goto unlock; 11231 } 11232 11233 /* 11234 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11235 * are often aliases for PERF_TYPE_RAW. 11236 */ 11237 type = event->attr.type; 11238 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11239 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11240 if (!type) { 11241 type = PERF_TYPE_RAW; 11242 } else { 11243 extended_type = true; 11244 event->attr.config &= PERF_HW_EVENT_MASK; 11245 } 11246 } 11247 11248 again: 11249 rcu_read_lock(); 11250 pmu = idr_find(&pmu_idr, type); 11251 rcu_read_unlock(); 11252 if (pmu) { 11253 if (event->attr.type != type && type != PERF_TYPE_RAW && 11254 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11255 goto fail; 11256 11257 ret = perf_try_init_event(pmu, event); 11258 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11259 type = event->attr.type; 11260 goto again; 11261 } 11262 11263 if (ret) 11264 pmu = ERR_PTR(ret); 11265 11266 goto unlock; 11267 } 11268 11269 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11270 ret = perf_try_init_event(pmu, event); 11271 if (!ret) 11272 goto unlock; 11273 11274 if (ret != -ENOENT) { 11275 pmu = ERR_PTR(ret); 11276 goto unlock; 11277 } 11278 } 11279 fail: 11280 pmu = ERR_PTR(-ENOENT); 11281 unlock: 11282 srcu_read_unlock(&pmus_srcu, idx); 11283 11284 return pmu; 11285 } 11286 11287 static void attach_sb_event(struct perf_event *event) 11288 { 11289 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11290 11291 raw_spin_lock(&pel->lock); 11292 list_add_rcu(&event->sb_list, &pel->list); 11293 raw_spin_unlock(&pel->lock); 11294 } 11295 11296 /* 11297 * We keep a list of all !task (and therefore per-cpu) events 11298 * that need to receive side-band records. 11299 * 11300 * This avoids having to scan all the various PMU per-cpu contexts 11301 * looking for them. 11302 */ 11303 static void account_pmu_sb_event(struct perf_event *event) 11304 { 11305 if (is_sb_event(event)) 11306 attach_sb_event(event); 11307 } 11308 11309 static void account_event_cpu(struct perf_event *event, int cpu) 11310 { 11311 if (event->parent) 11312 return; 11313 11314 if (is_cgroup_event(event)) 11315 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11316 } 11317 11318 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11319 static void account_freq_event_nohz(void) 11320 { 11321 #ifdef CONFIG_NO_HZ_FULL 11322 /* Lock so we don't race with concurrent unaccount */ 11323 spin_lock(&nr_freq_lock); 11324 if (atomic_inc_return(&nr_freq_events) == 1) 11325 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11326 spin_unlock(&nr_freq_lock); 11327 #endif 11328 } 11329 11330 static void account_freq_event(void) 11331 { 11332 if (tick_nohz_full_enabled()) 11333 account_freq_event_nohz(); 11334 else 11335 atomic_inc(&nr_freq_events); 11336 } 11337 11338 11339 static void account_event(struct perf_event *event) 11340 { 11341 bool inc = false; 11342 11343 if (event->parent) 11344 return; 11345 11346 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11347 inc = true; 11348 if (event->attr.mmap || event->attr.mmap_data) 11349 atomic_inc(&nr_mmap_events); 11350 if (event->attr.build_id) 11351 atomic_inc(&nr_build_id_events); 11352 if (event->attr.comm) 11353 atomic_inc(&nr_comm_events); 11354 if (event->attr.namespaces) 11355 atomic_inc(&nr_namespaces_events); 11356 if (event->attr.cgroup) 11357 atomic_inc(&nr_cgroup_events); 11358 if (event->attr.task) 11359 atomic_inc(&nr_task_events); 11360 if (event->attr.freq) 11361 account_freq_event(); 11362 if (event->attr.context_switch) { 11363 atomic_inc(&nr_switch_events); 11364 inc = true; 11365 } 11366 if (has_branch_stack(event)) 11367 inc = true; 11368 if (is_cgroup_event(event)) 11369 inc = true; 11370 if (event->attr.ksymbol) 11371 atomic_inc(&nr_ksymbol_events); 11372 if (event->attr.bpf_event) 11373 atomic_inc(&nr_bpf_events); 11374 if (event->attr.text_poke) 11375 atomic_inc(&nr_text_poke_events); 11376 11377 if (inc) { 11378 /* 11379 * We need the mutex here because static_branch_enable() 11380 * must complete *before* the perf_sched_count increment 11381 * becomes visible. 11382 */ 11383 if (atomic_inc_not_zero(&perf_sched_count)) 11384 goto enabled; 11385 11386 mutex_lock(&perf_sched_mutex); 11387 if (!atomic_read(&perf_sched_count)) { 11388 static_branch_enable(&perf_sched_events); 11389 /* 11390 * Guarantee that all CPUs observe they key change and 11391 * call the perf scheduling hooks before proceeding to 11392 * install events that need them. 11393 */ 11394 synchronize_rcu(); 11395 } 11396 /* 11397 * Now that we have waited for the sync_sched(), allow further 11398 * increments to by-pass the mutex. 11399 */ 11400 atomic_inc(&perf_sched_count); 11401 mutex_unlock(&perf_sched_mutex); 11402 } 11403 enabled: 11404 11405 account_event_cpu(event, event->cpu); 11406 11407 account_pmu_sb_event(event); 11408 } 11409 11410 /* 11411 * Allocate and initialize an event structure 11412 */ 11413 static struct perf_event * 11414 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11415 struct task_struct *task, 11416 struct perf_event *group_leader, 11417 struct perf_event *parent_event, 11418 perf_overflow_handler_t overflow_handler, 11419 void *context, int cgroup_fd) 11420 { 11421 struct pmu *pmu; 11422 struct perf_event *event; 11423 struct hw_perf_event *hwc; 11424 long err = -EINVAL; 11425 int node; 11426 11427 if ((unsigned)cpu >= nr_cpu_ids) { 11428 if (!task || cpu != -1) 11429 return ERR_PTR(-EINVAL); 11430 } 11431 if (attr->sigtrap && !task) { 11432 /* Requires a task: avoid signalling random tasks. */ 11433 return ERR_PTR(-EINVAL); 11434 } 11435 11436 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11437 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11438 node); 11439 if (!event) 11440 return ERR_PTR(-ENOMEM); 11441 11442 /* 11443 * Single events are their own group leaders, with an 11444 * empty sibling list: 11445 */ 11446 if (!group_leader) 11447 group_leader = event; 11448 11449 mutex_init(&event->child_mutex); 11450 INIT_LIST_HEAD(&event->child_list); 11451 11452 INIT_LIST_HEAD(&event->event_entry); 11453 INIT_LIST_HEAD(&event->sibling_list); 11454 INIT_LIST_HEAD(&event->active_list); 11455 init_event_group(event); 11456 INIT_LIST_HEAD(&event->rb_entry); 11457 INIT_LIST_HEAD(&event->active_entry); 11458 INIT_LIST_HEAD(&event->addr_filters.list); 11459 INIT_HLIST_NODE(&event->hlist_entry); 11460 11461 11462 init_waitqueue_head(&event->waitq); 11463 event->pending_disable = -1; 11464 init_irq_work(&event->pending, perf_pending_event); 11465 11466 mutex_init(&event->mmap_mutex); 11467 raw_spin_lock_init(&event->addr_filters.lock); 11468 11469 atomic_long_set(&event->refcount, 1); 11470 event->cpu = cpu; 11471 event->attr = *attr; 11472 event->group_leader = group_leader; 11473 event->pmu = NULL; 11474 event->oncpu = -1; 11475 11476 event->parent = parent_event; 11477 11478 event->ns = get_pid_ns(task_active_pid_ns(current)); 11479 event->id = atomic64_inc_return(&perf_event_id); 11480 11481 event->state = PERF_EVENT_STATE_INACTIVE; 11482 11483 if (event->attr.sigtrap) 11484 atomic_set(&event->event_limit, 1); 11485 11486 if (task) { 11487 event->attach_state = PERF_ATTACH_TASK; 11488 /* 11489 * XXX pmu::event_init needs to know what task to account to 11490 * and we cannot use the ctx information because we need the 11491 * pmu before we get a ctx. 11492 */ 11493 event->hw.target = get_task_struct(task); 11494 } 11495 11496 event->clock = &local_clock; 11497 if (parent_event) 11498 event->clock = parent_event->clock; 11499 11500 if (!overflow_handler && parent_event) { 11501 overflow_handler = parent_event->overflow_handler; 11502 context = parent_event->overflow_handler_context; 11503 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11504 if (overflow_handler == bpf_overflow_handler) { 11505 struct bpf_prog *prog = parent_event->prog; 11506 11507 bpf_prog_inc(prog); 11508 event->prog = prog; 11509 event->orig_overflow_handler = 11510 parent_event->orig_overflow_handler; 11511 } 11512 #endif 11513 } 11514 11515 if (overflow_handler) { 11516 event->overflow_handler = overflow_handler; 11517 event->overflow_handler_context = context; 11518 } else if (is_write_backward(event)){ 11519 event->overflow_handler = perf_event_output_backward; 11520 event->overflow_handler_context = NULL; 11521 } else { 11522 event->overflow_handler = perf_event_output_forward; 11523 event->overflow_handler_context = NULL; 11524 } 11525 11526 perf_event__state_init(event); 11527 11528 pmu = NULL; 11529 11530 hwc = &event->hw; 11531 hwc->sample_period = attr->sample_period; 11532 if (attr->freq && attr->sample_freq) 11533 hwc->sample_period = 1; 11534 hwc->last_period = hwc->sample_period; 11535 11536 local64_set(&hwc->period_left, hwc->sample_period); 11537 11538 /* 11539 * We currently do not support PERF_SAMPLE_READ on inherited events. 