xref: /linux-6.15/kernel/events/core.c (revision ec6aba3d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <[email protected]>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <[email protected]>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:	target cpu to queue this function
136  * @func:	the function to be called
137  * @info:	the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145 	struct remote_function_call data = {
146 		.p	= NULL,
147 		.func	= func,
148 		.info	= info,
149 		.ret	= -ENXIO, /* No such CPU */
150 	};
151 
152 	smp_call_function_single(cpu, remote_function, &data, 1);
153 
154 	return data.ret;
155 }
156 
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162 
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164 			  struct perf_event_context *ctx)
165 {
166 	raw_spin_lock(&cpuctx->ctx.lock);
167 	if (ctx)
168 		raw_spin_lock(&ctx->lock);
169 }
170 
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172 			    struct perf_event_context *ctx)
173 {
174 	if (ctx)
175 		raw_spin_unlock(&ctx->lock);
176 	raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178 
179 #define TASK_TOMBSTONE ((void *)-1L)
180 
181 static bool is_kernel_event(struct perf_event *event)
182 {
183 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185 
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204 
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206 			struct perf_event_context *, void *);
207 
208 struct event_function_struct {
209 	struct perf_event *event;
210 	event_f func;
211 	void *data;
212 };
213 
214 static int event_function(void *info)
215 {
216 	struct event_function_struct *efs = info;
217 	struct perf_event *event = efs->event;
218 	struct perf_event_context *ctx = event->ctx;
219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
221 	int ret = 0;
222 
223 	lockdep_assert_irqs_disabled();
224 
225 	perf_ctx_lock(cpuctx, task_ctx);
226 	/*
227 	 * Since we do the IPI call without holding ctx->lock things can have
228 	 * changed, double check we hit the task we set out to hit.
229 	 */
230 	if (ctx->task) {
231 		if (ctx->task != current) {
232 			ret = -ESRCH;
233 			goto unlock;
234 		}
235 
236 		/*
237 		 * We only use event_function_call() on established contexts,
238 		 * and event_function() is only ever called when active (or
239 		 * rather, we'll have bailed in task_function_call() or the
240 		 * above ctx->task != current test), therefore we must have
241 		 * ctx->is_active here.
242 		 */
243 		WARN_ON_ONCE(!ctx->is_active);
244 		/*
245 		 * And since we have ctx->is_active, cpuctx->task_ctx must
246 		 * match.
247 		 */
248 		WARN_ON_ONCE(task_ctx != ctx);
249 	} else {
250 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
251 	}
252 
253 	efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255 	perf_ctx_unlock(cpuctx, task_ctx);
256 
257 	return ret;
258 }
259 
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262 	struct perf_event_context *ctx = event->ctx;
263 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264 	struct event_function_struct efs = {
265 		.event = event,
266 		.func = func,
267 		.data = data,
268 	};
269 
270 	if (!event->parent) {
271 		/*
272 		 * If this is a !child event, we must hold ctx::mutex to
273 		 * stabilize the event->ctx relation. See
274 		 * perf_event_ctx_lock().
275 		 */
276 		lockdep_assert_held(&ctx->mutex);
277 	}
278 
279 	if (!task) {
280 		cpu_function_call(event->cpu, event_function, &efs);
281 		return;
282 	}
283 
284 	if (task == TASK_TOMBSTONE)
285 		return;
286 
287 again:
288 	if (!task_function_call(task, event_function, &efs))
289 		return;
290 
291 	raw_spin_lock_irq(&ctx->lock);
292 	/*
293 	 * Reload the task pointer, it might have been changed by
294 	 * a concurrent perf_event_context_sched_out().
295 	 */
296 	task = ctx->task;
297 	if (task == TASK_TOMBSTONE) {
298 		raw_spin_unlock_irq(&ctx->lock);
299 		return;
300 	}
301 	if (ctx->is_active) {
302 		raw_spin_unlock_irq(&ctx->lock);
303 		goto again;
304 	}
305 	func(event, NULL, ctx, data);
306 	raw_spin_unlock_irq(&ctx->lock);
307 }
308 
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315 	struct perf_event_context *ctx = event->ctx;
316 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317 	struct task_struct *task = READ_ONCE(ctx->task);
318 	struct perf_event_context *task_ctx = NULL;
319 
320 	lockdep_assert_irqs_disabled();
321 
322 	if (task) {
323 		if (task == TASK_TOMBSTONE)
324 			return;
325 
326 		task_ctx = ctx;
327 	}
328 
329 	perf_ctx_lock(cpuctx, task_ctx);
330 
331 	task = ctx->task;
332 	if (task == TASK_TOMBSTONE)
333 		goto unlock;
334 
335 	if (task) {
336 		/*
337 		 * We must be either inactive or active and the right task,
338 		 * otherwise we're screwed, since we cannot IPI to somewhere
339 		 * else.
340 		 */
341 		if (ctx->is_active) {
342 			if (WARN_ON_ONCE(task != current))
343 				goto unlock;
344 
345 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346 				goto unlock;
347 		}
348 	} else {
349 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
350 	}
351 
352 	func(event, cpuctx, ctx, data);
353 unlock:
354 	perf_ctx_unlock(cpuctx, task_ctx);
355 }
356 
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358 		       PERF_FLAG_FD_OUTPUT  |\
359 		       PERF_FLAG_PID_CGROUP |\
360 		       PERF_FLAG_FD_CLOEXEC)
361 
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366 	(PERF_SAMPLE_BRANCH_KERNEL |\
367 	 PERF_SAMPLE_BRANCH_HV)
368 
369 enum event_type_t {
370 	EVENT_FLEXIBLE = 0x1,
371 	EVENT_PINNED = 0x2,
372 	EVENT_TIME = 0x4,
373 	/* see ctx_resched() for details */
374 	EVENT_CPU = 0x8,
375 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377 
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382 
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388 
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392 
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404 
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410 
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419 
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422 
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE		100000
427 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
429 
430 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
431 
432 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
434 
435 static int perf_sample_allowed_ns __read_mostly =
436 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437 
438 static void update_perf_cpu_limits(void)
439 {
440 	u64 tmp = perf_sample_period_ns;
441 
442 	tmp *= sysctl_perf_cpu_time_max_percent;
443 	tmp = div_u64(tmp, 100);
444 	if (!tmp)
445 		tmp = 1;
446 
447 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449 
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451 
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453 		void *buffer, size_t *lenp, loff_t *ppos)
454 {
455 	int ret;
456 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
457 	/*
458 	 * If throttling is disabled don't allow the write:
459 	 */
460 	if (write && (perf_cpu == 100 || perf_cpu == 0))
461 		return -EINVAL;
462 
463 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 	if (ret || !write)
465 		return ret;
466 
467 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469 	update_perf_cpu_limits();
470 
471 	return 0;
472 }
473 
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475 
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477 		void *buffer, size_t *lenp, loff_t *ppos)
478 {
479 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480 
481 	if (ret || !write)
482 		return ret;
483 
484 	if (sysctl_perf_cpu_time_max_percent == 100 ||
485 	    sysctl_perf_cpu_time_max_percent == 0) {
486 		printk(KERN_WARNING
487 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488 		WRITE_ONCE(perf_sample_allowed_ns, 0);
489 	} else {
490 		update_perf_cpu_limits();
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504 
505 static u64 __report_avg;
506 static u64 __report_allowed;
507 
508 static void perf_duration_warn(struct irq_work *w)
509 {
510 	printk_ratelimited(KERN_INFO
511 		"perf: interrupt took too long (%lld > %lld), lowering "
512 		"kernel.perf_event_max_sample_rate to %d\n",
513 		__report_avg, __report_allowed,
514 		sysctl_perf_event_sample_rate);
515 }
516 
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518 
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522 	u64 running_len;
523 	u64 avg_len;
524 	u32 max;
525 
526 	if (max_len == 0)
527 		return;
528 
529 	/* Decay the counter by 1 average sample. */
530 	running_len = __this_cpu_read(running_sample_length);
531 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532 	running_len += sample_len_ns;
533 	__this_cpu_write(running_sample_length, running_len);
534 
535 	/*
536 	 * Note: this will be biased artifically low until we have
537 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538 	 * from having to maintain a count.
539 	 */
540 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541 	if (avg_len <= max_len)
542 		return;
543 
544 	__report_avg = avg_len;
545 	__report_allowed = max_len;
546 
547 	/*
548 	 * Compute a throttle threshold 25% below the current duration.
549 	 */
550 	avg_len += avg_len / 4;
551 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552 	if (avg_len < max)
553 		max /= (u32)avg_len;
554 	else
555 		max = 1;
556 
557 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558 	WRITE_ONCE(max_samples_per_tick, max);
559 
560 	sysctl_perf_event_sample_rate = max * HZ;
561 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562 
563 	if (!irq_work_queue(&perf_duration_work)) {
564 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565 			     "kernel.perf_event_max_sample_rate to %d\n",
566 			     __report_avg, __report_allowed,
567 			     sysctl_perf_event_sample_rate);
568 	}
569 }
570 
571 static atomic64_t perf_event_id;
572 
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574 			      enum event_type_t event_type);
575 
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577 			     enum event_type_t event_type,
578 			     struct task_struct *task);
579 
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582 
583 void __weak perf_event_print_debug(void)	{ }
584 
585 static inline u64 perf_clock(void)
586 {
587 	return local_clock();
588 }
589 
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592 	return event->clock();
593 }
594 
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616 
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620 	struct perf_event *leader = event->group_leader;
621 
622 	if (leader->state <= PERF_EVENT_STATE_OFF)
623 		return leader->state;
624 
625 	return event->state;
626 }
627 
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631 	enum perf_event_state state = __perf_effective_state(event);
632 	u64 delta = now - event->tstamp;
633 
634 	*enabled = event->total_time_enabled;
635 	if (state >= PERF_EVENT_STATE_INACTIVE)
636 		*enabled += delta;
637 
638 	*running = event->total_time_running;
639 	if (state >= PERF_EVENT_STATE_ACTIVE)
640 		*running += delta;
641 }
642 
643 static void perf_event_update_time(struct perf_event *event)
644 {
645 	u64 now = perf_event_time(event);
646 
647 	__perf_update_times(event, now, &event->total_time_enabled,
648 					&event->total_time_running);
649 	event->tstamp = now;
650 }
651 
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654 	struct perf_event *sibling;
655 
656 	for_each_sibling_event(sibling, leader)
657 		perf_event_update_time(sibling);
658 }
659 
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663 	if (event->state == state)
664 		return;
665 
666 	perf_event_update_time(event);
667 	/*
668 	 * If a group leader gets enabled/disabled all its siblings
669 	 * are affected too.
670 	 */
671 	if ((event->state < 0) ^ (state < 0))
672 		perf_event_update_sibling_time(event);
673 
674 	WRITE_ONCE(event->state, state);
675 }
676 
677 #ifdef CONFIG_CGROUP_PERF
678 
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682 	struct perf_event_context *ctx = event->ctx;
683 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684 
685 	/* @event doesn't care about cgroup */
686 	if (!event->cgrp)
687 		return true;
688 
689 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
690 	if (!cpuctx->cgrp)
691 		return false;
692 
693 	/*
694 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
695 	 * also enabled for all its descendant cgroups.  If @cpuctx's
696 	 * cgroup is a descendant of @event's (the test covers identity
697 	 * case), it's a match.
698 	 */
699 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700 				    event->cgrp->css.cgroup);
701 }
702 
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705 	css_put(&event->cgrp->css);
706 	event->cgrp = NULL;
707 }
708 
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711 	return event->cgrp != NULL;
712 }
713 
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716 	struct perf_cgroup_info *t;
717 
718 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
719 	return t->time;
720 }
721 
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724 	struct perf_cgroup_info *info;
725 	u64 now;
726 
727 	now = perf_clock();
728 
729 	info = this_cpu_ptr(cgrp->info);
730 
731 	info->time += now - info->timestamp;
732 	info->timestamp = now;
733 }
734 
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737 	struct perf_cgroup *cgrp = cpuctx->cgrp;
738 	struct cgroup_subsys_state *css;
739 
740 	if (cgrp) {
741 		for (css = &cgrp->css; css; css = css->parent) {
742 			cgrp = container_of(css, struct perf_cgroup, css);
743 			__update_cgrp_time(cgrp);
744 		}
745 	}
746 }
747 
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750 	struct perf_cgroup *cgrp;
751 
752 	/*
753 	 * ensure we access cgroup data only when needed and
754 	 * when we know the cgroup is pinned (css_get)
755 	 */
756 	if (!is_cgroup_event(event))
757 		return;
758 
759 	cgrp = perf_cgroup_from_task(current, event->ctx);
760 	/*
761 	 * Do not update time when cgroup is not active
762 	 */
763 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764 		__update_cgrp_time(event->cgrp);
765 }
766 
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769 			  struct perf_event_context *ctx)
770 {
771 	struct perf_cgroup *cgrp;
772 	struct perf_cgroup_info *info;
773 	struct cgroup_subsys_state *css;
774 
775 	/*
776 	 * ctx->lock held by caller
777 	 * ensure we do not access cgroup data
778 	 * unless we have the cgroup pinned (css_get)
779 	 */
780 	if (!task || !ctx->nr_cgroups)
781 		return;
782 
783 	cgrp = perf_cgroup_from_task(task, ctx);
784 
785 	for (css = &cgrp->css; css; css = css->parent) {
786 		cgrp = container_of(css, struct perf_cgroup, css);
787 		info = this_cpu_ptr(cgrp->info);
788 		info->timestamp = ctx->timestamp;
789 	}
790 }
791 
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793 
794 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
796 
797 /*
798  * reschedule events based on the cgroup constraint of task.
799  *
800  * mode SWOUT : schedule out everything
801  * mode SWIN : schedule in based on cgroup for next
802  */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805 	struct perf_cpu_context *cpuctx;
806 	struct list_head *list;
807 	unsigned long flags;
808 
809 	/*
810 	 * Disable interrupts and preemption to avoid this CPU's
811 	 * cgrp_cpuctx_entry to change under us.
812 	 */
813 	local_irq_save(flags);
814 
815 	list = this_cpu_ptr(&cgrp_cpuctx_list);
816 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818 
819 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820 		perf_pmu_disable(cpuctx->ctx.pmu);
821 
822 		if (mode & PERF_CGROUP_SWOUT) {
823 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824 			/*
825 			 * must not be done before ctxswout due
826 			 * to event_filter_match() in event_sched_out()
827 			 */
828 			cpuctx->cgrp = NULL;
829 		}
830 
831 		if (mode & PERF_CGROUP_SWIN) {
832 			WARN_ON_ONCE(cpuctx->cgrp);
833 			/*
834 			 * set cgrp before ctxsw in to allow
835 			 * event_filter_match() to not have to pass
836 			 * task around
837 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
838 			 * because cgorup events are only per-cpu
839 			 */
840 			cpuctx->cgrp = perf_cgroup_from_task(task,
841 							     &cpuctx->ctx);
842 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843 		}
844 		perf_pmu_enable(cpuctx->ctx.pmu);
845 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846 	}
847 
848 	local_irq_restore(flags);
849 }
850 
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852 					 struct task_struct *next)
853 {
854 	struct perf_cgroup *cgrp1;
855 	struct perf_cgroup *cgrp2 = NULL;
856 
857 	rcu_read_lock();
858 	/*
859 	 * we come here when we know perf_cgroup_events > 0
860 	 * we do not need to pass the ctx here because we know
861 	 * we are holding the rcu lock
862 	 */
863 	cgrp1 = perf_cgroup_from_task(task, NULL);
864 	cgrp2 = perf_cgroup_from_task(next, NULL);
865 
866 	/*
867 	 * only schedule out current cgroup events if we know
868 	 * that we are switching to a different cgroup. Otherwise,
869 	 * do no touch the cgroup events.
870 	 */
871 	if (cgrp1 != cgrp2)
872 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873 
874 	rcu_read_unlock();
875 }
876 
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878 					struct task_struct *task)
879 {
880 	struct perf_cgroup *cgrp1;
881 	struct perf_cgroup *cgrp2 = NULL;
882 
883 	rcu_read_lock();
884 	/*
885 	 * we come here when we know perf_cgroup_events > 0
886 	 * we do not need to pass the ctx here because we know
887 	 * we are holding the rcu lock
888 	 */
889 	cgrp1 = perf_cgroup_from_task(task, NULL);
890 	cgrp2 = perf_cgroup_from_task(prev, NULL);
891 
892 	/*
893 	 * only need to schedule in cgroup events if we are changing
894 	 * cgroup during ctxsw. Cgroup events were not scheduled
895 	 * out of ctxsw out if that was not the case.
896 	 */
897 	if (cgrp1 != cgrp2)
898 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899 
900 	rcu_read_unlock();
901 }
902 
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904 				struct cgroup_subsys_state *css)
905 {
906 	struct perf_cpu_context *cpuctx;
907 	struct perf_event **storage;
908 	int cpu, heap_size, ret = 0;
909 
910 	/*
911 	 * Allow storage to have sufficent space for an iterator for each
912 	 * possibly nested cgroup plus an iterator for events with no cgroup.
913 	 */
914 	for (heap_size = 1; css; css = css->parent)
915 		heap_size++;
916 
917 	for_each_possible_cpu(cpu) {
918 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919 		if (heap_size <= cpuctx->heap_size)
920 			continue;
921 
922 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923 				       GFP_KERNEL, cpu_to_node(cpu));
924 		if (!storage) {
925 			ret = -ENOMEM;
926 			break;
927 		}
928 
929 		raw_spin_lock_irq(&cpuctx->ctx.lock);
930 		if (cpuctx->heap_size < heap_size) {
931 			swap(cpuctx->heap, storage);
932 			if (storage == cpuctx->heap_default)
933 				storage = NULL;
934 			cpuctx->heap_size = heap_size;
935 		}
936 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
937 
938 		kfree(storage);
939 	}
940 
941 	return ret;
942 }
943 
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945 				      struct perf_event_attr *attr,
946 				      struct perf_event *group_leader)
947 {
948 	struct perf_cgroup *cgrp;
949 	struct cgroup_subsys_state *css;
950 	struct fd f = fdget(fd);
951 	int ret = 0;
952 
953 	if (!f.file)
954 		return -EBADF;
955 
956 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
957 					 &perf_event_cgrp_subsys);
958 	if (IS_ERR(css)) {
959 		ret = PTR_ERR(css);
960 		goto out;
961 	}
962 
963 	ret = perf_cgroup_ensure_storage(event, css);
964 	if (ret)
965 		goto out;
966 
967 	cgrp = container_of(css, struct perf_cgroup, css);
968 	event->cgrp = cgrp;
969 
970 	/*
971 	 * all events in a group must monitor
972 	 * the same cgroup because a task belongs
973 	 * to only one perf cgroup at a time
974 	 */
975 	if (group_leader && group_leader->cgrp != cgrp) {
976 		perf_detach_cgroup(event);
977 		ret = -EINVAL;
978 	}
979 out:
980 	fdput(f);
981 	return ret;
982 }
983 
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987 	struct perf_cgroup_info *t;
988 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
989 	event->shadow_ctx_time = now - t->timestamp;
990 }
991 
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995 	struct perf_cpu_context *cpuctx;
996 
997 	if (!is_cgroup_event(event))
998 		return;
999 
1000 	/*
1001 	 * Because cgroup events are always per-cpu events,
1002 	 * @ctx == &cpuctx->ctx.
1003 	 */
1004 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005 
1006 	/*
1007 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008 	 * matching the event's cgroup, we must do this for every new event,
1009 	 * because if the first would mismatch, the second would not try again
1010 	 * and we would leave cpuctx->cgrp unset.
1011 	 */
1012 	if (ctx->is_active && !cpuctx->cgrp) {
1013 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014 
1015 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016 			cpuctx->cgrp = cgrp;
1017 	}
1018 
1019 	if (ctx->nr_cgroups++)
1020 		return;
1021 
1022 	list_add(&cpuctx->cgrp_cpuctx_entry,
1023 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025 
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029 	struct perf_cpu_context *cpuctx;
1030 
1031 	if (!is_cgroup_event(event))
1032 		return;
1033 
1034 	/*
1035 	 * Because cgroup events are always per-cpu events,
1036 	 * @ctx == &cpuctx->ctx.
1037 	 */
1038 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039 
1040 	if (--ctx->nr_cgroups)
1041 		return;
1042 
1043 	if (ctx->is_active && cpuctx->cgrp)
1044 		cpuctx->cgrp = NULL;
1045 
1046 	list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048 
1049 #else /* !CONFIG_CGROUP_PERF */
1050 
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054 	return true;
1055 }
1056 
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059 
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062 	return 0;
1063 }
1064 
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068 
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072 
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074 					 struct task_struct *next)
1075 {
1076 }
1077 
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079 					struct task_struct *task)
1080 {
1081 }
1082 
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084 				      struct perf_event_attr *attr,
1085 				      struct perf_event *group_leader)
1086 {
1087 	return -EINVAL;
1088 }
1089 
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092 			  struct perf_event_context *ctx)
1093 {
1094 }
1095 
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100 
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105 
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108 	return 0;
1109 }
1110 
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115 
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121 
1122 /*
1123  * set default to be dependent on timer tick just
1124  * like original code
1125  */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128  * function must be called with interrupts disabled
1129  */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132 	struct perf_cpu_context *cpuctx;
1133 	bool rotations;
1134 
1135 	lockdep_assert_irqs_disabled();
1136 
1137 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138 	rotations = perf_rotate_context(cpuctx);
1139 
1140 	raw_spin_lock(&cpuctx->hrtimer_lock);
1141 	if (rotations)
1142 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143 	else
1144 		cpuctx->hrtimer_active = 0;
1145 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1146 
1147 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149 
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152 	struct hrtimer *timer = &cpuctx->hrtimer;
1153 	struct pmu *pmu = cpuctx->ctx.pmu;
1154 	u64 interval;
1155 
1156 	/* no multiplexing needed for SW PMU */
1157 	if (pmu->task_ctx_nr == perf_sw_context)
1158 		return;
1159 
1160 	/*
1161 	 * check default is sane, if not set then force to
1162 	 * default interval (1/tick)
1163 	 */
1164 	interval = pmu->hrtimer_interval_ms;
1165 	if (interval < 1)
1166 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167 
1168 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169 
1170 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172 	timer->function = perf_mux_hrtimer_handler;
1173 }
1174 
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177 	struct hrtimer *timer = &cpuctx->hrtimer;
1178 	struct pmu *pmu = cpuctx->ctx.pmu;
1179 	unsigned long flags;
1180 
1181 	/* not for SW PMU */
1182 	if (pmu->task_ctx_nr == perf_sw_context)
1183 		return 0;
1184 
1185 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186 	if (!cpuctx->hrtimer_active) {
1187 		cpuctx->hrtimer_active = 1;
1188 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190 	}
1191 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192 
1193 	return 0;
1194 }
1195 
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199 	if (!(*count)++)
1200 		pmu->pmu_disable(pmu);
1201 }
1202 
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206 	if (!--(*count))
1207 		pmu->pmu_enable(pmu);
1208 }
1209 
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211 
1212 /*
1213  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214  * perf_event_task_tick() are fully serialized because they're strictly cpu
1215  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216  * disabled, while perf_event_task_tick is called from IRQ context.
1217  */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221 
1222 	lockdep_assert_irqs_disabled();
1223 
1224 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1225 
1226 	list_add(&ctx->active_ctx_list, head);
1227 }
1228 
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231 	lockdep_assert_irqs_disabled();
1232 
1233 	WARN_ON(list_empty(&ctx->active_ctx_list));
1234 
1235 	list_del_init(&ctx->active_ctx_list);
1236 }
1237 
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240 	refcount_inc(&ctx->refcount);
1241 }
1242 
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245 	if (pmu->task_ctx_cache)
1246 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247 
1248 	return NULL;
1249 }
1250 
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253 	if (pmu->task_ctx_cache && task_ctx_data)
1254 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256 
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259 	struct perf_event_context *ctx;
1260 
1261 	ctx = container_of(head, struct perf_event_context, rcu_head);
1262 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263 	kfree(ctx);
1264 }
1265 
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268 	if (refcount_dec_and_test(&ctx->refcount)) {
1269 		if (ctx->parent_ctx)
1270 			put_ctx(ctx->parent_ctx);
1271 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272 			put_task_struct(ctx->task);
1273 		call_rcu(&ctx->rcu_head, free_ctx);
1274 	}
1275 }
1276 
1277 /*
1278  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279  * perf_pmu_migrate_context() we need some magic.
1280  *
1281  * Those places that change perf_event::ctx will hold both
1282  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283  *
1284  * Lock ordering is by mutex address. There are two other sites where
1285  * perf_event_context::mutex nests and those are:
1286  *
1287  *  - perf_event_exit_task_context()	[ child , 0 ]
1288  *      perf_event_exit_event()
1289  *        put_event()			[ parent, 1 ]
1290  *
1291  *  - perf_event_init_context()		[ parent, 0 ]
1292  *      inherit_task_group()
1293  *        inherit_group()
1294  *          inherit_event()
1295  *            perf_event_alloc()
1296  *              perf_init_event()
1297  *                perf_try_init_event()	[ child , 1 ]
1298  *
1299  * While it appears there is an obvious deadlock here -- the parent and child
1300  * nesting levels are inverted between the two. This is in fact safe because
1301  * life-time rules separate them. That is an exiting task cannot fork, and a
1302  * spawning task cannot (yet) exit.
1303  *
1304  * But remember that these are parent<->child context relations, and
1305  * migration does not affect children, therefore these two orderings should not
1306  * interact.
1307  *
1308  * The change in perf_event::ctx does not affect children (as claimed above)
1309  * because the sys_perf_event_open() case will install a new event and break
1310  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311  * concerned with cpuctx and that doesn't have children.
1312  *
1313  * The places that change perf_event::ctx will issue:
1314  *
1315  *   perf_remove_from_context();
1316  *   synchronize_rcu();
1317  *   perf_install_in_context();
1318  *
1319  * to affect the change. The remove_from_context() + synchronize_rcu() should
1320  * quiesce the event, after which we can install it in the new location. This
1321  * means that only external vectors (perf_fops, prctl) can perturb the event
1322  * while in transit. Therefore all such accessors should also acquire
1323  * perf_event_context::mutex to serialize against this.
1324  *
1325  * However; because event->ctx can change while we're waiting to acquire
1326  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327  * function.
1328  *
1329  * Lock order:
1330  *    exec_update_lock
1331  *	task_struct::perf_event_mutex
1332  *	  perf_event_context::mutex
1333  *	    perf_event::child_mutex;
1334  *	      perf_event_context::lock
1335  *	    perf_event::mmap_mutex
1336  *	    mmap_lock
1337  *	      perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *	  cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346 	struct perf_event_context *ctx;
1347 
1348 again:
1349 	rcu_read_lock();
1350 	ctx = READ_ONCE(event->ctx);
1351 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1352 		rcu_read_unlock();
1353 		goto again;
1354 	}
1355 	rcu_read_unlock();
1356 
1357 	mutex_lock_nested(&ctx->mutex, nesting);
1358 	if (event->ctx != ctx) {
1359 		mutex_unlock(&ctx->mutex);
1360 		put_ctx(ctx);
1361 		goto again;
1362 	}
1363 
1364 	return ctx;
1365 }
1366 
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370 	return perf_event_ctx_lock_nested(event, 0);
1371 }
1372 
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374 				  struct perf_event_context *ctx)
1375 {
1376 	mutex_unlock(&ctx->mutex);
1377 	put_ctx(ctx);
1378 }
1379 
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389 
1390 	lockdep_assert_held(&ctx->lock);
1391 
1392 	if (parent_ctx)
1393 		ctx->parent_ctx = NULL;
1394 	ctx->generation++;
1395 
1396 	return parent_ctx;
1397 }
1398 
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400 				enum pid_type type)
1401 {
1402 	u32 nr;
1403 	/*
1404 	 * only top level events have the pid namespace they were created in
1405 	 */
1406 	if (event->parent)
1407 		event = event->parent;
1408 
1409 	nr = __task_pid_nr_ns(p, type, event->ns);
1410 	/* avoid -1 if it is idle thread or runs in another ns */
1411 	if (!nr && !pid_alive(p))
1412 		nr = -1;
1413 	return nr;
1414 }
1415 
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420 
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425 
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432 	u64 id = event->id;
1433 
1434 	if (event->parent)
1435 		id = event->parent->id;
1436 
1437 	return id;
1438 }
1439 
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449 	struct perf_event_context *ctx;
1450 
1451 retry:
1452 	/*
1453 	 * One of the few rules of preemptible RCU is that one cannot do
1454 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455 	 * part of the read side critical section was irqs-enabled -- see
1456 	 * rcu_read_unlock_special().
1457 	 *
1458 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1459 	 * side critical section has interrupts disabled.
1460 	 */
1461 	local_irq_save(*flags);
1462 	rcu_read_lock();
1463 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464 	if (ctx) {
1465 		/*
1466 		 * If this context is a clone of another, it might
1467 		 * get swapped for another underneath us by
1468 		 * perf_event_task_sched_out, though the
1469 		 * rcu_read_lock() protects us from any context
1470 		 * getting freed.  Lock the context and check if it
1471 		 * got swapped before we could get the lock, and retry
1472 		 * if so.  If we locked the right context, then it
1473 		 * can't get swapped on us any more.
1474 		 */
1475 		raw_spin_lock(&ctx->lock);
1476 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477 			raw_spin_unlock(&ctx->lock);
1478 			rcu_read_unlock();
1479 			local_irq_restore(*flags);
1480 			goto retry;
1481 		}
1482 
1483 		if (ctx->task == TASK_TOMBSTONE ||
1484 		    !refcount_inc_not_zero(&ctx->refcount)) {
1485 			raw_spin_unlock(&ctx->lock);
1486 			ctx = NULL;
1487 		} else {
1488 			WARN_ON_ONCE(ctx->task != task);
1489 		}
1490 	}
1491 	rcu_read_unlock();
1492 	if (!ctx)
1493 		local_irq_restore(*flags);
1494 	return ctx;
1495 }
1496 
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505 	struct perf_event_context *ctx;
1506 	unsigned long flags;
1507 
1508 	ctx = perf_lock_task_context(task, ctxn, &flags);
1509 	if (ctx) {
1510 		++ctx->pin_count;
1511 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512 	}
1513 	return ctx;
1514 }
1515 
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518 	unsigned long flags;
1519 
1520 	raw_spin_lock_irqsave(&ctx->lock, flags);
1521 	--ctx->pin_count;
1522 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524 
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530 	u64 now = perf_clock();
1531 
1532 	ctx->time += now - ctx->timestamp;
1533 	ctx->timestamp = now;
1534 }
1535 
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538 	struct perf_event_context *ctx = event->ctx;
1539 
1540 	if (is_cgroup_event(event))
1541 		return perf_cgroup_event_time(event);
1542 
1543 	return ctx ? ctx->time : 0;
1544 }
1545 
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548 	struct perf_event_context *ctx = event->ctx;
1549 	enum event_type_t event_type;
1550 
1551 	lockdep_assert_held(&ctx->lock);
1552 
1553 	/*
1554 	 * It's 'group type', really, because if our group leader is
1555 	 * pinned, so are we.
1556 	 */
1557 	if (event->group_leader != event)
1558 		event = event->group_leader;
1559 
1560 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561 	if (!ctx->task)
1562 		event_type |= EVENT_CPU;
1563 
1564 	return event_type;
1565 }
1566 
1567 /*
1568  * Helper function to initialize event group nodes.
1569  */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572 	RB_CLEAR_NODE(&event->group_node);
1573 	event->group_index = 0;
1574 }
1575 
1576 /*
1577  * Extract pinned or flexible groups from the context
1578  * based on event attrs bits.
1579  */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583 	if (event->attr.pinned)
1584 		return &ctx->pinned_groups;
1585 	else
1586 		return &ctx->flexible_groups;
1587 }
1588 
1589 /*
1590  * Helper function to initializes perf_event_group trees.
1591  */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594 	groups->tree = RB_ROOT;
1595 	groups->index = 0;
1596 }
1597 
1598 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599 {
1600 	struct cgroup *cgroup = NULL;
1601 
1602 #ifdef CONFIG_CGROUP_PERF
1603 	if (event->cgrp)
1604 		cgroup = event->cgrp->css.cgroup;
1605 #endif
1606 
1607 	return cgroup;
1608 }
1609 
1610 /*
1611  * Compare function for event groups;
1612  *
1613  * Implements complex key that first sorts by CPU and then by virtual index
1614  * which provides ordering when rotating groups for the same CPU.
1615  */
1616 static __always_inline int
1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618 		      const u64 left_group_index, const struct perf_event *right)
1619 {
1620 	if (left_cpu < right->cpu)
1621 		return -1;
1622 	if (left_cpu > right->cpu)
1623 		return 1;
1624 
1625 #ifdef CONFIG_CGROUP_PERF
1626 	{
1627 		const struct cgroup *right_cgroup = event_cgroup(right);
1628 
1629 		if (left_cgroup != right_cgroup) {
1630 			if (!left_cgroup) {
1631 				/*
1632 				 * Left has no cgroup but right does, no
1633 				 * cgroups come first.
1634 				 */
1635 				return -1;
1636 			}
1637 			if (!right_cgroup) {
1638 				/*
1639 				 * Right has no cgroup but left does, no
1640 				 * cgroups come first.
1641 				 */
1642 				return 1;
1643 			}
1644 			/* Two dissimilar cgroups, order by id. */
1645 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646 				return -1;
1647 
1648 			return 1;
1649 		}
1650 	}
1651 #endif
1652 
1653 	if (left_group_index < right->group_index)
1654 		return -1;
1655 	if (left_group_index > right->group_index)
1656 		return 1;
1657 
1658 	return 0;
1659 }
1660 
1661 #define __node_2_pe(node) \
1662 	rb_entry((node), struct perf_event, group_node)
1663 
1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665 {
1666 	struct perf_event *e = __node_2_pe(a);
1667 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668 				     __node_2_pe(b)) < 0;
1669 }
1670 
1671 struct __group_key {
1672 	int cpu;
1673 	struct cgroup *cgroup;
1674 };
1675 
1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678 	const struct __group_key *a = key;
1679 	const struct perf_event *b = __node_2_pe(node);
1680 
1681 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683 }
1684 
1685 /*
1686  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687  * key (see perf_event_groups_less). This places it last inside the CPU
1688  * subtree.
1689  */
1690 static void
1691 perf_event_groups_insert(struct perf_event_groups *groups,
1692 			 struct perf_event *event)
1693 {
1694 	event->group_index = ++groups->index;
1695 
1696 	rb_add(&event->group_node, &groups->tree, __group_less);
1697 }
1698 
1699 /*
1700  * Helper function to insert event into the pinned or flexible groups.
1701  */
1702 static void
1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704 {
1705 	struct perf_event_groups *groups;
1706 
1707 	groups = get_event_groups(event, ctx);
1708 	perf_event_groups_insert(groups, event);
1709 }
1710 
1711 /*
1712  * Delete a group from a tree.
1713  */
1714 static void
1715 perf_event_groups_delete(struct perf_event_groups *groups,
1716 			 struct perf_event *event)
1717 {
1718 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719 		     RB_EMPTY_ROOT(&groups->tree));
1720 
1721 	rb_erase(&event->group_node, &groups->tree);
1722 	init_event_group(event);
1723 }
1724 
1725 /*
1726  * Helper function to delete event from its groups.
1727  */
1728 static void
1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730 {
1731 	struct perf_event_groups *groups;
1732 
1733 	groups = get_event_groups(event, ctx);
1734 	perf_event_groups_delete(groups, event);
1735 }
1736 
1737 /*
1738  * Get the leftmost event in the cpu/cgroup subtree.
1739  */
1740 static struct perf_event *
1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742 			struct cgroup *cgrp)
1743 {
1744 	struct __group_key key = {
1745 		.cpu = cpu,
1746 		.cgroup = cgrp,
1747 	};
1748 	struct rb_node *node;
1749 
1750 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1751 	if (node)
1752 		return __node_2_pe(node);
1753 
1754 	return NULL;
1755 }
1756 
1757 /*
1758  * Like rb_entry_next_safe() for the @cpu subtree.
1759  */
1760 static struct perf_event *
1761 perf_event_groups_next(struct perf_event *event)
1762 {
1763 	struct __group_key key = {
1764 		.cpu = event->cpu,
1765 		.cgroup = event_cgroup(event),
1766 	};
1767 	struct rb_node *next;
1768 
1769 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1770 	if (next)
1771 		return __node_2_pe(next);
1772 
1773 	return NULL;
1774 }
1775 
1776 /*
1777  * Iterate through the whole groups tree.
1778  */
1779 #define perf_event_groups_for_each(event, groups)			\
1780 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1781 				typeof(*event), group_node); event;	\
1782 		event = rb_entry_safe(rb_next(&event->group_node),	\
1783 				typeof(*event), group_node))
1784 
1785 /*
1786  * Add an event from the lists for its context.
1787  * Must be called with ctx->mutex and ctx->lock held.
1788  */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792 	lockdep_assert_held(&ctx->lock);
1793 
1794 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795 	event->attach_state |= PERF_ATTACH_CONTEXT;
1796 
1797 	event->tstamp = perf_event_time(event);
1798 
1799 	/*
1800 	 * If we're a stand alone event or group leader, we go to the context
1801 	 * list, group events are kept attached to the group so that
1802 	 * perf_group_detach can, at all times, locate all siblings.
1803 	 */
1804 	if (event->group_leader == event) {
1805 		event->group_caps = event->event_caps;
1806 		add_event_to_groups(event, ctx);
1807 	}
1808 
1809 	list_add_rcu(&event->event_entry, &ctx->event_list);
1810 	ctx->nr_events++;
1811 	if (event->attr.inherit_stat)
1812 		ctx->nr_stat++;
1813 
1814 	if (event->state > PERF_EVENT_STATE_OFF)
1815 		perf_cgroup_event_enable(event, ctx);
1816 
1817 	ctx->generation++;
1818 }
1819 
1820 /*
1821  * Initialize event state based on the perf_event_attr::disabled.
1822  */
1823 static inline void perf_event__state_init(struct perf_event *event)
1824 {
1825 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1826 					      PERF_EVENT_STATE_INACTIVE;
1827 }
1828 
1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1830 {
1831 	int entry = sizeof(u64); /* value */
1832 	int size = 0;
1833 	int nr = 1;
1834 
1835 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1836 		size += sizeof(u64);
1837 
1838 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1839 		size += sizeof(u64);
1840 
1841 	if (event->attr.read_format & PERF_FORMAT_ID)
1842 		entry += sizeof(u64);
1843 
1844 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1845 		nr += nr_siblings;
1846 		size += sizeof(u64);
1847 	}
1848 
1849 	size += entry * nr;
1850 	event->read_size = size;
1851 }
1852 
1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1854 {
1855 	struct perf_sample_data *data;
1856 	u16 size = 0;
1857 
1858 	if (sample_type & PERF_SAMPLE_IP)
1859 		size += sizeof(data->ip);
1860 
1861 	if (sample_type & PERF_SAMPLE_ADDR)
1862 		size += sizeof(data->addr);
1863 
1864 	if (sample_type & PERF_SAMPLE_PERIOD)
1865 		size += sizeof(data->period);
1866 
1867 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1868 		size += sizeof(data->weight.full);
1869 
1870 	if (sample_type & PERF_SAMPLE_READ)
1871 		size += event->read_size;
1872 
1873 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1874 		size += sizeof(data->data_src.val);
1875 
1876 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1877 		size += sizeof(data->txn);
1878 
1879 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1880 		size += sizeof(data->phys_addr);
1881 
1882 	if (sample_type & PERF_SAMPLE_CGROUP)
1883 		size += sizeof(data->cgroup);
1884 
1885 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1886 		size += sizeof(data->data_page_size);
1887 
1888 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1889 		size += sizeof(data->code_page_size);
1890 
1891 	event->header_size = size;
1892 }
1893 
1894 /*
1895  * Called at perf_event creation and when events are attached/detached from a
1896  * group.
1897  */
1898 static void perf_event__header_size(struct perf_event *event)
1899 {
1900 	__perf_event_read_size(event,
1901 			       event->group_leader->nr_siblings);
1902 	__perf_event_header_size(event, event->attr.sample_type);
1903 }
1904 
1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907 	struct perf_sample_data *data;
1908 	u64 sample_type = event->attr.sample_type;
1909 	u16 size = 0;
1910 
1911 	if (sample_type & PERF_SAMPLE_TID)
1912 		size += sizeof(data->tid_entry);
1913 
1914 	if (sample_type & PERF_SAMPLE_TIME)
1915 		size += sizeof(data->time);
1916 
1917 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918 		size += sizeof(data->id);
1919 
1920 	if (sample_type & PERF_SAMPLE_ID)
1921 		size += sizeof(data->id);
1922 
1923 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1924 		size += sizeof(data->stream_id);
1925 
1926 	if (sample_type & PERF_SAMPLE_CPU)
1927 		size += sizeof(data->cpu_entry);
1928 
1929 	event->id_header_size = size;
1930 }
1931 
1932 static bool perf_event_validate_size(struct perf_event *event)
1933 {
1934 	/*
1935 	 * The values computed here will be over-written when we actually
1936 	 * attach the event.
1937 	 */
1938 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1939 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1940 	perf_event__id_header_size(event);
1941 
1942 	/*
1943 	 * Sum the lot; should not exceed the 64k limit we have on records.
1944 	 * Conservative limit to allow for callchains and other variable fields.
1945 	 */
1946 	if (event->read_size + event->header_size +
1947 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1948 		return false;
1949 
1950 	return true;
1951 }
1952 
1953 static void perf_group_attach(struct perf_event *event)
1954 {
1955 	struct perf_event *group_leader = event->group_leader, *pos;
1956 
1957 	lockdep_assert_held(&event->ctx->lock);
1958 
1959 	/*
1960 	 * We can have double attach due to group movement in perf_event_open.
1961 	 */
1962 	if (event->attach_state & PERF_ATTACH_GROUP)
1963 		return;
1964 
1965 	event->attach_state |= PERF_ATTACH_GROUP;
1966 
1967 	if (group_leader == event)
1968 		return;
1969 
1970 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1971 
1972 	group_leader->group_caps &= event->event_caps;
1973 
1974 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1975 	group_leader->nr_siblings++;
1976 
1977 	perf_event__header_size(group_leader);
1978 
1979 	for_each_sibling_event(pos, group_leader)
1980 		perf_event__header_size(pos);
1981 }
1982 
1983 /*
1984  * Remove an event from the lists for its context.
1985  * Must be called with ctx->mutex and ctx->lock held.
1986  */
1987 static void
1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1989 {
1990 	WARN_ON_ONCE(event->ctx != ctx);
1991 	lockdep_assert_held(&ctx->lock);
1992 
1993 	/*
1994 	 * We can have double detach due to exit/hot-unplug + close.
1995 	 */
1996 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1997 		return;
1998 
1999 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2000 
2001 	ctx->nr_events--;
2002 	if (event->attr.inherit_stat)
2003 		ctx->nr_stat--;
2004 
2005 	list_del_rcu(&event->event_entry);
2006 
2007 	if (event->group_leader == event)
2008 		del_event_from_groups(event, ctx);
2009 
2010 	/*
2011 	 * If event was in error state, then keep it
2012 	 * that way, otherwise bogus counts will be
2013 	 * returned on read(). The only way to get out
2014 	 * of error state is by explicit re-enabling
2015 	 * of the event
2016 	 */
2017 	if (event->state > PERF_EVENT_STATE_OFF) {
2018 		perf_cgroup_event_disable(event, ctx);
2019 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2020 	}
2021 
2022 	ctx->generation++;
2023 }
2024 
2025 static int
2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2027 {
2028 	if (!has_aux(aux_event))
2029 		return 0;
2030 
2031 	if (!event->pmu->aux_output_match)
2032 		return 0;
2033 
2034 	return event->pmu->aux_output_match(aux_event);
2035 }
2036 
2037 static void put_event(struct perf_event *event);
2038 static void event_sched_out(struct perf_event *event,
2039 			    struct perf_cpu_context *cpuctx,
2040 			    struct perf_event_context *ctx);
2041 
2042 static void perf_put_aux_event(struct perf_event *event)
2043 {
2044 	struct perf_event_context *ctx = event->ctx;
2045 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2046 	struct perf_event *iter;
2047 
2048 	/*
2049 	 * If event uses aux_event tear down the link
2050 	 */
2051 	if (event->aux_event) {
2052 		iter = event->aux_event;
2053 		event->aux_event = NULL;
2054 		put_event(iter);
2055 		return;
2056 	}
2057 
2058 	/*
2059 	 * If the event is an aux_event, tear down all links to
2060 	 * it from other events.
2061 	 */
2062 	for_each_sibling_event(iter, event->group_leader) {
2063 		if (iter->aux_event != event)
2064 			continue;
2065 
2066 		iter->aux_event = NULL;
2067 		put_event(event);
2068 
2069 		/*
2070 		 * If it's ACTIVE, schedule it out and put it into ERROR
2071 		 * state so that we don't try to schedule it again. Note
2072 		 * that perf_event_enable() will clear the ERROR status.
2073 		 */
2074 		event_sched_out(iter, cpuctx, ctx);
2075 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2076 	}
2077 }
2078 
2079 static bool perf_need_aux_event(struct perf_event *event)
2080 {
2081 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2082 }
2083 
2084 static int perf_get_aux_event(struct perf_event *event,
2085 			      struct perf_event *group_leader)
2086 {
2087 	/*
2088 	 * Our group leader must be an aux event if we want to be
2089 	 * an aux_output. This way, the aux event will precede its
2090 	 * aux_output events in the group, and therefore will always
2091 	 * schedule first.
2092 	 */
2093 	if (!group_leader)
2094 		return 0;
2095 
2096 	/*
2097 	 * aux_output and aux_sample_size are mutually exclusive.
2098 	 */
2099 	if (event->attr.aux_output && event->attr.aux_sample_size)
2100 		return 0;
2101 
2102 	if (event->attr.aux_output &&
2103 	    !perf_aux_output_match(event, group_leader))
2104 		return 0;
2105 
2106 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2107 		return 0;
2108 
2109 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2110 		return 0;
2111 
2112 	/*
2113 	 * Link aux_outputs to their aux event; this is undone in
2114 	 * perf_group_detach() by perf_put_aux_event(). When the
2115 	 * group in torn down, the aux_output events loose their
2116 	 * link to the aux_event and can't schedule any more.
2117 	 */
2118 	event->aux_event = group_leader;
2119 
2120 	return 1;
2121 }
2122 
2123 static inline struct list_head *get_event_list(struct perf_event *event)
2124 {
2125 	struct perf_event_context *ctx = event->ctx;
2126 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2127 }
2128 
2129 /*
2130  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2131  * cannot exist on their own, schedule them out and move them into the ERROR
2132  * state. Also see _perf_event_enable(), it will not be able to recover
2133  * this ERROR state.
2134  */
2135 static inline void perf_remove_sibling_event(struct perf_event *event)
2136 {
2137 	struct perf_event_context *ctx = event->ctx;
2138 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2139 
2140 	event_sched_out(event, cpuctx, ctx);
2141 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2142 }
2143 
2144 static void perf_group_detach(struct perf_event *event)
2145 {
2146 	struct perf_event *leader = event->group_leader;
2147 	struct perf_event *sibling, *tmp;
2148 	struct perf_event_context *ctx = event->ctx;
2149 
2150 	lockdep_assert_held(&ctx->lock);
2151 
2152 	/*
2153 	 * We can have double detach due to exit/hot-unplug + close.
2154 	 */
2155 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2156 		return;
2157 
2158 	event->attach_state &= ~PERF_ATTACH_GROUP;
2159 
2160 	perf_put_aux_event(event);
2161 
2162 	/*
2163 	 * If this is a sibling, remove it from its group.
2164 	 */
2165 	if (leader != event) {
2166 		list_del_init(&event->sibling_list);
2167 		event->group_leader->nr_siblings--;
2168 		goto out;
2169 	}
2170 
2171 	/*
2172 	 * If this was a group event with sibling events then
2173 	 * upgrade the siblings to singleton events by adding them
2174 	 * to whatever list we are on.
