xref: /linux-6.15/kernel/events/core.c (revision 8eaec7bb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <[email protected]>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <[email protected]>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 enum event_type_t {
159 	EVENT_FLEXIBLE	= 0x01,
160 	EVENT_PINNED	= 0x02,
161 	EVENT_TIME	= 0x04,
162 	EVENT_FROZEN	= 0x08,
163 	/* see ctx_resched() for details */
164 	EVENT_CPU	= 0x10,
165 	EVENT_CGROUP	= 0x20,
166 
167 	/* compound helpers */
168 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
169 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
170 };
171 
172 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
173 {
174 	raw_spin_lock(&ctx->lock);
175 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
176 }
177 
178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
179 			  struct perf_event_context *ctx)
180 {
181 	__perf_ctx_lock(&cpuctx->ctx);
182 	if (ctx)
183 		__perf_ctx_lock(ctx);
184 }
185 
186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
187 {
188 	/*
189 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
190 	 * after ctx_sched_out() by clearing is_active.
191 	 */
192 	if (ctx->is_active & EVENT_FROZEN) {
193 		if (!(ctx->is_active & EVENT_ALL))
194 			ctx->is_active = 0;
195 		else
196 			ctx->is_active &= ~EVENT_FROZEN;
197 	}
198 	raw_spin_unlock(&ctx->lock);
199 }
200 
201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
202 			    struct perf_event_context *ctx)
203 {
204 	if (ctx)
205 		__perf_ctx_unlock(ctx);
206 	__perf_ctx_unlock(&cpuctx->ctx);
207 }
208 
209 #define TASK_TOMBSTONE ((void *)-1L)
210 
211 static bool is_kernel_event(struct perf_event *event)
212 {
213 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
214 }
215 
216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
217 
218 struct perf_event_context *perf_cpu_task_ctx(void)
219 {
220 	lockdep_assert_irqs_disabled();
221 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
222 }
223 
224 /*
225  * On task ctx scheduling...
226  *
227  * When !ctx->nr_events a task context will not be scheduled. This means
228  * we can disable the scheduler hooks (for performance) without leaving
229  * pending task ctx state.
230  *
231  * This however results in two special cases:
232  *
233  *  - removing the last event from a task ctx; this is relatively straight
234  *    forward and is done in __perf_remove_from_context.
235  *
236  *  - adding the first event to a task ctx; this is tricky because we cannot
237  *    rely on ctx->is_active and therefore cannot use event_function_call().
238  *    See perf_install_in_context().
239  *
240  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
241  */
242 
243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
244 			struct perf_event_context *, void *);
245 
246 struct event_function_struct {
247 	struct perf_event *event;
248 	event_f func;
249 	void *data;
250 };
251 
252 static int event_function(void *info)
253 {
254 	struct event_function_struct *efs = info;
255 	struct perf_event *event = efs->event;
256 	struct perf_event_context *ctx = event->ctx;
257 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
258 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
259 	int ret = 0;
260 
261 	lockdep_assert_irqs_disabled();
262 
263 	perf_ctx_lock(cpuctx, task_ctx);
264 	/*
265 	 * Since we do the IPI call without holding ctx->lock things can have
266 	 * changed, double check we hit the task we set out to hit.
267 	 */
268 	if (ctx->task) {
269 		if (ctx->task != current) {
270 			ret = -ESRCH;
271 			goto unlock;
272 		}
273 
274 		/*
275 		 * We only use event_function_call() on established contexts,
276 		 * and event_function() is only ever called when active (or
277 		 * rather, we'll have bailed in task_function_call() or the
278 		 * above ctx->task != current test), therefore we must have
279 		 * ctx->is_active here.
280 		 */
281 		WARN_ON_ONCE(!ctx->is_active);
282 		/*
283 		 * And since we have ctx->is_active, cpuctx->task_ctx must
284 		 * match.
285 		 */
286 		WARN_ON_ONCE(task_ctx != ctx);
287 	} else {
288 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
289 	}
290 
291 	efs->func(event, cpuctx, ctx, efs->data);
292 unlock:
293 	perf_ctx_unlock(cpuctx, task_ctx);
294 
295 	return ret;
296 }
297 
298 static void event_function_call(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
302 	struct perf_cpu_context *cpuctx;
303 	struct event_function_struct efs = {
304 		.event = event,
305 		.func = func,
306 		.data = data,
307 	};
308 
309 	if (!event->parent) {
310 		/*
311 		 * If this is a !child event, we must hold ctx::mutex to
312 		 * stabilize the event->ctx relation. See
313 		 * perf_event_ctx_lock().
314 		 */
315 		lockdep_assert_held(&ctx->mutex);
316 	}
317 
318 	if (!task) {
319 		cpu_function_call(event->cpu, event_function, &efs);
320 		return;
321 	}
322 
323 	if (task == TASK_TOMBSTONE)
324 		return;
325 
326 again:
327 	if (!task_function_call(task, event_function, &efs))
328 		return;
329 
330 	local_irq_disable();
331 	cpuctx = this_cpu_ptr(&perf_cpu_context);
332 	perf_ctx_lock(cpuctx, ctx);
333 	/*
334 	 * Reload the task pointer, it might have been changed by
335 	 * a concurrent perf_event_context_sched_out().
336 	 */
337 	task = ctx->task;
338 	if (task == TASK_TOMBSTONE)
339 		goto unlock;
340 	if (ctx->is_active) {
341 		perf_ctx_unlock(cpuctx, ctx);
342 		local_irq_enable();
343 		goto again;
344 	}
345 	func(event, NULL, ctx, data);
346 unlock:
347 	perf_ctx_unlock(cpuctx, ctx);
348 	local_irq_enable();
349 }
350 
351 /*
352  * Similar to event_function_call() + event_function(), but hard assumes IRQs
353  * are already disabled and we're on the right CPU.
354  */
355 static void event_function_local(struct perf_event *event, event_f func, void *data)
356 {
357 	struct perf_event_context *ctx = event->ctx;
358 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
359 	struct task_struct *task = READ_ONCE(ctx->task);
360 	struct perf_event_context *task_ctx = NULL;
361 
362 	lockdep_assert_irqs_disabled();
363 
364 	if (task) {
365 		if (task == TASK_TOMBSTONE)
366 			return;
367 
368 		task_ctx = ctx;
369 	}
370 
371 	perf_ctx_lock(cpuctx, task_ctx);
372 
373 	task = ctx->task;
374 	if (task == TASK_TOMBSTONE)
375 		goto unlock;
376 
377 	if (task) {
378 		/*
379 		 * We must be either inactive or active and the right task,
380 		 * otherwise we're screwed, since we cannot IPI to somewhere
381 		 * else.
382 		 */
383 		if (ctx->is_active) {
384 			if (WARN_ON_ONCE(task != current))
385 				goto unlock;
386 
387 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
388 				goto unlock;
389 		}
390 	} else {
391 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
392 	}
393 
394 	func(event, cpuctx, ctx, data);
395 unlock:
396 	perf_ctx_unlock(cpuctx, task_ctx);
397 }
398 
399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
400 		       PERF_FLAG_FD_OUTPUT  |\
401 		       PERF_FLAG_PID_CGROUP |\
402 		       PERF_FLAG_FD_CLOEXEC)
403 
404 /*
405  * branch priv levels that need permission checks
406  */
407 #define PERF_SAMPLE_BRANCH_PERM_PLM \
408 	(PERF_SAMPLE_BRANCH_KERNEL |\
409 	 PERF_SAMPLE_BRANCH_HV)
410 
411 /*
412  * perf_sched_events : >0 events exist
413  */
414 
415 static void perf_sched_delayed(struct work_struct *work);
416 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
418 static DEFINE_MUTEX(perf_sched_mutex);
419 static atomic_t perf_sched_count;
420 
421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
422 
423 static atomic_t nr_mmap_events __read_mostly;
424 static atomic_t nr_comm_events __read_mostly;
425 static atomic_t nr_namespaces_events __read_mostly;
426 static atomic_t nr_task_events __read_mostly;
427 static atomic_t nr_freq_events __read_mostly;
428 static atomic_t nr_switch_events __read_mostly;
429 static atomic_t nr_ksymbol_events __read_mostly;
430 static atomic_t nr_bpf_events __read_mostly;
431 static atomic_t nr_cgroup_events __read_mostly;
432 static atomic_t nr_text_poke_events __read_mostly;
433 static atomic_t nr_build_id_events __read_mostly;
434 
435 static LIST_HEAD(pmus);
436 static DEFINE_MUTEX(pmus_lock);
437 static struct srcu_struct pmus_srcu;
438 static cpumask_var_t perf_online_mask;
439 static cpumask_var_t perf_online_core_mask;
440 static cpumask_var_t perf_online_die_mask;
441 static cpumask_var_t perf_online_cluster_mask;
442 static cpumask_var_t perf_online_pkg_mask;
443 static cpumask_var_t perf_online_sys_mask;
444 static struct kmem_cache *perf_event_cache;
445 
446 /*
447  * perf event paranoia level:
448  *  -1 - not paranoid at all
449  *   0 - disallow raw tracepoint access for unpriv
450  *   1 - disallow cpu events for unpriv
451  *   2 - disallow kernel profiling for unpriv
452  */
453 int sysctl_perf_event_paranoid __read_mostly = 2;
454 
455 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */
456 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024);
457 
458 /*
459  * max perf event sample rate
460  */
461 #define DEFAULT_MAX_SAMPLE_RATE		100000
462 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
463 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
464 
465 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
466 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
467 
468 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
469 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
470 
471 static int perf_sample_allowed_ns __read_mostly =
472 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
473 
474 static void update_perf_cpu_limits(void)
475 {
476 	u64 tmp = perf_sample_period_ns;
477 
478 	tmp *= sysctl_perf_cpu_time_max_percent;
479 	tmp = div_u64(tmp, 100);
480 	if (!tmp)
481 		tmp = 1;
482 
483 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
484 }
485 
486 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
487 
488 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
489 				       void *buffer, size_t *lenp, loff_t *ppos)
490 {
491 	int ret;
492 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
493 	/*
494 	 * If throttling is disabled don't allow the write:
495 	 */
496 	if (write && (perf_cpu == 100 || perf_cpu == 0))
497 		return -EINVAL;
498 
499 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
500 	if (ret || !write)
501 		return ret;
502 
503 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
504 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
505 	update_perf_cpu_limits();
506 
507 	return 0;
508 }
509 
510 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
511 		void *buffer, size_t *lenp, loff_t *ppos)
512 {
513 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
514 
515 	if (ret || !write)
516 		return ret;
517 
518 	if (sysctl_perf_cpu_time_max_percent == 100 ||
519 	    sysctl_perf_cpu_time_max_percent == 0) {
520 		printk(KERN_WARNING
521 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
522 		WRITE_ONCE(perf_sample_allowed_ns, 0);
523 	} else {
524 		update_perf_cpu_limits();
525 	}
526 
527 	return 0;
528 }
529 
530 static const struct ctl_table events_core_sysctl_table[] = {
531 	/*
532 	 * User-space relies on this file as a feature check for
533 	 * perf_events being enabled. It's an ABI, do not remove!
534 	 */
535 	{
536 		.procname	= "perf_event_paranoid",
537 		.data		= &sysctl_perf_event_paranoid,
538 		.maxlen		= sizeof(sysctl_perf_event_paranoid),
539 		.mode		= 0644,
540 		.proc_handler	= proc_dointvec,
541 	},
542 	{
543 		.procname	= "perf_event_mlock_kb",
544 		.data		= &sysctl_perf_event_mlock,
545 		.maxlen		= sizeof(sysctl_perf_event_mlock),
546 		.mode		= 0644,
547 		.proc_handler	= proc_dointvec,
548 	},
549 	{
550 		.procname	= "perf_event_max_sample_rate",
551 		.data		= &sysctl_perf_event_sample_rate,
552 		.maxlen		= sizeof(sysctl_perf_event_sample_rate),
553 		.mode		= 0644,
554 		.proc_handler	= perf_event_max_sample_rate_handler,
555 		.extra1		= SYSCTL_ONE,
556 	},
557 	{
558 		.procname	= "perf_cpu_time_max_percent",
559 		.data		= &sysctl_perf_cpu_time_max_percent,
560 		.maxlen		= sizeof(sysctl_perf_cpu_time_max_percent),
561 		.mode		= 0644,
562 		.proc_handler	= perf_cpu_time_max_percent_handler,
563 		.extra1		= SYSCTL_ZERO,
564 		.extra2		= SYSCTL_ONE_HUNDRED,
565 	},
566 };
567 
568 static int __init init_events_core_sysctls(void)
569 {
570 	register_sysctl_init("kernel", events_core_sysctl_table);
571 	return 0;
572 }
573 core_initcall(init_events_core_sysctls);
574 
575 
576 /*
577  * perf samples are done in some very critical code paths (NMIs).
578  * If they take too much CPU time, the system can lock up and not
579  * get any real work done.  This will drop the sample rate when
580  * we detect that events are taking too long.
581  */
582 #define NR_ACCUMULATED_SAMPLES 128
583 static DEFINE_PER_CPU(u64, running_sample_length);
584 
585 static u64 __report_avg;
586 static u64 __report_allowed;
587 
588 static void perf_duration_warn(struct irq_work *w)
589 {
590 	printk_ratelimited(KERN_INFO
591 		"perf: interrupt took too long (%lld > %lld), lowering "
592 		"kernel.perf_event_max_sample_rate to %d\n",
593 		__report_avg, __report_allowed,
594 		sysctl_perf_event_sample_rate);
595 }
596 
597 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
598 
599 void perf_sample_event_took(u64 sample_len_ns)
600 {
601 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
602 	u64 running_len;
603 	u64 avg_len;
604 	u32 max;
605 
606 	if (max_len == 0)
607 		return;
608 
609 	/* Decay the counter by 1 average sample. */
610 	running_len = __this_cpu_read(running_sample_length);
611 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
612 	running_len += sample_len_ns;
613 	__this_cpu_write(running_sample_length, running_len);
614 
615 	/*
616 	 * Note: this will be biased artificially low until we have
617 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
618 	 * from having to maintain a count.
619 	 */
620 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
621 	if (avg_len <= max_len)
622 		return;
623 
624 	__report_avg = avg_len;
625 	__report_allowed = max_len;
626 
627 	/*
628 	 * Compute a throttle threshold 25% below the current duration.
629 	 */
630 	avg_len += avg_len / 4;
631 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
632 	if (avg_len < max)
633 		max /= (u32)avg_len;
634 	else
635 		max = 1;
636 
637 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
638 	WRITE_ONCE(max_samples_per_tick, max);
639 
640 	sysctl_perf_event_sample_rate = max * HZ;
641 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
642 
643 	if (!irq_work_queue(&perf_duration_work)) {
644 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
645 			     "kernel.perf_event_max_sample_rate to %d\n",
646 			     __report_avg, __report_allowed,
647 			     sysctl_perf_event_sample_rate);
648 	}
649 }
650 
651 static atomic64_t perf_event_id;
652 
653 static void update_context_time(struct perf_event_context *ctx);
654 static u64 perf_event_time(struct perf_event *event);
655 
656 void __weak perf_event_print_debug(void)	{ }
657 
658 static inline u64 perf_clock(void)
659 {
660 	return local_clock();
661 }
662 
663 static inline u64 perf_event_clock(struct perf_event *event)
664 {
665 	return event->clock();
666 }
667 
668 /*
669  * State based event timekeeping...
670  *
671  * The basic idea is to use event->state to determine which (if any) time
672  * fields to increment with the current delta. This means we only need to
673  * update timestamps when we change state or when they are explicitly requested
674  * (read).
675  *
676  * Event groups make things a little more complicated, but not terribly so. The
677  * rules for a group are that if the group leader is OFF the entire group is
678  * OFF, irrespective of what the group member states are. This results in
679  * __perf_effective_state().
680  *
681  * A further ramification is that when a group leader flips between OFF and
682  * !OFF, we need to update all group member times.
683  *
684  *
685  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
686  * need to make sure the relevant context time is updated before we try and
687  * update our timestamps.
688  */
689 
690 static __always_inline enum perf_event_state
691 __perf_effective_state(struct perf_event *event)
692 {
693 	struct perf_event *leader = event->group_leader;
694 
695 	if (leader->state <= PERF_EVENT_STATE_OFF)
696 		return leader->state;
697 
698 	return event->state;
699 }
700 
701 static __always_inline void
702 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
703 {
704 	enum perf_event_state state = __perf_effective_state(event);
705 	u64 delta = now - event->tstamp;
706 
707 	*enabled = event->total_time_enabled;
708 	if (state >= PERF_EVENT_STATE_INACTIVE)
709 		*enabled += delta;
710 
711 	*running = event->total_time_running;
712 	if (state >= PERF_EVENT_STATE_ACTIVE)
713 		*running += delta;
714 }
715 
716 static void perf_event_update_time(struct perf_event *event)
717 {
718 	u64 now = perf_event_time(event);
719 
720 	__perf_update_times(event, now, &event->total_time_enabled,
721 					&event->total_time_running);
722 	event->tstamp = now;
723 }
724 
725 static void perf_event_update_sibling_time(struct perf_event *leader)
726 {
727 	struct perf_event *sibling;
728 
729 	for_each_sibling_event(sibling, leader)
730 		perf_event_update_time(sibling);
731 }
732 
733 static void
734 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
735 {
736 	if (event->state == state)
737 		return;
738 
739 	perf_event_update_time(event);
740 	/*
741 	 * If a group leader gets enabled/disabled all its siblings
742 	 * are affected too.
743 	 */
744 	if ((event->state < 0) ^ (state < 0))
745 		perf_event_update_sibling_time(event);
746 
747 	WRITE_ONCE(event->state, state);
748 }
749 
750 /*
751  * UP store-release, load-acquire
752  */
753 
754 #define __store_release(ptr, val)					\
755 do {									\
756 	barrier();							\
757 	WRITE_ONCE(*(ptr), (val));					\
758 } while (0)
759 
760 #define __load_acquire(ptr)						\
761 ({									\
762 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
763 	barrier();							\
764 	___p;								\
765 })
766 
767 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
768 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
769 		if (_cgroup && !_epc->nr_cgroups)			\
770 			continue;					\
771 		else if (_pmu && _epc->pmu != _pmu)			\
772 			continue;					\
773 		else
774 
775 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
776 {
777 	struct perf_event_pmu_context *pmu_ctx;
778 
779 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
780 		perf_pmu_disable(pmu_ctx->pmu);
781 }
782 
783 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
784 {
785 	struct perf_event_pmu_context *pmu_ctx;
786 
787 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
788 		perf_pmu_enable(pmu_ctx->pmu);
789 }
790 
791 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
792 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
793 
794 #ifdef CONFIG_CGROUP_PERF
795 
796 static inline bool
797 perf_cgroup_match(struct perf_event *event)
798 {
799 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
800 
801 	/* @event doesn't care about cgroup */
802 	if (!event->cgrp)
803 		return true;
804 
805 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
806 	if (!cpuctx->cgrp)
807 		return false;
808 
809 	/*
810 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
811 	 * also enabled for all its descendant cgroups.  If @cpuctx's
812 	 * cgroup is a descendant of @event's (the test covers identity
813 	 * case), it's a match.
814 	 */
815 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
816 				    event->cgrp->css.cgroup);
817 }
818 
819 static inline void perf_detach_cgroup(struct perf_event *event)
820 {
821 	css_put(&event->cgrp->css);
822 	event->cgrp = NULL;
823 }
824 
825 static inline int is_cgroup_event(struct perf_event *event)
826 {
827 	return event->cgrp != NULL;
828 }
829 
830 static inline u64 perf_cgroup_event_time(struct perf_event *event)
831 {
832 	struct perf_cgroup_info *t;
833 
834 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
835 	return t->time;
836 }
837 
838 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
839 {
840 	struct perf_cgroup_info *t;
841 
842 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
843 	if (!__load_acquire(&t->active))
844 		return t->time;
845 	now += READ_ONCE(t->timeoffset);
846 	return now;
847 }
848 
849 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
850 {
851 	if (adv)
852 		info->time += now - info->timestamp;
853 	info->timestamp = now;
854 	/*
855 	 * see update_context_time()
856 	 */
857 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
858 }
859 
860 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
861 {
862 	struct perf_cgroup *cgrp = cpuctx->cgrp;
863 	struct cgroup_subsys_state *css;
864 	struct perf_cgroup_info *info;
865 
866 	if (cgrp) {
867 		u64 now = perf_clock();
868 
869 		for (css = &cgrp->css; css; css = css->parent) {
870 			cgrp = container_of(css, struct perf_cgroup, css);
871 			info = this_cpu_ptr(cgrp->info);
872 
873 			__update_cgrp_time(info, now, true);
874 			if (final)
875 				__store_release(&info->active, 0);
876 		}
877 	}
878 }
879 
880 static inline void update_cgrp_time_from_event(struct perf_event *event)
881 {
882 	struct perf_cgroup_info *info;
883 
884 	/*
885 	 * ensure we access cgroup data only when needed and
886 	 * when we know the cgroup is pinned (css_get)
887 	 */
888 	if (!is_cgroup_event(event))
889 		return;
890 
891 	info = this_cpu_ptr(event->cgrp->info);
892 	/*
893 	 * Do not update time when cgroup is not active
894 	 */
895 	if (info->active)
896 		__update_cgrp_time(info, perf_clock(), true);
897 }
898 
899 static inline void
900 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
901 {
902 	struct perf_event_context *ctx = &cpuctx->ctx;
903 	struct perf_cgroup *cgrp = cpuctx->cgrp;
904 	struct perf_cgroup_info *info;
905 	struct cgroup_subsys_state *css;
906 
907 	/*
908 	 * ctx->lock held by caller
909 	 * ensure we do not access cgroup data
910 	 * unless we have the cgroup pinned (css_get)
911 	 */
912 	if (!cgrp)
913 		return;
914 
915 	WARN_ON_ONCE(!ctx->nr_cgroups);
916 
917 	for (css = &cgrp->css; css; css = css->parent) {
918 		cgrp = container_of(css, struct perf_cgroup, css);
919 		info = this_cpu_ptr(cgrp->info);
920 		__update_cgrp_time(info, ctx->timestamp, false);
921 		__store_release(&info->active, 1);
922 	}
923 }
924 
925 /*
926  * reschedule events based on the cgroup constraint of task.
927  */
928 static void perf_cgroup_switch(struct task_struct *task)
929 {
930 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
931 	struct perf_cgroup *cgrp;
932 
933 	/*
934 	 * cpuctx->cgrp is set when the first cgroup event enabled,
935 	 * and is cleared when the last cgroup event disabled.
936 	 */
937 	if (READ_ONCE(cpuctx->cgrp) == NULL)
938 		return;
939 
940 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
941 
942 	cgrp = perf_cgroup_from_task(task, NULL);
943 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
944 		return;
945 
946 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
947 	perf_ctx_disable(&cpuctx->ctx, true);
948 
949 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
950 	/*
951 	 * must not be done before ctxswout due
952 	 * to update_cgrp_time_from_cpuctx() in
953 	 * ctx_sched_out()
954 	 */
955 	cpuctx->cgrp = cgrp;
956 	/*
957 	 * set cgrp before ctxsw in to allow
958 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
959 	 * to not have to pass task around
960 	 */
961 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
962 
963 	perf_ctx_enable(&cpuctx->ctx, true);
964 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
965 }
966 
967 static int perf_cgroup_ensure_storage(struct perf_event *event,
968 				struct cgroup_subsys_state *css)
969 {
970 	struct perf_cpu_context *cpuctx;
971 	struct perf_event **storage;
972 	int cpu, heap_size, ret = 0;
973 
974 	/*
975 	 * Allow storage to have sufficient space for an iterator for each
976 	 * possibly nested cgroup plus an iterator for events with no cgroup.
977 	 */
978 	for (heap_size = 1; css; css = css->parent)
979 		heap_size++;
980 
981 	for_each_possible_cpu(cpu) {
982 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
983 		if (heap_size <= cpuctx->heap_size)
984 			continue;
985 
986 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
987 				       GFP_KERNEL, cpu_to_node(cpu));
988 		if (!storage) {
989 			ret = -ENOMEM;
990 			break;
991 		}
992 
993 		raw_spin_lock_irq(&cpuctx->ctx.lock);
994 		if (cpuctx->heap_size < heap_size) {
995 			swap(cpuctx->heap, storage);
996 			if (storage == cpuctx->heap_default)
997 				storage = NULL;
998 			cpuctx->heap_size = heap_size;
999 		}
1000 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
1001 
1002 		kfree(storage);
1003 	}
1004 
1005 	return ret;
1006 }
1007 
1008 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
1009 				      struct perf_event_attr *attr,
1010 				      struct perf_event *group_leader)
1011 {
1012 	struct perf_cgroup *cgrp;
1013 	struct cgroup_subsys_state *css;
1014 	CLASS(fd, f)(fd);
1015 	int ret = 0;
1016 
1017 	if (fd_empty(f))
1018 		return -EBADF;
1019 
1020 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
1021 					 &perf_event_cgrp_subsys);
1022 	if (IS_ERR(css))
1023 		return PTR_ERR(css);
1024 
1025 	ret = perf_cgroup_ensure_storage(event, css);
1026 	if (ret)
1027 		return ret;
1028 
1029 	cgrp = container_of(css, struct perf_cgroup, css);
1030 	event->cgrp = cgrp;
1031 
1032 	/*
1033 	 * all events in a group must monitor
1034 	 * the same cgroup because a task belongs
1035 	 * to only one perf cgroup at a time
1036 	 */
1037 	if (group_leader && group_leader->cgrp != cgrp) {
1038 		perf_detach_cgroup(event);
1039 		ret = -EINVAL;
1040 	}
1041 	return ret;
1042 }
1043 
1044 static inline void
1045 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1046 {
1047 	struct perf_cpu_context *cpuctx;
1048 
1049 	if (!is_cgroup_event(event))
1050 		return;
1051 
1052 	event->pmu_ctx->nr_cgroups++;
1053 
1054 	/*
1055 	 * Because cgroup events are always per-cpu events,
1056 	 * @ctx == &cpuctx->ctx.
1057 	 */
1058 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1059 
1060 	if (ctx->nr_cgroups++)
1061 		return;
1062 
1063 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1064 }
1065 
1066 static inline void
1067 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1068 {
1069 	struct perf_cpu_context *cpuctx;
1070 
1071 	if (!is_cgroup_event(event))
1072 		return;
1073 
1074 	event->pmu_ctx->nr_cgroups--;
1075 
1076 	/*
1077 	 * Because cgroup events are always per-cpu events,
1078 	 * @ctx == &cpuctx->ctx.
1079 	 */
1080 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1081 
1082 	if (--ctx->nr_cgroups)
1083 		return;
1084 
1085 	cpuctx->cgrp = NULL;
1086 }
1087 
1088 #else /* !CONFIG_CGROUP_PERF */
1089 
1090 static inline bool
1091 perf_cgroup_match(struct perf_event *event)
1092 {
1093 	return true;
1094 }
1095 
1096 static inline void perf_detach_cgroup(struct perf_event *event)
1097 {}
1098 
1099 static inline int is_cgroup_event(struct perf_event *event)
1100 {
1101 	return 0;
1102 }
1103 
1104 static inline void update_cgrp_time_from_event(struct perf_event *event)
1105 {
1106 }
1107 
1108 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1109 						bool final)
1110 {
1111 }
1112 
1113 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1114 				      struct perf_event_attr *attr,
1115 				      struct perf_event *group_leader)
1116 {
1117 	return -EINVAL;
1118 }
1119 
1120 static inline void
1121 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1122 {
1123 }
1124 
1125 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1126 {
1127 	return 0;
1128 }
1129 
1130 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1131 {
1132 	return 0;
1133 }
1134 
1135 static inline void
1136 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1137 {
1138 }
1139 
1140 static inline void
1141 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1142 {
1143 }
1144 
1145 static void perf_cgroup_switch(struct task_struct *task)
1146 {
1147 }
1148 #endif
1149 
1150 /*
1151  * set default to be dependent on timer tick just
1152  * like original code
1153  */
1154 #define PERF_CPU_HRTIMER (1000 / HZ)
1155 /*
1156  * function must be called with interrupts disabled
1157  */
1158 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1159 {
1160 	struct perf_cpu_pmu_context *cpc;
1161 	bool rotations;
1162 
1163 	lockdep_assert_irqs_disabled();
1164 
1165 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1166 	rotations = perf_rotate_context(cpc);
1167 
1168 	raw_spin_lock(&cpc->hrtimer_lock);
1169 	if (rotations)
1170 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1171 	else
1172 		cpc->hrtimer_active = 0;
1173 	raw_spin_unlock(&cpc->hrtimer_lock);
1174 
1175 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1176 }
1177 
1178 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1179 {
1180 	struct hrtimer *timer = &cpc->hrtimer;
1181 	struct pmu *pmu = cpc->epc.pmu;
1182 	u64 interval;
1183 
1184 	/*
1185 	 * check default is sane, if not set then force to
1186 	 * default interval (1/tick)
1187 	 */
1188 	interval = pmu->hrtimer_interval_ms;
1189 	if (interval < 1)
1190 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1191 
1192 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1193 
1194 	raw_spin_lock_init(&cpc->hrtimer_lock);
1195 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1196 	timer->function = perf_mux_hrtimer_handler;
1197 }
1198 
1199 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1200 {
1201 	struct hrtimer *timer = &cpc->hrtimer;
1202 	unsigned long flags;
1203 
1204 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1205 	if (!cpc->hrtimer_active) {
1206 		cpc->hrtimer_active = 1;
1207 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1208 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1209 	}
1210 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1211 
1212 	return 0;
1213 }
1214 
1215 static int perf_mux_hrtimer_restart_ipi(void *arg)
1216 {
1217 	return perf_mux_hrtimer_restart(arg);
1218 }
1219 
1220 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu)
1221 {
1222 	return this_cpu_ptr(pmu->cpu_pmu_context);
1223 }
1224 
1225 void perf_pmu_disable(struct pmu *pmu)
1226 {
1227 	int *count = &this_cpc(pmu)->pmu_disable_count;
1228 	if (!(*count)++)
1229 		pmu->pmu_disable(pmu);
1230 }
1231 
1232 void perf_pmu_enable(struct pmu *pmu)
1233 {
1234 	int *count = &this_cpc(pmu)->pmu_disable_count;
1235 	if (!--(*count))
1236 		pmu->pmu_enable(pmu);
1237 }
1238 
1239 static void perf_assert_pmu_disabled(struct pmu *pmu)
1240 {
1241 	int *count = &this_cpc(pmu)->pmu_disable_count;
1242 	WARN_ON_ONCE(*count == 0);
1243 }
1244 
1245 static inline void perf_pmu_read(struct perf_event *event)
1246 {
1247 	if (event->state == PERF_EVENT_STATE_ACTIVE)
1248 		event->pmu->read(event);
1249 }
1250 
1251 static void get_ctx(struct perf_event_context *ctx)
1252 {
1253 	refcount_inc(&ctx->refcount);
1254 }
1255 
1256 static void *alloc_task_ctx_data(struct pmu *pmu)
1257 {
1258 	if (pmu->task_ctx_cache)
1259 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1260 
1261 	return NULL;
1262 }
1263 
1264 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1265 {
1266 	if (pmu->task_ctx_cache && task_ctx_data)
1267 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1268 }
1269 
1270 static void free_ctx(struct rcu_head *head)
1271 {
1272 	struct perf_event_context *ctx;
1273 
1274 	ctx = container_of(head, struct perf_event_context, rcu_head);
1275 	kfree(ctx);
1276 }
1277 
1278 static void put_ctx(struct perf_event_context *ctx)
1279 {
1280 	if (refcount_dec_and_test(&ctx->refcount)) {
1281 		if (ctx->parent_ctx)
1282 			put_ctx(ctx->parent_ctx);
1283 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1284 			put_task_struct(ctx->task);
1285 		call_rcu(&ctx->rcu_head, free_ctx);
1286 	}
1287 }
1288 
1289 /*
1290  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1291  * perf_pmu_migrate_context() we need some magic.
1292  *
1293  * Those places that change perf_event::ctx will hold both
1294  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1295  *
1296  * Lock ordering is by mutex address. There are two other sites where
1297  * perf_event_context::mutex nests and those are:
1298  *
1299  *  - perf_event_exit_task_context()	[ child , 0 ]
1300  *      perf_event_exit_event()
1301  *        put_event()			[ parent, 1 ]
1302  *
1303  *  - perf_event_init_context()		[ parent, 0 ]
1304  *      inherit_task_group()
1305  *        inherit_group()
1306  *          inherit_event()
1307  *            perf_event_alloc()
1308  *              perf_init_event()
1309  *                perf_try_init_event()	[ child , 1 ]
1310  *
1311  * While it appears there is an obvious deadlock here -- the parent and child
1312  * nesting levels are inverted between the two. This is in fact safe because
1313  * life-time rules separate them. That is an exiting task cannot fork, and a
1314  * spawning task cannot (yet) exit.
1315  *
1316  * But remember that these are parent<->child context relations, and
1317  * migration does not affect children, therefore these two orderings should not
1318  * interact.
1319  *
1320  * The change in perf_event::ctx does not affect children (as claimed above)
1321  * because the sys_perf_event_open() case will install a new event and break
1322  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1323  * concerned with cpuctx and that doesn't have children.
1324  *
1325  * The places that change perf_event::ctx will issue:
1326  *
1327  *   perf_remove_from_context();
1328  *   synchronize_rcu();
1329  *   perf_install_in_context();
1330  *
1331  * to affect the change. The remove_from_context() + synchronize_rcu() should
1332  * quiesce the event, after which we can install it in the new location. This
1333  * means that only external vectors (perf_fops, prctl) can perturb the event
1334  * while in transit. Therefore all such accessors should also acquire
1335  * perf_event_context::mutex to serialize against this.
1336  *
1337  * However; because event->ctx can change while we're waiting to acquire
1338  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1339  * function.
1340  *
1341  * Lock order:
1342  *    exec_update_lock
1343  *	task_struct::perf_event_mutex
1344  *	  perf_event_context::mutex
1345  *	    perf_event::child_mutex;
1346  *	      perf_event_context::lock
1347  *	    mmap_lock
1348  *	      perf_event::mmap_mutex
1349  *	        perf_buffer::aux_mutex
1350  *	      perf_addr_filters_head::lock
1351  *
1352  *    cpu_hotplug_lock
1353  *      pmus_lock
1354  *	  cpuctx->mutex / perf_event_context::mutex
1355  */
1356 static struct perf_event_context *
1357 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1358 {
1359 	struct perf_event_context *ctx;
1360 
1361 again:
1362 	rcu_read_lock();
1363 	ctx = READ_ONCE(event->ctx);
1364 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1365 		rcu_read_unlock();
1366 		goto again;
1367 	}
1368 	rcu_read_unlock();
1369 
1370 	mutex_lock_nested(&ctx->mutex, nesting);
1371 	if (event->ctx != ctx) {
1372 		mutex_unlock(&ctx->mutex);
1373 		put_ctx(ctx);
1374 		goto again;
1375 	}
1376 
1377 	return ctx;
1378 }
1379 
1380 static inline struct perf_event_context *
1381 perf_event_ctx_lock(struct perf_event *event)
1382 {
1383 	return perf_event_ctx_lock_nested(event, 0);
1384 }
1385 
1386 static void perf_event_ctx_unlock(struct perf_event *event,
1387 				  struct perf_event_context *ctx)
1388 {
1389 	mutex_unlock(&ctx->mutex);
1390 	put_ctx(ctx);
1391 }
1392 
1393 /*
1394  * This must be done under the ctx->lock, such as to serialize against
1395  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1396  * calling scheduler related locks and ctx->lock nests inside those.
1397  */
1398 static __must_check struct perf_event_context *
1399 unclone_ctx(struct perf_event_context *ctx)
1400 {
1401 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1402 
1403 	lockdep_assert_held(&ctx->lock);
1404 
1405 	if (parent_ctx)
1406 		ctx->parent_ctx = NULL;
1407 	ctx->generation++;
1408 
1409 	return parent_ctx;
1410 }
1411 
1412 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1413 				enum pid_type type)
1414 {
1415 	u32 nr;
1416 	/*
1417 	 * only top level events have the pid namespace they were created in
1418 	 */
1419 	if (event->parent)
1420 		event = event->parent;
1421 
1422 	nr = __task_pid_nr_ns(p, type, event->ns);
1423 	/* avoid -1 if it is idle thread or runs in another ns */
1424 	if (!nr && !pid_alive(p))
1425 		nr = -1;
1426 	return nr;
1427 }
1428 
1429 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1430 {
1431 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1432 }
1433 
1434 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1435 {
1436 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1437 }
1438 
1439 /*
1440  * If we inherit events we want to return the parent event id
1441  * to userspace.
1442  */
1443 static u64 primary_event_id(struct perf_event *event)
1444 {
1445 	u64 id = event->id;
1446 
1447 	if (event->parent)
1448 		id = event->parent->id;
1449 
1450 	return id;
1451 }
1452 
1453 /*
1454  * Get the perf_event_context for a task and lock it.
1455  *
1456  * This has to cope with the fact that until it is locked,
1457  * the context could get moved to another task.
1458  */
1459 static struct perf_event_context *
1460 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1461 {
1462 	struct perf_event_context *ctx;
1463 
1464 retry:
1465 	/*
1466 	 * One of the few rules of preemptible RCU is that one cannot do
1467 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1468 	 * part of the read side critical section was irqs-enabled -- see
1469 	 * rcu_read_unlock_special().
1470 	 *
1471 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1472 	 * side critical section has interrupts disabled.
1473 	 */
1474 	local_irq_save(*flags);
1475 	rcu_read_lock();
1476 	ctx = rcu_dereference(task->perf_event_ctxp);
1477 	if (ctx) {
1478 		/*
1479 		 * If this context is a clone of another, it might
1480 		 * get swapped for another underneath us by
1481 		 * perf_event_task_sched_out, though the
1482 		 * rcu_read_lock() protects us from any context
1483 		 * getting freed.  Lock the context and check if it
1484 		 * got swapped before we could get the lock, and retry
1485 		 * if so.  If we locked the right context, then it
1486 		 * can't get swapped on us any more.
1487 		 */
1488 		raw_spin_lock(&ctx->lock);
1489 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1490 			raw_spin_unlock(&ctx->lock);
1491 			rcu_read_unlock();
1492 			local_irq_restore(*flags);
1493 			goto retry;
1494 		}
1495 
1496 		if (ctx->task == TASK_TOMBSTONE ||
1497 		    !refcount_inc_not_zero(&ctx->refcount)) {
1498 			raw_spin_unlock(&ctx->lock);
1499 			ctx = NULL;
1500 		} else {
1501 			WARN_ON_ONCE(ctx->task != task);
1502 		}
1503 	}
1504 	rcu_read_unlock();
1505 	if (!ctx)
1506 		local_irq_restore(*flags);
1507 	return ctx;
1508 }
1509 
1510 /*
1511  * Get the context for a task and increment its pin_count so it
1512  * can't get swapped to another task.  This also increments its
1513  * reference count so that the context can't get freed.
1514  */
1515 static struct perf_event_context *
1516 perf_pin_task_context(struct task_struct *task)
1517 {
1518 	struct perf_event_context *ctx;
1519 	unsigned long flags;
1520 
1521 	ctx = perf_lock_task_context(task, &flags);
1522 	if (ctx) {
1523 		++ctx->pin_count;
1524 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1525 	}
1526 	return ctx;
1527 }
1528 
1529 static void perf_unpin_context(struct perf_event_context *ctx)
1530 {
1531 	unsigned long flags;
1532 
1533 	raw_spin_lock_irqsave(&ctx->lock, flags);
1534 	--ctx->pin_count;
1535 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1536 }
1537 
1538 /*
1539  * Update the record of the current time in a context.
1540  */
1541 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1542 {
1543 	u64 now = perf_clock();
1544 
1545 	lockdep_assert_held(&ctx->lock);
1546 
1547 	if (adv)
1548 		ctx->time += now - ctx->timestamp;
1549 	ctx->timestamp = now;
1550 
1551 	/*
1552 	 * The above: time' = time + (now - timestamp), can be re-arranged
1553 	 * into: time` = now + (time - timestamp), which gives a single value
1554 	 * offset to compute future time without locks on.
1555 	 *
1556 	 * See perf_event_time_now(), which can be used from NMI context where
1557 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1558 	 * both the above values in a consistent manner.
1559 	 */
1560 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1561 }
1562 
1563 static void update_context_time(struct perf_event_context *ctx)
1564 {
1565 	__update_context_time(ctx, true);
1566 }
1567 
1568 static u64 perf_event_time(struct perf_event *event)
1569 {
1570 	struct perf_event_context *ctx = event->ctx;
1571 
1572 	if (unlikely(!ctx))
1573 		return 0;
1574 
1575 	if (is_cgroup_event(event))
1576 		return perf_cgroup_event_time(event);
1577 
1578 	return ctx->time;
1579 }
1580 
1581 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1582 {
1583 	struct perf_event_context *ctx = event->ctx;
1584 
1585 	if (unlikely(!ctx))
1586 		return 0;
1587 
1588 	if (is_cgroup_event(event))
1589 		return perf_cgroup_event_time_now(event, now);
1590 
1591 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1592 		return ctx->time;
1593 
1594 	now += READ_ONCE(ctx->timeoffset);
1595 	return now;
1596 }
1597 
1598 static enum event_type_t get_event_type(struct perf_event *event)
1599 {
1600 	struct perf_event_context *ctx = event->ctx;
1601 	enum event_type_t event_type;
1602 
1603 	lockdep_assert_held(&ctx->lock);
1604 
1605 	/*
1606 	 * It's 'group type', really, because if our group leader is
1607 	 * pinned, so are we.
1608 	 */
1609 	if (event->group_leader != event)
1610 		event = event->group_leader;
1611 
1612 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1613 	if (!ctx->task)
1614 		event_type |= EVENT_CPU;
1615 
1616 	return event_type;
1617 }
1618 
1619 /*
1620  * Helper function to initialize event group nodes.
1621  */
1622 static void init_event_group(struct perf_event *event)
1623 {
1624 	RB_CLEAR_NODE(&event->group_node);
1625 	event->group_index = 0;
1626 }
1627 
1628 /*
1629  * Extract pinned or flexible groups from the context
1630  * based on event attrs bits.
1631  */
1632 static struct perf_event_groups *
1633 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1634 {
1635 	if (event->attr.pinned)
1636 		return &ctx->pinned_groups;
1637 	else
1638 		return &ctx->flexible_groups;
1639 }
1640 
1641 /*
1642  * Helper function to initializes perf_event_group trees.
1643  */
1644 static void perf_event_groups_init(struct perf_event_groups *groups)
1645 {
1646 	groups->tree = RB_ROOT;
1647 	groups->index = 0;
1648 }
1649 
1650 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1651 {
1652 	struct cgroup *cgroup = NULL;
1653 
1654 #ifdef CONFIG_CGROUP_PERF
1655 	if (event->cgrp)
1656 		cgroup = event->cgrp->css.cgroup;
1657 #endif
1658 
1659 	return cgroup;
1660 }
1661 
1662 /*
1663  * Compare function for event groups;
1664  *
1665  * Implements complex key that first sorts by CPU and then by virtual index
1666  * which provides ordering when rotating groups for the same CPU.
1667  */
1668 static __always_inline int
1669 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1670 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1671 		      const struct perf_event *right)
1672 {
1673 	if (left_cpu < right->cpu)
1674 		return -1;
1675 	if (left_cpu > right->cpu)
1676 		return 1;
1677 
1678 	if (left_pmu) {
1679 		if (left_pmu < right->pmu_ctx->pmu)
1680 			return -1;
1681 		if (left_pmu > right->pmu_ctx->pmu)
1682 			return 1;
1683 	}
1684 
1685 #ifdef CONFIG_CGROUP_PERF
1686 	{
1687 		const struct cgroup *right_cgroup = event_cgroup(right);
1688 
1689 		if (left_cgroup != right_cgroup) {
1690 			if (!left_cgroup) {
1691 				/*
1692 				 * Left has no cgroup but right does, no
1693 				 * cgroups come first.