11540 * See perf_output_read(). 11541 */ 11542 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11543 goto err_ns; 11544 11545 if (!has_branch_stack(event)) 11546 event->attr.branch_sample_type = 0; 11547 11548 pmu = perf_init_event(event); 11549 if (IS_ERR(pmu)) { 11550 err = PTR_ERR(pmu); 11551 goto err_ns; 11552 } 11553 11554 /* 11555 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11556 * be different on other CPUs in the uncore mask. 11557 */ 11558 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11559 err = -EINVAL; 11560 goto err_pmu; 11561 } 11562 11563 if (event->attr.aux_output && 11564 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11565 err = -EOPNOTSUPP; 11566 goto err_pmu; 11567 } 11568 11569 if (cgroup_fd != -1) { 11570 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11571 if (err) 11572 goto err_pmu; 11573 } 11574 11575 err = exclusive_event_init(event); 11576 if (err) 11577 goto err_pmu; 11578 11579 if (has_addr_filter(event)) { 11580 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11581 sizeof(struct perf_addr_filter_range), 11582 GFP_KERNEL); 11583 if (!event->addr_filter_ranges) { 11584 err = -ENOMEM; 11585 goto err_per_task; 11586 } 11587 11588 /* 11589 * Clone the parent's vma offsets: they are valid until exec() 11590 * even if the mm is not shared with the parent. 11591 */ 11592 if (event->parent) { 11593 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11594 11595 raw_spin_lock_irq(&ifh->lock); 11596 memcpy(event->addr_filter_ranges, 11597 event->parent->addr_filter_ranges, 11598 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11599 raw_spin_unlock_irq(&ifh->lock); 11600 } 11601 11602 /* force hw sync on the address filters */ 11603 event->addr_filters_gen = 1; 11604 } 11605 11606 if (!event->parent) { 11607 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11608 err = get_callchain_buffers(attr->sample_max_stack); 11609 if (err) 11610 goto err_addr_filters; 11611 } 11612 } 11613 11614 err = security_perf_event_alloc(event); 11615 if (err) 11616 goto err_callchain_buffer; 11617 11618 /* symmetric to unaccount_event() in _free_event() */ 11619 account_event(event); 11620 11621 return event; 11622 11623 err_callchain_buffer: 11624 if (!event->parent) { 11625 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11626 put_callchain_buffers(); 11627 } 11628 err_addr_filters: 11629 kfree(event->addr_filter_ranges); 11630 11631 err_per_task: 11632 exclusive_event_destroy(event); 11633 11634 err_pmu: 11635 if (is_cgroup_event(event)) 11636 perf_detach_cgroup(event); 11637 if (event->destroy) 11638 event->destroy(event); 11639 module_put(pmu->module); 11640 err_ns: 11641 if (event->ns) 11642 put_pid_ns(event->ns); 11643 if (event->hw.target) 11644 put_task_struct(event->hw.target); 11645 kmem_cache_free(perf_event_cache, event); 11646 11647 return ERR_PTR(err); 11648 } 11649 11650 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11651 struct perf_event_attr *attr) 11652 { 11653 u32 size; 11654 int ret; 11655 11656 /* Zero the full structure, so that a short copy will be nice. */ 11657 memset(attr, 0, sizeof(*attr)); 11658 11659 ret = get_user(size, &uattr->size); 11660 if (ret) 11661 return ret; 11662 11663 /* ABI compatibility quirk: */ 11664 if (!size) 11665 size = PERF_ATTR_SIZE_VER0; 11666 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11667 goto err_size; 11668 11669 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11670 if (ret) { 11671 if (ret == -E2BIG) 11672 goto err_size; 11673 return ret; 11674 } 11675 11676 attr->size = size; 11677 11678 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11679 return -EINVAL; 11680 11681 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11682 return -EINVAL; 11683 11684 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11685 return -EINVAL; 11686 11687 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11688 u64 mask = attr->branch_sample_type; 11689 11690 /* only using defined bits */ 11691 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11692 return -EINVAL; 11693 11694 /* at least one branch bit must be set */ 11695 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11696 return -EINVAL; 11697 11698 /* propagate priv level, when not set for branch */ 11699 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11700 11701 /* exclude_kernel checked on syscall entry */ 11702 if (!attr->exclude_kernel) 11703 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11704 11705 if (!attr->exclude_user) 11706 mask |= PERF_SAMPLE_BRANCH_USER; 11707 11708 if (!attr->exclude_hv) 11709 mask |= PERF_SAMPLE_BRANCH_HV; 11710 /* 11711 * adjust user setting (for HW filter setup) 11712 */ 11713 attr->branch_sample_type = mask; 11714 } 11715 /* privileged levels capture (kernel, hv): check permissions */ 11716 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11717 ret = perf_allow_kernel(attr); 11718 if (ret) 11719 return ret; 11720 } 11721 } 11722 11723 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11724 ret = perf_reg_validate(attr->sample_regs_user); 11725 if (ret) 11726 return ret; 11727 } 11728 11729 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11730 if (!arch_perf_have_user_stack_dump()) 11731 return -ENOSYS; 11732 11733 /* 11734 * We have __u32 type for the size, but so far 11735 * we can only use __u16 as maximum due to the 11736 * __u16 sample size limit. 11737 */ 11738 if (attr->sample_stack_user >= USHRT_MAX) 11739 return -EINVAL; 11740 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11741 return -EINVAL; 11742 } 11743 11744 if (!attr->sample_max_stack) 11745 attr->sample_max_stack = sysctl_perf_event_max_stack; 11746 11747 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11748 ret = perf_reg_validate(attr->sample_regs_intr); 11749 11750 #ifndef CONFIG_CGROUP_PERF 11751 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11752 return -EINVAL; 11753 #endif 11754 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11755 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11756 return -EINVAL; 11757 11758 if (!attr->inherit && attr->inherit_thread) 11759 return -EINVAL; 11760 11761 if (attr->remove_on_exec && attr->enable_on_exec) 11762 return -EINVAL; 11763 11764 if (attr->sigtrap && !attr->remove_on_exec) 11765 return -EINVAL; 11766 11767 out: 11768 return ret; 11769 11770 err_size: 11771 put_user(sizeof(*attr), &uattr->size); 11772 ret = -E2BIG; 11773 goto out; 11774 } 11775 11776 static int 11777 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11778 { 11779 struct perf_buffer *rb = NULL; 11780 int ret = -EINVAL; 11781 11782 if (!output_event) 11783 goto set; 11784 11785 /* don't allow circular references */ 11786 if (event == output_event) 11787 goto out; 11788 11789 /* 11790 * Don't allow cross-cpu buffers 11791 */ 11792 if (output_event->cpu != event->cpu) 11793 goto out; 11794 11795 /* 11796 * If its not a per-cpu rb, it must be the same task. 11797 */ 11798 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11799 goto out; 11800 11801 /* 11802 * Mixing clocks in the same buffer is trouble you don't need. 11803 */ 11804 if (output_event->clock != event->clock) 11805 goto out; 11806 11807 /* 11808 * Either writing ring buffer from beginning or from end. 11809 * Mixing is not allowed. 