2175 	 */
2176 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2177 
2178 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2179 			perf_remove_sibling_event(sibling);
2180 
2181 		sibling->group_leader = sibling;
2182 		list_del_init(&sibling->sibling_list);
2183 
2184 		/* Inherit group flags from the previous leader */
2185 		sibling->group_caps = event->group_caps;
2186 
2187 		if (!RB_EMPTY_NODE(&event->group_node)) {
2188 			add_event_to_groups(sibling, event->ctx);
2189 
2190 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2191 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2192 		}
2193 
2194 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2195 	}
2196 
2197 out:
2198 	for_each_sibling_event(tmp, leader)
2199 		perf_event__header_size(tmp);
2200 
2201 	perf_event__header_size(leader);
2202 }
2203 
2204 static void sync_child_event(struct perf_event *child_event);
2205 
2206 static void perf_child_detach(struct perf_event *event)
2207 {
2208 	struct perf_event *parent_event = event->parent;
2209 
2210 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2211 		return;
2212 
2213 	event->attach_state &= ~PERF_ATTACH_CHILD;
2214 
2215 	if (WARN_ON_ONCE(!parent_event))
2216 		return;
2217 
2218 	lockdep_assert_held(&parent_event->child_mutex);
2219 
2220 	sync_child_event(event);
2221 	list_del_init(&event->child_list);
2222 }
2223 
2224 static bool is_orphaned_event(struct perf_event *event)
2225 {
2226 	return event->state == PERF_EVENT_STATE_DEAD;
2227 }
2228 
2229 static inline int __pmu_filter_match(struct perf_event *event)
2230 {
2231 	struct pmu *pmu = event->pmu;
2232 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2233 }
2234 
2235 /*
2236  * Check whether we should attempt to schedule an event group based on
2237  * PMU-specific filtering. An event group can consist of HW and SW events,
2238  * potentially with a SW leader, so we must check all the filters, to
2239  * determine whether a group is schedulable:
2240  */
2241 static inline int pmu_filter_match(struct perf_event *event)
2242 {
2243 	struct perf_event *sibling;
2244 
2245 	if (!__pmu_filter_match(event))
2246 		return 0;
2247 
2248 	for_each_sibling_event(sibling, event) {
2249 		if (!__pmu_filter_match(sibling))
2250 			return 0;
2251 	}
2252 
2253 	return 1;
2254 }
2255 
2256 static inline int
2257 event_filter_match(struct perf_event *event)
2258 {
2259 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2260 	       perf_cgroup_match(event) && pmu_filter_match(event);
2261 }
2262 
2263 static void
2264 event_sched_out(struct perf_event *event,
2265 		  struct perf_cpu_context *cpuctx,
2266 		  struct perf_event_context *ctx)
2267 {
2268 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2269 
2270 	WARN_ON_ONCE(event->ctx != ctx);
2271 	lockdep_assert_held(&ctx->lock);
2272 
2273 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2274 		return;
2275 
2276 	/*
2277 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2278 	 * we can schedule events _OUT_ individually through things like
2279 	 * __perf_remove_from_context().
2280 	 */
2281 	list_del_init(&event->active_list);
2282 
2283 	perf_pmu_disable(event->pmu);
2284 
2285 	event->pmu->del(event, 0);
2286 	event->oncpu = -1;
2287 
2288 	if (READ_ONCE(event->pending_disable) >= 0) {
2289 		WRITE_ONCE(event->pending_disable, -1);
2290 		perf_cgroup_event_disable(event, ctx);
2291 		state = PERF_EVENT_STATE_OFF;
2292 	}
2293 	perf_event_set_state(event, state);
2294 
2295 	if (!is_software_event(event))
2296 		cpuctx->active_oncpu--;
2297 	if (!--ctx->nr_active)
2298 		perf_event_ctx_deactivate(ctx);
2299 	if (event->attr.freq && event->attr.sample_freq)
2300 		ctx->nr_freq--;
2301 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2302 		cpuctx->exclusive = 0;
2303 
2304 	perf_pmu_enable(event->pmu);
2305 }
2306 
2307 static void
2308 group_sched_out(struct perf_event *group_event,
2309 		struct perf_cpu_context *cpuctx,
2310 		struct perf_event_context *ctx)
2311 {
2312 	struct perf_event *event;
2313 
2314 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2315 		return;
2316 
2317 	perf_pmu_disable(ctx->pmu);
2318 
2319 	event_sched_out(group_event, cpuctx, ctx);
2320 
2321 	/*
2322 	 * Schedule out siblings (if any):
2323 	 */
2324 	for_each_sibling_event(event, group_event)
2325 		event_sched_out(event, cpuctx, ctx);
2326 
2327 	perf_pmu_enable(ctx->pmu);
2328 }
2329 
2330 #define DETACH_GROUP	0x01UL
2331 #define DETACH_CHILD	0x02UL
2332 
2333 /*
2334  * Cross CPU call to remove a performance event
2335  *
2336  * We disable the event on the hardware level first. After that we
2337  * remove it from the context list.
2338  */
2339 static void
2340 __perf_remove_from_context(struct perf_event *event,
2341 			   struct perf_cpu_context *cpuctx,
2342 			   struct perf_event_context *ctx,
2343 			   void *info)
2344 {
2345 	unsigned long flags = (unsigned long)info;
2346 
2347 	if (ctx->is_active & EVENT_TIME) {
2348 		update_context_time(ctx);
2349 		update_cgrp_time_from_cpuctx(cpuctx);
2350 	}
2351 
2352 	event_sched_out(event, cpuctx, ctx);
2353 	if (flags & DETACH_GROUP)
2354 		perf_group_detach(event);
2355 	if (flags & DETACH_CHILD)
2356 		perf_child_detach(event);
2357 	list_del_event(event, ctx);
2358 
2359 	if (!ctx->nr_events && ctx->is_active) {
2360 		ctx->is_active = 0;
2361 		ctx->rotate_necessary = 0;
2362 		if (ctx->task) {
2363 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2364 			cpuctx->task_ctx = NULL;
2365 		}
2366 	}
2367 }
2368 
2369 /*
2370  * Remove the event from a task's (or a CPU's) list of events.
2371  *
2372  * If event->ctx is a cloned context, callers must make sure that
2373  * every task struct that event->ctx->task could possibly point to
2374  * remains valid.  This is OK when called from perf_release since
2375  * that only calls us on the top-level context, which can't be a clone.
2376  * When called from perf_event_exit_task, it's OK because the
2377  * context has been detached from its task.
2378  */
2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2380 {
2381 	struct perf_event_context *ctx = event->ctx;
2382 
2383 	lockdep_assert_held(&ctx->mutex);
2384 
2385 	/*
2386 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2387 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2388 	 * event_function_call() user.
2389 	 */
2390 	raw_spin_lock_irq(&ctx->lock);
2391 	if (!ctx->is_active) {
2392 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2393 					   ctx, (void *)flags);
2394 		raw_spin_unlock_irq(&ctx->lock);
2395 		return;
2396 	}
2397 	raw_spin_unlock_irq(&ctx->lock);
2398 
2399 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2400 }
2401 
2402 /*
2403  * Cross CPU call to disable a performance event
2404  */
2405 static void __perf_event_disable(struct perf_event *event,
2406 				 struct perf_cpu_context *cpuctx,
2407 				 struct perf_event_context *ctx,
2408 				 void *info)
2409 {
2410 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2411 		return;
2412 
2413 	if (ctx->is_active & EVENT_TIME) {
2414 		update_context_time(ctx);
2415 		update_cgrp_time_from_event(event);
2416 	}
2417 
2418 	if (event == event->group_leader)
2419 		group_sched_out(event, cpuctx, ctx);
2420 	else
2421 		event_sched_out(event, cpuctx, ctx);
2422 
2423 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2424 	perf_cgroup_event_disable(event, ctx);
2425 }
2426 
2427 /*
2428  * Disable an event.
2429  *
2430  * If event->ctx is a cloned context, callers must make sure that
2431  * every task struct that event->ctx->task could possibly point to
2432  * remains valid.  This condition is satisfied when called through
2433  * perf_event_for_each_child or perf_event_for_each because they
2434  * hold the top-level event's child_mutex, so any descendant that
2435  * goes to exit will block in perf_event_exit_event().
2436  *
2437  * When called from perf_pending_event it's OK because event->ctx
2438  * is the current context on this CPU and preemption is disabled,
2439  * hence we can't get into perf_event_task_sched_out for this context.
2440  */
2441 static void _perf_event_disable(struct perf_event *event)
2442 {
2443 	struct perf_event_context *ctx = event->ctx;
2444 
2445 	raw_spin_lock_irq(&ctx->lock);
2446 	if (event->state <= PERF_EVENT_STATE_OFF) {
2447 		raw_spin_unlock_irq(&ctx->lock);
2448 		return;
2449 	}
2450 	raw_spin_unlock_irq(&ctx->lock);
2451 
2452 	event_function_call(event, __perf_event_disable, NULL);
2453 }
2454 
2455 void perf_event_disable_local(struct perf_event *event)
2456 {
2457 	event_function_local(event, __perf_event_disable, NULL);
2458 }
2459 
2460 /*
2461  * Strictly speaking kernel users cannot create groups and therefore this
2462  * interface does not need the perf_event_ctx_lock() magic.
2463  */
2464 void perf_event_disable(struct perf_event *event)
2465 {
2466 	struct perf_event_context *ctx;
2467 
2468 	ctx = perf_event_ctx_lock(event);
2469 	_perf_event_disable(event);
2470 	perf_event_ctx_unlock(event, ctx);
2471 }
2472 EXPORT_SYMBOL_GPL(perf_event_disable);
2473 
2474 void perf_event_disable_inatomic(struct perf_event *event)
2475 {
2476 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2477 	/* can fail, see perf_pending_event_disable() */
2478 	irq_work_queue(&event->pending);
2479 }
2480 
2481 static void perf_set_shadow_time(struct perf_event *event,
2482 				 struct perf_event_context *ctx)
2483 {
2484 	/*
2485 	 * use the correct time source for the time snapshot
2486 	 *
2487 	 * We could get by without this by leveraging the
2488 	 * fact that to get to this function, the caller
2489 	 * has most likely already called update_context_time()
2490 	 * and update_cgrp_time_xx() and thus both timestamp
2491 	 * are identical (or very close). Given that tstamp is,
2492 	 * already adjusted for cgroup, we could say that:
2493 	 *    tstamp - ctx->timestamp
2494 	 * is equivalent to
2495 	 *    tstamp - cgrp->timestamp.
2496 	 *
2497 	 * Then, in perf_output_read(), the calculation would
2498 	 * work with no changes because:
2499 	 * - event is guaranteed scheduled in
2500 	 * - no scheduled out in between
2501 	 * - thus the timestamp would be the same
2502 	 *
2503 	 * But this is a bit hairy.
2504 	 *
2505 	 * So instead, we have an explicit cgroup call to remain
2506 	 * within the time source all along. We believe it
2507 	 * is cleaner and simpler to understand.
2508 	 */
2509 	if (is_cgroup_event(event))
2510 		perf_cgroup_set_shadow_time(event, event->tstamp);
2511 	else
2512 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2513 }
2514 
2515 #define MAX_INTERRUPTS (~0ULL)
2516 
2517 static void perf_log_throttle(struct perf_event *event, int enable);
2518 static void perf_log_itrace_start(struct perf_event *event);
2519 
2520 static int
2521 event_sched_in(struct perf_event *event,
2522 		 struct perf_cpu_context *cpuctx,
2523 		 struct perf_event_context *ctx)
2524 {
2525 	int ret = 0;
2526 
2527 	WARN_ON_ONCE(event->ctx != ctx);
2528 
2529 	lockdep_assert_held(&ctx->lock);
2530 
2531 	if (event->state <= PERF_EVENT_STATE_OFF)
2532 		return 0;
2533 
2534 	WRITE_ONCE(event->oncpu, smp_processor_id());
2535 	/*
2536 	 * Order event::oncpu write to happen before the ACTIVE state is
2537 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2538 	 * ->oncpu if it sees ACTIVE.
2539 	 */
2540 	smp_wmb();
2541 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2542 
2543 	/*
2544 	 * Unthrottle events, since we scheduled we might have missed several
2545 	 * ticks already, also for a heavily scheduling task there is little
2546 	 * guarantee it'll get a tick in a timely manner.
2547 	 */
2548 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2549 		perf_log_throttle(event, 1);
2550 		event->hw.interrupts = 0;
2551 	}
2552 
2553 	perf_pmu_disable(event->pmu);
2554 
2555 	perf_set_shadow_time(event, ctx);
2556 
2557 	perf_log_itrace_start(event);
2558 
2559 	if (event->pmu->add(event, PERF_EF_START)) {
2560 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2561 		event->oncpu = -1;
2562 		ret = -EAGAIN;
2563 		goto out;
2564 	}
2565 
2566 	if (!is_software_event(event))
2567 		cpuctx->active_oncpu++;
2568 	if (!ctx->nr_active++)
2569 		perf_event_ctx_activate(ctx);
2570 	if (event->attr.freq && event->attr.sample_freq)
2571 		ctx->nr_freq++;
2572 
2573 	if (event->attr.exclusive)
2574 		cpuctx->exclusive = 1;
2575 
2576 out:
2577 	perf_pmu_enable(event->pmu);
2578 
2579 	return ret;
2580 }
2581 
2582 static int
2583 group_sched_in(struct perf_event *group_event,
2584 	       struct perf_cpu_context *cpuctx,
2585 	       struct perf_event_context *ctx)
2586 {
2587 	struct perf_event *event, *partial_group = NULL;
2588 	struct pmu *pmu = ctx->pmu;
2589 
2590 	if (group_event->state == PERF_EVENT_STATE_OFF)
2591 		return 0;
2592 
2593 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2594 
2595 	if (event_sched_in(group_event, cpuctx, ctx))
2596 		goto error;
2597 
2598 	/*
2599 	 * Schedule in siblings as one group (if any):
2600 	 */
2601 	for_each_sibling_event(event, group_event) {
2602 		if (event_sched_in(event, cpuctx, ctx)) {
2603 			partial_group = event;
2604 			goto group_error;
2605 		}
2606 	}
2607 
2608 	if (!pmu->commit_txn(pmu))
2609 		return 0;
2610 
2611 group_error:
2612 	/*
2613 	 * Groups can be scheduled in as one unit only, so undo any
2614 	 * partial group before returning:
2615 	 * The events up to the failed event are scheduled out normally.
2616 	 */
2617 	for_each_sibling_event(event, group_event) {
2618 		if (event == partial_group)
2619 			break;
2620 
2621 		event_sched_out(event, cpuctx, ctx);
2622 	}
2623 	event_sched_out(group_event, cpuctx, ctx);
2624 
2625 error:
2626 	pmu->cancel_txn(pmu);
2627 	return -EAGAIN;
2628 }
2629 
2630 /*
2631  * Work out whether we can put this event group on the CPU now.
2632  */
2633 static int group_can_go_on(struct perf_event *event,
2634 			   struct perf_cpu_context *cpuctx,
2635 			   int can_add_hw)
2636 {
2637 	/*
2638 	 * Groups consisting entirely of software events can always go on.
2639 	 */
2640 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2641 		return 1;
2642 	/*
2643 	 * If an exclusive group is already on, no other hardware
2644 	 * events can go on.
2645 	 */
2646 	if (cpuctx->exclusive)
2647 		return 0;
2648 	/*
2649 	 * If this group is exclusive and there are already
2650 	 * events on the CPU, it can't go on.
2651 	 */
2652 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2653 		return 0;
2654 	/*
2655 	 * Otherwise, try to add it if all previous groups were able
2656 	 * to go on.
2657 	 */
2658 	return can_add_hw;
2659 }
2660 
2661 static void add_event_to_ctx(struct perf_event *event,
2662 			       struct perf_event_context *ctx)
2663 {
2664 	list_add_event(event, ctx);
2665 	perf_group_attach(event);
2666 }
2667 
2668 static void ctx_sched_out(struct perf_event_context *ctx,
2669 			  struct perf_cpu_context *cpuctx,
2670 			  enum event_type_t event_type);
2671 static void
2672 ctx_sched_in(struct perf_event_context *ctx,
2673 	     struct perf_cpu_context *cpuctx,
2674 	     enum event_type_t event_type,
2675 	     struct task_struct *task);
2676 
2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2678 			       struct perf_event_context *ctx,
2679 			       enum event_type_t event_type)
2680 {
2681 	if (!cpuctx->task_ctx)
2682 		return;
2683 
2684 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2685 		return;
2686 
2687 	ctx_sched_out(ctx, cpuctx, event_type);
2688 }
2689 
2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2691 				struct perf_event_context *ctx,
2692 				struct task_struct *task)
2693 {
2694 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2695 	if (ctx)
2696 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2697 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2698 	if (ctx)
2699 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2700 }
2701 
2702 /*
2703  * We want to maintain the following priority of scheduling:
2704  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2705  *  - task pinned (EVENT_PINNED)
2706  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2707  *  - task flexible (EVENT_FLEXIBLE).
2708  *
2709  * In order to avoid unscheduling and scheduling back in everything every
2710  * time an event is added, only do it for the groups of equal priority and
2711  * below.
2712  *
2713  * This can be called after a batch operation on task events, in which case
2714  * event_type is a bit mask of the types of events involved. For CPU events,
2715  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2716  */
2717 static void ctx_resched(struct perf_cpu_context *cpuctx,
2718 			struct perf_event_context *task_ctx,
2719 			enum event_type_t event_type)
2720 {
2721 	enum event_type_t ctx_event_type;
2722 	bool cpu_event = !!(event_type & EVENT_CPU);
2723 
2724 	/*
2725 	 * If pinned groups are involved, flexible groups also need to be
2726 	 * scheduled out.
2727 	 */
2728 	if (event_type & EVENT_PINNED)
2729 		event_type |= EVENT_FLEXIBLE;
2730 
2731 	ctx_event_type = event_type & EVENT_ALL;
2732 
2733 	perf_pmu_disable(cpuctx->ctx.pmu);
2734 	if (task_ctx)
2735 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2736 
2737 	/*
2738 	 * Decide which cpu ctx groups to schedule out based on the types
2739 	 * of events that caused rescheduling:
2740 	 *  - EVENT_CPU: schedule out corresponding groups;
2741 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2742 	 *  - otherwise, do nothing more.
2743 	 */
2744 	if (cpu_event)
2745 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2746 	else if (ctx_event_type & EVENT_PINNED)
2747 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2748 
2749 	perf_event_sched_in(cpuctx, task_ctx, current);
2750 	perf_pmu_enable(cpuctx->ctx.pmu);
2751 }
2752 
2753 void perf_pmu_resched(struct pmu *pmu)
2754 {
2755 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2756 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2757 
2758 	perf_ctx_lock(cpuctx, task_ctx);
2759 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2760 	perf_ctx_unlock(cpuctx, task_ctx);
2761 }
2762 
2763 /*
2764  * Cross CPU call to install and enable a performance event
2765  *
2766  * Very similar to remote_function() + event_function() but cannot assume that
2767  * things like ctx->is_active and cpuctx->task_ctx are set.
2768  */
2769 static int  __perf_install_in_context(void *info)
2770 {
2771 	struct perf_event *event = info;
2772 	struct perf_event_context *ctx = event->ctx;
2773 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2774 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2775 	bool reprogram = true;
2776 	int ret = 0;
2777 
2778 	raw_spin_lock(&cpuctx->ctx.lock);
2779 	if (ctx->task) {
2780 		raw_spin_lock(&ctx->lock);
2781 		task_ctx = ctx;
2782 
2783 		reprogram = (ctx->task == current);
2784 
2785 		/*
2786 		 * If the task is running, it must be running on this CPU,
2787 		 * otherwise we cannot reprogram things.
2788 		 *
2789 		 * If its not running, we don't care, ctx->lock will
2790 		 * serialize against it becoming runnable.
2791 		 */
2792 		if (task_curr(ctx->task) && !reprogram) {
2793 			ret = -ESRCH;
2794 			goto unlock;
2795 		}
2796 
2797 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2798 	} else if (task_ctx) {
2799 		raw_spin_lock(&task_ctx->lock);
2800 	}
2801 
2802 #ifdef CONFIG_CGROUP_PERF
2803 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2804 		/*
2805 		 * If the current cgroup doesn't match the event's
2806 		 * cgroup, we should not try to schedule it.
2807 		 */
2808 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2809 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2810 					event->cgrp->css.cgroup);
2811 	}
2812 #endif
2813 
2814 	if (reprogram) {
2815 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2816 		add_event_to_ctx(event, ctx);
2817 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2818 	} else {
2819 		add_event_to_ctx(event, ctx);
2820 	}
2821 
2822 unlock:
2823 	perf_ctx_unlock(cpuctx, task_ctx);
2824 
2825 	return ret;
2826 }
2827 
2828 static bool exclusive_event_installable(struct perf_event *event,
2829 					struct perf_event_context *ctx);
2830 
2831 /*
2832  * Attach a performance event to a context.
2833  *
2834  * Very similar to event_function_call, see comment there.
2835  */
2836 static void
2837 perf_install_in_context(struct perf_event_context *ctx,
2838 			struct perf_event *event,
2839 			int cpu)
2840 {
2841 	struct task_struct *task = READ_ONCE(ctx->task);
2842 
2843 	lockdep_assert_held(&ctx->mutex);
2844 
2845 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2846 
2847 	if (event->cpu != -1)
2848 		event->cpu = cpu;
2849 
2850 	/*
2851 	 * Ensures that if we can observe event->ctx, both the event and ctx
2852 	 * will be 'complete'. See perf_iterate_sb_cpu().
2853 	 */
2854 	smp_store_release(&event->ctx, ctx);
2855 
2856 	/*
2857 	 * perf_event_attr::disabled events will not run and can be initialized
2858 	 * without IPI. Except when this is the first event for the context, in
2859 	 * that case we need the magic of the IPI to set ctx->is_active.
2860 	 *
2861 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2862 	 * event will issue the IPI and reprogram the hardware.
2863 	 */
2864 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2865 		raw_spin_lock_irq(&ctx->lock);
2866 		if (ctx->task == TASK_TOMBSTONE) {
2867 			raw_spin_unlock_irq(&ctx->lock);
2868 			return;
2869 		}
2870 		add_event_to_ctx(event, ctx);
2871 		raw_spin_unlock_irq(&ctx->lock);
2872 		return;
2873 	}
2874 
2875 	if (!task) {
2876 		cpu_function_call(cpu, __perf_install_in_context, event);
2877 		return;
2878 	}
2879 
2880 	/*
2881 	 * Should not happen, we validate the ctx is still alive before calling.
2882 	 */
2883 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2884 		return;
2885 
2886 	/*
2887 	 * Installing events is tricky because we cannot rely on ctx->is_active
2888 	 * to be set in case this is the nr_events 0 -> 1 transition.
2889 	 *
2890 	 * Instead we use task_curr(), which tells us if the task is running.
2891 	 * However, since we use task_curr() outside of rq::lock, we can race
2892 	 * against the actual state. This means the result can be wrong.
2893 	 *
2894 	 * If we get a false positive, we retry, this is harmless.
2895 	 *
2896 	 * If we get a false negative, things are complicated. If we are after
2897 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2898 	 * value must be correct. If we're before, it doesn't matter since
2899 	 * perf_event_context_sched_in() will program the counter.
2900 	 *
2901 	 * However, this hinges on the remote context switch having observed
2902 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2903 	 * ctx::lock in perf_event_context_sched_in().
2904 	 *
2905 	 * We do this by task_function_call(), if the IPI fails to hit the task
2906 	 * we know any future context switch of task must see the
2907 	 * perf_event_ctpx[] store.
2908 	 */
2909 
2910 	/*
2911 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2912 	 * task_cpu() load, such that if the IPI then does not find the task
2913 	 * running, a future context switch of that task must observe the
2914 	 * store.
2915 	 */
2916 	smp_mb();
2917 again:
2918 	if (!task_function_call(task, __perf_install_in_context, event))
2919 		return;
2920 
2921 	raw_spin_lock_irq(&ctx->lock);
2922 	task = ctx->task;
2923 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2924 		/*
2925 		 * Cannot happen because we already checked above (which also
2926 		 * cannot happen), and we hold ctx->mutex, which serializes us
2927 		 * against perf_event_exit_task_context().
2928 		 */
2929 		raw_spin_unlock_irq(&ctx->lock);
2930 		return;
2931 	}
2932 	/*
2933 	 * If the task is not running, ctx->lock will avoid it becoming so,
2934 	 * thus we can safely install the event.
2935 	 */
2936 	if (task_curr(task)) {
2937 		raw_spin_unlock_irq(&ctx->lock);
2938 		goto again;
2939 	}
2940 	add_event_to_ctx(event, ctx);
2941 	raw_spin_unlock_irq(&ctx->lock);
2942 }
2943 
2944 /*
2945  * Cross CPU call to enable a performance event
2946  */
2947 static void __perf_event_enable(struct perf_event *event,
2948 				struct perf_cpu_context *cpuctx,
2949 				struct perf_event_context *ctx,
2950 				void *info)
2951 {
2952 	struct perf_event *leader = event->group_leader;
2953 	struct perf_event_context *task_ctx;
2954 
2955 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956 	    event->state <= PERF_EVENT_STATE_ERROR)
2957 		return;
2958 
2959 	if (ctx->is_active)
2960 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2961 
2962 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2963 	perf_cgroup_event_enable(event, ctx);
2964 
2965 	if (!ctx->is_active)
2966 		return;
2967 
2968 	if (!event_filter_match(event)) {
2969 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2970 		return;
2971 	}
2972 
2973 	/*
2974 	 * If the event is in a group and isn't the group leader,
2975 	 * then don't put it on unless the group is on.
2976 	 */
2977 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2978 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2979 		return;
2980 	}
2981 
2982 	task_ctx = cpuctx->task_ctx;
2983 	if (ctx->task)
2984 		WARN_ON_ONCE(task_ctx != ctx);
2985 
2986 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2987 }
2988 
2989 /*
2990  * Enable an event.
2991  *
2992  * If event->ctx is a cloned context, callers must make sure that
2993  * every task struct that event->ctx->task could possibly point to
2994  * remains valid.  This condition is satisfied when called through
2995  * perf_event_for_each_child or perf_event_for_each as described
2996  * for perf_event_disable.
2997  */
2998 static void _perf_event_enable(struct perf_event *event)
2999 {
3000 	struct perf_event_context *ctx = event->ctx;
3001 
3002 	raw_spin_lock_irq(&ctx->lock);
3003 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3004 	    event->state <  PERF_EVENT_STATE_ERROR) {
3005 out:
3006 		raw_spin_unlock_irq(&ctx->lock);
3007 		return;
3008 	}
3009 
3010 	/*
3011 	 * If the event is in error state, clear that first.
3012 	 *
3013 	 * That way, if we see the event in error state below, we know that it
3014 	 * has gone back into error state, as distinct from the task having
3015 	 * been scheduled away before the cross-call arrived.
3016 	 */
3017 	if (event->state == PERF_EVENT_STATE_ERROR) {
3018 		/*
3019 		 * Detached SIBLING events cannot leave ERROR state.
3020 		 */
3021 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3022 		    event->group_leader == event)
3023 			goto out;
3024 
3025 		event->state = PERF_EVENT_STATE_OFF;
3026 	}
3027 	raw_spin_unlock_irq(&ctx->lock);
3028 
3029 	event_function_call(event, __perf_event_enable, NULL);
3030 }
3031 
3032 /*
3033  * See perf_event_disable();
3034  */
3035 void perf_event_enable(struct perf_event *event)
3036 {
3037 	struct perf_event_context *ctx;
3038 
3039 	ctx = perf_event_ctx_lock(event);
3040 	_perf_event_enable(event);
3041 	perf_event_ctx_unlock(event, ctx);
3042 }
3043 EXPORT_SYMBOL_GPL(perf_event_enable);
3044 
3045 struct stop_event_data {
3046 	struct perf_event	*event;
3047 	unsigned int		restart;
3048 };
3049 
3050 static int __perf_event_stop(void *info)
3051 {
3052 	struct stop_event_data *sd = info;
3053 	struct perf_event *event = sd->event;
3054 
3055 	/* if it's already INACTIVE, do nothing */
3056 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3057 		return 0;
3058 
3059 	/* matches smp_wmb() in event_sched_in() */
3060 	smp_rmb();
3061 
3062 	/*
3063 	 * There is a window with interrupts enabled before we get here,
3064 	 * so we need to check again lest we try to stop another CPU's event.
3065 	 */
3066 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3067 		return -EAGAIN;
3068 
3069 	event->pmu->stop(event, PERF_EF_UPDATE);
3070 
3071 	/*
3072 	 * May race with the actual stop (through perf_pmu_output_stop()),
3073 	 * but it is only used for events with AUX ring buffer, and such
3074 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3075 	 * see comments in perf_aux_output_begin().
3076 	 *
3077 	 * Since this is happening on an event-local CPU, no trace is lost
3078 	 * while restarting.
3079 	 */
3080 	if (sd->restart)
3081 		event->pmu->start(event, 0);
3082 
3083 	return 0;
3084 }
3085 
3086 static int perf_event_stop(struct perf_event *event, int restart)
3087 {
3088 	struct stop_event_data sd = {
3089 		.event		= event,
3090 		.restart	= restart,
3091 	};
3092 	int ret = 0;
3093 
3094 	do {
3095 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3096 			return 0;
3097 
3098 		/* matches smp_wmb() in event_sched_in() */
3099 		smp_rmb();
3100 
3101 		/*
3102 		 * We only want to restart ACTIVE events, so if the event goes
3103 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3104 		 * fall through with ret==-ENXIO.
3105 		 */
3106 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3107 					__perf_event_stop, &sd);
3108 	} while (ret == -EAGAIN);
3109 
3110 	return ret;
3111 }
3112 
3113 /*
3114  * In order to contain the amount of racy and tricky in the address filter
3115  * configuration management, it is a two part process:
3116  *
3117  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3118  *      we update the addresses of corresponding vmas in
3119  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3120  * (p2) when an event is scheduled in (pmu::add), it calls
3121  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3122  *      if the generation has changed since the previous call.
3123  *
3124  * If (p1) happens while the event is active, we restart it to force (p2).
3125  *
3126  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3127  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3128  *     ioctl;
3129  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3130  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3131  *     for reading;
3132  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3133  *     of exec.
3134  */
3135 void perf_event_addr_filters_sync(struct perf_event *event)
3136 {
3137 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3138 
3139 	if (!has_addr_filter(event))
3140 		return;
3141 
3142 	raw_spin_lock(&ifh->lock);
3143 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3144 		event->pmu->addr_filters_sync(event);
3145 		event->hw.addr_filters_gen = event->addr_filters_gen;
3146 	}
3147 	raw_spin_unlock(&ifh->lock);
3148 }
3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3150 
3151 static int _perf_event_refresh(struct perf_event *event, int refresh)
3152 {
3153 	/*
3154 	 * not supported on inherited events
3155 	 */
3156 	if (event->attr.inherit || !is_sampling_event(event))
3157 		return -EINVAL;
3158 
3159 	atomic_add(refresh, &event->event_limit);
3160 	_perf_event_enable(event);
3161 
3162 	return 0;
3163 }
3164 
3165 /*
3166  * See perf_event_disable()
3167  */
3168 int perf_event_refresh(struct perf_event *event, int refresh)
3169 {
3170 	struct perf_event_context *ctx;
3171 	int ret;
3172 
3173 	ctx = perf_event_ctx_lock(event);
3174 	ret = _perf_event_refresh(event, refresh);
3175 	perf_event_ctx_unlock(event, ctx);
3176 
3177 	return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(perf_event_refresh);
3180 
3181 static int perf_event_modify_breakpoint(struct perf_event *bp,
3182 					 struct perf_event_attr *attr)
3183 {
3184 	int err;
3185 
3186 	_perf_event_disable(bp);
3187 
3188 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3189 
3190 	if (!bp->attr.disabled)
3191 		_perf_event_enable(bp);
3192 
3193 	return err;
3194 }
3195 
3196 static int perf_event_modify_attr(struct perf_event *event,
3197 				  struct perf_event_attr *attr)
3198 {
3199 	int (*func)(struct perf_event *, struct perf_event_attr *);
3200 	struct perf_event *child;
3201 	int err;
3202 
3203 	if (event->attr.type != attr->type)
3204 		return -EINVAL;
3205 
3206 	switch (event->attr.type) {
3207 	case PERF_TYPE_BREAKPOINT:
3208 		func = perf_event_modify_breakpoint;
3209 		break;
3210 	default:
3211 		/* Place holder for future additions. */
3212 		return -EOPNOTSUPP;
3213 	}
3214 
3215 	WARN_ON_ONCE(event->ctx->parent_ctx);
3216 
3217 	mutex_lock(&event->child_mutex);
3218 	err = func(event, attr);
3219 	if (err)
3220 		goto out;
3221 	list_for_each_entry(child, &event->child_list, child_list) {
3222 		err = func(child, attr);
3223 		if (err)
3224 			goto out;
3225 	}
3226 out:
3227 	mutex_unlock(&event->child_mutex);
3228 	return err;
3229 }
3230 
3231 static void ctx_sched_out(struct perf_event_context *ctx,
3232 			  struct perf_cpu_context *cpuctx,
3233 			  enum event_type_t event_type)
3234 {
3235 	struct perf_event *event, *tmp;
3236 	int is_active = ctx->is_active;
3237 
3238 	lockdep_assert_held(&ctx->lock);
3239 
3240 	if (likely(!ctx->nr_events)) {
3241 		/*
3242 		 * See __perf_remove_from_context().
3243 		 */
3244 		WARN_ON_ONCE(ctx->is_active);
3245 		if (ctx->task)
3246 			WARN_ON_ONCE(cpuctx->task_ctx);
3247 		return;
3248 	}
3249 
3250 	ctx->is_active &= ~event_type;
3251 	if (!(ctx->is_active & EVENT_ALL))
3252 		ctx->is_active = 0;
3253 
3254 	if (ctx->task) {
3255 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3256 		if (!ctx->is_active)
3257 			cpuctx->task_ctx = NULL;
3258 	}
3259 
3260 	/*
3261 	 * Always update time if it was set; not only when it changes.
3262 	 * Otherwise we can 'forget' to update time for any but the last
3263 	 * context we sched out. For example:
3264 	 *
3265 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3266 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3267 	 *
3268 	 * would only update time for the pinned events.
3269 	 */
3270 	if (is_active & EVENT_TIME) {
3271 		/* update (and stop) ctx time */
3272 		update_context_time(ctx);
3273 		update_cgrp_time_from_cpuctx(cpuctx);
3274 	}
3275 
3276 	is_active ^= ctx->is_active; /* changed bits */
3277 
3278 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3279 		return;
3280 
3281 	perf_pmu_disable(ctx->pmu);
3282 	if (is_active & EVENT_PINNED) {
3283 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3284 			group_sched_out(event, cpuctx, ctx);
3285 	}
3286 
3287 	if (is_active & EVENT_FLEXIBLE) {
3288 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3289 			group_sched_out(event, cpuctx, ctx);
3290 
3291 		/*
3292 		 * Since we cleared EVENT_FLEXIBLE, also clear
3293 		 * rotate_necessary, is will be reset by
3294 		 * ctx_flexible_sched_in() when needed.
3295 		 */
3296 		ctx->rotate_necessary = 0;
3297 	}
3298 	perf_pmu_enable(ctx->pmu);
3299 }
3300 
3301 /*
3302  * Test whether two contexts are equivalent, i.e. whether they have both been
3303  * cloned from the same version of the same context.
3304  *
3305  * Equivalence is measured using a generation number in the context that is
3306  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3307  * and list_del_event().
3308  */
3309 static int context_equiv(struct perf_event_context *ctx1,
3310 			 struct perf_event_context *ctx2)
3311 {
3312 	lockdep_assert_held(&ctx1->lock);
3313 	lockdep_assert_held(&ctx2->lock);
3314 
3315 	/* Pinning disables the swap optimization */
3316 	if (ctx1->pin_count || ctx2->pin_count)
3317 		return 0;
3318 
3319 	/* If ctx1 is the parent of ctx2 */
3320 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3321 		return 1;
3322 
3323 	/* If ctx2 is the parent of ctx1 */
3324 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3325 		return 1;
3326 
3327 	/*
3328 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3329 	 * hierarchy, see perf_event_init_context().
3330 	 */
3331 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3332 			ctx1->parent_gen == ctx2->parent_gen)
3333 		return 1;
3334 
3335 	/* Unmatched */
3336 	return 0;
3337 }
3338 
3339 static void __perf_event_sync_stat(struct perf_event *event,
3340 				     struct perf_event *next_event)
3341 {
3342 	u64 value;
3343 
3344 	if (!event->attr.inherit_stat)
3345 		return;
3346 
3347 	/*
3348 	 * Update the event value, we cannot use perf_event_read()
3349 	 * because we're in the middle of a context switch and have IRQs
3350 	 * disabled, which upsets smp_call_function_single(), however
3351 	 * we know the event must be on the current CPU, therefore we
3352 	 * don't need to use it.
3353 	 */
3354 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3355 		event->pmu->read(event);
3356 
3357 	perf_event_update_time(event);
3358 
3359 	/*
3360 	 * In order to keep per-task stats reliable we need to flip the event
3361 	 * values when we flip the contexts.
3362 	 */
3363 	value = local64_read(&next_event->count);
3364 	value = local64_xchg(&event->count, value);
3365 	local64_set(&next_event->count, value);
3366 
3367 	swap(event->total_time_enabled, next_event->total_time_enabled);
3368 	swap(event->total_time_running, next_event->total_time_running);
3369 
3370 	/*
3371 	 * Since we swizzled the values, update the user visible data too.
3372 	 */
3373 	perf_event_update_userpage(event);
3374 	perf_event_update_userpage(next_event);
3375 }
3376 
3377 static void perf_event_sync_stat(struct perf_event_context *ctx,
3378 				   struct perf_event_context *next_ctx)
3379 {
3380 	struct perf_event *event, *next_event;
3381 
3382 	if (!ctx->nr_stat)
3383 		return;
3384 
3385 	update_context_time(ctx);
3386 
3387 	event = list_first_entry(&ctx->event_list,
3388 				   struct perf_event, event_entry);
3389 
3390 	next_event = list_first_entry(&next_ctx->event_list,
3391 					struct perf_event, event_entry);
3392 
3393 	while (&event->event_entry != &ctx->event_list &&
3394 	       &next_event->event_entry != &next_ctx->event_list) {
3395 
3396 		__perf_event_sync_stat(event, next_event);
3397 
3398 		event = list_next_entry(event, event_entry);
3399 		next_event = list_next_entry(next_event, event_entry);
3400 	}
3401 }
3402 
3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3404 					 struct task_struct *next)
3405 {
3406 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3407 	struct perf_event_context *next_ctx;
3408 	struct perf_event_context *parent, *next_parent;
3409 	struct perf_cpu_context *cpuctx;
3410 	int do_switch = 1;
3411 	struct pmu *pmu;
3412 
3413 	if (likely(!ctx))
3414 		return;
3415 
3416 	pmu = ctx->pmu;
3417 	cpuctx = __get_cpu_context(ctx);
3418 	if (!cpuctx->task_ctx)
3419 		return;
3420 
3421 	rcu_read_lock();
3422 	next_ctx = next->perf_event_ctxp[ctxn];
3423 	if (!next_ctx)
3424 		goto unlock;
3425 
3426 	parent = rcu_dereference(ctx->parent_ctx);
3427 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3428 
3429 	/* If neither context have a parent context; they cannot be clones. */
3430 	if (!parent && !next_parent)
3431 		goto unlock;
3432 
3433 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3434 		/*
3435 		 * Looks like the two contexts are clones, so we might be
3436 		 * able to optimize the context switch.  We lock both
3437 		 * contexts and check that they are clones under the
3438 		 * lock (including re-checking that neither has been
3439 		 * uncloned in the meantime).  It doesn't matter which
3440 		 * order we take the locks because no other cpu could
3441 		 * be trying to lock both of these tasks.
3442 		 */
3443 		raw_spin_lock(&ctx->lock);
3444 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3445 		if (context_equiv(ctx, next_ctx)) {
3446 
3447 			WRITE_ONCE(ctx->task, next);
3448 			WRITE_ONCE(next_ctx->task, task);
3449 
3450 			perf_pmu_disable(pmu);
3451 
3452 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3453 				pmu->sched_task(ctx, false);
3454 
3455 			/*
3456 			 * PMU specific parts of task perf context can require
3457 			 * additional synchronization. As an example of such
3458 			 * synchronization see implementation details of Intel
3459 			 * LBR call stack data profiling;
3460 			 */
3461 			if (pmu->swap_task_ctx)
3462 				pmu->swap_task_ctx(ctx, next_ctx);
3463 			else
3464 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3465 
3466 			perf_pmu_enable(pmu);
3467 
3468 			/*
3469 			 * RCU_INIT_POINTER here is safe because we've not
3470 			 * modified the ctx and the above modification of
3471 			 * ctx->task and ctx->task_ctx_data are immaterial
3472 			 * since those values are always verified under
3473 			 * ctx->lock which we're now holding.
3474 			 */
3475 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3476 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3477 
3478 			do_switch = 0;
3479 
3480 			perf_event_sync_stat(ctx, next_ctx);
3481 		}
3482 		raw_spin_unlock(&next_ctx->lock);
3483 		raw_spin_unlock(&ctx->lock);
3484 	}
3485 unlock:
3486 	rcu_read_unlock();
3487 
3488 	if (do_switch) {
3489 		raw_spin_lock(&ctx->lock);
3490 		perf_pmu_disable(pmu);
3491 
3492 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3493 			pmu->sched_task(ctx, false);
3494 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3495 
3496 		perf_pmu_enable(pmu);
3497 		raw_spin_unlock(&ctx->lock);
3498 	}
3499 }
3500 
3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3502 
3503 void perf_sched_cb_dec(struct pmu *pmu)
3504 {
3505 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3506 
3507 	this_cpu_dec(perf_sched_cb_usages);
3508 
3509 	if (!--cpuctx->sched_cb_usage)
3510 		list_del(&cpuctx->sched_cb_entry);
3511 }
3512 
3513 
3514 void perf_sched_cb_inc(struct pmu *pmu)
3515 {
3516 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3517 
3518 	if (!cpuctx->sched_cb_usage++)
3519 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3520 
3521 	this_cpu_inc(perf_sched_cb_usages);
3522 }
3523 
3524 /*
3525  * This function provides the context switch callback to the lower code
3526  * layer. It is invoked ONLY when the context switch callback is enabled.
3527  *
3528  * This callback is relevant even to per-cpu events; for example multi event
3529  * PEBS requires this to provide PID/TID information. This requires we flush
3530  * all queued PEBS records before we context switch to a new task.
3531  */
3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3533 {
3534 	struct pmu *pmu;
3535 
3536 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3537 
3538 	if (WARN_ON_ONCE(!pmu->sched_task))
3539 		return;
3540 
3541 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3542 	perf_pmu_disable(pmu);
3543 
3544 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3545 
3546 	perf_pmu_enable(pmu);
3547 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3548 }
3549 
3550 static void perf_pmu_sched_task(struct task_struct *prev,
3551 				struct task_struct *next,
3552 				bool sched_in)
3553 {
3554 	struct perf_cpu_context *cpuctx;
3555 
3556 	if (prev == next)
3557 		return;
3558 
3559 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3560 		/* will be handled in perf_event_context_sched_in/out */
3561 		if (cpuctx->task_ctx)
3562 			continue;
3563 
3564 		__perf_pmu_sched_task(cpuctx, sched_in);
3565 	}
3566 }
3567 
3568 static void perf_event_switch(struct task_struct *task,
3569 			      struct task_struct *next_prev, bool sched_in);
3570 
3571 #define for_each_task_context_nr(ctxn)					\
3572 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3573 
3574 /*
3575  * Called from scheduler to remove the events of the current task,
3576  * with interrupts disabled.
3577  *
3578  * We stop each event and update the event value in event->count.
3579  *
3580  * This does not protect us against NMI, but disable()
3581  * sets the disabled bit in the control field of event _before_
3582  * accessing the event control register. If a NMI hits, then it will
3583  * not restart the event.
3584  */
3585 void __perf_event_task_sched_out(struct task_struct *task,
3586 				 struct task_struct *next)
3587 {
3588 	int ctxn;
3589 
3590 	if (__this_cpu_read(perf_sched_cb_usages))
3591 		perf_pmu_sched_task(task, next, false);
3592 
3593 	if (atomic_read(&nr_switch_events))
3594 		perf_event_switch(task, next, false);
3595 
3596 	for_each_task_context_nr(ctxn)
3597 		perf_event_context_sched_out(task, ctxn, next);
3598 
3599 	/*
3600 	 * if cgroup events exist on this CPU, then we need
3601 	 * to check if we have to switch out PMU state.
3602 	 * cgroup event are system-wide mode only
3603 	 */
3604 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3605 		perf_cgroup_sched_out(task, next);
3606 }
3607 
3608 /*
3609  * Called with IRQs disabled
3610  */
3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3612 			      enum event_type_t event_type)
3613 {
3614 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3615 }
3616 
3617 static bool perf_less_group_idx(const void *l, const void *r)
3618 {
3619 	const struct perf_event *le = *(const struct perf_event **)l;
3620 	const struct perf_event *re = *(const struct perf_event **)r;
3621 
3622 	return le->group_index < re->group_index;
3623 }
3624 
3625 static void swap_ptr(void *l, void *r)
3626 {
3627 	void **lp = l, **rp = r;
3628 
3629 	swap(*lp, *rp);
3630 }
3631 
3632 static const struct min_heap_callbacks perf_min_heap = {
3633 	.elem_size = sizeof(struct perf_event *),
3634 	.less = perf_less_group_idx,
3635 	.swp = swap_ptr,
3636 };
3637 
3638 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3639 {
3640 	struct perf_event **itrs = heap->data;
3641 
3642 	if (event) {
3643 		itrs[heap->nr] = event;
3644 		heap->nr++;
3645 	}
3646 }
3647 
3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3649 				struct perf_event_groups *groups, int cpu,
3650 				int (*func)(struct perf_event *, void *),
3651 				void *data)
3652 {
3653 #ifdef CONFIG_CGROUP_PERF
3654 	struct cgroup_subsys_state *css = NULL;
3655 #endif
3656 	/* Space for per CPU and/or any CPU event iterators. */
3657 	struct perf_event *itrs[2];
3658 	struct min_heap event_heap;
3659 	struct perf_event **evt;
3660 	int ret;
3661 
3662 	if (cpuctx) {
3663 		event_heap = (struct min_heap){
3664 			.data = cpuctx->heap,
3665 			.nr = 0,
3666 			.size = cpuctx->heap_size,
3667 		};
3668 
3669 		lockdep_assert_held(&cpuctx->ctx.lock);
3670 
3671 #ifdef CONFIG_CGROUP_PERF
3672 		if (cpuctx->cgrp)
3673 			css = &cpuctx->cgrp->css;
3674 #endif
3675 	} else {
3676 		event_heap = (struct min_heap){
3677 			.data = itrs,
3678 			.nr = 0,
3679 			.size = ARRAY_SIZE(itrs),
3680 		};
3681 		/* Events not within a CPU context may be on any CPU. */
3682 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3683 	}
3684 	evt = event_heap.data;
3685 
3686 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3687 
3688 #ifdef CONFIG_CGROUP_PERF
3689 	for (; css; css = css->parent)
3690 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3691 #endif
3692 
3693 	min_heapify_all(&event_heap, &perf_min_heap);
3694 
3695 	while (event_heap.nr) {
3696 		ret = func(*evt, data);
3697 		if (ret)
3698 			return ret;
3699 
3700 		*evt = perf_event_groups_next(*evt);
3701 		if (*evt)
3702 			min_heapify(&event_heap, 0, &perf_min_heap);
3703 		else
3704 			min_heap_pop(&event_heap, &perf_min_heap);
3705 	}
3706 
3707 	return 0;
3708 }
3709 
3710 static int merge_sched_in(struct perf_event *event, void *data)
3711 {
3712 	struct perf_event_context *ctx = event->ctx;
3713 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3714 	int *can_add_hw = data;
3715 
3716 	if (event->state <= PERF_EVENT_STATE_OFF)
3717 		return 0;
3718 
3719 	if (!event_filter_match(event))
3720 		return 0;
3721 
3722 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3723 		if (!group_sched_in(event, cpuctx, ctx))
3724 			list_add_tail(&event->active_list, get_event_list(event));
3725 	}
3726 
3727 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3728 		if (event->attr.pinned) {
3729 			perf_cgroup_event_disable(event, ctx);
3730 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3731 		}
3732 
3733 		*can_add_hw = 0;
3734 		ctx->rotate_necessary = 1;
3735 		perf_mux_hrtimer_restart(cpuctx);
3736 	}
3737 
3738 	return 0;
3739 }
3740 
3741 static void
3742 ctx_pinned_sched_in(struct perf_event_context *ctx,
3743 		    struct perf_cpu_context *cpuctx)
3744 {
3745 	int can_add_hw = 1;
3746 
3747 	if (ctx != &cpuctx->ctx)
3748 		cpuctx = NULL;
3749 
3750 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3751 			   smp_processor_id(),
3752 			   merge_sched_in, &can_add_hw);
3753 }
3754 
3755 static void
3756 ctx_flexible_sched_in(struct perf_event_context *ctx,
3757 		      struct perf_cpu_context *cpuctx)
3758 {
3759 	int can_add_hw = 1;
3760 
3761 	if (ctx != &cpuctx->ctx)
3762 		cpuctx = NULL;
3763 
3764 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3765 			   smp_processor_id(),
3766 			   merge_sched_in, &can_add_hw);
3767 }
3768 
3769 static void
3770 ctx_sched_in(struct perf_event_context *ctx,
3771 	     struct perf_cpu_context *cpuctx,
3772 	     enum event_type_t event_type,
3773 	     struct task_struct *task)
3774 {
3775 	int is_active = ctx->is_active;
3776 	u64 now;
3777 
3778 	lockdep_assert_held(&ctx->lock);
3779 
3780 	if (likely(!ctx->nr_events))
3781 		return;
3782 
3783 	ctx->is_active |= (event_type | EVENT_TIME);
3784 	if (ctx->task) {
3785 		if (!is_active)
3786 			cpuctx->task_ctx = ctx;
3787 		else
3788 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3789 	}
3790 
3791 	is_active ^= ctx->is_active; /* changed bits */
3792 
3793 	if (is_active & EVENT_TIME) {
3794 		/* start ctx time */
3795 		now = perf_clock();
3796 		ctx->timestamp = now;
3797 		perf_cgroup_set_timestamp(task, ctx);
3798 	}
3799 
3800 	/*
3801 	 * First go through the list and put on any pinned groups
3802 	 * in order to give them the best chance of going on.