1694 				 */
1695 				return -1;
1696 			}
1697 			if (!right_cgroup) {
1698 				/*
1699 				 * Right has no cgroup but left does, no
1700 				 * cgroups come first.
1701 				 */
1702 				return 1;
1703 			}
1704 			/* Two dissimilar cgroups, order by id. */
1705 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1706 				return -1;
1707 
1708 			return 1;
1709 		}
1710 	}
1711 #endif
1712 
1713 	if (left_group_index < right->group_index)
1714 		return -1;
1715 	if (left_group_index > right->group_index)
1716 		return 1;
1717 
1718 	return 0;
1719 }
1720 
1721 #define __node_2_pe(node) \
1722 	rb_entry((node), struct perf_event, group_node)
1723 
1724 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1725 {
1726 	struct perf_event *e = __node_2_pe(a);
1727 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1728 				     e->group_index, __node_2_pe(b)) < 0;
1729 }
1730 
1731 struct __group_key {
1732 	int cpu;
1733 	struct pmu *pmu;
1734 	struct cgroup *cgroup;
1735 };
1736 
1737 static inline int __group_cmp(const void *key, const struct rb_node *node)
1738 {
1739 	const struct __group_key *a = key;
1740 	const struct perf_event *b = __node_2_pe(node);
1741 
1742 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1743 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1744 }
1745 
1746 static inline int
1747 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1748 {
1749 	const struct __group_key *a = key;
1750 	const struct perf_event *b = __node_2_pe(node);
1751 
1752 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1753 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1754 				     b->group_index, b);
1755 }
1756 
1757 /*
1758  * Insert @event into @groups' tree; using
1759  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1760  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1761  */
1762 static void
1763 perf_event_groups_insert(struct perf_event_groups *groups,
1764 			 struct perf_event *event)
1765 {
1766 	event->group_index = ++groups->index;
1767 
1768 	rb_add(&event->group_node, &groups->tree, __group_less);
1769 }
1770 
1771 /*
1772  * Helper function to insert event into the pinned or flexible groups.
1773  */
1774 static void
1775 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 	struct perf_event_groups *groups;
1778 
1779 	groups = get_event_groups(event, ctx);
1780 	perf_event_groups_insert(groups, event);
1781 }
1782 
1783 /*
1784  * Delete a group from a tree.
1785  */
1786 static void
1787 perf_event_groups_delete(struct perf_event_groups *groups,
1788 			 struct perf_event *event)
1789 {
1790 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1791 		     RB_EMPTY_ROOT(&groups->tree));
1792 
1793 	rb_erase(&event->group_node, &groups->tree);
1794 	init_event_group(event);
1795 }
1796 
1797 /*
1798  * Helper function to delete event from its groups.
1799  */
1800 static void
1801 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1802 {
1803 	struct perf_event_groups *groups;
1804 
1805 	groups = get_event_groups(event, ctx);
1806 	perf_event_groups_delete(groups, event);
1807 }
1808 
1809 /*
1810  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1811  */
1812 static struct perf_event *
1813 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1814 			struct pmu *pmu, struct cgroup *cgrp)
1815 {
1816 	struct __group_key key = {
1817 		.cpu = cpu,
1818 		.pmu = pmu,
1819 		.cgroup = cgrp,
1820 	};
1821 	struct rb_node *node;
1822 
1823 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1824 	if (node)
1825 		return __node_2_pe(node);
1826 
1827 	return NULL;
1828 }
1829 
1830 static struct perf_event *
1831 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1832 {
1833 	struct __group_key key = {
1834 		.cpu = event->cpu,
1835 		.pmu = pmu,
1836 		.cgroup = event_cgroup(event),
1837 	};
1838 	struct rb_node *next;
1839 
1840 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1841 	if (next)
1842 		return __node_2_pe(next);
1843 
1844 	return NULL;
1845 }
1846 
1847 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1848 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1849 	     event; event = perf_event_groups_next(event, pmu))
1850 
1851 /*
1852  * Iterate through the whole groups tree.
1853  */
1854 #define perf_event_groups_for_each(event, groups)			\
1855 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1856 				typeof(*event), group_node); event;	\
1857 		event = rb_entry_safe(rb_next(&event->group_node),	\
1858 				typeof(*event), group_node))
1859 
1860 /*
1861  * Does the event attribute request inherit with PERF_SAMPLE_READ
1862  */
1863 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1864 {
1865 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1866 }
1867 
1868 /*
1869  * Add an event from the lists for its context.
1870  * Must be called with ctx->mutex and ctx->lock held.
1871  */
1872 static void
1873 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1874 {
1875 	lockdep_assert_held(&ctx->lock);
1876 
1877 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1878 	event->attach_state |= PERF_ATTACH_CONTEXT;
1879 
1880 	event->tstamp = perf_event_time(event);
1881 
1882 	/*
1883 	 * If we're a stand alone event or group leader, we go to the context
1884 	 * list, group events are kept attached to the group so that
1885 	 * perf_group_detach can, at all times, locate all siblings.
1886 	 */
1887 	if (event->group_leader == event) {
1888 		event->group_caps = event->event_caps;
1889 		add_event_to_groups(event, ctx);
1890 	}
1891 
1892 	list_add_rcu(&event->event_entry, &ctx->event_list);
1893 	ctx->nr_events++;
1894 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1895 		ctx->nr_user++;
1896 	if (event->attr.inherit_stat)
1897 		ctx->nr_stat++;
1898 	if (has_inherit_and_sample_read(&event->attr))
1899 		local_inc(&ctx->nr_no_switch_fast);
1900 
1901 	if (event->state > PERF_EVENT_STATE_OFF)
1902 		perf_cgroup_event_enable(event, ctx);
1903 
1904 	ctx->generation++;
1905 	event->pmu_ctx->nr_events++;
1906 }
1907 
1908 /*
1909  * Initialize event state based on the perf_event_attr::disabled.
1910  */
1911 static inline void perf_event__state_init(struct perf_event *event)
1912 {
1913 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1914 					      PERF_EVENT_STATE_INACTIVE;
1915 }
1916 
1917 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1918 {
1919 	int entry = sizeof(u64); /* value */
1920 	int size = 0;
1921 	int nr = 1;
1922 
1923 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1924 		size += sizeof(u64);
1925 
1926 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1927 		size += sizeof(u64);
1928 
1929 	if (read_format & PERF_FORMAT_ID)
1930 		entry += sizeof(u64);
1931 
1932 	if (read_format & PERF_FORMAT_LOST)
1933 		entry += sizeof(u64);
1934 
1935 	if (read_format & PERF_FORMAT_GROUP) {
1936 		nr += nr_siblings;
1937 		size += sizeof(u64);
1938 	}
1939 
1940 	/*
1941 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1942 	 * adding more siblings, this will never overflow.
1943 	 */
1944 	return size + nr * entry;
1945 }
1946 
1947 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1948 {
1949 	struct perf_sample_data *data;
1950 	u16 size = 0;
1951 
1952 	if (sample_type & PERF_SAMPLE_IP)
1953 		size += sizeof(data->ip);
1954 
1955 	if (sample_type & PERF_SAMPLE_ADDR)
1956 		size += sizeof(data->addr);
1957 
1958 	if (sample_type & PERF_SAMPLE_PERIOD)
1959 		size += sizeof(data->period);
1960 
1961 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1962 		size += sizeof(data->weight.full);
1963 
1964 	if (sample_type & PERF_SAMPLE_READ)
1965 		size += event->read_size;
1966 
1967 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1968 		size += sizeof(data->data_src.val);
1969 
1970 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1971 		size += sizeof(data->txn);
1972 
1973 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1974 		size += sizeof(data->phys_addr);
1975 
1976 	if (sample_type & PERF_SAMPLE_CGROUP)
1977 		size += sizeof(data->cgroup);
1978 
1979 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1980 		size += sizeof(data->data_page_size);
1981 
1982 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1983 		size += sizeof(data->code_page_size);
1984 
1985 	event->header_size = size;
1986 }
1987 
1988 /*
1989  * Called at perf_event creation and when events are attached/detached from a
1990  * group.
1991  */
1992 static void perf_event__header_size(struct perf_event *event)
1993 {
1994 	event->read_size =
1995 		__perf_event_read_size(event->attr.read_format,
1996 				       event->group_leader->nr_siblings);
1997 	__perf_event_header_size(event, event->attr.sample_type);
1998 }
1999 
2000 static void perf_event__id_header_size(struct perf_event *event)
2001 {
2002 	struct perf_sample_data *data;
2003 	u64 sample_type = event->attr.sample_type;
2004 	u16 size = 0;
2005 
2006 	if (sample_type & PERF_SAMPLE_TID)
2007 		size += sizeof(data->tid_entry);
2008 
2009 	if (sample_type & PERF_SAMPLE_TIME)
2010 		size += sizeof(data->time);
2011 
2012 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
2013 		size += sizeof(data->id);
2014 
2015 	if (sample_type & PERF_SAMPLE_ID)
2016 		size += sizeof(data->id);
2017 
2018 	if (sample_type & PERF_SAMPLE_STREAM_ID)
2019 		size += sizeof(data->stream_id);
2020 
2021 	if (sample_type & PERF_SAMPLE_CPU)
2022 		size += sizeof(data->cpu_entry);
2023 
2024 	event->id_header_size = size;
2025 }
2026 
2027 /*
2028  * Check that adding an event to the group does not result in anybody
2029  * overflowing the 64k event limit imposed by the output buffer.
2030  *
2031  * Specifically, check that the read_size for the event does not exceed 16k,
2032  * read_size being the one term that grows with groups size. Since read_size
2033  * depends on per-event read_format, also (re)check the existing events.
2034  *
2035  * This leaves 48k for the constant size fields and things like callchains,
2036  * branch stacks and register sets.
2037  */
2038 static bool perf_event_validate_size(struct perf_event *event)
2039 {
2040 	struct perf_event *sibling, *group_leader = event->group_leader;
2041 
2042 	if (__perf_event_read_size(event->attr.read_format,
2043 				   group_leader->nr_siblings + 1) > 16*1024)
2044 		return false;
2045 
2046 	if (__perf_event_read_size(group_leader->attr.read_format,
2047 				   group_leader->nr_siblings + 1) > 16*1024)
2048 		return false;
2049 
2050 	/*
2051 	 * When creating a new group leader, group_leader->ctx is initialized
2052 	 * after the size has been validated, but we cannot safely use
2053 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
2054 	 * leader cannot have any siblings yet, so we can safely skip checking
2055 	 * the non-existent siblings.
2056 	 */
2057 	if (event == group_leader)
2058 		return true;
2059 
2060 	for_each_sibling_event(sibling, group_leader) {
2061 		if (__perf_event_read_size(sibling->attr.read_format,
2062 					   group_leader->nr_siblings + 1) > 16*1024)
2063 			return false;
2064 	}
2065 
2066 	return true;
2067 }
2068 
2069 static void perf_group_attach(struct perf_event *event)
2070 {
2071 	struct perf_event *group_leader = event->group_leader, *pos;
2072 
2073 	lockdep_assert_held(&event->ctx->lock);
2074 
2075 	/*
2076 	 * We can have double attach due to group movement (move_group) in
2077 	 * perf_event_open().
2078 	 */
2079 	if (event->attach_state & PERF_ATTACH_GROUP)
2080 		return;
2081 
2082 	event->attach_state |= PERF_ATTACH_GROUP;
2083 
2084 	if (group_leader == event)
2085 		return;
2086 
2087 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2088 
2089 	group_leader->group_caps &= event->event_caps;
2090 
2091 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2092 	group_leader->nr_siblings++;
2093 	group_leader->group_generation++;
2094 
2095 	perf_event__header_size(group_leader);
2096 
2097 	for_each_sibling_event(pos, group_leader)
2098 		perf_event__header_size(pos);
2099 }
2100 
2101 /*
2102  * Remove an event from the lists for its context.
2103  * Must be called with ctx->mutex and ctx->lock held.
2104  */
2105 static void
2106 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2107 {
2108 	WARN_ON_ONCE(event->ctx != ctx);
2109 	lockdep_assert_held(&ctx->lock);
2110 
2111 	/*
2112 	 * We can have double detach due to exit/hot-unplug + close.
2113 	 */
2114 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2115 		return;
2116 
2117 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2118 
2119 	ctx->nr_events--;
2120 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2121 		ctx->nr_user--;
2122 	if (event->attr.inherit_stat)
2123 		ctx->nr_stat--;
2124 	if (has_inherit_and_sample_read(&event->attr))
2125 		local_dec(&ctx->nr_no_switch_fast);
2126 
2127 	list_del_rcu(&event->event_entry);
2128 
2129 	if (event->group_leader == event)
2130 		del_event_from_groups(event, ctx);
2131 
2132 	/*
2133 	 * If event was in error state, then keep it
2134 	 * that way, otherwise bogus counts will be
2135 	 * returned on read(). The only way to get out
2136 	 * of error state is by explicit re-enabling
2137 	 * of the event
2138 	 */
2139 	if (event->state > PERF_EVENT_STATE_OFF) {
2140 		perf_cgroup_event_disable(event, ctx);
2141 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2142 	}
2143 
2144 	ctx->generation++;
2145 	event->pmu_ctx->nr_events--;
2146 }
2147 
2148 static int
2149 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2150 {
2151 	if (!has_aux(aux_event))
2152 		return 0;
2153 
2154 	if (!event->pmu->aux_output_match)
2155 		return 0;
2156 
2157 	return event->pmu->aux_output_match(aux_event);
2158 }
2159 
2160 static void put_event(struct perf_event *event);
2161 static void event_sched_out(struct perf_event *event,
2162 			    struct perf_event_context *ctx);
2163 
2164 static void perf_put_aux_event(struct perf_event *event)
2165 {
2166 	struct perf_event_context *ctx = event->ctx;
2167 	struct perf_event *iter;
2168 
2169 	/*
2170 	 * If event uses aux_event tear down the link
2171 	 */
2172 	if (event->aux_event) {
2173 		iter = event->aux_event;
2174 		event->aux_event = NULL;
2175 		put_event(iter);
2176 		return;
2177 	}
2178 
2179 	/*
2180 	 * If the event is an aux_event, tear down all links to
2181 	 * it from other events.
2182 	 */
2183 	for_each_sibling_event(iter, event->group_leader) {
2184 		if (iter->aux_event != event)
2185 			continue;
2186 
2187 		iter->aux_event = NULL;
2188 		put_event(event);
2189 
2190 		/*
2191 		 * If it's ACTIVE, schedule it out and put it into ERROR
2192 		 * state so that we don't try to schedule it again. Note
2193 		 * that perf_event_enable() will clear the ERROR status.
2194 		 */
2195 		event_sched_out(iter, ctx);
2196 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2197 	}
2198 }
2199 
2200 static bool perf_need_aux_event(struct perf_event *event)
2201 {
2202 	return event->attr.aux_output || has_aux_action(event);
2203 }
2204 
2205 static int perf_get_aux_event(struct perf_event *event,
2206 			      struct perf_event *group_leader)
2207 {
2208 	/*
2209 	 * Our group leader must be an aux event if we want to be
2210 	 * an aux_output. This way, the aux event will precede its
2211 	 * aux_output events in the group, and therefore will always
2212 	 * schedule first.
2213 	 */
2214 	if (!group_leader)
2215 		return 0;
2216 
2217 	/*
2218 	 * aux_output and aux_sample_size are mutually exclusive.
2219 	 */
2220 	if (event->attr.aux_output && event->attr.aux_sample_size)
2221 		return 0;
2222 
2223 	if (event->attr.aux_output &&
2224 	    !perf_aux_output_match(event, group_leader))
2225 		return 0;
2226 
2227 	if ((event->attr.aux_pause || event->attr.aux_resume) &&
2228 	    !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2229 		return 0;
2230 
2231 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2232 		return 0;
2233 
2234 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2235 		return 0;
2236 
2237 	/*
2238 	 * Link aux_outputs to their aux event; this is undone in
2239 	 * perf_group_detach() by perf_put_aux_event(). When the
2240 	 * group in torn down, the aux_output events loose their
2241 	 * link to the aux_event and can't schedule any more.
2242 	 */
2243 	event->aux_event = group_leader;
2244 
2245 	return 1;
2246 }
2247 
2248 static inline struct list_head *get_event_list(struct perf_event *event)
2249 {
2250 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2251 				    &event->pmu_ctx->flexible_active;
2252 }
2253 
2254 /*
2255  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2256  * cannot exist on their own, schedule them out and move them into the ERROR
2257  * state. Also see _perf_event_enable(), it will not be able to recover
2258  * this ERROR state.
2259  */
2260 static inline void perf_remove_sibling_event(struct perf_event *event)
2261 {
2262 	event_sched_out(event, event->ctx);
2263 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2264 }
2265 
2266 static void perf_group_detach(struct perf_event *event)
2267 {
2268 	struct perf_event *leader = event->group_leader;
2269 	struct perf_event *sibling, *tmp;
2270 	struct perf_event_context *ctx = event->ctx;
2271 
2272 	lockdep_assert_held(&ctx->lock);
2273 
2274 	/*
2275 	 * We can have double detach due to exit/hot-unplug + close.
2276 	 */
2277 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2278 		return;
2279 
2280 	event->attach_state &= ~PERF_ATTACH_GROUP;
2281 
2282 	perf_put_aux_event(event);
2283 
2284 	/*
2285 	 * If this is a sibling, remove it from its group.
2286 	 */
2287 	if (leader != event) {
2288 		list_del_init(&event->sibling_list);
2289 		event->group_leader->nr_siblings--;
2290 		event->group_leader->group_generation++;
2291 		goto out;
2292 	}
2293 
2294 	/*
2295 	 * If this was a group event with sibling events then
2296 	 * upgrade the siblings to singleton events by adding them
2297 	 * to whatever list we are on.
2298 	 */
2299 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2300 
2301 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2302 			perf_remove_sibling_event(sibling);
2303 
2304 		sibling->group_leader = sibling;
2305 		list_del_init(&sibling->sibling_list);
2306 
2307 		/* Inherit group flags from the previous leader */
2308 		sibling->group_caps = event->group_caps;
2309 
2310 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2311 			add_event_to_groups(sibling, event->ctx);
2312 
2313 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2314 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2315 		}
2316 
2317 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2318 	}
2319 
2320 out:
2321 	for_each_sibling_event(tmp, leader)
2322 		perf_event__header_size(tmp);
2323 
2324 	perf_event__header_size(leader);
2325 }
2326 
2327 static void sync_child_event(struct perf_event *child_event);
2328 
2329 static void perf_child_detach(struct perf_event *event)
2330 {
2331 	struct perf_event *parent_event = event->parent;
2332 
2333 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2334 		return;
2335 
2336 	event->attach_state &= ~PERF_ATTACH_CHILD;
2337 
2338 	if (WARN_ON_ONCE(!parent_event))
2339 		return;
2340 
2341 	lockdep_assert_held(&parent_event->child_mutex);
2342 
2343 	sync_child_event(event);
2344 	list_del_init(&event->child_list);
2345 }
2346 
2347 static bool is_orphaned_event(struct perf_event *event)
2348 {
2349 	return event->state == PERF_EVENT_STATE_DEAD;
2350 }
2351 
2352 static inline int
2353 event_filter_match(struct perf_event *event)
2354 {
2355 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2356 	       perf_cgroup_match(event);
2357 }
2358 
2359 static void
2360 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2361 {
2362 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2363 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2364 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2365 
2366 	// XXX cpc serialization, probably per-cpu IRQ disabled
2367 
2368 	WARN_ON_ONCE(event->ctx != ctx);
2369 	lockdep_assert_held(&ctx->lock);
2370 
2371 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2372 		return;
2373 
2374 	/*
2375 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2376 	 * we can schedule events _OUT_ individually through things like
2377 	 * __perf_remove_from_context().
2378 	 */
2379 	list_del_init(&event->active_list);
2380 
2381 	perf_pmu_disable(event->pmu);
2382 
2383 	event->pmu->del(event, 0);
2384 	event->oncpu = -1;
2385 
2386 	if (event->pending_disable) {
2387 		event->pending_disable = 0;
2388 		perf_cgroup_event_disable(event, ctx);
2389 		state = PERF_EVENT_STATE_OFF;
2390 	}
2391 
2392 	perf_event_set_state(event, state);
2393 
2394 	if (!is_software_event(event))
2395 		cpc->active_oncpu--;
2396 	if (event->attr.freq && event->attr.sample_freq) {
2397 		ctx->nr_freq--;
2398 		epc->nr_freq--;
2399 	}
2400 	if (event->attr.exclusive || !cpc->active_oncpu)
2401 		cpc->exclusive = 0;
2402 
2403 	perf_pmu_enable(event->pmu);
2404 }
2405 
2406 static void
2407 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2408 {
2409 	struct perf_event *event;
2410 
2411 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2412 		return;
2413 
2414 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2415 
2416 	event_sched_out(group_event, ctx);
2417 
2418 	/*
2419 	 * Schedule out siblings (if any):
2420 	 */
2421 	for_each_sibling_event(event, group_event)
2422 		event_sched_out(event, ctx);
2423 }
2424 
2425 static inline void
2426 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2427 {
2428 	if (ctx->is_active & EVENT_TIME) {
2429 		if (ctx->is_active & EVENT_FROZEN)
2430 			return;
2431 		update_context_time(ctx);
2432 		update_cgrp_time_from_cpuctx(cpuctx, final);
2433 	}
2434 }
2435 
2436 static inline void
2437 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2438 {
2439 	__ctx_time_update(cpuctx, ctx, false);
2440 }
2441 
2442 /*
2443  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2444  */
2445 static inline void
2446 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2447 {
2448 	ctx_time_update(cpuctx, ctx);
2449 	if (ctx->is_active & EVENT_TIME)
2450 		ctx->is_active |= EVENT_FROZEN;
2451 }
2452 
2453 static inline void
2454 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2455 {
2456 	if (ctx->is_active & EVENT_TIME) {
2457 		if (ctx->is_active & EVENT_FROZEN)
2458 			return;
2459 		update_context_time(ctx);
2460 		update_cgrp_time_from_event(event);
2461 	}
2462 }
2463 
2464 #define DETACH_GROUP	0x01UL
2465 #define DETACH_CHILD	0x02UL
2466 #define DETACH_DEAD	0x04UL
2467 
2468 /*
2469  * Cross CPU call to remove a performance event
2470  *
2471  * We disable the event on the hardware level first. After that we
2472  * remove it from the context list.
2473  */
2474 static void
2475 __perf_remove_from_context(struct perf_event *event,
2476 			   struct perf_cpu_context *cpuctx,
2477 			   struct perf_event_context *ctx,
2478 			   void *info)
2479 {
2480 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2481 	unsigned long flags = (unsigned long)info;
2482 
2483 	ctx_time_update(cpuctx, ctx);
2484 
2485 	/*
2486 	 * Ensure event_sched_out() switches to OFF, at the very least
2487 	 * this avoids raising perf_pending_task() at this time.
2488 	 */
2489 	if (flags & DETACH_DEAD)
2490 		event->pending_disable = 1;
2491 	event_sched_out(event, ctx);
2492 	if (flags & DETACH_GROUP)
2493 		perf_group_detach(event);
2494 	if (flags & DETACH_CHILD)
2495 		perf_child_detach(event);
2496 	list_del_event(event, ctx);
2497 	if (flags & DETACH_DEAD)
2498 		event->state = PERF_EVENT_STATE_DEAD;
2499 
2500 	if (!pmu_ctx->nr_events) {
2501 		pmu_ctx->rotate_necessary = 0;
2502 
2503 		if (ctx->task && ctx->is_active) {
2504 			struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu);
2505 
2506 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2507 			cpc->task_epc = NULL;
2508 		}
2509 	}
2510 
2511 	if (!ctx->nr_events && ctx->is_active) {
2512 		if (ctx == &cpuctx->ctx)
2513 			update_cgrp_time_from_cpuctx(cpuctx, true);
2514 
2515 		ctx->is_active = 0;
2516 		if (ctx->task) {
2517 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2518 			cpuctx->task_ctx = NULL;
2519 		}
2520 	}
2521 }
2522 
2523 /*
2524  * Remove the event from a task's (or a CPU's) list of events.
2525  *
2526  * If event->ctx is a cloned context, callers must make sure that
2527  * every task struct that event->ctx->task could possibly point to
2528  * remains valid.  This is OK when called from perf_release since
2529  * that only calls us on the top-level context, which can't be a clone.
2530  * When called from perf_event_exit_task, it's OK because the
2531  * context has been detached from its task.
2532  */
2533 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2534 {
2535 	struct perf_event_context *ctx = event->ctx;
2536 
2537 	lockdep_assert_held(&ctx->mutex);
2538 
2539 	/*
2540 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2541 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2542 	 * event_function_call() user.
2543 	 */
2544 	raw_spin_lock_irq(&ctx->lock);
2545 	if (!ctx->is_active) {
2546 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2547 					   ctx, (void *)flags);
2548 		raw_spin_unlock_irq(&ctx->lock);
2549 		return;
2550 	}
2551 	raw_spin_unlock_irq(&ctx->lock);
2552 
2553 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2554 }
2555 
2556 /*
2557  * Cross CPU call to disable a performance event
2558  */
2559 static void __perf_event_disable(struct perf_event *event,
2560 				 struct perf_cpu_context *cpuctx,
2561 				 struct perf_event_context *ctx,
2562 				 void *info)
2563 {
2564 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2565 		return;
2566 
2567 	perf_pmu_disable(event->pmu_ctx->pmu);
2568 	ctx_time_update_event(ctx, event);
2569 
2570 	if (event == event->group_leader)
2571 		group_sched_out(event, ctx);
2572 	else
2573 		event_sched_out(event, ctx);
2574 
2575 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2576 	perf_cgroup_event_disable(event, ctx);
2577 
2578 	perf_pmu_enable(event->pmu_ctx->pmu);
2579 }
2580 
2581 /*
2582  * Disable an event.
2583  *
2584  * If event->ctx is a cloned context, callers must make sure that
2585  * every task struct that event->ctx->task could possibly point to
2586  * remains valid.  This condition is satisfied when called through
2587  * perf_event_for_each_child or perf_event_for_each because they
2588  * hold the top-level event's child_mutex, so any descendant that
2589  * goes to exit will block in perf_event_exit_event().
2590  *
2591  * When called from perf_pending_disable it's OK because event->ctx
2592  * is the current context on this CPU and preemption is disabled,
2593  * hence we can't get into perf_event_task_sched_out for this context.
2594  */
2595 static void _perf_event_disable(struct perf_event *event)
2596 {
2597 	struct perf_event_context *ctx = event->ctx;
2598 
2599 	raw_spin_lock_irq(&ctx->lock);
2600 	if (event->state <= PERF_EVENT_STATE_OFF) {
2601 		raw_spin_unlock_irq(&ctx->lock);
2602 		return;
2603 	}
2604 	raw_spin_unlock_irq(&ctx->lock);
2605 
2606 	event_function_call(event, __perf_event_disable, NULL);
2607 }
2608 
2609 void perf_event_disable_local(struct perf_event *event)
2610 {
2611 	event_function_local(event, __perf_event_disable, NULL);
2612 }
2613 
2614 /*
2615  * Strictly speaking kernel users cannot create groups and therefore this
2616  * interface does not need the perf_event_ctx_lock() magic.
2617  */
2618 void perf_event_disable(struct perf_event *event)
2619 {
2620 	struct perf_event_context *ctx;
2621 
2622 	ctx = perf_event_ctx_lock(event);
2623 	_perf_event_disable(event);
2624 	perf_event_ctx_unlock(event, ctx);
2625 }
2626 EXPORT_SYMBOL_GPL(perf_event_disable);
2627 
2628 void perf_event_disable_inatomic(struct perf_event *event)
2629 {
2630 	event->pending_disable = 1;
2631 	irq_work_queue(&event->pending_disable_irq);
2632 }
2633 
2634 #define MAX_INTERRUPTS (~0ULL)
2635 
2636 static void perf_log_throttle(struct perf_event *event, int enable);
2637 static void perf_log_itrace_start(struct perf_event *event);
2638 
2639 static int
2640 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2641 {
2642 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2643 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2644 	int ret = 0;
2645 
2646 	WARN_ON_ONCE(event->ctx != ctx);
2647 
2648 	lockdep_assert_held(&ctx->lock);
2649 
2650 	if (event->state <= PERF_EVENT_STATE_OFF)
2651 		return 0;
2652 
2653 	WRITE_ONCE(event->oncpu, smp_processor_id());
2654 	/*
2655 	 * Order event::oncpu write to happen before the ACTIVE state is
2656 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2657 	 * ->oncpu if it sees ACTIVE.
2658 	 */
2659 	smp_wmb();
2660 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2661 
2662 	/*
2663 	 * Unthrottle events, since we scheduled we might have missed several
2664 	 * ticks already, also for a heavily scheduling task there is little
2665 	 * guarantee it'll get a tick in a timely manner.
2666 	 */
2667 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2668 		perf_log_throttle(event, 1);
2669 		event->hw.interrupts = 0;
2670 	}
2671 
2672 	perf_pmu_disable(event->pmu);
2673 
2674 	perf_log_itrace_start(event);
2675 
2676 	if (event->pmu->add(event, PERF_EF_START)) {
2677 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2678 		event->oncpu = -1;
2679 		ret = -EAGAIN;
2680 		goto out;
2681 	}
2682 
2683 	if (!is_software_event(event))
2684 		cpc->active_oncpu++;
2685 	if (event->attr.freq && event->attr.sample_freq) {
2686 		ctx->nr_freq++;
2687 		epc->nr_freq++;
2688 	}
2689 	if (event->attr.exclusive)
2690 		cpc->exclusive = 1;
2691 
2692 out:
2693 	perf_pmu_enable(event->pmu);
2694 
2695 	return ret;
2696 }
2697 
2698 static int
2699 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2700 {
2701 	struct perf_event *event, *partial_group = NULL;
2702 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2703 
2704 	if (group_event->state == PERF_EVENT_STATE_OFF)
2705 		return 0;
2706 
2707 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2708 
2709 	if (event_sched_in(group_event, ctx))
2710 		goto error;
2711 
2712 	/*
2713 	 * Schedule in siblings as one group (if any):
2714 	 */
2715 	for_each_sibling_event(event, group_event) {
2716 		if (event_sched_in(event, ctx)) {
2717 			partial_group = event;
2718 			goto group_error;
2719 		}
2720 	}
2721 
2722 	if (!pmu->commit_txn(pmu))
2723 		return 0;
2724 
2725 group_error:
2726 	/*
2727 	 * Groups can be scheduled in as one unit only, so undo any
2728 	 * partial group before returning:
2729 	 * The events up to the failed event are scheduled out normally.
2730 	 */
2731 	for_each_sibling_event(event, group_event) {
2732 		if (event == partial_group)
2733 			break;
2734 
2735 		event_sched_out(event, ctx);
2736 	}
2737 	event_sched_out(group_event, ctx);
2738 
2739 error:
2740 	pmu->cancel_txn(pmu);
2741 	return -EAGAIN;
2742 }
2743 
2744 /*
2745  * Work out whether we can put this event group on the CPU now.
2746  */
2747 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2748 {
2749 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2750 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2751 
2752 	/*
2753 	 * Groups consisting entirely of software events can always go on.
2754 	 */
2755 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2756 		return 1;
2757 	/*
2758 	 * If an exclusive group is already on, no other hardware
2759 	 * events can go on.
2760 	 */
2761 	if (cpc->exclusive)
2762 		return 0;
2763 	/*
2764 	 * If this group is exclusive and there are already
2765 	 * events on the CPU, it can't go on.
2766 	 */
2767 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2768 		return 0;
2769 	/*
2770 	 * Otherwise, try to add it if all previous groups were able
2771 	 * to go on.
2772 	 */
2773 	return can_add_hw;
2774 }
2775 
2776 static void add_event_to_ctx(struct perf_event *event,
2777 			       struct perf_event_context *ctx)
2778 {
2779 	list_add_event(event, ctx);
2780 	perf_group_attach(event);
2781 }
2782 
2783 static void task_ctx_sched_out(struct perf_event_context *ctx,
2784 			       struct pmu *pmu,
2785 			       enum event_type_t event_type)
2786 {
2787 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2788 
2789 	if (!cpuctx->task_ctx)
2790 		return;
2791 
2792 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2793 		return;
2794 
2795 	ctx_sched_out(ctx, pmu, event_type);
2796 }
2797 
2798 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2799 				struct perf_event_context *ctx,
2800 				struct pmu *pmu)
2801 {
2802 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2803 	if (ctx)
2804 		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2805 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2806 	if (ctx)
2807 		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2808 }
2809 
2810 /*
2811  * We want to maintain the following priority of scheduling:
2812  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2813  *  - task pinned (EVENT_PINNED)
2814  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2815  *  - task flexible (EVENT_FLEXIBLE).
2816  *
2817  * In order to avoid unscheduling and scheduling back in everything every
2818  * time an event is added, only do it for the groups of equal priority and
2819  * below.
2820  *
2821  * This can be called after a batch operation on task events, in which case
2822  * event_type is a bit mask of the types of events involved. For CPU events,
2823  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2824  */
2825 static void ctx_resched(struct perf_cpu_context *cpuctx,
2826 			struct perf_event_context *task_ctx,
2827 			struct pmu *pmu, enum event_type_t event_type)
2828 {
2829 	bool cpu_event = !!(event_type & EVENT_CPU);
2830 	struct perf_event_pmu_context *epc;
2831 
2832 	/*
2833 	 * If pinned groups are involved, flexible groups also need to be
2834 	 * scheduled out.
2835 	 */
2836 	if (event_type & EVENT_PINNED)
2837 		event_type |= EVENT_FLEXIBLE;
2838 
2839 	event_type &= EVENT_ALL;
2840 
2841 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2842 		perf_pmu_disable(epc->pmu);
2843 
2844 	if (task_ctx) {
2845 		for_each_epc(epc, task_ctx, pmu, false)
2846 			perf_pmu_disable(epc->pmu);
2847 
2848 		task_ctx_sched_out(task_ctx, pmu, event_type);
2849 	}
2850 
2851 	/*
2852 	 * Decide which cpu ctx groups to schedule out based on the types
2853 	 * of events that caused rescheduling:
2854 	 *  - EVENT_CPU: schedule out corresponding groups;
2855 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2856 	 *  - otherwise, do nothing more.
2857 	 */
2858 	if (cpu_event)
2859 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2860 	else if (event_type & EVENT_PINNED)
2861 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2862 
2863 	perf_event_sched_in(cpuctx, task_ctx, pmu);
2864 
2865 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2866 		perf_pmu_enable(epc->pmu);
2867 
2868 	if (task_ctx) {
2869 		for_each_epc(epc, task_ctx, pmu, false)
2870 			perf_pmu_enable(epc->pmu);
2871 	}
2872 }
2873 
2874 void perf_pmu_resched(struct pmu *pmu)
2875 {
2876 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2877 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2878 
2879 	perf_ctx_lock(cpuctx, task_ctx);
2880 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2881 	perf_ctx_unlock(cpuctx, task_ctx);
2882 }
2883 
2884 /*
2885  * Cross CPU call to install and enable a performance event
2886  *
2887  * Very similar to remote_function() + event_function() but cannot assume that
2888  * things like ctx->is_active and cpuctx->task_ctx are set.
2889  */
2890 static int  __perf_install_in_context(void *info)
2891 {
2892 	struct perf_event *event = info;
2893 	struct perf_event_context *ctx = event->ctx;
2894 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2895 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2896 	bool reprogram = true;
2897 	int ret = 0;
2898 
2899 	raw_spin_lock(&cpuctx->ctx.lock);
2900 	if (ctx->task) {
2901 		raw_spin_lock(&ctx->lock);
2902 		task_ctx = ctx;
2903 
2904 		reprogram = (ctx->task == current);
2905 
2906 		/*
2907 		 * If the task is running, it must be running on this CPU,
2908 		 * otherwise we cannot reprogram things.
2909 		 *
2910 		 * If its not running, we don't care, ctx->lock will
2911 		 * serialize against it becoming runnable.
2912 		 */
2913 		if (task_curr(ctx->task) && !reprogram) {
2914 			ret = -ESRCH;
2915 			goto unlock;
2916 		}
2917 
2918 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2919 	} else if (task_ctx) {
2920 		raw_spin_lock(&task_ctx->lock);
2921 	}
2922 
2923 #ifdef CONFIG_CGROUP_PERF
2924 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2925 		/*
2926 		 * If the current cgroup doesn't match the event's
2927 		 * cgroup, we should not try to schedule it.
2928 		 */
2929 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2930 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2931 					event->cgrp->css.cgroup);
2932 	}
2933 #endif
2934 
2935 	if (reprogram) {
2936 		ctx_time_freeze(cpuctx, ctx);
2937 		add_event_to_ctx(event, ctx);
2938 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2939 			    get_event_type(event));
2940 	} else {
2941 		add_event_to_ctx(event, ctx);
2942 	}
2943 
2944 unlock:
2945 	perf_ctx_unlock(cpuctx, task_ctx);
2946 
2947 	return ret;
2948 }
2949 
2950 static bool exclusive_event_installable(struct perf_event *event,
2951 					struct perf_event_context *ctx);
2952 
2953 /*
2954  * Attach a performance event to a context.
2955  *
2956  * Very similar to event_function_call, see comment there.
2957  */
2958 static void
2959 perf_install_in_context(struct perf_event_context *ctx,
2960 			struct perf_event *event,
2961 			int cpu)
2962 {
2963 	struct task_struct *task = READ_ONCE(ctx->task);
2964 
2965 	lockdep_assert_held(&ctx->mutex);
2966 
2967 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2968 
2969 	if (event->cpu != -1)
2970 		WARN_ON_ONCE(event->cpu != cpu);
2971 
2972 	/*
2973 	 * Ensures that if we can observe event->ctx, both the event and ctx
2974 	 * will be 'complete'. See perf_iterate_sb_cpu().
2975 	 */
2976 	smp_store_release(&event->ctx, ctx);
2977 
2978 	/*
2979 	 * perf_event_attr::disabled events will not run and can be initialized
2980 	 * without IPI. Except when this is the first event for the context, in
2981 	 * that case we need the magic of the IPI to set ctx->is_active.
2982 	 *
2983 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2984 	 * event will issue the IPI and reprogram the hardware.
2985 	 */
2986 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2987 	    ctx->nr_events && !is_cgroup_event(event)) {
2988 		raw_spin_lock_irq(&ctx->lock);
2989 		if (ctx->task == TASK_TOMBSTONE) {
2990 			raw_spin_unlock_irq(&ctx->lock);
2991 			return;
2992 		}
2993 		add_event_to_ctx(event, ctx);
2994 		raw_spin_unlock_irq(&ctx->lock);
2995 		return;
2996 	}
2997 
2998 	if (!task) {
2999 		cpu_function_call(cpu, __perf_install_in_context, event);
3000 		return;
3001 	}
3002 
3003 	/*
3004 	 * Should not happen, we validate the ctx is still alive before calling.
3005 	 */
3006 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
3007 		return;
3008 
3009 	/*
3010 	 * Installing events is tricky because we cannot rely on ctx->is_active
3011 	 * to be set in case this is the nr_events 0 -> 1 transition.
3012 	 *
3013 	 * Instead we use task_curr(), which tells us if the task is running.
3014 	 * However, since we use task_curr() outside of rq::lock, we can race
3015 	 * against the actual state. This means the result can be wrong.
3016 	 *
3017 	 * If we get a false positive, we retry, this is harmless.
3018 	 *
3019 	 * If we get a false negative, things are complicated. If we are after
3020 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
3021 	 * value must be correct. If we're before, it doesn't matter since
3022 	 * perf_event_context_sched_in() will program the counter.
3023 	 *
3024 	 * However, this hinges on the remote context switch having observed
3025 	 * our task->perf_event_ctxp[] store, such that it will in fact take
3026 	 * ctx::lock in perf_event_context_sched_in().
3027 	 *
3028 	 * We do this by task_function_call(), if the IPI fails to hit the task
3029 	 * we know any future context switch of task must see the
3030 	 * perf_event_ctpx[] store.
3031 	 */
3032 
3033 	/*
3034 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
3035 	 * task_cpu() load, such that if the IPI then does not find the task
3036 	 * running, a future context switch of that task must observe the
3037 	 * store.
3038 	 */
3039 	smp_mb();
3040 again:
3041 	if (!task_function_call(task, __perf_install_in_context, event))
3042 		return;
3043 
3044 	raw_spin_lock_irq(&ctx->lock);
3045 	task = ctx->task;
3046 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
3047 		/*
3048 		 * Cannot happen because we already checked above (which also
3049 		 * cannot happen), and we hold ctx->mutex, which serializes us
3050 		 * against perf_event_exit_task_context().
3051 		 */
3052 		raw_spin_unlock_irq(&ctx->lock);
3053 		return;
3054 	}
3055 	/*
3056 	 * If the task is not running, ctx->lock will avoid it becoming so,
3057 	 * thus we can safely install the event.
3058 	 */
3059 	if (task_curr(task)) {
3060 		raw_spin_unlock_irq(&ctx->lock);
3061 		goto again;
3062 	}
3063 	add_event_to_ctx(event, ctx);
3064 	raw_spin_unlock_irq(&ctx->lock);
3065 }
3066 
3067 /*
3068  * Cross CPU call to enable a performance event
3069  */
3070 static void __perf_event_enable(struct perf_event *event,
3071 				struct perf_cpu_context *cpuctx,
3072 				struct perf_event_context *ctx,
3073 				void *info)
3074 {
3075 	struct perf_event *leader = event->group_leader;
3076 	struct perf_event_context *task_ctx;
3077 
3078 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3079 	    event->state <= PERF_EVENT_STATE_ERROR)
3080 		return;
3081 
3082 	ctx_time_freeze(cpuctx, ctx);
3083 
3084 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3085 	perf_cgroup_event_enable(event, ctx);
3086 
3087 	if (!ctx->is_active)
3088 		return;
3089 
3090 	if (!event_filter_match(event))
3091 		return;
3092 
3093 	/*
3094 	 * If the event is in a group and isn't the group leader,
3095 	 * then don't put it on unless the group is on.
3096 	 */
3097 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3098 		return;
3099 
3100 	task_ctx = cpuctx->task_ctx;
3101 	if (ctx->task)
3102 		WARN_ON_ONCE(task_ctx != ctx);
3103 
3104 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3105 }
3106 
3107 /*
3108  * Enable an event.
3109  *
3110  * If event->ctx is a cloned context, callers must make sure that
3111  * every task struct that event->ctx->task could possibly point to
3112  * remains valid.  This condition is satisfied when called through
3113  * perf_event_for_each_child or perf_event_for_each as described
3114  * for perf_event_disable.
3115  */
3116 static void _perf_event_enable(struct perf_event *event)
3117 {
3118 	struct perf_event_context *ctx = event->ctx;
3119 
3120 	raw_spin_lock_irq(&ctx->lock);
3121 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3122 	    event->state <  PERF_EVENT_STATE_ERROR) {
3123 out:
3124 		raw_spin_unlock_irq(&ctx->lock);
3125 		return;
3126 	}
3127 
3128 	/*
3129 	 * If the event is in error state, clear that first.
3130 	 *
3131 	 * That way, if we see the event in error state below, we know that it
3132 	 * has gone back into error state, as distinct from the task having
3133 	 * been scheduled away before the cross-call arrived.
3134 	 */
3135 	if (event->state == PERF_EVENT_STATE_ERROR) {
3136 		/*
3137 		 * Detached SIBLING events cannot leave ERROR state.