11810 */ 11811 if (is_write_backward(output_event) != is_write_backward(event)) 11812 goto out; 11813 11814 /* 11815 * If both events generate aux data, they must be on the same PMU 11816 */ 11817 if (has_aux(event) && has_aux(output_event) && 11818 event->pmu != output_event->pmu) 11819 goto out; 11820 11821 set: 11822 mutex_lock(&event->mmap_mutex); 11823 /* Can't redirect output if we've got an active mmap() */ 11824 if (atomic_read(&event->mmap_count)) 11825 goto unlock; 11826 11827 if (output_event) { 11828 /* get the rb we want to redirect to */ 11829 rb = ring_buffer_get(output_event); 11830 if (!rb) 11831 goto unlock; 11832 } 11833 11834 ring_buffer_attach(event, rb); 11835 11836 ret = 0; 11837 unlock: 11838 mutex_unlock(&event->mmap_mutex); 11839 11840 out: 11841 return ret; 11842 } 11843 11844 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11845 { 11846 if (b < a) 11847 swap(a, b); 11848 11849 mutex_lock(a); 11850 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11851 } 11852 11853 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11854 { 11855 bool nmi_safe = false; 11856 11857 switch (clk_id) { 11858 case CLOCK_MONOTONIC: 11859 event->clock = &ktime_get_mono_fast_ns; 11860 nmi_safe = true; 11861 break; 11862 11863 case CLOCK_MONOTONIC_RAW: 11864 event->clock = &ktime_get_raw_fast_ns; 11865 nmi_safe = true; 11866 break; 11867 11868 case CLOCK_REALTIME: 11869 event->clock = &ktime_get_real_ns; 11870 break; 11871 11872 case CLOCK_BOOTTIME: 11873 event->clock = &ktime_get_boottime_ns; 11874 break; 11875 11876 case CLOCK_TAI: 11877 event->clock = &ktime_get_clocktai_ns; 11878 break; 11879 11880 default: 11881 return -EINVAL; 11882 } 11883 11884 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11885 return -EINVAL; 11886 11887 return 0; 11888 } 11889 11890 /* 11891 * Variation on perf_event_ctx_lock_nested(), except we take two context 11892 * mutexes. 11893 */ 11894 static struct perf_event_context * 11895 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11896 struct perf_event_context *ctx) 11897 { 11898 struct perf_event_context *gctx; 11899 11900 again: 11901 rcu_read_lock(); 11902 gctx = READ_ONCE(group_leader->ctx); 11903 if (!refcount_inc_not_zero(&gctx->refcount)) { 11904 rcu_read_unlock(); 11905 goto again; 11906 } 11907 rcu_read_unlock(); 11908 11909 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11910 11911 if (group_leader->ctx != gctx) { 11912 mutex_unlock(&ctx->mutex); 11913 mutex_unlock(&gctx->mutex); 11914 put_ctx(gctx); 11915 goto again; 11916 } 11917 11918 return gctx; 11919 } 11920 11921 /** 11922 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11923 * 11924 * @attr_uptr: event_id type attributes for monitoring/sampling 11925 * @pid: target pid 11926 * @cpu: target cpu 11927 * @group_fd: group leader event fd 11928 * @flags: perf event open flags 11929 */ 11930 SYSCALL_DEFINE5(perf_event_open, 11931 struct perf_event_attr __user *, attr_uptr, 11932 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11933 { 11934 struct perf_event *group_leader = NULL, *output_event = NULL; 11935 struct perf_event *event, *sibling; 11936 struct perf_event_attr attr; 11937 struct perf_event_context *ctx, *gctx; 11938 struct file *event_file = NULL; 11939 struct fd group = {NULL, 0}; 11940 struct task_struct *task = NULL; 11941 struct pmu *pmu; 11942 int event_fd; 11943 int move_group = 0; 11944 int err; 11945 int f_flags = O_RDWR; 11946 int cgroup_fd = -1; 11947 11948 /* for future expandability... */ 11949 if (flags & ~PERF_FLAG_ALL) 11950 return -EINVAL; 11951 11952 /* Do we allow access to perf_event_open(2) ? */ 11953 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11954 if (err) 11955 return err; 11956 11957 err = perf_copy_attr(attr_uptr, &attr); 11958 if (err) 11959 return err; 11960 11961 if (!attr.exclude_kernel) { 11962 err = perf_allow_kernel(&attr); 11963 if (err) 11964 return err; 11965 } 11966 11967 if (attr.namespaces) { 11968 if (!perfmon_capable()) 11969 return -EACCES; 11970 } 11971 11972 if (attr.freq) { 11973 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11974 return -EINVAL; 11975 } else { 11976 if (attr.sample_period & (1ULL << 63)) 11977 return -EINVAL; 11978 } 11979 11980 /* Only privileged users can get physical addresses */ 11981 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11982 err = perf_allow_kernel(&attr); 11983 if (err) 11984 return err; 11985 } 11986 11987 /* REGS_INTR can leak data, lockdown must prevent this */ 11988 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 11989 err = security_locked_down(LOCKDOWN_PERF); 11990 if (err) 11991 return err; 11992 } 11993 11994 /* 11995 * In cgroup mode, the pid argument is used to pass the fd 11996 * opened to the cgroup directory in cgroupfs. The cpu argument 11997 * designates the cpu on which to monitor threads from that 11998 * cgroup. 11999 */ 12000 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12001 return -EINVAL; 12002 12003 if (flags & PERF_FLAG_FD_CLOEXEC) 12004 f_flags |= O_CLOEXEC; 12005 12006 event_fd = get_unused_fd_flags(f_flags); 12007 if (event_fd < 0) 12008 return event_fd; 12009 12010 if (group_fd != -1) { 12011 err = perf_fget_light(group_fd, &group); 12012 if (err) 12013 goto err_fd; 12014 group_leader = group.file->private_data; 12015 if (flags & PERF_FLAG_FD_OUTPUT) 12016 output_event = group_leader; 12017 if (flags & PERF_FLAG_FD_NO_GROUP) 12018 group_leader = NULL; 12019 } 12020 12021 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12022 task = find_lively_task_by_vpid(pid); 12023 if (IS_ERR(task)) { 12024 err = PTR_ERR(task); 12025 goto err_group_fd; 12026 } 12027 } 12028 12029 if (task && group_leader && 12030 group_leader->attr.inherit != attr.inherit) { 12031 err = -EINVAL; 12032 goto err_task; 12033 } 12034 12035 if (flags & PERF_FLAG_PID_CGROUP) 12036 cgroup_fd = pid; 12037 12038 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12039 NULL, NULL, cgroup_fd); 12040 if (IS_ERR(event)) { 12041 err = PTR_ERR(event); 12042 goto err_task; 12043 } 12044 12045 if (is_sampling_event(event)) { 12046 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12047 err = -EOPNOTSUPP; 12048 goto err_alloc; 12049 } 12050 } 12051 12052 /* 12053 * Special case software events and allow them to be part of 12054 * any hardware group. 12055 */ 12056 pmu = event->pmu; 12057 12058 if (attr.use_clockid) { 12059 err = perf_event_set_clock(event, attr.clockid); 12060 if (err) 12061 goto err_alloc; 12062 } 12063 12064 if (pmu->task_ctx_nr == perf_sw_context) 12065 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12066 12067 if (group_leader) { 12068 if (is_software_event(event) && 12069 !in_software_context(group_leader)) { 12070 /* 12071 * If the event is a sw event, but the group_leader 12072 * is on hw context. 12073 * 12074 * Allow the addition of software events to hw 12075 * groups, this is safe because software events 12076 * never fail to schedule. 12077 */ 12078 pmu = group_leader->ctx->pmu; 12079 } else if (!is_software_event(event) && 12080 is_software_event(group_leader) && 12081 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12082 /* 12083 * In case the group is a pure software group, and we 12084 * try to add a hardware event, move the whole group to 12085 * the hardware context. 