3803 	 */
3804 	if (is_active & EVENT_PINNED)
3805 		ctx_pinned_sched_in(ctx, cpuctx);
3806 
3807 	/* Then walk through the lower prio flexible groups */
3808 	if (is_active & EVENT_FLEXIBLE)
3809 		ctx_flexible_sched_in(ctx, cpuctx);
3810 }
3811 
3812 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3813 			     enum event_type_t event_type,
3814 			     struct task_struct *task)
3815 {
3816 	struct perf_event_context *ctx = &cpuctx->ctx;
3817 
3818 	ctx_sched_in(ctx, cpuctx, event_type, task);
3819 }
3820 
3821 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3822 					struct task_struct *task)
3823 {
3824 	struct perf_cpu_context *cpuctx;
3825 	struct pmu *pmu = ctx->pmu;
3826 
3827 	cpuctx = __get_cpu_context(ctx);
3828 	if (cpuctx->task_ctx == ctx) {
3829 		if (cpuctx->sched_cb_usage)
3830 			__perf_pmu_sched_task(cpuctx, true);
3831 		return;
3832 	}
3833 
3834 	perf_ctx_lock(cpuctx, ctx);
3835 	/*
3836 	 * We must check ctx->nr_events while holding ctx->lock, such
3837 	 * that we serialize against perf_install_in_context().
3838 	 */
3839 	if (!ctx->nr_events)
3840 		goto unlock;
3841 
3842 	perf_pmu_disable(pmu);
3843 	/*
3844 	 * We want to keep the following priority order:
3845 	 * cpu pinned (that don't need to move), task pinned,
3846 	 * cpu flexible, task flexible.
3847 	 *
3848 	 * However, if task's ctx is not carrying any pinned
3849 	 * events, no need to flip the cpuctx's events around.
3850 	 */
3851 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3852 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3853 	perf_event_sched_in(cpuctx, ctx, task);
3854 
3855 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3856 		pmu->sched_task(cpuctx->task_ctx, true);
3857 
3858 	perf_pmu_enable(pmu);
3859 
3860 unlock:
3861 	perf_ctx_unlock(cpuctx, ctx);
3862 }
3863 
3864 /*
3865  * Called from scheduler to add the events of the current task
3866  * with interrupts disabled.
3867  *
3868  * We restore the event value and then enable it.
3869  *
3870  * This does not protect us against NMI, but enable()
3871  * sets the enabled bit in the control field of event _before_
3872  * accessing the event control register. If a NMI hits, then it will
3873  * keep the event running.
3874  */
3875 void __perf_event_task_sched_in(struct task_struct *prev,
3876 				struct task_struct *task)
3877 {
3878 	struct perf_event_context *ctx;
3879 	int ctxn;
3880 
3881 	/*
3882 	 * If cgroup events exist on this CPU, then we need to check if we have
3883 	 * to switch in PMU state; cgroup event are system-wide mode only.
3884 	 *
3885 	 * Since cgroup events are CPU events, we must schedule these in before
3886 	 * we schedule in the task events.
3887 	 */
3888 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3889 		perf_cgroup_sched_in(prev, task);
3890 
3891 	for_each_task_context_nr(ctxn) {
3892 		ctx = task->perf_event_ctxp[ctxn];
3893 		if (likely(!ctx))
3894 			continue;
3895 
3896 		perf_event_context_sched_in(ctx, task);
3897 	}
3898 
3899 	if (atomic_read(&nr_switch_events))
3900 		perf_event_switch(task, prev, true);
3901 
3902 	if (__this_cpu_read(perf_sched_cb_usages))
3903 		perf_pmu_sched_task(prev, task, true);
3904 }
3905 
3906 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3907 {
3908 	u64 frequency = event->attr.sample_freq;
3909 	u64 sec = NSEC_PER_SEC;
3910 	u64 divisor, dividend;
3911 
3912 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3913 
3914 	count_fls = fls64(count);
3915 	nsec_fls = fls64(nsec);
3916 	frequency_fls = fls64(frequency);
3917 	sec_fls = 30;
3918 
3919 	/*
3920 	 * We got @count in @nsec, with a target of sample_freq HZ
3921 	 * the target period becomes:
3922 	 *
3923 	 *             @count * 10^9
3924 	 * period = -------------------
3925 	 *          @nsec * sample_freq
3926 	 *
3927 	 */
3928 
3929 	/*
3930 	 * Reduce accuracy by one bit such that @a and @b converge
3931 	 * to a similar magnitude.
3932 	 */
3933 #define REDUCE_FLS(a, b)		\
3934 do {					\
3935 	if (a##_fls > b##_fls) {	\
3936 		a >>= 1;		\
3937 		a##_fls--;		\
3938 	} else {			\
3939 		b >>= 1;		\
3940 		b##_fls--;		\
3941 	}				\
3942 } while (0)
3943 
3944 	/*
3945 	 * Reduce accuracy until either term fits in a u64, then proceed with
3946 	 * the other, so that finally we can do a u64/u64 division.
3947 	 */
3948 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3949 		REDUCE_FLS(nsec, frequency);
3950 		REDUCE_FLS(sec, count);
3951 	}
3952 
3953 	if (count_fls + sec_fls > 64) {
3954 		divisor = nsec * frequency;
3955 
3956 		while (count_fls + sec_fls > 64) {
3957 			REDUCE_FLS(count, sec);
3958 			divisor >>= 1;
3959 		}
3960 
3961 		dividend = count * sec;
3962 	} else {
3963 		dividend = count * sec;
3964 
3965 		while (nsec_fls + frequency_fls > 64) {
3966 			REDUCE_FLS(nsec, frequency);
3967 			dividend >>= 1;
3968 		}
3969 
3970 		divisor = nsec * frequency;
3971 	}
3972 
3973 	if (!divisor)
3974 		return dividend;
3975 
3976 	return div64_u64(dividend, divisor);
3977 }
3978 
3979 static DEFINE_PER_CPU(int, perf_throttled_count);
3980 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3981 
3982 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3983 {
3984 	struct hw_perf_event *hwc = &event->hw;
3985 	s64 period, sample_period;
3986 	s64 delta;
3987 
3988 	period = perf_calculate_period(event, nsec, count);
3989 
3990 	delta = (s64)(period - hwc->sample_period);
3991 	delta = (delta + 7) / 8; /* low pass filter */
3992 
3993 	sample_period = hwc->sample_period + delta;
3994 
3995 	if (!sample_period)
3996 		sample_period = 1;
3997 
3998 	hwc->sample_period = sample_period;
3999 
4000 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4001 		if (disable)
4002 			event->pmu->stop(event, PERF_EF_UPDATE);
4003 
4004 		local64_set(&hwc->period_left, 0);
4005 
4006 		if (disable)
4007 			event->pmu->start(event, PERF_EF_RELOAD);
4008 	}
4009 }
4010 
4011 /*
4012  * combine freq adjustment with unthrottling to avoid two passes over the
4013  * events. At the same time, make sure, having freq events does not change
4014  * the rate of unthrottling as that would introduce bias.
4015  */
4016 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4017 					   int needs_unthr)
4018 {
4019 	struct perf_event *event;
4020 	struct hw_perf_event *hwc;
4021 	u64 now, period = TICK_NSEC;
4022 	s64 delta;
4023 
4024 	/*
4025 	 * only need to iterate over all events iff:
4026 	 * - context have events in frequency mode (needs freq adjust)
4027 	 * - there are events to unthrottle on this cpu
4028 	 */
4029 	if (!(ctx->nr_freq || needs_unthr))
4030 		return;
4031 
4032 	raw_spin_lock(&ctx->lock);
4033 	perf_pmu_disable(ctx->pmu);
4034 
4035 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4036 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4037 			continue;
4038 
4039 		if (!event_filter_match(event))
4040 			continue;
4041 
4042 		perf_pmu_disable(event->pmu);
4043 
4044 		hwc = &event->hw;
4045 
4046 		if (hwc->interrupts == MAX_INTERRUPTS) {
4047 			hwc->interrupts = 0;
4048 			perf_log_throttle(event, 1);
4049 			event->pmu->start(event, 0);
4050 		}
4051 
4052 		if (!event->attr.freq || !event->attr.sample_freq)
4053 			goto next;
4054 
4055 		/*
4056 		 * stop the event and update event->count
4057 		 */
4058 		event->pmu->stop(event, PERF_EF_UPDATE);
4059 
4060 		now = local64_read(&event->count);
4061 		delta = now - hwc->freq_count_stamp;
4062 		hwc->freq_count_stamp = now;
4063 
4064 		/*
4065 		 * restart the event
4066 		 * reload only if value has changed
4067 		 * we have stopped the event so tell that
4068 		 * to perf_adjust_period() to avoid stopping it
4069 		 * twice.
4070 		 */
4071 		if (delta > 0)
4072 			perf_adjust_period(event, period, delta, false);
4073 
4074 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4075 	next:
4076 		perf_pmu_enable(event->pmu);
4077 	}
4078 
4079 	perf_pmu_enable(ctx->pmu);
4080 	raw_spin_unlock(&ctx->lock);
4081 }
4082 
4083 /*
4084  * Move @event to the tail of the @ctx's elegible events.
4085  */
4086 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4087 {
4088 	/*
4089 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4090 	 * disabled by the inheritance code.
4091 	 */
4092 	if (ctx->rotate_disable)
4093 		return;
4094 
4095 	perf_event_groups_delete(&ctx->flexible_groups, event);
4096 	perf_event_groups_insert(&ctx->flexible_groups, event);
4097 }
4098 
4099 /* pick an event from the flexible_groups to rotate */
4100 static inline struct perf_event *
4101 ctx_event_to_rotate(struct perf_event_context *ctx)
4102 {
4103 	struct perf_event *event;
4104 
4105 	/* pick the first active flexible event */
4106 	event = list_first_entry_or_null(&ctx->flexible_active,
4107 					 struct perf_event, active_list);
4108 
4109 	/* if no active flexible event, pick the first event */
4110 	if (!event) {
4111 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4112 				      typeof(*event), group_node);
4113 	}
4114 
4115 	/*
4116 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4117 	 * finds there are unschedulable events, it will set it again.
4118 	 */
4119 	ctx->rotate_necessary = 0;
4120 
4121 	return event;
4122 }
4123 
4124 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4125 {
4126 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4127 	struct perf_event_context *task_ctx = NULL;
4128 	int cpu_rotate, task_rotate;
4129 
4130 	/*
4131 	 * Since we run this from IRQ context, nobody can install new
4132 	 * events, thus the event count values are stable.
4133 	 */
4134 
4135 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4136 	task_ctx = cpuctx->task_ctx;
4137 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4138 
4139 	if (!(cpu_rotate || task_rotate))
4140 		return false;
4141 
4142 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4143 	perf_pmu_disable(cpuctx->ctx.pmu);
4144 
4145 	if (task_rotate)
4146 		task_event = ctx_event_to_rotate(task_ctx);
4147 	if (cpu_rotate)
4148 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4149 
4150 	/*
4151 	 * As per the order given at ctx_resched() first 'pop' task flexible
4152 	 * and then, if needed CPU flexible.
4153 	 */
4154 	if (task_event || (task_ctx && cpu_event))
4155 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4156 	if (cpu_event)
4157 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4158 
4159 	if (task_event)
4160 		rotate_ctx(task_ctx, task_event);
4161 	if (cpu_event)
4162 		rotate_ctx(&cpuctx->ctx, cpu_event);
4163 
4164 	perf_event_sched_in(cpuctx, task_ctx, current);
4165 
4166 	perf_pmu_enable(cpuctx->ctx.pmu);
4167 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4168 
4169 	return true;
4170 }
4171 
4172 void perf_event_task_tick(void)
4173 {
4174 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4175 	struct perf_event_context *ctx, *tmp;
4176 	int throttled;
4177 
4178 	lockdep_assert_irqs_disabled();
4179 
4180 	__this_cpu_inc(perf_throttled_seq);
4181 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4182 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4183 
4184 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4185 		perf_adjust_freq_unthr_context(ctx, throttled);
4186 }
4187 
4188 static int event_enable_on_exec(struct perf_event *event,
4189 				struct perf_event_context *ctx)
4190 {
4191 	if (!event->attr.enable_on_exec)
4192 		return 0;
4193 
4194 	event->attr.enable_on_exec = 0;
4195 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4196 		return 0;
4197 
4198 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4199 
4200 	return 1;
4201 }
4202 
4203 /*
4204  * Enable all of a task's events that have been marked enable-on-exec.
4205  * This expects task == current.
4206  */
4207 static void perf_event_enable_on_exec(int ctxn)
4208 {
4209 	struct perf_event_context *ctx, *clone_ctx = NULL;
4210 	enum event_type_t event_type = 0;
4211 	struct perf_cpu_context *cpuctx;
4212 	struct perf_event *event;
4213 	unsigned long flags;
4214 	int enabled = 0;
4215 
4216 	local_irq_save(flags);
4217 	ctx = current->perf_event_ctxp[ctxn];
4218 	if (!ctx || !ctx->nr_events)
4219 		goto out;
4220 
4221 	cpuctx = __get_cpu_context(ctx);
4222 	perf_ctx_lock(cpuctx, ctx);
4223 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4224 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4225 		enabled |= event_enable_on_exec(event, ctx);
4226 		event_type |= get_event_type(event);
4227 	}
4228 
4229 	/*
4230 	 * Unclone and reschedule this context if we enabled any event.
4231 	 */
4232 	if (enabled) {
4233 		clone_ctx = unclone_ctx(ctx);
4234 		ctx_resched(cpuctx, ctx, event_type);
4235 	} else {
4236 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4237 	}
4238 	perf_ctx_unlock(cpuctx, ctx);
4239 
4240 out:
4241 	local_irq_restore(flags);
4242 
4243 	if (clone_ctx)
4244 		put_ctx(clone_ctx);
4245 }
4246 
4247 static void perf_remove_from_owner(struct perf_event *event);
4248 static void perf_event_exit_event(struct perf_event *event,
4249 				  struct perf_event_context *ctx);
4250 
4251 /*
4252  * Removes all events from the current task that have been marked
4253  * remove-on-exec, and feeds their values back to parent events.
4254  */
4255 static void perf_event_remove_on_exec(int ctxn)
4256 {
4257 	struct perf_event_context *ctx, *clone_ctx = NULL;
4258 	struct perf_event *event, *next;
4259 	LIST_HEAD(free_list);
4260 	unsigned long flags;
4261 	bool modified = false;
4262 
4263 	ctx = perf_pin_task_context(current, ctxn);
4264 	if (!ctx)
4265 		return;
4266 
4267 	mutex_lock(&ctx->mutex);
4268 
4269 	if (WARN_ON_ONCE(ctx->task != current))
4270 		goto unlock;
4271 
4272 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4273 		if (!event->attr.remove_on_exec)
4274 			continue;
4275 
4276 		if (!is_kernel_event(event))
4277 			perf_remove_from_owner(event);
4278 
4279 		modified = true;
4280 
4281 		perf_event_exit_event(event, ctx);
4282 	}
4283 
4284 	raw_spin_lock_irqsave(&ctx->lock, flags);
4285 	if (modified)
4286 		clone_ctx = unclone_ctx(ctx);
4287 	--ctx->pin_count;
4288 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4289 
4290 unlock:
4291 	mutex_unlock(&ctx->mutex);
4292 
4293 	put_ctx(ctx);
4294 	if (clone_ctx)
4295 		put_ctx(clone_ctx);
4296 }
4297 
4298 struct perf_read_data {
4299 	struct perf_event *event;
4300 	bool group;
4301 	int ret;
4302 };
4303 
4304 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4305 {
4306 	u16 local_pkg, event_pkg;
4307 
4308 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4309 		int local_cpu = smp_processor_id();
4310 
4311 		event_pkg = topology_physical_package_id(event_cpu);
4312 		local_pkg = topology_physical_package_id(local_cpu);
4313 
4314 		if (event_pkg == local_pkg)
4315 			return local_cpu;
4316 	}
4317 
4318 	return event_cpu;
4319 }
4320 
4321 /*
4322  * Cross CPU call to read the hardware event
4323  */
4324 static void __perf_event_read(void *info)
4325 {
4326 	struct perf_read_data *data = info;
4327 	struct perf_event *sub, *event = data->event;
4328 	struct perf_event_context *ctx = event->ctx;
4329 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4330 	struct pmu *pmu = event->pmu;
4331 
4332 	/*
4333 	 * If this is a task context, we need to check whether it is
4334 	 * the current task context of this cpu.  If not it has been
4335 	 * scheduled out before the smp call arrived.  In that case
4336 	 * event->count would have been updated to a recent sample
4337 	 * when the event was scheduled out.
4338 	 */
4339 	if (ctx->task && cpuctx->task_ctx != ctx)
4340 		return;
4341 
4342 	raw_spin_lock(&ctx->lock);
4343 	if (ctx->is_active & EVENT_TIME) {
4344 		update_context_time(ctx);
4345 		update_cgrp_time_from_event(event);
4346 	}
4347 
4348 	perf_event_update_time(event);
4349 	if (data->group)
4350 		perf_event_update_sibling_time(event);
4351 
4352 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4353 		goto unlock;
4354 
4355 	if (!data->group) {
4356 		pmu->read(event);
4357 		data->ret = 0;
4358 		goto unlock;
4359 	}
4360 
4361 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4362 
4363 	pmu->read(event);
4364 
4365 	for_each_sibling_event(sub, event) {
4366 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4367 			/*
4368 			 * Use sibling's PMU rather than @event's since
4369 			 * sibling could be on different (eg: software) PMU.
4370 			 */
4371 			sub->pmu->read(sub);
4372 		}
4373 	}
4374 
4375 	data->ret = pmu->commit_txn(pmu);
4376 
4377 unlock:
4378 	raw_spin_unlock(&ctx->lock);
4379 }
4380 
4381 static inline u64 perf_event_count(struct perf_event *event)
4382 {
4383 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4384 }
4385 
4386 /*
4387  * NMI-safe method to read a local event, that is an event that
4388  * is:
4389  *   - either for the current task, or for this CPU
4390  *   - does not have inherit set, for inherited task events
4391  *     will not be local and we cannot read them atomically
4392  *   - must not have a pmu::count method
4393  */
4394 int perf_event_read_local(struct perf_event *event, u64 *value,
4395 			  u64 *enabled, u64 *running)
4396 {
4397 	unsigned long flags;
4398 	int ret = 0;
4399 
4400 	/*
4401 	 * Disabling interrupts avoids all counter scheduling (context
4402 	 * switches, timer based rotation and IPIs).
4403 	 */
4404 	local_irq_save(flags);
4405 
4406 	/*
4407 	 * It must not be an event with inherit set, we cannot read
4408 	 * all child counters from atomic context.
4409 	 */
4410 	if (event->attr.inherit) {
4411 		ret = -EOPNOTSUPP;
4412 		goto out;
4413 	}
4414 
4415 	/* If this is a per-task event, it must be for current */
4416 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4417 	    event->hw.target != current) {
4418 		ret = -EINVAL;
4419 		goto out;
4420 	}
4421 
4422 	/* If this is a per-CPU event, it must be for this CPU */
4423 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4424 	    event->cpu != smp_processor_id()) {
4425 		ret = -EINVAL;
4426 		goto out;
4427 	}
4428 
4429 	/* If this is a pinned event it must be running on this CPU */
4430 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4431 		ret = -EBUSY;
4432 		goto out;
4433 	}
4434 
4435 	/*
4436 	 * If the event is currently on this CPU, its either a per-task event,
4437 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4438 	 * oncpu == -1).
4439 	 */
4440 	if (event->oncpu == smp_processor_id())
4441 		event->pmu->read(event);
4442 
4443 	*value = local64_read(&event->count);
4444 	if (enabled || running) {
4445 		u64 now = event->shadow_ctx_time + perf_clock();
4446 		u64 __enabled, __running;
4447 
4448 		__perf_update_times(event, now, &__enabled, &__running);
4449 		if (enabled)
4450 			*enabled = __enabled;
4451 		if (running)
4452 			*running = __running;
4453 	}
4454 out:
4455 	local_irq_restore(flags);
4456 
4457 	return ret;
4458 }
4459 
4460 static int perf_event_read(struct perf_event *event, bool group)
4461 {
4462 	enum perf_event_state state = READ_ONCE(event->state);
4463 	int event_cpu, ret = 0;
4464 
4465 	/*
4466 	 * If event is enabled and currently active on a CPU, update the
4467 	 * value in the event structure:
4468 	 */
4469 again:
4470 	if (state == PERF_EVENT_STATE_ACTIVE) {
4471 		struct perf_read_data data;
4472 
4473 		/*
4474 		 * Orders the ->state and ->oncpu loads such that if we see
4475 		 * ACTIVE we must also see the right ->oncpu.
4476 		 *
4477 		 * Matches the smp_wmb() from event_sched_in().
4478 		 */
4479 		smp_rmb();
4480 
4481 		event_cpu = READ_ONCE(event->oncpu);
4482 		if ((unsigned)event_cpu >= nr_cpu_ids)
4483 			return 0;
4484 
4485 		data = (struct perf_read_data){
4486 			.event = event,
4487 			.group = group,
4488 			.ret = 0,
4489 		};
4490 
4491 		preempt_disable();
4492 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4493 
4494 		/*
4495 		 * Purposely ignore the smp_call_function_single() return
4496 		 * value.
4497 		 *
4498 		 * If event_cpu isn't a valid CPU it means the event got
4499 		 * scheduled out and that will have updated the event count.
4500 		 *
4501 		 * Therefore, either way, we'll have an up-to-date event count
4502 		 * after this.
4503 		 */
4504 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4505 		preempt_enable();
4506 		ret = data.ret;
4507 
4508 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4509 		struct perf_event_context *ctx = event->ctx;
4510 		unsigned long flags;
4511 
4512 		raw_spin_lock_irqsave(&ctx->lock, flags);
4513 		state = event->state;
4514 		if (state != PERF_EVENT_STATE_INACTIVE) {
4515 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4516 			goto again;
4517 		}
4518 
4519 		/*
4520 		 * May read while context is not active (e.g., thread is
4521 		 * blocked), in that case we cannot update context time
4522 		 */
4523 		if (ctx->is_active & EVENT_TIME) {
4524 			update_context_time(ctx);
4525 			update_cgrp_time_from_event(event);
4526 		}
4527 
4528 		perf_event_update_time(event);
4529 		if (group)
4530 			perf_event_update_sibling_time(event);
4531 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4532 	}
4533 
4534 	return ret;
4535 }
4536 
4537 /*
4538  * Initialize the perf_event context in a task_struct:
4539  */
4540 static void __perf_event_init_context(struct perf_event_context *ctx)
4541 {
4542 	raw_spin_lock_init(&ctx->lock);
4543 	mutex_init(&ctx->mutex);
4544 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4545 	perf_event_groups_init(&ctx->pinned_groups);
4546 	perf_event_groups_init(&ctx->flexible_groups);
4547 	INIT_LIST_HEAD(&ctx->event_list);
4548 	INIT_LIST_HEAD(&ctx->pinned_active);
4549 	INIT_LIST_HEAD(&ctx->flexible_active);
4550 	refcount_set(&ctx->refcount, 1);
4551 }
4552 
4553 static struct perf_event_context *
4554 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4555 {
4556 	struct perf_event_context *ctx;
4557 
4558 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4559 	if (!ctx)
4560 		return NULL;
4561 
4562 	__perf_event_init_context(ctx);
4563 	if (task)
4564 		ctx->task = get_task_struct(task);
4565 	ctx->pmu = pmu;
4566 
4567 	return ctx;
4568 }
4569 
4570 static struct task_struct *
4571 find_lively_task_by_vpid(pid_t vpid)
4572 {
4573 	struct task_struct *task;
4574 
4575 	rcu_read_lock();
4576 	if (!vpid)
4577 		task = current;
4578 	else
4579 		task = find_task_by_vpid(vpid);
4580 	if (task)
4581 		get_task_struct(task);
4582 	rcu_read_unlock();
4583 
4584 	if (!task)
4585 		return ERR_PTR(-ESRCH);
4586 
4587 	return task;
4588 }
4589 
4590 /*
4591  * Returns a matching context with refcount and pincount.
4592  */
4593 static struct perf_event_context *
4594 find_get_context(struct pmu *pmu, struct task_struct *task,
4595 		struct perf_event *event)
4596 {
4597 	struct perf_event_context *ctx, *clone_ctx = NULL;
4598 	struct perf_cpu_context *cpuctx;
4599 	void *task_ctx_data = NULL;
4600 	unsigned long flags;
4601 	int ctxn, err;
4602 	int cpu = event->cpu;
4603 
4604 	if (!task) {
4605 		/* Must be root to operate on a CPU event: */
4606 		err = perf_allow_cpu(&event->attr);
4607 		if (err)
4608 			return ERR_PTR(err);
4609 
4610 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4611 		ctx = &cpuctx->ctx;
4612 		get_ctx(ctx);
4613 		++ctx->pin_count;
4614 
4615 		return ctx;
4616 	}
4617 
4618 	err = -EINVAL;
4619 	ctxn = pmu->task_ctx_nr;
4620 	if (ctxn < 0)
4621 		goto errout;
4622 
4623 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4624 		task_ctx_data = alloc_task_ctx_data(pmu);
4625 		if (!task_ctx_data) {
4626 			err = -ENOMEM;
4627 			goto errout;
4628 		}
4629 	}
4630 
4631 retry:
4632 	ctx = perf_lock_task_context(task, ctxn, &flags);
4633 	if (ctx) {
4634 		clone_ctx = unclone_ctx(ctx);
4635 		++ctx->pin_count;
4636 
4637 		if (task_ctx_data && !ctx->task_ctx_data) {
4638 			ctx->task_ctx_data = task_ctx_data;
4639 			task_ctx_data = NULL;
4640 		}
4641 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4642 
4643 		if (clone_ctx)
4644 			put_ctx(clone_ctx);
4645 	} else {
4646 		ctx = alloc_perf_context(pmu, task);
4647 		err = -ENOMEM;
4648 		if (!ctx)
4649 			goto errout;
4650 
4651 		if (task_ctx_data) {
4652 			ctx->task_ctx_data = task_ctx_data;
4653 			task_ctx_data = NULL;
4654 		}
4655 
4656 		err = 0;
4657 		mutex_lock(&task->perf_event_mutex);
4658 		/*
4659 		 * If it has already passed perf_event_exit_task().
4660 		 * we must see PF_EXITING, it takes this mutex too.
4661 		 */
4662 		if (task->flags & PF_EXITING)
4663 			err = -ESRCH;
4664 		else if (task->perf_event_ctxp[ctxn])
4665 			err = -EAGAIN;
4666 		else {
4667 			get_ctx(ctx);
4668 			++ctx->pin_count;
4669 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4670 		}
4671 		mutex_unlock(&task->perf_event_mutex);
4672 
4673 		if (unlikely(err)) {
4674 			put_ctx(ctx);
4675 
4676 			if (err == -EAGAIN)
4677 				goto retry;
4678 			goto errout;
4679 		}
4680 	}
4681 
4682 	free_task_ctx_data(pmu, task_ctx_data);
4683 	return ctx;
4684 
4685 errout:
4686 	free_task_ctx_data(pmu, task_ctx_data);
4687 	return ERR_PTR(err);
4688 }
4689 
4690 static void perf_event_free_filter(struct perf_event *event);
4691 static void perf_event_free_bpf_prog(struct perf_event *event);
4692 
4693 static void free_event_rcu(struct rcu_head *head)
4694 {
4695 	struct perf_event *event;
4696 
4697 	event = container_of(head, struct perf_event, rcu_head);
4698 	if (event->ns)
4699 		put_pid_ns(event->ns);
4700 	perf_event_free_filter(event);
4701 	kmem_cache_free(perf_event_cache, event);
4702 }
4703 
4704 static void ring_buffer_attach(struct perf_event *event,
4705 			       struct perf_buffer *rb);
4706 
4707 static void detach_sb_event(struct perf_event *event)
4708 {
4709 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4710 
4711 	raw_spin_lock(&pel->lock);
4712 	list_del_rcu(&event->sb_list);
4713 	raw_spin_unlock(&pel->lock);
4714 }
4715 
4716 static bool is_sb_event(struct perf_event *event)
4717 {
4718 	struct perf_event_attr *attr = &event->attr;
4719 
4720 	if (event->parent)
4721 		return false;
4722 
4723 	if (event->attach_state & PERF_ATTACH_TASK)
4724 		return false;
4725 
4726 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4727 	    attr->comm || attr->comm_exec ||
4728 	    attr->task || attr->ksymbol ||
4729 	    attr->context_switch || attr->text_poke ||
4730 	    attr->bpf_event)
4731 		return true;
4732 	return false;
4733 }
4734 
4735 static void unaccount_pmu_sb_event(struct perf_event *event)
4736 {
4737 	if (is_sb_event(event))
4738 		detach_sb_event(event);
4739 }
4740 
4741 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4742 {
4743 	if (event->parent)
4744 		return;
4745 
4746 	if (is_cgroup_event(event))
4747 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4748 }
4749 
4750 #ifdef CONFIG_NO_HZ_FULL
4751 static DEFINE_SPINLOCK(nr_freq_lock);
4752 #endif
4753 
4754 static void unaccount_freq_event_nohz(void)
4755 {
4756 #ifdef CONFIG_NO_HZ_FULL
4757 	spin_lock(&nr_freq_lock);
4758 	if (atomic_dec_and_test(&nr_freq_events))
4759 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4760 	spin_unlock(&nr_freq_lock);
4761 #endif
4762 }
4763 
4764 static void unaccount_freq_event(void)
4765 {
4766 	if (tick_nohz_full_enabled())
4767 		unaccount_freq_event_nohz();
4768 	else
4769 		atomic_dec(&nr_freq_events);
4770 }
4771 
4772 static void unaccount_event(struct perf_event *event)
4773 {
4774 	bool dec = false;
4775 
4776 	if (event->parent)
4777 		return;
4778 
4779 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4780 		dec = true;
4781 	if (event->attr.mmap || event->attr.mmap_data)
4782 		atomic_dec(&nr_mmap_events);
4783 	if (event->attr.build_id)
4784 		atomic_dec(&nr_build_id_events);
4785 	if (event->attr.comm)
4786 		atomic_dec(&nr_comm_events);
4787 	if (event->attr.namespaces)
4788 		atomic_dec(&nr_namespaces_events);
4789 	if (event->attr.cgroup)
4790 		atomic_dec(&nr_cgroup_events);
4791 	if (event->attr.task)
4792 		atomic_dec(&nr_task_events);
4793 	if (event->attr.freq)
4794 		unaccount_freq_event();
4795 	if (event->attr.context_switch) {
4796 		dec = true;
4797 		atomic_dec(&nr_switch_events);
4798 	}
4799 	if (is_cgroup_event(event))
4800 		dec = true;
4801 	if (has_branch_stack(event))
4802 		dec = true;
4803 	if (event->attr.ksymbol)
4804 		atomic_dec(&nr_ksymbol_events);
4805 	if (event->attr.bpf_event)
4806 		atomic_dec(&nr_bpf_events);
4807 	if (event->attr.text_poke)
4808 		atomic_dec(&nr_text_poke_events);
4809 
4810 	if (dec) {
4811 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4812 			schedule_delayed_work(&perf_sched_work, HZ);
4813 	}
4814 
4815 	unaccount_event_cpu(event, event->cpu);
4816 
4817 	unaccount_pmu_sb_event(event);
4818 }
4819 
4820 static void perf_sched_delayed(struct work_struct *work)
4821 {
4822 	mutex_lock(&perf_sched_mutex);
4823 	if (atomic_dec_and_test(&perf_sched_count))
4824 		static_branch_disable(&perf_sched_events);
4825 	mutex_unlock(&perf_sched_mutex);
4826 }
4827 
4828 /*
4829  * The following implement mutual exclusion of events on "exclusive" pmus
4830  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4831  * at a time, so we disallow creating events that might conflict, namely:
4832  *
4833  *  1) cpu-wide events in the presence of per-task events,
4834  *  2) per-task events in the presence of cpu-wide events,
4835  *  3) two matching events on the same context.
4836  *
4837  * The former two cases are handled in the allocation path (perf_event_alloc(),
4838  * _free_event()), the latter -- before the first perf_install_in_context().
4839  */
4840 static int exclusive_event_init(struct perf_event *event)
4841 {
4842 	struct pmu *pmu = event->pmu;
4843 
4844 	if (!is_exclusive_pmu(pmu))
4845 		return 0;
4846 
4847 	/*
4848 	 * Prevent co-existence of per-task and cpu-wide events on the
4849 	 * same exclusive pmu.
4850 	 *
4851 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4852 	 * events on this "exclusive" pmu, positive means there are
4853 	 * per-task events.
4854 	 *
4855 	 * Since this is called in perf_event_alloc() path, event::ctx
4856 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4857 	 * to mean "per-task event", because unlike other attach states it
4858 	 * never gets cleared.
4859 	 */
4860 	if (event->attach_state & PERF_ATTACH_TASK) {
4861 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4862 			return -EBUSY;
4863 	} else {
4864 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4865 			return -EBUSY;
4866 	}
4867 
4868 	return 0;
4869 }
4870 
4871 static void exclusive_event_destroy(struct perf_event *event)
4872 {
4873 	struct pmu *pmu = event->pmu;
4874 
4875 	if (!is_exclusive_pmu(pmu))
4876 		return;
4877 
4878 	/* see comment in exclusive_event_init() */
4879 	if (event->attach_state & PERF_ATTACH_TASK)
4880 		atomic_dec(&pmu->exclusive_cnt);
4881 	else
4882 		atomic_inc(&pmu->exclusive_cnt);
4883 }
4884 
4885 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4886 {
4887 	if ((e1->pmu == e2->pmu) &&
4888 	    (e1->cpu == e2->cpu ||
4889 	     e1->cpu == -1 ||
4890 	     e2->cpu == -1))
4891 		return true;
4892 	return false;
4893 }
4894 
4895 static bool exclusive_event_installable(struct perf_event *event,
4896 					struct perf_event_context *ctx)
4897 {
4898 	struct perf_event *iter_event;
4899 	struct pmu *pmu = event->pmu;
4900 
4901 	lockdep_assert_held(&ctx->mutex);
4902 
4903 	if (!is_exclusive_pmu(pmu))
4904 		return true;
4905 
4906 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4907 		if (exclusive_event_match(iter_event, event))
4908 			return false;
4909 	}
4910 
4911 	return true;
4912 }
4913 
4914 static void perf_addr_filters_splice(struct perf_event *event,
4915 				       struct list_head *head);
4916 
4917 static void _free_event(struct perf_event *event)
4918 {
4919 	irq_work_sync(&event->pending);
4920 
4921 	unaccount_event(event);
4922 
4923 	security_perf_event_free(event);
4924 
4925 	if (event->rb) {
4926 		/*
4927 		 * Can happen when we close an event with re-directed output.
4928 		 *
4929 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4930 		 * over us; possibly making our ring_buffer_put() the last.
4931 		 */
4932 		mutex_lock(&event->mmap_mutex);
4933 		ring_buffer_attach(event, NULL);
4934 		mutex_unlock(&event->mmap_mutex);
4935 	}
4936 
4937 	if (is_cgroup_event(event))
4938 		perf_detach_cgroup(event);
4939 
4940 	if (!event->parent) {
4941 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4942 			put_callchain_buffers();
4943 	}
4944 
4945 	perf_event_free_bpf_prog(event);
4946 	perf_addr_filters_splice(event, NULL);
4947 	kfree(event->addr_filter_ranges);
4948 
4949 	if (event->destroy)
4950 		event->destroy(event);
4951 
4952 	/*
4953 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4954 	 * hw.target.
4955 	 */
4956 	if (event->hw.target)
4957 		put_task_struct(event->hw.target);
4958 
4959 	/*
4960 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4961 	 * all task references must be cleaned up.
4962 	 */
4963 	if (event->ctx)
4964 		put_ctx(event->ctx);
4965 
4966 	exclusive_event_destroy(event);
4967 	module_put(event->pmu->module);
4968 
4969 	call_rcu(&event->rcu_head, free_event_rcu);
4970 }
4971 
4972 /*
4973  * Used to free events which have a known refcount of 1, such as in error paths
4974  * where the event isn't exposed yet and inherited events.
4975  */
4976 static void free_event(struct perf_event *event)
4977 {
4978 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4979 				"unexpected event refcount: %ld; ptr=%p\n",
4980 				atomic_long_read(&event->refcount), event)) {
4981 		/* leak to avoid use-after-free */
4982 		return;
4983 	}
4984 
4985 	_free_event(event);
4986 }
4987 
4988 /*
4989  * Remove user event from the owner task.
4990  */
4991 static void perf_remove_from_owner(struct perf_event *event)
4992 {
4993 	struct task_struct *owner;
4994 
4995 	rcu_read_lock();
4996 	/*
4997 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4998 	 * observe !owner it means the list deletion is complete and we can
4999 	 * indeed free this event, otherwise we need to serialize on
5000 	 * owner->perf_event_mutex.
5001 	 */
5002 	owner = READ_ONCE(event->owner);
5003 	if (owner) {
5004 		/*
5005 		 * Since delayed_put_task_struct() also drops the last
5006 		 * task reference we can safely take a new reference
5007 		 * while holding the rcu_read_lock().
5008 		 */
5009 		get_task_struct(owner);
5010 	}
5011 	rcu_read_unlock();
5012 
5013 	if (owner) {
5014 		/*
5015 		 * If we're here through perf_event_exit_task() we're already
5016 		 * holding ctx->mutex which would be an inversion wrt. the
5017 		 * normal lock order.
5018 		 *
5019 		 * However we can safely take this lock because its the child
5020 		 * ctx->mutex.
5021 		 */
5022 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5023 
5024 		/*
5025 		 * We have to re-check the event->owner field, if it is cleared
5026 		 * we raced with perf_event_exit_task(), acquiring the mutex
5027 		 * ensured they're done, and we can proceed with freeing the
5028 		 * event.
5029 		 */
5030 		if (event->owner) {
5031 			list_del_init(&event->owner_entry);
5032 			smp_store_release(&event->owner, NULL);
5033 		}
5034 		mutex_unlock(&owner->perf_event_mutex);
5035 		put_task_struct(owner);
5036 	}
5037 }
5038 
5039 static void put_event(struct perf_event *event)
5040 {
5041 	if (!atomic_long_dec_and_test(&event->refcount))
5042 		return;
5043 
5044 	_free_event(event);
5045 }
5046 
5047 /*
5048  * Kill an event dead; while event:refcount will preserve the event
5049  * object, it will not preserve its functionality. Once the last 'user'
5050  * gives up the object, we'll destroy the thing.
5051  */
5052 int perf_event_release_kernel(struct perf_event *event)
5053 {
5054 	struct perf_event_context *ctx = event->ctx;
5055 	struct perf_event *child, *tmp;
5056 	LIST_HEAD(free_list);
5057 
5058 	/*
5059 	 * If we got here through err_file: fput(event_file); we will not have
5060 	 * attached to a context yet.
5061 	 */
5062 	if (!ctx) {
5063 		WARN_ON_ONCE(event->attach_state &
5064 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5065 		goto no_ctx;
5066 	}
5067 
5068 	if (!is_kernel_event(event))
5069 		perf_remove_from_owner(event);
5070 
5071 	ctx = perf_event_ctx_lock(event);
5072 	WARN_ON_ONCE(ctx->parent_ctx);
5073 	perf_remove_from_context(event, DETACH_GROUP);
5074 
5075 	raw_spin_lock_irq(&ctx->lock);
5076 	/*
5077 	 * Mark this event as STATE_DEAD, there is no external reference to it
5078 	 * anymore.
5079 	 *
5080 	 * Anybody acquiring event->child_mutex after the below loop _must_
5081 	 * also see this, most importantly inherit_event() which will avoid
5082 	 * placing more children on the list.
5083 	 *
5084 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5085 	 * child events.
5086 	 */
5087 	event->state = PERF_EVENT_STATE_DEAD;
5088 	raw_spin_unlock_irq(&ctx->lock);
5089 
5090 	perf_event_ctx_unlock(event, ctx);
5091 
5092 again:
5093 	mutex_lock(&event->child_mutex);
5094 	list_for_each_entry(child, &event->child_list, child_list) {
5095 
5096 		/*
5097 		 * Cannot change, child events are not migrated, see the
5098 		 * comment with perf_event_ctx_lock_nested().
5099 		 */
5100 		ctx = READ_ONCE(child->ctx);
5101 		/*
5102 		 * Since child_mutex nests inside ctx::mutex, we must jump
5103 		 * through hoops. We start by grabbing a reference on the ctx.
5104 		 *
5105 		 * Since the event cannot get freed while we hold the
5106 		 * child_mutex, the context must also exist and have a !0
5107 		 * reference count.
5108 		 */
5109 		get_ctx(ctx);
5110 
5111 		/*
5112 		 * Now that we have a ctx ref, we can drop child_mutex, and
5113 		 * acquire ctx::mutex without fear of it going away. Then we
5114 		 * can re-acquire child_mutex.
5115 		 */
5116 		mutex_unlock(&event->child_mutex);
5117 		mutex_lock(&ctx->mutex);
5118 		mutex_lock(&event->child_mutex);
5119 
5120 		/*
5121 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5122 		 * state, if child is still the first entry, it didn't get freed
5123 		 * and we can continue doing so.
5124 		 */
5125 		tmp = list_first_entry_or_null(&event->child_list,
5126 					       struct perf_event, child_list);
5127 		if (tmp == child) {
5128 			perf_remove_from_context(child, DETACH_GROUP);
5129 			list_move(&child->child_list, &free_list);
5130 			/*
5131 			 * This matches the refcount bump in inherit_event();
5132 			 * this can't be the last reference.
5133 			 */
5134 			put_event(event);
5135 		}
5136 
5137 		mutex_unlock(&event->child_mutex);
5138 		mutex_unlock(&ctx->mutex);
5139 		put_ctx(ctx);
5140 		goto again;
5141 	}
5142 	mutex_unlock(&event->child_mutex);
5143 
5144 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5145 		void *var = &child->ctx->refcount;
5146 
5147 		list_del(&child->child_list);
5148 		free_event(child);
5149 
5150 		/*
5151 		 * Wake any perf_event_free_task() waiting for this event to be
5152 		 * freed.
5153 		 */
5154 		smp_mb(); /* pairs with wait_var_event() */
5155 		wake_up_var(var);
5156 	}
5157 
5158 no_ctx:
5159 	put_event(event); /* Must be the 'last' reference */
5160 	return 0;
5161 }
5162 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5163 
5164 /*
5165  * Called when the last reference to the file is gone.
5166  */
5167 static int perf_release(struct inode *inode, struct file *file)
5168 {
5169 	perf_event_release_kernel(file->private_data);
5170 	return 0;
5171 }
5172 
5173 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5174 {
5175 	struct perf_event *child;
5176 	u64 total = 0;
5177 
5178 	*enabled = 0;
5179 	*running = 0;
5180 
5181 	mutex_lock(&event->child_mutex);
5182 
5183 	(void)perf_event_read(event, false);
5184 	total += perf_event_count(event);
5185 
5186 	*enabled += event->total_time_enabled +
5187 			atomic64_read(&event->child_total_time_enabled);
5188 	*running += event->total_time_running +
5189 			atomic64_read(&event->child_total_time_running);
5190 
5191 	list_for_each_entry(child, &event->child_list, child_list) {
5192 		(void)perf_event_read(child, false);
5193 		total += perf_event_count(child);
5194 		*enabled += child->total_time_enabled;
5195 		*running += child->total_time_running;
5196 	}
5197 	mutex_unlock(&event->child_mutex);
5198 
5199 	return total;
5200 }
5201 
5202 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5203 {
5204 	struct perf_event_context *ctx;
5205 	u64 count;
5206 
5207 	ctx = perf_event_ctx_lock(event);
5208 	count = __perf_event_read_value(event, enabled, running);
5209 	perf_event_ctx_unlock(event, ctx);
5210 
5211 	return count;
5212 }
5213 EXPORT_SYMBOL_GPL(perf_event_read_value);
5214 
5215 static int __perf_read_group_add(struct perf_event *leader,
5216 					u64 read_format, u64 *values)
5217 {
5218 	struct perf_event_context *ctx = leader->ctx;
5219 	struct perf_event *sub;
5220 	unsigned long flags;
5221 	int n = 1; /* skip @nr */
5222 	int ret;
5223 
5224 	ret = perf_event_read(leader, true);
5225 	if (ret)
5226 		return ret;
5227 
5228 	raw_spin_lock_irqsave(&ctx->lock, flags);
5229 
5230 	/*
5231 	 * Since we co-schedule groups, {enabled,running} times of siblings
5232 	 * will be identical to those of the leader, so we only publish one
5233 	 * set.
5234 	 */
5235 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5236 		values[n++] += leader->total_time_enabled +
5237 			atomic64_read(&leader->child_total_time_enabled);
5238 	}
5239 
5240 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5241 		values[n++] += leader->total_time_running +
5242 			atomic64_read(&leader->child_total_time_running);
5243 	}
5244 
5245 	/*
5246 	 * Write {count,id} tuples for every sibling.
5247 	 */
5248 	values[n++] += perf_event_count(leader);
5249 	if (read_format & PERF_FORMAT_ID)
5250 		values[n++] = primary_event_id(leader);
5251 
5252 	for_each_sibling_event(sub, leader) {
5253 		values[n++] += perf_event_count(sub);
5254 		if (read_format & PERF_FORMAT_ID)
5255 			values[n++] = primary_event_id(sub);
5256 	}
5257 
5258 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5259 	return 0;
5260 }
5261 
5262 static int perf_read_group(struct perf_event *event,
5263 				   u64 read_format, char __user *buf)
5264 {
5265 	struct perf_event *leader = event->group_leader, *child;
5266 	struct perf_event_context *ctx = leader->ctx;
5267 	int ret;
5268 	u64 *values;
5269 
5270 	lockdep_assert_held(&ctx->mutex);
5271 
5272 	values = kzalloc(event->read_size, GFP_KERNEL);
5273 	if (!values)
5274 		return -ENOMEM;
5275 
5276 	values[0] = 1 + leader->nr_siblings;
5277 
5278 	/*
5279 	 * By locking the child_mutex of the leader we effectively
5280 	 * lock the child list of all siblings.. XXX explain how.