3138 		 */
3139 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3140 		    event->group_leader == event)
3141 			goto out;
3142 
3143 		event->state = PERF_EVENT_STATE_OFF;
3144 	}
3145 	raw_spin_unlock_irq(&ctx->lock);
3146 
3147 	event_function_call(event, __perf_event_enable, NULL);
3148 }
3149 
3150 /*
3151  * See perf_event_disable();
3152  */
3153 void perf_event_enable(struct perf_event *event)
3154 {
3155 	struct perf_event_context *ctx;
3156 
3157 	ctx = perf_event_ctx_lock(event);
3158 	_perf_event_enable(event);
3159 	perf_event_ctx_unlock(event, ctx);
3160 }
3161 EXPORT_SYMBOL_GPL(perf_event_enable);
3162 
3163 struct stop_event_data {
3164 	struct perf_event	*event;
3165 	unsigned int		restart;
3166 };
3167 
3168 static int __perf_event_stop(void *info)
3169 {
3170 	struct stop_event_data *sd = info;
3171 	struct perf_event *event = sd->event;
3172 
3173 	/* if it's already INACTIVE, do nothing */
3174 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3175 		return 0;
3176 
3177 	/* matches smp_wmb() in event_sched_in() */
3178 	smp_rmb();
3179 
3180 	/*
3181 	 * There is a window with interrupts enabled before we get here,
3182 	 * so we need to check again lest we try to stop another CPU's event.
3183 	 */
3184 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3185 		return -EAGAIN;
3186 
3187 	event->pmu->stop(event, PERF_EF_UPDATE);
3188 
3189 	/*
3190 	 * May race with the actual stop (through perf_pmu_output_stop()),
3191 	 * but it is only used for events with AUX ring buffer, and such
3192 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3193 	 * see comments in perf_aux_output_begin().
3194 	 *
3195 	 * Since this is happening on an event-local CPU, no trace is lost
3196 	 * while restarting.
3197 	 */
3198 	if (sd->restart)
3199 		event->pmu->start(event, 0);
3200 
3201 	return 0;
3202 }
3203 
3204 static int perf_event_stop(struct perf_event *event, int restart)
3205 {
3206 	struct stop_event_data sd = {
3207 		.event		= event,
3208 		.restart	= restart,
3209 	};
3210 	int ret = 0;
3211 
3212 	do {
3213 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3214 			return 0;
3215 
3216 		/* matches smp_wmb() in event_sched_in() */
3217 		smp_rmb();
3218 
3219 		/*
3220 		 * We only want to restart ACTIVE events, so if the event goes
3221 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3222 		 * fall through with ret==-ENXIO.
3223 		 */
3224 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3225 					__perf_event_stop, &sd);
3226 	} while (ret == -EAGAIN);
3227 
3228 	return ret;
3229 }
3230 
3231 /*
3232  * In order to contain the amount of racy and tricky in the address filter
3233  * configuration management, it is a two part process:
3234  *
3235  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3236  *      we update the addresses of corresponding vmas in
3237  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3238  * (p2) when an event is scheduled in (pmu::add), it calls
3239  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3240  *      if the generation has changed since the previous call.
3241  *
3242  * If (p1) happens while the event is active, we restart it to force (p2).
3243  *
3244  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3245  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3246  *     ioctl;
3247  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3248  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3249  *     for reading;
3250  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3251  *     of exec.
3252  */
3253 void perf_event_addr_filters_sync(struct perf_event *event)
3254 {
3255 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3256 
3257 	if (!has_addr_filter(event))
3258 		return;
3259 
3260 	raw_spin_lock(&ifh->lock);
3261 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3262 		event->pmu->addr_filters_sync(event);
3263 		event->hw.addr_filters_gen = event->addr_filters_gen;
3264 	}
3265 	raw_spin_unlock(&ifh->lock);
3266 }
3267 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3268 
3269 static int _perf_event_refresh(struct perf_event *event, int refresh)
3270 {
3271 	/*
3272 	 * not supported on inherited events
3273 	 */
3274 	if (event->attr.inherit || !is_sampling_event(event))
3275 		return -EINVAL;
3276 
3277 	atomic_add(refresh, &event->event_limit);
3278 	_perf_event_enable(event);
3279 
3280 	return 0;
3281 }
3282 
3283 /*
3284  * See perf_event_disable()
3285  */
3286 int perf_event_refresh(struct perf_event *event, int refresh)
3287 {
3288 	struct perf_event_context *ctx;
3289 	int ret;
3290 
3291 	ctx = perf_event_ctx_lock(event);
3292 	ret = _perf_event_refresh(event, refresh);
3293 	perf_event_ctx_unlock(event, ctx);
3294 
3295 	return ret;
3296 }
3297 EXPORT_SYMBOL_GPL(perf_event_refresh);
3298 
3299 static int perf_event_modify_breakpoint(struct perf_event *bp,
3300 					 struct perf_event_attr *attr)
3301 {
3302 	int err;
3303 
3304 	_perf_event_disable(bp);
3305 
3306 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3307 
3308 	if (!bp->attr.disabled)
3309 		_perf_event_enable(bp);
3310 
3311 	return err;
3312 }
3313 
3314 /*
3315  * Copy event-type-independent attributes that may be modified.
3316  */
3317 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3318 					const struct perf_event_attr *from)
3319 {
3320 	to->sig_data = from->sig_data;
3321 }
3322 
3323 static int perf_event_modify_attr(struct perf_event *event,
3324 				  struct perf_event_attr *attr)
3325 {
3326 	int (*func)(struct perf_event *, struct perf_event_attr *);
3327 	struct perf_event *child;
3328 	int err;
3329 
3330 	if (event->attr.type != attr->type)
3331 		return -EINVAL;
3332 
3333 	switch (event->attr.type) {
3334 	case PERF_TYPE_BREAKPOINT:
3335 		func = perf_event_modify_breakpoint;
3336 		break;
3337 	default:
3338 		/* Place holder for future additions. */
3339 		return -EOPNOTSUPP;
3340 	}
3341 
3342 	WARN_ON_ONCE(event->ctx->parent_ctx);
3343 
3344 	mutex_lock(&event->child_mutex);
3345 	/*
3346 	 * Event-type-independent attributes must be copied before event-type
3347 	 * modification, which will validate that final attributes match the
3348 	 * source attributes after all relevant attributes have been copied.
3349 	 */
3350 	perf_event_modify_copy_attr(&event->attr, attr);
3351 	err = func(event, attr);
3352 	if (err)
3353 		goto out;
3354 	list_for_each_entry(child, &event->child_list, child_list) {
3355 		perf_event_modify_copy_attr(&child->attr, attr);
3356 		err = func(child, attr);
3357 		if (err)
3358 			goto out;
3359 	}
3360 out:
3361 	mutex_unlock(&event->child_mutex);
3362 	return err;
3363 }
3364 
3365 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3366 				enum event_type_t event_type)
3367 {
3368 	struct perf_event_context *ctx = pmu_ctx->ctx;
3369 	struct perf_event *event, *tmp;
3370 	struct pmu *pmu = pmu_ctx->pmu;
3371 
3372 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3373 		struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3374 
3375 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3376 		cpc->task_epc = NULL;
3377 	}
3378 
3379 	if (!(event_type & EVENT_ALL))
3380 		return;
3381 
3382 	perf_pmu_disable(pmu);
3383 	if (event_type & EVENT_PINNED) {
3384 		list_for_each_entry_safe(event, tmp,
3385 					 &pmu_ctx->pinned_active,
3386 					 active_list)
3387 			group_sched_out(event, ctx);
3388 	}
3389 
3390 	if (event_type & EVENT_FLEXIBLE) {
3391 		list_for_each_entry_safe(event, tmp,
3392 					 &pmu_ctx->flexible_active,
3393 					 active_list)
3394 			group_sched_out(event, ctx);
3395 		/*
3396 		 * Since we cleared EVENT_FLEXIBLE, also clear
3397 		 * rotate_necessary, is will be reset by
3398 		 * ctx_flexible_sched_in() when needed.
3399 		 */
3400 		pmu_ctx->rotate_necessary = 0;
3401 	}
3402 	perf_pmu_enable(pmu);
3403 }
3404 
3405 /*
3406  * Be very careful with the @pmu argument since this will change ctx state.
3407  * The @pmu argument works for ctx_resched(), because that is symmetric in
3408  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3409  *
3410  * However, if you were to be asymmetrical, you could end up with messed up
3411  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3412  * be active.
3413  */
3414 static void
3415 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3416 {
3417 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3418 	struct perf_event_pmu_context *pmu_ctx;
3419 	int is_active = ctx->is_active;
3420 	bool cgroup = event_type & EVENT_CGROUP;
3421 
3422 	event_type &= ~EVENT_CGROUP;
3423 
3424 	lockdep_assert_held(&ctx->lock);
3425 
3426 	if (likely(!ctx->nr_events)) {
3427 		/*
3428 		 * See __perf_remove_from_context().
3429 		 */
3430 		WARN_ON_ONCE(ctx->is_active);
3431 		if (ctx->task)
3432 			WARN_ON_ONCE(cpuctx->task_ctx);
3433 		return;
3434 	}
3435 
3436 	/*
3437 	 * Always update time if it was set; not only when it changes.
3438 	 * Otherwise we can 'forget' to update time for any but the last
3439 	 * context we sched out. For example:
3440 	 *
3441 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3442 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3443 	 *
3444 	 * would only update time for the pinned events.
3445 	 */
3446 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3447 
3448 	/*
3449 	 * CPU-release for the below ->is_active store,
3450 	 * see __load_acquire() in perf_event_time_now()
3451 	 */
3452 	barrier();
3453 	ctx->is_active &= ~event_type;
3454 
3455 	if (!(ctx->is_active & EVENT_ALL)) {
3456 		/*
3457 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3458 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3459 		 */
3460 		if (ctx->is_active & EVENT_FROZEN)
3461 			ctx->is_active &= EVENT_TIME_FROZEN;
3462 		else
3463 			ctx->is_active = 0;
3464 	}
3465 
3466 	if (ctx->task) {
3467 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3468 		if (!(ctx->is_active & EVENT_ALL))
3469 			cpuctx->task_ctx = NULL;
3470 	}
3471 
3472 	is_active ^= ctx->is_active; /* changed bits */
3473 
3474 	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3475 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3476 }
3477 
3478 /*
3479  * Test whether two contexts are equivalent, i.e. whether they have both been
3480  * cloned from the same version of the same context.
3481  *
3482  * Equivalence is measured using a generation number in the context that is
3483  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3484  * and list_del_event().
3485  */
3486 static int context_equiv(struct perf_event_context *ctx1,
3487 			 struct perf_event_context *ctx2)
3488 {
3489 	lockdep_assert_held(&ctx1->lock);
3490 	lockdep_assert_held(&ctx2->lock);
3491 
3492 	/* Pinning disables the swap optimization */
3493 	if (ctx1->pin_count || ctx2->pin_count)
3494 		return 0;
3495 
3496 	/* If ctx1 is the parent of ctx2 */
3497 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3498 		return 1;
3499 
3500 	/* If ctx2 is the parent of ctx1 */
3501 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3502 		return 1;
3503 
3504 	/*
3505 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3506 	 * hierarchy, see perf_event_init_context().
3507 	 */
3508 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3509 			ctx1->parent_gen == ctx2->parent_gen)
3510 		return 1;
3511 
3512 	/* Unmatched */
3513 	return 0;
3514 }
3515 
3516 static void __perf_event_sync_stat(struct perf_event *event,
3517 				     struct perf_event *next_event)
3518 {
3519 	u64 value;
3520 
3521 	if (!event->attr.inherit_stat)
3522 		return;
3523 
3524 	/*
3525 	 * Update the event value, we cannot use perf_event_read()
3526 	 * because we're in the middle of a context switch and have IRQs
3527 	 * disabled, which upsets smp_call_function_single(), however
3528 	 * we know the event must be on the current CPU, therefore we
3529 	 * don't need to use it.
3530 	 */
3531 	perf_pmu_read(event);
3532 
3533 	perf_event_update_time(event);
3534 
3535 	/*
3536 	 * In order to keep per-task stats reliable we need to flip the event
3537 	 * values when we flip the contexts.
3538 	 */
3539 	value = local64_read(&next_event->count);
3540 	value = local64_xchg(&event->count, value);
3541 	local64_set(&next_event->count, value);
3542 
3543 	swap(event->total_time_enabled, next_event->total_time_enabled);
3544 	swap(event->total_time_running, next_event->total_time_running);
3545 
3546 	/*
3547 	 * Since we swizzled the values, update the user visible data too.
3548 	 */
3549 	perf_event_update_userpage(event);
3550 	perf_event_update_userpage(next_event);
3551 }
3552 
3553 static void perf_event_sync_stat(struct perf_event_context *ctx,
3554 				   struct perf_event_context *next_ctx)
3555 {
3556 	struct perf_event *event, *next_event;
3557 
3558 	if (!ctx->nr_stat)
3559 		return;
3560 
3561 	update_context_time(ctx);
3562 
3563 	event = list_first_entry(&ctx->event_list,
3564 				   struct perf_event, event_entry);
3565 
3566 	next_event = list_first_entry(&next_ctx->event_list,
3567 					struct perf_event, event_entry);
3568 
3569 	while (&event->event_entry != &ctx->event_list &&
3570 	       &next_event->event_entry != &next_ctx->event_list) {
3571 
3572 		__perf_event_sync_stat(event, next_event);
3573 
3574 		event = list_next_entry(event, event_entry);
3575 		next_event = list_next_entry(next_event, event_entry);
3576 	}
3577 }
3578 
3579 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3580 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3581 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3582 	     !list_entry_is_head(pos1, head1, member) &&		\
3583 	     !list_entry_is_head(pos2, head2, member);			\
3584 	     pos1 = list_next_entry(pos1, member),			\
3585 	     pos2 = list_next_entry(pos2, member))
3586 
3587 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3588 					  struct perf_event_context *next_ctx)
3589 {
3590 	struct perf_event_pmu_context *prev_epc, *next_epc;
3591 
3592 	if (!prev_ctx->nr_task_data)
3593 		return;
3594 
3595 	double_list_for_each_entry(prev_epc, next_epc,
3596 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3597 				   pmu_ctx_entry) {
3598 
3599 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3600 			continue;
3601 
3602 		/*
3603 		 * PMU specific parts of task perf context can require
3604 		 * additional synchronization. As an example of such
3605 		 * synchronization see implementation details of Intel
3606 		 * LBR call stack data profiling;
3607 		 */
3608 		if (prev_epc->pmu->swap_task_ctx)
3609 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3610 		else
3611 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3612 	}
3613 }
3614 
3615 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3616 {
3617 	struct perf_event_pmu_context *pmu_ctx;
3618 	struct perf_cpu_pmu_context *cpc;
3619 
3620 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3621 		cpc = this_cpc(pmu_ctx->pmu);
3622 
3623 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3624 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3625 	}
3626 }
3627 
3628 static void
3629 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3630 {
3631 	struct perf_event_context *ctx = task->perf_event_ctxp;
3632 	struct perf_event_context *next_ctx;
3633 	struct perf_event_context *parent, *next_parent;
3634 	int do_switch = 1;
3635 
3636 	if (likely(!ctx))
3637 		return;
3638 
3639 	rcu_read_lock();
3640 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3641 	if (!next_ctx)
3642 		goto unlock;
3643 
3644 	parent = rcu_dereference(ctx->parent_ctx);
3645 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3646 
3647 	/* If neither context have a parent context; they cannot be clones. */
3648 	if (!parent && !next_parent)
3649 		goto unlock;
3650 
3651 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3652 		/*
3653 		 * Looks like the two contexts are clones, so we might be
3654 		 * able to optimize the context switch.  We lock both
3655 		 * contexts and check that they are clones under the
3656 		 * lock (including re-checking that neither has been
3657 		 * uncloned in the meantime).  It doesn't matter which
3658 		 * order we take the locks because no other cpu could
3659 		 * be trying to lock both of these tasks.
3660 		 */
3661 		raw_spin_lock(&ctx->lock);
3662 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3663 		if (context_equiv(ctx, next_ctx)) {
3664 
3665 			perf_ctx_disable(ctx, false);
3666 
3667 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3668 			if (local_read(&ctx->nr_no_switch_fast) ||
3669 			    local_read(&next_ctx->nr_no_switch_fast)) {
3670 				/*
3671 				 * Must not swap out ctx when there's pending
3672 				 * events that rely on the ctx->task relation.
3673 				 *
3674 				 * Likewise, when a context contains inherit +
3675 				 * SAMPLE_READ events they should be switched
3676 				 * out using the slow path so that they are
3677 				 * treated as if they were distinct contexts.
3678 				 */
3679 				raw_spin_unlock(&next_ctx->lock);
3680 				rcu_read_unlock();
3681 				goto inside_switch;
3682 			}
3683 
3684 			WRITE_ONCE(ctx->task, next);
3685 			WRITE_ONCE(next_ctx->task, task);
3686 
3687 			perf_ctx_sched_task_cb(ctx, false);
3688 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3689 
3690 			perf_ctx_enable(ctx, false);
3691 
3692 			/*
3693 			 * RCU_INIT_POINTER here is safe because we've not
3694 			 * modified the ctx and the above modification of
3695 			 * ctx->task and ctx->task_ctx_data are immaterial
3696 			 * since those values are always verified under
3697 			 * ctx->lock which we're now holding.
3698 			 */
3699 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3700 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3701 
3702 			do_switch = 0;
3703 
3704 			perf_event_sync_stat(ctx, next_ctx);
3705 		}
3706 		raw_spin_unlock(&next_ctx->lock);
3707 		raw_spin_unlock(&ctx->lock);
3708 	}
3709 unlock:
3710 	rcu_read_unlock();
3711 
3712 	if (do_switch) {
3713 		raw_spin_lock(&ctx->lock);
3714 		perf_ctx_disable(ctx, false);
3715 
3716 inside_switch:
3717 		perf_ctx_sched_task_cb(ctx, false);
3718 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3719 
3720 		perf_ctx_enable(ctx, false);
3721 		raw_spin_unlock(&ctx->lock);
3722 	}
3723 }
3724 
3725 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3726 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3727 
3728 void perf_sched_cb_dec(struct pmu *pmu)
3729 {
3730 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3731 
3732 	this_cpu_dec(perf_sched_cb_usages);
3733 	barrier();
3734 
3735 	if (!--cpc->sched_cb_usage)
3736 		list_del(&cpc->sched_cb_entry);
3737 }
3738 
3739 
3740 void perf_sched_cb_inc(struct pmu *pmu)
3741 {
3742 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3743 
3744 	if (!cpc->sched_cb_usage++)
3745 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3746 
3747 	barrier();
3748 	this_cpu_inc(perf_sched_cb_usages);
3749 }
3750 
3751 /*
3752  * This function provides the context switch callback to the lower code
3753  * layer. It is invoked ONLY when the context switch callback is enabled.
3754  *
3755  * This callback is relevant even to per-cpu events; for example multi event
3756  * PEBS requires this to provide PID/TID information. This requires we flush
3757  * all queued PEBS records before we context switch to a new task.
3758  */
3759 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3760 {
3761 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3762 	struct pmu *pmu;
3763 
3764 	pmu = cpc->epc.pmu;
3765 
3766 	/* software PMUs will not have sched_task */
3767 	if (WARN_ON_ONCE(!pmu->sched_task))
3768 		return;
3769 
3770 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3771 	perf_pmu_disable(pmu);
3772 
3773 	pmu->sched_task(cpc->task_epc, sched_in);
3774 
3775 	perf_pmu_enable(pmu);
3776 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3777 }
3778 
3779 static void perf_pmu_sched_task(struct task_struct *prev,
3780 				struct task_struct *next,
3781 				bool sched_in)
3782 {
3783 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3784 	struct perf_cpu_pmu_context *cpc;
3785 
3786 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3787 	if (prev == next || cpuctx->task_ctx)
3788 		return;
3789 
3790 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3791 		__perf_pmu_sched_task(cpc, sched_in);
3792 }
3793 
3794 static void perf_event_switch(struct task_struct *task,
3795 			      struct task_struct *next_prev, bool sched_in);
3796 
3797 /*
3798  * Called from scheduler to remove the events of the current task,
3799  * with interrupts disabled.
3800  *
3801  * We stop each event and update the event value in event->count.
3802  *
3803  * This does not protect us against NMI, but disable()
3804  * sets the disabled bit in the control field of event _before_
3805  * accessing the event control register. If a NMI hits, then it will
3806  * not restart the event.
3807  */
3808 void __perf_event_task_sched_out(struct task_struct *task,
3809 				 struct task_struct *next)
3810 {
3811 	if (__this_cpu_read(perf_sched_cb_usages))
3812 		perf_pmu_sched_task(task, next, false);
3813 
3814 	if (atomic_read(&nr_switch_events))
3815 		perf_event_switch(task, next, false);
3816 
3817 	perf_event_context_sched_out(task, next);
3818 
3819 	/*
3820 	 * if cgroup events exist on this CPU, then we need
3821 	 * to check if we have to switch out PMU state.
3822 	 * cgroup event are system-wide mode only
3823 	 */
3824 	perf_cgroup_switch(next);
3825 }
3826 
3827 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3828 {
3829 	const struct perf_event *le = *(const struct perf_event **)l;
3830 	const struct perf_event *re = *(const struct perf_event **)r;
3831 
3832 	return le->group_index < re->group_index;
3833 }
3834 
3835 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3836 
3837 static const struct min_heap_callbacks perf_min_heap = {
3838 	.less = perf_less_group_idx,
3839 	.swp = NULL,
3840 };
3841 
3842 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3843 {
3844 	struct perf_event **itrs = heap->data;
3845 
3846 	if (event) {
3847 		itrs[heap->nr] = event;
3848 		heap->nr++;
3849 	}
3850 }
3851 
3852 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3853 {
3854 	struct perf_cpu_pmu_context *cpc;
3855 
3856 	if (!pmu_ctx->ctx->task)
3857 		return;
3858 
3859 	cpc = this_cpc(pmu_ctx->pmu);
3860 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3861 	cpc->task_epc = pmu_ctx;
3862 }
3863 
3864 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3865 				struct perf_event_groups *groups, int cpu,
3866 				struct pmu *pmu,
3867 				int (*func)(struct perf_event *, void *),
3868 				void *data)
3869 {
3870 #ifdef CONFIG_CGROUP_PERF
3871 	struct cgroup_subsys_state *css = NULL;
3872 #endif
3873 	struct perf_cpu_context *cpuctx = NULL;
3874 	/* Space for per CPU and/or any CPU event iterators. */
3875 	struct perf_event *itrs[2];
3876 	struct perf_event_min_heap event_heap;
3877 	struct perf_event **evt;
3878 	int ret;
3879 
3880 	if (pmu->filter && pmu->filter(pmu, cpu))
3881 		return 0;
3882 
3883 	if (!ctx->task) {
3884 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3885 		event_heap = (struct perf_event_min_heap){
3886 			.data = cpuctx->heap,
3887 			.nr = 0,
3888 			.size = cpuctx->heap_size,
3889 		};
3890 
3891 		lockdep_assert_held(&cpuctx->ctx.lock);
3892 
3893 #ifdef CONFIG_CGROUP_PERF
3894 		if (cpuctx->cgrp)
3895 			css = &cpuctx->cgrp->css;
3896 #endif
3897 	} else {
3898 		event_heap = (struct perf_event_min_heap){
3899 			.data = itrs,
3900 			.nr = 0,
3901 			.size = ARRAY_SIZE(itrs),
3902 		};
3903 		/* Events not within a CPU context may be on any CPU. */
3904 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3905 	}
3906 	evt = event_heap.data;
3907 
3908 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3909 
3910 #ifdef CONFIG_CGROUP_PERF
3911 	for (; css; css = css->parent)
3912 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3913 #endif
3914 
3915 	if (event_heap.nr) {
3916 		__link_epc((*evt)->pmu_ctx);
3917 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3918 	}
3919 
3920 	min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3921 
3922 	while (event_heap.nr) {
3923 		ret = func(*evt, data);
3924 		if (ret)
3925 			return ret;
3926 
3927 		*evt = perf_event_groups_next(*evt, pmu);
3928 		if (*evt)
3929 			min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3930 		else
3931 			min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3932 	}
3933 
3934 	return 0;
3935 }
3936 
3937 /*
3938  * Because the userpage is strictly per-event (there is no concept of context,
3939  * so there cannot be a context indirection), every userpage must be updated
3940  * when context time starts :-(
3941  *
3942  * IOW, we must not miss EVENT_TIME edges.
3943  */
3944 static inline bool event_update_userpage(struct perf_event *event)
3945 {
3946 	if (likely(!atomic_read(&event->mmap_count)))
3947 		return false;
3948 
3949 	perf_event_update_time(event);
3950 	perf_event_update_userpage(event);
3951 
3952 	return true;
3953 }
3954 
3955 static inline void group_update_userpage(struct perf_event *group_event)
3956 {
3957 	struct perf_event *event;
3958 
3959 	if (!event_update_userpage(group_event))
3960 		return;
3961 
3962 	for_each_sibling_event(event, group_event)
3963 		event_update_userpage(event);
3964 }
3965 
3966 static int merge_sched_in(struct perf_event *event, void *data)
3967 {
3968 	struct perf_event_context *ctx = event->ctx;
3969 	int *can_add_hw = data;
3970 
3971 	if (event->state <= PERF_EVENT_STATE_OFF)
3972 		return 0;
3973 
3974 	if (!event_filter_match(event))
3975 		return 0;
3976 
3977 	if (group_can_go_on(event, *can_add_hw)) {
3978 		if (!group_sched_in(event, ctx))
3979 			list_add_tail(&event->active_list, get_event_list(event));
3980 	}
3981 
3982 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3983 		*can_add_hw = 0;
3984 		if (event->attr.pinned) {
3985 			perf_cgroup_event_disable(event, ctx);
3986 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3987 		} else {
3988 			struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu);
3989 
3990 			event->pmu_ctx->rotate_necessary = 1;
3991 			perf_mux_hrtimer_restart(cpc);
3992 			group_update_userpage(event);
3993 		}
3994 	}
3995 
3996 	return 0;
3997 }
3998 
3999 static void pmu_groups_sched_in(struct perf_event_context *ctx,
4000 				struct perf_event_groups *groups,
4001 				struct pmu *pmu)
4002 {
4003 	int can_add_hw = 1;
4004 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
4005 			   merge_sched_in, &can_add_hw);
4006 }
4007 
4008 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
4009 			       enum event_type_t event_type)
4010 {
4011 	struct perf_event_context *ctx = pmu_ctx->ctx;
4012 
4013 	if (event_type & EVENT_PINNED)
4014 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
4015 	if (event_type & EVENT_FLEXIBLE)
4016 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
4017 }
4018 
4019 static void
4020 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
4021 {
4022 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4023 	struct perf_event_pmu_context *pmu_ctx;
4024 	int is_active = ctx->is_active;
4025 	bool cgroup = event_type & EVENT_CGROUP;
4026 
4027 	event_type &= ~EVENT_CGROUP;
4028 
4029 	lockdep_assert_held(&ctx->lock);
4030 
4031 	if (likely(!ctx->nr_events))
4032 		return;
4033 
4034 	if (!(is_active & EVENT_TIME)) {
4035 		/* start ctx time */
4036 		__update_context_time(ctx, false);
4037 		perf_cgroup_set_timestamp(cpuctx);
4038 		/*
4039 		 * CPU-release for the below ->is_active store,
4040 		 * see __load_acquire() in perf_event_time_now()
4041 		 */
4042 		barrier();
4043 	}
4044 
4045 	ctx->is_active |= (event_type | EVENT_TIME);
4046 	if (ctx->task) {
4047 		if (!(is_active & EVENT_ALL))
4048 			cpuctx->task_ctx = ctx;
4049 		else
4050 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4051 	}
4052 
4053 	is_active ^= ctx->is_active; /* changed bits */
4054 
4055 	/*
4056 	 * First go through the list and put on any pinned groups
4057 	 * in order to give them the best chance of going on.
4058 	 */
4059 	if (is_active & EVENT_PINNED) {
4060 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4061 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4062 	}
4063 
4064 	/* Then walk through the lower prio flexible groups */
4065 	if (is_active & EVENT_FLEXIBLE) {
4066 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4067 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4068 	}
4069 }
4070 
4071 static void perf_event_context_sched_in(struct task_struct *task)
4072 {
4073 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4074 	struct perf_event_context *ctx;
4075 
4076 	rcu_read_lock();
4077 	ctx = rcu_dereference(task->perf_event_ctxp);
4078 	if (!ctx)
4079 		goto rcu_unlock;
4080 
4081 	if (cpuctx->task_ctx == ctx) {
4082 		perf_ctx_lock(cpuctx, ctx);
4083 		perf_ctx_disable(ctx, false);
4084 
4085 		perf_ctx_sched_task_cb(ctx, true);
4086 
4087 		perf_ctx_enable(ctx, false);
4088 		perf_ctx_unlock(cpuctx, ctx);
4089 		goto rcu_unlock;
4090 	}
4091 
4092 	perf_ctx_lock(cpuctx, ctx);
4093 	/*
4094 	 * We must check ctx->nr_events while holding ctx->lock, such
4095 	 * that we serialize against perf_install_in_context().
4096 	 */
4097 	if (!ctx->nr_events)
4098 		goto unlock;
4099 
4100 	perf_ctx_disable(ctx, false);
4101 	/*
4102 	 * We want to keep the following priority order:
4103 	 * cpu pinned (that don't need to move), task pinned,
4104 	 * cpu flexible, task flexible.
4105 	 *
4106 	 * However, if task's ctx is not carrying any pinned
4107 	 * events, no need to flip the cpuctx's events around.
4108 	 */
4109 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4110 		perf_ctx_disable(&cpuctx->ctx, false);
4111 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4112 	}
4113 
4114 	perf_event_sched_in(cpuctx, ctx, NULL);
4115 
4116 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
4117 
4118 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4119 		perf_ctx_enable(&cpuctx->ctx, false);
4120 
4121 	perf_ctx_enable(ctx, false);
4122 
4123 unlock:
4124 	perf_ctx_unlock(cpuctx, ctx);
4125 rcu_unlock:
4126 	rcu_read_unlock();
4127 }
4128 
4129 /*
4130  * Called from scheduler to add the events of the current task
4131  * with interrupts disabled.
4132  *
4133  * We restore the event value and then enable it.
4134  *
4135  * This does not protect us against NMI, but enable()
4136  * sets the enabled bit in the control field of event _before_
4137  * accessing the event control register. If a NMI hits, then it will
4138  * keep the event running.
4139  */
4140 void __perf_event_task_sched_in(struct task_struct *prev,
4141 				struct task_struct *task)
4142 {
4143 	perf_event_context_sched_in(task);
4144 
4145 	if (atomic_read(&nr_switch_events))
4146 		perf_event_switch(task, prev, true);
4147 
4148 	if (__this_cpu_read(perf_sched_cb_usages))
4149 		perf_pmu_sched_task(prev, task, true);
4150 }
4151 
4152 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4153 {
4154 	u64 frequency = event->attr.sample_freq;
4155 	u64 sec = NSEC_PER_SEC;
4156 	u64 divisor, dividend;
4157 
4158 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4159 
4160 	count_fls = fls64(count);
4161 	nsec_fls = fls64(nsec);
4162 	frequency_fls = fls64(frequency);
4163 	sec_fls = 30;
4164 
4165 	/*
4166 	 * We got @count in @nsec, with a target of sample_freq HZ
4167 	 * the target period becomes:
4168 	 *
4169 	 *             @count * 10^9
4170 	 * period = -------------------
4171 	 *          @nsec * sample_freq
4172 	 *
4173 	 */
4174 
4175 	/*
4176 	 * Reduce accuracy by one bit such that @a and @b converge
4177 	 * to a similar magnitude.
4178 	 */
4179 #define REDUCE_FLS(a, b)		\
4180 do {					\
4181 	if (a##_fls > b##_fls) {	\
4182 		a >>= 1;		\
4183 		a##_fls--;		\
4184 	} else {			\
4185 		b >>= 1;		\
4186 		b##_fls--;		\
4187 	}				\
4188 } while (0)
4189 
4190 	/*
4191 	 * Reduce accuracy until either term fits in a u64, then proceed with
4192 	 * the other, so that finally we can do a u64/u64 division.
4193 	 */
4194 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4195 		REDUCE_FLS(nsec, frequency);
4196 		REDUCE_FLS(sec, count);
4197 	}
4198 
4199 	if (count_fls + sec_fls > 64) {
4200 		divisor = nsec * frequency;
4201 
4202 		while (count_fls + sec_fls > 64) {
4203 			REDUCE_FLS(count, sec);
4204 			divisor >>= 1;
4205 		}
4206 
4207 		dividend = count * sec;
4208 	} else {
4209 		dividend = count * sec;
4210 
4211 		while (nsec_fls + frequency_fls > 64) {
4212 			REDUCE_FLS(nsec, frequency);
4213 			dividend >>= 1;
4214 		}
4215 
4216 		divisor = nsec * frequency;
4217 	}
4218 
4219 	if (!divisor)
4220 		return dividend;
4221 
4222 	return div64_u64(dividend, divisor);
4223 }
4224 
4225 static DEFINE_PER_CPU(int, perf_throttled_count);
4226 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4227 
4228 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4229 {
4230 	struct hw_perf_event *hwc = &event->hw;
4231 	s64 period, sample_period;
4232 	s64 delta;
4233 
4234 	period = perf_calculate_period(event, nsec, count);
4235 
4236 	delta = (s64)(period - hwc->sample_period);
4237 	if (delta >= 0)
4238 		delta += 7;
4239 	else
4240 		delta -= 7;
4241 	delta /= 8; /* low pass filter */
4242 
4243 	sample_period = hwc->sample_period + delta;
4244 
4245 	if (!sample_period)
4246 		sample_period = 1;
4247 
4248 	hwc->sample_period = sample_period;
4249 
4250 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4251 		if (disable)
4252 			event->pmu->stop(event, PERF_EF_UPDATE);
4253 
4254 		local64_set(&hwc->period_left, 0);
4255 
4256 		if (disable)
4257 			event->pmu->start(event, PERF_EF_RELOAD);
4258 	}
4259 }
4260 
4261 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4262 {
4263 	struct perf_event *event;
4264 	struct hw_perf_event *hwc;
4265 	u64 now, period = TICK_NSEC;
4266 	s64 delta;
4267 
4268 	list_for_each_entry(event, event_list, active_list) {
4269 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4270 			continue;
4271 
4272 		// XXX use visit thingy to avoid the -1,cpu match
4273 		if (!event_filter_match(event))
4274 			continue;
4275 
4276 		hwc = &event->hw;
4277 
4278 		if (hwc->interrupts == MAX_INTERRUPTS) {
4279 			hwc->interrupts = 0;
4280 			perf_log_throttle(event, 1);
4281 			if (!event->attr.freq || !event->attr.sample_freq)
4282 				event->pmu->start(event, 0);
4283 		}
4284 
4285 		if (!event->attr.freq || !event->attr.sample_freq)
4286 			continue;
4287 
4288 		/*
4289 		 * stop the event and update event->count
4290 		 */
4291 		event->pmu->stop(event, PERF_EF_UPDATE);
4292 
4293 		now = local64_read(&event->count);
4294 		delta = now - hwc->freq_count_stamp;
4295 		hwc->freq_count_stamp = now;
4296 
4297 		/*
4298 		 * restart the event
4299 		 * reload only if value has changed
4300 		 * we have stopped the event so tell that
4301 		 * to perf_adjust_period() to avoid stopping it
4302 		 * twice.
4303 		 */
4304 		if (delta > 0)
4305 			perf_adjust_period(event, period, delta, false);
4306 
4307 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4308 	}
4309 }
4310 
4311 /*
4312  * combine freq adjustment with unthrottling to avoid two passes over the
4313  * events. At the same time, make sure, having freq events does not change
4314  * the rate of unthrottling as that would introduce bias.
4315  */
4316 static void
4317 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4318 {
4319 	struct perf_event_pmu_context *pmu_ctx;
4320 
4321 	/*
4322 	 * only need to iterate over all events iff:
4323 	 * - context have events in frequency mode (needs freq adjust)
4324 	 * - there are events to unthrottle on this cpu
4325 	 */
4326 	if (!(ctx->nr_freq || unthrottle))
4327 		return;
4328 
4329 	raw_spin_lock(&ctx->lock);
4330 
4331 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4332 		if (!(pmu_ctx->nr_freq || unthrottle))
4333 			continue;
4334 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4335 			continue;
4336 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4337 			continue;
4338 
4339 		perf_pmu_disable(pmu_ctx->pmu);
4340 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4341 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4342 		perf_pmu_enable(pmu_ctx->pmu);
4343 	}
4344 
4345 	raw_spin_unlock(&ctx->lock);
4346 }
4347 
4348 /*
4349  * Move @event to the tail of the @ctx's elegible events.
4350  */
4351 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4352 {
4353 	/*
4354 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4355 	 * disabled by the inheritance code.
4356 	 */
4357 	if (ctx->rotate_disable)
4358 		return;
4359 
4360 	perf_event_groups_delete(&ctx->flexible_groups, event);
4361 	perf_event_groups_insert(&ctx->flexible_groups, event);
4362 }
4363 
4364 /* pick an event from the flexible_groups to rotate */
4365 static inline struct perf_event *
4366 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4367 {
4368 	struct perf_event *event;
4369 	struct rb_node *node;
4370 	struct rb_root *tree;
4371 	struct __group_key key = {
4372 		.pmu = pmu_ctx->pmu,
4373 	};
4374 
4375 	/* pick the first active flexible event */
4376 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4377 					 struct perf_event, active_list);
4378 	if (event)
4379 		goto out;
4380 
4381 	/* if no active flexible event, pick the first event */
4382 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4383 
4384 	if (!pmu_ctx->ctx->task) {
4385 		key.cpu = smp_processor_id();
4386 
4387 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4388 		if (node)
4389 			event = __node_2_pe(node);
4390 		goto out;
4391 	}
4392 
4393 	key.cpu = -1;
4394 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4395 	if (node) {
4396 		event = __node_2_pe(node);
4397 		goto out;
4398 	}
4399 
4400 	key.cpu = smp_processor_id();
4401 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4402 	if (node)
4403 		event = __node_2_pe(node);
4404 
4405 out:
4406 	/*
4407 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4408 	 * finds there are unschedulable events, it will set it again.
4409 	 */
4410 	pmu_ctx->rotate_necessary = 0;
4411 
4412 	return event;
4413 }
4414 
4415 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4416 {
4417 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4418 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4419 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4420 	int cpu_rotate, task_rotate;
4421 	struct pmu *pmu;
4422 
4423 	/*
4424 	 * Since we run this from IRQ context, nobody can install new
4425 	 * events, thus the event count values are stable.
4426 	 */
4427 
4428 	cpu_epc = &cpc->epc;
4429 	pmu = cpu_epc->pmu;
4430 	task_epc = cpc->task_epc;
4431 
4432 	cpu_rotate = cpu_epc->rotate_necessary;
4433 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4434 
4435 	if (!(cpu_rotate || task_rotate))
4436 		return false;
4437 
4438 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4439 	perf_pmu_disable(pmu);
4440 
4441 	if (task_rotate)
4442 		task_event = ctx_event_to_rotate(task_epc);
4443 	if (cpu_rotate)
4444 		cpu_event = ctx_event_to_rotate(cpu_epc);
4445 
4446 	/*
4447 	 * As per the order given at ctx_resched() first 'pop' task flexible
4448 	 * and then, if needed CPU flexible.
4449 	 */
4450 	if (task_event || (task_epc && cpu_event)) {
4451 		update_context_time(task_epc->ctx);
4452 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4453 	}
4454 
4455 	if (cpu_event) {
4456 		update_context_time(&cpuctx->ctx);
4457 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4458 		rotate_ctx(&cpuctx->ctx, cpu_event);
4459 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4460 	}
4461 
4462 	if (task_event)
4463 		rotate_ctx(task_epc->ctx, task_event);
4464 
4465 	if (task_event || (task_epc && cpu_event))
4466 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4467 
4468 	perf_pmu_enable(pmu);
4469 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4470 
4471 	return true;
4472 }
4473 
4474 void perf_event_task_tick(void)
4475 {
4476 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4477 	struct perf_event_context *ctx;
4478 	int throttled;
4479 
4480 	lockdep_assert_irqs_disabled();
4481 
4482 	__this_cpu_inc(perf_throttled_seq);
4483 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4484 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4485 
4486 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4487 
4488 	rcu_read_lock();
4489 	ctx = rcu_dereference(current->perf_event_ctxp);
4490 	if (ctx)
4491 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4492 	rcu_read_unlock();
4493 }
4494 
4495 static int event_enable_on_exec(struct perf_event *event,
4496 				struct perf_event_context *ctx)
4497 {
4498 	if (!event->attr.enable_on_exec)
4499 		return 0;
4500 
4501 	event->attr.enable_on_exec = 0;
4502 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4503 		return 0;
4504 
4505 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4506 
4507 	return 1;
4508 }
4509 
4510 /*
4511  * Enable all of a task's events that have been marked enable-on-exec.
4512  * This expects task == current.
4513  */
4514 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4515 {
4516 	struct perf_event_context *clone_ctx = NULL;
4517 	enum event_type_t event_type = 0;
4518 	struct perf_cpu_context *cpuctx;
4519 	struct perf_event *event;
4520 	unsigned long flags;
4521 	int enabled = 0;
4522 
4523 	local_irq_save(flags);
4524 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4525 		goto out;
4526 
4527 	if (!ctx->nr_events)
4528 		goto out;
4529 
4530 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4531 	perf_ctx_lock(cpuctx, ctx);
4532 	ctx_time_freeze(cpuctx, ctx);
4533 
4534 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4535 		enabled |= event_enable_on_exec(event, ctx);
4536 		event_type |= get_event_type(event);
4537 	}
4538 
4539 	/*
4540 	 * Unclone and reschedule this context if we enabled any event.
4541 	 */
4542 	if (enabled) {
4543 		clone_ctx = unclone_ctx(ctx);
4544 		ctx_resched(cpuctx, ctx, NULL, event_type);
4545 	}
4546 	perf_ctx_unlock(cpuctx, ctx);
4547 
4548 out:
4549 	local_irq_restore(flags);
4550 
4551 	if (clone_ctx)
4552 		put_ctx(clone_ctx);
4553 }
4554 
4555 static void perf_remove_from_owner(struct perf_event *event);
4556 static void perf_event_exit_event(struct perf_event *event,
4557 				  struct perf_event_context *ctx);
4558 
4559 /*
4560  * Removes all events from the current task that have been marked
4561  * remove-on-exec, and feeds their values back to parent events.
4562  */
4563 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4564 {
4565 	struct perf_event_context *clone_ctx = NULL;
4566 	struct perf_event *event, *next;
4567 	unsigned long flags;
4568 	bool modified = false;
4569 
4570 	mutex_lock(&ctx->mutex);
4571 
4572 	if (WARN_ON_ONCE(ctx->task != current))
4573 		goto unlock;
4574 
4575 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4576 		if (!event->attr.remove_on_exec)
4577 			continue;
4578 
4579 		if (!is_kernel_event(event))
4580 			perf_remove_from_owner(event);
4581 
4582 		modified = true;
4583 
4584 		perf_event_exit_event(event, ctx);
4585 	}
4586 
4587 	raw_spin_lock_irqsave(&ctx->lock, flags);
4588 	if (modified)
4589 		clone_ctx = unclone_ctx(ctx);
4590 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4591 
4592 unlock:
4593 	mutex_unlock(&ctx->mutex);
4594 
4595 	if (clone_ctx)
4596 		put_ctx(clone_ctx);
4597 }
4598 
4599 struct perf_read_data {
4600 	struct perf_event *event;
4601 	bool group;
4602 	int ret;
4603 };
4604 
4605 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4606 
4607 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4608 {
4609 	int local_cpu = smp_processor_id();
4610 	u16 local_pkg, event_pkg;
4611 
4612 	if ((unsigned)event_cpu >= nr_cpu_ids)
4613 		return event_cpu;
4614 
4615 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4616 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4617 
4618 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4619 			return local_cpu;
4620 	}
4621 
4622 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4623 		event_pkg = topology_physical_package_id(event_cpu);
4624 		local_pkg = topology_physical_package_id(local_cpu);
4625 
4626 		if (event_pkg == local_pkg)
4627 			return local_cpu;
4628 	}
4629 
4630 	return event_cpu;
4631 }
4632 
4633 /*
4634  * Cross CPU call to read the hardware event
4635  */
4636 static void __perf_event_read(void *info)
4637 {
4638 	struct perf_read_data *data = info;
4639 	struct perf_event *sub, *event = data->event;
4640 	struct perf_event_context *ctx = event->ctx;
4641 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4642 	struct pmu *pmu = event->pmu;
4643 
4644 	/*
4645 	 * If this is a task context, we need to check whether it is
4646 	 * the current task context of this cpu.  If not it has been
4647 	 * scheduled out before the smp call arrived.  In that case
4648 	 * event->count would have been updated to a recent sample
4649 	 * when the event was scheduled out.