12086 */ 12087 move_group = 1; 12088 } 12089 } 12090 12091 /* 12092 * Get the target context (task or percpu): 12093 */ 12094 ctx = find_get_context(pmu, task, event); 12095 if (IS_ERR(ctx)) { 12096 err = PTR_ERR(ctx); 12097 goto err_alloc; 12098 } 12099 12100 /* 12101 * Look up the group leader (we will attach this event to it): 12102 */ 12103 if (group_leader) { 12104 err = -EINVAL; 12105 12106 /* 12107 * Do not allow a recursive hierarchy (this new sibling 12108 * becoming part of another group-sibling): 12109 */ 12110 if (group_leader->group_leader != group_leader) 12111 goto err_context; 12112 12113 /* All events in a group should have the same clock */ 12114 if (group_leader->clock != event->clock) 12115 goto err_context; 12116 12117 /* 12118 * Make sure we're both events for the same CPU; 12119 * grouping events for different CPUs is broken; since 12120 * you can never concurrently schedule them anyhow. 12121 */ 12122 if (group_leader->cpu != event->cpu) 12123 goto err_context; 12124 12125 /* 12126 * Make sure we're both on the same task, or both 12127 * per-CPU events. 12128 */ 12129 if (group_leader->ctx->task != ctx->task) 12130 goto err_context; 12131 12132 /* 12133 * Do not allow to attach to a group in a different task 12134 * or CPU context. If we're moving SW events, we'll fix 12135 * this up later, so allow that. 12136 */ 12137 if (!move_group && group_leader->ctx != ctx) 12138 goto err_context; 12139 12140 /* 12141 * Only a group leader can be exclusive or pinned 12142 */ 12143 if (attr.exclusive || attr.pinned) 12144 goto err_context; 12145 } 12146 12147 if (output_event) { 12148 err = perf_event_set_output(event, output_event); 12149 if (err) 12150 goto err_context; 12151 } 12152 12153 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 12154 f_flags); 12155 if (IS_ERR(event_file)) { 12156 err = PTR_ERR(event_file); 12157 event_file = NULL; 12158 goto err_context; 12159 } 12160 12161 if (task) { 12162 err = down_read_interruptible(&task->signal->exec_update_lock); 12163 if (err) 12164 goto err_file; 12165 12166 /* 12167 * Preserve ptrace permission check for backwards compatibility. 12168 * 12169 * We must hold exec_update_lock across this and any potential 12170 * perf_install_in_context() call for this new event to 12171 * serialize against exec() altering our credentials (and the 12172 * perf_event_exit_task() that could imply). 12173 */ 12174 err = -EACCES; 12175 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 12176 goto err_cred; 12177 } 12178 12179 if (move_group) { 12180 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 12181 12182 if (gctx->task == TASK_TOMBSTONE) { 12183 err = -ESRCH; 12184 goto err_locked; 12185 } 12186 12187 /* 12188 * Check if we raced against another sys_perf_event_open() call 12189 * moving the software group underneath us. 12190 */ 12191 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12192 /* 12193 * If someone moved the group out from under us, check 12194 * if this new event wound up on the same ctx, if so 12195 * its the regular !move_group case, otherwise fail. 12196 */ 12197 if (gctx != ctx) { 12198 err = -EINVAL; 12199 goto err_locked; 12200 } else { 12201 perf_event_ctx_unlock(group_leader, gctx); 12202 move_group = 0; 12203 } 12204 } 12205 12206 /* 12207 * Failure to create exclusive events returns -EBUSY. 12208 */ 12209 err = -EBUSY; 12210 if (!exclusive_event_installable(group_leader, ctx)) 12211 goto err_locked; 12212 12213 for_each_sibling_event(sibling, group_leader) { 12214 if (!exclusive_event_installable(sibling, ctx)) 12215 goto err_locked; 12216 } 12217 } else { 12218 mutex_lock(&ctx->mutex); 12219 } 12220 12221 if (ctx->task == TASK_TOMBSTONE) { 12222 err = -ESRCH; 12223 goto err_locked; 12224 } 12225 12226 if (!perf_event_validate_size(event)) { 12227 err = -E2BIG; 12228 goto err_locked; 12229 } 12230 12231 if (!task) { 12232 /* 12233 * Check if the @cpu we're creating an event for is online. 12234 * 12235 * We use the perf_cpu_context::ctx::mutex to serialize against 12236 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12237 */ 12238 struct perf_cpu_context *cpuctx = 12239 container_of(ctx, struct perf_cpu_context, ctx); 12240 12241 if (!cpuctx->online) { 12242 err = -ENODEV; 12243 goto err_locked; 12244 } 12245 } 12246 12247 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12248 err = -EINVAL; 12249 goto err_locked; 12250 } 12251 12252 /* 12253 * Must be under the same ctx::mutex as perf_install_in_context(), 12254 * because we need to serialize with concurrent event creation. 12255 */ 12256 if (!exclusive_event_installable(event, ctx)) { 12257 err = -EBUSY; 12258 goto err_locked; 12259 } 12260 12261 WARN_ON_ONCE(ctx->parent_ctx); 12262 12263 /* 12264 * This is the point on no return; we cannot fail hereafter. This is 12265 * where we start modifying current state. 12266 */ 12267 12268 if (move_group) { 12269 /* 12270 * See perf_event_ctx_lock() for comments on the details 12271 * of swizzling perf_event::ctx. 12272 */ 12273 perf_remove_from_context(group_leader, 0); 12274 put_ctx(gctx); 12275 12276 for_each_sibling_event(sibling, group_leader) { 12277 perf_remove_from_context(sibling, 0); 12278 put_ctx(gctx); 12279 } 12280 12281 /* 12282 * Wait for everybody to stop referencing the events through 12283 * the old lists, before installing it on new lists. 12284 */ 12285 synchronize_rcu(); 12286 12287 /* 12288 * Install the group siblings before the group leader. 12289 * 12290 * Because a group leader will try and install the entire group 12291 * (through the sibling list, which is still in-tact), we can 12292 * end up with siblings installed in the wrong context. 12293 * 12294 * By installing siblings first we NO-OP because they're not 12295 * reachable through the group lists. 12296 */ 12297 for_each_sibling_event(sibling, group_leader) { 12298 perf_event__state_init(sibling); 12299 perf_install_in_context(ctx, sibling, sibling->cpu); 12300 get_ctx(ctx); 12301 } 12302 12303 /* 12304 * Removing from the context ends up with disabled 12305 * event. What we want here is event in the initial 12306 * startup state, ready to be add into new context. 12307 */ 12308 perf_event__state_init(group_leader); 12309 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12310 get_ctx(ctx); 12311 } 12312 12313 /* 12314 * Precalculate sample_data sizes; do while holding ctx::mutex such 12315 * that we're serialized against further additions and before 12316 * perf_install_in_context() which is the point the event is active and 12317 * can use these values. 12318 */ 12319 perf_event__header_size(event); 12320 perf_event__id_header_size(event); 12321 12322 event->owner = current; 12323 12324 perf_install_in_context(ctx, event, event->cpu); 12325 perf_unpin_context(ctx); 12326 12327 if (move_group) 12328 perf_event_ctx_unlock(group_leader, gctx); 12329 mutex_unlock(&ctx->mutex); 12330 12331 if (task) { 12332 up_read(&task->signal->exec_update_lock); 12333 put_task_struct(task); 12334 } 12335 12336 mutex_lock(¤t->perf_event_mutex); 12337 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12338 mutex_unlock(¤t->perf_event_mutex); 12339 12340 /* 12341 * Drop the reference on the group_event after placing the 12342 * new event on the sibling_list. This ensures destruction 12343 * of the group leader will find the pointer to itself in 12344 * perf_group_detach(). 12345 */ 12346 fdput(group); 12347 fd_install(event_fd, event_file); 12348 return event_fd; 12349 12350 err_locked: 12351 if (move_group) 12352 perf_event_ctx_unlock(group_leader, gctx); 12353 mutex_unlock(&ctx->mutex); 12354 err_cred: 12355 if (task) 12356 up_read(&task->signal->exec_update_lock); 12357 err_file: 12358 fput(event_file); 12359 err_context: 12360 perf_unpin_context(ctx); 12361 put_ctx(ctx); 12362 err_alloc: 12363 /* 12364 * If event_file is set, the fput() above will have called ->release() 12365 * and that will take care of freeing the event. 