5281 	 */
5282 	mutex_lock(&leader->child_mutex);
5283 
5284 	ret = __perf_read_group_add(leader, read_format, values);
5285 	if (ret)
5286 		goto unlock;
5287 
5288 	list_for_each_entry(child, &leader->child_list, child_list) {
5289 		ret = __perf_read_group_add(child, read_format, values);
5290 		if (ret)
5291 			goto unlock;
5292 	}
5293 
5294 	mutex_unlock(&leader->child_mutex);
5295 
5296 	ret = event->read_size;
5297 	if (copy_to_user(buf, values, event->read_size))
5298 		ret = -EFAULT;
5299 	goto out;
5300 
5301 unlock:
5302 	mutex_unlock(&leader->child_mutex);
5303 out:
5304 	kfree(values);
5305 	return ret;
5306 }
5307 
5308 static int perf_read_one(struct perf_event *event,
5309 				 u64 read_format, char __user *buf)
5310 {
5311 	u64 enabled, running;
5312 	u64 values[4];
5313 	int n = 0;
5314 
5315 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5316 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5317 		values[n++] = enabled;
5318 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5319 		values[n++] = running;
5320 	if (read_format & PERF_FORMAT_ID)
5321 		values[n++] = primary_event_id(event);
5322 
5323 	if (copy_to_user(buf, values, n * sizeof(u64)))
5324 		return -EFAULT;
5325 
5326 	return n * sizeof(u64);
5327 }
5328 
5329 static bool is_event_hup(struct perf_event *event)
5330 {
5331 	bool no_children;
5332 
5333 	if (event->state > PERF_EVENT_STATE_EXIT)
5334 		return false;
5335 
5336 	mutex_lock(&event->child_mutex);
5337 	no_children = list_empty(&event->child_list);
5338 	mutex_unlock(&event->child_mutex);
5339 	return no_children;
5340 }
5341 
5342 /*
5343  * Read the performance event - simple non blocking version for now
5344  */
5345 static ssize_t
5346 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5347 {
5348 	u64 read_format = event->attr.read_format;
5349 	int ret;
5350 
5351 	/*
5352 	 * Return end-of-file for a read on an event that is in
5353 	 * error state (i.e. because it was pinned but it couldn't be
5354 	 * scheduled on to the CPU at some point).
5355 	 */
5356 	if (event->state == PERF_EVENT_STATE_ERROR)
5357 		return 0;
5358 
5359 	if (count < event->read_size)
5360 		return -ENOSPC;
5361 
5362 	WARN_ON_ONCE(event->ctx->parent_ctx);
5363 	if (read_format & PERF_FORMAT_GROUP)
5364 		ret = perf_read_group(event, read_format, buf);
5365 	else
5366 		ret = perf_read_one(event, read_format, buf);
5367 
5368 	return ret;
5369 }
5370 
5371 static ssize_t
5372 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5373 {
5374 	struct perf_event *event = file->private_data;
5375 	struct perf_event_context *ctx;
5376 	int ret;
5377 
5378 	ret = security_perf_event_read(event);
5379 	if (ret)
5380 		return ret;
5381 
5382 	ctx = perf_event_ctx_lock(event);
5383 	ret = __perf_read(event, buf, count);
5384 	perf_event_ctx_unlock(event, ctx);
5385 
5386 	return ret;
5387 }
5388 
5389 static __poll_t perf_poll(struct file *file, poll_table *wait)
5390 {
5391 	struct perf_event *event = file->private_data;
5392 	struct perf_buffer *rb;
5393 	__poll_t events = EPOLLHUP;
5394 
5395 	poll_wait(file, &event->waitq, wait);
5396 
5397 	if (is_event_hup(event))
5398 		return events;
5399 
5400 	/*
5401 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5402 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5403 	 */
5404 	mutex_lock(&event->mmap_mutex);
5405 	rb = event->rb;
5406 	if (rb)
5407 		events = atomic_xchg(&rb->poll, 0);
5408 	mutex_unlock(&event->mmap_mutex);
5409 	return events;
5410 }
5411 
5412 static void _perf_event_reset(struct perf_event *event)
5413 {
5414 	(void)perf_event_read(event, false);
5415 	local64_set(&event->count, 0);
5416 	perf_event_update_userpage(event);
5417 }
5418 
5419 /* Assume it's not an event with inherit set. */
5420 u64 perf_event_pause(struct perf_event *event, bool reset)
5421 {
5422 	struct perf_event_context *ctx;
5423 	u64 count;
5424 
5425 	ctx = perf_event_ctx_lock(event);
5426 	WARN_ON_ONCE(event->attr.inherit);
5427 	_perf_event_disable(event);
5428 	count = local64_read(&event->count);
5429 	if (reset)
5430 		local64_set(&event->count, 0);
5431 	perf_event_ctx_unlock(event, ctx);
5432 
5433 	return count;
5434 }
5435 EXPORT_SYMBOL_GPL(perf_event_pause);
5436 
5437 /*
5438  * Holding the top-level event's child_mutex means that any
5439  * descendant process that has inherited this event will block
5440  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5441  * task existence requirements of perf_event_enable/disable.
5442  */
5443 static void perf_event_for_each_child(struct perf_event *event,
5444 					void (*func)(struct perf_event *))
5445 {
5446 	struct perf_event *child;
5447 
5448 	WARN_ON_ONCE(event->ctx->parent_ctx);
5449 
5450 	mutex_lock(&event->child_mutex);
5451 	func(event);
5452 	list_for_each_entry(child, &event->child_list, child_list)
5453 		func(child);
5454 	mutex_unlock(&event->child_mutex);
5455 }
5456 
5457 static void perf_event_for_each(struct perf_event *event,
5458 				  void (*func)(struct perf_event *))
5459 {
5460 	struct perf_event_context *ctx = event->ctx;
5461 	struct perf_event *sibling;
5462 
5463 	lockdep_assert_held(&ctx->mutex);
5464 
5465 	event = event->group_leader;
5466 
5467 	perf_event_for_each_child(event, func);
5468 	for_each_sibling_event(sibling, event)
5469 		perf_event_for_each_child(sibling, func);
5470 }
5471 
5472 static void __perf_event_period(struct perf_event *event,
5473 				struct perf_cpu_context *cpuctx,
5474 				struct perf_event_context *ctx,
5475 				void *info)
5476 {
5477 	u64 value = *((u64 *)info);
5478 	bool active;
5479 
5480 	if (event->attr.freq) {
5481 		event->attr.sample_freq = value;
5482 	} else {
5483 		event->attr.sample_period = value;
5484 		event->hw.sample_period = value;
5485 	}
5486 
5487 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5488 	if (active) {
5489 		perf_pmu_disable(ctx->pmu);
5490 		/*
5491 		 * We could be throttled; unthrottle now to avoid the tick
5492 		 * trying to unthrottle while we already re-started the event.
5493 		 */
5494 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5495 			event->hw.interrupts = 0;
5496 			perf_log_throttle(event, 1);
5497 		}
5498 		event->pmu->stop(event, PERF_EF_UPDATE);
5499 	}
5500 
5501 	local64_set(&event->hw.period_left, 0);
5502 
5503 	if (active) {
5504 		event->pmu->start(event, PERF_EF_RELOAD);
5505 		perf_pmu_enable(ctx->pmu);
5506 	}
5507 }
5508 
5509 static int perf_event_check_period(struct perf_event *event, u64 value)
5510 {
5511 	return event->pmu->check_period(event, value);
5512 }
5513 
5514 static int _perf_event_period(struct perf_event *event, u64 value)
5515 {
5516 	if (!is_sampling_event(event))
5517 		return -EINVAL;
5518 
5519 	if (!value)
5520 		return -EINVAL;
5521 
5522 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5523 		return -EINVAL;
5524 
5525 	if (perf_event_check_period(event, value))
5526 		return -EINVAL;
5527 
5528 	if (!event->attr.freq && (value & (1ULL << 63)))
5529 		return -EINVAL;
5530 
5531 	event_function_call(event, __perf_event_period, &value);
5532 
5533 	return 0;
5534 }
5535 
5536 int perf_event_period(struct perf_event *event, u64 value)
5537 {
5538 	struct perf_event_context *ctx;
5539 	int ret;
5540 
5541 	ctx = perf_event_ctx_lock(event);
5542 	ret = _perf_event_period(event, value);
5543 	perf_event_ctx_unlock(event, ctx);
5544 
5545 	return ret;
5546 }
5547 EXPORT_SYMBOL_GPL(perf_event_period);
5548 
5549 static const struct file_operations perf_fops;
5550 
5551 static inline int perf_fget_light(int fd, struct fd *p)
5552 {
5553 	struct fd f = fdget(fd);
5554 	if (!f.file)
5555 		return -EBADF;
5556 
5557 	if (f.file->f_op != &perf_fops) {
5558 		fdput(f);
5559 		return -EBADF;
5560 	}
5561 	*p = f;
5562 	return 0;
5563 }
5564 
5565 static int perf_event_set_output(struct perf_event *event,
5566 				 struct perf_event *output_event);
5567 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5568 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5569 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5570 			  struct perf_event_attr *attr);
5571 
5572 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5573 {
5574 	void (*func)(struct perf_event *);
5575 	u32 flags = arg;
5576 
5577 	switch (cmd) {
5578 	case PERF_EVENT_IOC_ENABLE:
5579 		func = _perf_event_enable;
5580 		break;
5581 	case PERF_EVENT_IOC_DISABLE:
5582 		func = _perf_event_disable;
5583 		break;
5584 	case PERF_EVENT_IOC_RESET:
5585 		func = _perf_event_reset;
5586 		break;
5587 
5588 	case PERF_EVENT_IOC_REFRESH:
5589 		return _perf_event_refresh(event, arg);
5590 
5591 	case PERF_EVENT_IOC_PERIOD:
5592 	{
5593 		u64 value;
5594 
5595 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5596 			return -EFAULT;
5597 
5598 		return _perf_event_period(event, value);
5599 	}
5600 	case PERF_EVENT_IOC_ID:
5601 	{
5602 		u64 id = primary_event_id(event);
5603 
5604 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5605 			return -EFAULT;
5606 		return 0;
5607 	}
5608 
5609 	case PERF_EVENT_IOC_SET_OUTPUT:
5610 	{
5611 		int ret;
5612 		if (arg != -1) {
5613 			struct perf_event *output_event;
5614 			struct fd output;
5615 			ret = perf_fget_light(arg, &output);
5616 			if (ret)
5617 				return ret;
5618 			output_event = output.file->private_data;
5619 			ret = perf_event_set_output(event, output_event);
5620 			fdput(output);
5621 		} else {
5622 			ret = perf_event_set_output(event, NULL);
5623 		}
5624 		return ret;
5625 	}
5626 
5627 	case PERF_EVENT_IOC_SET_FILTER:
5628 		return perf_event_set_filter(event, (void __user *)arg);
5629 
5630 	case PERF_EVENT_IOC_SET_BPF:
5631 		return perf_event_set_bpf_prog(event, arg);
5632 
5633 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5634 		struct perf_buffer *rb;
5635 
5636 		rcu_read_lock();
5637 		rb = rcu_dereference(event->rb);
5638 		if (!rb || !rb->nr_pages) {
5639 			rcu_read_unlock();
5640 			return -EINVAL;
5641 		}
5642 		rb_toggle_paused(rb, !!arg);
5643 		rcu_read_unlock();
5644 		return 0;
5645 	}
5646 
5647 	case PERF_EVENT_IOC_QUERY_BPF:
5648 		return perf_event_query_prog_array(event, (void __user *)arg);
5649 
5650 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5651 		struct perf_event_attr new_attr;
5652 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5653 					 &new_attr);
5654 
5655 		if (err)
5656 			return err;
5657 
5658 		return perf_event_modify_attr(event,  &new_attr);
5659 	}
5660 	default:
5661 		return -ENOTTY;
5662 	}
5663 
5664 	if (flags & PERF_IOC_FLAG_GROUP)
5665 		perf_event_for_each(event, func);
5666 	else
5667 		perf_event_for_each_child(event, func);
5668 
5669 	return 0;
5670 }
5671 
5672 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5673 {
5674 	struct perf_event *event = file->private_data;
5675 	struct perf_event_context *ctx;
5676 	long ret;
5677 
5678 	/* Treat ioctl like writes as it is likely a mutating operation. */
5679 	ret = security_perf_event_write(event);
5680 	if (ret)
5681 		return ret;
5682 
5683 	ctx = perf_event_ctx_lock(event);
5684 	ret = _perf_ioctl(event, cmd, arg);
5685 	perf_event_ctx_unlock(event, ctx);
5686 
5687 	return ret;
5688 }
5689 
5690 #ifdef CONFIG_COMPAT
5691 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5692 				unsigned long arg)
5693 {
5694 	switch (_IOC_NR(cmd)) {
5695 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5696 	case _IOC_NR(PERF_EVENT_IOC_ID):
5697 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5698 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5699 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5700 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5701 			cmd &= ~IOCSIZE_MASK;
5702 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5703 		}
5704 		break;
5705 	}
5706 	return perf_ioctl(file, cmd, arg);
5707 }
5708 #else
5709 # define perf_compat_ioctl NULL
5710 #endif
5711 
5712 int perf_event_task_enable(void)
5713 {
5714 	struct perf_event_context *ctx;
5715 	struct perf_event *event;
5716 
5717 	mutex_lock(&current->perf_event_mutex);
5718 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5719 		ctx = perf_event_ctx_lock(event);
5720 		perf_event_for_each_child(event, _perf_event_enable);
5721 		perf_event_ctx_unlock(event, ctx);
5722 	}
5723 	mutex_unlock(&current->perf_event_mutex);
5724 
5725 	return 0;
5726 }
5727 
5728 int perf_event_task_disable(void)
5729 {
5730 	struct perf_event_context *ctx;
5731 	struct perf_event *event;
5732 
5733 	mutex_lock(&current->perf_event_mutex);
5734 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5735 		ctx = perf_event_ctx_lock(event);
5736 		perf_event_for_each_child(event, _perf_event_disable);
5737 		perf_event_ctx_unlock(event, ctx);
5738 	}
5739 	mutex_unlock(&current->perf_event_mutex);
5740 
5741 	return 0;
5742 }
5743 
5744 static int perf_event_index(struct perf_event *event)
5745 {
5746 	if (event->hw.state & PERF_HES_STOPPED)
5747 		return 0;
5748 
5749 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5750 		return 0;
5751 
5752 	return event->pmu->event_idx(event);
5753 }
5754 
5755 static void calc_timer_values(struct perf_event *event,
5756 				u64 *now,
5757 				u64 *enabled,
5758 				u64 *running)
5759 {
5760 	u64 ctx_time;
5761 
5762 	*now = perf_clock();
5763 	ctx_time = event->shadow_ctx_time + *now;
5764 	__perf_update_times(event, ctx_time, enabled, running);
5765 }
5766 
5767 static void perf_event_init_userpage(struct perf_event *event)
5768 {
5769 	struct perf_event_mmap_page *userpg;
5770 	struct perf_buffer *rb;
5771 
5772 	rcu_read_lock();
5773 	rb = rcu_dereference(event->rb);
5774 	if (!rb)
5775 		goto unlock;
5776 
5777 	userpg = rb->user_page;
5778 
5779 	/* Allow new userspace to detect that bit 0 is deprecated */
5780 	userpg->cap_bit0_is_deprecated = 1;
5781 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5782 	userpg->data_offset = PAGE_SIZE;
5783 	userpg->data_size = perf_data_size(rb);
5784 
5785 unlock:
5786 	rcu_read_unlock();
5787 }
5788 
5789 void __weak arch_perf_update_userpage(
5790 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5791 {
5792 }
5793 
5794 /*
5795  * Callers need to ensure there can be no nesting of this function, otherwise
5796  * the seqlock logic goes bad. We can not serialize this because the arch
5797  * code calls this from NMI context.
5798  */
5799 void perf_event_update_userpage(struct perf_event *event)
5800 {
5801 	struct perf_event_mmap_page *userpg;
5802 	struct perf_buffer *rb;
5803 	u64 enabled, running, now;
5804 
5805 	rcu_read_lock();
5806 	rb = rcu_dereference(event->rb);
5807 	if (!rb)
5808 		goto unlock;
5809 
5810 	/*
5811 	 * compute total_time_enabled, total_time_running
5812 	 * based on snapshot values taken when the event
5813 	 * was last scheduled in.
5814 	 *
5815 	 * we cannot simply called update_context_time()
5816 	 * because of locking issue as we can be called in
5817 	 * NMI context
5818 	 */
5819 	calc_timer_values(event, &now, &enabled, &running);
5820 
5821 	userpg = rb->user_page;
5822 	/*
5823 	 * Disable preemption to guarantee consistent time stamps are stored to
5824 	 * the user page.
5825 	 */
5826 	preempt_disable();
5827 	++userpg->lock;
5828 	barrier();
5829 	userpg->index = perf_event_index(event);
5830 	userpg->offset = perf_event_count(event);
5831 	if (userpg->index)
5832 		userpg->offset -= local64_read(&event->hw.prev_count);
5833 
5834 	userpg->time_enabled = enabled +
5835 			atomic64_read(&event->child_total_time_enabled);
5836 
5837 	userpg->time_running = running +
5838 			atomic64_read(&event->child_total_time_running);
5839 
5840 	arch_perf_update_userpage(event, userpg, now);
5841 
5842 	barrier();
5843 	++userpg->lock;
5844 	preempt_enable();
5845 unlock:
5846 	rcu_read_unlock();
5847 }
5848 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5849 
5850 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5851 {
5852 	struct perf_event *event = vmf->vma->vm_file->private_data;
5853 	struct perf_buffer *rb;
5854 	vm_fault_t ret = VM_FAULT_SIGBUS;
5855 
5856 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5857 		if (vmf->pgoff == 0)
5858 			ret = 0;
5859 		return ret;
5860 	}
5861 
5862 	rcu_read_lock();
5863 	rb = rcu_dereference(event->rb);
5864 	if (!rb)
5865 		goto unlock;
5866 
5867 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5868 		goto unlock;
5869 
5870 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5871 	if (!vmf->page)
5872 		goto unlock;
5873 
5874 	get_page(vmf->page);
5875 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5876 	vmf->page->index   = vmf->pgoff;
5877 
5878 	ret = 0;
5879 unlock:
5880 	rcu_read_unlock();
5881 
5882 	return ret;
5883 }
5884 
5885 static void ring_buffer_attach(struct perf_event *event,
5886 			       struct perf_buffer *rb)
5887 {
5888 	struct perf_buffer *old_rb = NULL;
5889 	unsigned long flags;
5890 
5891 	if (event->rb) {
5892 		/*
5893 		 * Should be impossible, we set this when removing
5894 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5895 		 */
5896 		WARN_ON_ONCE(event->rcu_pending);
5897 
5898 		old_rb = event->rb;
5899 		spin_lock_irqsave(&old_rb->event_lock, flags);
5900 		list_del_rcu(&event->rb_entry);
5901 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5902 
5903 		event->rcu_batches = get_state_synchronize_rcu();
5904 		event->rcu_pending = 1;
5905 	}
5906 
5907 	if (rb) {
5908 		if (event->rcu_pending) {
5909 			cond_synchronize_rcu(event->rcu_batches);
5910 			event->rcu_pending = 0;
5911 		}
5912 
5913 		spin_lock_irqsave(&rb->event_lock, flags);
5914 		list_add_rcu(&event->rb_entry, &rb->event_list);
5915 		spin_unlock_irqrestore(&rb->event_lock, flags);
5916 	}
5917 
5918 	/*
5919 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5920 	 * before swizzling the event::rb pointer; if it's getting
5921 	 * unmapped, its aux_mmap_count will be 0 and it won't
5922 	 * restart. See the comment in __perf_pmu_output_stop().
5923 	 *
5924 	 * Data will inevitably be lost when set_output is done in
5925 	 * mid-air, but then again, whoever does it like this is
5926 	 * not in for the data anyway.
5927 	 */
5928 	if (has_aux(event))
5929 		perf_event_stop(event, 0);
5930 
5931 	rcu_assign_pointer(event->rb, rb);
5932 
5933 	if (old_rb) {
5934 		ring_buffer_put(old_rb);
5935 		/*
5936 		 * Since we detached before setting the new rb, so that we
5937 		 * could attach the new rb, we could have missed a wakeup.
5938 		 * Provide it now.
5939 		 */
5940 		wake_up_all(&event->waitq);
5941 	}
5942 }
5943 
5944 static void ring_buffer_wakeup(struct perf_event *event)
5945 {
5946 	struct perf_buffer *rb;
5947 
5948 	rcu_read_lock();
5949 	rb = rcu_dereference(event->rb);
5950 	if (rb) {
5951 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5952 			wake_up_all(&event->waitq);
5953 	}
5954 	rcu_read_unlock();
5955 }
5956 
5957 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5958 {
5959 	struct perf_buffer *rb;
5960 
5961 	rcu_read_lock();
5962 	rb = rcu_dereference(event->rb);
5963 	if (rb) {
5964 		if (!refcount_inc_not_zero(&rb->refcount))
5965 			rb = NULL;
5966 	}
5967 	rcu_read_unlock();
5968 
5969 	return rb;
5970 }
5971 
5972 void ring_buffer_put(struct perf_buffer *rb)
5973 {
5974 	if (!refcount_dec_and_test(&rb->refcount))
5975 		return;
5976 
5977 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5978 
5979 	call_rcu(&rb->rcu_head, rb_free_rcu);
5980 }
5981 
5982 static void perf_mmap_open(struct vm_area_struct *vma)
5983 {
5984 	struct perf_event *event = vma->vm_file->private_data;
5985 
5986 	atomic_inc(&event->mmap_count);
5987 	atomic_inc(&event->rb->mmap_count);
5988 
5989 	if (vma->vm_pgoff)
5990 		atomic_inc(&event->rb->aux_mmap_count);
5991 
5992 	if (event->pmu->event_mapped)
5993 		event->pmu->event_mapped(event, vma->vm_mm);
5994 }
5995 
5996 static void perf_pmu_output_stop(struct perf_event *event);
5997 
5998 /*
5999  * A buffer can be mmap()ed multiple times; either directly through the same
6000  * event, or through other events by use of perf_event_set_output().
6001  *
6002  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6003  * the buffer here, where we still have a VM context. This means we need
6004  * to detach all events redirecting to us.
6005  */
6006 static void perf_mmap_close(struct vm_area_struct *vma)
6007 {
6008 	struct perf_event *event = vma->vm_file->private_data;
6009 	struct perf_buffer *rb = ring_buffer_get(event);
6010 	struct user_struct *mmap_user = rb->mmap_user;
6011 	int mmap_locked = rb->mmap_locked;
6012 	unsigned long size = perf_data_size(rb);
6013 	bool detach_rest = false;
6014 
6015 	if (event->pmu->event_unmapped)
6016 		event->pmu->event_unmapped(event, vma->vm_mm);
6017 
6018 	/*
6019 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6020 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6021 	 * serialize with perf_mmap here.
6022 	 */
6023 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6024 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6025 		/*
6026 		 * Stop all AUX events that are writing to this buffer,
6027 		 * so that we can free its AUX pages and corresponding PMU
6028 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6029 		 * they won't start any more (see perf_aux_output_begin()).
6030 		 */
6031 		perf_pmu_output_stop(event);
6032 
6033 		/* now it's safe to free the pages */
6034 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6035 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6036 
6037 		/* this has to be the last one */
6038 		rb_free_aux(rb);
6039 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6040 
6041 		mutex_unlock(&event->mmap_mutex);
6042 	}
6043 
6044 	if (atomic_dec_and_test(&rb->mmap_count))
6045 		detach_rest = true;
6046 
6047 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6048 		goto out_put;
6049 
6050 	ring_buffer_attach(event, NULL);
6051 	mutex_unlock(&event->mmap_mutex);
6052 
6053 	/* If there's still other mmap()s of this buffer, we're done. */
6054 	if (!detach_rest)
6055 		goto out_put;
6056 
6057 	/*
6058 	 * No other mmap()s, detach from all other events that might redirect
6059 	 * into the now unreachable buffer. Somewhat complicated by the
6060 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6061 	 */
6062 again:
6063 	rcu_read_lock();
6064 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6065 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6066 			/*
6067 			 * This event is en-route to free_event() which will
6068 			 * detach it and remove it from the list.
6069 			 */
6070 			continue;
6071 		}
6072 		rcu_read_unlock();
6073 
6074 		mutex_lock(&event->mmap_mutex);
6075 		/*
6076 		 * Check we didn't race with perf_event_set_output() which can
6077 		 * swizzle the rb from under us while we were waiting to
6078 		 * acquire mmap_mutex.
6079 		 *
6080 		 * If we find a different rb; ignore this event, a next
6081 		 * iteration will no longer find it on the list. We have to
6082 		 * still restart the iteration to make sure we're not now
6083 		 * iterating the wrong list.
6084 		 */
6085 		if (event->rb == rb)
6086 			ring_buffer_attach(event, NULL);
6087 
6088 		mutex_unlock(&event->mmap_mutex);
6089 		put_event(event);
6090 
6091 		/*
6092 		 * Restart the iteration; either we're on the wrong list or
6093 		 * destroyed its integrity by doing a deletion.
6094 		 */
6095 		goto again;
6096 	}
6097 	rcu_read_unlock();
6098 
6099 	/*
6100 	 * It could be there's still a few 0-ref events on the list; they'll
6101 	 * get cleaned up by free_event() -- they'll also still have their
6102 	 * ref on the rb and will free it whenever they are done with it.
6103 	 *
6104 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6105 	 * undo the VM accounting.
6106 	 */
6107 
6108 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6109 			&mmap_user->locked_vm);
6110 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6111 	free_uid(mmap_user);
6112 
6113 out_put:
6114 	ring_buffer_put(rb); /* could be last */
6115 }
6116 
6117 static const struct vm_operations_struct perf_mmap_vmops = {
6118 	.open		= perf_mmap_open,
6119 	.close		= perf_mmap_close, /* non mergeable */
6120 	.fault		= perf_mmap_fault,
6121 	.page_mkwrite	= perf_mmap_fault,
6122 };
6123 
6124 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6125 {
6126 	struct perf_event *event = file->private_data;
6127 	unsigned long user_locked, user_lock_limit;
6128 	struct user_struct *user = current_user();
6129 	struct perf_buffer *rb = NULL;
6130 	unsigned long locked, lock_limit;
6131 	unsigned long vma_size;
6132 	unsigned long nr_pages;
6133 	long user_extra = 0, extra = 0;
6134 	int ret = 0, flags = 0;
6135 
6136 	/*
6137 	 * Don't allow mmap() of inherited per-task counters. This would
6138 	 * create a performance issue due to all children writing to the
6139 	 * same rb.
6140 	 */
6141 	if (event->cpu == -1 && event->attr.inherit)
6142 		return -EINVAL;
6143 
6144 	if (!(vma->vm_flags & VM_SHARED))
6145 		return -EINVAL;
6146 
6147 	ret = security_perf_event_read(event);
6148 	if (ret)
6149 		return ret;
6150 
6151 	vma_size = vma->vm_end - vma->vm_start;
6152 
6153 	if (vma->vm_pgoff == 0) {
6154 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6155 	} else {
6156 		/*
6157 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6158 		 * mapped, all subsequent mappings should have the same size
6159 		 * and offset. Must be above the normal perf buffer.
6160 		 */
6161 		u64 aux_offset, aux_size;
6162 
6163 		if (!event->rb)
6164 			return -EINVAL;
6165 
6166 		nr_pages = vma_size / PAGE_SIZE;
6167 
6168 		mutex_lock(&event->mmap_mutex);
6169 		ret = -EINVAL;
6170 
6171 		rb = event->rb;
6172 		if (!rb)
6173 			goto aux_unlock;
6174 
6175 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6176 		aux_size = READ_ONCE(rb->user_page->aux_size);
6177 
6178 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6179 			goto aux_unlock;
6180 
6181 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6182 			goto aux_unlock;
6183 
6184 		/* already mapped with a different offset */
6185 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6186 			goto aux_unlock;
6187 
6188 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6189 			goto aux_unlock;
6190 
6191 		/* already mapped with a different size */
6192 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6193 			goto aux_unlock;
6194 
6195 		if (!is_power_of_2(nr_pages))
6196 			goto aux_unlock;
6197 
6198 		if (!atomic_inc_not_zero(&rb->mmap_count))
6199 			goto aux_unlock;
6200 
6201 		if (rb_has_aux(rb)) {
6202 			atomic_inc(&rb->aux_mmap_count);
6203 			ret = 0;
6204 			goto unlock;
6205 		}
6206 
6207 		atomic_set(&rb->aux_mmap_count, 1);
6208 		user_extra = nr_pages;
6209 
6210 		goto accounting;
6211 	}
6212 
6213 	/*
6214 	 * If we have rb pages ensure they're a power-of-two number, so we
6215 	 * can do bitmasks instead of modulo.
6216 	 */
6217 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6218 		return -EINVAL;
6219 
6220 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6221 		return -EINVAL;
6222 
6223 	WARN_ON_ONCE(event->ctx->parent_ctx);
6224 again:
6225 	mutex_lock(&event->mmap_mutex);
6226 	if (event->rb) {
6227 		if (event->rb->nr_pages != nr_pages) {
6228 			ret = -EINVAL;
6229 			goto unlock;
6230 		}
6231 
6232 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6233 			/*
6234 			 * Raced against perf_mmap_close() through
6235 			 * perf_event_set_output(). Try again, hope for better
6236 			 * luck.
6237 			 */
6238 			mutex_unlock(&event->mmap_mutex);
6239 			goto again;
6240 		}
6241 
6242 		goto unlock;
6243 	}
6244 
6245 	user_extra = nr_pages + 1;
6246 
6247 accounting:
6248 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6249 
6250 	/*
6251 	 * Increase the limit linearly with more CPUs:
6252 	 */
6253 	user_lock_limit *= num_online_cpus();
6254 
6255 	user_locked = atomic_long_read(&user->locked_vm);
6256 
6257 	/*
6258 	 * sysctl_perf_event_mlock may have changed, so that
6259 	 *     user->locked_vm > user_lock_limit
6260 	 */
6261 	if (user_locked > user_lock_limit)
6262 		user_locked = user_lock_limit;
6263 	user_locked += user_extra;
6264 
6265 	if (user_locked > user_lock_limit) {
6266 		/*
6267 		 * charge locked_vm until it hits user_lock_limit;
6268 		 * charge the rest from pinned_vm
6269 		 */
6270 		extra = user_locked - user_lock_limit;
6271 		user_extra -= extra;
6272 	}
6273 
6274 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6275 	lock_limit >>= PAGE_SHIFT;
6276 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6277 
6278 	if ((locked > lock_limit) && perf_is_paranoid() &&
6279 		!capable(CAP_IPC_LOCK)) {
6280 		ret = -EPERM;
6281 		goto unlock;
6282 	}
6283 
6284 	WARN_ON(!rb && event->rb);
6285 
6286 	if (vma->vm_flags & VM_WRITE)
6287 		flags |= RING_BUFFER_WRITABLE;
6288 
6289 	if (!rb) {
6290 		rb = rb_alloc(nr_pages,
6291 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6292 			      event->cpu, flags);
6293 
6294 		if (!rb) {
6295 			ret = -ENOMEM;
6296 			goto unlock;
6297 		}
6298 
6299 		atomic_set(&rb->mmap_count, 1);
6300 		rb->mmap_user = get_current_user();
6301 		rb->mmap_locked = extra;
6302 
6303 		ring_buffer_attach(event, rb);
6304 
6305 		perf_event_init_userpage(event);
6306 		perf_event_update_userpage(event);
6307 	} else {
6308 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6309 				   event->attr.aux_watermark, flags);
6310 		if (!ret)
6311 			rb->aux_mmap_locked = extra;
6312 	}
6313 
6314 unlock:
6315 	if (!ret) {
6316 		atomic_long_add(user_extra, &user->locked_vm);
6317 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6318 
6319 		atomic_inc(&event->mmap_count);
6320 	} else if (rb) {
6321 		atomic_dec(&rb->mmap_count);
6322 	}
6323 aux_unlock:
6324 	mutex_unlock(&event->mmap_mutex);
6325 
6326 	/*
6327 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6328 	 * vma.
6329 	 */
6330 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6331 	vma->vm_ops = &perf_mmap_vmops;
6332 
6333 	if (event->pmu->event_mapped)
6334 		event->pmu->event_mapped(event, vma->vm_mm);
6335 
6336 	return ret;
6337 }
6338 
6339 static int perf_fasync(int fd, struct file *filp, int on)
6340 {
6341 	struct inode *inode = file_inode(filp);
6342 	struct perf_event *event = filp->private_data;
6343 	int retval;
6344 
6345 	inode_lock(inode);
6346 	retval = fasync_helper(fd, filp, on, &event->fasync);
6347 	inode_unlock(inode);
6348 
6349 	if (retval < 0)
6350 		return retval;
6351 
6352 	return 0;
6353 }
6354 
6355 static const struct file_operations perf_fops = {
6356 	.llseek			= no_llseek,
6357 	.release		= perf_release,
6358 	.read			= perf_read,
6359 	.poll			= perf_poll,
6360 	.unlocked_ioctl		= perf_ioctl,
6361 	.compat_ioctl		= perf_compat_ioctl,
6362 	.mmap			= perf_mmap,
6363 	.fasync			= perf_fasync,
6364 };
6365 
6366 /*
6367  * Perf event wakeup
6368  *
6369  * If there's data, ensure we set the poll() state and publish everything
6370  * to user-space before waking everybody up.
6371  */
6372 
6373 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6374 {
6375 	/* only the parent has fasync state */
6376 	if (event->parent)
6377 		event = event->parent;
6378 	return &event->fasync;
6379 }
6380 
6381 void perf_event_wakeup(struct perf_event *event)
6382 {
6383 	ring_buffer_wakeup(event);
6384 
6385 	if (event->pending_kill) {
6386 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6387 		event->pending_kill = 0;
6388 	}
6389 }
6390 
6391 static void perf_sigtrap(struct perf_event *event)
6392 {
6393 	struct kernel_siginfo info;
6394 
6395 	/*
6396 	 * We'd expect this to only occur if the irq_work is delayed and either
6397 	 * ctx->task or current has changed in the meantime. This can be the
6398 	 * case on architectures that do not implement arch_irq_work_raise().
6399 	 */
6400 	if (WARN_ON_ONCE(event->ctx->task != current))
6401 		return;
6402 
6403 	/*
6404 	 * perf_pending_event() can race with the task exiting.
6405 	 */
6406 	if (current->flags & PF_EXITING)
6407 		return;
6408 
6409 	clear_siginfo(&info);
6410 	info.si_signo = SIGTRAP;
6411 	info.si_code = TRAP_PERF;
6412 	info.si_errno = event->attr.type;
6413 	info.si_perf = event->attr.sig_data;
6414 	info.si_addr = (void __user *)event->pending_addr;
6415 	force_sig_info(&info);
6416 }
6417 
6418 static void perf_pending_event_disable(struct perf_event *event)
6419 {
6420 	int cpu = READ_ONCE(event->pending_disable);
6421 
6422 	if (cpu < 0)
6423 		return;
6424 
6425 	if (cpu == smp_processor_id()) {
6426 		WRITE_ONCE(event->pending_disable, -1);
6427 
6428 		if (event->attr.sigtrap) {
6429 			perf_sigtrap(event);
6430 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6431 			return;
6432 		}
6433 
6434 		perf_event_disable_local(event);
6435 		return;
6436 	}
6437 
6438 	/*
6439 	 *  CPU-A			CPU-B
6440 	 *
6441 	 *  perf_event_disable_inatomic()
6442 	 *    @pending_disable = CPU-A;
6443 	 *    irq_work_queue();
6444 	 *
6445 	 *  sched-out
6446 	 *    @pending_disable = -1;
6447 	 *
6448 	 *				sched-in
6449 	 *				perf_event_disable_inatomic()
6450 	 *				  @pending_disable = CPU-B;
6451 	 *				  irq_work_queue(); // FAILS
6452 	 *
6453 	 *  irq_work_run()
6454 	 *    perf_pending_event()
6455 	 *
6456 	 * But the event runs on CPU-B and wants disabling there.
6457 	 */
6458 	irq_work_queue_on(&event->pending, cpu);
6459 }
6460 
6461 static void perf_pending_event(struct irq_work *entry)
6462 {
6463 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6464 	int rctx;
6465 
6466 	rctx = perf_swevent_get_recursion_context();
6467 	/*
6468 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6469 	 * and we won't recurse 'further'.
6470 	 */
6471 
6472 	perf_pending_event_disable(event);
6473 
6474 	if (event->pending_wakeup) {
6475 		event->pending_wakeup = 0;
6476 		perf_event_wakeup(event);
6477 	}
6478 
6479 	if (rctx >= 0)
6480 		perf_swevent_put_recursion_context(rctx);
6481 }
6482 
6483 /*
6484  * We assume there is only KVM supporting the callbacks.
6485  * Later on, we might change it to a list if there is
6486  * another virtualization implementation supporting the callbacks.
6487  */
6488 struct perf_guest_info_callbacks *perf_guest_cbs;
6489 
6490 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6491 {
6492 	perf_guest_cbs = cbs;
6493 	return 0;
6494 }
6495 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6496 
6497 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6498 {
6499 	perf_guest_cbs = NULL;
6500 	return 0;
6501 }
6502 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6503 
6504 static void
6505 perf_output_sample_regs(struct perf_output_handle *handle,
6506 			struct pt_regs *regs, u64 mask)
6507 {
6508 	int bit;
6509 	DECLARE_BITMAP(_mask, 64);
6510 
6511 	bitmap_from_u64(_mask, mask);
6512 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6513 		u64 val;
6514 
6515 		val = perf_reg_value(regs, bit);
6516 		perf_output_put(handle, val);
6517 	}
6518 }
6519 
6520 static void perf_sample_regs_user(struct perf_regs *regs_user,
6521 				  struct pt_regs *regs)
6522 {
6523 	if (user_mode(regs)) {
6524 		regs_user->abi = perf_reg_abi(current);
6525 		regs_user->regs = regs;
6526 	} else if (!(current->flags & PF_KTHREAD)) {
6527 		perf_get_regs_user(regs_user, regs);
6528 	} else {
6529 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6530 		regs_user->regs = NULL;
6531 	}
6532 }
6533 
6534 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6535 				  struct pt_regs *regs)
6536 {
6537 	regs_intr->regs = regs;
6538 	regs_intr->abi  = perf_reg_abi(current);
6539 }
6540 
6541 
6542 /*
6543  * Get remaining task size from user stack pointer.
6544  *
6545  * It'd be better to take stack vma map and limit this more
6546  * precisely, but there's no way to get it safely under interrupt,
6547  * so using TASK_SIZE as limit.
6548  */
6549 static u64 perf_ustack_task_size(struct pt_regs *regs)
6550 {
6551 	unsigned long addr = perf_user_stack_pointer(regs);
6552 
6553 	if (!addr || addr >= TASK_SIZE)
6554 		return 0;
6555 
6556 	return TASK_SIZE - addr;
6557 }
6558 
6559 static u16
6560 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6561 			struct pt_regs *regs)
6562 {
6563 	u64 task_size;
6564 
6565 	/* No regs, no stack pointer, no dump. */
6566 	if (!regs)
6567 		return 0;
6568 
6569 	/*
6570 	 * Check if we fit in with the requested stack size into the:
6571 	 * - TASK_SIZE
6572 	 *   If we don't, we limit the size to the TASK_SIZE.
6573 	 *
6574 	 * - remaining sample size
6575 	 *   If we don't, we customize the stack size to
6576 	 *   fit in to the remaining sample size.
6577 	 */
6578 
6579 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6580 	stack_size = min(stack_size, (u16) task_size);
6581 
6582 	/* Current header size plus static size and dynamic size. */
6583 	header_size += 2 * sizeof(u64);
6584 
6585 	/* Do we fit in with the current stack dump size? */
6586 	if ((u16) (header_size + stack_size) < header_size) {
6587 		/*
6588 		 * If we overflow the maximum size for the sample,
6589 		 * we customize the stack dump size to fit in.
6590 		 */
6591 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6592 		stack_size = round_up(stack_size, sizeof(u64));
6593 	}
6594 
6595 	return stack_size;
6596 }
6597 
6598 static void
6599 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6600 			  struct pt_regs *regs)
6601 {
6602 	/* Case of a kernel thread, nothing to dump */
6603 	if (!regs) {
6604 		u64 size = 0;
6605 		perf_output_put(handle, size);
6606 	} else {
6607 		unsigned long sp;
6608 		unsigned int rem;
6609 		u64 dyn_size;
6610 		mm_segment_t fs;
6611 
6612 		/*
6613 		 * We dump:
6614 		 * static size
6615 		 *   - the size requested by user or the best one we can fit
6616 		 *     in to the sample max size
6617 		 * data
6618 		 *   - user stack dump data
6619 		 * dynamic size
6620 		 *   - the actual dumped size
6621 		 */
6622 
6623 		/* Static size. */
6624 		perf_output_put(handle, dump_size);
6625 
6626 		/* Data. */
6627 		sp = perf_user_stack_pointer(regs);
6628 		fs = force_uaccess_begin();
6629 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6630 		force_uaccess_end(fs);
6631 		dyn_size = dump_size - rem;
6632 
6633 		perf_output_skip(handle, rem);
6634 
6635 		/* Dynamic size. */
6636 		perf_output_put(handle, dyn_size);
6637 	}
6638 }
6639 
6640 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6641 					  struct perf_sample_data *data,
6642 					  size_t size)
6643 {
6644 	struct perf_event *sampler = event->aux_event;
6645 	struct perf_buffer *rb;
6646 
6647 	data->aux_size = 0;
6648 
6649 	if (!sampler)
6650 		goto out;
6651 
6652 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6653 		goto out;
6654 
6655 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6656 		goto out;
6657 
6658 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6659 	if (!rb)
6660 		goto out;
6661 
6662 	/*
6663 	 * If this is an NMI hit inside sampling code, don't take
6664 	 * the sample. See also perf_aux_sample_output().
6665 	 */
6666 	if (READ_ONCE(rb->aux_in_sampling)) {
6667 		data->aux_size = 0;
6668 	} else {
6669 		size = min_t(size_t, size, perf_aux_size(rb));
6670 		data->aux_size = ALIGN(size, sizeof(u64));
6671 	}
6672 	ring_buffer_put(rb);
6673 
6674 out:
6675 	return data->aux_size;
6676 }
6677 
6678 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6679                                  struct perf_event *event,
6680                                  struct perf_output_handle *handle,
6681                                  unsigned long size)
6682 {
6683 	unsigned long flags;
6684 	long ret;
6685 
6686 	/*
6687 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6688 	 * paths. If we start calling them in NMI context, they may race with
6689 	 * the IRQ ones, that is, for example, re-starting an event that's just
6690 	 * been stopped, which is why we're using a separate callback that
6691 	 * doesn't change the event state.
6692 	 *
6693 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6694 	 */
6695 	local_irq_save(flags);
6696 	/*
6697 	 * Guard against NMI hits inside the critical section;
6698 	 * see also perf_prepare_sample_aux().
6699 	 */
6700 	WRITE_ONCE(rb->aux_in_sampling, 1);
6701 	barrier();
6702 
6703 	ret = event->pmu->snapshot_aux(event, handle, size);
6704 
6705 	barrier();
6706 	WRITE_ONCE(rb->aux_in_sampling, 0);
6707 	local_irq_restore(flags);
6708 
6709 	return ret;
6710 }
6711 
6712 static void perf_aux_sample_output(struct perf_event *event,
6713 				   struct perf_output_handle *handle,
6714 				   struct perf_sample_data *data)
6715 {
6716 	struct perf_event *sampler = event->aux_event;
6717 	struct perf_buffer *rb;
6718 	unsigned long pad;
6719 	long size;
6720 
6721 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6722 		return;
6723 
6724 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6725 	if (!rb)
6726 		return;
6727 
6728 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6729 
6730 	/*
6731 	 * An error here means that perf_output_copy() failed (returned a
6732 	 * non-zero surplus that it didn't copy), which in its current
6733 	 * enlightened implementation is not possible. If that changes, we'd
6734 	 * like to know.
6735 	 */
6736 	if (WARN_ON_ONCE(size < 0))
6737 		goto out_put;
6738 
6739 	/*
6740 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6741 	 * perf_prepare_sample_aux(), so should not be more than that.
6742 	 */
6743 	pad = data->aux_size - size;
6744 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6745 		pad = 8;
6746 
6747 	if (pad) {
6748 		u64 zero = 0;
6749 		perf_output_copy(handle, &zero, pad);
6750 	}
6751 
6752 out_put:
6753 	ring_buffer_put(rb);
6754 }
6755 
6756 static void __perf_event_header__init_id(struct perf_event_header *header,
6757 					 struct perf_sample_data *data,
6758 					 struct perf_event *event)
6759 {
6760 	u64 sample_type = event->attr.sample_type;
6761 
6762 	data->type = sample_type;
6763 	header->size += event->id_header_size;
6764 
6765 	if (sample_type & PERF_SAMPLE_TID) {
6766 		/* namespace issues */
6767 		data->tid_entry.pid = perf_event_pid(event, current);
6768 		data->tid_entry.tid = perf_event_tid(event, current);
6769 	}
6770 
6771 	if (sample_type & PERF_SAMPLE_TIME)
6772 		data->time = perf_event_clock(event);
6773 
6774 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6775 		data->id = primary_event_id(event);
6776 
6777 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6778 		data->stream_id = event->id;
6779 
6780 	if (sample_type & PERF_SAMPLE_CPU) {
6781 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6782 		data->cpu_entry.reserved = 0;
6783 	}
6784 }
6785 
6786 void perf_event_header__init_id(struct perf_event_header *header,
6787 				struct perf_sample_data *data,
6788 				struct perf_event *event)
6789 {
6790 	if (event->attr.sample_id_all)
6791 		__perf_event_header__init_id(header, data, event);
6792 }
6793 
6794 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6795 					   struct perf_sample_data *data)
6796 {
6797 	u64 sample_type = data->type;
6798 
6799 	if (sample_type & PERF_SAMPLE_TID)
6800 		perf_output_put(handle, data->tid_entry);
6801 
6802 	if (sample_type & PERF_SAMPLE_TIME)
6803 		perf_output_put(handle, data->time);
6804 
6805 	if (sample_type & PERF_SAMPLE_ID)
6806 		perf_output_put(handle, data->id);
6807 
6808 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6809 		perf_output_put(handle, data->stream_id);
6810 
6811 	if (sample_type & PERF_SAMPLE_CPU)
6812 		perf_output_put(handle, data->cpu_entry);
6813 
6814 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6815 		perf_output_put(handle, data->id);
6816 }
6817 
6818 void perf_event__output_id_sample(struct perf_event *event,
6819 				  struct perf_output_handle *handle,
6820 				  struct perf_sample_data *sample)
6821 {
6822 	if (event->attr.sample_id_all)
6823 		__perf_event__output_id_sample(handle, sample);
6824 }
6825 
6826 static void perf_output_read_one(struct perf_output_handle *handle,
6827 				 struct perf_event *event,
6828 				 u64 enabled, u64 running)
6829 {
6830 	u64 read_format = event->attr.read_format;
6831 	u64 values[4];
6832 	int n = 0;
6833 
6834 	values[n++] = perf_event_count(event);
6835 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6836 		values[n++] = enabled +
6837 			atomic64_read(&event->child_total_time_enabled);
6838 	}
6839 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6840 		values[n++] = running +
6841 			atomic64_read(&event->child_total_time_running);
6842 	}
6843 	if (read_format & PERF_FORMAT_ID)
6844 		values[n++] = primary_event_id(event);
6845 
6846 	__output_copy(handle, values, n * sizeof(u64));
6847 }
6848 
6849 static void perf_output_read_group(struct perf_output_handle *handle,
6850 			    struct perf_event *event,
6851 			    u64 enabled, u64 running)
6852 {
6853 	struct perf_event *leader = event->group_leader, *sub;
6854 	u64 read_format = event->attr.read_format;
6855 	u64 values[5];
6856 	int n = 0;
6857 
6858 	values[n++] = 1 + leader->nr_siblings;
6859 
6860 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6861 		values[n++] = enabled;
6862 
6863 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6864 		values[n++] = running;
6865 
6866 	if ((leader != event) &&
6867 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6868 		leader->pmu->read(leader);
6869 
6870 	values[n++] = perf_event_count(leader);
6871 	if (read_format & PERF_FORMAT_ID)
6872 		values[n++] = primary_event_id(leader);
6873 
6874 	__output_copy(handle, values, n * sizeof(u64));
6875 
6876 	for_each_sibling_event(sub, leader) {
6877 		n = 0;
6878 
6879 		if ((sub != event) &&
6880 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6881 			sub->pmu->read(sub);
6882 
6883 		values[n++] = perf_event_count(sub);
6884 		if (read_format & PERF_FORMAT_ID)
6885 			values[n++] = primary_event_id(sub);
6886 
6887 		__output_copy(handle, values, n * sizeof(u64));
6888 	}
6889 }
6890 
6891 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6892 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6893 
6894 /*
6895  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6896  *
6897  * The problem is that its both hard and excessively expensive to iterate the
6898  * child list, not to mention that its impossible to IPI the children running
6899  * on another CPU, from interrupt/NMI context.