4650 	 */
4651 	if (ctx->task && cpuctx->task_ctx != ctx)
4652 		return;
4653 
4654 	raw_spin_lock(&ctx->lock);
4655 	ctx_time_update_event(ctx, event);
4656 
4657 	perf_event_update_time(event);
4658 	if (data->group)
4659 		perf_event_update_sibling_time(event);
4660 
4661 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4662 		goto unlock;
4663 
4664 	if (!data->group) {
4665 		pmu->read(event);
4666 		data->ret = 0;
4667 		goto unlock;
4668 	}
4669 
4670 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4671 
4672 	pmu->read(event);
4673 
4674 	for_each_sibling_event(sub, event)
4675 		perf_pmu_read(sub);
4676 
4677 	data->ret = pmu->commit_txn(pmu);
4678 
4679 unlock:
4680 	raw_spin_unlock(&ctx->lock);
4681 }
4682 
4683 static inline u64 perf_event_count(struct perf_event *event, bool self)
4684 {
4685 	if (self)
4686 		return local64_read(&event->count);
4687 
4688 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4689 }
4690 
4691 static void calc_timer_values(struct perf_event *event,
4692 				u64 *now,
4693 				u64 *enabled,
4694 				u64 *running)
4695 {
4696 	u64 ctx_time;
4697 
4698 	*now = perf_clock();
4699 	ctx_time = perf_event_time_now(event, *now);
4700 	__perf_update_times(event, ctx_time, enabled, running);
4701 }
4702 
4703 /*
4704  * NMI-safe method to read a local event, that is an event that
4705  * is:
4706  *   - either for the current task, or for this CPU
4707  *   - does not have inherit set, for inherited task events
4708  *     will not be local and we cannot read them atomically
4709  *   - must not have a pmu::count method
4710  */
4711 int perf_event_read_local(struct perf_event *event, u64 *value,
4712 			  u64 *enabled, u64 *running)
4713 {
4714 	unsigned long flags;
4715 	int event_oncpu;
4716 	int event_cpu;
4717 	int ret = 0;
4718 
4719 	/*
4720 	 * Disabling interrupts avoids all counter scheduling (context
4721 	 * switches, timer based rotation and IPIs).
4722 	 */
4723 	local_irq_save(flags);
4724 
4725 	/*
4726 	 * It must not be an event with inherit set, we cannot read
4727 	 * all child counters from atomic context.
4728 	 */
4729 	if (event->attr.inherit) {
4730 		ret = -EOPNOTSUPP;
4731 		goto out;
4732 	}
4733 
4734 	/* If this is a per-task event, it must be for current */
4735 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4736 	    event->hw.target != current) {
4737 		ret = -EINVAL;
4738 		goto out;
4739 	}
4740 
4741 	/*
4742 	 * Get the event CPU numbers, and adjust them to local if the event is
4743 	 * a per-package event that can be read locally
4744 	 */
4745 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4746 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4747 
4748 	/* If this is a per-CPU event, it must be for this CPU */
4749 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4750 	    event_cpu != smp_processor_id()) {
4751 		ret = -EINVAL;
4752 		goto out;
4753 	}
4754 
4755 	/* If this is a pinned event it must be running on this CPU */
4756 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4757 		ret = -EBUSY;
4758 		goto out;
4759 	}
4760 
4761 	/*
4762 	 * If the event is currently on this CPU, its either a per-task event,
4763 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4764 	 * oncpu == -1).
4765 	 */
4766 	if (event_oncpu == smp_processor_id())
4767 		event->pmu->read(event);
4768 
4769 	*value = local64_read(&event->count);
4770 	if (enabled || running) {
4771 		u64 __enabled, __running, __now;
4772 
4773 		calc_timer_values(event, &__now, &__enabled, &__running);
4774 		if (enabled)
4775 			*enabled = __enabled;
4776 		if (running)
4777 			*running = __running;
4778 	}
4779 out:
4780 	local_irq_restore(flags);
4781 
4782 	return ret;
4783 }
4784 
4785 static int perf_event_read(struct perf_event *event, bool group)
4786 {
4787 	enum perf_event_state state = READ_ONCE(event->state);
4788 	int event_cpu, ret = 0;
4789 
4790 	/*
4791 	 * If event is enabled and currently active on a CPU, update the
4792 	 * value in the event structure:
4793 	 */
4794 again:
4795 	if (state == PERF_EVENT_STATE_ACTIVE) {
4796 		struct perf_read_data data;
4797 
4798 		/*
4799 		 * Orders the ->state and ->oncpu loads such that if we see
4800 		 * ACTIVE we must also see the right ->oncpu.
4801 		 *
4802 		 * Matches the smp_wmb() from event_sched_in().
4803 		 */
4804 		smp_rmb();
4805 
4806 		event_cpu = READ_ONCE(event->oncpu);
4807 		if ((unsigned)event_cpu >= nr_cpu_ids)
4808 			return 0;
4809 
4810 		data = (struct perf_read_data){
4811 			.event = event,
4812 			.group = group,
4813 			.ret = 0,
4814 		};
4815 
4816 		preempt_disable();
4817 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4818 
4819 		/*
4820 		 * Purposely ignore the smp_call_function_single() return
4821 		 * value.
4822 		 *
4823 		 * If event_cpu isn't a valid CPU it means the event got
4824 		 * scheduled out and that will have updated the event count.
4825 		 *
4826 		 * Therefore, either way, we'll have an up-to-date event count
4827 		 * after this.
4828 		 */
4829 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4830 		preempt_enable();
4831 		ret = data.ret;
4832 
4833 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4834 		struct perf_event_context *ctx = event->ctx;
4835 		unsigned long flags;
4836 
4837 		raw_spin_lock_irqsave(&ctx->lock, flags);
4838 		state = event->state;
4839 		if (state != PERF_EVENT_STATE_INACTIVE) {
4840 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4841 			goto again;
4842 		}
4843 
4844 		/*
4845 		 * May read while context is not active (e.g., thread is
4846 		 * blocked), in that case we cannot update context time
4847 		 */
4848 		ctx_time_update_event(ctx, event);
4849 
4850 		perf_event_update_time(event);
4851 		if (group)
4852 			perf_event_update_sibling_time(event);
4853 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4854 	}
4855 
4856 	return ret;
4857 }
4858 
4859 /*
4860  * Initialize the perf_event context in a task_struct:
4861  */
4862 static void __perf_event_init_context(struct perf_event_context *ctx)
4863 {
4864 	raw_spin_lock_init(&ctx->lock);
4865 	mutex_init(&ctx->mutex);
4866 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4867 	perf_event_groups_init(&ctx->pinned_groups);
4868 	perf_event_groups_init(&ctx->flexible_groups);
4869 	INIT_LIST_HEAD(&ctx->event_list);
4870 	refcount_set(&ctx->refcount, 1);
4871 }
4872 
4873 static void
4874 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4875 {
4876 	epc->pmu = pmu;
4877 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4878 	INIT_LIST_HEAD(&epc->pinned_active);
4879 	INIT_LIST_HEAD(&epc->flexible_active);
4880 	atomic_set(&epc->refcount, 1);
4881 }
4882 
4883 static struct perf_event_context *
4884 alloc_perf_context(struct task_struct *task)
4885 {
4886 	struct perf_event_context *ctx;
4887 
4888 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4889 	if (!ctx)
4890 		return NULL;
4891 
4892 	__perf_event_init_context(ctx);
4893 	if (task)
4894 		ctx->task = get_task_struct(task);
4895 
4896 	return ctx;
4897 }
4898 
4899 static struct task_struct *
4900 find_lively_task_by_vpid(pid_t vpid)
4901 {
4902 	struct task_struct *task;
4903 
4904 	rcu_read_lock();
4905 	if (!vpid)
4906 		task = current;
4907 	else
4908 		task = find_task_by_vpid(vpid);
4909 	if (task)
4910 		get_task_struct(task);
4911 	rcu_read_unlock();
4912 
4913 	if (!task)
4914 		return ERR_PTR(-ESRCH);
4915 
4916 	return task;
4917 }
4918 
4919 /*
4920  * Returns a matching context with refcount and pincount.
4921  */
4922 static struct perf_event_context *
4923 find_get_context(struct task_struct *task, struct perf_event *event)
4924 {
4925 	struct perf_event_context *ctx, *clone_ctx = NULL;
4926 	struct perf_cpu_context *cpuctx;
4927 	unsigned long flags;
4928 	int err;
4929 
4930 	if (!task) {
4931 		/* Must be root to operate on a CPU event: */
4932 		err = perf_allow_cpu(&event->attr);
4933 		if (err)
4934 			return ERR_PTR(err);
4935 
4936 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4937 		ctx = &cpuctx->ctx;
4938 		get_ctx(ctx);
4939 		raw_spin_lock_irqsave(&ctx->lock, flags);
4940 		++ctx->pin_count;
4941 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4942 
4943 		return ctx;
4944 	}
4945 
4946 	err = -EINVAL;
4947 retry:
4948 	ctx = perf_lock_task_context(task, &flags);
4949 	if (ctx) {
4950 		clone_ctx = unclone_ctx(ctx);
4951 		++ctx->pin_count;
4952 
4953 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4954 
4955 		if (clone_ctx)
4956 			put_ctx(clone_ctx);
4957 	} else {
4958 		ctx = alloc_perf_context(task);
4959 		err = -ENOMEM;
4960 		if (!ctx)
4961 			goto errout;
4962 
4963 		err = 0;
4964 		mutex_lock(&task->perf_event_mutex);
4965 		/*
4966 		 * If it has already passed perf_event_exit_task().
4967 		 * we must see PF_EXITING, it takes this mutex too.
4968 		 */
4969 		if (task->flags & PF_EXITING)
4970 			err = -ESRCH;
4971 		else if (task->perf_event_ctxp)
4972 			err = -EAGAIN;
4973 		else {
4974 			get_ctx(ctx);
4975 			++ctx->pin_count;
4976 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4977 		}
4978 		mutex_unlock(&task->perf_event_mutex);
4979 
4980 		if (unlikely(err)) {
4981 			put_ctx(ctx);
4982 
4983 			if (err == -EAGAIN)
4984 				goto retry;
4985 			goto errout;
4986 		}
4987 	}
4988 
4989 	return ctx;
4990 
4991 errout:
4992 	return ERR_PTR(err);
4993 }
4994 
4995 static struct perf_event_pmu_context *
4996 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4997 		     struct perf_event *event)
4998 {
4999 	struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
5000 	void *task_ctx_data = NULL;
5001 
5002 	if (!ctx->task) {
5003 		/*
5004 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
5005 		 * relies on the fact that find_get_pmu_context() cannot fail
5006 		 * for CPU contexts.
5007 		 */
5008 		struct perf_cpu_pmu_context *cpc;
5009 
5010 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
5011 		epc = &cpc->epc;
5012 		raw_spin_lock_irq(&ctx->lock);
5013 		if (!epc->ctx) {
5014 			atomic_set(&epc->refcount, 1);
5015 			epc->embedded = 1;
5016 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5017 			epc->ctx = ctx;
5018 		} else {
5019 			WARN_ON_ONCE(epc->ctx != ctx);
5020 			atomic_inc(&epc->refcount);
5021 		}
5022 		raw_spin_unlock_irq(&ctx->lock);
5023 		return epc;
5024 	}
5025 
5026 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
5027 	if (!new)
5028 		return ERR_PTR(-ENOMEM);
5029 
5030 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
5031 		task_ctx_data = alloc_task_ctx_data(pmu);
5032 		if (!task_ctx_data) {
5033 			kfree(new);
5034 			return ERR_PTR(-ENOMEM);
5035 		}
5036 	}
5037 
5038 	__perf_init_event_pmu_context(new, pmu);
5039 
5040 	/*
5041 	 * XXX
5042 	 *
5043 	 * lockdep_assert_held(&ctx->mutex);
5044 	 *
5045 	 * can't because perf_event_init_task() doesn't actually hold the
5046 	 * child_ctx->mutex.
5047 	 */
5048 
5049 	raw_spin_lock_irq(&ctx->lock);
5050 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5051 		if (epc->pmu == pmu) {
5052 			WARN_ON_ONCE(epc->ctx != ctx);
5053 			atomic_inc(&epc->refcount);
5054 			goto found_epc;
5055 		}
5056 		/* Make sure the pmu_ctx_list is sorted by PMU type: */
5057 		if (!pos && epc->pmu->type > pmu->type)
5058 			pos = epc;
5059 	}
5060 
5061 	epc = new;
5062 	new = NULL;
5063 
5064 	if (!pos)
5065 		list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5066 	else
5067 		list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5068 
5069 	epc->ctx = ctx;
5070 
5071 found_epc:
5072 	if (task_ctx_data && !epc->task_ctx_data) {
5073 		epc->task_ctx_data = task_ctx_data;
5074 		task_ctx_data = NULL;
5075 		ctx->nr_task_data++;
5076 	}
5077 	raw_spin_unlock_irq(&ctx->lock);
5078 
5079 	free_task_ctx_data(pmu, task_ctx_data);
5080 	kfree(new);
5081 
5082 	return epc;
5083 }
5084 
5085 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5086 {
5087 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5088 }
5089 
5090 static void free_epc_rcu(struct rcu_head *head)
5091 {
5092 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5093 
5094 	kfree(epc->task_ctx_data);
5095 	kfree(epc);
5096 }
5097 
5098 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5099 {
5100 	struct perf_event_context *ctx = epc->ctx;
5101 	unsigned long flags;
5102 
5103 	/*
5104 	 * XXX
5105 	 *
5106 	 * lockdep_assert_held(&ctx->mutex);
5107 	 *
5108 	 * can't because of the call-site in _free_event()/put_event()
5109 	 * which isn't always called under ctx->mutex.
5110 	 */
5111 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5112 		return;
5113 
5114 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5115 
5116 	list_del_init(&epc->pmu_ctx_entry);
5117 	epc->ctx = NULL;
5118 
5119 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5120 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5121 
5122 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5123 
5124 	if (epc->embedded)
5125 		return;
5126 
5127 	call_rcu(&epc->rcu_head, free_epc_rcu);
5128 }
5129 
5130 static void perf_event_free_filter(struct perf_event *event);
5131 
5132 static void free_event_rcu(struct rcu_head *head)
5133 {
5134 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5135 
5136 	if (event->ns)
5137 		put_pid_ns(event->ns);
5138 	perf_event_free_filter(event);
5139 	kmem_cache_free(perf_event_cache, event);
5140 }
5141 
5142 static void ring_buffer_attach(struct perf_event *event,
5143 			       struct perf_buffer *rb);
5144 
5145 static void detach_sb_event(struct perf_event *event)
5146 {
5147 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5148 
5149 	raw_spin_lock(&pel->lock);
5150 	list_del_rcu(&event->sb_list);
5151 	raw_spin_unlock(&pel->lock);
5152 }
5153 
5154 static bool is_sb_event(struct perf_event *event)
5155 {
5156 	struct perf_event_attr *attr = &event->attr;
5157 
5158 	if (event->parent)
5159 		return false;
5160 
5161 	if (event->attach_state & PERF_ATTACH_TASK)
5162 		return false;
5163 
5164 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5165 	    attr->comm || attr->comm_exec ||
5166 	    attr->task || attr->ksymbol ||
5167 	    attr->context_switch || attr->text_poke ||
5168 	    attr->bpf_event)
5169 		return true;
5170 	return false;
5171 }
5172 
5173 static void unaccount_pmu_sb_event(struct perf_event *event)
5174 {
5175 	if (is_sb_event(event))
5176 		detach_sb_event(event);
5177 }
5178 
5179 #ifdef CONFIG_NO_HZ_FULL
5180 static DEFINE_SPINLOCK(nr_freq_lock);
5181 #endif
5182 
5183 static void unaccount_freq_event_nohz(void)
5184 {
5185 #ifdef CONFIG_NO_HZ_FULL
5186 	spin_lock(&nr_freq_lock);
5187 	if (atomic_dec_and_test(&nr_freq_events))
5188 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5189 	spin_unlock(&nr_freq_lock);
5190 #endif
5191 }
5192 
5193 static void unaccount_freq_event(void)
5194 {
5195 	if (tick_nohz_full_enabled())
5196 		unaccount_freq_event_nohz();
5197 	else
5198 		atomic_dec(&nr_freq_events);
5199 }
5200 
5201 static void unaccount_event(struct perf_event *event)
5202 {
5203 	bool dec = false;
5204 
5205 	if (event->parent)
5206 		return;
5207 
5208 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5209 		dec = true;
5210 	if (event->attr.mmap || event->attr.mmap_data)
5211 		atomic_dec(&nr_mmap_events);
5212 	if (event->attr.build_id)
5213 		atomic_dec(&nr_build_id_events);
5214 	if (event->attr.comm)
5215 		atomic_dec(&nr_comm_events);
5216 	if (event->attr.namespaces)
5217 		atomic_dec(&nr_namespaces_events);
5218 	if (event->attr.cgroup)
5219 		atomic_dec(&nr_cgroup_events);
5220 	if (event->attr.task)
5221 		atomic_dec(&nr_task_events);
5222 	if (event->attr.freq)
5223 		unaccount_freq_event();
5224 	if (event->attr.context_switch) {
5225 		dec = true;
5226 		atomic_dec(&nr_switch_events);
5227 	}
5228 	if (is_cgroup_event(event))
5229 		dec = true;
5230 	if (has_branch_stack(event))
5231 		dec = true;
5232 	if (event->attr.ksymbol)
5233 		atomic_dec(&nr_ksymbol_events);
5234 	if (event->attr.bpf_event)
5235 		atomic_dec(&nr_bpf_events);
5236 	if (event->attr.text_poke)
5237 		atomic_dec(&nr_text_poke_events);
5238 
5239 	if (dec) {
5240 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5241 			schedule_delayed_work(&perf_sched_work, HZ);
5242 	}
5243 
5244 	unaccount_pmu_sb_event(event);
5245 }
5246 
5247 static void perf_sched_delayed(struct work_struct *work)
5248 {
5249 	mutex_lock(&perf_sched_mutex);
5250 	if (atomic_dec_and_test(&perf_sched_count))
5251 		static_branch_disable(&perf_sched_events);
5252 	mutex_unlock(&perf_sched_mutex);
5253 }
5254 
5255 /*
5256  * The following implement mutual exclusion of events on "exclusive" pmus
5257  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5258  * at a time, so we disallow creating events that might conflict, namely:
5259  *
5260  *  1) cpu-wide events in the presence of per-task events,
5261  *  2) per-task events in the presence of cpu-wide events,
5262  *  3) two matching events on the same perf_event_context.
5263  *
5264  * The former two cases are handled in the allocation path (perf_event_alloc(),
5265  * _free_event()), the latter -- before the first perf_install_in_context().
5266  */
5267 static int exclusive_event_init(struct perf_event *event)
5268 {
5269 	struct pmu *pmu = event->pmu;
5270 
5271 	if (!is_exclusive_pmu(pmu))
5272 		return 0;
5273 
5274 	/*
5275 	 * Prevent co-existence of per-task and cpu-wide events on the
5276 	 * same exclusive pmu.
5277 	 *
5278 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5279 	 * events on this "exclusive" pmu, positive means there are
5280 	 * per-task events.
5281 	 *
5282 	 * Since this is called in perf_event_alloc() path, event::ctx
5283 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5284 	 * to mean "per-task event", because unlike other attach states it
5285 	 * never gets cleared.
5286 	 */
5287 	if (event->attach_state & PERF_ATTACH_TASK) {
5288 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5289 			return -EBUSY;
5290 	} else {
5291 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5292 			return -EBUSY;
5293 	}
5294 
5295 	event->attach_state |= PERF_ATTACH_EXCLUSIVE;
5296 
5297 	return 0;
5298 }
5299 
5300 static void exclusive_event_destroy(struct perf_event *event)
5301 {
5302 	struct pmu *pmu = event->pmu;
5303 
5304 	/* see comment in exclusive_event_init() */
5305 	if (event->attach_state & PERF_ATTACH_TASK)
5306 		atomic_dec(&pmu->exclusive_cnt);
5307 	else
5308 		atomic_inc(&pmu->exclusive_cnt);
5309 
5310 	event->attach_state &= ~PERF_ATTACH_EXCLUSIVE;
5311 }
5312 
5313 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5314 {
5315 	if ((e1->pmu == e2->pmu) &&
5316 	    (e1->cpu == e2->cpu ||
5317 	     e1->cpu == -1 ||
5318 	     e2->cpu == -1))
5319 		return true;
5320 	return false;
5321 }
5322 
5323 static bool exclusive_event_installable(struct perf_event *event,
5324 					struct perf_event_context *ctx)
5325 {
5326 	struct perf_event *iter_event;
5327 	struct pmu *pmu = event->pmu;
5328 
5329 	lockdep_assert_held(&ctx->mutex);
5330 
5331 	if (!is_exclusive_pmu(pmu))
5332 		return true;
5333 
5334 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5335 		if (exclusive_event_match(iter_event, event))
5336 			return false;
5337 	}
5338 
5339 	return true;
5340 }
5341 
5342 static void perf_free_addr_filters(struct perf_event *event);
5343 
5344 static void perf_pending_task_sync(struct perf_event *event)
5345 {
5346 	struct callback_head *head = &event->pending_task;
5347 
5348 	if (!event->pending_work)
5349 		return;
5350 	/*
5351 	 * If the task is queued to the current task's queue, we
5352 	 * obviously can't wait for it to complete. Simply cancel it.
5353 	 */
5354 	if (task_work_cancel(current, head)) {
5355 		event->pending_work = 0;
5356 		local_dec(&event->ctx->nr_no_switch_fast);
5357 		return;
5358 	}
5359 
5360 	/*
5361 	 * All accesses related to the event are within the same RCU section in
5362 	 * perf_pending_task(). The RCU grace period before the event is freed
5363 	 * will make sure all those accesses are complete by then.
5364 	 */
5365 	rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5366 }
5367 
5368 /* vs perf_event_alloc() error */
5369 static void __free_event(struct perf_event *event)
5370 {
5371 	if (event->attach_state & PERF_ATTACH_CALLCHAIN)
5372 		put_callchain_buffers();
5373 
5374 	kfree(event->addr_filter_ranges);
5375 
5376 	if (event->attach_state & PERF_ATTACH_EXCLUSIVE)
5377 		exclusive_event_destroy(event);
5378 
5379 	if (is_cgroup_event(event))
5380 		perf_detach_cgroup(event);
5381 
5382 	if (event->destroy)
5383 		event->destroy(event);
5384 
5385 	/*
5386 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5387 	 * hw.target.
5388 	 */
5389 	if (event->hw.target)
5390 		put_task_struct(event->hw.target);
5391 
5392 	if (event->pmu_ctx) {
5393 		/*
5394 		 * put_pmu_ctx() needs an event->ctx reference, because of
5395 		 * epc->ctx.
5396 		 */
5397 		WARN_ON_ONCE(!event->ctx);
5398 		WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx);
5399 		put_pmu_ctx(event->pmu_ctx);
5400 	}
5401 
5402 	/*
5403 	 * perf_event_free_task() relies on put_ctx() being 'last', in
5404 	 * particular all task references must be cleaned up.
5405 	 */
5406 	if (event->ctx)
5407 		put_ctx(event->ctx);
5408 
5409 	if (event->pmu)
5410 		module_put(event->pmu->module);
5411 
5412 	call_rcu(&event->rcu_head, free_event_rcu);
5413 }
5414 
5415 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T))
5416 
5417 /* vs perf_event_alloc() success */
5418 static void _free_event(struct perf_event *event)
5419 {
5420 	irq_work_sync(&event->pending_irq);
5421 	irq_work_sync(&event->pending_disable_irq);
5422 	perf_pending_task_sync(event);
5423 
5424 	unaccount_event(event);
5425 
5426 	security_perf_event_free(event);
5427 
5428 	if (event->rb) {
5429 		/*
5430 		 * Can happen when we close an event with re-directed output.
5431 		 *
5432 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5433 		 * over us; possibly making our ring_buffer_put() the last.
5434 		 */
5435 		mutex_lock(&event->mmap_mutex);
5436 		ring_buffer_attach(event, NULL);
5437 		mutex_unlock(&event->mmap_mutex);
5438 	}
5439 
5440 	perf_event_free_bpf_prog(event);
5441 	perf_free_addr_filters(event);
5442 
5443 	__free_event(event);
5444 }
5445 
5446 /*
5447  * Used to free events which have a known refcount of 1, such as in error paths
5448  * where the event isn't exposed yet and inherited events.
5449  */
5450 static void free_event(struct perf_event *event)
5451 {
5452 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5453 				"unexpected event refcount: %ld; ptr=%p\n",
5454 				atomic_long_read(&event->refcount), event)) {
5455 		/* leak to avoid use-after-free */
5456 		return;
5457 	}
5458 
5459 	_free_event(event);
5460 }
5461 
5462 /*
5463  * Remove user event from the owner task.
5464  */
5465 static void perf_remove_from_owner(struct perf_event *event)
5466 {
5467 	struct task_struct *owner;
5468 
5469 	rcu_read_lock();
5470 	/*
5471 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5472 	 * observe !owner it means the list deletion is complete and we can
5473 	 * indeed free this event, otherwise we need to serialize on
5474 	 * owner->perf_event_mutex.
5475 	 */
5476 	owner = READ_ONCE(event->owner);
5477 	if (owner) {
5478 		/*
5479 		 * Since delayed_put_task_struct() also drops the last
5480 		 * task reference we can safely take a new reference
5481 		 * while holding the rcu_read_lock().
5482 		 */
5483 		get_task_struct(owner);
5484 	}
5485 	rcu_read_unlock();
5486 
5487 	if (owner) {
5488 		/*
5489 		 * If we're here through perf_event_exit_task() we're already
5490 		 * holding ctx->mutex which would be an inversion wrt. the
5491 		 * normal lock order.
5492 		 *
5493 		 * However we can safely take this lock because its the child
5494 		 * ctx->mutex.
5495 		 */
5496 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5497 
5498 		/*
5499 		 * We have to re-check the event->owner field, if it is cleared
5500 		 * we raced with perf_event_exit_task(), acquiring the mutex
5501 		 * ensured they're done, and we can proceed with freeing the
5502 		 * event.
5503 		 */
5504 		if (event->owner) {
5505 			list_del_init(&event->owner_entry);
5506 			smp_store_release(&event->owner, NULL);
5507 		}
5508 		mutex_unlock(&owner->perf_event_mutex);
5509 		put_task_struct(owner);
5510 	}
5511 }
5512 
5513 static void put_event(struct perf_event *event)
5514 {
5515 	if (!atomic_long_dec_and_test(&event->refcount))
5516 		return;
5517 
5518 	_free_event(event);
5519 }
5520 
5521 /*
5522  * Kill an event dead; while event:refcount will preserve the event
5523  * object, it will not preserve its functionality. Once the last 'user'
5524  * gives up the object, we'll destroy the thing.
5525  */
5526 int perf_event_release_kernel(struct perf_event *event)
5527 {
5528 	struct perf_event_context *ctx = event->ctx;
5529 	struct perf_event *child, *tmp;
5530 	LIST_HEAD(free_list);
5531 
5532 	/*
5533 	 * If we got here through err_alloc: free_event(event); we will not
5534 	 * have attached to a context yet.
5535 	 */
5536 	if (!ctx) {
5537 		WARN_ON_ONCE(event->attach_state &
5538 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5539 		goto no_ctx;
5540 	}
5541 
5542 	if (!is_kernel_event(event))
5543 		perf_remove_from_owner(event);
5544 
5545 	ctx = perf_event_ctx_lock(event);
5546 	WARN_ON_ONCE(ctx->parent_ctx);
5547 
5548 	/*
5549 	 * Mark this event as STATE_DEAD, there is no external reference to it
5550 	 * anymore.
5551 	 *
5552 	 * Anybody acquiring event->child_mutex after the below loop _must_
5553 	 * also see this, most importantly inherit_event() which will avoid
5554 	 * placing more children on the list.
5555 	 *
5556 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5557 	 * child events.
5558 	 */
5559 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5560 
5561 	perf_event_ctx_unlock(event, ctx);
5562 
5563 again:
5564 	mutex_lock(&event->child_mutex);
5565 	list_for_each_entry(child, &event->child_list, child_list) {
5566 		void *var = NULL;
5567 
5568 		/*
5569 		 * Cannot change, child events are not migrated, see the
5570 		 * comment with perf_event_ctx_lock_nested().
5571 		 */
5572 		ctx = READ_ONCE(child->ctx);
5573 		/*
5574 		 * Since child_mutex nests inside ctx::mutex, we must jump
5575 		 * through hoops. We start by grabbing a reference on the ctx.
5576 		 *
5577 		 * Since the event cannot get freed while we hold the
5578 		 * child_mutex, the context must also exist and have a !0
5579 		 * reference count.
5580 		 */
5581 		get_ctx(ctx);
5582 
5583 		/*
5584 		 * Now that we have a ctx ref, we can drop child_mutex, and
5585 		 * acquire ctx::mutex without fear of it going away. Then we
5586 		 * can re-acquire child_mutex.
5587 		 */
5588 		mutex_unlock(&event->child_mutex);
5589 		mutex_lock(&ctx->mutex);
5590 		mutex_lock(&event->child_mutex);
5591 
5592 		/*
5593 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5594 		 * state, if child is still the first entry, it didn't get freed
5595 		 * and we can continue doing so.
5596 		 */
5597 		tmp = list_first_entry_or_null(&event->child_list,
5598 					       struct perf_event, child_list);
5599 		if (tmp == child) {
5600 			perf_remove_from_context(child, DETACH_GROUP);
5601 			list_move(&child->child_list, &free_list);
5602 			/*
5603 			 * This matches the refcount bump in inherit_event();
5604 			 * this can't be the last reference.
5605 			 */
5606 			put_event(event);
5607 		} else {
5608 			var = &ctx->refcount;
5609 		}
5610 
5611 		mutex_unlock(&event->child_mutex);
5612 		mutex_unlock(&ctx->mutex);
5613 		put_ctx(ctx);
5614 
5615 		if (var) {
5616 			/*
5617 			 * If perf_event_free_task() has deleted all events from the
5618 			 * ctx while the child_mutex got released above, make sure to
5619 			 * notify about the preceding put_ctx().
5620 			 */
5621 			smp_mb(); /* pairs with wait_var_event() */
5622 			wake_up_var(var);
5623 		}
5624 		goto again;
5625 	}
5626 	mutex_unlock(&event->child_mutex);
5627 
5628 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5629 		void *var = &child->ctx->refcount;
5630 
5631 		list_del(&child->child_list);
5632 		free_event(child);
5633 
5634 		/*
5635 		 * Wake any perf_event_free_task() waiting for this event to be
5636 		 * freed.
5637 		 */
5638 		smp_mb(); /* pairs with wait_var_event() */
5639 		wake_up_var(var);
5640 	}
5641 
5642 no_ctx:
5643 	put_event(event); /* Must be the 'last' reference */
5644 	return 0;
5645 }
5646 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5647 
5648 /*
5649  * Called when the last reference to the file is gone.
5650  */
5651 static int perf_release(struct inode *inode, struct file *file)
5652 {
5653 	perf_event_release_kernel(file->private_data);
5654 	return 0;
5655 }
5656 
5657 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5658 {
5659 	struct perf_event *child;
5660 	u64 total = 0;
5661 
5662 	*enabled = 0;
5663 	*running = 0;
5664 
5665 	mutex_lock(&event->child_mutex);
5666 
5667 	(void)perf_event_read(event, false);
5668 	total += perf_event_count(event, false);
5669 
5670 	*enabled += event->total_time_enabled +
5671 			atomic64_read(&event->child_total_time_enabled);
5672 	*running += event->total_time_running +
5673 			atomic64_read(&event->child_total_time_running);
5674 
5675 	list_for_each_entry(child, &event->child_list, child_list) {
5676 		(void)perf_event_read(child, false);
5677 		total += perf_event_count(child, false);
5678 		*enabled += child->total_time_enabled;
5679 		*running += child->total_time_running;
5680 	}
5681 	mutex_unlock(&event->child_mutex);
5682 
5683 	return total;
5684 }
5685 
5686 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5687 {
5688 	struct perf_event_context *ctx;
5689 	u64 count;
5690 
5691 	ctx = perf_event_ctx_lock(event);
5692 	count = __perf_event_read_value(event, enabled, running);
5693 	perf_event_ctx_unlock(event, ctx);
5694 
5695 	return count;
5696 }
5697 EXPORT_SYMBOL_GPL(perf_event_read_value);
5698 
5699 static int __perf_read_group_add(struct perf_event *leader,
5700 					u64 read_format, u64 *values)
5701 {
5702 	struct perf_event_context *ctx = leader->ctx;
5703 	struct perf_event *sub, *parent;
5704 	unsigned long flags;
5705 	int n = 1; /* skip @nr */
5706 	int ret;
5707 
5708 	ret = perf_event_read(leader, true);
5709 	if (ret)
5710 		return ret;
5711 
5712 	raw_spin_lock_irqsave(&ctx->lock, flags);
5713 	/*
5714 	 * Verify the grouping between the parent and child (inherited)
5715 	 * events is still in tact.
5716 	 *
5717 	 * Specifically:
5718 	 *  - leader->ctx->lock pins leader->sibling_list
5719 	 *  - parent->child_mutex pins parent->child_list
5720 	 *  - parent->ctx->mutex pins parent->sibling_list
5721 	 *
5722 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5723 	 * ctx->mutex), group destruction is not atomic between children, also
5724 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5725 	 * group.
5726 	 *
5727 	 * Therefore it is possible to have parent and child groups in a
5728 	 * different configuration and summing over such a beast makes no sense
5729 	 * what so ever.
5730 	 *
5731 	 * Reject this.
5732 	 */
5733 	parent = leader->parent;
5734 	if (parent &&
5735 	    (parent->group_generation != leader->group_generation ||
5736 	     parent->nr_siblings != leader->nr_siblings)) {
5737 		ret = -ECHILD;
5738 		goto unlock;
5739 	}
5740 
5741 	/*
5742 	 * Since we co-schedule groups, {enabled,running} times of siblings
5743 	 * will be identical to those of the leader, so we only publish one
5744 	 * set.
5745 	 */
5746 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5747 		values[n++] += leader->total_time_enabled +
5748 			atomic64_read(&leader->child_total_time_enabled);
5749 	}
5750 
5751 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5752 		values[n++] += leader->total_time_running +
5753 			atomic64_read(&leader->child_total_time_running);
5754 	}
5755 
5756 	/*
5757 	 * Write {count,id} tuples for every sibling.
5758 	 */
5759 	values[n++] += perf_event_count(leader, false);
5760 	if (read_format & PERF_FORMAT_ID)
5761 		values[n++] = primary_event_id(leader);
5762 	if (read_format & PERF_FORMAT_LOST)
5763 		values[n++] = atomic64_read(&leader->lost_samples);
5764 
5765 	for_each_sibling_event(sub, leader) {
5766 		values[n++] += perf_event_count(sub, false);
5767 		if (read_format & PERF_FORMAT_ID)
5768 			values[n++] = primary_event_id(sub);
5769 		if (read_format & PERF_FORMAT_LOST)
5770 			values[n++] = atomic64_read(&sub->lost_samples);
5771 	}
5772 
5773 unlock:
5774 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5775 	return ret;
5776 }
5777 
5778 static int perf_read_group(struct perf_event *event,
5779 				   u64 read_format, char __user *buf)
5780 {
5781 	struct perf_event *leader = event->group_leader, *child;
5782 	struct perf_event_context *ctx = leader->ctx;
5783 	int ret;
5784 	u64 *values;
5785 
5786 	lockdep_assert_held(&ctx->mutex);
5787 
5788 	values = kzalloc(event->read_size, GFP_KERNEL);
5789 	if (!values)
5790 		return -ENOMEM;
5791 
5792 	values[0] = 1 + leader->nr_siblings;
5793 
5794 	mutex_lock(&leader->child_mutex);
5795 
5796 	ret = __perf_read_group_add(leader, read_format, values);
5797 	if (ret)
5798 		goto unlock;
5799 
5800 	list_for_each_entry(child, &leader->child_list, child_list) {
5801 		ret = __perf_read_group_add(child, read_format, values);
5802 		if (ret)
5803 			goto unlock;
5804 	}
5805 
5806 	mutex_unlock(&leader->child_mutex);
5807 
5808 	ret = event->read_size;
5809 	if (copy_to_user(buf, values, event->read_size))
5810 		ret = -EFAULT;
5811 	goto out;
5812 
5813 unlock:
5814 	mutex_unlock(&leader->child_mutex);
5815 out:
5816 	kfree(values);
5817 	return ret;
5818 }
5819 
5820 static int perf_read_one(struct perf_event *event,
5821 				 u64 read_format, char __user *buf)
5822 {
5823 	u64 enabled, running;
5824 	u64 values[5];
5825 	int n = 0;
5826 
5827 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5828 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5829 		values[n++] = enabled;
5830 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5831 		values[n++] = running;
5832 	if (read_format & PERF_FORMAT_ID)
5833 		values[n++] = primary_event_id(event);
5834 	if (read_format & PERF_FORMAT_LOST)
5835 		values[n++] = atomic64_read(&event->lost_samples);
5836 
5837 	if (copy_to_user(buf, values, n * sizeof(u64)))
5838 		return -EFAULT;
5839 
5840 	return n * sizeof(u64);
5841 }
5842 
5843 static bool is_event_hup(struct perf_event *event)
5844 {
5845 	bool no_children;
5846 
5847 	if (event->state > PERF_EVENT_STATE_EXIT)
5848 		return false;
5849 
5850 	mutex_lock(&event->child_mutex);
5851 	no_children = list_empty(&event->child_list);
5852 	mutex_unlock(&event->child_mutex);
5853 	return no_children;
5854 }
5855 
5856 /*
5857  * Read the performance event - simple non blocking version for now
5858  */
5859 static ssize_t
5860 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5861 {
5862 	u64 read_format = event->attr.read_format;
5863 	int ret;
5864 
5865 	/*
5866 	 * Return end-of-file for a read on an event that is in
5867 	 * error state (i.e. because it was pinned but it couldn't be
5868 	 * scheduled on to the CPU at some point).
5869 	 */
5870 	if (event->state == PERF_EVENT_STATE_ERROR)
5871 		return 0;
5872 
5873 	if (count < event->read_size)
5874 		return -ENOSPC;
5875 
5876 	WARN_ON_ONCE(event->ctx->parent_ctx);
5877 	if (read_format & PERF_FORMAT_GROUP)
5878 		ret = perf_read_group(event, read_format, buf);
5879 	else
5880 		ret = perf_read_one(event, read_format, buf);
5881 
5882 	return ret;
5883 }
5884 
5885 static ssize_t
5886 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5887 {
5888 	struct perf_event *event = file->private_data;
5889 	struct perf_event_context *ctx;
5890 	int ret;
5891 
5892 	ret = security_perf_event_read(event);
5893 	if (ret)
5894 		return ret;
5895 
5896 	ctx = perf_event_ctx_lock(event);
5897 	ret = __perf_read(event, buf, count);
5898 	perf_event_ctx_unlock(event, ctx);
5899 
5900 	return ret;
5901 }
5902 
5903 static __poll_t perf_poll(struct file *file, poll_table *wait)
5904 {
5905 	struct perf_event *event = file->private_data;
5906 	struct perf_buffer *rb;
5907 	__poll_t events = EPOLLHUP;
5908 
5909 	poll_wait(file, &event->waitq, wait);
5910 
5911 	if (is_event_hup(event))
5912 		return events;
5913 
5914 	/*
5915 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5916 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5917 	 */
5918 	mutex_lock(&event->mmap_mutex);
5919 	rb = event->rb;
5920 	if (rb)
5921 		events = atomic_xchg(&rb->poll, 0);
5922 	mutex_unlock(&event->mmap_mutex);
5923 	return events;
5924 }
5925 
5926 static void _perf_event_reset(struct perf_event *event)
5927 {
5928 	(void)perf_event_read(event, false);
5929 	local64_set(&event->count, 0);
5930 	perf_event_update_userpage(event);
5931 }
5932 
5933 /* Assume it's not an event with inherit set. */
5934 u64 perf_event_pause(struct perf_event *event, bool reset)
5935 {
5936 	struct perf_event_context *ctx;
5937 	u64 count;
5938 
5939 	ctx = perf_event_ctx_lock(event);
5940 	WARN_ON_ONCE(event->attr.inherit);
5941 	_perf_event_disable(event);
5942 	count = local64_read(&event->count);
5943 	if (reset)
5944 		local64_set(&event->count, 0);
5945 	perf_event_ctx_unlock(event, ctx);
5946 
5947 	return count;
5948 }
5949 EXPORT_SYMBOL_GPL(perf_event_pause);
5950 
5951 /*
5952  * Holding the top-level event's child_mutex means that any
5953  * descendant process that has inherited this event will block
5954  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5955  * task existence requirements of perf_event_enable/disable.
5956  */
5957 static void perf_event_for_each_child(struct perf_event *event,
5958 					void (*func)(struct perf_event *))
5959 {
5960 	struct perf_event *child;
5961 
5962 	WARN_ON_ONCE(event->ctx->parent_ctx);
5963 
5964 	mutex_lock(&event->child_mutex);
5965 	func(event);
5966 	list_for_each_entry(child, &event->child_list, child_list)
5967 		func(child);
5968 	mutex_unlock(&event->child_mutex);
5969 }
5970 
5971 static void perf_event_for_each(struct perf_event *event,
5972 				  void (*func)(struct perf_event *))
5973 {
5974 	struct perf_event_context *ctx = event->ctx;
5975 	struct perf_event *sibling;
5976 
5977 	lockdep_assert_held(&ctx->mutex);
5978 
5979 	event = event->group_leader;
5980 
5981 	perf_event_for_each_child(event, func);
5982 	for_each_sibling_event(sibling, event)
5983 		perf_event_for_each_child(sibling, func);
5984 }
5985 
5986 static void __perf_event_period(struct perf_event *event,
5987 				struct perf_cpu_context *cpuctx,
5988 				struct perf_event_context *ctx,
5989 				void *info)
5990 {
5991 	u64 value = *((u64 *)info);
5992 	bool active;
5993 
5994 	if (event->attr.freq) {
5995 		event->attr.sample_freq = value;
5996 	} else {
5997 		event->attr.sample_period = value;
5998 		event->hw.sample_period = value;
5999 	}
6000 
6001 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
6002 	if (active) {
6003 		perf_pmu_disable(event->pmu);
6004 		/*
6005 		 * We could be throttled; unthrottle now to avoid the tick
6006 		 * trying to unthrottle while we already re-started the event.