12366 */ 12367 if (!event_file) 12368 free_event(event); 12369 err_task: 12370 if (task) 12371 put_task_struct(task); 12372 err_group_fd: 12373 fdput(group); 12374 err_fd: 12375 put_unused_fd(event_fd); 12376 return err; 12377 } 12378 12379 /** 12380 * perf_event_create_kernel_counter 12381 * 12382 * @attr: attributes of the counter to create 12383 * @cpu: cpu in which the counter is bound 12384 * @task: task to profile (NULL for percpu) 12385 * @overflow_handler: callback to trigger when we hit the event 12386 * @context: context data could be used in overflow_handler callback 12387 */ 12388 struct perf_event * 12389 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12390 struct task_struct *task, 12391 perf_overflow_handler_t overflow_handler, 12392 void *context) 12393 { 12394 struct perf_event_context *ctx; 12395 struct perf_event *event; 12396 int err; 12397 12398 /* 12399 * Grouping is not supported for kernel events, neither is 'AUX', 12400 * make sure the caller's intentions are adjusted. 12401 */ 12402 if (attr->aux_output) 12403 return ERR_PTR(-EINVAL); 12404 12405 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12406 overflow_handler, context, -1); 12407 if (IS_ERR(event)) { 12408 err = PTR_ERR(event); 12409 goto err; 12410 } 12411 12412 /* Mark owner so we could distinguish it from user events. */ 12413 event->owner = TASK_TOMBSTONE; 12414 12415 /* 12416 * Get the target context (task or percpu): 12417 */ 12418 ctx = find_get_context(event->pmu, task, event); 12419 if (IS_ERR(ctx)) { 12420 err = PTR_ERR(ctx); 12421 goto err_free; 12422 } 12423 12424 WARN_ON_ONCE(ctx->parent_ctx); 12425 mutex_lock(&ctx->mutex); 12426 if (ctx->task == TASK_TOMBSTONE) { 12427 err = -ESRCH; 12428 goto err_unlock; 12429 } 12430 12431 if (!task) { 12432 /* 12433 * Check if the @cpu we're creating an event for is online. 12434 * 12435 * We use the perf_cpu_context::ctx::mutex to serialize against 12436 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12437 */ 12438 struct perf_cpu_context *cpuctx = 12439 container_of(ctx, struct perf_cpu_context, ctx); 12440 if (!cpuctx->online) { 12441 err = -ENODEV; 12442 goto err_unlock; 12443 } 12444 } 12445 12446 if (!exclusive_event_installable(event, ctx)) { 12447 err = -EBUSY; 12448 goto err_unlock; 12449 } 12450 12451 perf_install_in_context(ctx, event, event->cpu); 12452 perf_unpin_context(ctx); 12453 mutex_unlock(&ctx->mutex); 12454 12455 return event; 12456 12457 err_unlock: 12458 mutex_unlock(&ctx->mutex); 12459 perf_unpin_context(ctx); 12460 put_ctx(ctx); 12461 err_free: 12462 free_event(event); 12463 err: 12464 return ERR_PTR(err); 12465 } 12466 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12467 12468 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12469 { 12470 struct perf_event_context *src_ctx; 12471 struct perf_event_context *dst_ctx; 12472 struct perf_event *event, *tmp; 12473 LIST_HEAD(events); 12474 12475 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12476 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12477 12478 /* 12479 * See perf_event_ctx_lock() for comments on the details 12480 * of swizzling perf_event::ctx. 12481 */ 12482 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12483 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12484 event_entry) { 12485 perf_remove_from_context(event, 0); 12486 unaccount_event_cpu(event, src_cpu); 12487 put_ctx(src_ctx); 12488 list_add(&event->migrate_entry, &events); 12489 } 12490 12491 /* 12492 * Wait for the events to quiesce before re-instating them. 12493 */ 12494 synchronize_rcu(); 12495 12496 /* 12497 * Re-instate events in 2 passes. 12498 * 12499 * Skip over group leaders and only install siblings on this first 12500 * pass, siblings will not get enabled without a leader, however a 12501 * leader will enable its siblings, even if those are still on the old 12502 * context. 12503 */ 12504 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12505 if (event->group_leader == event) 12506 continue; 12507 12508 list_del(&event->migrate_entry); 12509 if (event->state >= PERF_EVENT_STATE_OFF) 12510 event->state = PERF_EVENT_STATE_INACTIVE; 12511 account_event_cpu(event, dst_cpu); 12512 perf_install_in_context(dst_ctx, event, dst_cpu); 12513 get_ctx(dst_ctx); 12514 } 12515 12516 /* 12517 * Once all the siblings are setup properly, install the group leaders 12518 * to make it go. 12519 */ 12520 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12521 list_del(&event->migrate_entry); 12522 if (event->state >= PERF_EVENT_STATE_OFF) 12523 event->state = PERF_EVENT_STATE_INACTIVE; 12524 account_event_cpu(event, dst_cpu); 12525 perf_install_in_context(dst_ctx, event, dst_cpu); 12526 get_ctx(dst_ctx); 12527 } 12528 mutex_unlock(&dst_ctx->mutex); 12529 mutex_unlock(&src_ctx->mutex); 12530 } 12531 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12532 12533 static void sync_child_event(struct perf_event *child_event) 12534 { 12535 struct perf_event *parent_event = child_event->parent; 12536 u64 child_val; 12537 12538 if (child_event->attr.inherit_stat) { 12539 struct task_struct *task = child_event->ctx->task; 12540 12541 if (task && task != TASK_TOMBSTONE) 12542 perf_event_read_event(child_event, task); 12543 } 12544 12545 child_val = perf_event_count(child_event); 12546 12547 /* 12548 * Add back the child's count to the parent's count: 12549 */ 12550 atomic64_add(child_val, &parent_event->child_count); 12551 atomic64_add(child_event->total_time_enabled, 12552 &parent_event->child_total_time_enabled); 12553 atomic64_add(child_event->total_time_running, 12554 &parent_event->child_total_time_running); 12555 } 12556 12557 static void 12558 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12559 { 12560 struct perf_event *parent_event = event->parent; 12561 unsigned long detach_flags = 0; 12562 12563 if (parent_event) { 12564 /* 12565 * Do not destroy the 'original' grouping; because of the 12566 * context switch optimization the original events could've 12567 * ended up in a random child task. 12568 * 12569 * If we were to destroy the original group, all group related 12570 * operations would cease to function properly after this 12571 * random child dies. 12572 * 12573 * Do destroy all inherited groups, we don't care about those 12574 * and being thorough is better. 12575 */ 12576 detach_flags = DETACH_GROUP | DETACH_CHILD; 12577 mutex_lock(&parent_event->child_mutex); 12578 } 12579 12580 perf_remove_from_context(event, detach_flags); 12581 12582 raw_spin_lock_irq(&ctx->lock); 12583 if (event->state > PERF_EVENT_STATE_EXIT) 12584 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12585 raw_spin_unlock_irq(&ctx->lock); 12586 12587 /* 12588 * Child events can be freed. 12589 */ 12590 if (parent_event) { 12591 mutex_unlock(&parent_event->child_mutex); 12592 /* 12593 * Kick perf_poll() for is_event_hup(); 12594 */ 12595 perf_event_wakeup(parent_event); 12596 free_event(event); 12597 put_event(parent_event); 12598 return; 12599 } 12600 12601 /* 12602 * Parent events are governed by their filedesc, retain them. 12603 */ 12604 perf_event_wakeup(event); 12605 } 12606 12607 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12608 { 12609 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12610 struct perf_event *child_event, *next; 12611 12612 WARN_ON_ONCE(child != current); 12613 12614 child_ctx = perf_pin_task_context(child, ctxn); 12615 if (!child_ctx) 12616 return; 12617 12618 /* 12619 * In order to reduce the amount of tricky in ctx tear-down, we hold 12620 * ctx::mutex over the entire thing. This serializes against almost 12621 * everything that wants to access the ctx. 12622 * 12623 * The exception is sys_perf_event_open() / 12624 * perf_event_create_kernel_count() which does find_get_context() 12625 * without ctx::mutex (it cannot because of the move_group double mutex 12626 * lock thing). See the comments in perf_install_in_context(). 