6900  */
6901 static void perf_output_read(struct perf_output_handle *handle,
6902 			     struct perf_event *event)
6903 {
6904 	u64 enabled = 0, running = 0, now;
6905 	u64 read_format = event->attr.read_format;
6906 
6907 	/*
6908 	 * compute total_time_enabled, total_time_running
6909 	 * based on snapshot values taken when the event
6910 	 * was last scheduled in.
6911 	 *
6912 	 * we cannot simply called update_context_time()
6913 	 * because of locking issue as we are called in
6914 	 * NMI context
6915 	 */
6916 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6917 		calc_timer_values(event, &now, &enabled, &running);
6918 
6919 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6920 		perf_output_read_group(handle, event, enabled, running);
6921 	else
6922 		perf_output_read_one(handle, event, enabled, running);
6923 }
6924 
6925 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6926 {
6927 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6928 }
6929 
6930 void perf_output_sample(struct perf_output_handle *handle,
6931 			struct perf_event_header *header,
6932 			struct perf_sample_data *data,
6933 			struct perf_event *event)
6934 {
6935 	u64 sample_type = data->type;
6936 
6937 	perf_output_put(handle, *header);
6938 
6939 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6940 		perf_output_put(handle, data->id);
6941 
6942 	if (sample_type & PERF_SAMPLE_IP)
6943 		perf_output_put(handle, data->ip);
6944 
6945 	if (sample_type & PERF_SAMPLE_TID)
6946 		perf_output_put(handle, data->tid_entry);
6947 
6948 	if (sample_type & PERF_SAMPLE_TIME)
6949 		perf_output_put(handle, data->time);
6950 
6951 	if (sample_type & PERF_SAMPLE_ADDR)
6952 		perf_output_put(handle, data->addr);
6953 
6954 	if (sample_type & PERF_SAMPLE_ID)
6955 		perf_output_put(handle, data->id);
6956 
6957 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6958 		perf_output_put(handle, data->stream_id);
6959 
6960 	if (sample_type & PERF_SAMPLE_CPU)
6961 		perf_output_put(handle, data->cpu_entry);
6962 
6963 	if (sample_type & PERF_SAMPLE_PERIOD)
6964 		perf_output_put(handle, data->period);
6965 
6966 	if (sample_type & PERF_SAMPLE_READ)
6967 		perf_output_read(handle, event);
6968 
6969 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6970 		int size = 1;
6971 
6972 		size += data->callchain->nr;
6973 		size *= sizeof(u64);
6974 		__output_copy(handle, data->callchain, size);
6975 	}
6976 
6977 	if (sample_type & PERF_SAMPLE_RAW) {
6978 		struct perf_raw_record *raw = data->raw;
6979 
6980 		if (raw) {
6981 			struct perf_raw_frag *frag = &raw->frag;
6982 
6983 			perf_output_put(handle, raw->size);
6984 			do {
6985 				if (frag->copy) {
6986 					__output_custom(handle, frag->copy,
6987 							frag->data, frag->size);
6988 				} else {
6989 					__output_copy(handle, frag->data,
6990 						      frag->size);
6991 				}
6992 				if (perf_raw_frag_last(frag))
6993 					break;
6994 				frag = frag->next;
6995 			} while (1);
6996 			if (frag->pad)
6997 				__output_skip(handle, NULL, frag->pad);
6998 		} else {
6999 			struct {
7000 				u32	size;
7001 				u32	data;
7002 			} raw = {
7003 				.size = sizeof(u32),
7004 				.data = 0,
7005 			};
7006 			perf_output_put(handle, raw);
7007 		}
7008 	}
7009 
7010 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7011 		if (data->br_stack) {
7012 			size_t size;
7013 
7014 			size = data->br_stack->nr
7015 			     * sizeof(struct perf_branch_entry);
7016 
7017 			perf_output_put(handle, data->br_stack->nr);
7018 			if (perf_sample_save_hw_index(event))
7019 				perf_output_put(handle, data->br_stack->hw_idx);
7020 			perf_output_copy(handle, data->br_stack->entries, size);
7021 		} else {
7022 			/*
7023 			 * we always store at least the value of nr
7024 			 */
7025 			u64 nr = 0;
7026 			perf_output_put(handle, nr);
7027 		}
7028 	}
7029 
7030 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7031 		u64 abi = data->regs_user.abi;
7032 
7033 		/*
7034 		 * If there are no regs to dump, notice it through
7035 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7036 		 */
7037 		perf_output_put(handle, abi);
7038 
7039 		if (abi) {
7040 			u64 mask = event->attr.sample_regs_user;
7041 			perf_output_sample_regs(handle,
7042 						data->regs_user.regs,
7043 						mask);
7044 		}
7045 	}
7046 
7047 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7048 		perf_output_sample_ustack(handle,
7049 					  data->stack_user_size,
7050 					  data->regs_user.regs);
7051 	}
7052 
7053 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7054 		perf_output_put(handle, data->weight.full);
7055 
7056 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7057 		perf_output_put(handle, data->data_src.val);
7058 
7059 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7060 		perf_output_put(handle, data->txn);
7061 
7062 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7063 		u64 abi = data->regs_intr.abi;
7064 		/*
7065 		 * If there are no regs to dump, notice it through
7066 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7067 		 */
7068 		perf_output_put(handle, abi);
7069 
7070 		if (abi) {
7071 			u64 mask = event->attr.sample_regs_intr;
7072 
7073 			perf_output_sample_regs(handle,
7074 						data->regs_intr.regs,
7075 						mask);
7076 		}
7077 	}
7078 
7079 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7080 		perf_output_put(handle, data->phys_addr);
7081 
7082 	if (sample_type & PERF_SAMPLE_CGROUP)
7083 		perf_output_put(handle, data->cgroup);
7084 
7085 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7086 		perf_output_put(handle, data->data_page_size);
7087 
7088 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7089 		perf_output_put(handle, data->code_page_size);
7090 
7091 	if (sample_type & PERF_SAMPLE_AUX) {
7092 		perf_output_put(handle, data->aux_size);
7093 
7094 		if (data->aux_size)
7095 			perf_aux_sample_output(event, handle, data);
7096 	}
7097 
7098 	if (!event->attr.watermark) {
7099 		int wakeup_events = event->attr.wakeup_events;
7100 
7101 		if (wakeup_events) {
7102 			struct perf_buffer *rb = handle->rb;
7103 			int events = local_inc_return(&rb->events);
7104 
7105 			if (events >= wakeup_events) {
7106 				local_sub(wakeup_events, &rb->events);
7107 				local_inc(&rb->wakeup);
7108 			}
7109 		}
7110 	}
7111 }
7112 
7113 static u64 perf_virt_to_phys(u64 virt)
7114 {
7115 	u64 phys_addr = 0;
7116 	struct page *p = NULL;
7117 
7118 	if (!virt)
7119 		return 0;
7120 
7121 	if (virt >= TASK_SIZE) {
7122 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7123 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7124 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7125 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7126 	} else {
7127 		/*
7128 		 * Walking the pages tables for user address.
7129 		 * Interrupts are disabled, so it prevents any tear down
7130 		 * of the page tables.
7131 		 * Try IRQ-safe get_user_page_fast_only first.
7132 		 * If failed, leave phys_addr as 0.
7133 		 */
7134 		if (current->mm != NULL) {
7135 			pagefault_disable();
7136 			if (get_user_page_fast_only(virt, 0, &p))
7137 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7138 			pagefault_enable();
7139 		}
7140 
7141 		if (p)
7142 			put_page(p);
7143 	}
7144 
7145 	return phys_addr;
7146 }
7147 
7148 /*
7149  * Return the pagetable size of a given virtual address.
7150  */
7151 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7152 {
7153 	u64 size = 0;
7154 
7155 #ifdef CONFIG_HAVE_FAST_GUP
7156 	pgd_t *pgdp, pgd;
7157 	p4d_t *p4dp, p4d;
7158 	pud_t *pudp, pud;
7159 	pmd_t *pmdp, pmd;
7160 	pte_t *ptep, pte;
7161 
7162 	pgdp = pgd_offset(mm, addr);
7163 	pgd = READ_ONCE(*pgdp);
7164 	if (pgd_none(pgd))
7165 		return 0;
7166 
7167 	if (pgd_leaf(pgd))
7168 		return pgd_leaf_size(pgd);
7169 
7170 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7171 	p4d = READ_ONCE(*p4dp);
7172 	if (!p4d_present(p4d))
7173 		return 0;
7174 
7175 	if (p4d_leaf(p4d))
7176 		return p4d_leaf_size(p4d);
7177 
7178 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7179 	pud = READ_ONCE(*pudp);
7180 	if (!pud_present(pud))
7181 		return 0;
7182 
7183 	if (pud_leaf(pud))
7184 		return pud_leaf_size(pud);
7185 
7186 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7187 	pmd = READ_ONCE(*pmdp);
7188 	if (!pmd_present(pmd))
7189 		return 0;
7190 
7191 	if (pmd_leaf(pmd))
7192 		return pmd_leaf_size(pmd);
7193 
7194 	ptep = pte_offset_map(&pmd, addr);
7195 	pte = ptep_get_lockless(ptep);
7196 	if (pte_present(pte))
7197 		size = pte_leaf_size(pte);
7198 	pte_unmap(ptep);
7199 #endif /* CONFIG_HAVE_FAST_GUP */
7200 
7201 	return size;
7202 }
7203 
7204 static u64 perf_get_page_size(unsigned long addr)
7205 {
7206 	struct mm_struct *mm;
7207 	unsigned long flags;
7208 	u64 size;
7209 
7210 	if (!addr)
7211 		return 0;
7212 
7213 	/*
7214 	 * Software page-table walkers must disable IRQs,
7215 	 * which prevents any tear down of the page tables.
7216 	 */
7217 	local_irq_save(flags);
7218 
7219 	mm = current->mm;
7220 	if (!mm) {
7221 		/*
7222 		 * For kernel threads and the like, use init_mm so that
7223 		 * we can find kernel memory.
7224 		 */
7225 		mm = &init_mm;
7226 	}
7227 
7228 	size = perf_get_pgtable_size(mm, addr);
7229 
7230 	local_irq_restore(flags);
7231 
7232 	return size;
7233 }
7234 
7235 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7236 
7237 struct perf_callchain_entry *
7238 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7239 {
7240 	bool kernel = !event->attr.exclude_callchain_kernel;
7241 	bool user   = !event->attr.exclude_callchain_user;
7242 	/* Disallow cross-task user callchains. */
7243 	bool crosstask = event->ctx->task && event->ctx->task != current;
7244 	const u32 max_stack = event->attr.sample_max_stack;
7245 	struct perf_callchain_entry *callchain;
7246 
7247 	if (!kernel && !user)
7248 		return &__empty_callchain;
7249 
7250 	callchain = get_perf_callchain(regs, 0, kernel, user,
7251 				       max_stack, crosstask, true);
7252 	return callchain ?: &__empty_callchain;
7253 }
7254 
7255 void perf_prepare_sample(struct perf_event_header *header,
7256 			 struct perf_sample_data *data,
7257 			 struct perf_event *event,
7258 			 struct pt_regs *regs)
7259 {
7260 	u64 sample_type = event->attr.sample_type;
7261 
7262 	header->type = PERF_RECORD_SAMPLE;
7263 	header->size = sizeof(*header) + event->header_size;
7264 
7265 	header->misc = 0;
7266 	header->misc |= perf_misc_flags(regs);
7267 
7268 	__perf_event_header__init_id(header, data, event);
7269 
7270 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7271 		data->ip = perf_instruction_pointer(regs);
7272 
7273 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7274 		int size = 1;
7275 
7276 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7277 			data->callchain = perf_callchain(event, regs);
7278 
7279 		size += data->callchain->nr;
7280 
7281 		header->size += size * sizeof(u64);
7282 	}
7283 
7284 	if (sample_type & PERF_SAMPLE_RAW) {
7285 		struct perf_raw_record *raw = data->raw;
7286 		int size;
7287 
7288 		if (raw) {
7289 			struct perf_raw_frag *frag = &raw->frag;
7290 			u32 sum = 0;
7291 
7292 			do {
7293 				sum += frag->size;
7294 				if (perf_raw_frag_last(frag))
7295 					break;
7296 				frag = frag->next;
7297 			} while (1);
7298 
7299 			size = round_up(sum + sizeof(u32), sizeof(u64));
7300 			raw->size = size - sizeof(u32);
7301 			frag->pad = raw->size - sum;
7302 		} else {
7303 			size = sizeof(u64);
7304 		}
7305 
7306 		header->size += size;
7307 	}
7308 
7309 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7310 		int size = sizeof(u64); /* nr */
7311 		if (data->br_stack) {
7312 			if (perf_sample_save_hw_index(event))
7313 				size += sizeof(u64);
7314 
7315 			size += data->br_stack->nr
7316 			      * sizeof(struct perf_branch_entry);
7317 		}
7318 		header->size += size;
7319 	}
7320 
7321 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7322 		perf_sample_regs_user(&data->regs_user, regs);
7323 
7324 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7325 		/* regs dump ABI info */
7326 		int size = sizeof(u64);
7327 
7328 		if (data->regs_user.regs) {
7329 			u64 mask = event->attr.sample_regs_user;
7330 			size += hweight64(mask) * sizeof(u64);
7331 		}
7332 
7333 		header->size += size;
7334 	}
7335 
7336 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7337 		/*
7338 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7339 		 * processed as the last one or have additional check added
7340 		 * in case new sample type is added, because we could eat
7341 		 * up the rest of the sample size.
7342 		 */
7343 		u16 stack_size = event->attr.sample_stack_user;
7344 		u16 size = sizeof(u64);
7345 
7346 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7347 						     data->regs_user.regs);
7348 
7349 		/*
7350 		 * If there is something to dump, add space for the dump
7351 		 * itself and for the field that tells the dynamic size,
7352 		 * which is how many have been actually dumped.
7353 		 */
7354 		if (stack_size)
7355 			size += sizeof(u64) + stack_size;
7356 
7357 		data->stack_user_size = stack_size;
7358 		header->size += size;
7359 	}
7360 
7361 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7362 		/* regs dump ABI info */
7363 		int size = sizeof(u64);
7364 
7365 		perf_sample_regs_intr(&data->regs_intr, regs);
7366 
7367 		if (data->regs_intr.regs) {
7368 			u64 mask = event->attr.sample_regs_intr;
7369 
7370 			size += hweight64(mask) * sizeof(u64);
7371 		}
7372 
7373 		header->size += size;
7374 	}
7375 
7376 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7377 		data->phys_addr = perf_virt_to_phys(data->addr);
7378 
7379 #ifdef CONFIG_CGROUP_PERF
7380 	if (sample_type & PERF_SAMPLE_CGROUP) {
7381 		struct cgroup *cgrp;
7382 
7383 		/* protected by RCU */
7384 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7385 		data->cgroup = cgroup_id(cgrp);
7386 	}
7387 #endif
7388 
7389 	/*
7390 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7391 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7392 	 * but the value will not dump to the userspace.
7393 	 */
7394 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7395 		data->data_page_size = perf_get_page_size(data->addr);
7396 
7397 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7398 		data->code_page_size = perf_get_page_size(data->ip);
7399 
7400 	if (sample_type & PERF_SAMPLE_AUX) {
7401 		u64 size;
7402 
7403 		header->size += sizeof(u64); /* size */
7404 
7405 		/*
7406 		 * Given the 16bit nature of header::size, an AUX sample can
7407 		 * easily overflow it, what with all the preceding sample bits.
7408 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7409 		 * per sample in total (rounded down to 8 byte boundary).
7410 		 */
7411 		size = min_t(size_t, U16_MAX - header->size,
7412 			     event->attr.aux_sample_size);
7413 		size = rounddown(size, 8);
7414 		size = perf_prepare_sample_aux(event, data, size);
7415 
7416 		WARN_ON_ONCE(size + header->size > U16_MAX);
7417 		header->size += size;
7418 	}
7419 	/*
7420 	 * If you're adding more sample types here, you likely need to do
7421 	 * something about the overflowing header::size, like repurpose the
7422 	 * lowest 3 bits of size, which should be always zero at the moment.
7423 	 * This raises a more important question, do we really need 512k sized
7424 	 * samples and why, so good argumentation is in order for whatever you
7425 	 * do here next.
7426 	 */
7427 	WARN_ON_ONCE(header->size & 7);
7428 }
7429 
7430 static __always_inline int
7431 __perf_event_output(struct perf_event *event,
7432 		    struct perf_sample_data *data,
7433 		    struct pt_regs *regs,
7434 		    int (*output_begin)(struct perf_output_handle *,
7435 					struct perf_sample_data *,
7436 					struct perf_event *,
7437 					unsigned int))
7438 {
7439 	struct perf_output_handle handle;
7440 	struct perf_event_header header;
7441 	int err;
7442 
7443 	/* protect the callchain buffers */
7444 	rcu_read_lock();
7445 
7446 	perf_prepare_sample(&header, data, event, regs);
7447 
7448 	err = output_begin(&handle, data, event, header.size);
7449 	if (err)
7450 		goto exit;
7451 
7452 	perf_output_sample(&handle, &header, data, event);
7453 
7454 	perf_output_end(&handle);
7455 
7456 exit:
7457 	rcu_read_unlock();
7458 	return err;
7459 }
7460 
7461 void
7462 perf_event_output_forward(struct perf_event *event,
7463 			 struct perf_sample_data *data,
7464 			 struct pt_regs *regs)
7465 {
7466 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7467 }
7468 
7469 void
7470 perf_event_output_backward(struct perf_event *event,
7471 			   struct perf_sample_data *data,
7472 			   struct pt_regs *regs)
7473 {
7474 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7475 }
7476 
7477 int
7478 perf_event_output(struct perf_event *event,
7479 		  struct perf_sample_data *data,
7480 		  struct pt_regs *regs)
7481 {
7482 	return __perf_event_output(event, data, regs, perf_output_begin);
7483 }
7484 
7485 /*
7486  * read event_id
7487  */
7488 
7489 struct perf_read_event {
7490 	struct perf_event_header	header;
7491 
7492 	u32				pid;
7493 	u32				tid;
7494 };
7495 
7496 static void
7497 perf_event_read_event(struct perf_event *event,
7498 			struct task_struct *task)
7499 {
7500 	struct perf_output_handle handle;
7501 	struct perf_sample_data sample;
7502 	struct perf_read_event read_event = {
7503 		.header = {
7504 			.type = PERF_RECORD_READ,
7505 			.misc = 0,
7506 			.size = sizeof(read_event) + event->read_size,
7507 		},
7508 		.pid = perf_event_pid(event, task),
7509 		.tid = perf_event_tid(event, task),
7510 	};
7511 	int ret;
7512 
7513 	perf_event_header__init_id(&read_event.header, &sample, event);
7514 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7515 	if (ret)
7516 		return;
7517 
7518 	perf_output_put(&handle, read_event);
7519 	perf_output_read(&handle, event);
7520 	perf_event__output_id_sample(event, &handle, &sample);
7521 
7522 	perf_output_end(&handle);
7523 }
7524 
7525 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7526 
7527 static void
7528 perf_iterate_ctx(struct perf_event_context *ctx,
7529 		   perf_iterate_f output,
7530 		   void *data, bool all)
7531 {
7532 	struct perf_event *event;
7533 
7534 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7535 		if (!all) {
7536 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7537 				continue;
7538 			if (!event_filter_match(event))
7539 				continue;
7540 		}
7541 
7542 		output(event, data);
7543 	}
7544 }
7545 
7546 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7547 {
7548 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7549 	struct perf_event *event;
7550 
7551 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7552 		/*
7553 		 * Skip events that are not fully formed yet; ensure that
7554 		 * if we observe event->ctx, both event and ctx will be
7555 		 * complete enough. See perf_install_in_context().
7556 		 */
7557 		if (!smp_load_acquire(&event->ctx))
7558 			continue;
7559 
7560 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7561 			continue;
7562 		if (!event_filter_match(event))
7563 			continue;
7564 		output(event, data);
7565 	}
7566 }
7567 
7568 /*
7569  * Iterate all events that need to receive side-band events.
7570  *
7571  * For new callers; ensure that account_pmu_sb_event() includes
7572  * your event, otherwise it might not get delivered.
7573  */
7574 static void
7575 perf_iterate_sb(perf_iterate_f output, void *data,
7576 	       struct perf_event_context *task_ctx)
7577 {
7578 	struct perf_event_context *ctx;
7579 	int ctxn;
7580 
7581 	rcu_read_lock();
7582 	preempt_disable();
7583 
7584 	/*
7585 	 * If we have task_ctx != NULL we only notify the task context itself.
7586 	 * The task_ctx is set only for EXIT events before releasing task
7587 	 * context.
7588 	 */
7589 	if (task_ctx) {
7590 		perf_iterate_ctx(task_ctx, output, data, false);
7591 		goto done;
7592 	}
7593 
7594 	perf_iterate_sb_cpu(output, data);
7595 
7596 	for_each_task_context_nr(ctxn) {
7597 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7598 		if (ctx)
7599 			perf_iterate_ctx(ctx, output, data, false);
7600 	}
7601 done:
7602 	preempt_enable();
7603 	rcu_read_unlock();
7604 }
7605 
7606 /*
7607  * Clear all file-based filters at exec, they'll have to be
7608  * re-instated when/if these objects are mmapped again.
7609  */
7610 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7611 {
7612 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7613 	struct perf_addr_filter *filter;
7614 	unsigned int restart = 0, count = 0;
7615 	unsigned long flags;
7616 
7617 	if (!has_addr_filter(event))
7618 		return;
7619 
7620 	raw_spin_lock_irqsave(&ifh->lock, flags);
7621 	list_for_each_entry(filter, &ifh->list, entry) {
7622 		if (filter->path.dentry) {
7623 			event->addr_filter_ranges[count].start = 0;
7624 			event->addr_filter_ranges[count].size = 0;
7625 			restart++;
7626 		}
7627 
7628 		count++;
7629 	}
7630 
7631 	if (restart)
7632 		event->addr_filters_gen++;
7633 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7634 
7635 	if (restart)
7636 		perf_event_stop(event, 1);
7637 }
7638 
7639 void perf_event_exec(void)
7640 {
7641 	struct perf_event_context *ctx;
7642 	int ctxn;
7643 
7644 	for_each_task_context_nr(ctxn) {
7645 		perf_event_enable_on_exec(ctxn);
7646 		perf_event_remove_on_exec(ctxn);
7647 
7648 		rcu_read_lock();
7649 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7650 		if (ctx) {
7651 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7652 					 NULL, true);
7653 		}
7654 		rcu_read_unlock();
7655 	}
7656 }
7657 
7658 struct remote_output {
7659 	struct perf_buffer	*rb;
7660 	int			err;
7661 };
7662 
7663 static void __perf_event_output_stop(struct perf_event *event, void *data)
7664 {
7665 	struct perf_event *parent = event->parent;
7666 	struct remote_output *ro = data;
7667 	struct perf_buffer *rb = ro->rb;
7668 	struct stop_event_data sd = {
7669 		.event	= event,
7670 	};
7671 
7672 	if (!has_aux(event))
7673 		return;
7674 
7675 	if (!parent)
7676 		parent = event;
7677 
7678 	/*
7679 	 * In case of inheritance, it will be the parent that links to the
7680 	 * ring-buffer, but it will be the child that's actually using it.
7681 	 *
7682 	 * We are using event::rb to determine if the event should be stopped,
7683 	 * however this may race with ring_buffer_attach() (through set_output),
7684 	 * which will make us skip the event that actually needs to be stopped.
7685 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7686 	 * its rb pointer.
7687 	 */
7688 	if (rcu_dereference(parent->rb) == rb)
7689 		ro->err = __perf_event_stop(&sd);
7690 }
7691 
7692 static int __perf_pmu_output_stop(void *info)
7693 {
7694 	struct perf_event *event = info;
7695 	struct pmu *pmu = event->ctx->pmu;
7696 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7697 	struct remote_output ro = {
7698 		.rb	= event->rb,
7699 	};
7700 
7701 	rcu_read_lock();
7702 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7703 	if (cpuctx->task_ctx)
7704 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7705 				   &ro, false);
7706 	rcu_read_unlock();
7707 
7708 	return ro.err;
7709 }
7710 
7711 static void perf_pmu_output_stop(struct perf_event *event)
7712 {
7713 	struct perf_event *iter;
7714 	int err, cpu;
7715 
7716 restart:
7717 	rcu_read_lock();
7718 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7719 		/*
7720 		 * For per-CPU events, we need to make sure that neither they
7721 		 * nor their children are running; for cpu==-1 events it's
7722 		 * sufficient to stop the event itself if it's active, since
7723 		 * it can't have children.
7724 		 */
7725 		cpu = iter->cpu;
7726 		if (cpu == -1)
7727 			cpu = READ_ONCE(iter->oncpu);
7728 
7729 		if (cpu == -1)
7730 			continue;
7731 
7732 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7733 		if (err == -EAGAIN) {
7734 			rcu_read_unlock();
7735 			goto restart;
7736 		}
7737 	}
7738 	rcu_read_unlock();
7739 }
7740 
7741 /*
7742  * task tracking -- fork/exit
7743  *
7744  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7745  */
7746 
7747 struct perf_task_event {
7748 	struct task_struct		*task;
7749 	struct perf_event_context	*task_ctx;
7750 
7751 	struct {
7752 		struct perf_event_header	header;
7753 
7754 		u32				pid;
7755 		u32				ppid;
7756 		u32				tid;
7757 		u32				ptid;
7758 		u64				time;
7759 	} event_id;
7760 };
7761 
7762 static int perf_event_task_match(struct perf_event *event)
7763 {
7764 	return event->attr.comm  || event->attr.mmap ||
7765 	       event->attr.mmap2 || event->attr.mmap_data ||
7766 	       event->attr.task;
7767 }
7768 
7769 static void perf_event_task_output(struct perf_event *event,
7770 				   void *data)
7771 {
7772 	struct perf_task_event *task_event = data;
7773 	struct perf_output_handle handle;
7774 	struct perf_sample_data	sample;
7775 	struct task_struct *task = task_event->task;
7776 	int ret, size = task_event->event_id.header.size;
7777 
7778 	if (!perf_event_task_match(event))
7779 		return;
7780 
7781 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7782 
7783 	ret = perf_output_begin(&handle, &sample, event,
7784 				task_event->event_id.header.size);
7785 	if (ret)
7786 		goto out;
7787 
7788 	task_event->event_id.pid = perf_event_pid(event, task);
7789 	task_event->event_id.tid = perf_event_tid(event, task);
7790 
7791 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7792 		task_event->event_id.ppid = perf_event_pid(event,
7793 							task->real_parent);
7794 		task_event->event_id.ptid = perf_event_pid(event,
7795 							task->real_parent);
7796 	} else {  /* PERF_RECORD_FORK */
7797 		task_event->event_id.ppid = perf_event_pid(event, current);
7798 		task_event->event_id.ptid = perf_event_tid(event, current);
7799 	}
7800 
7801 	task_event->event_id.time = perf_event_clock(event);
7802 
7803 	perf_output_put(&handle, task_event->event_id);
7804 
7805 	perf_event__output_id_sample(event, &handle, &sample);
7806 
7807 	perf_output_end(&handle);
7808 out:
7809 	task_event->event_id.header.size = size;
7810 }
7811 
7812 static void perf_event_task(struct task_struct *task,
7813 			      struct perf_event_context *task_ctx,
7814 			      int new)
7815 {
7816 	struct perf_task_event task_event;
7817 
7818 	if (!atomic_read(&nr_comm_events) &&
7819 	    !atomic_read(&nr_mmap_events) &&
7820 	    !atomic_read(&nr_task_events))
7821 		return;
7822 
7823 	task_event = (struct perf_task_event){
7824 		.task	  = task,
7825 		.task_ctx = task_ctx,
7826 		.event_id    = {
7827 			.header = {
7828 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7829 				.misc = 0,
7830 				.size = sizeof(task_event.event_id),
7831 			},
7832 			/* .pid  */
7833 			/* .ppid */
7834 			/* .tid  */
7835 			/* .ptid */
7836 			/* .time */
7837 		},
7838 	};
7839 
7840 	perf_iterate_sb(perf_event_task_output,
7841 		       &task_event,
7842 		       task_ctx);
7843 }
7844 
7845 void perf_event_fork(struct task_struct *task)
7846 {
7847 	perf_event_task(task, NULL, 1);
7848 	perf_event_namespaces(task);
7849 }
7850 
7851 /*
7852  * comm tracking
7853  */
7854 
7855 struct perf_comm_event {
7856 	struct task_struct	*task;
7857 	char			*comm;
7858 	int			comm_size;
7859 
7860 	struct {
7861 		struct perf_event_header	header;
7862 
7863 		u32				pid;
7864 		u32				tid;
7865 	} event_id;
7866 };
7867 
7868 static int perf_event_comm_match(struct perf_event *event)
7869 {
7870 	return event->attr.comm;
7871 }
7872 
7873 static void perf_event_comm_output(struct perf_event *event,
7874 				   void *data)
7875 {
7876 	struct perf_comm_event *comm_event = data;
7877 	struct perf_output_handle handle;
7878 	struct perf_sample_data sample;
7879 	int size = comm_event->event_id.header.size;
7880 	int ret;
7881 
7882 	if (!perf_event_comm_match(event))
7883 		return;
7884 
7885 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7886 	ret = perf_output_begin(&handle, &sample, event,
7887 				comm_event->event_id.header.size);
7888 
7889 	if (ret)
7890 		goto out;
7891 
7892 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7893 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7894 
7895 	perf_output_put(&handle, comm_event->event_id);
7896 	__output_copy(&handle, comm_event->comm,
7897 				   comm_event->comm_size);
7898 
7899 	perf_event__output_id_sample(event, &handle, &sample);
7900 
7901 	perf_output_end(&handle);
7902 out:
7903 	comm_event->event_id.header.size = size;
7904 }
7905 
7906 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7907 {
7908 	char comm[TASK_COMM_LEN];
7909 	unsigned int size;
7910 
7911 	memset(comm, 0, sizeof(comm));
7912 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7913 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7914 
7915 	comm_event->comm = comm;
7916 	comm_event->comm_size = size;
7917 
7918 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7919 
7920 	perf_iterate_sb(perf_event_comm_output,
7921 		       comm_event,
7922 		       NULL);
7923 }
7924 
7925 void perf_event_comm(struct task_struct *task, bool exec)
7926 {
7927 	struct perf_comm_event comm_event;
7928 
7929 	if (!atomic_read(&nr_comm_events))
7930 		return;
7931 
7932 	comm_event = (struct perf_comm_event){
7933 		.task	= task,
7934 		/* .comm      */
7935 		/* .comm_size */
7936 		.event_id  = {
7937 			.header = {
7938 				.type = PERF_RECORD_COMM,
7939 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7940 				/* .size */
7941 			},
7942 			/* .pid */
7943 			/* .tid */
7944 		},
7945 	};
7946 
7947 	perf_event_comm_event(&comm_event);
7948 }
7949 
7950 /*
7951  * namespaces tracking
7952  */
7953 
7954 struct perf_namespaces_event {
7955 	struct task_struct		*task;
7956 
7957 	struct {
7958 		struct perf_event_header	header;
7959 
7960 		u32				pid;
7961 		u32				tid;
7962 		u64				nr_namespaces;
7963 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7964 	} event_id;
7965 };
7966 
7967 static int perf_event_namespaces_match(struct perf_event *event)
7968 {
7969 	return event->attr.namespaces;
7970 }
7971 
7972 static void perf_event_namespaces_output(struct perf_event *event,
7973 					 void *data)
7974 {
7975 	struct perf_namespaces_event *namespaces_event = data;
7976 	struct perf_output_handle handle;
7977 	struct perf_sample_data sample;
7978 	u16 header_size = namespaces_event->event_id.header.size;
7979 	int ret;
7980 
7981 	if (!perf_event_namespaces_match(event))
7982 		return;
7983 
7984 	perf_event_header__init_id(&namespaces_event->event_id.header,
7985 				   &sample, event);
7986 	ret = perf_output_begin(&handle, &sample, event,
7987 				namespaces_event->event_id.header.size);
7988 	if (ret)
7989 		goto out;
7990 
7991 	namespaces_event->event_id.pid = perf_event_pid(event,
7992 							namespaces_event->task);
7993 	namespaces_event->event_id.tid = perf_event_tid(event,
7994 							namespaces_event->task);
7995 
7996 	perf_output_put(&handle, namespaces_event->event_id);
7997 
7998 	perf_event__output_id_sample(event, &handle, &sample);
7999 
8000 	perf_output_end(&handle);
8001 out:
8002 	namespaces_event->event_id.header.size = header_size;
8003 }
8004 
8005 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8006 				   struct task_struct *task,
8007 				   const struct proc_ns_operations *ns_ops)
8008 {
8009 	struct path ns_path;
8010 	struct inode *ns_inode;
8011 	int error;
8012 
8013 	error = ns_get_path(&ns_path, task, ns_ops);
8014 	if (!error) {
8015 		ns_inode = ns_path.dentry->d_inode;
8016 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8017 		ns_link_info->ino = ns_inode->i_ino;
8018 		path_put(&ns_path);
8019 	}
8020 }
8021 
8022 void perf_event_namespaces(struct task_struct *task)
8023 {
8024 	struct perf_namespaces_event namespaces_event;
8025 	struct perf_ns_link_info *ns_link_info;
8026 
8027 	if (!atomic_read(&nr_namespaces_events))
8028 		return;
8029 
8030 	namespaces_event = (struct perf_namespaces_event){
8031 		.task	= task,
8032 		.event_id  = {
8033 			.header = {
8034 				.type = PERF_RECORD_NAMESPACES,
8035 				.misc = 0,
8036 				.size = sizeof(namespaces_event.event_id),
8037 			},
8038 			/* .pid */
8039 			/* .tid */
8040 			.nr_namespaces = NR_NAMESPACES,
8041 			/* .link_info[NR_NAMESPACES] */
8042 		},
8043 	};
8044 
8045 	ns_link_info = namespaces_event.event_id.link_info;
8046 
8047 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8048 			       task, &mntns_operations);
8049 
8050 #ifdef CONFIG_USER_NS
8051 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8052 			       task, &userns_operations);
8053 #endif
8054 #ifdef CONFIG_NET_NS
8055 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8056 			       task, &netns_operations);
8057 #endif
8058 #ifdef CONFIG_UTS_NS
8059 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8060 			       task, &utsns_operations);
8061 #endif
8062 #ifdef CONFIG_IPC_NS
8063 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8064 			       task, &ipcns_operations);
8065 #endif
8066 #ifdef CONFIG_PID_NS
8067 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8068 			       task, &pidns_operations);
8069 #endif
8070 #ifdef CONFIG_CGROUPS
8071 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8072 			       task, &cgroupns_operations);
8073 #endif
8074 
8075 	perf_iterate_sb(perf_event_namespaces_output,
8076 			&namespaces_event,
8077 			NULL);
8078 }
8079 
8080 /*
8081  * cgroup tracking
8082  */
8083 #ifdef CONFIG_CGROUP_PERF
8084 
8085 struct perf_cgroup_event {
8086 	char				*path;
8087 	int				path_size;
8088 	struct {
8089 		struct perf_event_header	header;
8090 		u64				id;
8091 		char				path[];
8092 	} event_id;
8093 };
8094 
8095 static int perf_event_cgroup_match(struct perf_event *event)
8096 {
8097 	return event->attr.cgroup;
8098 }
8099 
8100 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8101 {
8102 	struct perf_cgroup_event *cgroup_event = data;
8103 	struct perf_output_handle handle;
8104 	struct perf_sample_data sample;
8105 	u16 header_size = cgroup_event->event_id.header.size;
8106 	int ret;
8107 
8108 	if (!perf_event_cgroup_match(event))
8109 		return;
8110 
8111 	perf_event_header__init_id(&cgroup_event->event_id.header,
8112 				   &sample, event);
8113 	ret = perf_output_begin(&handle, &sample, event,
8114 				cgroup_event->event_id.header.size);
8115 	if (ret)
8116 		goto out;
8117 
8118 	perf_output_put(&handle, cgroup_event->event_id);
8119 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8120 
8121 	perf_event__output_id_sample(event, &handle, &sample);
8122 
8123 	perf_output_end(&handle);
8124 out:
8125 	cgroup_event->event_id.header.size = header_size;
8126 }
8127 
8128 static void perf_event_cgroup(struct cgroup *cgrp)
8129 {
8130 	struct perf_cgroup_event cgroup_event;
8131 	char path_enomem[16] = "//enomem";
8132 	char *pathname;
8133 	size_t size;
8134 
8135 	if (!atomic_read(&nr_cgroup_events))
8136 		return;
8137 
8138 	cgroup_event = (struct perf_cgroup_event){
8139 		.event_id  = {
8140 			.header = {
8141 				.type = PERF_RECORD_CGROUP,
8142 				.misc = 0,
8143 				.size = sizeof(cgroup_event.event_id),
8144 			},
8145 			.id = cgroup_id(cgrp),
8146 		},
8147 	};
8148 
8149 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8150 	if (pathname == NULL) {
8151 		cgroup_event.path = path_enomem;
8152 	} else {
8153 		/* just to be sure to have enough space for alignment */
8154 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8155 		cgroup_event.path = pathname;
8156 	}
8157 
8158 	/*
8159 	 * Since our buffer works in 8 byte units we need to align our string
8160 	 * size to a multiple of 8. However, we must guarantee the tail end is
8161 	 * zero'd out to avoid leaking random bits to userspace.
8162 	 */
8163 	size = strlen(cgroup_event.path) + 1;
8164 	while (!IS_ALIGNED(size, sizeof(u64)))
8165 		cgroup_event.path[size++] = '\0';
8166 
8167 	cgroup_event.event_id.header.size += size;
8168 	cgroup_event.path_size = size;
8169 
8170 	perf_iterate_sb(perf_event_cgroup_output,
8171 			&cgroup_event,
8172 			NULL);
8173 
8174 	kfree(pathname);
8175 }
8176 
8177 #endif
8178 
8179 /*
8180  * mmap tracking
8181  */
8182 
8183 struct perf_mmap_event {
8184 	struct vm_area_struct	*vma;
8185 
8186 	const char		*file_name;
8187 	int			file_size;
8188 	int			maj, min;
8189 	u64			ino;
8190 	u64			ino_generation;
8191 	u32			prot, flags;
8192 	u8			build_id[BUILD_ID_SIZE_MAX];
8193 	u32			build_id_size;
8194 
8195 	struct {
8196 		struct perf_event_header	header;
8197 
8198 		u32				pid;
8199 		u32				tid;
8200 		u64				start;
8201 		u64				len;
8202 		u64				pgoff;
8203 	} event_id;
8204 };
8205 
8206 static int perf_event_mmap_match(struct perf_event *event,
8207 				 void *data)
8208 {
8209 	struct perf_mmap_event *mmap_event = data;
8210 	struct vm_area_struct *vma = mmap_event->vma;
8211 	int executable = vma->vm_flags & VM_EXEC;
8212 
8213 	return (!executable && event->attr.mmap_data) ||
8214 	       (executable && (event->attr.mmap || event->attr.mmap2));
8215 }
8216 
8217 static void perf_event_mmap_output(struct perf_event *event,
8218 				   void *data)
8219 {
8220 	struct perf_mmap_event *mmap_event = data;
8221 	struct perf_output_handle handle;
8222 	struct perf_sample_data sample;
8223 	int size = mmap_event->event_id.header.size;
8224 	u32 type = mmap_event->event_id.header.type;
8225 	bool use_build_id;
8226 	int ret;
8227 
8228 	if (!perf_event_mmap_match(event, data))
8229 		return;
8230 
8231 	if (event->attr.mmap2) {
8232 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8233 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8234 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8235 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8236 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8237 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8238 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8239 	}
8240 
8241 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8242 	ret = perf_output_begin(&handle, &sample, event,
8243 				mmap_event->event_id.header.size);
8244 	if (ret)
8245 		goto out;
8246 
8247 	mmap_event->event_id.pid = perf_event_pid(event, current);
8248 	mmap_event->event_id.tid = perf_event_tid(event, current);
8249 
8250 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8251 
8252 	if (event->attr.mmap2 && use_build_id)
8253 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8254 
8255 	perf_output_put(&handle, mmap_event->event_id);
8256 
8257 	if (event->attr.mmap2) {
8258 		if (use_build_id) {
8259 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8260 
8261 			__output_copy(&handle, size, 4);
8262 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8263 		} else {
8264 			perf_output_put(&handle, mmap_event->maj);
8265 			perf_output_put(&handle, mmap_event->min);
8266 			perf_output_put(&handle, mmap_event->ino);
8267 			perf_output_put(&handle, mmap_event->ino_generation);
8268 		}
8269 		perf_output_put(&handle, mmap_event->prot);
8270 		perf_output_put(&handle, mmap_event->flags);
8271 	}
8272 
8273 	__output_copy(&handle, mmap_event->file_name,
8274 				   mmap_event->file_size);
8275 
8276 	perf_event__output_id_sample(event, &handle, &sample);
8277 
8278 	perf_output_end(&handle);
8279 out:
8280 	mmap_event->event_id.header.size = size;
8281 	mmap_event->event_id.header.type = type;
8282 }
8283 
8284 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8285 {
8286 	struct vm_area_struct *vma = mmap_event->vma;
8287 	struct file *file = vma->vm_file;
8288 	int maj = 0, min = 0;
8289 	u64 ino = 0, gen = 0;
8290 	u32 prot = 0, flags = 0;
8291 	unsigned int size;
8292 	char tmp[16];
8293 	char *buf = NULL;
8294 	char *name;
8295 
8296 	if (vma->vm_flags & VM_READ)
8297 		prot |= PROT_READ;
8298 	if (vma->vm_flags & VM_WRITE)
8299 		prot |= PROT_WRITE;
8300 	if (vma->vm_flags & VM_EXEC)
8301 		prot |= PROT_EXEC;
8302 
8303 	if (vma->vm_flags & VM_MAYSHARE)
8304 		flags = MAP_SHARED;
8305 	else
8306 		flags = MAP_PRIVATE;
8307 
8308 	if (vma->vm_flags & VM_DENYWRITE)
8309 		flags |= MAP_DENYWRITE;
8310 	if (vma->vm_flags & VM_MAYEXEC)
8311 		flags |= MAP_EXECUTABLE;
8312 	if (vma->vm_flags & VM_LOCKED)
8313 		flags |= MAP_LOCKED;
8314 	if (is_vm_hugetlb_page(vma))
8315 		flags |= MAP_HUGETLB;
8316 
8317 	if (file) {
8318 		struct inode *inode;
8319 		dev_t dev;
8320 
8321 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8322 		if (!buf) {
8323 			name = "//enomem";
8324 			goto cpy_name;
8325 		}
8326 		/*
8327 		 * d_path() works from the end of the rb backwards, so we
8328 		 * need to add enough zero bytes after the string to handle
8329 		 * the 64bit alignment we do later.
8330 		 */
8331 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8332 		if (IS_ERR(name)) {
8333 			name = "//toolong";
8334 			goto cpy_name;
8335 		}
8336 		inode = file_inode(vma->vm_file);
8337 		dev = inode->i_sb->s_dev;
8338 		ino = inode->i_ino;
8339 		gen = inode->i_generation;
8340 		maj = MAJOR(dev);
8341 		min = MINOR(dev);
8342 
8343 		goto got_name;
8344 	} else {
8345 		if (vma->vm_ops && vma->vm_ops->name) {
8346 			name = (char *) vma->vm_ops->name(vma);
8347 			if (name)
8348 				goto cpy_name;
8349 		}
8350 
8351 		name = (char *)arch_vma_name(vma);
8352 		if (name)
8353 			goto cpy_name;
8354 
8355 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8356 				vma->vm_end >= vma->vm_mm->brk) {
8357 			name = "[heap]";
8358 			goto cpy_name;
8359 		}
8360 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8361 				vma->vm_end >= vma->vm_mm->start_stack) {
8362 			name = "[stack]";
8363 			goto cpy_name;
8364 		}
8365 
8366 		name = "//anon";
8367 		goto cpy_name;
8368 	}
8369 
8370 cpy_name:
8371 	strlcpy(tmp, name, sizeof(tmp));
8372 	name = tmp;
8373 got_name:
8374 	/*
8375 	 * Since our buffer works in 8 byte units we need to align our string
8376 	 * size to a multiple of 8. However, we must guarantee the tail end is
8377 	 * zero'd out to avoid leaking random bits to userspace.
8378 	 */
8379 	size = strlen(name)+1;
8380 	while (!IS_ALIGNED(size, sizeof(u64)))
8381 		name[size++] = '\0';
8382 
8383 	mmap_event->file_name = name;
8384 	mmap_event->file_size = size;
8385 	mmap_event->maj = maj;
8386 	mmap_event->min = min;
8387 	mmap_event->ino = ino;
8388 	mmap_event->ino_generation = gen;
8389 	mmap_event->prot = prot;
8390 	mmap_event->flags = flags;
8391 
8392 	if (!(vma->vm_flags & VM_EXEC))
8393 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8394 
8395 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8396 
8397 	if (atomic_read(&nr_build_id_events))
8398 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8399 
8400 	perf_iterate_sb(perf_event_mmap_output,
8401 		       mmap_event,
8402 		       NULL);
8403 
8404 	kfree(buf);
8405 }
8406 
8407 /*
8408  * Check whether inode and address range match filter criteria.