6007 		 */
6008 		if (event->hw.interrupts == MAX_INTERRUPTS) {
6009 			event->hw.interrupts = 0;
6010 			perf_log_throttle(event, 1);
6011 		}
6012 		event->pmu->stop(event, PERF_EF_UPDATE);
6013 	}
6014 
6015 	local64_set(&event->hw.period_left, 0);
6016 
6017 	if (active) {
6018 		event->pmu->start(event, PERF_EF_RELOAD);
6019 		perf_pmu_enable(event->pmu);
6020 	}
6021 }
6022 
6023 static int perf_event_check_period(struct perf_event *event, u64 value)
6024 {
6025 	return event->pmu->check_period(event, value);
6026 }
6027 
6028 static int _perf_event_period(struct perf_event *event, u64 value)
6029 {
6030 	if (!is_sampling_event(event))
6031 		return -EINVAL;
6032 
6033 	if (!value)
6034 		return -EINVAL;
6035 
6036 	if (event->attr.freq) {
6037 		if (value > sysctl_perf_event_sample_rate)
6038 			return -EINVAL;
6039 	} else {
6040 		if (perf_event_check_period(event, value))
6041 			return -EINVAL;
6042 		if (value & (1ULL << 63))
6043 			return -EINVAL;
6044 	}
6045 
6046 	event_function_call(event, __perf_event_period, &value);
6047 
6048 	return 0;
6049 }
6050 
6051 int perf_event_period(struct perf_event *event, u64 value)
6052 {
6053 	struct perf_event_context *ctx;
6054 	int ret;
6055 
6056 	ctx = perf_event_ctx_lock(event);
6057 	ret = _perf_event_period(event, value);
6058 	perf_event_ctx_unlock(event, ctx);
6059 
6060 	return ret;
6061 }
6062 EXPORT_SYMBOL_GPL(perf_event_period);
6063 
6064 static const struct file_operations perf_fops;
6065 
6066 static inline bool is_perf_file(struct fd f)
6067 {
6068 	return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6069 }
6070 
6071 static int perf_event_set_output(struct perf_event *event,
6072 				 struct perf_event *output_event);
6073 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6074 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6075 			  struct perf_event_attr *attr);
6076 
6077 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6078 {
6079 	void (*func)(struct perf_event *);
6080 	u32 flags = arg;
6081 
6082 	switch (cmd) {
6083 	case PERF_EVENT_IOC_ENABLE:
6084 		func = _perf_event_enable;
6085 		break;
6086 	case PERF_EVENT_IOC_DISABLE:
6087 		func = _perf_event_disable;
6088 		break;
6089 	case PERF_EVENT_IOC_RESET:
6090 		func = _perf_event_reset;
6091 		break;
6092 
6093 	case PERF_EVENT_IOC_REFRESH:
6094 		return _perf_event_refresh(event, arg);
6095 
6096 	case PERF_EVENT_IOC_PERIOD:
6097 	{
6098 		u64 value;
6099 
6100 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6101 			return -EFAULT;
6102 
6103 		return _perf_event_period(event, value);
6104 	}
6105 	case PERF_EVENT_IOC_ID:
6106 	{
6107 		u64 id = primary_event_id(event);
6108 
6109 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6110 			return -EFAULT;
6111 		return 0;
6112 	}
6113 
6114 	case PERF_EVENT_IOC_SET_OUTPUT:
6115 	{
6116 		CLASS(fd, output)(arg);	     // arg == -1 => empty
6117 		struct perf_event *output_event = NULL;
6118 		if (arg != -1) {
6119 			if (!is_perf_file(output))
6120 				return -EBADF;
6121 			output_event = fd_file(output)->private_data;
6122 		}
6123 		return perf_event_set_output(event, output_event);
6124 	}
6125 
6126 	case PERF_EVENT_IOC_SET_FILTER:
6127 		return perf_event_set_filter(event, (void __user *)arg);
6128 
6129 	case PERF_EVENT_IOC_SET_BPF:
6130 	{
6131 		struct bpf_prog *prog;
6132 		int err;
6133 
6134 		prog = bpf_prog_get(arg);
6135 		if (IS_ERR(prog))
6136 			return PTR_ERR(prog);
6137 
6138 		err = perf_event_set_bpf_prog(event, prog, 0);
6139 		if (err) {
6140 			bpf_prog_put(prog);
6141 			return err;
6142 		}
6143 
6144 		return 0;
6145 	}
6146 
6147 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6148 		struct perf_buffer *rb;
6149 
6150 		rcu_read_lock();
6151 		rb = rcu_dereference(event->rb);
6152 		if (!rb || !rb->nr_pages) {
6153 			rcu_read_unlock();
6154 			return -EINVAL;
6155 		}
6156 		rb_toggle_paused(rb, !!arg);
6157 		rcu_read_unlock();
6158 		return 0;
6159 	}
6160 
6161 	case PERF_EVENT_IOC_QUERY_BPF:
6162 		return perf_event_query_prog_array(event, (void __user *)arg);
6163 
6164 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6165 		struct perf_event_attr new_attr;
6166 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6167 					 &new_attr);
6168 
6169 		if (err)
6170 			return err;
6171 
6172 		return perf_event_modify_attr(event,  &new_attr);
6173 	}
6174 	default:
6175 		return -ENOTTY;
6176 	}
6177 
6178 	if (flags & PERF_IOC_FLAG_GROUP)
6179 		perf_event_for_each(event, func);
6180 	else
6181 		perf_event_for_each_child(event, func);
6182 
6183 	return 0;
6184 }
6185 
6186 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6187 {
6188 	struct perf_event *event = file->private_data;
6189 	struct perf_event_context *ctx;
6190 	long ret;
6191 
6192 	/* Treat ioctl like writes as it is likely a mutating operation. */
6193 	ret = security_perf_event_write(event);
6194 	if (ret)
6195 		return ret;
6196 
6197 	ctx = perf_event_ctx_lock(event);
6198 	ret = _perf_ioctl(event, cmd, arg);
6199 	perf_event_ctx_unlock(event, ctx);
6200 
6201 	return ret;
6202 }
6203 
6204 #ifdef CONFIG_COMPAT
6205 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6206 				unsigned long arg)
6207 {
6208 	switch (_IOC_NR(cmd)) {
6209 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6210 	case _IOC_NR(PERF_EVENT_IOC_ID):
6211 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6212 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6213 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6214 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6215 			cmd &= ~IOCSIZE_MASK;
6216 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6217 		}
6218 		break;
6219 	}
6220 	return perf_ioctl(file, cmd, arg);
6221 }
6222 #else
6223 # define perf_compat_ioctl NULL
6224 #endif
6225 
6226 int perf_event_task_enable(void)
6227 {
6228 	struct perf_event_context *ctx;
6229 	struct perf_event *event;
6230 
6231 	mutex_lock(&current->perf_event_mutex);
6232 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6233 		ctx = perf_event_ctx_lock(event);
6234 		perf_event_for_each_child(event, _perf_event_enable);
6235 		perf_event_ctx_unlock(event, ctx);
6236 	}
6237 	mutex_unlock(&current->perf_event_mutex);
6238 
6239 	return 0;
6240 }
6241 
6242 int perf_event_task_disable(void)
6243 {
6244 	struct perf_event_context *ctx;
6245 	struct perf_event *event;
6246 
6247 	mutex_lock(&current->perf_event_mutex);
6248 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6249 		ctx = perf_event_ctx_lock(event);
6250 		perf_event_for_each_child(event, _perf_event_disable);
6251 		perf_event_ctx_unlock(event, ctx);
6252 	}
6253 	mutex_unlock(&current->perf_event_mutex);
6254 
6255 	return 0;
6256 }
6257 
6258 static int perf_event_index(struct perf_event *event)
6259 {
6260 	if (event->hw.state & PERF_HES_STOPPED)
6261 		return 0;
6262 
6263 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6264 		return 0;
6265 
6266 	return event->pmu->event_idx(event);
6267 }
6268 
6269 static void perf_event_init_userpage(struct perf_event *event)
6270 {
6271 	struct perf_event_mmap_page *userpg;
6272 	struct perf_buffer *rb;
6273 
6274 	rcu_read_lock();
6275 	rb = rcu_dereference(event->rb);
6276 	if (!rb)
6277 		goto unlock;
6278 
6279 	userpg = rb->user_page;
6280 
6281 	/* Allow new userspace to detect that bit 0 is deprecated */
6282 	userpg->cap_bit0_is_deprecated = 1;
6283 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6284 	userpg->data_offset = PAGE_SIZE;
6285 	userpg->data_size = perf_data_size(rb);
6286 
6287 unlock:
6288 	rcu_read_unlock();
6289 }
6290 
6291 void __weak arch_perf_update_userpage(
6292 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6293 {
6294 }
6295 
6296 /*
6297  * Callers need to ensure there can be no nesting of this function, otherwise
6298  * the seqlock logic goes bad. We can not serialize this because the arch
6299  * code calls this from NMI context.
6300  */
6301 void perf_event_update_userpage(struct perf_event *event)
6302 {
6303 	struct perf_event_mmap_page *userpg;
6304 	struct perf_buffer *rb;
6305 	u64 enabled, running, now;
6306 
6307 	rcu_read_lock();
6308 	rb = rcu_dereference(event->rb);
6309 	if (!rb)
6310 		goto unlock;
6311 
6312 	/*
6313 	 * compute total_time_enabled, total_time_running
6314 	 * based on snapshot values taken when the event
6315 	 * was last scheduled in.
6316 	 *
6317 	 * we cannot simply called update_context_time()
6318 	 * because of locking issue as we can be called in
6319 	 * NMI context
6320 	 */
6321 	calc_timer_values(event, &now, &enabled, &running);
6322 
6323 	userpg = rb->user_page;
6324 	/*
6325 	 * Disable preemption to guarantee consistent time stamps are stored to
6326 	 * the user page.
6327 	 */
6328 	preempt_disable();
6329 	++userpg->lock;
6330 	barrier();
6331 	userpg->index = perf_event_index(event);
6332 	userpg->offset = perf_event_count(event, false);
6333 	if (userpg->index)
6334 		userpg->offset -= local64_read(&event->hw.prev_count);
6335 
6336 	userpg->time_enabled = enabled +
6337 			atomic64_read(&event->child_total_time_enabled);
6338 
6339 	userpg->time_running = running +
6340 			atomic64_read(&event->child_total_time_running);
6341 
6342 	arch_perf_update_userpage(event, userpg, now);
6343 
6344 	barrier();
6345 	++userpg->lock;
6346 	preempt_enable();
6347 unlock:
6348 	rcu_read_unlock();
6349 }
6350 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6351 
6352 static void ring_buffer_attach(struct perf_event *event,
6353 			       struct perf_buffer *rb)
6354 {
6355 	struct perf_buffer *old_rb = NULL;
6356 	unsigned long flags;
6357 
6358 	WARN_ON_ONCE(event->parent);
6359 
6360 	if (event->rb) {
6361 		/*
6362 		 * Should be impossible, we set this when removing
6363 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6364 		 */
6365 		WARN_ON_ONCE(event->rcu_pending);
6366 
6367 		old_rb = event->rb;
6368 		spin_lock_irqsave(&old_rb->event_lock, flags);
6369 		list_del_rcu(&event->rb_entry);
6370 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6371 
6372 		event->rcu_batches = get_state_synchronize_rcu();
6373 		event->rcu_pending = 1;
6374 	}
6375 
6376 	if (rb) {
6377 		if (event->rcu_pending) {
6378 			cond_synchronize_rcu(event->rcu_batches);
6379 			event->rcu_pending = 0;
6380 		}
6381 
6382 		spin_lock_irqsave(&rb->event_lock, flags);
6383 		list_add_rcu(&event->rb_entry, &rb->event_list);
6384 		spin_unlock_irqrestore(&rb->event_lock, flags);
6385 	}
6386 
6387 	/*
6388 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6389 	 * before swizzling the event::rb pointer; if it's getting
6390 	 * unmapped, its aux_mmap_count will be 0 and it won't
6391 	 * restart. See the comment in __perf_pmu_output_stop().
6392 	 *
6393 	 * Data will inevitably be lost when set_output is done in
6394 	 * mid-air, but then again, whoever does it like this is
6395 	 * not in for the data anyway.
6396 	 */
6397 	if (has_aux(event))
6398 		perf_event_stop(event, 0);
6399 
6400 	rcu_assign_pointer(event->rb, rb);
6401 
6402 	if (old_rb) {
6403 		ring_buffer_put(old_rb);
6404 		/*
6405 		 * Since we detached before setting the new rb, so that we
6406 		 * could attach the new rb, we could have missed a wakeup.
6407 		 * Provide it now.
6408 		 */
6409 		wake_up_all(&event->waitq);
6410 	}
6411 }
6412 
6413 static void ring_buffer_wakeup(struct perf_event *event)
6414 {
6415 	struct perf_buffer *rb;
6416 
6417 	if (event->parent)
6418 		event = event->parent;
6419 
6420 	rcu_read_lock();
6421 	rb = rcu_dereference(event->rb);
6422 	if (rb) {
6423 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6424 			wake_up_all(&event->waitq);
6425 	}
6426 	rcu_read_unlock();
6427 }
6428 
6429 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6430 {
6431 	struct perf_buffer *rb;
6432 
6433 	if (event->parent)
6434 		event = event->parent;
6435 
6436 	rcu_read_lock();
6437 	rb = rcu_dereference(event->rb);
6438 	if (rb) {
6439 		if (!refcount_inc_not_zero(&rb->refcount))
6440 			rb = NULL;
6441 	}
6442 	rcu_read_unlock();
6443 
6444 	return rb;
6445 }
6446 
6447 void ring_buffer_put(struct perf_buffer *rb)
6448 {
6449 	if (!refcount_dec_and_test(&rb->refcount))
6450 		return;
6451 
6452 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6453 
6454 	call_rcu(&rb->rcu_head, rb_free_rcu);
6455 }
6456 
6457 static void perf_mmap_open(struct vm_area_struct *vma)
6458 {
6459 	struct perf_event *event = vma->vm_file->private_data;
6460 
6461 	atomic_inc(&event->mmap_count);
6462 	atomic_inc(&event->rb->mmap_count);
6463 
6464 	if (vma->vm_pgoff)
6465 		atomic_inc(&event->rb->aux_mmap_count);
6466 
6467 	if (event->pmu->event_mapped)
6468 		event->pmu->event_mapped(event, vma->vm_mm);
6469 }
6470 
6471 static void perf_pmu_output_stop(struct perf_event *event);
6472 
6473 /*
6474  * A buffer can be mmap()ed multiple times; either directly through the same
6475  * event, or through other events by use of perf_event_set_output().
6476  *
6477  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6478  * the buffer here, where we still have a VM context. This means we need
6479  * to detach all events redirecting to us.
6480  */
6481 static void perf_mmap_close(struct vm_area_struct *vma)
6482 {
6483 	struct perf_event *event = vma->vm_file->private_data;
6484 	struct perf_buffer *rb = ring_buffer_get(event);
6485 	struct user_struct *mmap_user = rb->mmap_user;
6486 	int mmap_locked = rb->mmap_locked;
6487 	unsigned long size = perf_data_size(rb);
6488 	bool detach_rest = false;
6489 
6490 	if (event->pmu->event_unmapped)
6491 		event->pmu->event_unmapped(event, vma->vm_mm);
6492 
6493 	/*
6494 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6495 	 * to avoid complications.
6496 	 */
6497 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6498 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6499 		/*
6500 		 * Stop all AUX events that are writing to this buffer,
6501 		 * so that we can free its AUX pages and corresponding PMU
6502 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6503 		 * they won't start any more (see perf_aux_output_begin()).
6504 		 */
6505 		perf_pmu_output_stop(event);
6506 
6507 		/* now it's safe to free the pages */
6508 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6509 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6510 
6511 		/* this has to be the last one */
6512 		rb_free_aux(rb);
6513 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6514 
6515 		mutex_unlock(&rb->aux_mutex);
6516 	}
6517 
6518 	if (atomic_dec_and_test(&rb->mmap_count))
6519 		detach_rest = true;
6520 
6521 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6522 		goto out_put;
6523 
6524 	ring_buffer_attach(event, NULL);
6525 	mutex_unlock(&event->mmap_mutex);
6526 
6527 	/* If there's still other mmap()s of this buffer, we're done. */
6528 	if (!detach_rest)
6529 		goto out_put;
6530 
6531 	/*
6532 	 * No other mmap()s, detach from all other events that might redirect
6533 	 * into the now unreachable buffer. Somewhat complicated by the
6534 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6535 	 */
6536 again:
6537 	rcu_read_lock();
6538 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6539 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6540 			/*
6541 			 * This event is en-route to free_event() which will
6542 			 * detach it and remove it from the list.
6543 			 */
6544 			continue;
6545 		}
6546 		rcu_read_unlock();
6547 
6548 		mutex_lock(&event->mmap_mutex);
6549 		/*
6550 		 * Check we didn't race with perf_event_set_output() which can
6551 		 * swizzle the rb from under us while we were waiting to
6552 		 * acquire mmap_mutex.
6553 		 *
6554 		 * If we find a different rb; ignore this event, a next
6555 		 * iteration will no longer find it on the list. We have to
6556 		 * still restart the iteration to make sure we're not now
6557 		 * iterating the wrong list.
6558 		 */
6559 		if (event->rb == rb)
6560 			ring_buffer_attach(event, NULL);
6561 
6562 		mutex_unlock(&event->mmap_mutex);
6563 		put_event(event);
6564 
6565 		/*
6566 		 * Restart the iteration; either we're on the wrong list or
6567 		 * destroyed its integrity by doing a deletion.
6568 		 */
6569 		goto again;
6570 	}
6571 	rcu_read_unlock();
6572 
6573 	/*
6574 	 * It could be there's still a few 0-ref events on the list; they'll
6575 	 * get cleaned up by free_event() -- they'll also still have their
6576 	 * ref on the rb and will free it whenever they are done with it.
6577 	 *
6578 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6579 	 * undo the VM accounting.
6580 	 */
6581 
6582 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6583 			&mmap_user->locked_vm);
6584 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6585 	free_uid(mmap_user);
6586 
6587 out_put:
6588 	ring_buffer_put(rb); /* could be last */
6589 }
6590 
6591 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
6592 {
6593 	/* The first page is the user control page, others are read-only. */
6594 	return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
6595 }
6596 
6597 static const struct vm_operations_struct perf_mmap_vmops = {
6598 	.open		= perf_mmap_open,
6599 	.close		= perf_mmap_close, /* non mergeable */
6600 	.pfn_mkwrite	= perf_mmap_pfn_mkwrite,
6601 };
6602 
6603 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
6604 {
6605 	unsigned long nr_pages = vma_pages(vma);
6606 	int err = 0;
6607 	unsigned long pagenum;
6608 
6609 	/*
6610 	 * We map this as a VM_PFNMAP VMA.
6611 	 *
6612 	 * This is not ideal as this is designed broadly for mappings of PFNs
6613 	 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
6614 	 * !pfn_valid(pfn).
6615 	 *
6616 	 * We are mapping kernel-allocated memory (memory we manage ourselves)
6617 	 * which would more ideally be mapped using vm_insert_page() or a
6618 	 * similar mechanism, that is as a VM_MIXEDMAP mapping.
6619 	 *
6620 	 * However this won't work here, because:
6621 	 *
6622 	 * 1. It uses vma->vm_page_prot, but this field has not been completely
6623 	 *    setup at the point of the f_op->mmp() hook, so we are unable to
6624 	 *    indicate that this should be mapped CoW in order that the
6625 	 *    mkwrite() hook can be invoked to make the first page R/W and the
6626 	 *    rest R/O as desired.
6627 	 *
6628 	 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
6629 	 *    vm_normal_page() returning a struct page * pointer, which means
6630 	 *    vm_ops->page_mkwrite() will be invoked rather than
6631 	 *    vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
6632 	 *    to work around retry logic in the fault handler, however this
6633 	 *    field is no longer allowed to be used within struct page.
6634 	 *
6635 	 * 3. Having a struct page * made available in the fault logic also
6636 	 *    means that the page gets put on the rmap and becomes
6637 	 *    inappropriately accessible and subject to map and ref counting.
6638 	 *
6639 	 * Ideally we would have a mechanism that could explicitly express our
6640 	 * desires, but this is not currently the case, so we instead use
6641 	 * VM_PFNMAP.
6642 	 *
6643 	 * We manage the lifetime of these mappings with internal refcounts (see
6644 	 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
6645 	 * this mapping is maintained correctly.
6646 	 */
6647 	for (pagenum = 0; pagenum < nr_pages; pagenum++) {
6648 		unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
6649 		struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
6650 
6651 		if (page == NULL) {
6652 			err = -EINVAL;
6653 			break;
6654 		}
6655 
6656 		/* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
6657 		err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
6658 				      vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
6659 		if (err)
6660 			break;
6661 	}
6662 
6663 #ifdef CONFIG_MMU
6664 	/* Clear any partial mappings on error. */
6665 	if (err)
6666 		zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
6667 #endif
6668 
6669 	return err;
6670 }
6671 
6672 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6673 {
6674 	struct perf_event *event = file->private_data;
6675 	unsigned long user_locked, user_lock_limit;
6676 	struct user_struct *user = current_user();
6677 	struct mutex *aux_mutex = NULL;
6678 	struct perf_buffer *rb = NULL;
6679 	unsigned long locked, lock_limit;
6680 	unsigned long vma_size;
6681 	unsigned long nr_pages;
6682 	long user_extra = 0, extra = 0;
6683 	int ret = 0, flags = 0;
6684 
6685 	/*
6686 	 * Don't allow mmap() of inherited per-task counters. This would
6687 	 * create a performance issue due to all children writing to the
6688 	 * same rb.
6689 	 */
6690 	if (event->cpu == -1 && event->attr.inherit)
6691 		return -EINVAL;
6692 
6693 	if (!(vma->vm_flags & VM_SHARED))
6694 		return -EINVAL;
6695 
6696 	ret = security_perf_event_read(event);
6697 	if (ret)
6698 		return ret;
6699 
6700 	vma_size = vma->vm_end - vma->vm_start;
6701 	nr_pages = vma_size / PAGE_SIZE;
6702 
6703 	if (nr_pages > INT_MAX)
6704 		return -ENOMEM;
6705 
6706 	if (vma_size != PAGE_SIZE * nr_pages)
6707 		return -EINVAL;
6708 
6709 	user_extra = nr_pages;
6710 
6711 	if (vma->vm_pgoff == 0) {
6712 		nr_pages -= 1;
6713 
6714 		/*
6715 		 * If we have rb pages ensure they're a power-of-two number, so we
6716 		 * can do bitmasks instead of modulo.
6717 		 */
6718 		if (nr_pages != 0 && !is_power_of_2(nr_pages))
6719 			return -EINVAL;
6720 
6721 		WARN_ON_ONCE(event->ctx->parent_ctx);
6722 		mutex_lock(&event->mmap_mutex);
6723 
6724 		if (event->rb) {
6725 			if (data_page_nr(event->rb) != nr_pages) {
6726 				ret = -EINVAL;
6727 				goto unlock;
6728 			}
6729 
6730 			if (atomic_inc_not_zero(&event->rb->mmap_count)) {
6731 				/*
6732 				 * Success -- managed to mmap() the same buffer
6733 				 * multiple times.
6734 				 */
6735 				ret = 0;
6736 				/* We need the rb to map pages. */
6737 				rb = event->rb;
6738 				goto unlock;
6739 			}
6740 
6741 			/*
6742 			 * Raced against perf_mmap_close()'s
6743 			 * atomic_dec_and_mutex_lock() remove the
6744 			 * event and continue as if !event->rb
6745 			 */
6746 			ring_buffer_attach(event, NULL);
6747 		}
6748 
6749 	} else {
6750 		/*
6751 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6752 		 * mapped, all subsequent mappings should have the same size
6753 		 * and offset. Must be above the normal perf buffer.
6754 		 */
6755 		u64 aux_offset, aux_size;
6756 
6757 		if (!event->rb)
6758 			return -EINVAL;
6759 
6760 		mutex_lock(&event->mmap_mutex);
6761 		ret = -EINVAL;
6762 
6763 		rb = event->rb;
6764 		if (!rb)
6765 			goto aux_unlock;
6766 
6767 		aux_mutex = &rb->aux_mutex;
6768 		mutex_lock(aux_mutex);
6769 
6770 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6771 		aux_size = READ_ONCE(rb->user_page->aux_size);
6772 
6773 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6774 			goto aux_unlock;
6775 
6776 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6777 			goto aux_unlock;
6778 
6779 		/* already mapped with a different offset */
6780 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6781 			goto aux_unlock;
6782 
6783 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6784 			goto aux_unlock;
6785 
6786 		/* already mapped with a different size */
6787 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6788 			goto aux_unlock;
6789 
6790 		if (!is_power_of_2(nr_pages))
6791 			goto aux_unlock;
6792 
6793 		if (!atomic_inc_not_zero(&rb->mmap_count))
6794 			goto aux_unlock;
6795 
6796 		if (rb_has_aux(rb)) {
6797 			atomic_inc(&rb->aux_mmap_count);
6798 			ret = 0;
6799 			goto unlock;
6800 		}
6801 
6802 		atomic_set(&rb->aux_mmap_count, 1);
6803 	}
6804 
6805 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6806 
6807 	/*
6808 	 * Increase the limit linearly with more CPUs:
6809 	 */
6810 	user_lock_limit *= num_online_cpus();
6811 
6812 	user_locked = atomic_long_read(&user->locked_vm);
6813 
6814 	/*
6815 	 * sysctl_perf_event_mlock may have changed, so that
6816 	 *     user->locked_vm > user_lock_limit
6817 	 */
6818 	if (user_locked > user_lock_limit)
6819 		user_locked = user_lock_limit;
6820 	user_locked += user_extra;
6821 
6822 	if (user_locked > user_lock_limit) {
6823 		/*
6824 		 * charge locked_vm until it hits user_lock_limit;
6825 		 * charge the rest from pinned_vm
6826 		 */
6827 		extra = user_locked - user_lock_limit;
6828 		user_extra -= extra;
6829 	}
6830 
6831 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6832 	lock_limit >>= PAGE_SHIFT;
6833 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6834 
6835 	if ((locked > lock_limit) && perf_is_paranoid() &&
6836 		!capable(CAP_IPC_LOCK)) {
6837 		ret = -EPERM;
6838 		goto unlock;
6839 	}
6840 
6841 	WARN_ON(!rb && event->rb);
6842 
6843 	if (vma->vm_flags & VM_WRITE)
6844 		flags |= RING_BUFFER_WRITABLE;
6845 
6846 	if (!rb) {
6847 		rb = rb_alloc(nr_pages,
6848 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6849 			      event->cpu, flags);
6850 
6851 		if (!rb) {
6852 			ret = -ENOMEM;
6853 			goto unlock;
6854 		}
6855 
6856 		atomic_set(&rb->mmap_count, 1);
6857 		rb->mmap_user = get_current_user();
6858 		rb->mmap_locked = extra;
6859 
6860 		ring_buffer_attach(event, rb);
6861 
6862 		perf_event_update_time(event);
6863 		perf_event_init_userpage(event);
6864 		perf_event_update_userpage(event);
6865 	} else {
6866 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6867 				   event->attr.aux_watermark, flags);
6868 		if (!ret)
6869 			rb->aux_mmap_locked = extra;
6870 	}
6871 
6872 unlock:
6873 	if (!ret) {
6874 		atomic_long_add(user_extra, &user->locked_vm);
6875 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6876 
6877 		atomic_inc(&event->mmap_count);
6878 	} else if (rb) {
6879 		atomic_dec(&rb->mmap_count);
6880 	}
6881 aux_unlock:
6882 	if (aux_mutex)
6883 		mutex_unlock(aux_mutex);
6884 	mutex_unlock(&event->mmap_mutex);
6885 
6886 	/*
6887 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6888 	 * vma.
6889 	 */
6890 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6891 	vma->vm_ops = &perf_mmap_vmops;
6892 
6893 	if (!ret)
6894 		ret = map_range(rb, vma);
6895 
6896 	if (event->pmu->event_mapped)
6897 		event->pmu->event_mapped(event, vma->vm_mm);
6898 
6899 	return ret;
6900 }
6901 
6902 static int perf_fasync(int fd, struct file *filp, int on)
6903 {
6904 	struct inode *inode = file_inode(filp);
6905 	struct perf_event *event = filp->private_data;
6906 	int retval;
6907 
6908 	inode_lock(inode);
6909 	retval = fasync_helper(fd, filp, on, &event->fasync);
6910 	inode_unlock(inode);
6911 
6912 	if (retval < 0)
6913 		return retval;
6914 
6915 	return 0;
6916 }
6917 
6918 static const struct file_operations perf_fops = {
6919 	.release		= perf_release,
6920 	.read			= perf_read,
6921 	.poll			= perf_poll,
6922 	.unlocked_ioctl		= perf_ioctl,
6923 	.compat_ioctl		= perf_compat_ioctl,
6924 	.mmap			= perf_mmap,
6925 	.fasync			= perf_fasync,
6926 };
6927 
6928 /*
6929  * Perf event wakeup
6930  *
6931  * If there's data, ensure we set the poll() state and publish everything
6932  * to user-space before waking everybody up.
6933  */
6934 
6935 void perf_event_wakeup(struct perf_event *event)
6936 {
6937 	ring_buffer_wakeup(event);
6938 
6939 	if (event->pending_kill) {
6940 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6941 		event->pending_kill = 0;
6942 	}
6943 }
6944 
6945 static void perf_sigtrap(struct perf_event *event)
6946 {
6947 	/*
6948 	 * We'd expect this to only occur if the irq_work is delayed and either
6949 	 * ctx->task or current has changed in the meantime. This can be the
6950 	 * case on architectures that do not implement arch_irq_work_raise().
6951 	 */
6952 	if (WARN_ON_ONCE(event->ctx->task != current))
6953 		return;
6954 
6955 	/*
6956 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6957 	 * task exiting.
6958 	 */
6959 	if (current->flags & PF_EXITING)
6960 		return;
6961 
6962 	send_sig_perf((void __user *)event->pending_addr,
6963 		      event->orig_type, event->attr.sig_data);
6964 }
6965 
6966 /*
6967  * Deliver the pending work in-event-context or follow the context.
6968  */
6969 static void __perf_pending_disable(struct perf_event *event)
6970 {
6971 	int cpu = READ_ONCE(event->oncpu);
6972 
6973 	/*
6974 	 * If the event isn't running; we done. event_sched_out() will have
6975 	 * taken care of things.
6976 	 */
6977 	if (cpu < 0)
6978 		return;
6979 
6980 	/*
6981 	 * Yay, we hit home and are in the context of the event.
6982 	 */
6983 	if (cpu == smp_processor_id()) {
6984 		if (event->pending_disable) {
6985 			event->pending_disable = 0;
6986 			perf_event_disable_local(event);
6987 		}
6988 		return;
6989 	}
6990 
6991 	/*
6992 	 *  CPU-A			CPU-B
6993 	 *
6994 	 *  perf_event_disable_inatomic()
6995 	 *    @pending_disable = CPU-A;
6996 	 *    irq_work_queue();
6997 	 *
6998 	 *  sched-out
6999 	 *    @pending_disable = -1;
7000 	 *
7001 	 *				sched-in
7002 	 *				perf_event_disable_inatomic()
7003 	 *				  @pending_disable = CPU-B;
7004 	 *				  irq_work_queue(); // FAILS
7005 	 *
7006 	 *  irq_work_run()
7007 	 *    perf_pending_disable()
7008 	 *
7009 	 * But the event runs on CPU-B and wants disabling there.
7010 	 */
7011 	irq_work_queue_on(&event->pending_disable_irq, cpu);
7012 }
7013 
7014 static void perf_pending_disable(struct irq_work *entry)
7015 {
7016 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
7017 	int rctx;
7018 
7019 	/*
7020 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7021 	 * and we won't recurse 'further'.
7022 	 */
7023 	rctx = perf_swevent_get_recursion_context();
7024 	__perf_pending_disable(event);
7025 	if (rctx >= 0)
7026 		perf_swevent_put_recursion_context(rctx);
7027 }
7028 
7029 static void perf_pending_irq(struct irq_work *entry)
7030 {
7031 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
7032 	int rctx;
7033 
7034 	/*
7035 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7036 	 * and we won't recurse 'further'.
7037 	 */
7038 	rctx = perf_swevent_get_recursion_context();
7039 
7040 	/*
7041 	 * The wakeup isn't bound to the context of the event -- it can happen
7042 	 * irrespective of where the event is.
7043 	 */
7044 	if (event->pending_wakeup) {
7045 		event->pending_wakeup = 0;
7046 		perf_event_wakeup(event);
7047 	}
7048 
7049 	if (rctx >= 0)
7050 		perf_swevent_put_recursion_context(rctx);
7051 }
7052 
7053 static void perf_pending_task(struct callback_head *head)
7054 {
7055 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
7056 	int rctx;
7057 
7058 	/*
7059 	 * All accesses to the event must belong to the same implicit RCU read-side
7060 	 * critical section as the ->pending_work reset. See comment in
7061 	 * perf_pending_task_sync().
7062 	 */
7063 	rcu_read_lock();
7064 	/*
7065 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7066 	 * and we won't recurse 'further'.
7067 	 */
7068 	rctx = perf_swevent_get_recursion_context();
7069 
7070 	if (event->pending_work) {
7071 		event->pending_work = 0;
7072 		perf_sigtrap(event);
7073 		local_dec(&event->ctx->nr_no_switch_fast);
7074 		rcuwait_wake_up(&event->pending_work_wait);
7075 	}
7076 	rcu_read_unlock();
7077 
7078 	if (rctx >= 0)
7079 		perf_swevent_put_recursion_context(rctx);
7080 }
7081 
7082 #ifdef CONFIG_GUEST_PERF_EVENTS
7083 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7084 
7085 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7086 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7087 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7088 
7089 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7090 {
7091 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7092 		return;
7093 
7094 	rcu_assign_pointer(perf_guest_cbs, cbs);
7095 	static_call_update(__perf_guest_state, cbs->state);
7096 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
7097 
7098 	/* Implementing ->handle_intel_pt_intr is optional. */
7099 	if (cbs->handle_intel_pt_intr)
7100 		static_call_update(__perf_guest_handle_intel_pt_intr,
7101 				   cbs->handle_intel_pt_intr);
7102 }
7103 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7104 
7105 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7106 {
7107 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7108 		return;
7109 
7110 	rcu_assign_pointer(perf_guest_cbs, NULL);
7111 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7112 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7113 	static_call_update(__perf_guest_handle_intel_pt_intr,
7114 			   (void *)&__static_call_return0);
7115 	synchronize_rcu();
7116 }
7117 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7118 #endif
7119 
7120 static bool should_sample_guest(struct perf_event *event)
7121 {
7122 	return !event->attr.exclude_guest && perf_guest_state();
7123 }
7124 
7125 unsigned long perf_misc_flags(struct perf_event *event,
7126 			      struct pt_regs *regs)
7127 {
7128 	if (should_sample_guest(event))
7129 		return perf_arch_guest_misc_flags(regs);
7130 
7131 	return perf_arch_misc_flags(regs);
7132 }
7133 
7134 unsigned long perf_instruction_pointer(struct perf_event *event,
7135 				       struct pt_regs *regs)
7136 {
7137 	if (should_sample_guest(event))
7138 		return perf_guest_get_ip();
7139 
7140 	return perf_arch_instruction_pointer(regs);
7141 }
7142 
7143 static void
7144 perf_output_sample_regs(struct perf_output_handle *handle,
7145 			struct pt_regs *regs, u64 mask)
7146 {
7147 	int bit;
7148 	DECLARE_BITMAP(_mask, 64);
7149 
7150 	bitmap_from_u64(_mask, mask);
7151 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7152 		u64 val;
7153 
7154 		val = perf_reg_value(regs, bit);
7155 		perf_output_put(handle, val);
7156 	}
7157 }
7158 
7159 static void perf_sample_regs_user(struct perf_regs *regs_user,
7160 				  struct pt_regs *regs)
7161 {
7162 	if (user_mode(regs)) {
7163 		regs_user->abi = perf_reg_abi(current);
7164 		regs_user->regs = regs;
7165 	} else if (!(current->flags & PF_KTHREAD)) {
7166 		perf_get_regs_user(regs_user, regs);
7167 	} else {
7168 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7169 		regs_user->regs = NULL;
7170 	}
7171 }
7172 
7173 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7174 				  struct pt_regs *regs)
7175 {
7176 	regs_intr->regs = regs;
7177 	regs_intr->abi  = perf_reg_abi(current);
7178 }
7179 
7180 
7181 /*
7182  * Get remaining task size from user stack pointer.
7183  *
7184  * It'd be better to take stack vma map and limit this more
7185  * precisely, but there's no way to get it safely under interrupt,
7186  * so using TASK_SIZE as limit.
7187  */
7188 static u64 perf_ustack_task_size(struct pt_regs *regs)
7189 {
7190 	unsigned long addr = perf_user_stack_pointer(regs);
7191 
7192 	if (!addr || addr >= TASK_SIZE)
7193 		return 0;
7194 
7195 	return TASK_SIZE - addr;
7196 }
7197 
7198 static u16
7199 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7200 			struct pt_regs *regs)
7201 {
7202 	u64 task_size;
7203 
7204 	/* No regs, no stack pointer, no dump. */
7205 	if (!regs)
7206 		return 0;
7207 
7208 	/*
7209 	 * Check if we fit in with the requested stack size into the:
7210 	 * - TASK_SIZE
7211 	 *   If we don't, we limit the size to the TASK_SIZE.
7212 	 *
7213 	 * - remaining sample size
7214 	 *   If we don't, we customize the stack size to
7215 	 *   fit in to the remaining sample size.
7216 	 */
7217 
7218 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7219 	stack_size = min(stack_size, (u16) task_size);
7220 
7221 	/* Current header size plus static size and dynamic size. */
7222 	header_size += 2 * sizeof(u64);
7223 
7224 	/* Do we fit in with the current stack dump size? */
7225 	if ((u16) (header_size + stack_size) < header_size) {
7226 		/*
7227 		 * If we overflow the maximum size for the sample,
7228 		 * we customize the stack dump size to fit in.
7229 		 */
7230 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7231 		stack_size = round_up(stack_size, sizeof(u64));
7232 	}
7233 
7234 	return stack_size;
7235 }
7236 
7237 static void
7238 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7239 			  struct pt_regs *regs)
7240 {
7241 	/* Case of a kernel thread, nothing to dump */
7242 	if (!regs) {
7243 		u64 size = 0;
7244 		perf_output_put(handle, size);
7245 	} else {
7246 		unsigned long sp;
7247 		unsigned int rem;
7248 		u64 dyn_size;
7249 
7250 		/*
7251 		 * We dump:
7252 		 * static size
7253 		 *   - the size requested by user or the best one we can fit
7254 		 *     in to the sample max size
7255 		 * data
7256 		 *   - user stack dump data
7257 		 * dynamic size
7258 		 *   - the actual dumped size
7259 		 */
7260 
7261 		/* Static size. */
7262 		perf_output_put(handle, dump_size);
7263 
7264 		/* Data. */
7265 		sp = perf_user_stack_pointer(regs);
7266 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7267 		dyn_size = dump_size - rem;
7268 
7269 		perf_output_skip(handle, rem);
7270 
7271 		/* Dynamic size. */
7272 		perf_output_put(handle, dyn_size);
7273 	}
7274 }
7275 
7276 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7277 					  struct perf_sample_data *data,
7278 					  size_t size)
7279 {
7280 	struct perf_event *sampler = event->aux_event;
7281 	struct perf_buffer *rb;
7282 
7283 	data->aux_size = 0;
7284 
7285 	if (!sampler)
7286 		goto out;
7287 
7288 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7289 		goto out;
7290 
7291 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7292 		goto out;
7293 
7294 	rb = ring_buffer_get(sampler);
7295 	if (!rb)
7296 		goto out;
7297 
7298 	/*
7299 	 * If this is an NMI hit inside sampling code, don't take
7300 	 * the sample. See also perf_aux_sample_output().
7301 	 */
7302 	if (READ_ONCE(rb->aux_in_sampling)) {
7303 		data->aux_size = 0;
7304 	} else {
7305 		size = min_t(size_t, size, perf_aux_size(rb));
7306 		data->aux_size = ALIGN(size, sizeof(u64));
7307 	}
7308 	ring_buffer_put(rb);
7309 
7310 out:
7311 	return data->aux_size;
7312 }
7313 
7314 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7315                                  struct perf_event *event,
7316                                  struct perf_output_handle *handle,
7317                                  unsigned long size)
7318 {
7319 	unsigned long flags;
7320 	long ret;
7321 
7322 	/*
7323 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7324 	 * paths. If we start calling them in NMI context, they may race with
7325 	 * the IRQ ones, that is, for example, re-starting an event that's just
7326 	 * been stopped, which is why we're using a separate callback that
7327 	 * doesn't change the event state.
7328 	 *
7329 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7330 	 */
7331 	local_irq_save(flags);
7332 	/*
7333 	 * Guard against NMI hits inside the critical section;
7334 	 * see also perf_prepare_sample_aux().
7335 	 */
7336 	WRITE_ONCE(rb->aux_in_sampling, 1);
7337 	barrier();
7338 
7339 	ret = event->pmu->snapshot_aux(event, handle, size);
7340 
7341 	barrier();
7342 	WRITE_ONCE(rb->aux_in_sampling, 0);
7343 	local_irq_restore(flags);
7344 
7345 	return ret;
7346 }
7347 
7348 static void perf_aux_sample_output(struct perf_event *event,
7349 				   struct perf_output_handle *handle,
7350 				   struct perf_sample_data *data)
7351 {
7352 	struct perf_event *sampler = event->aux_event;
7353 	struct perf_buffer *rb;
7354 	unsigned long pad;
7355 	long size;
7356 
7357 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7358 		return;
7359 
7360 	rb = ring_buffer_get(sampler);
7361 	if (!rb)
7362 		return;
7363 
7364 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7365 
7366 	/*
7367 	 * An error here means that perf_output_copy() failed (returned a
7368 	 * non-zero surplus that it didn't copy), which in its current
7369 	 * enlightened implementation is not possible. If that changes, we'd
7370 	 * like to know.
7371 	 */
7372 	if (WARN_ON_ONCE(size < 0))
7373 		goto out_put;
7374 
7375 	/*
7376 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7377 	 * perf_prepare_sample_aux(), so should not be more than that.
7378 	 */
7379 	pad = data->aux_size - size;
7380 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7381 		pad = 8;
7382 
7383 	if (pad) {
7384 		u64 zero = 0;
7385 		perf_output_copy(handle, &zero, pad);
7386 	}
7387 
7388 out_put:
7389 	ring_buffer_put(rb);
7390 }
7391 
7392 /*
7393  * A set of common sample data types saved even for non-sample records
7394  * when event->attr.sample_id_all is set.