12627 */ 12628 mutex_lock(&child_ctx->mutex); 12629 12630 /* 12631 * In a single ctx::lock section, de-schedule the events and detach the 12632 * context from the task such that we cannot ever get it scheduled back 12633 * in. 12634 */ 12635 raw_spin_lock_irq(&child_ctx->lock); 12636 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12637 12638 /* 12639 * Now that the context is inactive, destroy the task <-> ctx relation 12640 * and mark the context dead. 12641 */ 12642 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12643 put_ctx(child_ctx); /* cannot be last */ 12644 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12645 put_task_struct(current); /* cannot be last */ 12646 12647 clone_ctx = unclone_ctx(child_ctx); 12648 raw_spin_unlock_irq(&child_ctx->lock); 12649 12650 if (clone_ctx) 12651 put_ctx(clone_ctx); 12652 12653 /* 12654 * Report the task dead after unscheduling the events so that we 12655 * won't get any samples after PERF_RECORD_EXIT. We can however still 12656 * get a few PERF_RECORD_READ events. 12657 */ 12658 perf_event_task(child, child_ctx, 0); 12659 12660 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12661 perf_event_exit_event(child_event, child_ctx); 12662 12663 mutex_unlock(&child_ctx->mutex); 12664 12665 put_ctx(child_ctx); 12666 } 12667 12668 /* 12669 * When a child task exits, feed back event values to parent events. 12670 * 12671 * Can be called with exec_update_lock held when called from 12672 * setup_new_exec(). 12673 */ 12674 void perf_event_exit_task(struct task_struct *child) 12675 { 12676 struct perf_event *event, *tmp; 12677 int ctxn; 12678 12679 mutex_lock(&child->perf_event_mutex); 12680 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12681 owner_entry) { 12682 list_del_init(&event->owner_entry); 12683 12684 /* 12685 * Ensure the list deletion is visible before we clear 12686 * the owner, closes a race against perf_release() where 12687 * we need to serialize on the owner->perf_event_mutex. 12688 */ 12689 smp_store_release(&event->owner, NULL); 12690 } 12691 mutex_unlock(&child->perf_event_mutex); 12692 12693 for_each_task_context_nr(ctxn) 12694 perf_event_exit_task_context(child, ctxn); 12695 12696 /* 12697 * The perf_event_exit_task_context calls perf_event_task 12698 * with child's task_ctx, which generates EXIT events for 12699 * child contexts and sets child->perf_event_ctxp[] to NULL. 12700 * At this point we need to send EXIT events to cpu contexts. 12701 */ 12702 perf_event_task(child, NULL, 0); 12703 } 12704 12705 static void perf_free_event(struct perf_event *event, 12706 struct perf_event_context *ctx) 12707 { 12708 struct perf_event *parent = event->parent; 12709 12710 if (WARN_ON_ONCE(!parent)) 12711 return; 12712 12713 mutex_lock(&parent->child_mutex); 12714 list_del_init(&event->child_list); 12715 mutex_unlock(&parent->child_mutex); 12716 12717 put_event(parent); 12718 12719 raw_spin_lock_irq(&ctx->lock); 12720 perf_group_detach(event); 12721 list_del_event(event, ctx); 12722 raw_spin_unlock_irq(&ctx->lock); 12723 free_event(event); 12724 } 12725 12726 /* 12727 * Free a context as created by inheritance by perf_event_init_task() below, 12728 * used by fork() in case of fail. 12729 * 12730 * Even though the task has never lived, the context and events have been 12731 * exposed through the child_list, so we must take care tearing it all down. 12732 */ 12733 void perf_event_free_task(struct task_struct *task) 12734 { 12735 struct perf_event_context *ctx; 12736 struct perf_event *event, *tmp; 12737 int ctxn; 12738 12739 for_each_task_context_nr(ctxn) { 12740 ctx = task->perf_event_ctxp[ctxn]; 12741 if (!ctx) 12742 continue; 12743 12744 mutex_lock(&ctx->mutex); 12745 raw_spin_lock_irq(&ctx->lock); 12746 /* 12747 * Destroy the task <-> ctx relation and mark the context dead. 12748 * 12749 * This is important because even though the task hasn't been 12750 * exposed yet the context has been (through child_list). 12751 */ 12752 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12753 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12754 put_task_struct(task); /* cannot be last */ 12755 raw_spin_unlock_irq(&ctx->lock); 12756 12757 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12758 perf_free_event(event, ctx); 12759 12760 mutex_unlock(&ctx->mutex); 12761 12762 /* 12763 * perf_event_release_kernel() could've stolen some of our 12764 * child events and still have them on its free_list. In that 12765 * case we must wait for these events to have been freed (in 12766 * particular all their references to this task must've been 12767 * dropped). 12768 * 12769 * Without this copy_process() will unconditionally free this 12770 * task (irrespective of its reference count) and 12771 * _free_event()'s put_task_struct(event->hw.target) will be a 12772 * use-after-free. 12773 * 12774 * Wait for all events to drop their context reference. 12775 */ 12776 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12777 put_ctx(ctx); /* must be last */ 12778 } 12779 } 12780 12781 void perf_event_delayed_put(struct task_struct *task) 12782 { 12783 int ctxn; 12784 12785 for_each_task_context_nr(ctxn) 12786 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12787 } 12788 12789 struct file *perf_event_get(unsigned int fd) 12790 { 12791 struct file *file = fget(fd); 12792 if (!file) 12793 return ERR_PTR(-EBADF); 12794 12795 if (file->f_op != &perf_fops) { 12796 fput(file); 12797 return ERR_PTR(-EBADF); 12798 } 12799 12800 return file; 12801 } 12802 12803 const struct perf_event *perf_get_event(struct file *file) 12804 { 12805 if (file->f_op != &perf_fops) 12806 return ERR_PTR(-EINVAL); 12807 12808 return file->private_data; 12809 } 12810 12811 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12812 { 12813 if (!event) 12814 return ERR_PTR(-EINVAL); 12815 12816 return &event->attr; 12817 } 12818 12819 /* 12820 * Inherit an event from parent task to child task. 12821 * 12822 * Returns: 12823 * - valid pointer on success 12824 * - NULL for orphaned events 12825 * - IS_ERR() on error 12826 */ 12827 static struct perf_event * 12828 inherit_event(struct perf_event *parent_event, 12829 struct task_struct *parent, 12830 struct perf_event_context *parent_ctx, 12831 struct task_struct *child, 12832 struct perf_event *group_leader, 12833 struct perf_event_context *child_ctx) 12834 { 12835 enum perf_event_state parent_state = parent_event->state; 12836 struct perf_event *child_event; 12837 unsigned long flags; 12838 12839 /* 12840 * Instead of creating recursive hierarchies of events, 12841 * we link inherited events back to the original parent, 12842 * which has a filp for sure, which we use as the reference 12843 * count: 12844 */ 12845 if (parent_event->parent) 12846 parent_event = parent_event->parent; 12847 12848 child_event = perf_event_alloc(&parent_event->attr, 12849 parent_event->cpu, 12850 child, 12851 group_leader, parent_event, 12852 NULL, NULL, -1); 12853 if (IS_ERR(child_event)) 12854 return child_event; 12855 12856 12857 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12858 !child_ctx->task_ctx_data) { 12859 struct pmu *pmu = child_event->pmu; 12860 12861 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 12862 if (!child_ctx->task_ctx_data) { 12863 free_event(child_event); 12864 return ERR_PTR(-ENOMEM); 12865 } 12866 } 12867 12868 /* 12869 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12870 * must be under the same lock in order to serialize against 12871 * perf_event_release_kernel(), such that either we must observe 12872 * is_orphaned_event() or they will observe us on the child_list. 12873 */ 12874 mutex_lock(&parent_event->child_mutex); 12875 if (is_orphaned_event(parent_event) || 12876 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12877 mutex_unlock(&parent_event->child_mutex); 12878 /* task_ctx_data is freed with child_ctx */ 12879 free_event(child_event); 12880 return NULL; 12881 } 12882 12883 get_ctx(child_ctx); 12884 12885 /* 12886 * Make the child state follow the state of the parent event, 12887 * not its attr.disabled bit. We hold the parent's mutex, 12888 * so we won't race with perf_event_{en, dis}able_family. 