8409  */
8410 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8411 				     struct file *file, unsigned long offset,
8412 				     unsigned long size)
8413 {
8414 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8415 	if (!filter->path.dentry)
8416 		return false;
8417 
8418 	if (d_inode(filter->path.dentry) != file_inode(file))
8419 		return false;
8420 
8421 	if (filter->offset > offset + size)
8422 		return false;
8423 
8424 	if (filter->offset + filter->size < offset)
8425 		return false;
8426 
8427 	return true;
8428 }
8429 
8430 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8431 					struct vm_area_struct *vma,
8432 					struct perf_addr_filter_range *fr)
8433 {
8434 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8435 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8436 	struct file *file = vma->vm_file;
8437 
8438 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8439 		return false;
8440 
8441 	if (filter->offset < off) {
8442 		fr->start = vma->vm_start;
8443 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8444 	} else {
8445 		fr->start = vma->vm_start + filter->offset - off;
8446 		fr->size = min(vma->vm_end - fr->start, filter->size);
8447 	}
8448 
8449 	return true;
8450 }
8451 
8452 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8453 {
8454 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8455 	struct vm_area_struct *vma = data;
8456 	struct perf_addr_filter *filter;
8457 	unsigned int restart = 0, count = 0;
8458 	unsigned long flags;
8459 
8460 	if (!has_addr_filter(event))
8461 		return;
8462 
8463 	if (!vma->vm_file)
8464 		return;
8465 
8466 	raw_spin_lock_irqsave(&ifh->lock, flags);
8467 	list_for_each_entry(filter, &ifh->list, entry) {
8468 		if (perf_addr_filter_vma_adjust(filter, vma,
8469 						&event->addr_filter_ranges[count]))
8470 			restart++;
8471 
8472 		count++;
8473 	}
8474 
8475 	if (restart)
8476 		event->addr_filters_gen++;
8477 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8478 
8479 	if (restart)
8480 		perf_event_stop(event, 1);
8481 }
8482 
8483 /*
8484  * Adjust all task's events' filters to the new vma
8485  */
8486 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8487 {
8488 	struct perf_event_context *ctx;
8489 	int ctxn;
8490 
8491 	/*
8492 	 * Data tracing isn't supported yet and as such there is no need
8493 	 * to keep track of anything that isn't related to executable code:
8494 	 */
8495 	if (!(vma->vm_flags & VM_EXEC))
8496 		return;
8497 
8498 	rcu_read_lock();
8499 	for_each_task_context_nr(ctxn) {
8500 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8501 		if (!ctx)
8502 			continue;
8503 
8504 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8505 	}
8506 	rcu_read_unlock();
8507 }
8508 
8509 void perf_event_mmap(struct vm_area_struct *vma)
8510 {
8511 	struct perf_mmap_event mmap_event;
8512 
8513 	if (!atomic_read(&nr_mmap_events))
8514 		return;
8515 
8516 	mmap_event = (struct perf_mmap_event){
8517 		.vma	= vma,
8518 		/* .file_name */
8519 		/* .file_size */
8520 		.event_id  = {
8521 			.header = {
8522 				.type = PERF_RECORD_MMAP,
8523 				.misc = PERF_RECORD_MISC_USER,
8524 				/* .size */
8525 			},
8526 			/* .pid */
8527 			/* .tid */
8528 			.start  = vma->vm_start,
8529 			.len    = vma->vm_end - vma->vm_start,
8530 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8531 		},
8532 		/* .maj (attr_mmap2 only) */
8533 		/* .min (attr_mmap2 only) */
8534 		/* .ino (attr_mmap2 only) */
8535 		/* .ino_generation (attr_mmap2 only) */
8536 		/* .prot (attr_mmap2 only) */
8537 		/* .flags (attr_mmap2 only) */
8538 	};
8539 
8540 	perf_addr_filters_adjust(vma);
8541 	perf_event_mmap_event(&mmap_event);
8542 }
8543 
8544 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8545 			  unsigned long size, u64 flags)
8546 {
8547 	struct perf_output_handle handle;
8548 	struct perf_sample_data sample;
8549 	struct perf_aux_event {
8550 		struct perf_event_header	header;
8551 		u64				offset;
8552 		u64				size;
8553 		u64				flags;
8554 	} rec = {
8555 		.header = {
8556 			.type = PERF_RECORD_AUX,
8557 			.misc = 0,
8558 			.size = sizeof(rec),
8559 		},
8560 		.offset		= head,
8561 		.size		= size,
8562 		.flags		= flags,
8563 	};
8564 	int ret;
8565 
8566 	perf_event_header__init_id(&rec.header, &sample, event);
8567 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8568 
8569 	if (ret)
8570 		return;
8571 
8572 	perf_output_put(&handle, rec);
8573 	perf_event__output_id_sample(event, &handle, &sample);
8574 
8575 	perf_output_end(&handle);
8576 }
8577 
8578 /*
8579  * Lost/dropped samples logging
8580  */
8581 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8582 {
8583 	struct perf_output_handle handle;
8584 	struct perf_sample_data sample;
8585 	int ret;
8586 
8587 	struct {
8588 		struct perf_event_header	header;
8589 		u64				lost;
8590 	} lost_samples_event = {
8591 		.header = {
8592 			.type = PERF_RECORD_LOST_SAMPLES,
8593 			.misc = 0,
8594 			.size = sizeof(lost_samples_event),
8595 		},
8596 		.lost		= lost,
8597 	};
8598 
8599 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8600 
8601 	ret = perf_output_begin(&handle, &sample, event,
8602 				lost_samples_event.header.size);
8603 	if (ret)
8604 		return;
8605 
8606 	perf_output_put(&handle, lost_samples_event);
8607 	perf_event__output_id_sample(event, &handle, &sample);
8608 	perf_output_end(&handle);
8609 }
8610 
8611 /*
8612  * context_switch tracking
8613  */
8614 
8615 struct perf_switch_event {
8616 	struct task_struct	*task;
8617 	struct task_struct	*next_prev;
8618 
8619 	struct {
8620 		struct perf_event_header	header;
8621 		u32				next_prev_pid;
8622 		u32				next_prev_tid;
8623 	} event_id;
8624 };
8625 
8626 static int perf_event_switch_match(struct perf_event *event)
8627 {
8628 	return event->attr.context_switch;
8629 }
8630 
8631 static void perf_event_switch_output(struct perf_event *event, void *data)
8632 {
8633 	struct perf_switch_event *se = data;
8634 	struct perf_output_handle handle;
8635 	struct perf_sample_data sample;
8636 	int ret;
8637 
8638 	if (!perf_event_switch_match(event))
8639 		return;
8640 
8641 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8642 	if (event->ctx->task) {
8643 		se->event_id.header.type = PERF_RECORD_SWITCH;
8644 		se->event_id.header.size = sizeof(se->event_id.header);
8645 	} else {
8646 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8647 		se->event_id.header.size = sizeof(se->event_id);
8648 		se->event_id.next_prev_pid =
8649 					perf_event_pid(event, se->next_prev);
8650 		se->event_id.next_prev_tid =
8651 					perf_event_tid(event, se->next_prev);
8652 	}
8653 
8654 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8655 
8656 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8657 	if (ret)
8658 		return;
8659 
8660 	if (event->ctx->task)
8661 		perf_output_put(&handle, se->event_id.header);
8662 	else
8663 		perf_output_put(&handle, se->event_id);
8664 
8665 	perf_event__output_id_sample(event, &handle, &sample);
8666 
8667 	perf_output_end(&handle);
8668 }
8669 
8670 static void perf_event_switch(struct task_struct *task,
8671 			      struct task_struct *next_prev, bool sched_in)
8672 {
8673 	struct perf_switch_event switch_event;
8674 
8675 	/* N.B. caller checks nr_switch_events != 0 */
8676 
8677 	switch_event = (struct perf_switch_event){
8678 		.task		= task,
8679 		.next_prev	= next_prev,
8680 		.event_id	= {
8681 			.header = {
8682 				/* .type */
8683 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8684 				/* .size */
8685 			},
8686 			/* .next_prev_pid */
8687 			/* .next_prev_tid */
8688 		},
8689 	};
8690 
8691 	if (!sched_in && task->state == TASK_RUNNING)
8692 		switch_event.event_id.header.misc |=
8693 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8694 
8695 	perf_iterate_sb(perf_event_switch_output,
8696 		       &switch_event,
8697 		       NULL);
8698 }
8699 
8700 /*
8701  * IRQ throttle logging
8702  */
8703 
8704 static void perf_log_throttle(struct perf_event *event, int enable)
8705 {
8706 	struct perf_output_handle handle;
8707 	struct perf_sample_data sample;
8708 	int ret;
8709 
8710 	struct {
8711 		struct perf_event_header	header;
8712 		u64				time;
8713 		u64				id;
8714 		u64				stream_id;
8715 	} throttle_event = {
8716 		.header = {
8717 			.type = PERF_RECORD_THROTTLE,
8718 			.misc = 0,
8719 			.size = sizeof(throttle_event),
8720 		},
8721 		.time		= perf_event_clock(event),
8722 		.id		= primary_event_id(event),
8723 		.stream_id	= event->id,
8724 	};
8725 
8726 	if (enable)
8727 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8728 
8729 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8730 
8731 	ret = perf_output_begin(&handle, &sample, event,
8732 				throttle_event.header.size);
8733 	if (ret)
8734 		return;
8735 
8736 	perf_output_put(&handle, throttle_event);
8737 	perf_event__output_id_sample(event, &handle, &sample);
8738 	perf_output_end(&handle);
8739 }
8740 
8741 /*
8742  * ksymbol register/unregister tracking
8743  */
8744 
8745 struct perf_ksymbol_event {
8746 	const char	*name;
8747 	int		name_len;
8748 	struct {
8749 		struct perf_event_header        header;
8750 		u64				addr;
8751 		u32				len;
8752 		u16				ksym_type;
8753 		u16				flags;
8754 	} event_id;
8755 };
8756 
8757 static int perf_event_ksymbol_match(struct perf_event *event)
8758 {
8759 	return event->attr.ksymbol;
8760 }
8761 
8762 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8763 {
8764 	struct perf_ksymbol_event *ksymbol_event = data;
8765 	struct perf_output_handle handle;
8766 	struct perf_sample_data sample;
8767 	int ret;
8768 
8769 	if (!perf_event_ksymbol_match(event))
8770 		return;
8771 
8772 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8773 				   &sample, event);
8774 	ret = perf_output_begin(&handle, &sample, event,
8775 				ksymbol_event->event_id.header.size);
8776 	if (ret)
8777 		return;
8778 
8779 	perf_output_put(&handle, ksymbol_event->event_id);
8780 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8781 	perf_event__output_id_sample(event, &handle, &sample);
8782 
8783 	perf_output_end(&handle);
8784 }
8785 
8786 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8787 			const char *sym)
8788 {
8789 	struct perf_ksymbol_event ksymbol_event;
8790 	char name[KSYM_NAME_LEN];
8791 	u16 flags = 0;
8792 	int name_len;
8793 
8794 	if (!atomic_read(&nr_ksymbol_events))
8795 		return;
8796 
8797 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8798 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8799 		goto err;
8800 
8801 	strlcpy(name, sym, KSYM_NAME_LEN);
8802 	name_len = strlen(name) + 1;
8803 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8804 		name[name_len++] = '\0';
8805 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8806 
8807 	if (unregister)
8808 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8809 
8810 	ksymbol_event = (struct perf_ksymbol_event){
8811 		.name = name,
8812 		.name_len = name_len,
8813 		.event_id = {
8814 			.header = {
8815 				.type = PERF_RECORD_KSYMBOL,
8816 				.size = sizeof(ksymbol_event.event_id) +
8817 					name_len,
8818 			},
8819 			.addr = addr,
8820 			.len = len,
8821 			.ksym_type = ksym_type,
8822 			.flags = flags,
8823 		},
8824 	};
8825 
8826 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8827 	return;
8828 err:
8829 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8830 }
8831 
8832 /*
8833  * bpf program load/unload tracking
8834  */
8835 
8836 struct perf_bpf_event {
8837 	struct bpf_prog	*prog;
8838 	struct {
8839 		struct perf_event_header        header;
8840 		u16				type;
8841 		u16				flags;
8842 		u32				id;
8843 		u8				tag[BPF_TAG_SIZE];
8844 	} event_id;
8845 };
8846 
8847 static int perf_event_bpf_match(struct perf_event *event)
8848 {
8849 	return event->attr.bpf_event;
8850 }
8851 
8852 static void perf_event_bpf_output(struct perf_event *event, void *data)
8853 {
8854 	struct perf_bpf_event *bpf_event = data;
8855 	struct perf_output_handle handle;
8856 	struct perf_sample_data sample;
8857 	int ret;
8858 
8859 	if (!perf_event_bpf_match(event))
8860 		return;
8861 
8862 	perf_event_header__init_id(&bpf_event->event_id.header,
8863 				   &sample, event);
8864 	ret = perf_output_begin(&handle, data, event,
8865 				bpf_event->event_id.header.size);
8866 	if (ret)
8867 		return;
8868 
8869 	perf_output_put(&handle, bpf_event->event_id);
8870 	perf_event__output_id_sample(event, &handle, &sample);
8871 
8872 	perf_output_end(&handle);
8873 }
8874 
8875 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8876 					 enum perf_bpf_event_type type)
8877 {
8878 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8879 	int i;
8880 
8881 	if (prog->aux->func_cnt == 0) {
8882 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8883 				   (u64)(unsigned long)prog->bpf_func,
8884 				   prog->jited_len, unregister,
8885 				   prog->aux->ksym.name);
8886 	} else {
8887 		for (i = 0; i < prog->aux->func_cnt; i++) {
8888 			struct bpf_prog *subprog = prog->aux->func[i];
8889 
8890 			perf_event_ksymbol(
8891 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8892 				(u64)(unsigned long)subprog->bpf_func,
8893 				subprog->jited_len, unregister,
8894 				prog->aux->ksym.name);
8895 		}
8896 	}
8897 }
8898 
8899 void perf_event_bpf_event(struct bpf_prog *prog,
8900 			  enum perf_bpf_event_type type,
8901 			  u16 flags)
8902 {
8903 	struct perf_bpf_event bpf_event;
8904 
8905 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8906 	    type >= PERF_BPF_EVENT_MAX)
8907 		return;
8908 
8909 	switch (type) {
8910 	case PERF_BPF_EVENT_PROG_LOAD:
8911 	case PERF_BPF_EVENT_PROG_UNLOAD:
8912 		if (atomic_read(&nr_ksymbol_events))
8913 			perf_event_bpf_emit_ksymbols(prog, type);
8914 		break;
8915 	default:
8916 		break;
8917 	}
8918 
8919 	if (!atomic_read(&nr_bpf_events))
8920 		return;
8921 
8922 	bpf_event = (struct perf_bpf_event){
8923 		.prog = prog,
8924 		.event_id = {
8925 			.header = {
8926 				.type = PERF_RECORD_BPF_EVENT,
8927 				.size = sizeof(bpf_event.event_id),
8928 			},
8929 			.type = type,
8930 			.flags = flags,
8931 			.id = prog->aux->id,
8932 		},
8933 	};
8934 
8935 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8936 
8937 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8938 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8939 }
8940 
8941 struct perf_text_poke_event {
8942 	const void		*old_bytes;
8943 	const void		*new_bytes;
8944 	size_t			pad;
8945 	u16			old_len;
8946 	u16			new_len;
8947 
8948 	struct {
8949 		struct perf_event_header	header;
8950 
8951 		u64				addr;
8952 	} event_id;
8953 };
8954 
8955 static int perf_event_text_poke_match(struct perf_event *event)
8956 {
8957 	return event->attr.text_poke;
8958 }
8959 
8960 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8961 {
8962 	struct perf_text_poke_event *text_poke_event = data;
8963 	struct perf_output_handle handle;
8964 	struct perf_sample_data sample;
8965 	u64 padding = 0;
8966 	int ret;
8967 
8968 	if (!perf_event_text_poke_match(event))
8969 		return;
8970 
8971 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8972 
8973 	ret = perf_output_begin(&handle, &sample, event,
8974 				text_poke_event->event_id.header.size);
8975 	if (ret)
8976 		return;
8977 
8978 	perf_output_put(&handle, text_poke_event->event_id);
8979 	perf_output_put(&handle, text_poke_event->old_len);
8980 	perf_output_put(&handle, text_poke_event->new_len);
8981 
8982 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8983 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8984 
8985 	if (text_poke_event->pad)
8986 		__output_copy(&handle, &padding, text_poke_event->pad);
8987 
8988 	perf_event__output_id_sample(event, &handle, &sample);
8989 
8990 	perf_output_end(&handle);
8991 }
8992 
8993 void perf_event_text_poke(const void *addr, const void *old_bytes,
8994 			  size_t old_len, const void *new_bytes, size_t new_len)
8995 {
8996 	struct perf_text_poke_event text_poke_event;
8997 	size_t tot, pad;
8998 
8999 	if (!atomic_read(&nr_text_poke_events))
9000 		return;
9001 
9002 	tot  = sizeof(text_poke_event.old_len) + old_len;
9003 	tot += sizeof(text_poke_event.new_len) + new_len;
9004 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9005 
9006 	text_poke_event = (struct perf_text_poke_event){
9007 		.old_bytes    = old_bytes,
9008 		.new_bytes    = new_bytes,
9009 		.pad          = pad,
9010 		.old_len      = old_len,
9011 		.new_len      = new_len,
9012 		.event_id  = {
9013 			.header = {
9014 				.type = PERF_RECORD_TEXT_POKE,
9015 				.misc = PERF_RECORD_MISC_KERNEL,
9016 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9017 			},
9018 			.addr = (unsigned long)addr,
9019 		},
9020 	};
9021 
9022 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9023 }
9024 
9025 void perf_event_itrace_started(struct perf_event *event)
9026 {
9027 	event->attach_state |= PERF_ATTACH_ITRACE;
9028 }
9029 
9030 static void perf_log_itrace_start(struct perf_event *event)
9031 {
9032 	struct perf_output_handle handle;
9033 	struct perf_sample_data sample;
9034 	struct perf_aux_event {
9035 		struct perf_event_header        header;
9036 		u32				pid;
9037 		u32				tid;
9038 	} rec;
9039 	int ret;
9040 
9041 	if (event->parent)
9042 		event = event->parent;
9043 
9044 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9045 	    event->attach_state & PERF_ATTACH_ITRACE)
9046 		return;
9047 
9048 	rec.header.type	= PERF_RECORD_ITRACE_START;
9049 	rec.header.misc	= 0;
9050 	rec.header.size	= sizeof(rec);
9051 	rec.pid	= perf_event_pid(event, current);
9052 	rec.tid	= perf_event_tid(event, current);
9053 
9054 	perf_event_header__init_id(&rec.header, &sample, event);
9055 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9056 
9057 	if (ret)
9058 		return;
9059 
9060 	perf_output_put(&handle, rec);
9061 	perf_event__output_id_sample(event, &handle, &sample);
9062 
9063 	perf_output_end(&handle);
9064 }
9065 
9066 static int
9067 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9068 {
9069 	struct hw_perf_event *hwc = &event->hw;
9070 	int ret = 0;
9071 	u64 seq;
9072 
9073 	seq = __this_cpu_read(perf_throttled_seq);
9074 	if (seq != hwc->interrupts_seq) {
9075 		hwc->interrupts_seq = seq;
9076 		hwc->interrupts = 1;
9077 	} else {
9078 		hwc->interrupts++;
9079 		if (unlikely(throttle
9080 			     && hwc->interrupts >= max_samples_per_tick)) {
9081 			__this_cpu_inc(perf_throttled_count);
9082 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9083 			hwc->interrupts = MAX_INTERRUPTS;
9084 			perf_log_throttle(event, 0);
9085 			ret = 1;
9086 		}
9087 	}
9088 
9089 	if (event->attr.freq) {
9090 		u64 now = perf_clock();
9091 		s64 delta = now - hwc->freq_time_stamp;
9092 
9093 		hwc->freq_time_stamp = now;
9094 
9095 		if (delta > 0 && delta < 2*TICK_NSEC)
9096 			perf_adjust_period(event, delta, hwc->last_period, true);
9097 	}
9098 
9099 	return ret;
9100 }
9101 
9102 int perf_event_account_interrupt(struct perf_event *event)
9103 {
9104 	return __perf_event_account_interrupt(event, 1);
9105 }
9106 
9107 /*
9108  * Generic event overflow handling, sampling.
9109  */
9110 
9111 static int __perf_event_overflow(struct perf_event *event,
9112 				   int throttle, struct perf_sample_data *data,
9113 				   struct pt_regs *regs)
9114 {
9115 	int events = atomic_read(&event->event_limit);
9116 	int ret = 0;
9117 
9118 	/*
9119 	 * Non-sampling counters might still use the PMI to fold short
9120 	 * hardware counters, ignore those.
9121 	 */
9122 	if (unlikely(!is_sampling_event(event)))
9123 		return 0;
9124 
9125 	ret = __perf_event_account_interrupt(event, throttle);
9126 
9127 	/*
9128 	 * XXX event_limit might not quite work as expected on inherited
9129 	 * events
9130 	 */
9131 
9132 	event->pending_kill = POLL_IN;
9133 	if (events && atomic_dec_and_test(&event->event_limit)) {
9134 		ret = 1;
9135 		event->pending_kill = POLL_HUP;
9136 		event->pending_addr = data->addr;
9137 
9138 		perf_event_disable_inatomic(event);
9139 	}
9140 
9141 	READ_ONCE(event->overflow_handler)(event, data, regs);
9142 
9143 	if (*perf_event_fasync(event) && event->pending_kill) {
9144 		event->pending_wakeup = 1;
9145 		irq_work_queue(&event->pending);
9146 	}
9147 
9148 	return ret;
9149 }
9150 
9151 int perf_event_overflow(struct perf_event *event,
9152 			  struct perf_sample_data *data,
9153 			  struct pt_regs *regs)
9154 {
9155 	return __perf_event_overflow(event, 1, data, regs);
9156 }
9157 
9158 /*
9159  * Generic software event infrastructure
9160  */
9161 
9162 struct swevent_htable {
9163 	struct swevent_hlist		*swevent_hlist;
9164 	struct mutex			hlist_mutex;
9165 	int				hlist_refcount;
9166 
9167 	/* Recursion avoidance in each contexts */
9168 	int				recursion[PERF_NR_CONTEXTS];
9169 };
9170 
9171 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9172 
9173 /*
9174  * We directly increment event->count and keep a second value in
9175  * event->hw.period_left to count intervals. This period event
9176  * is kept in the range [-sample_period, 0] so that we can use the
9177  * sign as trigger.
9178  */
9179 
9180 u64 perf_swevent_set_period(struct perf_event *event)
9181 {
9182 	struct hw_perf_event *hwc = &event->hw;
9183 	u64 period = hwc->last_period;
9184 	u64 nr, offset;
9185 	s64 old, val;
9186 
9187 	hwc->last_period = hwc->sample_period;
9188 
9189 again:
9190 	old = val = local64_read(&hwc->period_left);
9191 	if (val < 0)
9192 		return 0;
9193 
9194 	nr = div64_u64(period + val, period);
9195 	offset = nr * period;
9196 	val -= offset;
9197 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9198 		goto again;
9199 
9200 	return nr;
9201 }
9202 
9203 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9204 				    struct perf_sample_data *data,
9205 				    struct pt_regs *regs)
9206 {
9207 	struct hw_perf_event *hwc = &event->hw;
9208 	int throttle = 0;
9209 
9210 	if (!overflow)
9211 		overflow = perf_swevent_set_period(event);
9212 
9213 	if (hwc->interrupts == MAX_INTERRUPTS)
9214 		return;
9215 
9216 	for (; overflow; overflow--) {
9217 		if (__perf_event_overflow(event, throttle,
9218 					    data, regs)) {
9219 			/*
9220 			 * We inhibit the overflow from happening when
9221 			 * hwc->interrupts == MAX_INTERRUPTS.
9222 			 */
9223 			break;
9224 		}
9225 		throttle = 1;
9226 	}
9227 }
9228 
9229 static void perf_swevent_event(struct perf_event *event, u64 nr,
9230 			       struct perf_sample_data *data,
9231 			       struct pt_regs *regs)
9232 {
9233 	struct hw_perf_event *hwc = &event->hw;
9234 
9235 	local64_add(nr, &event->count);
9236 
9237 	if (!regs)
9238 		return;
9239 
9240 	if (!is_sampling_event(event))
9241 		return;
9242 
9243 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9244 		data->period = nr;
9245 		return perf_swevent_overflow(event, 1, data, regs);
9246 	} else
9247 		data->period = event->hw.last_period;
9248 
9249 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9250 		return perf_swevent_overflow(event, 1, data, regs);
9251 
9252 	if (local64_add_negative(nr, &hwc->period_left))
9253 		return;
9254 
9255 	perf_swevent_overflow(event, 0, data, regs);
9256 }
9257 
9258 static int perf_exclude_event(struct perf_event *event,
9259 			      struct pt_regs *regs)
9260 {
9261 	if (event->hw.state & PERF_HES_STOPPED)
9262 		return 1;
9263 
9264 	if (regs) {
9265 		if (event->attr.exclude_user && user_mode(regs))
9266 			return 1;
9267 
9268 		if (event->attr.exclude_kernel && !user_mode(regs))
9269 			return 1;
9270 	}
9271 
9272 	return 0;
9273 }
9274 
9275 static int perf_swevent_match(struct perf_event *event,
9276 				enum perf_type_id type,
9277 				u32 event_id,
9278 				struct perf_sample_data *data,
9279 				struct pt_regs *regs)
9280 {
9281 	if (event->attr.type != type)
9282 		return 0;
9283 
9284 	if (event->attr.config != event_id)
9285 		return 0;
9286 
9287 	if (perf_exclude_event(event, regs))
9288 		return 0;
9289 
9290 	return 1;
9291 }
9292 
9293 static inline u64 swevent_hash(u64 type, u32 event_id)
9294 {
9295 	u64 val = event_id | (type << 32);
9296 
9297 	return hash_64(val, SWEVENT_HLIST_BITS);
9298 }
9299 
9300 static inline struct hlist_head *
9301 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9302 {
9303 	u64 hash = swevent_hash(type, event_id);
9304 
9305 	return &hlist->heads[hash];
9306 }
9307 
9308 /* For the read side: events when they trigger */
9309 static inline struct hlist_head *
9310 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9311 {
9312 	struct swevent_hlist *hlist;
9313 
9314 	hlist = rcu_dereference(swhash->swevent_hlist);
9315 	if (!hlist)
9316 		return NULL;
9317 
9318 	return __find_swevent_head(hlist, type, event_id);
9319 }
9320 
9321 /* For the event head insertion and removal in the hlist */
9322 static inline struct hlist_head *
9323 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9324 {
9325 	struct swevent_hlist *hlist;
9326 	u32 event_id = event->attr.config;
9327 	u64 type = event->attr.type;
9328 
9329 	/*
9330 	 * Event scheduling is always serialized against hlist allocation
9331 	 * and release. Which makes the protected version suitable here.
9332 	 * The context lock guarantees that.
9333 	 */
9334 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9335 					  lockdep_is_held(&event->ctx->lock));
9336 	if (!hlist)
9337 		return NULL;
9338 
9339 	return __find_swevent_head(hlist, type, event_id);
9340 }
9341 
9342 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9343 				    u64 nr,
9344 				    struct perf_sample_data *data,
9345 				    struct pt_regs *regs)
9346 {
9347 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9348 	struct perf_event *event;
9349 	struct hlist_head *head;
9350 
9351 	rcu_read_lock();
9352 	head = find_swevent_head_rcu(swhash, type, event_id);
9353 	if (!head)
9354 		goto end;
9355 
9356 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9357 		if (perf_swevent_match(event, type, event_id, data, regs))
9358 			perf_swevent_event(event, nr, data, regs);
9359 	}
9360 end:
9361 	rcu_read_unlock();
9362 }
9363 
9364 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9365 
9366 int perf_swevent_get_recursion_context(void)
9367 {
9368 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9369 
9370 	return get_recursion_context(swhash->recursion);
9371 }
9372 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9373 
9374 void perf_swevent_put_recursion_context(int rctx)
9375 {
9376 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9377 
9378 	put_recursion_context(swhash->recursion, rctx);
9379 }
9380 
9381 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9382 {
9383 	struct perf_sample_data data;
9384 
9385 	if (WARN_ON_ONCE(!regs))
9386 		return;
9387 
9388 	perf_sample_data_init(&data, addr, 0);
9389 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9390 }
9391 
9392 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9393 {
9394 	int rctx;
9395 
9396 	preempt_disable_notrace();
9397 	rctx = perf_swevent_get_recursion_context();
9398 	if (unlikely(rctx < 0))
9399 		goto fail;
9400 
9401 	___perf_sw_event(event_id, nr, regs, addr);
9402 
9403 	perf_swevent_put_recursion_context(rctx);
9404 fail:
9405 	preempt_enable_notrace();
9406 }
9407 
9408 static void perf_swevent_read(struct perf_event *event)
9409 {
9410 }
9411 
9412 static int perf_swevent_add(struct perf_event *event, int flags)
9413 {
9414 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9415 	struct hw_perf_event *hwc = &event->hw;
9416 	struct hlist_head *head;
9417 
9418 	if (is_sampling_event(event)) {
9419 		hwc->last_period = hwc->sample_period;
9420 		perf_swevent_set_period(event);
9421 	}
9422 
9423 	hwc->state = !(flags & PERF_EF_START);
9424 
9425 	head = find_swevent_head(swhash, event);
9426 	if (WARN_ON_ONCE(!head))
9427 		return -EINVAL;
9428 
9429 	hlist_add_head_rcu(&event->hlist_entry, head);
9430 	perf_event_update_userpage(event);
9431 
9432 	return 0;
9433 }
9434 
9435 static void perf_swevent_del(struct perf_event *event, int flags)
9436 {
9437 	hlist_del_rcu(&event->hlist_entry);
9438 }
9439 
9440 static void perf_swevent_start(struct perf_event *event, int flags)
9441 {
9442 	event->hw.state = 0;
9443 }
9444 
9445 static void perf_swevent_stop(struct perf_event *event, int flags)
9446 {
9447 	event->hw.state = PERF_HES_STOPPED;
9448 }
9449 
9450 /* Deref the hlist from the update side */
9451 static inline struct swevent_hlist *
9452 swevent_hlist_deref(struct swevent_htable *swhash)
9453 {
9454 	return rcu_dereference_protected(swhash->swevent_hlist,
9455 					 lockdep_is_held(&swhash->hlist_mutex));
9456 }
9457 
9458 static void swevent_hlist_release(struct swevent_htable *swhash)
9459 {
9460 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9461 
9462 	if (!hlist)
9463 		return;
9464 
9465 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9466 	kfree_rcu(hlist, rcu_head);
9467 }
9468 
9469 static void swevent_hlist_put_cpu(int cpu)
9470 {
9471 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9472 
9473 	mutex_lock(&swhash->hlist_mutex);
9474 
9475 	if (!--swhash->hlist_refcount)
9476 		swevent_hlist_release(swhash);
9477 
9478 	mutex_unlock(&swhash->hlist_mutex);
9479 }
9480 
9481 static void swevent_hlist_put(void)
9482 {
9483 	int cpu;
9484 
9485 	for_each_possible_cpu(cpu)
9486 		swevent_hlist_put_cpu(cpu);
9487 }
9488 
9489 static int swevent_hlist_get_cpu(int cpu)
9490 {
9491 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9492 	int err = 0;
9493 
9494 	mutex_lock(&swhash->hlist_mutex);
9495 	if (!swevent_hlist_deref(swhash) &&
9496 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9497 		struct swevent_hlist *hlist;
9498 
9499 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9500 		if (!hlist) {
9501 			err = -ENOMEM;
9502 			goto exit;
9503 		}
9504 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9505 	}
9506 	swhash->hlist_refcount++;
9507 exit:
9508 	mutex_unlock(&swhash->hlist_mutex);
9509 
9510 	return err;
9511 }
9512 
9513 static int swevent_hlist_get(void)
9514 {
9515 	int err, cpu, failed_cpu;
9516 
9517 	mutex_lock(&pmus_lock);
9518 	for_each_possible_cpu(cpu) {
9519 		err = swevent_hlist_get_cpu(cpu);
9520 		if (err) {
9521 			failed_cpu = cpu;
9522 			goto fail;
9523 		}
9524 	}
9525 	mutex_unlock(&pmus_lock);
9526 	return 0;
9527 fail:
9528 	for_each_possible_cpu(cpu) {
9529 		if (cpu == failed_cpu)
9530 			break;
9531 		swevent_hlist_put_cpu(cpu);
9532 	}
9533 	mutex_unlock(&pmus_lock);
9534 	return err;
9535 }
9536 
9537 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9538 
9539 static void sw_perf_event_destroy(struct perf_event *event)
9540 {
9541 	u64 event_id = event->attr.config;
9542 
9543 	WARN_ON(event->parent);
9544 
9545 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9546 	swevent_hlist_put();
9547 }
9548 
9549 static int perf_swevent_init(struct perf_event *event)
9550 {
9551 	u64 event_id = event->attr.config;
9552 
9553 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9554 		return -ENOENT;
9555 
9556 	/*
9557 	 * no branch sampling for software events
9558 	 */
9559 	if (has_branch_stack(event))
9560 		return -EOPNOTSUPP;
9561 
9562 	switch (event_id) {
9563 	case PERF_COUNT_SW_CPU_CLOCK:
9564 	case PERF_COUNT_SW_TASK_CLOCK:
9565 		return -ENOENT;
9566 
9567 	default:
9568 		break;
9569 	}
9570 
9571 	if (event_id >= PERF_COUNT_SW_MAX)
9572 		return -ENOENT;
9573 
9574 	if (!event->parent) {
9575 		int err;
9576 
9577 		err = swevent_hlist_get();
9578 		if (err)
9579 			return err;
9580 
9581 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9582 		event->destroy = sw_perf_event_destroy;
9583 	}
9584 
9585 	return 0;
9586 }
9587 
9588 static struct pmu perf_swevent = {
9589 	.task_ctx_nr	= perf_sw_context,
9590 
9591 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9592 
9593 	.event_init	= perf_swevent_init,
9594 	.add		= perf_swevent_add,
9595 	.del		= perf_swevent_del,
9596 	.start		= perf_swevent_start,
9597 	.stop		= perf_swevent_stop,
9598 	.read		= perf_swevent_read,
9599 };
9600 
9601 #ifdef CONFIG_EVENT_TRACING
9602 
9603 static int perf_tp_filter_match(struct perf_event *event,
9604 				struct perf_sample_data *data)
9605 {
9606 	void *record = data->raw->frag.data;
9607 
9608 	/* only top level events have filters set */
9609 	if (event->parent)
9610 		event = event->parent;
9611 
9612 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9613 		return 1;
9614 	return 0;
9615 }
9616 
9617 static int perf_tp_event_match(struct perf_event *event,
9618 				struct perf_sample_data *data,
9619 				struct pt_regs *regs)
9620 {
9621 	if (event->hw.state & PERF_HES_STOPPED)
9622 		return 0;
9623 	/*
9624 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9625 	 */
9626 	if (event->attr.exclude_kernel && !user_mode(regs))
9627 		return 0;
9628 
9629 	if (!perf_tp_filter_match(event, data))
9630 		return 0;
9631 
9632 	return 1;
9633 }
9634 
9635 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9636 			       struct trace_event_call *call, u64 count,
9637 			       struct pt_regs *regs, struct hlist_head *head,
9638 			       struct task_struct *task)
9639 {
9640 	if (bpf_prog_array_valid(call)) {
9641 		*(struct pt_regs **)raw_data = regs;
9642 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9643 			perf_swevent_put_recursion_context(rctx);
9644 			return;
9645 		}
9646 	}
9647 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9648 		      rctx, task);
9649 }
9650 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9651 
9652 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9653 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9654 		   struct task_struct *task)
9655 {
9656 	struct perf_sample_data data;
9657 	struct perf_event *event;
9658 
9659 	struct perf_raw_record raw = {
9660 		.frag = {
9661 			.size = entry_size,
9662 			.data = record,
9663 		},
9664 	};
9665 
9666 	perf_sample_data_init(&data, 0, 0);
9667 	data.raw = &raw;
9668 
9669 	perf_trace_buf_update(record, event_type);
9670 
9671 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9672 		if (perf_tp_event_match(event, &data, regs))
9673 			perf_swevent_event(event, count, &data, regs);
9674 	}
9675 
9676 	/*
9677 	 * If we got specified a target task, also iterate its context and
9678 	 * deliver this event there too.
9679 	 */
9680 	if (task && task != current) {
9681 		struct perf_event_context *ctx;
9682 		struct trace_entry *entry = record;
9683 
9684 		rcu_read_lock();
9685 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9686 		if (!ctx)
9687 			goto unlock;
9688 
9689 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9690 			if (event->cpu != smp_processor_id())
9691 				continue;
9692 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9693 				continue;
9694 			if (event->attr.config != entry->type)
9695 				continue;
9696 			if (perf_tp_event_match(event, &data, regs))
9697 				perf_swevent_event(event, count, &data, regs);
9698 		}
9699 unlock:
9700 		rcu_read_unlock();
9701 	}
9702 
9703 	perf_swevent_put_recursion_context(rctx);
9704 }
9705 EXPORT_SYMBOL_GPL(perf_tp_event);
9706 
9707 static void tp_perf_event_destroy(struct perf_event *event)
9708 {
9709 	perf_trace_destroy(event);
9710 }
9711 
9712 static int perf_tp_event_init(struct perf_event *event)
9713 {
9714 	int err;
9715 
9716 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9717 		return -ENOENT;
9718 
9719 	/*
9720 	 * no branch sampling for tracepoint events
9721 	 */
9722 	if (has_branch_stack(event))
9723 		return -EOPNOTSUPP;
9724 
9725 	err = perf_trace_init(event);
9726 	if (err)
9727 		return err;
9728 
9729 	event->destroy = tp_perf_event_destroy;
9730 
9731 	return 0;
9732 }
9733 
9734 static struct pmu perf_tracepoint = {
9735 	.task_ctx_nr	= perf_sw_context,
9736 
9737 	.event_init	= perf_tp_event_init,
9738 	.add		= perf_trace_add,
9739 	.del		= perf_trace_del,
9740 	.start		= perf_swevent_start,
9741 	.stop		= perf_swevent_stop,
9742 	.read		= perf_swevent_read,
9743 };
9744 
9745 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9746 /*
9747  * Flags in config, used by dynamic PMU kprobe and uprobe
9748  * The flags should match following PMU_FORMAT_ATTR().
9749  *
9750  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9751  *                               if not set, create kprobe/uprobe
9752  *
9753  * The following values specify a reference counter (or semaphore in the
9754  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9755  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9756  *
9757  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9758  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9759  */
9760 enum perf_probe_config {
9761 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9762 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9763 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9764 };
9765 
9766 PMU_FORMAT_ATTR(retprobe, "config:0");
9767 #endif
9768 
9769 #ifdef CONFIG_KPROBE_EVENTS
9770 static struct attribute *kprobe_attrs[] = {
9771 	&format_attr_retprobe.attr,
9772 	NULL,
9773 };
9774 
9775 static struct attribute_group kprobe_format_group = {
9776 	.name = "format",
9777 	.attrs = kprobe_attrs,
9778 };
9779 
9780 static const struct attribute_group *kprobe_attr_groups[] = {
9781 	&kprobe_format_group,
9782 	NULL,
9783 };
9784 
9785 static int perf_kprobe_event_init(struct perf_event *event);
9786 static struct pmu perf_kprobe = {
9787 	.task_ctx_nr	= perf_sw_context,
9788 	.event_init	= perf_kprobe_event_init,
9789 	.add		= perf_trace_add,
9790 	.del		= perf_trace_del,
9791 	.start		= perf_swevent_start,
9792 	.stop		= perf_swevent_stop,
9793 	.read		= perf_swevent_read,
9794 	.attr_groups	= kprobe_attr_groups,
9795 };
9796 
9797 static int perf_kprobe_event_init(struct perf_event *event)
9798 {
9799 	int err;
9800 	bool is_retprobe;
9801 
9802 	if (event->attr.type != perf_kprobe.type)
9803 		return -ENOENT;
9804 
9805 	if (!perfmon_capable())
9806 		return -EACCES;
9807 
9808 	/*
9809 	 * no branch sampling for probe events
9810 	 */
9811 	if (has_branch_stack(event))
9812 		return -EOPNOTSUPP;
9813 
9814 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9815 	err = perf_kprobe_init(event, is_retprobe);
9816 	if (err)
9817 		return err;
9818 
9819 	event->destroy = perf_kprobe_destroy;
9820 
9821 	return 0;
9822 }
9823 #endif /* CONFIG_KPROBE_EVENTS */
9824 
9825 #ifdef CONFIG_UPROBE_EVENTS
9826 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9827 
9828 static struct attribute *uprobe_attrs[] = {
9829 	&format_attr_retprobe.attr,
9830 	&format_attr_ref_ctr_offset.attr,
9831 	NULL,
9832 };
9833 
9834 static struct attribute_group uprobe_format_group = {
9835 	.name = "format",
9836 	.attrs = uprobe_attrs,
9837 };
9838 
9839 static const struct attribute_group *uprobe_attr_groups[] = {
9840 	&uprobe_format_group,
9841 	NULL,
9842 };
9843 
9844 static int perf_uprobe_event_init(struct perf_event *event);
9845 static struct pmu perf_uprobe = {
9846 	.task_ctx_nr	= perf_sw_context,
9847 	.event_init	= perf_uprobe_event_init,
9848 	.add		= perf_trace_add,
9849 	.del		= perf_trace_del,
9850 	.start		= perf_swevent_start,
9851 	.stop		= perf_swevent_stop,
9852 	.read		= perf_swevent_read,
9853 	.attr_groups	= uprobe_attr_groups,
9854 };
9855 
9856 static int perf_uprobe_event_init(struct perf_event *event)
9857 {
9858 	int err;
9859 	unsigned long ref_ctr_offset;
9860 	bool is_retprobe;
9861 
9862 	if (event->attr.type != perf_uprobe.type)
9863 		return -ENOENT;
9864 
9865 	if (!perfmon_capable())
9866 		return -EACCES;
9867 
9868 	/*
9869 	 * no branch sampling for probe events
9870 	 */
9871 	if (has_branch_stack(event))
9872 		return -EOPNOTSUPP;
9873 
9874 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9875 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9876 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9877 	if (err)
9878 		return err;
9879 
9880 	event->destroy = perf_uprobe_destroy;
9881 
9882 	return 0;
9883 }
9884 #endif /* CONFIG_UPROBE_EVENTS */
9885 
9886 static inline void perf_tp_register(void)
9887 {
9888 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9889 #ifdef CONFIG_KPROBE_EVENTS
9890 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9891 #endif
9892 #ifdef CONFIG_UPROBE_EVENTS
9893 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9894 #endif
9895 }
9896 
9897 static void perf_event_free_filter(struct perf_event *event)
9898 {
9899 	ftrace_profile_free_filter(event);
9900 }
9901 
9902 #ifdef CONFIG_BPF_SYSCALL
9903 static void bpf_overflow_handler(struct perf_event *event,
9904 				 struct perf_sample_data *data,
9905 				 struct pt_regs *regs)
9906 {
9907 	struct bpf_perf_event_data_kern ctx = {
9908 		.data = data,
9909 		.event = event,
9910 	};
9911 	int ret = 0;
9912 
9913 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9914 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9915 		goto out;
9916 	rcu_read_lock();
9917 	ret = BPF_PROG_RUN(event->prog, &ctx);
9918 	rcu_read_unlock();
9919 out:
9920 	__this_cpu_dec(bpf_prog_active);
9921 	if (!ret)
9922 		return;
9923 
9924 	event->orig_overflow_handler(event, data, regs);
9925 }
9926 
9927 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9928 {
9929 	struct bpf_prog *prog;
9930 
9931 	if (event->overflow_handler_context)
9932 		/* hw breakpoint or kernel counter */
9933 		return -EINVAL;
9934 
9935 	if (event->prog)
9936 		return -EEXIST;
9937 
9938 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9939 	if (IS_ERR(prog))
9940 		return PTR_ERR(prog);
9941 
9942 	if (event->attr.precise_ip &&
9943 	    prog->call_get_stack &&
9944 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9945 	     event->attr.exclude_callchain_kernel ||
9946 	     event->attr.exclude_callchain_user)) {
9947 		/*
9948 		 * On perf_event with precise_ip, calling bpf_get_stack()
9949 		 * may trigger unwinder warnings and occasional crashes.
9950 		 * bpf_get_[stack|stackid] works around this issue by using
9951 		 * callchain attached to perf_sample_data. If the
9952 		 * perf_event does not full (kernel and user) callchain
9953 		 * attached to perf_sample_data, do not allow attaching BPF
9954 		 * program that calls bpf_get_[stack|stackid].
9955 		 */
9956 		bpf_prog_put(prog);
9957 		return -EPROTO;
9958 	}
9959 
9960 	event->prog = prog;
9961 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9962 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9963 	return 0;
9964 }
9965 
9966 static void perf_event_free_bpf_handler(struct perf_event *event)
9967 {
9968 	struct bpf_prog *prog = event->prog;
9969 
9970 	if (!prog)
9971 		return;
9972 
9973 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9974 	event->prog = NULL;
9975 	bpf_prog_put(prog);
9976 }
9977 #else
9978 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9979 {
9980 	return -EOPNOTSUPP;
9981 }
9982 static void perf_event_free_bpf_handler(struct perf_event *event)
9983 {
9984 }
9985 #endif
9986 
9987 /*
9988  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9989  * with perf_event_open()
9990  */
9991 static inline bool perf_event_is_tracing(struct perf_event *event)
9992 {
9993 	if (event->pmu == &perf_tracepoint)
9994 		return true;
9995 #ifdef CONFIG_KPROBE_EVENTS
9996 	if (event->pmu == &perf_kprobe)
9997 		return true;
9998 #endif
9999 #ifdef CONFIG_UPROBE_EVENTS
10000 	if (event->pmu == &perf_uprobe)
10001 		return true;
10002 #endif
10003 	return false;
10004 }
10005 
10006 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10007 {
10008 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10009 	struct bpf_prog *prog;
10010 	int ret;
10011 
10012 	if (!perf_event_is_tracing(event))
10013 		return perf_event_set_bpf_handler(event, prog_fd);
10014 
10015 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10016 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10017 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10018 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10019 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10020 		return -EINVAL;
10021 
10022 	prog = bpf_prog_get(prog_fd);
10023 	if (IS_ERR(prog))
10024 		return PTR_ERR(prog);
10025 
10026 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10027 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10028 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
10029 		/* valid fd, but invalid bpf program type */
10030 		bpf_prog_put(prog);
10031 		return -EINVAL;
10032 	}
10033 
10034 	/* Kprobe override only works for kprobes, not uprobes. */
10035 	if (prog->kprobe_override &&
10036 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
10037 		bpf_prog_put(prog);
10038 		return -EINVAL;
10039 	}
10040 
10041 	if (is_tracepoint || is_syscall_tp) {
10042 		int off = trace_event_get_offsets(event->tp_event);
10043 
10044 		if (prog->aux->max_ctx_offset > off) {
10045 			bpf_prog_put(prog);
10046 			return -EACCES;
10047 		}
10048 	}
10049 
10050 	ret = perf_event_attach_bpf_prog(event, prog);
10051 	if (ret)
10052 		bpf_prog_put(prog);
10053 	return ret;
10054 }
10055 
10056 static void perf_event_free_bpf_prog(struct perf_event *event)
10057 {
10058 	if (!perf_event_is_tracing(event)) {
10059 		perf_event_free_bpf_handler(event);
10060 		return;
10061 	}
10062 	perf_event_detach_bpf_prog(event);
10063 }
10064 
10065 #else
10066 
10067 static inline void perf_tp_register(void)
10068 {
10069 }
10070 
10071 static void perf_event_free_filter(struct perf_event *event)
10072 {
10073 }
10074 
10075 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10076 {
10077 	return -ENOENT;
10078 }
10079 
10080 static void perf_event_free_bpf_prog(struct perf_event *event)
10081 {
10082 }
10083 #endif /* CONFIG_EVENT_TRACING */
10084 
10085 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10086 void perf_bp_event(struct perf_event *bp, void *data)
10087 {
10088 	struct perf_sample_data sample;
10089 	struct pt_regs *regs = data;
10090 
10091 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10092 
10093 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10094 		perf_swevent_event(bp, 1, &sample, regs);
10095 }
10096 #endif
10097 
10098 /*
10099  * Allocate a new address filter
10100  */
10101 static struct perf_addr_filter *
10102 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10103 {
10104 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10105 	struct perf_addr_filter *filter;
10106 
10107 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10108 	if (!filter)
10109 		return NULL;
10110 
10111 	INIT_LIST_HEAD(&filter->entry);
10112 	list_add_tail(&filter->entry, filters);
10113 
10114 	return filter;
10115 }
10116 
10117 static void free_filters_list(struct list_head *filters)
10118 {
10119 	struct perf_addr_filter *filter, *iter;
10120 
10121 	list_for_each_entry_safe(filter, iter, filters, entry) {
10122 		path_put(&filter->path);
10123 		list_del(&filter->entry);
10124 		kfree(filter);
10125 	}
10126 }
10127 
10128 /*
10129  * Free existing address filters and optionally install new ones
10130  */
10131 static void perf_addr_filters_splice(struct perf_event *event,
10132 				     struct list_head *head)
10133 {
10134 	unsigned long flags;
10135 	LIST_HEAD(list);
10136 
10137 	if (!has_addr_filter(event))
10138 		return;
10139 
10140 	/* don't bother with children, they don't have their own filters */
10141 	if (event->parent)
10142 		return;
10143 
10144 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10145 
10146 	list_splice_init(&event->addr_filters.list, &list);
10147 	if (head)
10148 		list_splice(head, &event->addr_filters.list);
10149 
10150 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10151 
10152 	free_filters_list(&list);
10153 }
10154 
10155 /*
10156  * Scan through mm's vmas and see if one of them matches the
10157  * @filter; if so, adjust filter's address range.
10158  * Called with mm::mmap_lock down for reading.
10159  */
10160 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10161 				   struct mm_struct *mm,
10162 				   struct perf_addr_filter_range *fr)
10163 {
10164 	struct vm_area_struct *vma;
10165 
10166 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10167 		if (!vma->vm_file)
10168 			continue;
10169 
10170 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10171 			return;
10172 	}
10173 }
10174 
10175 /*
10176  * Update event's address range filters based on the
10177  * task's existing mappings, if any.
10178  */
10179 static void perf_event_addr_filters_apply(struct perf_event *event)
10180 {
10181 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10182 	struct task_struct *task = READ_ONCE(event->ctx->task);
10183 	struct perf_addr_filter *filter;
10184 	struct mm_struct *mm = NULL;
10185 	unsigned int count = 0;
10186 	unsigned long flags;
10187 
10188 	/*
10189 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10190 	 * will stop on the parent's child_mutex that our caller is also holding
10191 	 */
10192 	if (task == TASK_TOMBSTONE)
10193 		return;
10194 
10195 	if (ifh->nr_file_filters) {
10196 		mm = get_task_mm(event->ctx->task);
10197 		if (!mm)
10198 			goto restart;
10199 
10200 		mmap_read_lock(mm);
10201 	}
10202 
10203 	raw_spin_lock_irqsave(&ifh->lock, flags);
10204 	list_for_each_entry(filter, &ifh->list, entry) {
10205 		if (filter->path.dentry) {
10206 			/*
10207 			 * Adjust base offset if the filter is associated to a
10208 			 * binary that needs to be mapped:
10209 			 */
10210 			event->addr_filter_ranges[count].start = 0;
10211 			event->addr_filter_ranges[count].size = 0;
10212 
10213 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10214 		} else {
10215 			event->addr_filter_ranges[count].start = filter->offset;
10216 			event->addr_filter_ranges[count].size  = filter->size;
10217 		}
10218 
10219 		count++;
10220 	}
10221 
10222 	event->addr_filters_gen++;
10223 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10224 
10225 	if (ifh->nr_file_filters) {
10226 		mmap_read_unlock(mm);
10227 
10228 		mmput(mm);
10229 	}
10230 
10231 restart:
10232 	perf_event_stop(event, 1);
10233 }
10234 
10235 /*
10236  * Address range filtering: limiting the data to certain
10237  * instruction address ranges. Filters are ioctl()ed to us from
10238  * userspace as ascii strings.