7395  */
7396 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7397 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7398 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7399 
7400 static void __perf_event_header__init_id(struct perf_sample_data *data,
7401 					 struct perf_event *event,
7402 					 u64 sample_type)
7403 {
7404 	data->type = event->attr.sample_type;
7405 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7406 
7407 	if (sample_type & PERF_SAMPLE_TID) {
7408 		/* namespace issues */
7409 		data->tid_entry.pid = perf_event_pid(event, current);
7410 		data->tid_entry.tid = perf_event_tid(event, current);
7411 	}
7412 
7413 	if (sample_type & PERF_SAMPLE_TIME)
7414 		data->time = perf_event_clock(event);
7415 
7416 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7417 		data->id = primary_event_id(event);
7418 
7419 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7420 		data->stream_id = event->id;
7421 
7422 	if (sample_type & PERF_SAMPLE_CPU) {
7423 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7424 		data->cpu_entry.reserved = 0;
7425 	}
7426 }
7427 
7428 void perf_event_header__init_id(struct perf_event_header *header,
7429 				struct perf_sample_data *data,
7430 				struct perf_event *event)
7431 {
7432 	if (event->attr.sample_id_all) {
7433 		header->size += event->id_header_size;
7434 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7435 	}
7436 }
7437 
7438 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7439 					   struct perf_sample_data *data)
7440 {
7441 	u64 sample_type = data->type;
7442 
7443 	if (sample_type & PERF_SAMPLE_TID)
7444 		perf_output_put(handle, data->tid_entry);
7445 
7446 	if (sample_type & PERF_SAMPLE_TIME)
7447 		perf_output_put(handle, data->time);
7448 
7449 	if (sample_type & PERF_SAMPLE_ID)
7450 		perf_output_put(handle, data->id);
7451 
7452 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7453 		perf_output_put(handle, data->stream_id);
7454 
7455 	if (sample_type & PERF_SAMPLE_CPU)
7456 		perf_output_put(handle, data->cpu_entry);
7457 
7458 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7459 		perf_output_put(handle, data->id);
7460 }
7461 
7462 void perf_event__output_id_sample(struct perf_event *event,
7463 				  struct perf_output_handle *handle,
7464 				  struct perf_sample_data *sample)
7465 {
7466 	if (event->attr.sample_id_all)
7467 		__perf_event__output_id_sample(handle, sample);
7468 }
7469 
7470 static void perf_output_read_one(struct perf_output_handle *handle,
7471 				 struct perf_event *event,
7472 				 u64 enabled, u64 running)
7473 {
7474 	u64 read_format = event->attr.read_format;
7475 	u64 values[5];
7476 	int n = 0;
7477 
7478 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7479 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7480 		values[n++] = enabled +
7481 			atomic64_read(&event->child_total_time_enabled);
7482 	}
7483 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7484 		values[n++] = running +
7485 			atomic64_read(&event->child_total_time_running);
7486 	}
7487 	if (read_format & PERF_FORMAT_ID)
7488 		values[n++] = primary_event_id(event);
7489 	if (read_format & PERF_FORMAT_LOST)
7490 		values[n++] = atomic64_read(&event->lost_samples);
7491 
7492 	__output_copy(handle, values, n * sizeof(u64));
7493 }
7494 
7495 static void perf_output_read_group(struct perf_output_handle *handle,
7496 				   struct perf_event *event,
7497 				   u64 enabled, u64 running)
7498 {
7499 	struct perf_event *leader = event->group_leader, *sub;
7500 	u64 read_format = event->attr.read_format;
7501 	unsigned long flags;
7502 	u64 values[6];
7503 	int n = 0;
7504 	bool self = has_inherit_and_sample_read(&event->attr);
7505 
7506 	/*
7507 	 * Disabling interrupts avoids all counter scheduling
7508 	 * (context switches, timer based rotation and IPIs).
7509 	 */
7510 	local_irq_save(flags);
7511 
7512 	values[n++] = 1 + leader->nr_siblings;
7513 
7514 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7515 		values[n++] = enabled;
7516 
7517 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7518 		values[n++] = running;
7519 
7520 	if ((leader != event) && !handle->skip_read)
7521 		perf_pmu_read(leader);
7522 
7523 	values[n++] = perf_event_count(leader, self);
7524 	if (read_format & PERF_FORMAT_ID)
7525 		values[n++] = primary_event_id(leader);
7526 	if (read_format & PERF_FORMAT_LOST)
7527 		values[n++] = atomic64_read(&leader->lost_samples);
7528 
7529 	__output_copy(handle, values, n * sizeof(u64));
7530 
7531 	for_each_sibling_event(sub, leader) {
7532 		n = 0;
7533 
7534 		if ((sub != event) && !handle->skip_read)
7535 			perf_pmu_read(sub);
7536 
7537 		values[n++] = perf_event_count(sub, self);
7538 		if (read_format & PERF_FORMAT_ID)
7539 			values[n++] = primary_event_id(sub);
7540 		if (read_format & PERF_FORMAT_LOST)
7541 			values[n++] = atomic64_read(&sub->lost_samples);
7542 
7543 		__output_copy(handle, values, n * sizeof(u64));
7544 	}
7545 
7546 	local_irq_restore(flags);
7547 }
7548 
7549 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7550 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7551 
7552 /*
7553  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7554  *
7555  * The problem is that its both hard and excessively expensive to iterate the
7556  * child list, not to mention that its impossible to IPI the children running
7557  * on another CPU, from interrupt/NMI context.
7558  *
7559  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7560  * counts rather than attempting to accumulate some value across all children on
7561  * all cores.
7562  */
7563 static void perf_output_read(struct perf_output_handle *handle,
7564 			     struct perf_event *event)
7565 {
7566 	u64 enabled = 0, running = 0, now;
7567 	u64 read_format = event->attr.read_format;
7568 
7569 	/*
7570 	 * compute total_time_enabled, total_time_running
7571 	 * based on snapshot values taken when the event
7572 	 * was last scheduled in.
7573 	 *
7574 	 * we cannot simply called update_context_time()
7575 	 * because of locking issue as we are called in
7576 	 * NMI context
7577 	 */
7578 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7579 		calc_timer_values(event, &now, &enabled, &running);
7580 
7581 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7582 		perf_output_read_group(handle, event, enabled, running);
7583 	else
7584 		perf_output_read_one(handle, event, enabled, running);
7585 }
7586 
7587 void perf_output_sample(struct perf_output_handle *handle,
7588 			struct perf_event_header *header,
7589 			struct perf_sample_data *data,
7590 			struct perf_event *event)
7591 {
7592 	u64 sample_type = data->type;
7593 
7594 	if (data->sample_flags & PERF_SAMPLE_READ)
7595 		handle->skip_read = 1;
7596 
7597 	perf_output_put(handle, *header);
7598 
7599 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7600 		perf_output_put(handle, data->id);
7601 
7602 	if (sample_type & PERF_SAMPLE_IP)
7603 		perf_output_put(handle, data->ip);
7604 
7605 	if (sample_type & PERF_SAMPLE_TID)
7606 		perf_output_put(handle, data->tid_entry);
7607 
7608 	if (sample_type & PERF_SAMPLE_TIME)
7609 		perf_output_put(handle, data->time);
7610 
7611 	if (sample_type & PERF_SAMPLE_ADDR)
7612 		perf_output_put(handle, data->addr);
7613 
7614 	if (sample_type & PERF_SAMPLE_ID)
7615 		perf_output_put(handle, data->id);
7616 
7617 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7618 		perf_output_put(handle, data->stream_id);
7619 
7620 	if (sample_type & PERF_SAMPLE_CPU)
7621 		perf_output_put(handle, data->cpu_entry);
7622 
7623 	if (sample_type & PERF_SAMPLE_PERIOD)
7624 		perf_output_put(handle, data->period);
7625 
7626 	if (sample_type & PERF_SAMPLE_READ)
7627 		perf_output_read(handle, event);
7628 
7629 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7630 		int size = 1;
7631 
7632 		size += data->callchain->nr;
7633 		size *= sizeof(u64);
7634 		__output_copy(handle, data->callchain, size);
7635 	}
7636 
7637 	if (sample_type & PERF_SAMPLE_RAW) {
7638 		struct perf_raw_record *raw = data->raw;
7639 
7640 		if (raw) {
7641 			struct perf_raw_frag *frag = &raw->frag;
7642 
7643 			perf_output_put(handle, raw->size);
7644 			do {
7645 				if (frag->copy) {
7646 					__output_custom(handle, frag->copy,
7647 							frag->data, frag->size);
7648 				} else {
7649 					__output_copy(handle, frag->data,
7650 						      frag->size);
7651 				}
7652 				if (perf_raw_frag_last(frag))
7653 					break;
7654 				frag = frag->next;
7655 			} while (1);
7656 			if (frag->pad)
7657 				__output_skip(handle, NULL, frag->pad);
7658 		} else {
7659 			struct {
7660 				u32	size;
7661 				u32	data;
7662 			} raw = {
7663 				.size = sizeof(u32),
7664 				.data = 0,
7665 			};
7666 			perf_output_put(handle, raw);
7667 		}
7668 	}
7669 
7670 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7671 		if (data->br_stack) {
7672 			size_t size;
7673 
7674 			size = data->br_stack->nr
7675 			     * sizeof(struct perf_branch_entry);
7676 
7677 			perf_output_put(handle, data->br_stack->nr);
7678 			if (branch_sample_hw_index(event))
7679 				perf_output_put(handle, data->br_stack->hw_idx);
7680 			perf_output_copy(handle, data->br_stack->entries, size);
7681 			/*
7682 			 * Add the extension space which is appended
7683 			 * right after the struct perf_branch_stack.
7684 			 */
7685 			if (data->br_stack_cntr) {
7686 				size = data->br_stack->nr * sizeof(u64);
7687 				perf_output_copy(handle, data->br_stack_cntr, size);
7688 			}
7689 		} else {
7690 			/*
7691 			 * we always store at least the value of nr
7692 			 */
7693 			u64 nr = 0;
7694 			perf_output_put(handle, nr);
7695 		}
7696 	}
7697 
7698 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7699 		u64 abi = data->regs_user.abi;
7700 
7701 		/*
7702 		 * If there are no regs to dump, notice it through
7703 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7704 		 */
7705 		perf_output_put(handle, abi);
7706 
7707 		if (abi) {
7708 			u64 mask = event->attr.sample_regs_user;
7709 			perf_output_sample_regs(handle,
7710 						data->regs_user.regs,
7711 						mask);
7712 		}
7713 	}
7714 
7715 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7716 		perf_output_sample_ustack(handle,
7717 					  data->stack_user_size,
7718 					  data->regs_user.regs);
7719 	}
7720 
7721 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7722 		perf_output_put(handle, data->weight.full);
7723 
7724 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7725 		perf_output_put(handle, data->data_src.val);
7726 
7727 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7728 		perf_output_put(handle, data->txn);
7729 
7730 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7731 		u64 abi = data->regs_intr.abi;
7732 		/*
7733 		 * If there are no regs to dump, notice it through
7734 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7735 		 */
7736 		perf_output_put(handle, abi);
7737 
7738 		if (abi) {
7739 			u64 mask = event->attr.sample_regs_intr;
7740 
7741 			perf_output_sample_regs(handle,
7742 						data->regs_intr.regs,
7743 						mask);
7744 		}
7745 	}
7746 
7747 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7748 		perf_output_put(handle, data->phys_addr);
7749 
7750 	if (sample_type & PERF_SAMPLE_CGROUP)
7751 		perf_output_put(handle, data->cgroup);
7752 
7753 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7754 		perf_output_put(handle, data->data_page_size);
7755 
7756 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7757 		perf_output_put(handle, data->code_page_size);
7758 
7759 	if (sample_type & PERF_SAMPLE_AUX) {
7760 		perf_output_put(handle, data->aux_size);
7761 
7762 		if (data->aux_size)
7763 			perf_aux_sample_output(event, handle, data);
7764 	}
7765 
7766 	if (!event->attr.watermark) {
7767 		int wakeup_events = event->attr.wakeup_events;
7768 
7769 		if (wakeup_events) {
7770 			struct perf_buffer *rb = handle->rb;
7771 			int events = local_inc_return(&rb->events);
7772 
7773 			if (events >= wakeup_events) {
7774 				local_sub(wakeup_events, &rb->events);
7775 				local_inc(&rb->wakeup);
7776 			}
7777 		}
7778 	}
7779 }
7780 
7781 static u64 perf_virt_to_phys(u64 virt)
7782 {
7783 	u64 phys_addr = 0;
7784 
7785 	if (!virt)
7786 		return 0;
7787 
7788 	if (virt >= TASK_SIZE) {
7789 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7790 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7791 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7792 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7793 	} else {
7794 		/*
7795 		 * Walking the pages tables for user address.
7796 		 * Interrupts are disabled, so it prevents any tear down
7797 		 * of the page tables.
7798 		 * Try IRQ-safe get_user_page_fast_only first.
7799 		 * If failed, leave phys_addr as 0.
7800 		 */
7801 		if (current->mm != NULL) {
7802 			struct page *p;
7803 
7804 			pagefault_disable();
7805 			if (get_user_page_fast_only(virt, 0, &p)) {
7806 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7807 				put_page(p);
7808 			}
7809 			pagefault_enable();
7810 		}
7811 	}
7812 
7813 	return phys_addr;
7814 }
7815 
7816 /*
7817  * Return the pagetable size of a given virtual address.
7818  */
7819 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7820 {
7821 	u64 size = 0;
7822 
7823 #ifdef CONFIG_HAVE_GUP_FAST
7824 	pgd_t *pgdp, pgd;
7825 	p4d_t *p4dp, p4d;
7826 	pud_t *pudp, pud;
7827 	pmd_t *pmdp, pmd;
7828 	pte_t *ptep, pte;
7829 
7830 	pgdp = pgd_offset(mm, addr);
7831 	pgd = READ_ONCE(*pgdp);
7832 	if (pgd_none(pgd))
7833 		return 0;
7834 
7835 	if (pgd_leaf(pgd))
7836 		return pgd_leaf_size(pgd);
7837 
7838 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7839 	p4d = READ_ONCE(*p4dp);
7840 	if (!p4d_present(p4d))
7841 		return 0;
7842 
7843 	if (p4d_leaf(p4d))
7844 		return p4d_leaf_size(p4d);
7845 
7846 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7847 	pud = READ_ONCE(*pudp);
7848 	if (!pud_present(pud))
7849 		return 0;
7850 
7851 	if (pud_leaf(pud))
7852 		return pud_leaf_size(pud);
7853 
7854 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7855 again:
7856 	pmd = pmdp_get_lockless(pmdp);
7857 	if (!pmd_present(pmd))
7858 		return 0;
7859 
7860 	if (pmd_leaf(pmd))
7861 		return pmd_leaf_size(pmd);
7862 
7863 	ptep = pte_offset_map(&pmd, addr);
7864 	if (!ptep)
7865 		goto again;
7866 
7867 	pte = ptep_get_lockless(ptep);
7868 	if (pte_present(pte))
7869 		size = __pte_leaf_size(pmd, pte);
7870 	pte_unmap(ptep);
7871 #endif /* CONFIG_HAVE_GUP_FAST */
7872 
7873 	return size;
7874 }
7875 
7876 static u64 perf_get_page_size(unsigned long addr)
7877 {
7878 	struct mm_struct *mm;
7879 	unsigned long flags;
7880 	u64 size;
7881 
7882 	if (!addr)
7883 		return 0;
7884 
7885 	/*
7886 	 * Software page-table walkers must disable IRQs,
7887 	 * which prevents any tear down of the page tables.
7888 	 */
7889 	local_irq_save(flags);
7890 
7891 	mm = current->mm;
7892 	if (!mm) {
7893 		/*
7894 		 * For kernel threads and the like, use init_mm so that
7895 		 * we can find kernel memory.
7896 		 */
7897 		mm = &init_mm;
7898 	}
7899 
7900 	size = perf_get_pgtable_size(mm, addr);
7901 
7902 	local_irq_restore(flags);
7903 
7904 	return size;
7905 }
7906 
7907 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7908 
7909 struct perf_callchain_entry *
7910 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7911 {
7912 	bool kernel = !event->attr.exclude_callchain_kernel;
7913 	bool user   = !event->attr.exclude_callchain_user;
7914 	/* Disallow cross-task user callchains. */
7915 	bool crosstask = event->ctx->task && event->ctx->task != current;
7916 	const u32 max_stack = event->attr.sample_max_stack;
7917 	struct perf_callchain_entry *callchain;
7918 
7919 	if (!kernel && !user)
7920 		return &__empty_callchain;
7921 
7922 	callchain = get_perf_callchain(regs, 0, kernel, user,
7923 				       max_stack, crosstask, true);
7924 	return callchain ?: &__empty_callchain;
7925 }
7926 
7927 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7928 {
7929 	return d * !!(flags & s);
7930 }
7931 
7932 void perf_prepare_sample(struct perf_sample_data *data,
7933 			 struct perf_event *event,
7934 			 struct pt_regs *regs)
7935 {
7936 	u64 sample_type = event->attr.sample_type;
7937 	u64 filtered_sample_type;
7938 
7939 	/*
7940 	 * Add the sample flags that are dependent to others.  And clear the
7941 	 * sample flags that have already been done by the PMU driver.
7942 	 */
7943 	filtered_sample_type = sample_type;
7944 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7945 					   PERF_SAMPLE_IP);
7946 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7947 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7948 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7949 					   PERF_SAMPLE_REGS_USER);
7950 	filtered_sample_type &= ~data->sample_flags;
7951 
7952 	if (filtered_sample_type == 0) {
7953 		/* Make sure it has the correct data->type for output */
7954 		data->type = event->attr.sample_type;
7955 		return;
7956 	}
7957 
7958 	__perf_event_header__init_id(data, event, filtered_sample_type);
7959 
7960 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7961 		data->ip = perf_instruction_pointer(event, regs);
7962 		data->sample_flags |= PERF_SAMPLE_IP;
7963 	}
7964 
7965 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7966 		perf_sample_save_callchain(data, event, regs);
7967 
7968 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7969 		data->raw = NULL;
7970 		data->dyn_size += sizeof(u64);
7971 		data->sample_flags |= PERF_SAMPLE_RAW;
7972 	}
7973 
7974 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7975 		data->br_stack = NULL;
7976 		data->dyn_size += sizeof(u64);
7977 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7978 	}
7979 
7980 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7981 		perf_sample_regs_user(&data->regs_user, regs);
7982 
7983 	/*
7984 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7985 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7986 	 * the dyn_size if it's not requested by users.
7987 	 */
7988 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7989 		/* regs dump ABI info */
7990 		int size = sizeof(u64);
7991 
7992 		if (data->regs_user.regs) {
7993 			u64 mask = event->attr.sample_regs_user;
7994 			size += hweight64(mask) * sizeof(u64);
7995 		}
7996 
7997 		data->dyn_size += size;
7998 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7999 	}
8000 
8001 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
8002 		/*
8003 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
8004 		 * processed as the last one or have additional check added
8005 		 * in case new sample type is added, because we could eat
8006 		 * up the rest of the sample size.
8007 		 */
8008 		u16 stack_size = event->attr.sample_stack_user;
8009 		u16 header_size = perf_sample_data_size(data, event);
8010 		u16 size = sizeof(u64);
8011 
8012 		stack_size = perf_sample_ustack_size(stack_size, header_size,
8013 						     data->regs_user.regs);
8014 
8015 		/*
8016 		 * If there is something to dump, add space for the dump
8017 		 * itself and for the field that tells the dynamic size,
8018 		 * which is how many have been actually dumped.
8019 		 */
8020 		if (stack_size)
8021 			size += sizeof(u64) + stack_size;
8022 
8023 		data->stack_user_size = stack_size;
8024 		data->dyn_size += size;
8025 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
8026 	}
8027 
8028 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
8029 		data->weight.full = 0;
8030 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
8031 	}
8032 
8033 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
8034 		data->data_src.val = PERF_MEM_NA;
8035 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
8036 	}
8037 
8038 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
8039 		data->txn = 0;
8040 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
8041 	}
8042 
8043 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
8044 		data->addr = 0;
8045 		data->sample_flags |= PERF_SAMPLE_ADDR;
8046 	}
8047 
8048 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
8049 		/* regs dump ABI info */
8050 		int size = sizeof(u64);
8051 
8052 		perf_sample_regs_intr(&data->regs_intr, regs);
8053 
8054 		if (data->regs_intr.regs) {
8055 			u64 mask = event->attr.sample_regs_intr;
8056 
8057 			size += hweight64(mask) * sizeof(u64);
8058 		}
8059 
8060 		data->dyn_size += size;
8061 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
8062 	}
8063 
8064 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
8065 		data->phys_addr = perf_virt_to_phys(data->addr);
8066 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
8067 	}
8068 
8069 #ifdef CONFIG_CGROUP_PERF
8070 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
8071 		struct cgroup *cgrp;
8072 
8073 		/* protected by RCU */
8074 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8075 		data->cgroup = cgroup_id(cgrp);
8076 		data->sample_flags |= PERF_SAMPLE_CGROUP;
8077 	}
8078 #endif
8079 
8080 	/*
8081 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8082 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8083 	 * but the value will not dump to the userspace.
8084 	 */
8085 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8086 		data->data_page_size = perf_get_page_size(data->addr);
8087 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8088 	}
8089 
8090 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8091 		data->code_page_size = perf_get_page_size(data->ip);
8092 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8093 	}
8094 
8095 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
8096 		u64 size;
8097 		u16 header_size = perf_sample_data_size(data, event);
8098 
8099 		header_size += sizeof(u64); /* size */
8100 
8101 		/*
8102 		 * Given the 16bit nature of header::size, an AUX sample can
8103 		 * easily overflow it, what with all the preceding sample bits.
8104 		 * Make sure this doesn't happen by using up to U16_MAX bytes
8105 		 * per sample in total (rounded down to 8 byte boundary).
8106 		 */
8107 		size = min_t(size_t, U16_MAX - header_size,
8108 			     event->attr.aux_sample_size);
8109 		size = rounddown(size, 8);
8110 		size = perf_prepare_sample_aux(event, data, size);
8111 
8112 		WARN_ON_ONCE(size + header_size > U16_MAX);
8113 		data->dyn_size += size + sizeof(u64); /* size above */
8114 		data->sample_flags |= PERF_SAMPLE_AUX;
8115 	}
8116 }
8117 
8118 void perf_prepare_header(struct perf_event_header *header,
8119 			 struct perf_sample_data *data,
8120 			 struct perf_event *event,
8121 			 struct pt_regs *regs)
8122 {
8123 	header->type = PERF_RECORD_SAMPLE;
8124 	header->size = perf_sample_data_size(data, event);
8125 	header->misc = perf_misc_flags(event, regs);
8126 
8127 	/*
8128 	 * If you're adding more sample types here, you likely need to do
8129 	 * something about the overflowing header::size, like repurpose the
8130 	 * lowest 3 bits of size, which should be always zero at the moment.
8131 	 * This raises a more important question, do we really need 512k sized
8132 	 * samples and why, so good argumentation is in order for whatever you
8133 	 * do here next.
8134 	 */
8135 	WARN_ON_ONCE(header->size & 7);
8136 }
8137 
8138 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8139 {
8140 	if (pause) {
8141 		if (!event->hw.aux_paused) {
8142 			event->hw.aux_paused = 1;
8143 			event->pmu->stop(event, PERF_EF_PAUSE);
8144 		}
8145 	} else {
8146 		if (event->hw.aux_paused) {
8147 			event->hw.aux_paused = 0;
8148 			event->pmu->start(event, PERF_EF_RESUME);
8149 		}
8150 	}
8151 }
8152 
8153 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8154 {
8155 	struct perf_buffer *rb;
8156 
8157 	if (WARN_ON_ONCE(!event))
8158 		return;
8159 
8160 	rb = ring_buffer_get(event);
8161 	if (!rb)
8162 		return;
8163 
8164 	scoped_guard (irqsave) {
8165 		/*
8166 		 * Guard against self-recursion here. Another event could trip
8167 		 * this same from NMI context.
8168 		 */
8169 		if (READ_ONCE(rb->aux_in_pause_resume))
8170 			break;
8171 
8172 		WRITE_ONCE(rb->aux_in_pause_resume, 1);
8173 		barrier();
8174 		__perf_event_aux_pause(event, pause);
8175 		barrier();
8176 		WRITE_ONCE(rb->aux_in_pause_resume, 0);
8177 	}
8178 	ring_buffer_put(rb);
8179 }
8180 
8181 static __always_inline int
8182 __perf_event_output(struct perf_event *event,
8183 		    struct perf_sample_data *data,
8184 		    struct pt_regs *regs,
8185 		    int (*output_begin)(struct perf_output_handle *,
8186 					struct perf_sample_data *,
8187 					struct perf_event *,
8188 					unsigned int))
8189 {
8190 	struct perf_output_handle handle;
8191 	struct perf_event_header header;
8192 	int err;
8193 
8194 	/* protect the callchain buffers */
8195 	rcu_read_lock();
8196 
8197 	perf_prepare_sample(data, event, regs);
8198 	perf_prepare_header(&header, data, event, regs);
8199 
8200 	err = output_begin(&handle, data, event, header.size);
8201 	if (err)
8202 		goto exit;
8203 
8204 	perf_output_sample(&handle, &header, data, event);
8205 
8206 	perf_output_end(&handle);
8207 
8208 exit:
8209 	rcu_read_unlock();
8210 	return err;
8211 }
8212 
8213 void
8214 perf_event_output_forward(struct perf_event *event,
8215 			 struct perf_sample_data *data,
8216 			 struct pt_regs *regs)
8217 {
8218 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8219 }
8220 
8221 void
8222 perf_event_output_backward(struct perf_event *event,
8223 			   struct perf_sample_data *data,
8224 			   struct pt_regs *regs)
8225 {
8226 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8227 }
8228 
8229 int
8230 perf_event_output(struct perf_event *event,
8231 		  struct perf_sample_data *data,
8232 		  struct pt_regs *regs)
8233 {
8234 	return __perf_event_output(event, data, regs, perf_output_begin);
8235 }
8236 
8237 /*
8238  * read event_id
8239  */
8240 
8241 struct perf_read_event {
8242 	struct perf_event_header	header;
8243 
8244 	u32				pid;
8245 	u32				tid;
8246 };
8247 
8248 static void
8249 perf_event_read_event(struct perf_event *event,
8250 			struct task_struct *task)
8251 {
8252 	struct perf_output_handle handle;
8253 	struct perf_sample_data sample;
8254 	struct perf_read_event read_event = {
8255 		.header = {
8256 			.type = PERF_RECORD_READ,
8257 			.misc = 0,
8258 			.size = sizeof(read_event) + event->read_size,
8259 		},
8260 		.pid = perf_event_pid(event, task),
8261 		.tid = perf_event_tid(event, task),
8262 	};
8263 	int ret;
8264 
8265 	perf_event_header__init_id(&read_event.header, &sample, event);
8266 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8267 	if (ret)
8268 		return;
8269 
8270 	perf_output_put(&handle, read_event);
8271 	perf_output_read(&handle, event);
8272 	perf_event__output_id_sample(event, &handle, &sample);
8273 
8274 	perf_output_end(&handle);
8275 }
8276 
8277 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8278 
8279 static void
8280 perf_iterate_ctx(struct perf_event_context *ctx,
8281 		   perf_iterate_f output,
8282 		   void *data, bool all)
8283 {
8284 	struct perf_event *event;
8285 
8286 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8287 		if (!all) {
8288 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8289 				continue;
8290 			if (!event_filter_match(event))
8291 				continue;
8292 		}
8293 
8294 		output(event, data);
8295 	}
8296 }
8297 
8298 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8299 {
8300 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8301 	struct perf_event *event;
8302 
8303 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8304 		/*
8305 		 * Skip events that are not fully formed yet; ensure that
8306 		 * if we observe event->ctx, both event and ctx will be
8307 		 * complete enough. See perf_install_in_context().
8308 		 */
8309 		if (!smp_load_acquire(&event->ctx))
8310 			continue;
8311 
8312 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8313 			continue;
8314 		if (!event_filter_match(event))
8315 			continue;
8316 		output(event, data);
8317 	}
8318 }
8319 
8320 /*
8321  * Iterate all events that need to receive side-band events.
8322  *
8323  * For new callers; ensure that account_pmu_sb_event() includes
8324  * your event, otherwise it might not get delivered.
8325  */
8326 static void
8327 perf_iterate_sb(perf_iterate_f output, void *data,
8328 	       struct perf_event_context *task_ctx)
8329 {
8330 	struct perf_event_context *ctx;
8331 
8332 	rcu_read_lock();
8333 	preempt_disable();
8334 
8335 	/*
8336 	 * If we have task_ctx != NULL we only notify the task context itself.
8337 	 * The task_ctx is set only for EXIT events before releasing task
8338 	 * context.
8339 	 */
8340 	if (task_ctx) {
8341 		perf_iterate_ctx(task_ctx, output, data, false);
8342 		goto done;
8343 	}
8344 
8345 	perf_iterate_sb_cpu(output, data);
8346 
8347 	ctx = rcu_dereference(current->perf_event_ctxp);
8348 	if (ctx)
8349 		perf_iterate_ctx(ctx, output, data, false);
8350 done:
8351 	preempt_enable();
8352 	rcu_read_unlock();
8353 }
8354 
8355 /*
8356  * Clear all file-based filters at exec, they'll have to be
8357  * re-instated when/if these objects are mmapped again.
8358  */
8359 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8360 {
8361 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8362 	struct perf_addr_filter *filter;
8363 	unsigned int restart = 0, count = 0;
8364 	unsigned long flags;
8365 
8366 	if (!has_addr_filter(event))
8367 		return;
8368 
8369 	raw_spin_lock_irqsave(&ifh->lock, flags);
8370 	list_for_each_entry(filter, &ifh->list, entry) {
8371 		if (filter->path.dentry) {
8372 			event->addr_filter_ranges[count].start = 0;
8373 			event->addr_filter_ranges[count].size = 0;
8374 			restart++;
8375 		}
8376 
8377 		count++;
8378 	}
8379 
8380 	if (restart)
8381 		event->addr_filters_gen++;
8382 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8383 
8384 	if (restart)
8385 		perf_event_stop(event, 1);
8386 }
8387 
8388 void perf_event_exec(void)
8389 {
8390 	struct perf_event_context *ctx;
8391 
8392 	ctx = perf_pin_task_context(current);
8393 	if (!ctx)
8394 		return;
8395 
8396 	perf_event_enable_on_exec(ctx);
8397 	perf_event_remove_on_exec(ctx);
8398 	scoped_guard(rcu)
8399 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8400 
8401 	perf_unpin_context(ctx);
8402 	put_ctx(ctx);
8403 }
8404 
8405 struct remote_output {
8406 	struct perf_buffer	*rb;
8407 	int			err;
8408 };
8409 
8410 static void __perf_event_output_stop(struct perf_event *event, void *data)
8411 {
8412 	struct perf_event *parent = event->parent;
8413 	struct remote_output *ro = data;
8414 	struct perf_buffer *rb = ro->rb;
8415 	struct stop_event_data sd = {
8416 		.event	= event,
8417 	};
8418 
8419 	if (!has_aux(event))
8420 		return;
8421 
8422 	if (!parent)
8423 		parent = event;
8424 
8425 	/*
8426 	 * In case of inheritance, it will be the parent that links to the
8427 	 * ring-buffer, but it will be the child that's actually using it.
8428 	 *
8429 	 * We are using event::rb to determine if the event should be stopped,
8430 	 * however this may race with ring_buffer_attach() (through set_output),
8431 	 * which will make us skip the event that actually needs to be stopped.
8432 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8433 	 * its rb pointer.
8434 	 */
8435 	if (rcu_dereference(parent->rb) == rb)
8436 		ro->err = __perf_event_stop(&sd);
8437 }
8438 
8439 static int __perf_pmu_output_stop(void *info)
8440 {
8441 	struct perf_event *event = info;
8442 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8443 	struct remote_output ro = {
8444 		.rb	= event->rb,
8445 	};
8446 
8447 	rcu_read_lock();
8448 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8449 	if (cpuctx->task_ctx)
8450 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8451 				   &ro, false);
8452 	rcu_read_unlock();
8453 
8454 	return ro.err;
8455 }
8456 
8457 static void perf_pmu_output_stop(struct perf_event *event)
8458 {
8459 	struct perf_event *iter;
8460 	int err, cpu;
8461 
8462 restart:
8463 	rcu_read_lock();
8464 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8465 		/*
8466 		 * For per-CPU events, we need to make sure that neither they
8467 		 * nor their children are running; for cpu==-1 events it's
8468 		 * sufficient to stop the event itself if it's active, since
8469 		 * it can't have children.
8470 		 */
8471 		cpu = iter->cpu;
8472 		if (cpu == -1)
8473 			cpu = READ_ONCE(iter->oncpu);
8474 
8475 		if (cpu == -1)
8476 			continue;
8477 
8478 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8479 		if (err == -EAGAIN) {
8480 			rcu_read_unlock();
8481 			goto restart;
8482 		}
8483 	}
8484 	rcu_read_unlock();
8485 }
8486 
8487 /*
8488  * task tracking -- fork/exit
8489  *
8490  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8491  */
8492 
8493 struct perf_task_event {
8494 	struct task_struct		*task;
8495 	struct perf_event_context	*task_ctx;
8496 
8497 	struct {
8498 		struct perf_event_header	header;
8499 
8500 		u32				pid;
8501 		u32				ppid;
8502 		u32				tid;
8503 		u32				ptid;
8504 		u64				time;
8505 	} event_id;
8506 };
8507 
8508 static int perf_event_task_match(struct perf_event *event)
8509 {
8510 	return event->attr.comm  || event->attr.mmap ||
8511 	       event->attr.mmap2 || event->attr.mmap_data ||
8512 	       event->attr.task;
8513 }
8514 
8515 static void perf_event_task_output(struct perf_event *event,
8516 				   void *data)
8517 {
8518 	struct perf_task_event *task_event = data;
8519 	struct perf_output_handle handle;
8520 	struct perf_sample_data	sample;
8521 	struct task_struct *task = task_event->task;
8522 	int ret, size = task_event->event_id.header.size;
8523 
8524 	if (!perf_event_task_match(event))
8525 		return;
8526 
8527 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8528 
8529 	ret = perf_output_begin(&handle, &sample, event,
8530 				task_event->event_id.header.size);
8531 	if (ret)
8532 		goto out;
8533 
8534 	task_event->event_id.pid = perf_event_pid(event, task);
8535 	task_event->event_id.tid = perf_event_tid(event, task);
8536 
8537 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8538 		task_event->event_id.ppid = perf_event_pid(event,
8539 							task->real_parent);
8540 		task_event->event_id.ptid = perf_event_pid(event,
8541 							task->real_parent);
8542 	} else {  /* PERF_RECORD_FORK */
8543 		task_event->event_id.ppid = perf_event_pid(event, current);
8544 		task_event->event_id.ptid = perf_event_tid(event, current);
8545 	}
8546 
8547 	task_event->event_id.time = perf_event_clock(event);
8548 
8549 	perf_output_put(&handle, task_event->event_id);
8550 
8551 	perf_event__output_id_sample(event, &handle, &sample);
8552 
8553 	perf_output_end(&handle);
8554 out:
8555 	task_event->event_id.header.size = size;
8556 }
8557 
8558 static void perf_event_task(struct task_struct *task,
8559 			      struct perf_event_context *task_ctx,
8560 			      int new)
8561 {
8562 	struct perf_task_event task_event;
8563 
8564 	if (!atomic_read(&nr_comm_events) &&
8565 	    !atomic_read(&nr_mmap_events) &&
8566 	    !atomic_read(&nr_task_events))
8567 		return;
8568 
8569 	task_event = (struct perf_task_event){
8570 		.task	  = task,
8571 		.task_ctx = task_ctx,
8572 		.event_id    = {
8573 			.header = {
8574 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8575 				.misc = 0,
8576 				.size = sizeof(task_event.event_id),
8577 			},
8578 			/* .pid  */
8579 			/* .ppid */
8580 			/* .tid  */
8581 			/* .ptid */
8582 			/* .time */
8583 		},
8584 	};
8585 
8586 	perf_iterate_sb(perf_event_task_output,
8587 		       &task_event,
8588 		       task_ctx);
8589 }
8590 
8591 void perf_event_fork(struct task_struct *task)
8592 {
8593 	perf_event_task(task, NULL, 1);
8594 	perf_event_namespaces(task);
8595 }
8596 
8597 /*
8598  * comm tracking
8599  */
8600 
8601 struct perf_comm_event {
8602 	struct task_struct	*task;
8603 	char			*comm;
8604 	int			comm_size;
8605 
8606 	struct {
8607 		struct perf_event_header	header;
8608 
8609 		u32				pid;
8610 		u32				tid;
8611 	} event_id;
8612 };
8613 
8614 static int perf_event_comm_match(struct perf_event *event)
8615 {
8616 	return event->attr.comm;
8617 }
8618 
8619 static void perf_event_comm_output(struct perf_event *event,
8620 				   void *data)
8621 {
8622 	struct perf_comm_event *comm_event = data;
8623 	struct perf_output_handle handle;
8624 	struct perf_sample_data sample;
8625 	int size = comm_event->event_id.header.size;
8626 	int ret;
8627 
8628 	if (!perf_event_comm_match(event))
8629 		return;
8630 
8631 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8632 	ret = perf_output_begin(&handle, &sample, event,
8633 				comm_event->event_id.header.size);
8634 
8635 	if (ret)
8636 		goto out;
8637 
8638 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8639 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8640 
8641 	perf_output_put(&handle, comm_event->event_id);
8642 	__output_copy(&handle, comm_event->comm,
8643 				   comm_event->comm_size);
8644 
8645 	perf_event__output_id_sample(event, &handle, &sample);
8646 
8647 	perf_output_end(&handle);
8648 out:
8649 	comm_event->event_id.header.size = size;
8650 }
8651 
8652 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8653 {
8654 	char comm[TASK_COMM_LEN];
8655 	unsigned int size;
8656 
8657 	memset(comm, 0, sizeof(comm));
8658 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8659 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8660 
8661 	comm_event->comm = comm;
8662 	comm_event->comm_size = size;
8663 
8664 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8665 
8666 	perf_iterate_sb(perf_event_comm_output,
8667 		       comm_event,
8668 		       NULL);
8669 }
8670 
8671 void perf_event_comm(struct task_struct *task, bool exec)
8672 {
8673 	struct perf_comm_event comm_event;
8674 
8675 	if (!atomic_read(&nr_comm_events))
8676 		return;
8677 
8678 	comm_event = (struct perf_comm_event){
8679 		.task	= task,
8680 		/* .comm      */
8681 		/* .comm_size */
8682 		.event_id  = {
8683 			.header = {
8684 				.type = PERF_RECORD_COMM,
8685 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8686 				/* .size */
8687 			},
8688 			/* .pid */
8689 			/* .tid */
8690 		},
8691 	};
8692 
8693 	perf_event_comm_event(&comm_event);
8694 }
8695 
8696 /*
8697  * namespaces tracking
8698  */
8699 
8700 struct perf_namespaces_event {
8701 	struct task_struct		*task;
8702 
8703 	struct {
8704 		struct perf_event_header	header;
8705 
8706 		u32				pid;
8707 		u32				tid;
8708 		u64				nr_namespaces;
8709 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8710 	} event_id;
8711 };
8712 
8713 static int perf_event_namespaces_match(struct perf_event *event)
8714 {
8715 	return event->attr.namespaces;
8716 }
8717 
8718 static void perf_event_namespaces_output(struct perf_event *event,
8719 					 void *data)
8720 {
8721 	struct perf_namespaces_event *namespaces_event = data;
8722 	struct perf_output_handle handle;
8723 	struct perf_sample_data sample;
8724 	u16 header_size = namespaces_event->event_id.header.size;
8725 	int ret;
8726 
8727 	if (!perf_event_namespaces_match(event))
8728 		return;
8729 
8730 	perf_event_header__init_id(&namespaces_event->event_id.header,
8731 				   &sample, event);
8732 	ret = perf_output_begin(&handle, &sample, event,
8733 				namespaces_event->event_id.header.size);
8734 	if (ret)
8735 		goto out;
8736 
8737 	namespaces_event->event_id.pid = perf_event_pid(event,
8738 							namespaces_event->task);
8739 	namespaces_event->event_id.tid = perf_event_tid(event,
8740 							namespaces_event->task);
8741 
8742 	perf_output_put(&handle, namespaces_event->event_id);
8743 
8744 	perf_event__output_id_sample(event, &handle, &sample);
8745 
8746 	perf_output_end(&handle);
8747 out:
8748 	namespaces_event->event_id.header.size = header_size;
8749 }
8750 
8751 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8752 				   struct task_struct *task,
8753 				   const struct proc_ns_operations *ns_ops)
8754 {
8755 	struct path ns_path;
8756 	struct inode *ns_inode;
8757 	int error;
8758 
8759 	error = ns_get_path(&ns_path, task, ns_ops);
8760 	if (!error) {
8761 		ns_inode = ns_path.dentry->d_inode;
8762 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8763 		ns_link_info->ino = ns_inode->i_ino;
8764 		path_put(&ns_path);
8765 	}
8766 }
8767 
8768 void perf_event_namespaces(struct task_struct *task)
8769 {
8770 	struct perf_namespaces_event namespaces_event;
8771 	struct perf_ns_link_info *ns_link_info;
8772 
8773 	if (!atomic_read(&nr_namespaces_events))
8774 		return;
8775 
8776 	namespaces_event = (struct perf_namespaces_event){
8777 		.task	= task,
8778 		.event_id  = {
8779 			.header = {
8780 				.type = PERF_RECORD_NAMESPACES,
8781 				.misc = 0,
8782 				.size = sizeof(namespaces_event.event_id),
8783 			},
8784 			/* .pid */
8785 			/* .tid */
8786 			.nr_namespaces = NR_NAMESPACES,
8787 			/* .link_info[NR_NAMESPACES] */
8788 		},
8789 	};
8790 
8791 	ns_link_info = namespaces_event.event_id.link_info;
8792 
8793 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8794 			       task, &mntns_operations);
8795 
8796 #ifdef CONFIG_USER_NS
8797 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8798 			       task, &userns_operations);
8799 #endif
8800 #ifdef CONFIG_NET_NS
8801 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8802 			       task, &netns_operations);
8803 #endif
8804 #ifdef CONFIG_UTS_NS
8805 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8806 			       task, &utsns_operations);
8807 #endif
8808 #ifdef CONFIG_IPC_NS
8809 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8810 			       task, &ipcns_operations);
8811 #endif
8812 #ifdef CONFIG_PID_NS
8813 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8814 			       task, &pidns_operations);
8815 #endif
8816 #ifdef CONFIG_CGROUPS
8817 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8818 			       task, &cgroupns_operations);
8819 #endif
8820 
8821 	perf_iterate_sb(perf_event_namespaces_output,
8822 			&namespaces_event,
8823 			NULL);
8824 }
8825 
8826 /*
8827  * cgroup tracking
8828  */
8829 #ifdef CONFIG_CGROUP_PERF
8830 
8831 struct perf_cgroup_event {
8832 	char				*path;
8833 	int				path_size;
8834 	struct {
8835 		struct perf_event_header	header;
8836 		u64				id;
8837 		char				path[];
8838 	} event_id;
8839 };
8840 
8841 static int perf_event_cgroup_match(struct perf_event *event)
8842 {
8843 	return event->attr.cgroup;
8844 }
8845 
8846 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8847 {
8848 	struct perf_cgroup_event *cgroup_event = data;
8849 	struct perf_output_handle handle;
8850 	struct perf_sample_data sample;
8851 	u16 header_size = cgroup_event->event_id.header.size;
8852 	int ret;
8853 
8854 	if (!perf_event_cgroup_match(event))
8855 		return;
8856 
8857 	perf_event_header__init_id(&cgroup_event->event_id.header,
8858 				   &sample, event);
8859 	ret = perf_output_begin(&handle, &sample, event,
8860 				cgroup_event->event_id.header.size);
8861 	if (ret)
8862 		goto out;
8863 
8864 	perf_output_put(&handle, cgroup_event->event_id);
8865 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8866 
8867 	perf_event__output_id_sample(event, &handle, &sample);
8868 
8869 	perf_output_end(&handle);
8870 out:
8871 	cgroup_event->event_id.header.size = header_size;
8872 }
8873 
8874 static void perf_event_cgroup(struct cgroup *cgrp)
8875 {
8876 	struct perf_cgroup_event cgroup_event;
8877 	char path_enomem[16] = "//enomem";
8878 	char *pathname;
8879 	size_t size;
8880 
8881 	if (!atomic_read(&nr_cgroup_events))
8882 		return;
8883 
8884 	cgroup_event = (struct perf_cgroup_event){
8885 		.event_id  = {
8886 			.header = {
8887 				.type = PERF_RECORD_CGROUP,
8888 				.misc = 0,
8889 				.size = sizeof(cgroup_event.event_id),
8890 			},
8891 			.id = cgroup_id(cgrp),
8892 		},
8893 	};
8894 
8895 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8896 	if (pathname == NULL) {
8897 		cgroup_event.path = path_enomem;
8898 	} else {
8899 		/* just to be sure to have enough space for alignment */
8900 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8901 		cgroup_event.path = pathname;
8902 	}
8903 
8904 	/*
8905 	 * Since our buffer works in 8 byte units we need to align our string
8906 	 * size to a multiple of 8. However, we must guarantee the tail end is
8907 	 * zero'd out to avoid leaking random bits to userspace.