12889 */ 12890 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12891 child_event->state = PERF_EVENT_STATE_INACTIVE; 12892 else 12893 child_event->state = PERF_EVENT_STATE_OFF; 12894 12895 if (parent_event->attr.freq) { 12896 u64 sample_period = parent_event->hw.sample_period; 12897 struct hw_perf_event *hwc = &child_event->hw; 12898 12899 hwc->sample_period = sample_period; 12900 hwc->last_period = sample_period; 12901 12902 local64_set(&hwc->period_left, sample_period); 12903 } 12904 12905 child_event->ctx = child_ctx; 12906 child_event->overflow_handler = parent_event->overflow_handler; 12907 child_event->overflow_handler_context 12908 = parent_event->overflow_handler_context; 12909 12910 /* 12911 * Precalculate sample_data sizes 12912 */ 12913 perf_event__header_size(child_event); 12914 perf_event__id_header_size(child_event); 12915 12916 /* 12917 * Link it up in the child's context: 12918 */ 12919 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12920 add_event_to_ctx(child_event, child_ctx); 12921 child_event->attach_state |= PERF_ATTACH_CHILD; 12922 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12923 12924 /* 12925 * Link this into the parent event's child list 12926 */ 12927 list_add_tail(&child_event->child_list, &parent_event->child_list); 12928 mutex_unlock(&parent_event->child_mutex); 12929 12930 return child_event; 12931 } 12932 12933 /* 12934 * Inherits an event group. 12935 * 12936 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12937 * This matches with perf_event_release_kernel() removing all child events. 12938 * 12939 * Returns: 12940 * - 0 on success 12941 * - <0 on error 12942 */ 12943 static int inherit_group(struct perf_event *parent_event, 12944 struct task_struct *parent, 12945 struct perf_event_context *parent_ctx, 12946 struct task_struct *child, 12947 struct perf_event_context *child_ctx) 12948 { 12949 struct perf_event *leader; 12950 struct perf_event *sub; 12951 struct perf_event *child_ctr; 12952 12953 leader = inherit_event(parent_event, parent, parent_ctx, 12954 child, NULL, child_ctx); 12955 if (IS_ERR(leader)) 12956 return PTR_ERR(leader); 12957 /* 12958 * @leader can be NULL here because of is_orphaned_event(). In this 12959 * case inherit_event() will create individual events, similar to what 12960 * perf_group_detach() would do anyway. 12961 */ 12962 for_each_sibling_event(sub, parent_event) { 12963 child_ctr = inherit_event(sub, parent, parent_ctx, 12964 child, leader, child_ctx); 12965 if (IS_ERR(child_ctr)) 12966 return PTR_ERR(child_ctr); 12967 12968 if (sub->aux_event == parent_event && child_ctr && 12969 !perf_get_aux_event(child_ctr, leader)) 12970 return -EINVAL; 12971 } 12972 return 0; 12973 } 12974 12975 /* 12976 * Creates the child task context and tries to inherit the event-group. 12977 * 12978 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12979 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12980 * consistent with perf_event_release_kernel() removing all child events. 12981 * 12982 * Returns: 12983 * - 0 on success 12984 * - <0 on error 12985 */ 12986 static int 12987 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12988 struct perf_event_context *parent_ctx, 12989 struct task_struct *child, int ctxn, 12990 u64 clone_flags, int *inherited_all) 12991 { 12992 int ret; 12993 struct perf_event_context *child_ctx; 12994 12995 if (!event->attr.inherit || 12996 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 12997 /* Do not inherit if sigtrap and signal handlers were cleared. */ 12998 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 12999 *inherited_all = 0; 13000 return 0; 13001 } 13002 13003 child_ctx = child->perf_event_ctxp[ctxn]; 13004 if (!child_ctx) { 13005 /* 13006 * This is executed from the parent task context, so 13007 * inherit events that have been marked for cloning. 13008 * First allocate and initialize a context for the 13009 * child. 13010 */ 13011 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 13012 if (!child_ctx) 13013 return -ENOMEM; 13014 13015 child->perf_event_ctxp[ctxn] = child_ctx; 13016 } 13017 13018 ret = inherit_group(event, parent, parent_ctx, 13019 child, child_ctx); 13020 13021 if (ret) 13022 *inherited_all = 0; 13023 13024 return ret; 13025 } 13026 13027 /* 13028 * Initialize the perf_event context in task_struct 13029 */ 13030 static int perf_event_init_context(struct task_struct *child, int ctxn, 13031 u64 clone_flags) 13032 { 13033 struct perf_event_context *child_ctx, *parent_ctx; 13034 struct perf_event_context *cloned_ctx; 13035 struct perf_event *event; 13036 struct task_struct *parent = current; 13037 int inherited_all = 1; 13038 unsigned long flags; 13039 int ret = 0; 13040 13041 if (likely(!parent->perf_event_ctxp[ctxn])) 13042 return 0; 13043 13044 /* 13045 * If the parent's context is a clone, pin it so it won't get 13046 * swapped under us. 13047 */ 13048 parent_ctx = perf_pin_task_context(parent, ctxn); 13049 if (!parent_ctx) 13050 return 0; 13051 13052 /* 13053 * No need to check if parent_ctx != NULL here; since we saw 13054 * it non-NULL earlier, the only reason for it to become NULL 13055 * is if we exit, and since we're currently in the middle of 13056 * a fork we can't be exiting at the same time. 13057 */ 13058 13059 /* 13060 * Lock the parent list. No need to lock the child - not PID 13061 * hashed yet and not running, so nobody can access it. 13062 */ 13063 mutex_lock(&parent_ctx->mutex); 13064 13065 /* 13066 * We dont have to disable NMIs - we are only looking at 13067 * the list, not manipulating it: 13068 */ 13069 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13070 ret = inherit_task_group(event, parent, parent_ctx, 13071 child, ctxn, clone_flags, 13072 &inherited_all); 13073 if (ret) 13074 goto out_unlock; 13075 } 13076 13077 /* 13078 * We can't hold ctx->lock when iterating the ->flexible_group list due 13079 * to allocations, but we need to prevent rotation because 13080 * rotate_ctx() will change the list from interrupt context. 13081 */ 13082 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13083 parent_ctx->rotate_disable = 1; 13084 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13085 13086 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13087 ret = inherit_task_group(event, parent, parent_ctx, 13088 child, ctxn, clone_flags, 13089 &inherited_all); 13090 if (ret) 13091 goto out_unlock; 13092 } 13093 13094 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13095 parent_ctx->rotate_disable = 0; 13096 13097 child_ctx = child->perf_event_ctxp[ctxn]; 13098 13099 if (child_ctx && inherited_all) { 13100 /* 13101 * Mark the child context as a clone of the parent 13102 * context, or of whatever the parent is a clone of. 13103 * 13104 * Note that if the parent is a clone, the holding of 13105 * parent_ctx->lock avoids it from being uncloned. 