10239  *
10240  * Filter string format:
10241  *
10242  * ACTION RANGE_SPEC
10243  * where ACTION is one of the
10244  *  * "filter": limit the trace to this region
10245  *  * "start": start tracing from this address
10246  *  * "stop": stop tracing at this address/region;
10247  * RANGE_SPEC is
10248  *  * for kernel addresses: <start address>[/<size>]
10249  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10250  *
10251  * if <size> is not specified or is zero, the range is treated as a single
10252  * address; not valid for ACTION=="filter".
10253  */
10254 enum {
10255 	IF_ACT_NONE = -1,
10256 	IF_ACT_FILTER,
10257 	IF_ACT_START,
10258 	IF_ACT_STOP,
10259 	IF_SRC_FILE,
10260 	IF_SRC_KERNEL,
10261 	IF_SRC_FILEADDR,
10262 	IF_SRC_KERNELADDR,
10263 };
10264 
10265 enum {
10266 	IF_STATE_ACTION = 0,
10267 	IF_STATE_SOURCE,
10268 	IF_STATE_END,
10269 };
10270 
10271 static const match_table_t if_tokens = {
10272 	{ IF_ACT_FILTER,	"filter" },
10273 	{ IF_ACT_START,		"start" },
10274 	{ IF_ACT_STOP,		"stop" },
10275 	{ IF_SRC_FILE,		"%u/%u@%s" },
10276 	{ IF_SRC_KERNEL,	"%u/%u" },
10277 	{ IF_SRC_FILEADDR,	"%u@%s" },
10278 	{ IF_SRC_KERNELADDR,	"%u" },
10279 	{ IF_ACT_NONE,		NULL },
10280 };
10281 
10282 /*
10283  * Address filter string parser
10284  */
10285 static int
10286 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10287 			     struct list_head *filters)
10288 {
10289 	struct perf_addr_filter *filter = NULL;
10290 	char *start, *orig, *filename = NULL;
10291 	substring_t args[MAX_OPT_ARGS];
10292 	int state = IF_STATE_ACTION, token;
10293 	unsigned int kernel = 0;
10294 	int ret = -EINVAL;
10295 
10296 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10297 	if (!fstr)
10298 		return -ENOMEM;
10299 
10300 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10301 		static const enum perf_addr_filter_action_t actions[] = {
10302 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10303 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10304 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10305 		};
10306 		ret = -EINVAL;
10307 
10308 		if (!*start)
10309 			continue;
10310 
10311 		/* filter definition begins */
10312 		if (state == IF_STATE_ACTION) {
10313 			filter = perf_addr_filter_new(event, filters);
10314 			if (!filter)
10315 				goto fail;
10316 		}
10317 
10318 		token = match_token(start, if_tokens, args);
10319 		switch (token) {
10320 		case IF_ACT_FILTER:
10321 		case IF_ACT_START:
10322 		case IF_ACT_STOP:
10323 			if (state != IF_STATE_ACTION)
10324 				goto fail;
10325 
10326 			filter->action = actions[token];
10327 			state = IF_STATE_SOURCE;
10328 			break;
10329 
10330 		case IF_SRC_KERNELADDR:
10331 		case IF_SRC_KERNEL:
10332 			kernel = 1;
10333 			fallthrough;
10334 
10335 		case IF_SRC_FILEADDR:
10336 		case IF_SRC_FILE:
10337 			if (state != IF_STATE_SOURCE)
10338 				goto fail;
10339 
10340 			*args[0].to = 0;
10341 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10342 			if (ret)
10343 				goto fail;
10344 
10345 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10346 				*args[1].to = 0;
10347 				ret = kstrtoul(args[1].from, 0, &filter->size);
10348 				if (ret)
10349 					goto fail;
10350 			}
10351 
10352 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10353 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10354 
10355 				kfree(filename);
10356 				filename = match_strdup(&args[fpos]);
10357 				if (!filename) {
10358 					ret = -ENOMEM;
10359 					goto fail;
10360 				}
10361 			}
10362 
10363 			state = IF_STATE_END;
10364 			break;
10365 
10366 		default:
10367 			goto fail;
10368 		}
10369 
10370 		/*
10371 		 * Filter definition is fully parsed, validate and install it.
10372 		 * Make sure that it doesn't contradict itself or the event's
10373 		 * attribute.
10374 		 */
10375 		if (state == IF_STATE_END) {
10376 			ret = -EINVAL;
10377 			if (kernel && event->attr.exclude_kernel)
10378 				goto fail;
10379 
10380 			/*
10381 			 * ACTION "filter" must have a non-zero length region
10382 			 * specified.
10383 			 */
10384 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10385 			    !filter->size)
10386 				goto fail;
10387 
10388 			if (!kernel) {
10389 				if (!filename)
10390 					goto fail;
10391 
10392 				/*
10393 				 * For now, we only support file-based filters
10394 				 * in per-task events; doing so for CPU-wide
10395 				 * events requires additional context switching
10396 				 * trickery, since same object code will be
10397 				 * mapped at different virtual addresses in
10398 				 * different processes.
10399 				 */
10400 				ret = -EOPNOTSUPP;
10401 				if (!event->ctx->task)
10402 					goto fail;
10403 
10404 				/* look up the path and grab its inode */
10405 				ret = kern_path(filename, LOOKUP_FOLLOW,
10406 						&filter->path);
10407 				if (ret)
10408 					goto fail;
10409 
10410 				ret = -EINVAL;
10411 				if (!filter->path.dentry ||
10412 				    !S_ISREG(d_inode(filter->path.dentry)
10413 					     ->i_mode))
10414 					goto fail;
10415 
10416 				event->addr_filters.nr_file_filters++;
10417 			}
10418 
10419 			/* ready to consume more filters */
10420 			state = IF_STATE_ACTION;
10421 			filter = NULL;
10422 		}
10423 	}
10424 
10425 	if (state != IF_STATE_ACTION)
10426 		goto fail;
10427 
10428 	kfree(filename);
10429 	kfree(orig);
10430 
10431 	return 0;
10432 
10433 fail:
10434 	kfree(filename);
10435 	free_filters_list(filters);
10436 	kfree(orig);
10437 
10438 	return ret;
10439 }
10440 
10441 static int
10442 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10443 {
10444 	LIST_HEAD(filters);
10445 	int ret;
10446 
10447 	/*
10448 	 * Since this is called in perf_ioctl() path, we're already holding
10449 	 * ctx::mutex.
10450 	 */
10451 	lockdep_assert_held(&event->ctx->mutex);
10452 
10453 	if (WARN_ON_ONCE(event->parent))
10454 		return -EINVAL;
10455 
10456 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10457 	if (ret)
10458 		goto fail_clear_files;
10459 
10460 	ret = event->pmu->addr_filters_validate(&filters);
10461 	if (ret)
10462 		goto fail_free_filters;
10463 
10464 	/* remove existing filters, if any */
10465 	perf_addr_filters_splice(event, &filters);
10466 
10467 	/* install new filters */
10468 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10469 
10470 	return ret;
10471 
10472 fail_free_filters:
10473 	free_filters_list(&filters);
10474 
10475 fail_clear_files:
10476 	event->addr_filters.nr_file_filters = 0;
10477 
10478 	return ret;
10479 }
10480 
10481 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10482 {
10483 	int ret = -EINVAL;
10484 	char *filter_str;
10485 
10486 	filter_str = strndup_user(arg, PAGE_SIZE);
10487 	if (IS_ERR(filter_str))
10488 		return PTR_ERR(filter_str);
10489 
10490 #ifdef CONFIG_EVENT_TRACING
10491 	if (perf_event_is_tracing(event)) {
10492 		struct perf_event_context *ctx = event->ctx;
10493 
10494 		/*
10495 		 * Beware, here be dragons!!
10496 		 *
10497 		 * the tracepoint muck will deadlock against ctx->mutex, but
10498 		 * the tracepoint stuff does not actually need it. So
10499 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10500 		 * already have a reference on ctx.
10501 		 *
10502 		 * This can result in event getting moved to a different ctx,
10503 		 * but that does not affect the tracepoint state.
10504 		 */
10505 		mutex_unlock(&ctx->mutex);
10506 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10507 		mutex_lock(&ctx->mutex);
10508 	} else
10509 #endif
10510 	if (has_addr_filter(event))
10511 		ret = perf_event_set_addr_filter(event, filter_str);
10512 
10513 	kfree(filter_str);
10514 	return ret;
10515 }
10516 
10517 /*
10518  * hrtimer based swevent callback
10519  */
10520 
10521 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10522 {
10523 	enum hrtimer_restart ret = HRTIMER_RESTART;
10524 	struct perf_sample_data data;
10525 	struct pt_regs *regs;
10526 	struct perf_event *event;
10527 	u64 period;
10528 
10529 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10530 
10531 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10532 		return HRTIMER_NORESTART;
10533 
10534 	event->pmu->read(event);
10535 
10536 	perf_sample_data_init(&data, 0, event->hw.last_period);
10537 	regs = get_irq_regs();
10538 
10539 	if (regs && !perf_exclude_event(event, regs)) {
10540 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10541 			if (__perf_event_overflow(event, 1, &data, regs))
10542 				ret = HRTIMER_NORESTART;
10543 	}
10544 
10545 	period = max_t(u64, 10000, event->hw.sample_period);
10546 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10547 
10548 	return ret;
10549 }
10550 
10551 static void perf_swevent_start_hrtimer(struct perf_event *event)
10552 {
10553 	struct hw_perf_event *hwc = &event->hw;
10554 	s64 period;
10555 
10556 	if (!is_sampling_event(event))
10557 		return;
10558 
10559 	period = local64_read(&hwc->period_left);
10560 	if (period) {
10561 		if (period < 0)
10562 			period = 10000;
10563 
10564 		local64_set(&hwc->period_left, 0);
10565 	} else {
10566 		period = max_t(u64, 10000, hwc->sample_period);
10567 	}
10568 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10569 		      HRTIMER_MODE_REL_PINNED_HARD);
10570 }
10571 
10572 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10573 {
10574 	struct hw_perf_event *hwc = &event->hw;
10575 
10576 	if (is_sampling_event(event)) {
10577 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10578 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10579 
10580 		hrtimer_cancel(&hwc->hrtimer);
10581 	}
10582 }
10583 
10584 static void perf_swevent_init_hrtimer(struct perf_event *event)
10585 {
10586 	struct hw_perf_event *hwc = &event->hw;
10587 
10588 	if (!is_sampling_event(event))
10589 		return;
10590 
10591 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10592 	hwc->hrtimer.function = perf_swevent_hrtimer;
10593 
10594 	/*
10595 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10596 	 * mapping and avoid the whole period adjust feedback stuff.
10597 	 */
10598 	if (event->attr.freq) {
10599 		long freq = event->attr.sample_freq;
10600 
10601 		event->attr.sample_period = NSEC_PER_SEC / freq;
10602 		hwc->sample_period = event->attr.sample_period;
10603 		local64_set(&hwc->period_left, hwc->sample_period);
10604 		hwc->last_period = hwc->sample_period;
10605 		event->attr.freq = 0;
10606 	}
10607 }
10608 
10609 /*
10610  * Software event: cpu wall time clock
10611  */
10612 
10613 static void cpu_clock_event_update(struct perf_event *event)
10614 {
10615 	s64 prev;
10616 	u64 now;
10617 
10618 	now = local_clock();
10619 	prev = local64_xchg(&event->hw.prev_count, now);
10620 	local64_add(now - prev, &event->count);
10621 }
10622 
10623 static void cpu_clock_event_start(struct perf_event *event, int flags)
10624 {
10625 	local64_set(&event->hw.prev_count, local_clock());
10626 	perf_swevent_start_hrtimer(event);
10627 }
10628 
10629 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10630 {
10631 	perf_swevent_cancel_hrtimer(event);
10632 	cpu_clock_event_update(event);
10633 }
10634 
10635 static int cpu_clock_event_add(struct perf_event *event, int flags)
10636 {
10637 	if (flags & PERF_EF_START)
10638 		cpu_clock_event_start(event, flags);
10639 	perf_event_update_userpage(event);
10640 
10641 	return 0;
10642 }
10643 
10644 static void cpu_clock_event_del(struct perf_event *event, int flags)
10645 {
10646 	cpu_clock_event_stop(event, flags);
10647 }
10648 
10649 static void cpu_clock_event_read(struct perf_event *event)
10650 {
10651 	cpu_clock_event_update(event);
10652 }
10653 
10654 static int cpu_clock_event_init(struct perf_event *event)
10655 {
10656 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10657 		return -ENOENT;
10658 
10659 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10660 		return -ENOENT;
10661 
10662 	/*
10663 	 * no branch sampling for software events
10664 	 */
10665 	if (has_branch_stack(event))
10666 		return -EOPNOTSUPP;
10667 
10668 	perf_swevent_init_hrtimer(event);
10669 
10670 	return 0;
10671 }
10672 
10673 static struct pmu perf_cpu_clock = {
10674 	.task_ctx_nr	= perf_sw_context,
10675 
10676 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10677 
10678 	.event_init	= cpu_clock_event_init,
10679 	.add		= cpu_clock_event_add,
10680 	.del		= cpu_clock_event_del,
10681 	.start		= cpu_clock_event_start,
10682 	.stop		= cpu_clock_event_stop,
10683 	.read		= cpu_clock_event_read,
10684 };
10685 
10686 /*
10687  * Software event: task time clock
10688  */
10689 
10690 static void task_clock_event_update(struct perf_event *event, u64 now)
10691 {
10692 	u64 prev;
10693 	s64 delta;
10694 
10695 	prev = local64_xchg(&event->hw.prev_count, now);
10696 	delta = now - prev;
10697 	local64_add(delta, &event->count);
10698 }
10699 
10700 static void task_clock_event_start(struct perf_event *event, int flags)
10701 {
10702 	local64_set(&event->hw.prev_count, event->ctx->time);
10703 	perf_swevent_start_hrtimer(event);
10704 }
10705 
10706 static void task_clock_event_stop(struct perf_event *event, int flags)
10707 {
10708 	perf_swevent_cancel_hrtimer(event);
10709 	task_clock_event_update(event, event->ctx->time);
10710 }
10711 
10712 static int task_clock_event_add(struct perf_event *event, int flags)
10713 {
10714 	if (flags & PERF_EF_START)
10715 		task_clock_event_start(event, flags);
10716 	perf_event_update_userpage(event);
10717 
10718 	return 0;
10719 }
10720 
10721 static void task_clock_event_del(struct perf_event *event, int flags)
10722 {
10723 	task_clock_event_stop(event, PERF_EF_UPDATE);
10724 }
10725 
10726 static void task_clock_event_read(struct perf_event *event)
10727 {
10728 	u64 now = perf_clock();
10729 	u64 delta = now - event->ctx->timestamp;
10730 	u64 time = event->ctx->time + delta;
10731 
10732 	task_clock_event_update(event, time);
10733 }
10734 
10735 static int task_clock_event_init(struct perf_event *event)
10736 {
10737 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10738 		return -ENOENT;
10739 
10740 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10741 		return -ENOENT;
10742 
10743 	/*
10744 	 * no branch sampling for software events
10745 	 */
10746 	if (has_branch_stack(event))
10747 		return -EOPNOTSUPP;
10748 
10749 	perf_swevent_init_hrtimer(event);
10750 
10751 	return 0;
10752 }
10753 
10754 static struct pmu perf_task_clock = {
10755 	.task_ctx_nr	= perf_sw_context,
10756 
10757 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10758 
10759 	.event_init	= task_clock_event_init,
10760 	.add		= task_clock_event_add,
10761 	.del		= task_clock_event_del,
10762 	.start		= task_clock_event_start,
10763 	.stop		= task_clock_event_stop,
10764 	.read		= task_clock_event_read,
10765 };
10766 
10767 static void perf_pmu_nop_void(struct pmu *pmu)
10768 {
10769 }
10770 
10771 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10772 {
10773 }
10774 
10775 static int perf_pmu_nop_int(struct pmu *pmu)
10776 {
10777 	return 0;
10778 }
10779 
10780 static int perf_event_nop_int(struct perf_event *event, u64 value)
10781 {
10782 	return 0;
10783 }
10784 
10785 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10786 
10787 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10788 {
10789 	__this_cpu_write(nop_txn_flags, flags);
10790 
10791 	if (flags & ~PERF_PMU_TXN_ADD)
10792 		return;
10793 
10794 	perf_pmu_disable(pmu);
10795 }
10796 
10797 static int perf_pmu_commit_txn(struct pmu *pmu)
10798 {
10799 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10800 
10801 	__this_cpu_write(nop_txn_flags, 0);
10802 
10803 	if (flags & ~PERF_PMU_TXN_ADD)
10804 		return 0;
10805 
10806 	perf_pmu_enable(pmu);
10807 	return 0;
10808 }
10809 
10810 static void perf_pmu_cancel_txn(struct pmu *pmu)
10811 {
10812 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10813 
10814 	__this_cpu_write(nop_txn_flags, 0);
10815 
10816 	if (flags & ~PERF_PMU_TXN_ADD)
10817 		return;
10818 
10819 	perf_pmu_enable(pmu);
10820 }
10821 
10822 static int perf_event_idx_default(struct perf_event *event)
10823 {
10824 	return 0;
10825 }
10826 
10827 /*
10828  * Ensures all contexts with the same task_ctx_nr have the same
10829  * pmu_cpu_context too.
10830  */
10831 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10832 {
10833 	struct pmu *pmu;
10834 
10835 	if (ctxn < 0)
10836 		return NULL;
10837 
10838 	list_for_each_entry(pmu, &pmus, entry) {
10839 		if (pmu->task_ctx_nr == ctxn)
10840 			return pmu->pmu_cpu_context;
10841 	}
10842 
10843 	return NULL;
10844 }
10845 
10846 static void free_pmu_context(struct pmu *pmu)
10847 {
10848 	/*
10849 	 * Static contexts such as perf_sw_context have a global lifetime
10850 	 * and may be shared between different PMUs. Avoid freeing them
10851 	 * when a single PMU is going away.
10852 	 */
10853 	if (pmu->task_ctx_nr > perf_invalid_context)
10854 		return;
10855 
10856 	free_percpu(pmu->pmu_cpu_context);
10857 }
10858 
10859 /*
10860  * Let userspace know that this PMU supports address range filtering:
10861  */
10862 static ssize_t nr_addr_filters_show(struct device *dev,
10863 				    struct device_attribute *attr,
10864 				    char *page)
10865 {
10866 	struct pmu *pmu = dev_get_drvdata(dev);
10867 
10868 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10869 }
10870 DEVICE_ATTR_RO(nr_addr_filters);
10871 
10872 static struct idr pmu_idr;
10873 
10874 static ssize_t
10875 type_show(struct device *dev, struct device_attribute *attr, char *page)
10876 {
10877 	struct pmu *pmu = dev_get_drvdata(dev);
10878 
10879 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10880 }
10881 static DEVICE_ATTR_RO(type);
10882 
10883 static ssize_t
10884 perf_event_mux_interval_ms_show(struct device *dev,
10885 				struct device_attribute *attr,
10886 				char *page)
10887 {
10888 	struct pmu *pmu = dev_get_drvdata(dev);
10889 
10890 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10891 }
10892 
10893 static DEFINE_MUTEX(mux_interval_mutex);
10894 
10895 static ssize_t
10896 perf_event_mux_interval_ms_store(struct device *dev,
10897 				 struct device_attribute *attr,
10898 				 const char *buf, size_t count)
10899 {
10900 	struct pmu *pmu = dev_get_drvdata(dev);
10901 	int timer, cpu, ret;
10902 
10903 	ret = kstrtoint(buf, 0, &timer);
10904 	if (ret)
10905 		return ret;
10906 
10907 	if (timer < 1)
10908 		return -EINVAL;
10909 
10910 	/* same value, noting to do */
10911 	if (timer == pmu->hrtimer_interval_ms)
10912 		return count;
10913 
10914 	mutex_lock(&mux_interval_mutex);
10915 	pmu->hrtimer_interval_ms = timer;
10916 
10917 	/* update all cpuctx for this PMU */
10918 	cpus_read_lock();
10919 	for_each_online_cpu(cpu) {
10920 		struct perf_cpu_context *cpuctx;
10921 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10922 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10923 
10924 		cpu_function_call(cpu,
10925 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10926 	}
10927 	cpus_read_unlock();
10928 	mutex_unlock(&mux_interval_mutex);
10929 
10930 	return count;
10931 }
10932 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10933 
10934 static struct attribute *pmu_dev_attrs[] = {
10935 	&dev_attr_type.attr,
10936 	&dev_attr_perf_event_mux_interval_ms.attr,
10937 	NULL,
10938 };
10939 ATTRIBUTE_GROUPS(pmu_dev);
10940 
10941 static int pmu_bus_running;
10942 static struct bus_type pmu_bus = {
10943 	.name		= "event_source",
10944 	.dev_groups	= pmu_dev_groups,
10945 };
10946 
10947 static void pmu_dev_release(struct device *dev)
10948 {
10949 	kfree(dev);
10950 }
10951 
10952 static int pmu_dev_alloc(struct pmu *pmu)
10953 {
10954 	int ret = -ENOMEM;
10955 
10956 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10957 	if (!pmu->dev)
10958 		goto out;
10959 
10960 	pmu->dev->groups = pmu->attr_groups;
10961 	device_initialize(pmu->dev);
10962 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10963 	if (ret)
10964 		goto free_dev;
10965 
10966 	dev_set_drvdata(pmu->dev, pmu);
10967 	pmu->dev->bus = &pmu_bus;
10968 	pmu->dev->release = pmu_dev_release;
10969 	ret = device_add(pmu->dev);
10970 	if (ret)
10971 		goto free_dev;
10972 
10973 	/* For PMUs with address filters, throw in an extra attribute: */
10974 	if (pmu->nr_addr_filters)
10975 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10976 
10977 	if (ret)
10978 		goto del_dev;
10979 
10980 	if (pmu->attr_update)
10981 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10982 
10983 	if (ret)
10984 		goto del_dev;
10985 
10986 out:
10987 	return ret;
10988 
10989 del_dev:
10990 	device_del(pmu->dev);
10991 
10992 free_dev:
10993 	put_device(pmu->dev);
10994 	goto out;
10995 }
10996 
10997 static struct lock_class_key cpuctx_mutex;
10998 static struct lock_class_key cpuctx_lock;
10999 
11000 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11001 {
11002 	int cpu, ret, max = PERF_TYPE_MAX;
11003 
11004 	mutex_lock(&pmus_lock);
11005 	ret = -ENOMEM;
11006 	pmu->pmu_disable_count = alloc_percpu(int);
11007 	if (!pmu->pmu_disable_count)
11008 		goto unlock;
11009 
11010 	pmu->type = -1;
11011 	if (!name)
11012 		goto skip_type;
11013 	pmu->name = name;
11014 
11015 	if (type != PERF_TYPE_SOFTWARE) {
11016 		if (type >= 0)
11017 			max = type;
11018 
11019 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11020 		if (ret < 0)
11021 			goto free_pdc;
11022 
11023 		WARN_ON(type >= 0 && ret != type);
11024 
11025 		type = ret;
11026 	}
11027 	pmu->type = type;
11028 
11029 	if (pmu_bus_running) {
11030 		ret = pmu_dev_alloc(pmu);
11031 		if (ret)
11032 			goto free_idr;
11033 	}
11034 
11035 skip_type:
11036 	if (pmu->task_ctx_nr == perf_hw_context) {
11037 		static int hw_context_taken = 0;
11038 
11039 		/*
11040 		 * Other than systems with heterogeneous CPUs, it never makes
11041 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11042 		 * uncore must use perf_invalid_context.
11043 		 */
11044 		if (WARN_ON_ONCE(hw_context_taken &&
11045 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11046 			pmu->task_ctx_nr = perf_invalid_context;
11047 
11048 		hw_context_taken = 1;
11049 	}
11050 
11051 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11052 	if (pmu->pmu_cpu_context)
11053 		goto got_cpu_context;
11054 
11055 	ret = -ENOMEM;
11056 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11057 	if (!pmu->pmu_cpu_context)
11058 		goto free_dev;
11059 
11060 	for_each_possible_cpu(cpu) {
11061 		struct perf_cpu_context *cpuctx;
11062 
11063 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11064 		__perf_event_init_context(&cpuctx->ctx);
11065 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11066 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11067 		cpuctx->ctx.pmu = pmu;
11068 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11069 
11070 		__perf_mux_hrtimer_init(cpuctx, cpu);
11071 
11072 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11073 		cpuctx->heap = cpuctx->heap_default;
11074 	}
11075 
11076 got_cpu_context:
11077 	if (!pmu->start_txn) {
11078 		if (pmu->pmu_enable) {
11079 			/*
11080 			 * If we have pmu_enable/pmu_disable calls, install
11081 			 * transaction stubs that use that to try and batch
11082 			 * hardware accesses.
11083 			 */
11084 			pmu->start_txn  = perf_pmu_start_txn;
11085 			pmu->commit_txn = perf_pmu_commit_txn;
11086 			pmu->cancel_txn = perf_pmu_cancel_txn;
11087 		} else {
11088 			pmu->start_txn  = perf_pmu_nop_txn;
11089 			pmu->commit_txn = perf_pmu_nop_int;
11090 			pmu->cancel_txn = perf_pmu_nop_void;
11091 		}
11092 	}
11093 
11094 	if (!pmu->pmu_enable) {
11095 		pmu->pmu_enable  = perf_pmu_nop_void;
11096 		pmu->pmu_disable = perf_pmu_nop_void;
11097 	}
11098 
11099 	if (!pmu->check_period)
11100 		pmu->check_period = perf_event_nop_int;
11101 
11102 	if (!pmu->event_idx)
11103 		pmu->event_idx = perf_event_idx_default;
11104 
11105 	/*
11106 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11107 	 * since these cannot be in the IDR. This way the linear search
11108 	 * is fast, provided a valid software event is provided.
11109 	 */
11110 	if (type == PERF_TYPE_SOFTWARE || !name)
11111 		list_add_rcu(&pmu->entry, &pmus);
11112 	else
11113 		list_add_tail_rcu(&pmu->entry, &pmus);
11114 
11115 	atomic_set(&pmu->exclusive_cnt, 0);
11116 	ret = 0;
11117 unlock:
11118 	mutex_unlock(&pmus_lock);
11119 
11120 	return ret;
11121 
11122 free_dev:
11123 	device_del(pmu->dev);
11124 	put_device(pmu->dev);
11125 
11126 free_idr:
11127 	if (pmu->type != PERF_TYPE_SOFTWARE)
11128 		idr_remove(&pmu_idr, pmu->type);
11129 
11130 free_pdc:
11131 	free_percpu(pmu->pmu_disable_count);
11132 	goto unlock;
11133 }
11134 EXPORT_SYMBOL_GPL(perf_pmu_register);
11135 
11136 void perf_pmu_unregister(struct pmu *pmu)
11137 {
11138 	mutex_lock(&pmus_lock);
11139 	list_del_rcu(&pmu->entry);
11140 
11141 	/*
11142 	 * We dereference the pmu list under both SRCU and regular RCU, so
11143 	 * synchronize against both of those.
11144 	 */
11145 	synchronize_srcu(&pmus_srcu);
11146 	synchronize_rcu();
11147 
11148 	free_percpu(pmu->pmu_disable_count);
11149 	if (pmu->type != PERF_TYPE_SOFTWARE)
11150 		idr_remove(&pmu_idr, pmu->type);
11151 	if (pmu_bus_running) {
11152 		if (pmu->nr_addr_filters)
11153 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11154 		device_del(pmu->dev);
11155 		put_device(pmu->dev);
11156 	}
11157 	free_pmu_context(pmu);
11158 	mutex_unlock(&pmus_lock);
11159 }
11160 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11161 
11162 static inline bool has_extended_regs(struct perf_event *event)
11163 {
11164 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11165 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11166 }
11167 
11168 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11169 {
11170 	struct perf_event_context *ctx = NULL;
11171 	int ret;
11172 
11173 	if (!try_module_get(pmu->module))
11174 		return -ENODEV;
11175 
11176 	/*
11177 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11178 	 * for example, validate if the group fits on the PMU. Therefore,
11179 	 * if this is a sibling event, acquire the ctx->mutex to protect
11180 	 * the sibling_list.
11181 	 */
11182 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11183 		/*
11184 		 * This ctx->mutex can nest when we're called through
11185 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11186 		 */
11187 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11188 						 SINGLE_DEPTH_NESTING);
11189 		BUG_ON(!ctx);
11190 	}
11191 
11192 	event->pmu = pmu;
11193 	ret = pmu->event_init(event);
11194 
11195 	if (ctx)
11196 		perf_event_ctx_unlock(event->group_leader, ctx);
11197 
11198 	if (!ret) {
11199 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11200 		    has_extended_regs(event))
11201 			ret = -EOPNOTSUPP;
11202 
11203 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11204 		    event_has_any_exclude_flag(event))
11205 			ret = -EINVAL;
11206 
11207 		if (ret && event->destroy)
11208 			event->destroy(event);
11209 	}
11210 
11211 	if (ret)
11212 		module_put(pmu->module);
11213 
11214 	return ret;
11215 }
11216 
11217 static struct pmu *perf_init_event(struct perf_event *event)
11218 {
11219 	bool extended_type = false;
11220 	int idx, type, ret;
11221 	struct pmu *pmu;
11222 
11223 	idx = srcu_read_lock(&pmus_srcu);
11224 
11225 	/* Try parent's PMU first: */
11226 	if (event->parent && event->parent->pmu) {
11227 		pmu = event->parent->pmu;
11228 		ret = perf_try_init_event(pmu, event);
11229 		if (!ret)
11230 			goto unlock;
11231 	}
11232 
11233 	/*
11234 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11235 	 * are often aliases for PERF_TYPE_RAW.
11236 	 */
11237 	type = event->attr.type;
11238 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11239 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11240 		if (!type) {
11241 			type = PERF_TYPE_RAW;
11242 		} else {
11243 			extended_type = true;
11244 			event->attr.config &= PERF_HW_EVENT_MASK;
11245 		}
11246 	}
11247 
11248 again:
11249 	rcu_read_lock();
11250 	pmu = idr_find(&pmu_idr, type);
11251 	rcu_read_unlock();
11252 	if (pmu) {
11253 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11254 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11255 			goto fail;
11256 
11257 		ret = perf_try_init_event(pmu, event);
11258 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11259 			type = event->attr.type;
11260 			goto again;
11261 		}
11262 
11263 		if (ret)
11264 			pmu = ERR_PTR(ret);
11265 
11266 		goto unlock;
11267 	}
11268 
11269 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11270 		ret = perf_try_init_event(pmu, event);
11271 		if (!ret)
11272 			goto unlock;
11273 
11274 		if (ret != -ENOENT) {
11275 			pmu = ERR_PTR(ret);
11276 			goto unlock;
11277 		}
11278 	}
11279 fail:
11280 	pmu = ERR_PTR(-ENOENT);
11281 unlock:
11282 	srcu_read_unlock(&pmus_srcu, idx);
11283 
11284 	return pmu;
11285 }
11286 
11287 static void attach_sb_event(struct perf_event *event)
11288 {
11289 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11290 
11291 	raw_spin_lock(&pel->lock);
11292 	list_add_rcu(&event->sb_list, &pel->list);
11293 	raw_spin_unlock(&pel->lock);
11294 }
11295 
11296 /*
11297  * We keep a list of all !task (and therefore per-cpu) events
11298  * that need to receive side-band records.
11299  *
11300  * This avoids having to scan all the various PMU per-cpu contexts
11301  * looking for them.
11302  */
11303 static void account_pmu_sb_event(struct perf_event *event)
11304 {
11305 	if (is_sb_event(event))
11306 		attach_sb_event(event);
11307 }
11308 
11309 static void account_event_cpu(struct perf_event *event, int cpu)
11310 {
11311 	if (event->parent)
11312 		return;
11313 
11314 	if (is_cgroup_event(event))
11315 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11316 }
11317 
11318 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11319 static void account_freq_event_nohz(void)
11320 {
11321 #ifdef CONFIG_NO_HZ_FULL
11322 	/* Lock so we don't race with concurrent unaccount */
11323 	spin_lock(&nr_freq_lock);
11324 	if (atomic_inc_return(&nr_freq_events) == 1)
11325 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11326 	spin_unlock(&nr_freq_lock);
11327 #endif
11328 }
11329 
11330 static void account_freq_event(void)
11331 {
11332 	if (tick_nohz_full_enabled())
11333 		account_freq_event_nohz();
11334 	else
11335 		atomic_inc(&nr_freq_events);
11336 }
11337 
11338 
11339 static void account_event(struct perf_event *event)
11340 {
11341 	bool inc = false;
11342 
11343 	if (event->parent)
11344 		return;
11345 
11346 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11347 		inc = true;
11348 	if (event->attr.mmap || event->attr.mmap_data)
11349 		atomic_inc(&nr_mmap_events);
11350 	if (event->attr.build_id)
11351 		atomic_inc(&nr_build_id_events);
11352 	if (event->attr.comm)
11353 		atomic_inc(&nr_comm_events);
11354 	if (event->attr.namespaces)
11355 		atomic_inc(&nr_namespaces_events);
11356 	if (event->attr.cgroup)
11357 		atomic_inc(&nr_cgroup_events);
11358 	if (event->attr.task)
11359 		atomic_inc(&nr_task_events);
11360 	if (event->attr.freq)
11361 		account_freq_event();
11362 	if (event->attr.context_switch) {
11363 		atomic_inc(&nr_switch_events);
11364 		inc = true;
11365 	}
11366 	if (has_branch_stack(event))
11367 		inc = true;
11368 	if (is_cgroup_event(event))
11369 		inc = true;
11370 	if (event->attr.ksymbol)
11371 		atomic_inc(&nr_ksymbol_events);
11372 	if (event->attr.bpf_event)
11373 		atomic_inc(&nr_bpf_events);
11374 	if (event->attr.text_poke)
11375 		atomic_inc(&nr_text_poke_events);
11376 
11377 	if (inc) {
11378 		/*
11379 		 * We need the mutex here because static_branch_enable()
11380 		 * must complete *before* the perf_sched_count increment
11381 		 * becomes visible.
11382 		 */
11383 		if (atomic_inc_not_zero(&perf_sched_count))
11384 			goto enabled;
11385 
11386 		mutex_lock(&perf_sched_mutex);
11387 		if (!atomic_read(&perf_sched_count)) {
11388 			static_branch_enable(&perf_sched_events);
11389 			/*
11390 			 * Guarantee that all CPUs observe they key change and
11391 			 * call the perf scheduling hooks before proceeding to
11392 			 * install events that need them.
11393 			 */
11394 			synchronize_rcu();
11395 		}
11396 		/*
11397 		 * Now that we have waited for the sync_sched(), allow further
11398 		 * increments to by-pass the mutex.
11399 		 */
11400 		atomic_inc(&perf_sched_count);
11401 		mutex_unlock(&perf_sched_mutex);
11402 	}
11403 enabled:
11404 
11405 	account_event_cpu(event, event->cpu);
11406 
11407 	account_pmu_sb_event(event);
11408 }
11409 
11410 /*
11411  * Allocate and initialize an event structure
11412  */
11413 static struct perf_event *
11414 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11415 		 struct task_struct *task,
11416 		 struct perf_event *group_leader,
11417 		 struct perf_event *parent_event,
11418 		 perf_overflow_handler_t overflow_handler,
11419 		 void *context, int cgroup_fd)
11420 {
11421 	struct pmu *pmu;
11422 	struct perf_event *event;
11423 	struct hw_perf_event *hwc;
11424 	long err = -EINVAL;
11425 	int node;
11426 
11427 	if ((unsigned)cpu >= nr_cpu_ids) {
11428 		if (!task || cpu != -1)
11429 			return ERR_PTR(-EINVAL);
11430 	}
11431 	if (attr->sigtrap && !task) {
11432 		/* Requires a task: avoid signalling random tasks. */
11433 		return ERR_PTR(-EINVAL);
11434 	}
11435 
11436 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11437 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11438 				      node);
11439 	if (!event)
11440 		return ERR_PTR(-ENOMEM);
11441 
11442 	/*
11443 	 * Single events are their own group leaders, with an
11444 	 * empty sibling list:
11445 	 */
11446 	if (!group_leader)
11447 		group_leader = event;
11448 
11449 	mutex_init(&event->child_mutex);
11450 	INIT_LIST_HEAD(&event->child_list);
11451 
11452 	INIT_LIST_HEAD(&event->event_entry);
11453 	INIT_LIST_HEAD(&event->sibling_list);
11454 	INIT_LIST_HEAD(&event->active_list);
11455 	init_event_group(event);
11456 	INIT_LIST_HEAD(&event->rb_entry);
11457 	INIT_LIST_HEAD(&event->active_entry);
11458 	INIT_LIST_HEAD(&event->addr_filters.list);
11459 	INIT_HLIST_NODE(&event->hlist_entry);
11460 
11461 
11462 	init_waitqueue_head(&event->waitq);
11463 	event->pending_disable = -1;
11464 	init_irq_work(&event->pending, perf_pending_event);
11465 
11466 	mutex_init(&event->mmap_mutex);
11467 	raw_spin_lock_init(&event->addr_filters.lock);
11468 
11469 	atomic_long_set(&event->refcount, 1);
11470 	event->cpu		= cpu;
11471 	event->attr		= *attr;
11472 	event->group_leader	= group_leader;
11473 	event->pmu		= NULL;
11474 	event->oncpu		= -1;
11475 
11476 	event->parent		= parent_event;
11477 
11478 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11479 	event->id		= atomic64_inc_return(&perf_event_id);
11480 
11481 	event->state		= PERF_EVENT_STATE_INACTIVE;
11482 
11483 	if (event->attr.sigtrap)
11484 		atomic_set(&event->event_limit, 1);
11485 
11486 	if (task) {
11487 		event->attach_state = PERF_ATTACH_TASK;
11488 		/*
11489 		 * XXX pmu::event_init needs to know what task to account to
11490 		 * and we cannot use the ctx information because we need the
11491 		 * pmu before we get a ctx.
11492 		 */
11493 		event->hw.target = get_task_struct(task);
11494 	}
11495 
11496 	event->clock = &local_clock;
11497 	if (parent_event)
11498 		event->clock = parent_event->clock;
11499 
11500 	if (!overflow_handler && parent_event) {
11501 		overflow_handler = parent_event->overflow_handler;
11502 		context = parent_event->overflow_handler_context;
11503 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11504 		if (overflow_handler == bpf_overflow_handler) {
11505 			struct bpf_prog *prog = parent_event->prog;
11506 
11507 			bpf_prog_inc(prog);
11508 			event->prog = prog;
11509 			event->orig_overflow_handler =
11510 				parent_event->orig_overflow_handler;
11511 		}
11512 #endif
11513 	}
11514 
11515 	if (overflow_handler) {
11516 		event->overflow_handler	= overflow_handler;
11517 		event->overflow_handler_context = context;
11518 	} else if (is_write_backward(event)){
11519 		event->overflow_handler = perf_event_output_backward;
11520 		event->overflow_handler_context = NULL;
11521 	} else {
11522 		event->overflow_handler = perf_event_output_forward;
11523 		event->overflow_handler_context = NULL;
11524 	}
11525 
11526 	perf_event__state_init(event);
11527 
11528 	pmu = NULL;
11529 
11530 	hwc = &event->hw;
11531 	hwc->sample_period = attr->sample_period;
11532 	if (attr->freq && attr->sample_freq)
11533 		hwc->sample_period = 1;
11534 	hwc->last_period = hwc->sample_period;
11535 
11536 	local64_set(&hwc->period_left, hwc->sample_period);
11537 
11538 	/*
11539 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11540 	 * See perf_output_read().
11541 	 */
11542 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11543 		goto err_ns;
11544 
11545 	if (!has_branch_stack(event))
11546 		event->attr.branch_sample_type = 0;
11547 
11548 	pmu = perf_init_event(event);
11549 	if (IS_ERR(pmu)) {
11550 		err = PTR_ERR(pmu);
11551 		goto err_ns;
11552 	}
11553 
11554 	/*
11555 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11556 	 * be different on other CPUs in the uncore mask.
11557 	 */
11558 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11559 		err = -EINVAL;
11560 		goto err_pmu;
11561 	}
11562 
11563 	if (event->attr.aux_output &&
11564 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11565 		err = -EOPNOTSUPP;
11566 		goto err_pmu;
11567 	}
11568 
11569 	if (cgroup_fd != -1) {
11570 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11571 		if (err)
11572 			goto err_pmu;
11573 	}
11574 
11575 	err = exclusive_event_init(event);
11576 	if (err)
11577 		goto err_pmu;
11578 
11579 	if (has_addr_filter(event)) {
11580 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11581 						    sizeof(struct perf_addr_filter_range),
11582 						    GFP_KERNEL);
11583 		if (!event->addr_filter_ranges) {
11584 			err = -ENOMEM;
11585 			goto err_per_task;
11586 		}
11587 
11588 		/*
11589 		 * Clone the parent's vma offsets: they are valid until exec()
11590 		 * even if the mm is not shared with the parent.
11591 		 */
11592 		if (event->parent) {
11593 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11594 
11595 			raw_spin_lock_irq(&ifh->lock);
11596 			memcpy(event->addr_filter_ranges,
11597 			       event->parent->addr_filter_ranges,
11598 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11599 			raw_spin_unlock_irq(&ifh->lock);
11600 		}
11601 
11602 		/* force hw sync on the address filters */
11603 		event->addr_filters_gen = 1;
11604 	}
11605 
11606 	if (!event->parent) {
11607 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11608 			err = get_callchain_buffers(attr->sample_max_stack);
11609 			if (err)
11610 				goto err_addr_filters;
11611 		}
11612 	}
11613 
11614 	err = security_perf_event_alloc(event);
11615 	if (err)
11616 		goto err_callchain_buffer;
11617 
11618 	/* symmetric to unaccount_event() in _free_event() */
11619 	account_event(event);
11620 
11621 	return event;
11622 
11623 err_callchain_buffer:
11624 	if (!event->parent) {
11625 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11626 			put_callchain_buffers();
11627 	}
11628 err_addr_filters:
11629 	kfree(event->addr_filter_ranges);
11630 
11631 err_per_task:
11632 	exclusive_event_destroy(event);
11633 
11634 err_pmu:
11635 	if (is_cgroup_event(event))
11636 		perf_detach_cgroup(event);
11637 	if (event->destroy)
11638 		event->destroy(event);
11639 	module_put(pmu->module);
11640 err_ns:
11641 	if (event->ns)
11642 		put_pid_ns(event->ns);
11643 	if (event->hw.target)
11644 		put_task_struct(event->hw.target);
11645 	kmem_cache_free(perf_event_cache, event);
11646 
11647 	return ERR_PTR(err);
11648 }
11649 
11650 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11651 			  struct perf_event_attr *attr)
11652 {
11653 	u32 size;
11654 	int ret;
11655 
11656 	/* Zero the full structure, so that a short copy will be nice. */
11657 	memset(attr, 0, sizeof(*attr));
11658 
11659 	ret = get_user(size, &uattr->size);
11660 	if (ret)
11661 		return ret;
11662 
11663 	/* ABI compatibility quirk: */
11664 	if (!size)
11665 		size = PERF_ATTR_SIZE_VER0;
11666 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11667 		goto err_size;
11668 
11669 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11670 	if (ret) {
11671 		if (ret == -E2BIG)
11672 			goto err_size;
11673 		return ret;
11674 	}
11675 
11676 	attr->size = size;
11677 
11678 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11679 		return -EINVAL;
11680 
11681 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11682 		return -EINVAL;
11683 
11684 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11685 		return -EINVAL;
11686 
11687 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11688 		u64 mask = attr->branch_sample_type;
11689 
11690 		/* only using defined bits */
11691 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11692 			return -EINVAL;
11693 
11694 		/* at least one branch bit must be set */
11695 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11696 			return -EINVAL;
11697 
11698 		/* propagate priv level, when not set for branch */
11699 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11700 
11701 			/* exclude_kernel checked on syscall entry */
11702 			if (!attr->exclude_kernel)
11703 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11704 
11705 			if (!attr->exclude_user)
11706 				mask |= PERF_SAMPLE_BRANCH_USER;
11707 
11708 			if (!attr->exclude_hv)
11709 				mask |= PERF_SAMPLE_BRANCH_HV;
11710 			/*
11711 			 * adjust user setting (for HW filter setup)
11712 			 */
11713 			attr->branch_sample_type = mask;
11714 		}
11715 		/* privileged levels capture (kernel, hv): check permissions */
11716 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11717 			ret = perf_allow_kernel(attr);
11718 			if (ret)
11719 				return ret;
11720 		}
11721 	}
11722 
11723 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11724 		ret = perf_reg_validate(attr->sample_regs_user);
11725 		if (ret)
11726 			return ret;
11727 	}
11728 
11729 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11730 		if (!arch_perf_have_user_stack_dump())
11731 			return -ENOSYS;
11732 
11733 		/*
11734 		 * We have __u32 type for the size, but so far
11735 		 * we can only use __u16 as maximum due to the
11736 		 * __u16 sample size limit.
11737 		 */
11738 		if (attr->sample_stack_user >= USHRT_MAX)
11739 			return -EINVAL;
11740 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11741 			return -EINVAL;
11742 	}
11743 
11744 	if (!attr->sample_max_stack)
11745 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11746 
11747 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11748 		ret = perf_reg_validate(attr->sample_regs_intr);
11749 
11750 #ifndef CONFIG_CGROUP_PERF
11751 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11752 		return -EINVAL;
11753 #endif
11754 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11755 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11756 		return -EINVAL;
11757 
11758 	if (!attr->inherit && attr->inherit_thread)
11759 		return -EINVAL;
11760 
11761 	if (attr->remove_on_exec && attr->enable_on_exec)
11762 		return -EINVAL;
11763 
11764 	if (attr->sigtrap && !attr->remove_on_exec)
11765 		return -EINVAL;
11766 
11767 out:
11768 	return ret;
11769 
11770 err_size:
11771 	put_user(sizeof(*attr), &uattr->size);
11772 	ret = -E2BIG;
11773 	goto out;
11774 }
11775 
11776 static int
11777 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11778 {
11779 	struct perf_buffer *rb = NULL;
11780 	int ret = -EINVAL;
11781 
11782 	if (!output_event)
11783 		goto set;
11784 
11785 	/* don't allow circular references */
11786 	if (event == output_event)
11787 		goto out;
11788 
11789 	/*
11790 	 * Don't allow cross-cpu buffers
11791 	 */
11792 	if (output_event->cpu != event->cpu)
11793 		goto out;
11794 
11795 	/*
11796 	 * If its not a per-cpu rb, it must be the same task.
11797 	 */
11798 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11799 		goto out;
11800 
11801 	/*
11802 	 * Mixing clocks in the same buffer is trouble you don't need.
11803 	 */
11804 	if (output_event->clock != event->clock)
11805 		goto out;
11806 
11807 	/*
11808 	 * Either writing ring buffer from beginning or from end.
11809 	 * Mixing is not allowed.