8908 	 */
8909 	size = strlen(cgroup_event.path) + 1;
8910 	while (!IS_ALIGNED(size, sizeof(u64)))
8911 		cgroup_event.path[size++] = '\0';
8912 
8913 	cgroup_event.event_id.header.size += size;
8914 	cgroup_event.path_size = size;
8915 
8916 	perf_iterate_sb(perf_event_cgroup_output,
8917 			&cgroup_event,
8918 			NULL);
8919 
8920 	kfree(pathname);
8921 }
8922 
8923 #endif
8924 
8925 /*
8926  * mmap tracking
8927  */
8928 
8929 struct perf_mmap_event {
8930 	struct vm_area_struct	*vma;
8931 
8932 	const char		*file_name;
8933 	int			file_size;
8934 	int			maj, min;
8935 	u64			ino;
8936 	u64			ino_generation;
8937 	u32			prot, flags;
8938 	u8			build_id[BUILD_ID_SIZE_MAX];
8939 	u32			build_id_size;
8940 
8941 	struct {
8942 		struct perf_event_header	header;
8943 
8944 		u32				pid;
8945 		u32				tid;
8946 		u64				start;
8947 		u64				len;
8948 		u64				pgoff;
8949 	} event_id;
8950 };
8951 
8952 static int perf_event_mmap_match(struct perf_event *event,
8953 				 void *data)
8954 {
8955 	struct perf_mmap_event *mmap_event = data;
8956 	struct vm_area_struct *vma = mmap_event->vma;
8957 	int executable = vma->vm_flags & VM_EXEC;
8958 
8959 	return (!executable && event->attr.mmap_data) ||
8960 	       (executable && (event->attr.mmap || event->attr.mmap2));
8961 }
8962 
8963 static void perf_event_mmap_output(struct perf_event *event,
8964 				   void *data)
8965 {
8966 	struct perf_mmap_event *mmap_event = data;
8967 	struct perf_output_handle handle;
8968 	struct perf_sample_data sample;
8969 	int size = mmap_event->event_id.header.size;
8970 	u32 type = mmap_event->event_id.header.type;
8971 	bool use_build_id;
8972 	int ret;
8973 
8974 	if (!perf_event_mmap_match(event, data))
8975 		return;
8976 
8977 	if (event->attr.mmap2) {
8978 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8979 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8980 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8981 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8982 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8983 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8984 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8985 	}
8986 
8987 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8988 	ret = perf_output_begin(&handle, &sample, event,
8989 				mmap_event->event_id.header.size);
8990 	if (ret)
8991 		goto out;
8992 
8993 	mmap_event->event_id.pid = perf_event_pid(event, current);
8994 	mmap_event->event_id.tid = perf_event_tid(event, current);
8995 
8996 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8997 
8998 	if (event->attr.mmap2 && use_build_id)
8999 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
9000 
9001 	perf_output_put(&handle, mmap_event->event_id);
9002 
9003 	if (event->attr.mmap2) {
9004 		if (use_build_id) {
9005 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
9006 
9007 			__output_copy(&handle, size, 4);
9008 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
9009 		} else {
9010 			perf_output_put(&handle, mmap_event->maj);
9011 			perf_output_put(&handle, mmap_event->min);
9012 			perf_output_put(&handle, mmap_event->ino);
9013 			perf_output_put(&handle, mmap_event->ino_generation);
9014 		}
9015 		perf_output_put(&handle, mmap_event->prot);
9016 		perf_output_put(&handle, mmap_event->flags);
9017 	}
9018 
9019 	__output_copy(&handle, mmap_event->file_name,
9020 				   mmap_event->file_size);
9021 
9022 	perf_event__output_id_sample(event, &handle, &sample);
9023 
9024 	perf_output_end(&handle);
9025 out:
9026 	mmap_event->event_id.header.size = size;
9027 	mmap_event->event_id.header.type = type;
9028 }
9029 
9030 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
9031 {
9032 	struct vm_area_struct *vma = mmap_event->vma;
9033 	struct file *file = vma->vm_file;
9034 	int maj = 0, min = 0;
9035 	u64 ino = 0, gen = 0;
9036 	u32 prot = 0, flags = 0;
9037 	unsigned int size;
9038 	char tmp[16];
9039 	char *buf = NULL;
9040 	char *name = NULL;
9041 
9042 	if (vma->vm_flags & VM_READ)
9043 		prot |= PROT_READ;
9044 	if (vma->vm_flags & VM_WRITE)
9045 		prot |= PROT_WRITE;
9046 	if (vma->vm_flags & VM_EXEC)
9047 		prot |= PROT_EXEC;
9048 
9049 	if (vma->vm_flags & VM_MAYSHARE)
9050 		flags = MAP_SHARED;
9051 	else
9052 		flags = MAP_PRIVATE;
9053 
9054 	if (vma->vm_flags & VM_LOCKED)
9055 		flags |= MAP_LOCKED;
9056 	if (is_vm_hugetlb_page(vma))
9057 		flags |= MAP_HUGETLB;
9058 
9059 	if (file) {
9060 		struct inode *inode;
9061 		dev_t dev;
9062 
9063 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
9064 		if (!buf) {
9065 			name = "//enomem";
9066 			goto cpy_name;
9067 		}
9068 		/*
9069 		 * d_path() works from the end of the rb backwards, so we
9070 		 * need to add enough zero bytes after the string to handle
9071 		 * the 64bit alignment we do later.
9072 		 */
9073 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
9074 		if (IS_ERR(name)) {
9075 			name = "//toolong";
9076 			goto cpy_name;
9077 		}
9078 		inode = file_inode(vma->vm_file);
9079 		dev = inode->i_sb->s_dev;
9080 		ino = inode->i_ino;
9081 		gen = inode->i_generation;
9082 		maj = MAJOR(dev);
9083 		min = MINOR(dev);
9084 
9085 		goto got_name;
9086 	} else {
9087 		if (vma->vm_ops && vma->vm_ops->name)
9088 			name = (char *) vma->vm_ops->name(vma);
9089 		if (!name)
9090 			name = (char *)arch_vma_name(vma);
9091 		if (!name) {
9092 			if (vma_is_initial_heap(vma))
9093 				name = "[heap]";
9094 			else if (vma_is_initial_stack(vma))
9095 				name = "[stack]";
9096 			else
9097 				name = "//anon";
9098 		}
9099 	}
9100 
9101 cpy_name:
9102 	strscpy(tmp, name, sizeof(tmp));
9103 	name = tmp;
9104 got_name:
9105 	/*
9106 	 * Since our buffer works in 8 byte units we need to align our string
9107 	 * size to a multiple of 8. However, we must guarantee the tail end is
9108 	 * zero'd out to avoid leaking random bits to userspace.
9109 	 */
9110 	size = strlen(name)+1;
9111 	while (!IS_ALIGNED(size, sizeof(u64)))
9112 		name[size++] = '\0';
9113 
9114 	mmap_event->file_name = name;
9115 	mmap_event->file_size = size;
9116 	mmap_event->maj = maj;
9117 	mmap_event->min = min;
9118 	mmap_event->ino = ino;
9119 	mmap_event->ino_generation = gen;
9120 	mmap_event->prot = prot;
9121 	mmap_event->flags = flags;
9122 
9123 	if (!(vma->vm_flags & VM_EXEC))
9124 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9125 
9126 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9127 
9128 	if (atomic_read(&nr_build_id_events))
9129 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9130 
9131 	perf_iterate_sb(perf_event_mmap_output,
9132 		       mmap_event,
9133 		       NULL);
9134 
9135 	kfree(buf);
9136 }
9137 
9138 /*
9139  * Check whether inode and address range match filter criteria.
9140  */
9141 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9142 				     struct file *file, unsigned long offset,
9143 				     unsigned long size)
9144 {
9145 	/* d_inode(NULL) won't be equal to any mapped user-space file */
9146 	if (!filter->path.dentry)
9147 		return false;
9148 
9149 	if (d_inode(filter->path.dentry) != file_inode(file))
9150 		return false;
9151 
9152 	if (filter->offset > offset + size)
9153 		return false;
9154 
9155 	if (filter->offset + filter->size < offset)
9156 		return false;
9157 
9158 	return true;
9159 }
9160 
9161 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9162 					struct vm_area_struct *vma,
9163 					struct perf_addr_filter_range *fr)
9164 {
9165 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9166 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9167 	struct file *file = vma->vm_file;
9168 
9169 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9170 		return false;
9171 
9172 	if (filter->offset < off) {
9173 		fr->start = vma->vm_start;
9174 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9175 	} else {
9176 		fr->start = vma->vm_start + filter->offset - off;
9177 		fr->size = min(vma->vm_end - fr->start, filter->size);
9178 	}
9179 
9180 	return true;
9181 }
9182 
9183 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9184 {
9185 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9186 	struct vm_area_struct *vma = data;
9187 	struct perf_addr_filter *filter;
9188 	unsigned int restart = 0, count = 0;
9189 	unsigned long flags;
9190 
9191 	if (!has_addr_filter(event))
9192 		return;
9193 
9194 	if (!vma->vm_file)
9195 		return;
9196 
9197 	raw_spin_lock_irqsave(&ifh->lock, flags);
9198 	list_for_each_entry(filter, &ifh->list, entry) {
9199 		if (perf_addr_filter_vma_adjust(filter, vma,
9200 						&event->addr_filter_ranges[count]))
9201 			restart++;
9202 
9203 		count++;
9204 	}
9205 
9206 	if (restart)
9207 		event->addr_filters_gen++;
9208 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9209 
9210 	if (restart)
9211 		perf_event_stop(event, 1);
9212 }
9213 
9214 /*
9215  * Adjust all task's events' filters to the new vma
9216  */
9217 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9218 {
9219 	struct perf_event_context *ctx;
9220 
9221 	/*
9222 	 * Data tracing isn't supported yet and as such there is no need
9223 	 * to keep track of anything that isn't related to executable code:
9224 	 */
9225 	if (!(vma->vm_flags & VM_EXEC))
9226 		return;
9227 
9228 	rcu_read_lock();
9229 	ctx = rcu_dereference(current->perf_event_ctxp);
9230 	if (ctx)
9231 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9232 	rcu_read_unlock();
9233 }
9234 
9235 void perf_event_mmap(struct vm_area_struct *vma)
9236 {
9237 	struct perf_mmap_event mmap_event;
9238 
9239 	if (!atomic_read(&nr_mmap_events))
9240 		return;
9241 
9242 	mmap_event = (struct perf_mmap_event){
9243 		.vma	= vma,
9244 		/* .file_name */
9245 		/* .file_size */
9246 		.event_id  = {
9247 			.header = {
9248 				.type = PERF_RECORD_MMAP,
9249 				.misc = PERF_RECORD_MISC_USER,
9250 				/* .size */
9251 			},
9252 			/* .pid */
9253 			/* .tid */
9254 			.start  = vma->vm_start,
9255 			.len    = vma->vm_end - vma->vm_start,
9256 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9257 		},
9258 		/* .maj (attr_mmap2 only) */
9259 		/* .min (attr_mmap2 only) */
9260 		/* .ino (attr_mmap2 only) */
9261 		/* .ino_generation (attr_mmap2 only) */
9262 		/* .prot (attr_mmap2 only) */
9263 		/* .flags (attr_mmap2 only) */
9264 	};
9265 
9266 	perf_addr_filters_adjust(vma);
9267 	perf_event_mmap_event(&mmap_event);
9268 }
9269 
9270 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9271 			  unsigned long size, u64 flags)
9272 {
9273 	struct perf_output_handle handle;
9274 	struct perf_sample_data sample;
9275 	struct perf_aux_event {
9276 		struct perf_event_header	header;
9277 		u64				offset;
9278 		u64				size;
9279 		u64				flags;
9280 	} rec = {
9281 		.header = {
9282 			.type = PERF_RECORD_AUX,
9283 			.misc = 0,
9284 			.size = sizeof(rec),
9285 		},
9286 		.offset		= head,
9287 		.size		= size,
9288 		.flags		= flags,
9289 	};
9290 	int ret;
9291 
9292 	perf_event_header__init_id(&rec.header, &sample, event);
9293 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9294 
9295 	if (ret)
9296 		return;
9297 
9298 	perf_output_put(&handle, rec);
9299 	perf_event__output_id_sample(event, &handle, &sample);
9300 
9301 	perf_output_end(&handle);
9302 }
9303 
9304 /*
9305  * Lost/dropped samples logging
9306  */
9307 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9308 {
9309 	struct perf_output_handle handle;
9310 	struct perf_sample_data sample;
9311 	int ret;
9312 
9313 	struct {
9314 		struct perf_event_header	header;
9315 		u64				lost;
9316 	} lost_samples_event = {
9317 		.header = {
9318 			.type = PERF_RECORD_LOST_SAMPLES,
9319 			.misc = 0,
9320 			.size = sizeof(lost_samples_event),
9321 		},
9322 		.lost		= lost,
9323 	};
9324 
9325 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9326 
9327 	ret = perf_output_begin(&handle, &sample, event,
9328 				lost_samples_event.header.size);
9329 	if (ret)
9330 		return;
9331 
9332 	perf_output_put(&handle, lost_samples_event);
9333 	perf_event__output_id_sample(event, &handle, &sample);
9334 	perf_output_end(&handle);
9335 }
9336 
9337 /*
9338  * context_switch tracking
9339  */
9340 
9341 struct perf_switch_event {
9342 	struct task_struct	*task;
9343 	struct task_struct	*next_prev;
9344 
9345 	struct {
9346 		struct perf_event_header	header;
9347 		u32				next_prev_pid;
9348 		u32				next_prev_tid;
9349 	} event_id;
9350 };
9351 
9352 static int perf_event_switch_match(struct perf_event *event)
9353 {
9354 	return event->attr.context_switch;
9355 }
9356 
9357 static void perf_event_switch_output(struct perf_event *event, void *data)
9358 {
9359 	struct perf_switch_event *se = data;
9360 	struct perf_output_handle handle;
9361 	struct perf_sample_data sample;
9362 	int ret;
9363 
9364 	if (!perf_event_switch_match(event))
9365 		return;
9366 
9367 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9368 	if (event->ctx->task) {
9369 		se->event_id.header.type = PERF_RECORD_SWITCH;
9370 		se->event_id.header.size = sizeof(se->event_id.header);
9371 	} else {
9372 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9373 		se->event_id.header.size = sizeof(se->event_id);
9374 		se->event_id.next_prev_pid =
9375 					perf_event_pid(event, se->next_prev);
9376 		se->event_id.next_prev_tid =
9377 					perf_event_tid(event, se->next_prev);
9378 	}
9379 
9380 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9381 
9382 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9383 	if (ret)
9384 		return;
9385 
9386 	if (event->ctx->task)
9387 		perf_output_put(&handle, se->event_id.header);
9388 	else
9389 		perf_output_put(&handle, se->event_id);
9390 
9391 	perf_event__output_id_sample(event, &handle, &sample);
9392 
9393 	perf_output_end(&handle);
9394 }
9395 
9396 static void perf_event_switch(struct task_struct *task,
9397 			      struct task_struct *next_prev, bool sched_in)
9398 {
9399 	struct perf_switch_event switch_event;
9400 
9401 	/* N.B. caller checks nr_switch_events != 0 */
9402 
9403 	switch_event = (struct perf_switch_event){
9404 		.task		= task,
9405 		.next_prev	= next_prev,
9406 		.event_id	= {
9407 			.header = {
9408 				/* .type */
9409 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9410 				/* .size */
9411 			},
9412 			/* .next_prev_pid */
9413 			/* .next_prev_tid */
9414 		},
9415 	};
9416 
9417 	if (!sched_in && task_is_runnable(task)) {
9418 		switch_event.event_id.header.misc |=
9419 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9420 	}
9421 
9422 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9423 }
9424 
9425 /*
9426  * IRQ throttle logging
9427  */
9428 
9429 static void perf_log_throttle(struct perf_event *event, int enable)
9430 {
9431 	struct perf_output_handle handle;
9432 	struct perf_sample_data sample;
9433 	int ret;
9434 
9435 	struct {
9436 		struct perf_event_header	header;
9437 		u64				time;
9438 		u64				id;
9439 		u64				stream_id;
9440 	} throttle_event = {
9441 		.header = {
9442 			.type = PERF_RECORD_THROTTLE,
9443 			.misc = 0,
9444 			.size = sizeof(throttle_event),
9445 		},
9446 		.time		= perf_event_clock(event),
9447 		.id		= primary_event_id(event),
9448 		.stream_id	= event->id,
9449 	};
9450 
9451 	if (enable)
9452 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9453 
9454 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9455 
9456 	ret = perf_output_begin(&handle, &sample, event,
9457 				throttle_event.header.size);
9458 	if (ret)
9459 		return;
9460 
9461 	perf_output_put(&handle, throttle_event);
9462 	perf_event__output_id_sample(event, &handle, &sample);
9463 	perf_output_end(&handle);
9464 }
9465 
9466 /*
9467  * ksymbol register/unregister tracking
9468  */
9469 
9470 struct perf_ksymbol_event {
9471 	const char	*name;
9472 	int		name_len;
9473 	struct {
9474 		struct perf_event_header        header;
9475 		u64				addr;
9476 		u32				len;
9477 		u16				ksym_type;
9478 		u16				flags;
9479 	} event_id;
9480 };
9481 
9482 static int perf_event_ksymbol_match(struct perf_event *event)
9483 {
9484 	return event->attr.ksymbol;
9485 }
9486 
9487 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9488 {
9489 	struct perf_ksymbol_event *ksymbol_event = data;
9490 	struct perf_output_handle handle;
9491 	struct perf_sample_data sample;
9492 	int ret;
9493 
9494 	if (!perf_event_ksymbol_match(event))
9495 		return;
9496 
9497 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9498 				   &sample, event);
9499 	ret = perf_output_begin(&handle, &sample, event,
9500 				ksymbol_event->event_id.header.size);
9501 	if (ret)
9502 		return;
9503 
9504 	perf_output_put(&handle, ksymbol_event->event_id);
9505 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9506 	perf_event__output_id_sample(event, &handle, &sample);
9507 
9508 	perf_output_end(&handle);
9509 }
9510 
9511 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9512 			const char *sym)
9513 {
9514 	struct perf_ksymbol_event ksymbol_event;
9515 	char name[KSYM_NAME_LEN];
9516 	u16 flags = 0;
9517 	int name_len;
9518 
9519 	if (!atomic_read(&nr_ksymbol_events))
9520 		return;
9521 
9522 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9523 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9524 		goto err;
9525 
9526 	strscpy(name, sym, KSYM_NAME_LEN);
9527 	name_len = strlen(name) + 1;
9528 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9529 		name[name_len++] = '\0';
9530 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9531 
9532 	if (unregister)
9533 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9534 
9535 	ksymbol_event = (struct perf_ksymbol_event){
9536 		.name = name,
9537 		.name_len = name_len,
9538 		.event_id = {
9539 			.header = {
9540 				.type = PERF_RECORD_KSYMBOL,
9541 				.size = sizeof(ksymbol_event.event_id) +
9542 					name_len,
9543 			},
9544 			.addr = addr,
9545 			.len = len,
9546 			.ksym_type = ksym_type,
9547 			.flags = flags,
9548 		},
9549 	};
9550 
9551 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9552 	return;
9553 err:
9554 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9555 }
9556 
9557 /*
9558  * bpf program load/unload tracking
9559  */
9560 
9561 struct perf_bpf_event {
9562 	struct bpf_prog	*prog;
9563 	struct {
9564 		struct perf_event_header        header;
9565 		u16				type;
9566 		u16				flags;
9567 		u32				id;
9568 		u8				tag[BPF_TAG_SIZE];
9569 	} event_id;
9570 };
9571 
9572 static int perf_event_bpf_match(struct perf_event *event)
9573 {
9574 	return event->attr.bpf_event;
9575 }
9576 
9577 static void perf_event_bpf_output(struct perf_event *event, void *data)
9578 {
9579 	struct perf_bpf_event *bpf_event = data;
9580 	struct perf_output_handle handle;
9581 	struct perf_sample_data sample;
9582 	int ret;
9583 
9584 	if (!perf_event_bpf_match(event))
9585 		return;
9586 
9587 	perf_event_header__init_id(&bpf_event->event_id.header,
9588 				   &sample, event);
9589 	ret = perf_output_begin(&handle, &sample, event,
9590 				bpf_event->event_id.header.size);
9591 	if (ret)
9592 		return;
9593 
9594 	perf_output_put(&handle, bpf_event->event_id);
9595 	perf_event__output_id_sample(event, &handle, &sample);
9596 
9597 	perf_output_end(&handle);
9598 }
9599 
9600 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9601 					 enum perf_bpf_event_type type)
9602 {
9603 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9604 	int i;
9605 
9606 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9607 			   (u64)(unsigned long)prog->bpf_func,
9608 			   prog->jited_len, unregister,
9609 			   prog->aux->ksym.name);
9610 
9611 	for (i = 1; i < prog->aux->func_cnt; i++) {
9612 		struct bpf_prog *subprog = prog->aux->func[i];
9613 
9614 		perf_event_ksymbol(
9615 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9616 			(u64)(unsigned long)subprog->bpf_func,
9617 			subprog->jited_len, unregister,
9618 			subprog->aux->ksym.name);
9619 	}
9620 }
9621 
9622 void perf_event_bpf_event(struct bpf_prog *prog,
9623 			  enum perf_bpf_event_type type,
9624 			  u16 flags)
9625 {
9626 	struct perf_bpf_event bpf_event;
9627 
9628 	switch (type) {
9629 	case PERF_BPF_EVENT_PROG_LOAD:
9630 	case PERF_BPF_EVENT_PROG_UNLOAD:
9631 		if (atomic_read(&nr_ksymbol_events))
9632 			perf_event_bpf_emit_ksymbols(prog, type);
9633 		break;
9634 	default:
9635 		return;
9636 	}
9637 
9638 	if (!atomic_read(&nr_bpf_events))
9639 		return;
9640 
9641 	bpf_event = (struct perf_bpf_event){
9642 		.prog = prog,
9643 		.event_id = {
9644 			.header = {
9645 				.type = PERF_RECORD_BPF_EVENT,
9646 				.size = sizeof(bpf_event.event_id),
9647 			},
9648 			.type = type,
9649 			.flags = flags,
9650 			.id = prog->aux->id,
9651 		},
9652 	};
9653 
9654 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9655 
9656 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9657 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9658 }
9659 
9660 struct perf_text_poke_event {
9661 	const void		*old_bytes;
9662 	const void		*new_bytes;
9663 	size_t			pad;
9664 	u16			old_len;
9665 	u16			new_len;
9666 
9667 	struct {
9668 		struct perf_event_header	header;
9669 
9670 		u64				addr;
9671 	} event_id;
9672 };
9673 
9674 static int perf_event_text_poke_match(struct perf_event *event)
9675 {
9676 	return event->attr.text_poke;
9677 }
9678 
9679 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9680 {
9681 	struct perf_text_poke_event *text_poke_event = data;
9682 	struct perf_output_handle handle;
9683 	struct perf_sample_data sample;
9684 	u64 padding = 0;
9685 	int ret;
9686 
9687 	if (!perf_event_text_poke_match(event))
9688 		return;
9689 
9690 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9691 
9692 	ret = perf_output_begin(&handle, &sample, event,
9693 				text_poke_event->event_id.header.size);
9694 	if (ret)
9695 		return;
9696 
9697 	perf_output_put(&handle, text_poke_event->event_id);
9698 	perf_output_put(&handle, text_poke_event->old_len);
9699 	perf_output_put(&handle, text_poke_event->new_len);
9700 
9701 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9702 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9703 
9704 	if (text_poke_event->pad)
9705 		__output_copy(&handle, &padding, text_poke_event->pad);
9706 
9707 	perf_event__output_id_sample(event, &handle, &sample);
9708 
9709 	perf_output_end(&handle);
9710 }
9711 
9712 void perf_event_text_poke(const void *addr, const void *old_bytes,
9713 			  size_t old_len, const void *new_bytes, size_t new_len)
9714 {
9715 	struct perf_text_poke_event text_poke_event;
9716 	size_t tot, pad;
9717 
9718 	if (!atomic_read(&nr_text_poke_events))
9719 		return;
9720 
9721 	tot  = sizeof(text_poke_event.old_len) + old_len;
9722 	tot += sizeof(text_poke_event.new_len) + new_len;
9723 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9724 
9725 	text_poke_event = (struct perf_text_poke_event){
9726 		.old_bytes    = old_bytes,
9727 		.new_bytes    = new_bytes,
9728 		.pad          = pad,
9729 		.old_len      = old_len,
9730 		.new_len      = new_len,
9731 		.event_id  = {
9732 			.header = {
9733 				.type = PERF_RECORD_TEXT_POKE,
9734 				.misc = PERF_RECORD_MISC_KERNEL,
9735 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9736 			},
9737 			.addr = (unsigned long)addr,
9738 		},
9739 	};
9740 
9741 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9742 }
9743 
9744 void perf_event_itrace_started(struct perf_event *event)
9745 {
9746 	event->attach_state |= PERF_ATTACH_ITRACE;
9747 }
9748 
9749 static void perf_log_itrace_start(struct perf_event *event)
9750 {
9751 	struct perf_output_handle handle;
9752 	struct perf_sample_data sample;
9753 	struct perf_aux_event {
9754 		struct perf_event_header        header;
9755 		u32				pid;
9756 		u32				tid;
9757 	} rec;
9758 	int ret;
9759 
9760 	if (event->parent)
9761 		event = event->parent;
9762 
9763 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9764 	    event->attach_state & PERF_ATTACH_ITRACE)
9765 		return;
9766 
9767 	rec.header.type	= PERF_RECORD_ITRACE_START;
9768 	rec.header.misc	= 0;
9769 	rec.header.size	= sizeof(rec);
9770 	rec.pid	= perf_event_pid(event, current);
9771 	rec.tid	= perf_event_tid(event, current);
9772 
9773 	perf_event_header__init_id(&rec.header, &sample, event);
9774 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9775 
9776 	if (ret)
9777 		return;
9778 
9779 	perf_output_put(&handle, rec);
9780 	perf_event__output_id_sample(event, &handle, &sample);
9781 
9782 	perf_output_end(&handle);
9783 }
9784 
9785 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9786 {
9787 	struct perf_output_handle handle;
9788 	struct perf_sample_data sample;
9789 	struct perf_aux_event {
9790 		struct perf_event_header        header;
9791 		u64				hw_id;
9792 	} rec;
9793 	int ret;
9794 
9795 	if (event->parent)
9796 		event = event->parent;
9797 
9798 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9799 	rec.header.misc	= 0;
9800 	rec.header.size	= sizeof(rec);
9801 	rec.hw_id	= hw_id;
9802 
9803 	perf_event_header__init_id(&rec.header, &sample, event);
9804 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9805 
9806 	if (ret)
9807 		return;
9808 
9809 	perf_output_put(&handle, rec);
9810 	perf_event__output_id_sample(event, &handle, &sample);
9811 
9812 	perf_output_end(&handle);
9813 }
9814 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9815 
9816 static int
9817 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9818 {
9819 	struct hw_perf_event *hwc = &event->hw;
9820 	int ret = 0;
9821 	u64 seq;
9822 
9823 	seq = __this_cpu_read(perf_throttled_seq);
9824 	if (seq != hwc->interrupts_seq) {
9825 		hwc->interrupts_seq = seq;
9826 		hwc->interrupts = 1;
9827 	} else {
9828 		hwc->interrupts++;
9829 		if (unlikely(throttle &&
9830 			     hwc->interrupts > max_samples_per_tick)) {
9831 			__this_cpu_inc(perf_throttled_count);
9832 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9833 			hwc->interrupts = MAX_INTERRUPTS;
9834 			perf_log_throttle(event, 0);
9835 			ret = 1;
9836 		}
9837 	}
9838 
9839 	if (event->attr.freq) {
9840 		u64 now = perf_clock();
9841 		s64 delta = now - hwc->freq_time_stamp;
9842 
9843 		hwc->freq_time_stamp = now;
9844 
9845 		if (delta > 0 && delta < 2*TICK_NSEC)
9846 			perf_adjust_period(event, delta, hwc->last_period, true);
9847 	}
9848 
9849 	return ret;
9850 }
9851 
9852 int perf_event_account_interrupt(struct perf_event *event)
9853 {
9854 	return __perf_event_account_interrupt(event, 1);
9855 }
9856 
9857 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9858 {
9859 	/*
9860 	 * Due to interrupt latency (AKA "skid"), we may enter the
9861 	 * kernel before taking an overflow, even if the PMU is only
9862 	 * counting user events.
9863 	 */
9864 	if (event->attr.exclude_kernel && !user_mode(regs))
9865 		return false;
9866 
9867 	return true;
9868 }
9869 
9870 #ifdef CONFIG_BPF_SYSCALL
9871 static int bpf_overflow_handler(struct perf_event *event,
9872 				struct perf_sample_data *data,
9873 				struct pt_regs *regs)
9874 {
9875 	struct bpf_perf_event_data_kern ctx = {
9876 		.data = data,
9877 		.event = event,
9878 	};
9879 	struct bpf_prog *prog;
9880 	int ret = 0;
9881 
9882 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9883 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9884 		goto out;
9885 	rcu_read_lock();
9886 	prog = READ_ONCE(event->prog);
9887 	if (prog) {
9888 		perf_prepare_sample(data, event, regs);
9889 		ret = bpf_prog_run(prog, &ctx);
9890 	}
9891 	rcu_read_unlock();
9892 out:
9893 	__this_cpu_dec(bpf_prog_active);
9894 
9895 	return ret;
9896 }
9897 
9898 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9899 					     struct bpf_prog *prog,
9900 					     u64 bpf_cookie)
9901 {
9902 	if (event->overflow_handler_context)
9903 		/* hw breakpoint or kernel counter */
9904 		return -EINVAL;
9905 
9906 	if (event->prog)
9907 		return -EEXIST;
9908 
9909 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9910 		return -EINVAL;
9911 
9912 	if (event->attr.precise_ip &&
9913 	    prog->call_get_stack &&
9914 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9915 	     event->attr.exclude_callchain_kernel ||
9916 	     event->attr.exclude_callchain_user)) {
9917 		/*
9918 		 * On perf_event with precise_ip, calling bpf_get_stack()
9919 		 * may trigger unwinder warnings and occasional crashes.
9920 		 * bpf_get_[stack|stackid] works around this issue by using
9921 		 * callchain attached to perf_sample_data. If the
9922 		 * perf_event does not full (kernel and user) callchain
9923 		 * attached to perf_sample_data, do not allow attaching BPF
9924 		 * program that calls bpf_get_[stack|stackid].
9925 		 */
9926 		return -EPROTO;
9927 	}
9928 
9929 	event->prog = prog;
9930 	event->bpf_cookie = bpf_cookie;
9931 	return 0;
9932 }
9933 
9934 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9935 {
9936 	struct bpf_prog *prog = event->prog;
9937 
9938 	if (!prog)
9939 		return;
9940 
9941 	event->prog = NULL;
9942 	bpf_prog_put(prog);
9943 }
9944 #else
9945 static inline int bpf_overflow_handler(struct perf_event *event,
9946 				       struct perf_sample_data *data,
9947 				       struct pt_regs *regs)
9948 {
9949 	return 1;
9950 }
9951 
9952 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9953 					     struct bpf_prog *prog,
9954 					     u64 bpf_cookie)
9955 {
9956 	return -EOPNOTSUPP;
9957 }
9958 
9959 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9960 {
9961 }
9962 #endif
9963 
9964 /*
9965  * Generic event overflow handling, sampling.
9966  */
9967 
9968 static int __perf_event_overflow(struct perf_event *event,
9969 				 int throttle, struct perf_sample_data *data,
9970 				 struct pt_regs *regs)
9971 {
9972 	int events = atomic_read(&event->event_limit);
9973 	int ret = 0;
9974 
9975 	/*
9976 	 * Non-sampling counters might still use the PMI to fold short
9977 	 * hardware counters, ignore those.
9978 	 */
9979 	if (unlikely(!is_sampling_event(event)))
9980 		return 0;
9981 
9982 	ret = __perf_event_account_interrupt(event, throttle);
9983 
9984 	if (event->attr.aux_pause)
9985 		perf_event_aux_pause(event->aux_event, true);
9986 
9987 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
9988 	    !bpf_overflow_handler(event, data, regs))
9989 		goto out;
9990 
9991 	/*
9992 	 * XXX event_limit might not quite work as expected on inherited
9993 	 * events
9994 	 */
9995 
9996 	event->pending_kill = POLL_IN;
9997 	if (events && atomic_dec_and_test(&event->event_limit)) {
9998 		ret = 1;
9999 		event->pending_kill = POLL_HUP;
10000 		perf_event_disable_inatomic(event);
10001 	}
10002 
10003 	if (event->attr.sigtrap) {
10004 		/*
10005 		 * The desired behaviour of sigtrap vs invalid samples is a bit
10006 		 * tricky; on the one hand, one should not loose the SIGTRAP if
10007 		 * it is the first event, on the other hand, we should also not
10008 		 * trigger the WARN or override the data address.
10009 		 */
10010 		bool valid_sample = sample_is_allowed(event, regs);
10011 		unsigned int pending_id = 1;
10012 		enum task_work_notify_mode notify_mode;
10013 
10014 		if (regs)
10015 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
10016 
10017 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
10018 
10019 		if (!event->pending_work &&
10020 		    !task_work_add(current, &event->pending_task, notify_mode)) {
10021 			event->pending_work = pending_id;
10022 			local_inc(&event->ctx->nr_no_switch_fast);
10023 
10024 			event->pending_addr = 0;
10025 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
10026 				event->pending_addr = data->addr;
10027 
10028 		} else if (event->attr.exclude_kernel && valid_sample) {
10029 			/*
10030 			 * Should not be able to return to user space without
10031 			 * consuming pending_work; with exceptions:
10032 			 *
10033 			 *  1. Where !exclude_kernel, events can overflow again
10034 			 *     in the kernel without returning to user space.
10035 			 *
10036 			 *  2. Events that can overflow again before the IRQ-
10037 			 *     work without user space progress (e.g. hrtimer).
10038 			 *     To approximate progress (with false negatives),
10039 			 *     check 32-bit hash of the current IP.
10040 			 */
10041 			WARN_ON_ONCE(event->pending_work != pending_id);
10042 		}
10043 	}
10044 
10045 	READ_ONCE(event->overflow_handler)(event, data, regs);
10046 
10047 	if (*perf_event_fasync(event) && event->pending_kill) {
10048 		event->pending_wakeup = 1;
10049 		irq_work_queue(&event->pending_irq);
10050 	}
10051 out:
10052 	if (event->attr.aux_resume)
10053 		perf_event_aux_pause(event->aux_event, false);
10054 
10055 	return ret;
10056 }
10057 
10058 int perf_event_overflow(struct perf_event *event,
10059 			struct perf_sample_data *data,
10060 			struct pt_regs *regs)
10061 {
10062 	return __perf_event_overflow(event, 1, data, regs);
10063 }
10064 
10065 /*
10066  * Generic software event infrastructure
10067  */
10068 
10069 struct swevent_htable {
10070 	struct swevent_hlist		*swevent_hlist;
10071 	struct mutex			hlist_mutex;
10072 	int				hlist_refcount;
10073 };
10074 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10075 
10076 /*
10077  * We directly increment event->count and keep a second value in
10078  * event->hw.period_left to count intervals. This period event
10079  * is kept in the range [-sample_period, 0] so that we can use the
10080  * sign as trigger.
10081  */
10082 
10083 u64 perf_swevent_set_period(struct perf_event *event)
10084 {
10085 	struct hw_perf_event *hwc = &event->hw;
10086 	u64 period = hwc->last_period;
10087 	u64 nr, offset;
10088 	s64 old, val;
10089 
10090 	hwc->last_period = hwc->sample_period;
10091 
10092 	old = local64_read(&hwc->period_left);
10093 	do {
10094 		val = old;
10095 		if (val < 0)
10096 			return 0;
10097 
10098 		nr = div64_u64(period + val, period);
10099 		offset = nr * period;
10100 		val -= offset;
10101 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10102 
10103 	return nr;
10104 }
10105 
10106 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10107 				    struct perf_sample_data *data,
10108 				    struct pt_regs *regs)
10109 {
10110 	struct hw_perf_event *hwc = &event->hw;
10111 	int throttle = 0;
10112 
10113 	if (!overflow)
10114 		overflow = perf_swevent_set_period(event);
10115 
10116 	if (hwc->interrupts == MAX_INTERRUPTS)
10117 		return;
10118 
10119 	for (; overflow; overflow--) {
10120 		if (__perf_event_overflow(event, throttle,
10121 					    data, regs)) {
10122 			/*
10123 			 * We inhibit the overflow from happening when
10124 			 * hwc->interrupts == MAX_INTERRUPTS.
10125 			 */
10126 			break;
10127 		}
10128 		throttle = 1;
10129 	}
10130 }
10131 
10132 static void perf_swevent_event(struct perf_event *event, u64 nr,
10133 			       struct perf_sample_data *data,
10134 			       struct pt_regs *regs)
10135 {
10136 	struct hw_perf_event *hwc = &event->hw;
10137 
10138 	local64_add(nr, &event->count);
10139 
10140 	if (!regs)
10141 		return;
10142 
10143 	if (!is_sampling_event(event))
10144 		return;
10145 
10146 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10147 		data->period = nr;
10148 		return perf_swevent_overflow(event, 1, data, regs);
10149 	} else
10150 		data->period = event->hw.last_period;
10151 
10152 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10153 		return perf_swevent_overflow(event, 1, data, regs);
10154 
10155 	if (local64_add_negative(nr, &hwc->period_left))
10156 		return;
10157 
10158 	perf_swevent_overflow(event, 0, data, regs);
10159 }
10160 
10161 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10162 {
10163 	if (event->hw.state & PERF_HES_STOPPED)
10164 		return 1;
10165 
10166 	if (regs) {
10167 		if (event->attr.exclude_user && user_mode(regs))
10168 			return 1;
10169 
10170 		if (event->attr.exclude_kernel && !user_mode(regs))
10171 			return 1;
10172 	}
10173 
10174 	return 0;
10175 }
10176 
10177 static int perf_swevent_match(struct perf_event *event,
10178 				enum perf_type_id type,
10179 				u32 event_id,
10180 				struct perf_sample_data *data,
10181 				struct pt_regs *regs)
10182 {
10183 	if (event->attr.type != type)
10184 		return 0;
10185 
10186 	if (event->attr.config != event_id)
10187 		return 0;
10188 
10189 	if (perf_exclude_event(event, regs))
10190 		return 0;
10191 
10192 	return 1;
10193 }
10194 
10195 static inline u64 swevent_hash(u64 type, u32 event_id)
10196 {
10197 	u64 val = event_id | (type << 32);
10198 
10199 	return hash_64(val, SWEVENT_HLIST_BITS);
10200 }
10201 
10202 static inline struct hlist_head *
10203 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10204 {
10205 	u64 hash = swevent_hash(type, event_id);
10206 
10207 	return &hlist->heads[hash];
10208 }
10209 
10210 /* For the read side: events when they trigger */
10211 static inline struct hlist_head *
10212 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10213 {
10214 	struct swevent_hlist *hlist;
10215 
10216 	hlist = rcu_dereference(swhash->swevent_hlist);
10217 	if (!hlist)
10218 		return NULL;
10219 
10220 	return __find_swevent_head(hlist, type, event_id);
10221 }
10222 
10223 /* For the event head insertion and removal in the hlist */
10224 static inline struct hlist_head *
10225 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10226 {
10227 	struct swevent_hlist *hlist;
10228 	u32 event_id = event->attr.config;
10229 	u64 type = event->attr.type;
10230 
10231 	/*
10232 	 * Event scheduling is always serialized against hlist allocation
10233 	 * and release. Which makes the protected version suitable here.
10234 	 * The context lock guarantees that.