13106 */ 13107 cloned_ctx = parent_ctx->parent_ctx; 13108 if (cloned_ctx) { 13109 child_ctx->parent_ctx = cloned_ctx; 13110 child_ctx->parent_gen = parent_ctx->parent_gen; 13111 } else { 13112 child_ctx->parent_ctx = parent_ctx; 13113 child_ctx->parent_gen = parent_ctx->generation; 13114 } 13115 get_ctx(child_ctx->parent_ctx); 13116 } 13117 13118 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13119 out_unlock: 13120 mutex_unlock(&parent_ctx->mutex); 13121 13122 perf_unpin_context(parent_ctx); 13123 put_ctx(parent_ctx); 13124 13125 return ret; 13126 } 13127 13128 /* 13129 * Initialize the perf_event context in task_struct 13130 */ 13131 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13132 { 13133 int ctxn, ret; 13134 13135 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 13136 mutex_init(&child->perf_event_mutex); 13137 INIT_LIST_HEAD(&child->perf_event_list); 13138 13139 for_each_task_context_nr(ctxn) { 13140 ret = perf_event_init_context(child, ctxn, clone_flags); 13141 if (ret) { 13142 perf_event_free_task(child); 13143 return ret; 13144 } 13145 } 13146 13147 return 0; 13148 } 13149 13150 static void __init perf_event_init_all_cpus(void) 13151 { 13152 struct swevent_htable *swhash; 13153 int cpu; 13154 13155 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13156 13157 for_each_possible_cpu(cpu) { 13158 swhash = &per_cpu(swevent_htable, cpu); 13159 mutex_init(&swhash->hlist_mutex); 13160 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 13161 13162 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13163 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13164 13165 #ifdef CONFIG_CGROUP_PERF 13166 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 13167 #endif 13168 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13169 } 13170 } 13171 13172 static void perf_swevent_init_cpu(unsigned int cpu) 13173 { 13174 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13175 13176 mutex_lock(&swhash->hlist_mutex); 13177 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13178 struct swevent_hlist *hlist; 13179 13180 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13181 WARN_ON(!hlist); 13182 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13183 } 13184 mutex_unlock(&swhash->hlist_mutex); 13185 } 13186 13187 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13188 static void __perf_event_exit_context(void *__info) 13189 { 13190 struct perf_event_context *ctx = __info; 13191 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 13192 struct perf_event *event; 13193 13194 raw_spin_lock(&ctx->lock); 13195 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13196 list_for_each_entry(event, &ctx->event_list, event_entry) 13197 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13198 raw_spin_unlock(&ctx->lock); 13199 } 13200 13201 static void perf_event_exit_cpu_context(int cpu) 13202 { 13203 struct perf_cpu_context *cpuctx; 13204 struct perf_event_context *ctx; 13205 struct pmu *pmu; 13206 13207 mutex_lock(&pmus_lock); 13208 list_for_each_entry(pmu, &pmus, entry) { 13209 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13210 ctx = &cpuctx->ctx; 13211 13212 mutex_lock(&ctx->mutex); 13213 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13214 cpuctx->online = 0; 13215 mutex_unlock(&ctx->mutex); 13216 } 13217 cpumask_clear_cpu(cpu, perf_online_mask); 13218 mutex_unlock(&pmus_lock); 13219 } 13220 #else 13221 13222 static void perf_event_exit_cpu_context(int cpu) { } 13223 13224 #endif 13225 13226 int perf_event_init_cpu(unsigned int cpu) 13227 { 13228 struct perf_cpu_context *cpuctx; 13229 struct perf_event_context *ctx; 13230 struct pmu *pmu; 13231 13232 perf_swevent_init_cpu(cpu); 13233 13234 mutex_lock(&pmus_lock); 13235 cpumask_set_cpu(cpu, perf_online_mask); 13236 list_for_each_entry(pmu, &pmus, entry) { 13237 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13238 ctx = &cpuctx->ctx; 13239 13240 mutex_lock(&ctx->mutex); 13241 cpuctx->online = 1; 13242 mutex_unlock(&ctx->mutex); 13243 } 13244 mutex_unlock(&pmus_lock); 13245 13246 return 0; 13247 } 13248 13249 int perf_event_exit_cpu(unsigned int cpu) 13250 { 13251 perf_event_exit_cpu_context(cpu); 13252 return 0; 13253 } 13254 13255 static int 13256 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13257 { 13258 int cpu; 13259 13260 for_each_online_cpu(cpu) 13261 perf_event_exit_cpu(cpu); 13262 13263 return NOTIFY_OK; 13264 } 13265 13266 /* 13267 * Run the perf reboot notifier at the very last possible moment so that 13268 * the generic watchdog code runs as long as possible. 13269 */ 13270 static struct notifier_block perf_reboot_notifier = { 13271 .notifier_call = perf_reboot, 13272 .priority = INT_MIN, 13273 }; 13274 13275 void __init perf_event_init(void) 13276 { 13277 int ret; 13278 13279 idr_init(&pmu_idr); 13280 13281 perf_event_init_all_cpus(); 13282 init_srcu_struct(&pmus_srcu); 13283 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13284 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13285 perf_pmu_register(&perf_task_clock, NULL, -1); 13286 perf_tp_register(); 13287 perf_event_init_cpu(smp_processor_id()); 13288 register_reboot_notifier(&perf_reboot_notifier); 13289 13290 ret = init_hw_breakpoint(); 13291 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13292 13293 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13294 13295 /* 13296 * Build time assertion that we keep the data_head at the intended 13297 * location. IOW, validation we got the __reserved[] size right. 13298 */ 13299 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13300 != 1024); 13301 } 13302 13303 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13304 char *page) 13305 { 13306 struct perf_pmu_events_attr *pmu_attr = 13307 container_of(attr, struct perf_pmu_events_attr, attr); 13308 13309 if (pmu_attr->event_str) 13310 return sprintf(page, "%s\n", pmu_attr->event_str); 13311 13312 return 0; 13313 } 13314 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13315 13316 static int __init perf_event_sysfs_init(void) 13317 { 13318 struct pmu *pmu; 13319 int ret; 13320 13321 mutex_lock(&pmus_lock); 13322 13323 ret = bus_register(&pmu_bus); 13324 if (ret) 13325 goto unlock; 13326 13327 list_for_each_entry(pmu, &pmus, entry) { 13328 if (!pmu->name || pmu->type < 0) 13329 continue; 13330 13331 ret = pmu_dev_alloc(pmu); 13332 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13333 } 13334 pmu_bus_running = 1; 13335 ret = 0; 13336 13337 unlock: 13338 mutex_unlock(&pmus_lock); 13339 13340 return ret; 13341 } 13342 device_initcall(perf_event_sysfs_init); 13343 13344 #ifdef CONFIG_CGROUP_PERF 13345 static struct cgroup_subsys_state * 13346 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13347 { 13348 struct perf_cgroup *jc; 13349 13350 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13351 if (!jc) 13352 return ERR_PTR(-ENOMEM); 13353 13354 jc->info = alloc_percpu(struct perf_cgroup_info); 13355 if (!jc->info) { 13356 kfree(jc); 13357 return ERR_PTR(-ENOMEM); 13358 } 13359 13360 return &jc->css; 13361 } 13362 13363 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13364 { 13365 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13366 13367 free_percpu(jc->info); 13368 kfree(jc); 13369 } 13370 13371 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13372 { 13373 perf_event_cgroup(css->cgroup); 13374 return 0; 13375 } 13376 13377 static int __perf_cgroup_move(void *info) 13378 { 13379 struct task_struct *task = info; 13380 rcu_read_lock(); 13381 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 13382 rcu_read_unlock(); 13383 return 0; 13384 } 13385 13386 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13387 { 13388 struct task_struct *task; 13389 struct cgroup_subsys_state *css; 13390 13391 cgroup_taskset_for_each(task, css, tset) 13392 task_function_call(task, __perf_cgroup_move, task); 13393 } 13394 13395 struct cgroup_subsys perf_event_cgrp_subsys = { 13396 .css_alloc = perf_cgroup_css_alloc, 13397 .css_free = perf_cgroup_css_free, 13398 .css_online = perf_cgroup_css_online, 13399 .attach = perf_cgroup_attach, 13400 /* 13401 * Implicitly enable on dfl hierarchy so that perf events can 13402 * always be filtered by cgroup2 path as long as perf_event 13403 * controller is not mounted on a legacy hierarchy. 13404 */ 13405 .implicit_on_dfl = true, 13406 .threaded = true, 13407 }; 13408 #endif /* CONFIG_CGROUP_PERF */ 13409