11810 	 */
11811 	if (is_write_backward(output_event) != is_write_backward(event))
11812 		goto out;
11813 
11814 	/*
11815 	 * If both events generate aux data, they must be on the same PMU
11816 	 */
11817 	if (has_aux(event) && has_aux(output_event) &&
11818 	    event->pmu != output_event->pmu)
11819 		goto out;
11820 
11821 set:
11822 	mutex_lock(&event->mmap_mutex);
11823 	/* Can't redirect output if we've got an active mmap() */
11824 	if (atomic_read(&event->mmap_count))
11825 		goto unlock;
11826 
11827 	if (output_event) {
11828 		/* get the rb we want to redirect to */
11829 		rb = ring_buffer_get(output_event);
11830 		if (!rb)
11831 			goto unlock;
11832 	}
11833 
11834 	ring_buffer_attach(event, rb);
11835 
11836 	ret = 0;
11837 unlock:
11838 	mutex_unlock(&event->mmap_mutex);
11839 
11840 out:
11841 	return ret;
11842 }
11843 
11844 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11845 {
11846 	if (b < a)
11847 		swap(a, b);
11848 
11849 	mutex_lock(a);
11850 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11851 }
11852 
11853 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11854 {
11855 	bool nmi_safe = false;
11856 
11857 	switch (clk_id) {
11858 	case CLOCK_MONOTONIC:
11859 		event->clock = &ktime_get_mono_fast_ns;
11860 		nmi_safe = true;
11861 		break;
11862 
11863 	case CLOCK_MONOTONIC_RAW:
11864 		event->clock = &ktime_get_raw_fast_ns;
11865 		nmi_safe = true;
11866 		break;
11867 
11868 	case CLOCK_REALTIME:
11869 		event->clock = &ktime_get_real_ns;
11870 		break;
11871 
11872 	case CLOCK_BOOTTIME:
11873 		event->clock = &ktime_get_boottime_ns;
11874 		break;
11875 
11876 	case CLOCK_TAI:
11877 		event->clock = &ktime_get_clocktai_ns;
11878 		break;
11879 
11880 	default:
11881 		return -EINVAL;
11882 	}
11883 
11884 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11885 		return -EINVAL;
11886 
11887 	return 0;
11888 }
11889 
11890 /*
11891  * Variation on perf_event_ctx_lock_nested(), except we take two context
11892  * mutexes.
11893  */
11894 static struct perf_event_context *
11895 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11896 			     struct perf_event_context *ctx)
11897 {
11898 	struct perf_event_context *gctx;
11899 
11900 again:
11901 	rcu_read_lock();
11902 	gctx = READ_ONCE(group_leader->ctx);
11903 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11904 		rcu_read_unlock();
11905 		goto again;
11906 	}
11907 	rcu_read_unlock();
11908 
11909 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11910 
11911 	if (group_leader->ctx != gctx) {
11912 		mutex_unlock(&ctx->mutex);
11913 		mutex_unlock(&gctx->mutex);
11914 		put_ctx(gctx);
11915 		goto again;
11916 	}
11917 
11918 	return gctx;
11919 }
11920 
11921 /**
11922  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11923  *
11924  * @attr_uptr:	event_id type attributes for monitoring/sampling
11925  * @pid:		target pid
11926  * @cpu:		target cpu
11927  * @group_fd:		group leader event fd
11928  * @flags:		perf event open flags
11929  */
11930 SYSCALL_DEFINE5(perf_event_open,
11931 		struct perf_event_attr __user *, attr_uptr,
11932 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11933 {
11934 	struct perf_event *group_leader = NULL, *output_event = NULL;
11935 	struct perf_event *event, *sibling;
11936 	struct perf_event_attr attr;
11937 	struct perf_event_context *ctx, *gctx;
11938 	struct file *event_file = NULL;
11939 	struct fd group = {NULL, 0};
11940 	struct task_struct *task = NULL;
11941 	struct pmu *pmu;
11942 	int event_fd;
11943 	int move_group = 0;
11944 	int err;
11945 	int f_flags = O_RDWR;
11946 	int cgroup_fd = -1;
11947 
11948 	/* for future expandability... */
11949 	if (flags & ~PERF_FLAG_ALL)
11950 		return -EINVAL;
11951 
11952 	/* Do we allow access to perf_event_open(2) ? */
11953 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11954 	if (err)
11955 		return err;
11956 
11957 	err = perf_copy_attr(attr_uptr, &attr);
11958 	if (err)
11959 		return err;
11960 
11961 	if (!attr.exclude_kernel) {
11962 		err = perf_allow_kernel(&attr);
11963 		if (err)
11964 			return err;
11965 	}
11966 
11967 	if (attr.namespaces) {
11968 		if (!perfmon_capable())
11969 			return -EACCES;
11970 	}
11971 
11972 	if (attr.freq) {
11973 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11974 			return -EINVAL;
11975 	} else {
11976 		if (attr.sample_period & (1ULL << 63))
11977 			return -EINVAL;
11978 	}
11979 
11980 	/* Only privileged users can get physical addresses */
11981 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11982 		err = perf_allow_kernel(&attr);
11983 		if (err)
11984 			return err;
11985 	}
11986 
11987 	/* REGS_INTR can leak data, lockdown must prevent this */
11988 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11989 		err = security_locked_down(LOCKDOWN_PERF);
11990 		if (err)
11991 			return err;
11992 	}
11993 
11994 	/*
11995 	 * In cgroup mode, the pid argument is used to pass the fd
11996 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11997 	 * designates the cpu on which to monitor threads from that
11998 	 * cgroup.
11999 	 */
12000 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12001 		return -EINVAL;
12002 
12003 	if (flags & PERF_FLAG_FD_CLOEXEC)
12004 		f_flags |= O_CLOEXEC;
12005 
12006 	event_fd = get_unused_fd_flags(f_flags);
12007 	if (event_fd < 0)
12008 		return event_fd;
12009 
12010 	if (group_fd != -1) {
12011 		err = perf_fget_light(group_fd, &group);
12012 		if (err)
12013 			goto err_fd;
12014 		group_leader = group.file->private_data;
12015 		if (flags & PERF_FLAG_FD_OUTPUT)
12016 			output_event = group_leader;
12017 		if (flags & PERF_FLAG_FD_NO_GROUP)
12018 			group_leader = NULL;
12019 	}
12020 
12021 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12022 		task = find_lively_task_by_vpid(pid);
12023 		if (IS_ERR(task)) {
12024 			err = PTR_ERR(task);
12025 			goto err_group_fd;
12026 		}
12027 	}
12028 
12029 	if (task && group_leader &&
12030 	    group_leader->attr.inherit != attr.inherit) {
12031 		err = -EINVAL;
12032 		goto err_task;
12033 	}
12034 
12035 	if (flags & PERF_FLAG_PID_CGROUP)
12036 		cgroup_fd = pid;
12037 
12038 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12039 				 NULL, NULL, cgroup_fd);
12040 	if (IS_ERR(event)) {
12041 		err = PTR_ERR(event);
12042 		goto err_task;
12043 	}
12044 
12045 	if (is_sampling_event(event)) {
12046 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12047 			err = -EOPNOTSUPP;
12048 			goto err_alloc;
12049 		}
12050 	}
12051 
12052 	/*
12053 	 * Special case software events and allow them to be part of
12054 	 * any hardware group.
12055 	 */
12056 	pmu = event->pmu;
12057 
12058 	if (attr.use_clockid) {
12059 		err = perf_event_set_clock(event, attr.clockid);
12060 		if (err)
12061 			goto err_alloc;
12062 	}
12063 
12064 	if (pmu->task_ctx_nr == perf_sw_context)
12065 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12066 
12067 	if (group_leader) {
12068 		if (is_software_event(event) &&
12069 		    !in_software_context(group_leader)) {
12070 			/*
12071 			 * If the event is a sw event, but the group_leader
12072 			 * is on hw context.
12073 			 *
12074 			 * Allow the addition of software events to hw
12075 			 * groups, this is safe because software events
12076 			 * never fail to schedule.
12077 			 */
12078 			pmu = group_leader->ctx->pmu;
12079 		} else if (!is_software_event(event) &&
12080 			   is_software_event(group_leader) &&
12081 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12082 			/*
12083 			 * In case the group is a pure software group, and we
12084 			 * try to add a hardware event, move the whole group to
12085 			 * the hardware context.
12086 			 */
12087 			move_group = 1;
12088 		}
12089 	}
12090 
12091 	/*
12092 	 * Get the target context (task or percpu):
12093 	 */
12094 	ctx = find_get_context(pmu, task, event);
12095 	if (IS_ERR(ctx)) {
12096 		err = PTR_ERR(ctx);
12097 		goto err_alloc;
12098 	}
12099 
12100 	/*
12101 	 * Look up the group leader (we will attach this event to it):
12102 	 */
12103 	if (group_leader) {
12104 		err = -EINVAL;
12105 
12106 		/*
12107 		 * Do not allow a recursive hierarchy (this new sibling
12108 		 * becoming part of another group-sibling):
12109 		 */
12110 		if (group_leader->group_leader != group_leader)
12111 			goto err_context;
12112 
12113 		/* All events in a group should have the same clock */
12114 		if (group_leader->clock != event->clock)
12115 			goto err_context;
12116 
12117 		/*
12118 		 * Make sure we're both events for the same CPU;
12119 		 * grouping events for different CPUs is broken; since
12120 		 * you can never concurrently schedule them anyhow.
12121 		 */
12122 		if (group_leader->cpu != event->cpu)
12123 			goto err_context;
12124 
12125 		/*
12126 		 * Make sure we're both on the same task, or both
12127 		 * per-CPU events.
12128 		 */
12129 		if (group_leader->ctx->task != ctx->task)
12130 			goto err_context;
12131 
12132 		/*
12133 		 * Do not allow to attach to a group in a different task
12134 		 * or CPU context. If we're moving SW events, we'll fix
12135 		 * this up later, so allow that.
12136 		 */
12137 		if (!move_group && group_leader->ctx != ctx)
12138 			goto err_context;
12139 
12140 		/*
12141 		 * Only a group leader can be exclusive or pinned
12142 		 */
12143 		if (attr.exclusive || attr.pinned)
12144 			goto err_context;
12145 	}
12146 
12147 	if (output_event) {
12148 		err = perf_event_set_output(event, output_event);
12149 		if (err)
12150 			goto err_context;
12151 	}
12152 
12153 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12154 					f_flags);
12155 	if (IS_ERR(event_file)) {
12156 		err = PTR_ERR(event_file);
12157 		event_file = NULL;
12158 		goto err_context;
12159 	}
12160 
12161 	if (task) {
12162 		err = down_read_interruptible(&task->signal->exec_update_lock);
12163 		if (err)
12164 			goto err_file;
12165 
12166 		/*
12167 		 * Preserve ptrace permission check for backwards compatibility.
12168 		 *
12169 		 * We must hold exec_update_lock across this and any potential
12170 		 * perf_install_in_context() call for this new event to
12171 		 * serialize against exec() altering our credentials (and the
12172 		 * perf_event_exit_task() that could imply).
12173 		 */
12174 		err = -EACCES;
12175 		if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
12176 			goto err_cred;
12177 	}
12178 
12179 	if (move_group) {
12180 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12181 
12182 		if (gctx->task == TASK_TOMBSTONE) {
12183 			err = -ESRCH;
12184 			goto err_locked;
12185 		}
12186 
12187 		/*
12188 		 * Check if we raced against another sys_perf_event_open() call
12189 		 * moving the software group underneath us.
12190 		 */
12191 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12192 			/*
12193 			 * If someone moved the group out from under us, check
12194 			 * if this new event wound up on the same ctx, if so
12195 			 * its the regular !move_group case, otherwise fail.
12196 			 */
12197 			if (gctx != ctx) {
12198 				err = -EINVAL;
12199 				goto err_locked;
12200 			} else {
12201 				perf_event_ctx_unlock(group_leader, gctx);
12202 				move_group = 0;
12203 			}
12204 		}
12205 
12206 		/*
12207 		 * Failure to create exclusive events returns -EBUSY.
12208 		 */
12209 		err = -EBUSY;
12210 		if (!exclusive_event_installable(group_leader, ctx))
12211 			goto err_locked;
12212 
12213 		for_each_sibling_event(sibling, group_leader) {
12214 			if (!exclusive_event_installable(sibling, ctx))
12215 				goto err_locked;
12216 		}
12217 	} else {
12218 		mutex_lock(&ctx->mutex);
12219 	}
12220 
12221 	if (ctx->task == TASK_TOMBSTONE) {
12222 		err = -ESRCH;
12223 		goto err_locked;
12224 	}
12225 
12226 	if (!perf_event_validate_size(event)) {
12227 		err = -E2BIG;
12228 		goto err_locked;
12229 	}
12230 
12231 	if (!task) {
12232 		/*
12233 		 * Check if the @cpu we're creating an event for is online.
12234 		 *
12235 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12236 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12237 		 */
12238 		struct perf_cpu_context *cpuctx =
12239 			container_of(ctx, struct perf_cpu_context, ctx);
12240 
12241 		if (!cpuctx->online) {
12242 			err = -ENODEV;
12243 			goto err_locked;
12244 		}
12245 	}
12246 
12247 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12248 		err = -EINVAL;
12249 		goto err_locked;
12250 	}
12251 
12252 	/*
12253 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12254 	 * because we need to serialize with concurrent event creation.
12255 	 */
12256 	if (!exclusive_event_installable(event, ctx)) {
12257 		err = -EBUSY;
12258 		goto err_locked;
12259 	}
12260 
12261 	WARN_ON_ONCE(ctx->parent_ctx);
12262 
12263 	/*
12264 	 * This is the point on no return; we cannot fail hereafter. This is
12265 	 * where we start modifying current state.
12266 	 */
12267 
12268 	if (move_group) {
12269 		/*
12270 		 * See perf_event_ctx_lock() for comments on the details
12271 		 * of swizzling perf_event::ctx.
12272 		 */
12273 		perf_remove_from_context(group_leader, 0);
12274 		put_ctx(gctx);
12275 
12276 		for_each_sibling_event(sibling, group_leader) {
12277 			perf_remove_from_context(sibling, 0);
12278 			put_ctx(gctx);
12279 		}
12280 
12281 		/*
12282 		 * Wait for everybody to stop referencing the events through
12283 		 * the old lists, before installing it on new lists.
12284 		 */
12285 		synchronize_rcu();
12286 
12287 		/*
12288 		 * Install the group siblings before the group leader.
12289 		 *
12290 		 * Because a group leader will try and install the entire group
12291 		 * (through the sibling list, which is still in-tact), we can
12292 		 * end up with siblings installed in the wrong context.
12293 		 *
12294 		 * By installing siblings first we NO-OP because they're not
12295 		 * reachable through the group lists.
12296 		 */
12297 		for_each_sibling_event(sibling, group_leader) {
12298 			perf_event__state_init(sibling);
12299 			perf_install_in_context(ctx, sibling, sibling->cpu);
12300 			get_ctx(ctx);
12301 		}
12302 
12303 		/*
12304 		 * Removing from the context ends up with disabled
12305 		 * event. What we want here is event in the initial
12306 		 * startup state, ready to be add into new context.
12307 		 */
12308 		perf_event__state_init(group_leader);
12309 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12310 		get_ctx(ctx);
12311 	}
12312 
12313 	/*
12314 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12315 	 * that we're serialized against further additions and before
12316 	 * perf_install_in_context() which is the point the event is active and
12317 	 * can use these values.
12318 	 */
12319 	perf_event__header_size(event);
12320 	perf_event__id_header_size(event);
12321 
12322 	event->owner = current;
12323 
12324 	perf_install_in_context(ctx, event, event->cpu);
12325 	perf_unpin_context(ctx);
12326 
12327 	if (move_group)
12328 		perf_event_ctx_unlock(group_leader, gctx);
12329 	mutex_unlock(&ctx->mutex);
12330 
12331 	if (task) {
12332 		up_read(&task->signal->exec_update_lock);
12333 		put_task_struct(task);
12334 	}
12335 
12336 	mutex_lock(&current->perf_event_mutex);
12337 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12338 	mutex_unlock(&current->perf_event_mutex);
12339 
12340 	/*
12341 	 * Drop the reference on the group_event after placing the
12342 	 * new event on the sibling_list. This ensures destruction
12343 	 * of the group leader will find the pointer to itself in
12344 	 * perf_group_detach().
12345 	 */
12346 	fdput(group);
12347 	fd_install(event_fd, event_file);
12348 	return event_fd;
12349 
12350 err_locked:
12351 	if (move_group)
12352 		perf_event_ctx_unlock(group_leader, gctx);
12353 	mutex_unlock(&ctx->mutex);
12354 err_cred:
12355 	if (task)
12356 		up_read(&task->signal->exec_update_lock);
12357 err_file:
12358 	fput(event_file);
12359 err_context:
12360 	perf_unpin_context(ctx);
12361 	put_ctx(ctx);
12362 err_alloc:
12363 	/*
12364 	 * If event_file is set, the fput() above will have called ->release()
12365 	 * and that will take care of freeing the event.
12366 	 */
12367 	if (!event_file)
12368 		free_event(event);
12369 err_task:
12370 	if (task)
12371 		put_task_struct(task);
12372 err_group_fd:
12373 	fdput(group);
12374 err_fd:
12375 	put_unused_fd(event_fd);
12376 	return err;
12377 }
12378 
12379 /**
12380  * perf_event_create_kernel_counter
12381  *
12382  * @attr: attributes of the counter to create
12383  * @cpu: cpu in which the counter is bound
12384  * @task: task to profile (NULL for percpu)
12385  * @overflow_handler: callback to trigger when we hit the event
12386  * @context: context data could be used in overflow_handler callback
12387  */
12388 struct perf_event *
12389 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12390 				 struct task_struct *task,
12391 				 perf_overflow_handler_t overflow_handler,
12392 				 void *context)
12393 {
12394 	struct perf_event_context *ctx;
12395 	struct perf_event *event;
12396 	int err;
12397 
12398 	/*
12399 	 * Grouping is not supported for kernel events, neither is 'AUX',
12400 	 * make sure the caller's intentions are adjusted.
12401 	 */
12402 	if (attr->aux_output)
12403 		return ERR_PTR(-EINVAL);
12404 
12405 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12406 				 overflow_handler, context, -1);
12407 	if (IS_ERR(event)) {
12408 		err = PTR_ERR(event);
12409 		goto err;
12410 	}
12411 
12412 	/* Mark owner so we could distinguish it from user events. */
12413 	event->owner = TASK_TOMBSTONE;
12414 
12415 	/*
12416 	 * Get the target context (task or percpu):
12417 	 */
12418 	ctx = find_get_context(event->pmu, task, event);
12419 	if (IS_ERR(ctx)) {
12420 		err = PTR_ERR(ctx);
12421 		goto err_free;
12422 	}
12423 
12424 	WARN_ON_ONCE(ctx->parent_ctx);
12425 	mutex_lock(&ctx->mutex);
12426 	if (ctx->task == TASK_TOMBSTONE) {
12427 		err = -ESRCH;
12428 		goto err_unlock;
12429 	}
12430 
12431 	if (!task) {
12432 		/*
12433 		 * Check if the @cpu we're creating an event for is online.
12434 		 *
12435 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12436 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12437 		 */
12438 		struct perf_cpu_context *cpuctx =
12439 			container_of(ctx, struct perf_cpu_context, ctx);
12440 		if (!cpuctx->online) {
12441 			err = -ENODEV;
12442 			goto err_unlock;
12443 		}
12444 	}
12445 
12446 	if (!exclusive_event_installable(event, ctx)) {
12447 		err = -EBUSY;
12448 		goto err_unlock;
12449 	}
12450 
12451 	perf_install_in_context(ctx, event, event->cpu);
12452 	perf_unpin_context(ctx);
12453 	mutex_unlock(&ctx->mutex);
12454 
12455 	return event;
12456 
12457 err_unlock:
12458 	mutex_unlock(&ctx->mutex);
12459 	perf_unpin_context(ctx);
12460 	put_ctx(ctx);
12461 err_free:
12462 	free_event(event);
12463 err:
12464 	return ERR_PTR(err);
12465 }
12466 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12467 
12468 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12469 {
12470 	struct perf_event_context *src_ctx;
12471 	struct perf_event_context *dst_ctx;
12472 	struct perf_event *event, *tmp;
12473 	LIST_HEAD(events);
12474 
12475 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12476 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12477 
12478 	/*
12479 	 * See perf_event_ctx_lock() for comments on the details
12480 	 * of swizzling perf_event::ctx.
12481 	 */
12482 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12483 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12484 				 event_entry) {
12485 		perf_remove_from_context(event, 0);
12486 		unaccount_event_cpu(event, src_cpu);
12487 		put_ctx(src_ctx);
12488 		list_add(&event->migrate_entry, &events);
12489 	}
12490 
12491 	/*
12492 	 * Wait for the events to quiesce before re-instating them.
12493 	 */
12494 	synchronize_rcu();
12495 
12496 	/*
12497 	 * Re-instate events in 2 passes.
12498 	 *
12499 	 * Skip over group leaders and only install siblings on this first
12500 	 * pass, siblings will not get enabled without a leader, however a
12501 	 * leader will enable its siblings, even if those are still on the old
12502 	 * context.
12503 	 */
12504 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12505 		if (event->group_leader == event)
12506 			continue;
12507 
12508 		list_del(&event->migrate_entry);
12509 		if (event->state >= PERF_EVENT_STATE_OFF)
12510 			event->state = PERF_EVENT_STATE_INACTIVE;
12511 		account_event_cpu(event, dst_cpu);
12512 		perf_install_in_context(dst_ctx, event, dst_cpu);
12513 		get_ctx(dst_ctx);
12514 	}
12515 
12516 	/*
12517 	 * Once all the siblings are setup properly, install the group leaders
12518 	 * to make it go.
12519 	 */
12520 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12521 		list_del(&event->migrate_entry);
12522 		if (event->state >= PERF_EVENT_STATE_OFF)
12523 			event->state = PERF_EVENT_STATE_INACTIVE;
12524 		account_event_cpu(event, dst_cpu);
12525 		perf_install_in_context(dst_ctx, event, dst_cpu);
12526 		get_ctx(dst_ctx);
12527 	}
12528 	mutex_unlock(&dst_ctx->mutex);
12529 	mutex_unlock(&src_ctx->mutex);
12530 }
12531 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12532 
12533 static void sync_child_event(struct perf_event *child_event)
12534 {
12535 	struct perf_event *parent_event = child_event->parent;
12536 	u64 child_val;
12537 
12538 	if (child_event->attr.inherit_stat) {
12539 		struct task_struct *task = child_event->ctx->task;
12540 
12541 		if (task && task != TASK_TOMBSTONE)
12542 			perf_event_read_event(child_event, task);
12543 	}
12544 
12545 	child_val = perf_event_count(child_event);
12546 
12547 	/*
12548 	 * Add back the child's count to the parent's count:
12549 	 */
12550 	atomic64_add(child_val, &parent_event->child_count);
12551 	atomic64_add(child_event->total_time_enabled,
12552 		     &parent_event->child_total_time_enabled);
12553 	atomic64_add(child_event->total_time_running,
12554 		     &parent_event->child_total_time_running);
12555 }
12556 
12557 static void
12558 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12559 {
12560 	struct perf_event *parent_event = event->parent;
12561 	unsigned long detach_flags = 0;
12562 
12563 	if (parent_event) {
12564 		/*
12565 		 * Do not destroy the 'original' grouping; because of the
12566 		 * context switch optimization the original events could've
12567 		 * ended up in a random child task.
12568 		 *
12569 		 * If we were to destroy the original group, all group related
12570 		 * operations would cease to function properly after this
12571 		 * random child dies.
12572 		 *
12573 		 * Do destroy all inherited groups, we don't care about those
12574 		 * and being thorough is better.
12575 		 */
12576 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12577 		mutex_lock(&parent_event->child_mutex);
12578 	}
12579 
12580 	perf_remove_from_context(event, detach_flags);
12581 
12582 	raw_spin_lock_irq(&ctx->lock);
12583 	if (event->state > PERF_EVENT_STATE_EXIT)
12584 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12585 	raw_spin_unlock_irq(&ctx->lock);
12586 
12587 	/*
12588 	 * Child events can be freed.
12589 	 */
12590 	if (parent_event) {
12591 		mutex_unlock(&parent_event->child_mutex);
12592 		/*
12593 		 * Kick perf_poll() for is_event_hup();
12594 		 */
12595 		perf_event_wakeup(parent_event);
12596 		free_event(event);
12597 		put_event(parent_event);
12598 		return;
12599 	}
12600 
12601 	/*
12602 	 * Parent events are governed by their filedesc, retain them.
12603 	 */
12604 	perf_event_wakeup(event);
12605 }
12606 
12607 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12608 {
12609 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12610 	struct perf_event *child_event, *next;
12611 
12612 	WARN_ON_ONCE(child != current);
12613 
12614 	child_ctx = perf_pin_task_context(child, ctxn);
12615 	if (!child_ctx)
12616 		return;
12617 
12618 	/*
12619 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12620 	 * ctx::mutex over the entire thing. This serializes against almost
12621 	 * everything that wants to access the ctx.
12622 	 *
12623 	 * The exception is sys_perf_event_open() /
12624 	 * perf_event_create_kernel_count() which does find_get_context()
12625 	 * without ctx::mutex (it cannot because of the move_group double mutex
12626 	 * lock thing). See the comments in perf_install_in_context().
12627 	 */
12628 	mutex_lock(&child_ctx->mutex);
12629 
12630 	/*
12631 	 * In a single ctx::lock section, de-schedule the events and detach the
12632 	 * context from the task such that we cannot ever get it scheduled back
12633 	 * in.
12634 	 */
12635 	raw_spin_lock_irq(&child_ctx->lock);
12636 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12637 
12638 	/*
12639 	 * Now that the context is inactive, destroy the task <-> ctx relation
12640 	 * and mark the context dead.
12641 	 */
12642 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12643 	put_ctx(child_ctx); /* cannot be last */
12644 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12645 	put_task_struct(current); /* cannot be last */
12646 
12647 	clone_ctx = unclone_ctx(child_ctx);
12648 	raw_spin_unlock_irq(&child_ctx->lock);
12649 
12650 	if (clone_ctx)
12651 		put_ctx(clone_ctx);
12652 
12653 	/*
12654 	 * Report the task dead after unscheduling the events so that we
12655 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12656 	 * get a few PERF_RECORD_READ events.
12657 	 */
12658 	perf_event_task(child, child_ctx, 0);
12659 
12660 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12661 		perf_event_exit_event(child_event, child_ctx);
12662 
12663 	mutex_unlock(&child_ctx->mutex);
12664 
12665 	put_ctx(child_ctx);
12666 }
12667 
12668 /*
12669  * When a child task exits, feed back event values to parent events.
12670  *
12671  * Can be called with exec_update_lock held when called from
12672  * setup_new_exec().
12673  */
12674 void perf_event_exit_task(struct task_struct *child)
12675 {
12676 	struct perf_event *event, *tmp;
12677 	int ctxn;
12678 
12679 	mutex_lock(&child->perf_event_mutex);
12680 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12681 				 owner_entry) {
12682 		list_del_init(&event->owner_entry);
12683 
12684 		/*
12685 		 * Ensure the list deletion is visible before we clear
12686 		 * the owner, closes a race against perf_release() where
12687 		 * we need to serialize on the owner->perf_event_mutex.
12688 		 */
12689 		smp_store_release(&event->owner, NULL);
12690 	}
12691 	mutex_unlock(&child->perf_event_mutex);
12692 
12693 	for_each_task_context_nr(ctxn)
12694 		perf_event_exit_task_context(child, ctxn);
12695 
12696 	/*
12697 	 * The perf_event_exit_task_context calls perf_event_task
12698 	 * with child's task_ctx, which generates EXIT events for
12699 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12700 	 * At this point we need to send EXIT events to cpu contexts.
12701 	 */
12702 	perf_event_task(child, NULL, 0);
12703 }
12704 
12705 static void perf_free_event(struct perf_event *event,
12706 			    struct perf_event_context *ctx)
12707 {
12708 	struct perf_event *parent = event->parent;
12709 
12710 	if (WARN_ON_ONCE(!parent))
12711 		return;
12712 
12713 	mutex_lock(&parent->child_mutex);
12714 	list_del_init(&event->child_list);
12715 	mutex_unlock(&parent->child_mutex);
12716 
12717 	put_event(parent);
12718 
12719 	raw_spin_lock_irq(&ctx->lock);
12720 	perf_group_detach(event);
12721 	list_del_event(event, ctx);
12722 	raw_spin_unlock_irq(&ctx->lock);
12723 	free_event(event);
12724 }
12725 
12726 /*
12727  * Free a context as created by inheritance by perf_event_init_task() below,
12728  * used by fork() in case of fail.
12729  *
12730  * Even though the task has never lived, the context and events have been
12731  * exposed through the child_list, so we must take care tearing it all down.
12732  */
12733 void perf_event_free_task(struct task_struct *task)
12734 {
12735 	struct perf_event_context *ctx;
12736 	struct perf_event *event, *tmp;
12737 	int ctxn;
12738 
12739 	for_each_task_context_nr(ctxn) {
12740 		ctx = task->perf_event_ctxp[ctxn];
12741 		if (!ctx)
12742 			continue;
12743 
12744 		mutex_lock(&ctx->mutex);
12745 		raw_spin_lock_irq(&ctx->lock);
12746 		/*
12747 		 * Destroy the task <-> ctx relation and mark the context dead.
12748 		 *
12749 		 * This is important because even though the task hasn't been
12750 		 * exposed yet the context has been (through child_list).
12751 		 */
12752 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12753 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12754 		put_task_struct(task); /* cannot be last */
12755 		raw_spin_unlock_irq(&ctx->lock);
12756 
12757 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12758 			perf_free_event(event, ctx);
12759 
12760 		mutex_unlock(&ctx->mutex);
12761 
12762 		/*
12763 		 * perf_event_release_kernel() could've stolen some of our
12764 		 * child events and still have them on its free_list. In that
12765 		 * case we must wait for these events to have been freed (in
12766 		 * particular all their references to this task must've been
12767 		 * dropped).
12768 		 *
12769 		 * Without this copy_process() will unconditionally free this
12770 		 * task (irrespective of its reference count) and
12771 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12772 		 * use-after-free.
12773 		 *
12774 		 * Wait for all events to drop their context reference.
12775 		 */
12776 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12777 		put_ctx(ctx); /* must be last */
12778 	}
12779 }
12780 
12781 void perf_event_delayed_put(struct task_struct *task)
12782 {
12783 	int ctxn;
12784 
12785 	for_each_task_context_nr(ctxn)
12786 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12787 }
12788 
12789 struct file *perf_event_get(unsigned int fd)
12790 {
12791 	struct file *file = fget(fd);
12792 	if (!file)
12793 		return ERR_PTR(-EBADF);
12794 
12795 	if (file->f_op != &perf_fops) {
12796 		fput(file);
12797 		return ERR_PTR(-EBADF);
12798 	}
12799 
12800 	return file;
12801 }
12802 
12803 const struct perf_event *perf_get_event(struct file *file)
12804 {
12805 	if (file->f_op != &perf_fops)
12806 		return ERR_PTR(-EINVAL);
12807 
12808 	return file->private_data;
12809 }
12810 
12811 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12812 {
12813 	if (!event)
12814 		return ERR_PTR(-EINVAL);
12815 
12816 	return &event->attr;
12817 }
12818 
12819 /*
12820  * Inherit an event from parent task to child task.
12821  *
12822  * Returns:
12823  *  - valid pointer on success
12824  *  - NULL for orphaned events
12825  *  - IS_ERR() on error
12826  */
12827 static struct perf_event *
12828 inherit_event(struct perf_event *parent_event,
12829 	      struct task_struct *parent,
12830 	      struct perf_event_context *parent_ctx,
12831 	      struct task_struct *child,
12832 	      struct perf_event *group_leader,
12833 	      struct perf_event_context *child_ctx)
12834 {
12835 	enum perf_event_state parent_state = parent_event->state;
12836 	struct perf_event *child_event;
12837 	unsigned long flags;
12838 
12839 	/*
12840 	 * Instead of creating recursive hierarchies of events,
12841 	 * we link inherited events back to the original parent,
12842 	 * which has a filp for sure, which we use as the reference
12843 	 * count:
12844 	 */
12845 	if (parent_event->parent)
12846 		parent_event = parent_event->parent;
12847 
12848 	child_event = perf_event_alloc(&parent_event->attr,
12849 					   parent_event->cpu,
12850 					   child,
12851 					   group_leader, parent_event,
12852 					   NULL, NULL, -1);
12853 	if (IS_ERR(child_event))
12854 		return child_event;
12855 
12856 
12857 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12858 	    !child_ctx->task_ctx_data) {
12859 		struct pmu *pmu = child_event->pmu;
12860 
12861 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12862 		if (!child_ctx->task_ctx_data) {
12863 			free_event(child_event);
12864 			return ERR_PTR(-ENOMEM);
12865 		}
12866 	}
12867 
12868 	/*
12869 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12870 	 * must be under the same lock in order to serialize against
12871 	 * perf_event_release_kernel(), such that either we must observe
12872 	 * is_orphaned_event() or they will observe us on the child_list.
12873 	 */
12874 	mutex_lock(&parent_event->child_mutex);
12875 	if (is_orphaned_event(parent_event) ||
12876 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12877 		mutex_unlock(&parent_event->child_mutex);
12878 		/* task_ctx_data is freed with child_ctx */
12879 		free_event(child_event);
12880 		return NULL;
12881 	}
12882 
12883 	get_ctx(child_ctx);
12884 
12885 	/*
12886 	 * Make the child state follow the state of the parent event,
12887 	 * not its attr.disabled bit.  We hold the parent's mutex,
12888 	 * so we won't race with perf_event_{en, dis}able_family.
12889 	 */
12890 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12891 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12892 	else
12893 		child_event->state = PERF_EVENT_STATE_OFF;
12894 
12895 	if (parent_event->attr.freq) {
12896 		u64 sample_period = parent_event->hw.sample_period;
12897 		struct hw_perf_event *hwc = &child_event->hw;
12898 
12899 		hwc->sample_period = sample_period;
12900 		hwc->last_period   = sample_period;
12901 
12902 		local64_set(&hwc->period_left, sample_period);
12903 	}
12904 
12905 	child_event->ctx = child_ctx;
12906 	child_event->overflow_handler = parent_event->overflow_handler;
12907 	child_event->overflow_handler_context
12908 		= parent_event->overflow_handler_context;
12909 
12910 	/*
12911 	 * Precalculate sample_data sizes
12912 	 */
12913 	perf_event__header_size(child_event);
12914 	perf_event__id_header_size(child_event);
12915 
12916 	/*
12917 	 * Link it up in the child's context:
12918 	 */
12919 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12920 	add_event_to_ctx(child_event, child_ctx);
12921 	child_event->attach_state |= PERF_ATTACH_CHILD;
12922 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12923 
12924 	/*
12925 	 * Link this into the parent event's child list
12926 	 */
12927 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12928 	mutex_unlock(&parent_event->child_mutex);
12929 
12930 	return child_event;
12931 }
12932 
12933 /*
12934  * Inherits an event group.
12935  *
12936  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12937  * This matches with perf_event_release_kernel() removing all child events.
12938  *
12939  * Returns:
12940  *  - 0 on success
12941  *  - <0 on error
12942  */
12943 static int inherit_group(struct perf_event *parent_event,
12944 	      struct task_struct *parent,
12945 	      struct perf_event_context *parent_ctx,
12946 	      struct task_struct *child,
12947 	      struct perf_event_context *child_ctx)
12948 {
12949 	struct perf_event *leader;
12950 	struct perf_event *sub;
12951 	struct perf_event *child_ctr;
12952 
12953 	leader = inherit_event(parent_event, parent, parent_ctx,
12954 				 child, NULL, child_ctx);
12955 	if (IS_ERR(leader))
12956 		return PTR_ERR(leader);
12957 	/*
12958 	 * @leader can be NULL here because of is_orphaned_event(). In this
12959 	 * case inherit_event() will create individual events, similar to what
12960 	 * perf_group_detach() would do anyway.
12961 	 */
12962 	for_each_sibling_event(sub, parent_event) {
12963 		child_ctr = inherit_event(sub, parent, parent_ctx,
12964 					    child, leader, child_ctx);
12965 		if (IS_ERR(child_ctr))
12966 			return PTR_ERR(child_ctr);
12967 
12968 		if (sub->aux_event == parent_event && child_ctr &&
12969 		    !perf_get_aux_event(child_ctr, leader))
12970 			return -EINVAL;
12971 	}
12972 	return 0;
12973 }
12974 
12975 /*
12976  * Creates the child task context and tries to inherit the event-group.
12977  *
12978  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12979  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12980  * consistent with perf_event_release_kernel() removing all child events.
12981  *
12982  * Returns:
12983  *  - 0 on success
12984  *  - <0 on error
12985  */
12986 static int
12987 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12988 		   struct perf_event_context *parent_ctx,
12989 		   struct task_struct *child, int ctxn,
12990 		   u64 clone_flags, int *inherited_all)
12991 {
12992 	int ret;
12993 	struct perf_event_context *child_ctx;
12994 
12995 	if (!event->attr.inherit ||
12996 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
12997 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
12998 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
12999 		*inherited_all = 0;
13000 		return 0;
13001 	}
13002 
13003 	child_ctx = child->perf_event_ctxp[ctxn];
13004 	if (!child_ctx) {
13005 		/*
13006 		 * This is executed from the parent task context, so
13007 		 * inherit events that have been marked for cloning.
13008 		 * First allocate and initialize a context for the
13009 		 * child.
13010 		 */
13011 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13012 		if (!child_ctx)
13013 			return -ENOMEM;
13014 
13015 		child->perf_event_ctxp[ctxn] = child_ctx;
13016 	}
13017 
13018 	ret = inherit_group(event, parent, parent_ctx,
13019 			    child, child_ctx);
13020 
13021 	if (ret)
13022 		*inherited_all = 0;
13023 
13024 	return ret;
13025 }
13026 
13027 /*
13028  * Initialize the perf_event context in task_struct
13029  */
13030 static int perf_event_init_context(struct task_struct *child, int ctxn,
13031 				   u64 clone_flags)
13032 {
13033 	struct perf_event_context *child_ctx, *parent_ctx;
13034 	struct perf_event_context *cloned_ctx;
13035 	struct perf_event *event;
13036 	struct task_struct *parent = current;
13037 	int inherited_all = 1;
13038 	unsigned long flags;
13039 	int ret = 0;
13040 
13041 	if (likely(!parent->perf_event_ctxp[ctxn]))
13042 		return 0;
13043 
13044 	/*
13045 	 * If the parent's context is a clone, pin it so it won't get
13046 	 * swapped under us.
13047 	 */
13048 	parent_ctx = perf_pin_task_context(parent, ctxn);
13049 	if (!parent_ctx)
13050 		return 0;
13051 
13052 	/*
13053 	 * No need to check if parent_ctx != NULL here; since we saw
13054 	 * it non-NULL earlier, the only reason for it to become NULL
13055 	 * is if we exit, and since we're currently in the middle of
13056 	 * a fork we can't be exiting at the same time.
13057 	 */
13058 
13059 	/*
13060 	 * Lock the parent list. No need to lock the child - not PID
13061 	 * hashed yet and not running, so nobody can access it.
13062 	 */
13063 	mutex_lock(&parent_ctx->mutex);
13064 
13065 	/*
13066 	 * We dont have to disable NMIs - we are only looking at
13067 	 * the list, not manipulating it:
13068 	 */
13069 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13070 		ret = inherit_task_group(event, parent, parent_ctx,
13071 					 child, ctxn, clone_flags,
13072 					 &inherited_all);
13073 		if (ret)
13074 			goto out_unlock;
13075 	}
13076 
13077 	/*
13078 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13079 	 * to allocations, but we need to prevent rotation because
13080 	 * rotate_ctx() will change the list from interrupt context.
13081 	 */
13082 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13083 	parent_ctx->rotate_disable = 1;
13084 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13085 
13086 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13087 		ret = inherit_task_group(event, parent, parent_ctx,
13088 					 child, ctxn, clone_flags,
13089 					 &inherited_all);
13090 		if (ret)
13091 			goto out_unlock;
13092 	}
13093 
13094 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13095 	parent_ctx->rotate_disable = 0;
13096 
13097 	child_ctx = child->perf_event_ctxp[ctxn];
13098 
13099 	if (child_ctx && inherited_all) {
13100 		/*
13101 		 * Mark the child context as a clone of the parent
13102 		 * context, or of whatever the parent is a clone of.
13103 		 *
13104 		 * Note that if the parent is a clone, the holding of
13105 		 * parent_ctx->lock avoids it from being uncloned.
13106 		 */
13107 		cloned_ctx = parent_ctx->parent_ctx;
13108 		if (cloned_ctx) {
13109 			child_ctx->parent_ctx = cloned_ctx;
13110 			child_ctx->parent_gen = parent_ctx->parent_gen;
13111 		} else {
13112 			child_ctx->parent_ctx = parent_ctx;
13113 			child_ctx->parent_gen = parent_ctx->generation;
13114 		}
13115 		get_ctx(child_ctx->parent_ctx);
13116 	}
13117 
13118 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13119 out_unlock:
13120 	mutex_unlock(&parent_ctx->mutex);
13121 
13122 	perf_unpin_context(parent_ctx);
13123 	put_ctx(parent_ctx);
13124 
13125 	return ret;
13126 }
13127 
13128 /*
13129  * Initialize the perf_event context in task_struct
13130  */
13131 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13132 {
13133 	int ctxn, ret;
13134 
13135 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13136 	mutex_init(&child->perf_event_mutex);
13137 	INIT_LIST_HEAD(&child->perf_event_list);
13138 
13139 	for_each_task_context_nr(ctxn) {
13140 		ret = perf_event_init_context(child, ctxn, clone_flags);
13141 		if (ret) {
13142 			perf_event_free_task(child);
13143 			return ret;
13144 		}
13145 	}
13146 
13147 	return 0;
13148 }
13149 
13150 static void __init perf_event_init_all_cpus(void)
13151 {
13152 	struct swevent_htable *swhash;
13153 	int cpu;
13154 
13155 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13156 
13157 	for_each_possible_cpu(cpu) {
13158 		swhash = &per_cpu(swevent_htable, cpu);
13159 		mutex_init(&swhash->hlist_mutex);
13160 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13161 
13162 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13163 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13164 
13165 #ifdef CONFIG_CGROUP_PERF
13166 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13167 #endif
13168 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13169 	}
13170 }
13171 
13172 static void perf_swevent_init_cpu(unsigned int cpu)
13173 {
13174 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13175 
13176 	mutex_lock(&swhash->hlist_mutex);
13177 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13178 		struct swevent_hlist *hlist;
13179 
13180 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13181 		WARN_ON(!hlist);
13182 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13183 	}
13184 	mutex_unlock(&swhash->hlist_mutex);
13185 }
13186 
13187 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13188 static void __perf_event_exit_context(void *__info)
13189 {
13190 	struct perf_event_context *ctx = __info;
13191 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13192 	struct perf_event *event;
13193 
13194 	raw_spin_lock(&ctx->lock);
13195 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13196 	list_for_each_entry(event, &ctx->event_list, event_entry)
13197 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13198 	raw_spin_unlock(&ctx->lock);
13199 }
13200 
13201 static void perf_event_exit_cpu_context(int cpu)
13202 {
13203 	struct perf_cpu_context *cpuctx;
13204 	struct perf_event_context *ctx;
13205 	struct pmu *pmu;
13206 
13207 	mutex_lock(&pmus_lock);
13208 	list_for_each_entry(pmu, &pmus, entry) {
13209 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13210 		ctx = &cpuctx->ctx;
13211 
13212 		mutex_lock(&ctx->mutex);
13213 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13214 		cpuctx->online = 0;
13215 		mutex_unlock(&ctx->mutex);
13216 	}
13217 	cpumask_clear_cpu(cpu, perf_online_mask);
13218 	mutex_unlock(&pmus_lock);
13219 }
13220 #else
13221 
13222 static void perf_event_exit_cpu_context(int cpu) { }
13223 
13224 #endif
13225 
13226 int perf_event_init_cpu(unsigned int cpu)
13227 {
13228 	struct perf_cpu_context *cpuctx;
13229 	struct perf_event_context *ctx;
13230 	struct pmu *pmu;
13231 
13232 	perf_swevent_init_cpu(cpu);
13233 
13234 	mutex_lock(&pmus_lock);
13235 	cpumask_set_cpu(cpu, perf_online_mask);
13236 	list_for_each_entry(pmu, &pmus, entry) {
13237 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13238 		ctx = &cpuctx->ctx;
13239 
13240 		mutex_lock(&ctx->mutex);
13241 		cpuctx->online = 1;
13242 		mutex_unlock(&ctx->mutex);
13243 	}
13244 	mutex_unlock(&pmus_lock);
13245 
13246 	return 0;
13247 }
13248 
13249 int perf_event_exit_cpu(unsigned int cpu)
13250 {
13251 	perf_event_exit_cpu_context(cpu);
13252 	return 0;
13253 }
13254 
13255 static int
13256 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13257 {
13258 	int cpu;
13259 
13260 	for_each_online_cpu(cpu)
13261 		perf_event_exit_cpu(cpu);
13262 
13263 	return NOTIFY_OK;
13264 }
13265 
13266 /*
13267  * Run the perf reboot notifier at the very last possible moment so that
13268  * the generic watchdog code runs as long as possible.
13269  */
13270 static struct notifier_block perf_reboot_notifier = {
13271 	.notifier_call = perf_reboot,
13272 	.priority = INT_MIN,
13273 };
13274 
13275 void __init perf_event_init(void)
13276 {
13277 	int ret;
13278 
13279 	idr_init(&pmu_idr);
13280 
13281 	perf_event_init_all_cpus();
13282 	init_srcu_struct(&pmus_srcu);
13283 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13284 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13285 	perf_pmu_register(&perf_task_clock, NULL, -1);
13286 	perf_tp_register();
13287 	perf_event_init_cpu(smp_processor_id());
13288 	register_reboot_notifier(&perf_reboot_notifier);
13289 
13290 	ret = init_hw_breakpoint();
13291 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13292 
13293 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13294 
13295 	/*
13296 	 * Build time assertion that we keep the data_head at the intended
13297 	 * location.  IOW, validation we got the __reserved[] size right.
13298 	 */
13299 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13300 		     != 1024);
13301 }
13302 
13303 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13304 			      char *page)
13305 {
13306 	struct perf_pmu_events_attr *pmu_attr =
13307 		container_of(attr, struct perf_pmu_events_attr, attr);
13308 
13309 	if (pmu_attr->event_str)
13310 		return sprintf(page, "%s\n", pmu_attr->event_str);
13311 
13312 	return 0;
13313 }
13314 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13315 
13316 static int __init perf_event_sysfs_init(void)
13317 {
13318 	struct pmu *pmu;
13319 	int ret;
13320 
13321 	mutex_lock(&pmus_lock);
13322 
13323 	ret = bus_register(&pmu_bus);
13324 	if (ret)
13325 		goto unlock;
13326 
13327 	list_for_each_entry(pmu, &pmus, entry) {
13328 		if (!pmu->name || pmu->type < 0)
13329 			continue;
13330 
13331 		ret = pmu_dev_alloc(pmu);
13332 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13333 	}
13334 	pmu_bus_running = 1;
13335 	ret = 0;
13336 
13337 unlock:
13338 	mutex_unlock(&pmus_lock);
13339 
13340 	return ret;
13341 }
13342 device_initcall(perf_event_sysfs_init);
13343 
13344 #ifdef CONFIG_CGROUP_PERF
13345 static struct cgroup_subsys_state *
13346 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13347 {
13348 	struct perf_cgroup *jc;
13349 
13350 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13351 	if (!jc)
13352 		return ERR_PTR(-ENOMEM);
13353 
13354 	jc->info = alloc_percpu(struct perf_cgroup_info);
13355 	if (!jc->info) {
13356 		kfree(jc);
13357 		return ERR_PTR(-ENOMEM);
13358 	}
13359 
13360 	return &jc->css;
13361 }
13362 
13363 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13364 {
13365 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13366 
13367 	free_percpu(jc->info);
13368 	kfree(jc);
13369 }
13370 
13371 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13372 {
13373 	perf_event_cgroup(css->cgroup);
13374 	return 0;
13375 }
13376 
13377 static int __perf_cgroup_move(void *info)
13378 {
13379 	struct task_struct *task = info;
13380 	rcu_read_lock();
13381 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13382 	rcu_read_unlock();
13383 	return 0;
13384 }
13385 
13386 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13387 {
13388 	struct task_struct *task;
13389 	struct cgroup_subsys_state *css;
13390 
13391 	cgroup_taskset_for_each(task, css, tset)
13392 		task_function_call(task, __perf_cgroup_move, task);
13393 }
13394 
13395 struct cgroup_subsys perf_event_cgrp_subsys = {
13396 	.css_alloc	= perf_cgroup_css_alloc,
13397 	.css_free	= perf_cgroup_css_free,
13398 	.css_online	= perf_cgroup_css_online,
13399 	.attach		= perf_cgroup_attach,
13400 	/*
13401 	 * Implicitly enable on dfl hierarchy so that perf events can
13402 	 * always be filtered by cgroup2 path as long as perf_event
13403 	 * controller is not mounted on a legacy hierarchy.
13404 	 */
13405 	.implicit_on_dfl = true,
13406 	.threaded	= true,
13407 };
13408 #endif /* CONFIG_CGROUP_PERF */
13409