10235 	 */
10236 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10237 					  lockdep_is_held(&event->ctx->lock));
10238 	if (!hlist)
10239 		return NULL;
10240 
10241 	return __find_swevent_head(hlist, type, event_id);
10242 }
10243 
10244 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10245 				    u64 nr,
10246 				    struct perf_sample_data *data,
10247 				    struct pt_regs *regs)
10248 {
10249 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10250 	struct perf_event *event;
10251 	struct hlist_head *head;
10252 
10253 	rcu_read_lock();
10254 	head = find_swevent_head_rcu(swhash, type, event_id);
10255 	if (!head)
10256 		goto end;
10257 
10258 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10259 		if (perf_swevent_match(event, type, event_id, data, regs))
10260 			perf_swevent_event(event, nr, data, regs);
10261 	}
10262 end:
10263 	rcu_read_unlock();
10264 }
10265 
10266 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10267 
10268 int perf_swevent_get_recursion_context(void)
10269 {
10270 	return get_recursion_context(current->perf_recursion);
10271 }
10272 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10273 
10274 void perf_swevent_put_recursion_context(int rctx)
10275 {
10276 	put_recursion_context(current->perf_recursion, rctx);
10277 }
10278 
10279 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10280 {
10281 	struct perf_sample_data data;
10282 
10283 	if (WARN_ON_ONCE(!regs))
10284 		return;
10285 
10286 	perf_sample_data_init(&data, addr, 0);
10287 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10288 }
10289 
10290 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10291 {
10292 	int rctx;
10293 
10294 	preempt_disable_notrace();
10295 	rctx = perf_swevent_get_recursion_context();
10296 	if (unlikely(rctx < 0))
10297 		goto fail;
10298 
10299 	___perf_sw_event(event_id, nr, regs, addr);
10300 
10301 	perf_swevent_put_recursion_context(rctx);
10302 fail:
10303 	preempt_enable_notrace();
10304 }
10305 
10306 static void perf_swevent_read(struct perf_event *event)
10307 {
10308 }
10309 
10310 static int perf_swevent_add(struct perf_event *event, int flags)
10311 {
10312 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10313 	struct hw_perf_event *hwc = &event->hw;
10314 	struct hlist_head *head;
10315 
10316 	if (is_sampling_event(event)) {
10317 		hwc->last_period = hwc->sample_period;
10318 		perf_swevent_set_period(event);
10319 	}
10320 
10321 	hwc->state = !(flags & PERF_EF_START);
10322 
10323 	head = find_swevent_head(swhash, event);
10324 	if (WARN_ON_ONCE(!head))
10325 		return -EINVAL;
10326 
10327 	hlist_add_head_rcu(&event->hlist_entry, head);
10328 	perf_event_update_userpage(event);
10329 
10330 	return 0;
10331 }
10332 
10333 static void perf_swevent_del(struct perf_event *event, int flags)
10334 {
10335 	hlist_del_rcu(&event->hlist_entry);
10336 }
10337 
10338 static void perf_swevent_start(struct perf_event *event, int flags)
10339 {
10340 	event->hw.state = 0;
10341 }
10342 
10343 static void perf_swevent_stop(struct perf_event *event, int flags)
10344 {
10345 	event->hw.state = PERF_HES_STOPPED;
10346 }
10347 
10348 /* Deref the hlist from the update side */
10349 static inline struct swevent_hlist *
10350 swevent_hlist_deref(struct swevent_htable *swhash)
10351 {
10352 	return rcu_dereference_protected(swhash->swevent_hlist,
10353 					 lockdep_is_held(&swhash->hlist_mutex));
10354 }
10355 
10356 static void swevent_hlist_release(struct swevent_htable *swhash)
10357 {
10358 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10359 
10360 	if (!hlist)
10361 		return;
10362 
10363 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10364 	kfree_rcu(hlist, rcu_head);
10365 }
10366 
10367 static void swevent_hlist_put_cpu(int cpu)
10368 {
10369 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10370 
10371 	mutex_lock(&swhash->hlist_mutex);
10372 
10373 	if (!--swhash->hlist_refcount)
10374 		swevent_hlist_release(swhash);
10375 
10376 	mutex_unlock(&swhash->hlist_mutex);
10377 }
10378 
10379 static void swevent_hlist_put(void)
10380 {
10381 	int cpu;
10382 
10383 	for_each_possible_cpu(cpu)
10384 		swevent_hlist_put_cpu(cpu);
10385 }
10386 
10387 static int swevent_hlist_get_cpu(int cpu)
10388 {
10389 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10390 	int err = 0;
10391 
10392 	mutex_lock(&swhash->hlist_mutex);
10393 	if (!swevent_hlist_deref(swhash) &&
10394 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10395 		struct swevent_hlist *hlist;
10396 
10397 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10398 		if (!hlist) {
10399 			err = -ENOMEM;
10400 			goto exit;
10401 		}
10402 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10403 	}
10404 	swhash->hlist_refcount++;
10405 exit:
10406 	mutex_unlock(&swhash->hlist_mutex);
10407 
10408 	return err;
10409 }
10410 
10411 static int swevent_hlist_get(void)
10412 {
10413 	int err, cpu, failed_cpu;
10414 
10415 	mutex_lock(&pmus_lock);
10416 	for_each_possible_cpu(cpu) {
10417 		err = swevent_hlist_get_cpu(cpu);
10418 		if (err) {
10419 			failed_cpu = cpu;
10420 			goto fail;
10421 		}
10422 	}
10423 	mutex_unlock(&pmus_lock);
10424 	return 0;
10425 fail:
10426 	for_each_possible_cpu(cpu) {
10427 		if (cpu == failed_cpu)
10428 			break;
10429 		swevent_hlist_put_cpu(cpu);
10430 	}
10431 	mutex_unlock(&pmus_lock);
10432 	return err;
10433 }
10434 
10435 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10436 
10437 static void sw_perf_event_destroy(struct perf_event *event)
10438 {
10439 	u64 event_id = event->attr.config;
10440 
10441 	WARN_ON(event->parent);
10442 
10443 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10444 	swevent_hlist_put();
10445 }
10446 
10447 static struct pmu perf_cpu_clock; /* fwd declaration */
10448 static struct pmu perf_task_clock;
10449 
10450 static int perf_swevent_init(struct perf_event *event)
10451 {
10452 	u64 event_id = event->attr.config;
10453 
10454 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10455 		return -ENOENT;
10456 
10457 	/*
10458 	 * no branch sampling for software events
10459 	 */
10460 	if (has_branch_stack(event))
10461 		return -EOPNOTSUPP;
10462 
10463 	switch (event_id) {
10464 	case PERF_COUNT_SW_CPU_CLOCK:
10465 		event->attr.type = perf_cpu_clock.type;
10466 		return -ENOENT;
10467 	case PERF_COUNT_SW_TASK_CLOCK:
10468 		event->attr.type = perf_task_clock.type;
10469 		return -ENOENT;
10470 
10471 	default:
10472 		break;
10473 	}
10474 
10475 	if (event_id >= PERF_COUNT_SW_MAX)
10476 		return -ENOENT;
10477 
10478 	if (!event->parent) {
10479 		int err;
10480 
10481 		err = swevent_hlist_get();
10482 		if (err)
10483 			return err;
10484 
10485 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10486 		event->destroy = sw_perf_event_destroy;
10487 	}
10488 
10489 	return 0;
10490 }
10491 
10492 static struct pmu perf_swevent = {
10493 	.task_ctx_nr	= perf_sw_context,
10494 
10495 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10496 
10497 	.event_init	= perf_swevent_init,
10498 	.add		= perf_swevent_add,
10499 	.del		= perf_swevent_del,
10500 	.start		= perf_swevent_start,
10501 	.stop		= perf_swevent_stop,
10502 	.read		= perf_swevent_read,
10503 };
10504 
10505 #ifdef CONFIG_EVENT_TRACING
10506 
10507 static void tp_perf_event_destroy(struct perf_event *event)
10508 {
10509 	perf_trace_destroy(event);
10510 }
10511 
10512 static int perf_tp_event_init(struct perf_event *event)
10513 {
10514 	int err;
10515 
10516 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10517 		return -ENOENT;
10518 
10519 	/*
10520 	 * no branch sampling for tracepoint events
10521 	 */
10522 	if (has_branch_stack(event))
10523 		return -EOPNOTSUPP;
10524 
10525 	err = perf_trace_init(event);
10526 	if (err)
10527 		return err;
10528 
10529 	event->destroy = tp_perf_event_destroy;
10530 
10531 	return 0;
10532 }
10533 
10534 static struct pmu perf_tracepoint = {
10535 	.task_ctx_nr	= perf_sw_context,
10536 
10537 	.event_init	= perf_tp_event_init,
10538 	.add		= perf_trace_add,
10539 	.del		= perf_trace_del,
10540 	.start		= perf_swevent_start,
10541 	.stop		= perf_swevent_stop,
10542 	.read		= perf_swevent_read,
10543 };
10544 
10545 static int perf_tp_filter_match(struct perf_event *event,
10546 				struct perf_raw_record *raw)
10547 {
10548 	void *record = raw->frag.data;
10549 
10550 	/* only top level events have filters set */
10551 	if (event->parent)
10552 		event = event->parent;
10553 
10554 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10555 		return 1;
10556 	return 0;
10557 }
10558 
10559 static int perf_tp_event_match(struct perf_event *event,
10560 				struct perf_raw_record *raw,
10561 				struct pt_regs *regs)
10562 {
10563 	if (event->hw.state & PERF_HES_STOPPED)
10564 		return 0;
10565 	/*
10566 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10567 	 */
10568 	if (event->attr.exclude_kernel && !user_mode(regs))
10569 		return 0;
10570 
10571 	if (!perf_tp_filter_match(event, raw))
10572 		return 0;
10573 
10574 	return 1;
10575 }
10576 
10577 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10578 			       struct trace_event_call *call, u64 count,
10579 			       struct pt_regs *regs, struct hlist_head *head,
10580 			       struct task_struct *task)
10581 {
10582 	if (bpf_prog_array_valid(call)) {
10583 		*(struct pt_regs **)raw_data = regs;
10584 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10585 			perf_swevent_put_recursion_context(rctx);
10586 			return;
10587 		}
10588 	}
10589 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10590 		      rctx, task);
10591 }
10592 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10593 
10594 static void __perf_tp_event_target_task(u64 count, void *record,
10595 					struct pt_regs *regs,
10596 					struct perf_sample_data *data,
10597 					struct perf_raw_record *raw,
10598 					struct perf_event *event)
10599 {
10600 	struct trace_entry *entry = record;
10601 
10602 	if (event->attr.config != entry->type)
10603 		return;
10604 	/* Cannot deliver synchronous signal to other task. */
10605 	if (event->attr.sigtrap)
10606 		return;
10607 	if (perf_tp_event_match(event, raw, regs)) {
10608 		perf_sample_data_init(data, 0, 0);
10609 		perf_sample_save_raw_data(data, event, raw);
10610 		perf_swevent_event(event, count, data, regs);
10611 	}
10612 }
10613 
10614 static void perf_tp_event_target_task(u64 count, void *record,
10615 				      struct pt_regs *regs,
10616 				      struct perf_sample_data *data,
10617 				      struct perf_raw_record *raw,
10618 				      struct perf_event_context *ctx)
10619 {
10620 	unsigned int cpu = smp_processor_id();
10621 	struct pmu *pmu = &perf_tracepoint;
10622 	struct perf_event *event, *sibling;
10623 
10624 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10625 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10626 		for_each_sibling_event(sibling, event)
10627 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10628 	}
10629 
10630 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10631 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10632 		for_each_sibling_event(sibling, event)
10633 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10634 	}
10635 }
10636 
10637 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10638 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10639 		   struct task_struct *task)
10640 {
10641 	struct perf_sample_data data;
10642 	struct perf_event *event;
10643 
10644 	struct perf_raw_record raw = {
10645 		.frag = {
10646 			.size = entry_size,
10647 			.data = record,
10648 		},
10649 	};
10650 
10651 	perf_trace_buf_update(record, event_type);
10652 
10653 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10654 		if (perf_tp_event_match(event, &raw, regs)) {
10655 			/*
10656 			 * Here use the same on-stack perf_sample_data,
10657 			 * some members in data are event-specific and
10658 			 * need to be re-computed for different sweveents.
10659 			 * Re-initialize data->sample_flags safely to avoid
10660 			 * the problem that next event skips preparing data
10661 			 * because data->sample_flags is set.
10662 			 */
10663 			perf_sample_data_init(&data, 0, 0);
10664 			perf_sample_save_raw_data(&data, event, &raw);
10665 			perf_swevent_event(event, count, &data, regs);
10666 		}
10667 	}
10668 
10669 	/*
10670 	 * If we got specified a target task, also iterate its context and
10671 	 * deliver this event there too.
10672 	 */
10673 	if (task && task != current) {
10674 		struct perf_event_context *ctx;
10675 
10676 		rcu_read_lock();
10677 		ctx = rcu_dereference(task->perf_event_ctxp);
10678 		if (!ctx)
10679 			goto unlock;
10680 
10681 		raw_spin_lock(&ctx->lock);
10682 		perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10683 		raw_spin_unlock(&ctx->lock);
10684 unlock:
10685 		rcu_read_unlock();
10686 	}
10687 
10688 	perf_swevent_put_recursion_context(rctx);
10689 }
10690 EXPORT_SYMBOL_GPL(perf_tp_event);
10691 
10692 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10693 /*
10694  * Flags in config, used by dynamic PMU kprobe and uprobe
10695  * The flags should match following PMU_FORMAT_ATTR().
10696  *
10697  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10698  *                               if not set, create kprobe/uprobe
10699  *
10700  * The following values specify a reference counter (or semaphore in the
10701  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10702  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10703  *
10704  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10705  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10706  */
10707 enum perf_probe_config {
10708 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10709 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10710 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10711 };
10712 
10713 PMU_FORMAT_ATTR(retprobe, "config:0");
10714 #endif
10715 
10716 #ifdef CONFIG_KPROBE_EVENTS
10717 static struct attribute *kprobe_attrs[] = {
10718 	&format_attr_retprobe.attr,
10719 	NULL,
10720 };
10721 
10722 static struct attribute_group kprobe_format_group = {
10723 	.name = "format",
10724 	.attrs = kprobe_attrs,
10725 };
10726 
10727 static const struct attribute_group *kprobe_attr_groups[] = {
10728 	&kprobe_format_group,
10729 	NULL,
10730 };
10731 
10732 static int perf_kprobe_event_init(struct perf_event *event);
10733 static struct pmu perf_kprobe = {
10734 	.task_ctx_nr	= perf_sw_context,
10735 	.event_init	= perf_kprobe_event_init,
10736 	.add		= perf_trace_add,
10737 	.del		= perf_trace_del,
10738 	.start		= perf_swevent_start,
10739 	.stop		= perf_swevent_stop,
10740 	.read		= perf_swevent_read,
10741 	.attr_groups	= kprobe_attr_groups,
10742 };
10743 
10744 static int perf_kprobe_event_init(struct perf_event *event)
10745 {
10746 	int err;
10747 	bool is_retprobe;
10748 
10749 	if (event->attr.type != perf_kprobe.type)
10750 		return -ENOENT;
10751 
10752 	if (!perfmon_capable())
10753 		return -EACCES;
10754 
10755 	/*
10756 	 * no branch sampling for probe events
10757 	 */
10758 	if (has_branch_stack(event))
10759 		return -EOPNOTSUPP;
10760 
10761 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10762 	err = perf_kprobe_init(event, is_retprobe);
10763 	if (err)
10764 		return err;
10765 
10766 	event->destroy = perf_kprobe_destroy;
10767 
10768 	return 0;
10769 }
10770 #endif /* CONFIG_KPROBE_EVENTS */
10771 
10772 #ifdef CONFIG_UPROBE_EVENTS
10773 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10774 
10775 static struct attribute *uprobe_attrs[] = {
10776 	&format_attr_retprobe.attr,
10777 	&format_attr_ref_ctr_offset.attr,
10778 	NULL,
10779 };
10780 
10781 static struct attribute_group uprobe_format_group = {
10782 	.name = "format",
10783 	.attrs = uprobe_attrs,
10784 };
10785 
10786 static const struct attribute_group *uprobe_attr_groups[] = {
10787 	&uprobe_format_group,
10788 	NULL,
10789 };
10790 
10791 static int perf_uprobe_event_init(struct perf_event *event);
10792 static struct pmu perf_uprobe = {
10793 	.task_ctx_nr	= perf_sw_context,
10794 	.event_init	= perf_uprobe_event_init,
10795 	.add		= perf_trace_add,
10796 	.del		= perf_trace_del,
10797 	.start		= perf_swevent_start,
10798 	.stop		= perf_swevent_stop,
10799 	.read		= perf_swevent_read,
10800 	.attr_groups	= uprobe_attr_groups,
10801 };
10802 
10803 static int perf_uprobe_event_init(struct perf_event *event)
10804 {
10805 	int err;
10806 	unsigned long ref_ctr_offset;
10807 	bool is_retprobe;
10808 
10809 	if (event->attr.type != perf_uprobe.type)
10810 		return -ENOENT;
10811 
10812 	if (!perfmon_capable())
10813 		return -EACCES;
10814 
10815 	/*
10816 	 * no branch sampling for probe events
10817 	 */
10818 	if (has_branch_stack(event))
10819 		return -EOPNOTSUPP;
10820 
10821 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10822 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10823 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10824 	if (err)
10825 		return err;
10826 
10827 	event->destroy = perf_uprobe_destroy;
10828 
10829 	return 0;
10830 }
10831 #endif /* CONFIG_UPROBE_EVENTS */
10832 
10833 static inline void perf_tp_register(void)
10834 {
10835 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10836 #ifdef CONFIG_KPROBE_EVENTS
10837 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10838 #endif
10839 #ifdef CONFIG_UPROBE_EVENTS
10840 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10841 #endif
10842 }
10843 
10844 static void perf_event_free_filter(struct perf_event *event)
10845 {
10846 	ftrace_profile_free_filter(event);
10847 }
10848 
10849 /*
10850  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10851  * with perf_event_open()
10852  */
10853 static inline bool perf_event_is_tracing(struct perf_event *event)
10854 {
10855 	if (event->pmu == &perf_tracepoint)
10856 		return true;
10857 #ifdef CONFIG_KPROBE_EVENTS
10858 	if (event->pmu == &perf_kprobe)
10859 		return true;
10860 #endif
10861 #ifdef CONFIG_UPROBE_EVENTS
10862 	if (event->pmu == &perf_uprobe)
10863 		return true;
10864 #endif
10865 	return false;
10866 }
10867 
10868 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10869 			    u64 bpf_cookie)
10870 {
10871 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10872 
10873 	if (!perf_event_is_tracing(event))
10874 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10875 
10876 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10877 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10878 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10879 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10880 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10881 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10882 		return -EINVAL;
10883 
10884 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10885 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10886 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10887 		return -EINVAL;
10888 
10889 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10890 		/* only uprobe programs are allowed to be sleepable */
10891 		return -EINVAL;
10892 
10893 	/* Kprobe override only works for kprobes, not uprobes. */
10894 	if (prog->kprobe_override && !is_kprobe)
10895 		return -EINVAL;
10896 
10897 	if (is_tracepoint || is_syscall_tp) {
10898 		int off = trace_event_get_offsets(event->tp_event);
10899 
10900 		if (prog->aux->max_ctx_offset > off)
10901 			return -EACCES;
10902 	}
10903 
10904 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10905 }
10906 
10907 void perf_event_free_bpf_prog(struct perf_event *event)
10908 {
10909 	if (!event->prog)
10910 		return;
10911 
10912 	if (!perf_event_is_tracing(event)) {
10913 		perf_event_free_bpf_handler(event);
10914 		return;
10915 	}
10916 	perf_event_detach_bpf_prog(event);
10917 }
10918 
10919 #else
10920 
10921 static inline void perf_tp_register(void)
10922 {
10923 }
10924 
10925 static void perf_event_free_filter(struct perf_event *event)
10926 {
10927 }
10928 
10929 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10930 			    u64 bpf_cookie)
10931 {
10932 	return -ENOENT;
10933 }
10934 
10935 void perf_event_free_bpf_prog(struct perf_event *event)
10936 {
10937 }
10938 #endif /* CONFIG_EVENT_TRACING */
10939 
10940 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10941 void perf_bp_event(struct perf_event *bp, void *data)
10942 {
10943 	struct perf_sample_data sample;
10944 	struct pt_regs *regs = data;
10945 
10946 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10947 
10948 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10949 		perf_swevent_event(bp, 1, &sample, regs);
10950 }
10951 #endif
10952 
10953 /*
10954  * Allocate a new address filter
10955  */
10956 static struct perf_addr_filter *
10957 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10958 {
10959 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10960 	struct perf_addr_filter *filter;
10961 
10962 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10963 	if (!filter)
10964 		return NULL;
10965 
10966 	INIT_LIST_HEAD(&filter->entry);
10967 	list_add_tail(&filter->entry, filters);
10968 
10969 	return filter;
10970 }
10971 
10972 static void free_filters_list(struct list_head *filters)
10973 {
10974 	struct perf_addr_filter *filter, *iter;
10975 
10976 	list_for_each_entry_safe(filter, iter, filters, entry) {
10977 		path_put(&filter->path);
10978 		list_del(&filter->entry);
10979 		kfree(filter);
10980 	}
10981 }
10982 
10983 /*
10984  * Free existing address filters and optionally install new ones
10985  */
10986 static void perf_addr_filters_splice(struct perf_event *event,
10987 				     struct list_head *head)
10988 {
10989 	unsigned long flags;
10990 	LIST_HEAD(list);
10991 
10992 	if (!has_addr_filter(event))
10993 		return;
10994 
10995 	/* don't bother with children, they don't have their own filters */
10996 	if (event->parent)
10997 		return;
10998 
10999 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
11000 
11001 	list_splice_init(&event->addr_filters.list, &list);
11002 	if (head)
11003 		list_splice(head, &event->addr_filters.list);
11004 
11005 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
11006 
11007 	free_filters_list(&list);
11008 }
11009 
11010 static void perf_free_addr_filters(struct perf_event *event)
11011 {
11012 	/*
11013 	 * Used during free paths, there is no concurrency.
11014 	 */
11015 	if (list_empty(&event->addr_filters.list))
11016 		return;
11017 
11018 	perf_addr_filters_splice(event, NULL);
11019 }
11020 
11021 /*
11022  * Scan through mm's vmas and see if one of them matches the
11023  * @filter; if so, adjust filter's address range.
11024  * Called with mm::mmap_lock down for reading.
11025  */
11026 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
11027 				   struct mm_struct *mm,
11028 				   struct perf_addr_filter_range *fr)
11029 {
11030 	struct vm_area_struct *vma;
11031 	VMA_ITERATOR(vmi, mm, 0);
11032 
11033 	for_each_vma(vmi, vma) {
11034 		if (!vma->vm_file)
11035 			continue;
11036 
11037 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
11038 			return;
11039 	}
11040 }
11041 
11042 /*
11043  * Update event's address range filters based on the
11044  * task's existing mappings, if any.
11045  */
11046 static void perf_event_addr_filters_apply(struct perf_event *event)
11047 {
11048 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11049 	struct task_struct *task = READ_ONCE(event->ctx->task);
11050 	struct perf_addr_filter *filter;
11051 	struct mm_struct *mm = NULL;
11052 	unsigned int count = 0;
11053 	unsigned long flags;
11054 
11055 	/*
11056 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
11057 	 * will stop on the parent's child_mutex that our caller is also holding
11058 	 */
11059 	if (task == TASK_TOMBSTONE)
11060 		return;
11061 
11062 	if (ifh->nr_file_filters) {
11063 		mm = get_task_mm(task);
11064 		if (!mm)
11065 			goto restart;
11066 
11067 		mmap_read_lock(mm);
11068 	}
11069 
11070 	raw_spin_lock_irqsave(&ifh->lock, flags);
11071 	list_for_each_entry(filter, &ifh->list, entry) {
11072 		if (filter->path.dentry) {
11073 			/*
11074 			 * Adjust base offset if the filter is associated to a
11075 			 * binary that needs to be mapped:
11076 			 */
11077 			event->addr_filter_ranges[count].start = 0;
11078 			event->addr_filter_ranges[count].size = 0;
11079 
11080 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11081 		} else {
11082 			event->addr_filter_ranges[count].start = filter->offset;
11083 			event->addr_filter_ranges[count].size  = filter->size;
11084 		}
11085 
11086 		count++;
11087 	}
11088 
11089 	event->addr_filters_gen++;
11090 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
11091 
11092 	if (ifh->nr_file_filters) {
11093 		mmap_read_unlock(mm);
11094 
11095 		mmput(mm);
11096 	}
11097 
11098 restart:
11099 	perf_event_stop(event, 1);
11100 }
11101 
11102 /*
11103  * Address range filtering: limiting the data to certain
11104  * instruction address ranges. Filters are ioctl()ed to us from
11105  * userspace as ascii strings.
11106  *
11107  * Filter string format:
11108  *
11109  * ACTION RANGE_SPEC
11110  * where ACTION is one of the
11111  *  * "filter": limit the trace to this region
11112  *  * "start": start tracing from this address
11113  *  * "stop": stop tracing at this address/region;
11114  * RANGE_SPEC is
11115  *  * for kernel addresses: <start address>[/<size>]
11116  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
11117  *
11118  * if <size> is not specified or is zero, the range is treated as a single
11119  * address; not valid for ACTION=="filter".
11120  */
11121 enum {
11122 	IF_ACT_NONE = -1,
11123 	IF_ACT_FILTER,
11124 	IF_ACT_START,
11125 	IF_ACT_STOP,
11126 	IF_SRC_FILE,
11127 	IF_SRC_KERNEL,
11128 	IF_SRC_FILEADDR,
11129 	IF_SRC_KERNELADDR,
11130 };
11131 
11132 enum {
11133 	IF_STATE_ACTION = 0,
11134 	IF_STATE_SOURCE,
11135 	IF_STATE_END,
11136 };
11137 
11138 static const match_table_t if_tokens = {
11139 	{ IF_ACT_FILTER,	"filter" },
11140 	{ IF_ACT_START,		"start" },
11141 	{ IF_ACT_STOP,		"stop" },
11142 	{ IF_SRC_FILE,		"%u/%u@%s" },
11143 	{ IF_SRC_KERNEL,	"%u/%u" },
11144 	{ IF_SRC_FILEADDR,	"%u@%s" },
11145 	{ IF_SRC_KERNELADDR,	"%u" },
11146 	{ IF_ACT_NONE,		NULL },
11147 };
11148 
11149 /*
11150  * Address filter string parser
11151  */
11152 static int
11153 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11154 			     struct list_head *filters)
11155 {
11156 	struct perf_addr_filter *filter = NULL;
11157 	char *start, *orig, *filename = NULL;
11158 	substring_t args[MAX_OPT_ARGS];
11159 	int state = IF_STATE_ACTION, token;
11160 	unsigned int kernel = 0;
11161 	int ret = -EINVAL;
11162 
11163 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
11164 	if (!fstr)
11165 		return -ENOMEM;
11166 
11167 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
11168 		static const enum perf_addr_filter_action_t actions[] = {
11169 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
11170 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
11171 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
11172 		};
11173 		ret = -EINVAL;
11174 
11175 		if (!*start)
11176 			continue;
11177 
11178 		/* filter definition begins */
11179 		if (state == IF_STATE_ACTION) {
11180 			filter = perf_addr_filter_new(event, filters);
11181 			if (!filter)
11182 				goto fail;
11183 		}
11184 
11185 		token = match_token(start, if_tokens, args);
11186 		switch (token) {
11187 		case IF_ACT_FILTER:
11188 		case IF_ACT_START:
11189 		case IF_ACT_STOP:
11190 			if (state != IF_STATE_ACTION)
11191 				goto fail;
11192 
11193 			filter->action = actions[token];
11194 			state = IF_STATE_SOURCE;
11195 			break;
11196 
11197 		case IF_SRC_KERNELADDR:
11198 		case IF_SRC_KERNEL:
11199 			kernel = 1;
11200 			fallthrough;
11201 
11202 		case IF_SRC_FILEADDR:
11203 		case IF_SRC_FILE:
11204 			if (state != IF_STATE_SOURCE)
11205 				goto fail;
11206 
11207 			*args[0].to = 0;
11208 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11209 			if (ret)
11210 				goto fail;
11211 
11212 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11213 				*args[1].to = 0;
11214 				ret = kstrtoul(args[1].from, 0, &filter->size);
11215 				if (ret)
11216 					goto fail;
11217 			}
11218 
11219 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11220 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11221 
11222 				kfree(filename);
11223 				filename = match_strdup(&args[fpos]);
11224 				if (!filename) {
11225 					ret = -ENOMEM;
11226 					goto fail;
11227 				}
11228 			}
11229 
11230 			state = IF_STATE_END;
11231 			break;
11232 
11233 		default:
11234 			goto fail;
11235 		}
11236 
11237 		/*
11238 		 * Filter definition is fully parsed, validate and install it.
11239 		 * Make sure that it doesn't contradict itself or the event's
11240 		 * attribute.
11241 		 */
11242 		if (state == IF_STATE_END) {
11243 			ret = -EINVAL;
11244 
11245 			/*
11246 			 * ACTION "filter" must have a non-zero length region
11247 			 * specified.
11248 			 */
11249 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11250 			    !filter->size)
11251 				goto fail;
11252 
11253 			if (!kernel) {
11254 				if (!filename)
11255 					goto fail;
11256 
11257 				/*
11258 				 * For now, we only support file-based filters
11259 				 * in per-task events; doing so for CPU-wide
11260 				 * events requires additional context switching
11261 				 * trickery, since same object code will be
11262 				 * mapped at different virtual addresses in
11263 				 * different processes.
11264 				 */
11265 				ret = -EOPNOTSUPP;
11266 				if (!event->ctx->task)
11267 					goto fail;
11268 
11269 				/* look up the path and grab its inode */
11270 				ret = kern_path(filename, LOOKUP_FOLLOW,
11271 						&filter->path);
11272 				if (ret)
11273 					goto fail;
11274 
11275 				ret = -EINVAL;
11276 				if (!filter->path.dentry ||
11277 				    !S_ISREG(d_inode(filter->path.dentry)
11278 					     ->i_mode))
11279 					goto fail;
11280 
11281 				event->addr_filters.nr_file_filters++;
11282 			}
11283 
11284 			/* ready to consume more filters */
11285 			kfree(filename);
11286 			filename = NULL;
11287 			state = IF_STATE_ACTION;
11288 			filter = NULL;
11289 			kernel = 0;
11290 		}
11291 	}
11292 
11293 	if (state != IF_STATE_ACTION)
11294 		goto fail;
11295 
11296 	kfree(filename);
11297 	kfree(orig);
11298 
11299 	return 0;
11300 
11301 fail:
11302 	kfree(filename);
11303 	free_filters_list(filters);
11304 	kfree(orig);
11305 
11306 	return ret;
11307 }
11308 
11309 static int
11310 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11311 {
11312 	LIST_HEAD(filters);
11313 	int ret;
11314 
11315 	/*
11316 	 * Since this is called in perf_ioctl() path, we're already holding
11317 	 * ctx::mutex.
11318 	 */
11319 	lockdep_assert_held(&event->ctx->mutex);
11320 
11321 	if (WARN_ON_ONCE(event->parent))
11322 		return -EINVAL;
11323 
11324 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11325 	if (ret)
11326 		goto fail_clear_files;
11327 
11328 	ret = event->pmu->addr_filters_validate(&filters);
11329 	if (ret)
11330 		goto fail_free_filters;
11331 
11332 	/* remove existing filters, if any */
11333 	perf_addr_filters_splice(event, &filters);
11334 
11335 	/* install new filters */
11336 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11337 
11338 	return ret;
11339 
11340 fail_free_filters:
11341 	free_filters_list(&filters);
11342 
11343 fail_clear_files:
11344 	event->addr_filters.nr_file_filters = 0;
11345 
11346 	return ret;
11347 }
11348 
11349 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11350 {
11351 	int ret = -EINVAL;
11352 	char *filter_str;
11353 
11354 	filter_str = strndup_user(arg, PAGE_SIZE);
11355 	if (IS_ERR(filter_str))
11356 		return PTR_ERR(filter_str);
11357 
11358 #ifdef CONFIG_EVENT_TRACING
11359 	if (perf_event_is_tracing(event)) {
11360 		struct perf_event_context *ctx = event->ctx;
11361 
11362 		/*
11363 		 * Beware, here be dragons!!
11364 		 *
11365 		 * the tracepoint muck will deadlock against ctx->mutex, but
11366 		 * the tracepoint stuff does not actually need it. So
11367 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11368 		 * already have a reference on ctx.
11369 		 *
11370 		 * This can result in event getting moved to a different ctx,
11371 		 * but that does not affect the tracepoint state.
11372 		 */
11373 		mutex_unlock(&ctx->mutex);
11374 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11375 		mutex_lock(&ctx->mutex);
11376 	} else
11377 #endif
11378 	if (has_addr_filter(event))
11379 		ret = perf_event_set_addr_filter(event, filter_str);
11380 
11381 	kfree(filter_str);
11382 	return ret;
11383 }
11384 
11385 /*
11386  * hrtimer based swevent callback
11387  */
11388 
11389 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11390 {
11391 	enum hrtimer_restart ret = HRTIMER_RESTART;
11392 	struct perf_sample_data data;
11393 	struct pt_regs *regs;
11394 	struct perf_event *event;
11395 	u64 period;
11396 
11397 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11398 
11399 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11400 		return HRTIMER_NORESTART;
11401 
11402 	event->pmu->read(event);
11403 
11404 	perf_sample_data_init(&data, 0, event->hw.last_period);
11405 	regs = get_irq_regs();
11406 
11407 	if (regs && !perf_exclude_event(event, regs)) {
11408 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11409 			if (__perf_event_overflow(event, 1, &data, regs))
11410 				ret = HRTIMER_NORESTART;
11411 	}
11412 
11413 	period = max_t(u64, 10000, event->hw.sample_period);
11414 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11415 
11416 	return ret;
11417 }
11418 
11419 static void perf_swevent_start_hrtimer(struct perf_event *event)
11420 {
11421 	struct hw_perf_event *hwc = &event->hw;
11422 	s64 period;
11423 
11424 	if (!is_sampling_event(event))
11425 		return;
11426 
11427 	period = local64_read(&hwc->period_left);
11428 	if (period) {
11429 		if (period < 0)
11430 			period = 10000;
11431 
11432 		local64_set(&hwc->period_left, 0);
11433 	} else {
11434 		period = max_t(u64, 10000, hwc->sample_period);
11435 	}
11436 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11437 		      HRTIMER_MODE_REL_PINNED_HARD);
11438 }
11439 
11440 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11441 {
11442 	struct hw_perf_event *hwc = &event->hw;
11443 
11444 	if (is_sampling_event(event)) {
11445 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11446 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11447 
11448 		hrtimer_cancel(&hwc->hrtimer);
11449 	}
11450 }
11451 
11452 static void perf_swevent_init_hrtimer(struct perf_event *event)
11453 {
11454 	struct hw_perf_event *hwc = &event->hw;
11455 
11456 	if (!is_sampling_event(event))
11457 		return;
11458 
11459 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11460 	hwc->hrtimer.function = perf_swevent_hrtimer;
11461 
11462 	/*
11463 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11464 	 * mapping and avoid the whole period adjust feedback stuff.
11465 	 */
11466 	if (event->attr.freq) {
11467 		long freq = event->attr.sample_freq;
11468 
11469 		event->attr.sample_period = NSEC_PER_SEC / freq;
11470 		hwc->sample_period = event->attr.sample_period;
11471 		local64_set(&hwc->period_left, hwc->sample_period);
11472 		hwc->last_period = hwc->sample_period;
11473 		event->attr.freq = 0;
11474 	}
11475 }
11476 
11477 /*
11478  * Software event: cpu wall time clock
11479  */
11480 
11481 static void cpu_clock_event_update(struct perf_event *event)
11482 {
11483 	s64 prev;
11484 	u64 now;
11485 
11486 	now = local_clock();
11487 	prev = local64_xchg(&event->hw.prev_count, now);
11488 	local64_add(now - prev, &event->count);
11489 }
11490 
11491 static void cpu_clock_event_start(struct perf_event *event, int flags)
11492 {
11493 	local64_set(&event->hw.prev_count, local_clock());
11494 	perf_swevent_start_hrtimer(event);
11495 }
11496 
11497 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11498 {
11499 	perf_swevent_cancel_hrtimer(event);
11500 	cpu_clock_event_update(event);
11501 }
11502 
11503 static int cpu_clock_event_add(struct perf_event *event, int flags)
11504 {
11505 	if (flags & PERF_EF_START)
11506 		cpu_clock_event_start(event, flags);
11507 	perf_event_update_userpage(event);
11508 
11509 	return 0;
11510 }
11511 
11512 static void cpu_clock_event_del(struct perf_event *event, int flags)
11513 {
11514 	cpu_clock_event_stop(event, flags);
11515 }
11516 
11517 static void cpu_clock_event_read(struct perf_event *event)
11518 {
11519 	cpu_clock_event_update(event);
11520 }
11521 
11522 static int cpu_clock_event_init(struct perf_event *event)
11523 {
11524 	if (event->attr.type != perf_cpu_clock.type)
11525 		return -ENOENT;
11526 
11527 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11528 		return -ENOENT;
11529 
11530 	/*
11531 	 * no branch sampling for software events
11532 	 */
11533 	if (has_branch_stack(event))
11534 		return -EOPNOTSUPP;
11535 
11536 	perf_swevent_init_hrtimer(event);
11537 
11538 	return 0;
11539 }
11540 
11541 static struct pmu perf_cpu_clock = {
11542 	.task_ctx_nr	= perf_sw_context,
11543 
11544 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11545 	.dev		= PMU_NULL_DEV,
11546 
11547 	.event_init	= cpu_clock_event_init,
11548 	.add		= cpu_clock_event_add,
11549 	.del		= cpu_clock_event_del,
11550 	.start		= cpu_clock_event_start,
11551 	.stop		= cpu_clock_event_stop,
11552 	.read		= cpu_clock_event_read,
11553 };
11554 
11555 /*
11556  * Software event: task time clock
11557  */
11558 
11559 static void task_clock_event_update(struct perf_event *event, u64 now)
11560 {
11561 	u64 prev;
11562 	s64 delta;
11563 
11564 	prev = local64_xchg(&event->hw.prev_count, now);
11565 	delta = now - prev;
11566 	local64_add(delta, &event->count);
11567 }
11568 
11569 static void task_clock_event_start(struct perf_event *event, int flags)
11570 {
11571 	local64_set(&event->hw.prev_count, event->ctx->time);
11572 	perf_swevent_start_hrtimer(event);
11573 }
11574 
11575 static void task_clock_event_stop(struct perf_event *event, int flags)
11576 {
11577 	perf_swevent_cancel_hrtimer(event);
11578 	task_clock_event_update(event, event->ctx->time);
11579 }
11580 
11581 static int task_clock_event_add(struct perf_event *event, int flags)
11582 {
11583 	if (flags & PERF_EF_START)
11584 		task_clock_event_start(event, flags);
11585 	perf_event_update_userpage(event);
11586 
11587 	return 0;
11588 }
11589 
11590 static void task_clock_event_del(struct perf_event *event, int flags)
11591 {
11592 	task_clock_event_stop(event, PERF_EF_UPDATE);
11593 }
11594 
11595 static void task_clock_event_read(struct perf_event *event)
11596 {
11597 	u64 now = perf_clock();
11598 	u64 delta = now - event->ctx->timestamp;
11599 	u64 time = event->ctx->time + delta;
11600 
11601 	task_clock_event_update(event, time);
11602 }
11603 
11604 static int task_clock_event_init(struct perf_event *event)
11605 {
11606 	if (event->attr.type != perf_task_clock.type)
11607 		return -ENOENT;
11608 
11609 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11610 		return -ENOENT;
11611 
11612 	/*
11613 	 * no branch sampling for software events
11614 	 */
11615 	if (has_branch_stack(event))
11616 		return -EOPNOTSUPP;
11617 
11618 	perf_swevent_init_hrtimer(event);
11619 
11620 	return 0;
11621 }
11622 
11623 static struct pmu perf_task_clock = {
11624 	.task_ctx_nr	= perf_sw_context,
11625 
11626 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11627 	.dev		= PMU_NULL_DEV,
11628 
11629 	.event_init	= task_clock_event_init,
11630 	.add		= task_clock_event_add,
11631 	.del		= task_clock_event_del,
11632 	.start		= task_clock_event_start,
11633 	.stop		= task_clock_event_stop,
11634 	.read		= task_clock_event_read,
11635 };
11636 
11637 static void perf_pmu_nop_void(struct pmu *pmu)
11638 {
11639 }
11640 
11641 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11642 {
11643 }
11644 
11645 static int perf_pmu_nop_int(struct pmu *pmu)
11646 {
11647 	return 0;
11648 }
11649 
11650 static int perf_event_nop_int(struct perf_event *event, u64 value)
11651 {
11652 	return 0;
11653 }
11654 
11655 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11656 
11657 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11658 {
11659 	__this_cpu_write(nop_txn_flags, flags);
11660 
11661 	if (flags & ~PERF_PMU_TXN_ADD)
11662 		return;
11663 
11664 	perf_pmu_disable(pmu);
11665 }
11666 
11667 static int perf_pmu_commit_txn(struct pmu *pmu)
11668 {
11669 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11670 
11671 	__this_cpu_write(nop_txn_flags, 0);
11672 
11673 	if (flags & ~PERF_PMU_TXN_ADD)
11674 		return 0;
11675 
11676 	perf_pmu_enable(pmu);
11677 	return 0;
11678 }
11679 
11680 static void perf_pmu_cancel_txn(struct pmu *pmu)
11681 {
11682 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11683 
11684 	__this_cpu_write(nop_txn_flags, 0);
11685 
11686 	if (flags & ~PERF_PMU_TXN_ADD)
11687 		return;
11688 
11689 	perf_pmu_enable(pmu);
11690 }
11691 
11692 static int perf_event_idx_default(struct perf_event *event)
11693 {
11694 	return 0;
11695 }
11696 
11697 /*
11698  * Let userspace know that this PMU supports address range filtering:
11699  */
11700 static ssize_t nr_addr_filters_show(struct device *dev,
11701 				    struct device_attribute *attr,
11702 				    char *page)
11703 {
11704 	struct pmu *pmu = dev_get_drvdata(dev);
11705 
11706 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11707 }
11708 DEVICE_ATTR_RO(nr_addr_filters);
11709 
11710 static struct idr pmu_idr;
11711 
11712 static ssize_t
11713 type_show(struct device *dev, struct device_attribute *attr, char *page)
11714 {
11715 	struct pmu *pmu = dev_get_drvdata(dev);
11716 
11717 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11718 }
11719 static DEVICE_ATTR_RO(type);
11720 
11721 static ssize_t
11722 perf_event_mux_interval_ms_show(struct device *dev,
11723 				struct device_attribute *attr,
11724 				char *page)
11725 {
11726 	struct pmu *pmu = dev_get_drvdata(dev);
11727 
11728 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11729 }
11730 
11731 static DEFINE_MUTEX(mux_interval_mutex);
11732 
11733 static ssize_t
11734 perf_event_mux_interval_ms_store(struct device *dev,
11735 				 struct device_attribute *attr,
11736 				 const char *buf, size_t count)
11737 {
11738 	struct pmu *pmu = dev_get_drvdata(dev);
11739 	int timer, cpu, ret;
11740 
11741 	ret = kstrtoint(buf, 0, &timer);
11742 	if (ret)
11743 		return ret;
11744 
11745 	if (timer < 1)
11746 		return -EINVAL;
11747 
11748 	/* same value, noting to do */
11749 	if (timer == pmu->hrtimer_interval_ms)
11750 		return count;
11751 
11752 	mutex_lock(&mux_interval_mutex);
11753 	pmu->hrtimer_interval_ms = timer;
11754 
11755 	/* update all cpuctx for this PMU */
11756 	cpus_read_lock();
11757 	for_each_online_cpu(cpu) {
11758 		struct perf_cpu_pmu_context *cpc;
11759 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11760 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11761 
11762 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11763 	}
11764 	cpus_read_unlock();
11765 	mutex_unlock(&mux_interval_mutex);
11766 
11767 	return count;
11768 }
11769 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11770 
11771 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
11772 {
11773 	switch (scope) {
11774 	case PERF_PMU_SCOPE_CORE:
11775 		return topology_sibling_cpumask(cpu);
11776 	case PERF_PMU_SCOPE_DIE:
11777 		return topology_die_cpumask(cpu);
11778 	case PERF_PMU_SCOPE_CLUSTER:
11779 		return topology_cluster_cpumask(cpu);
11780 	case PERF_PMU_SCOPE_PKG:
11781 		return topology_core_cpumask(cpu);
11782 	case PERF_PMU_SCOPE_SYS_WIDE:
11783 		return cpu_online_mask;
11784 	}
11785 
11786 	return NULL;
11787 }
11788 
11789 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
11790 {
11791 	switch (scope) {
11792 	case PERF_PMU_SCOPE_CORE:
11793 		return perf_online_core_mask;
11794 	case PERF_PMU_SCOPE_DIE:
11795 		return perf_online_die_mask;
11796 	case PERF_PMU_SCOPE_CLUSTER:
11797 		return perf_online_cluster_mask;
11798 	case PERF_PMU_SCOPE_PKG:
11799 		return perf_online_pkg_mask;
11800 	case PERF_PMU_SCOPE_SYS_WIDE:
11801 		return perf_online_sys_mask;
11802 	}
11803 
11804 	return NULL;
11805 }
11806 
11807 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
11808 			    char *buf)
11809 {
11810 	struct pmu *pmu = dev_get_drvdata(dev);
11811 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
11812 
11813 	if (mask)
11814 		return cpumap_print_to_pagebuf(true, buf, mask);
11815 	return 0;
11816 }
11817 
11818 static DEVICE_ATTR_RO(cpumask);
11819 
11820 static struct attribute *pmu_dev_attrs[] = {
11821 	&dev_attr_type.attr,
11822 	&dev_attr_perf_event_mux_interval_ms.attr,
11823 	&dev_attr_nr_addr_filters.attr,
11824 	&dev_attr_cpumask.attr,
11825 	NULL,
11826 };
11827 
11828 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11829 {
11830 	struct device *dev = kobj_to_dev(kobj);
11831 	struct pmu *pmu = dev_get_drvdata(dev);
11832 
11833 	if (n == 2 && !pmu->nr_addr_filters)
11834 		return 0;
11835 
11836 	/* cpumask */
11837 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
11838 		return 0;
11839 
11840 	return a->mode;
11841 }
11842 
11843 static struct attribute_group pmu_dev_attr_group = {
11844 	.is_visible = pmu_dev_is_visible,
11845 	.attrs = pmu_dev_attrs,
11846 };
11847 
11848 static const struct attribute_group *pmu_dev_groups[] = {
11849 	&pmu_dev_attr_group,
11850 	NULL,
11851 };
11852 
11853 static int pmu_bus_running;
11854 static struct bus_type pmu_bus = {
11855 	.name		= "event_source",
11856 	.dev_groups	= pmu_dev_groups,
11857 };
11858 
11859 static void pmu_dev_release(struct device *dev)
11860 {
11861 	kfree(dev);
11862 }
11863 
11864 static int pmu_dev_alloc(struct pmu *pmu)
11865 {
11866 	int ret = -ENOMEM;
11867 
11868 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11869 	if (!pmu->dev)
11870 		goto out;
11871 
11872 	pmu->dev->groups = pmu->attr_groups;
11873 	device_initialize(pmu->dev);
11874 
11875 	dev_set_drvdata(pmu->dev, pmu);
11876 	pmu->dev->bus = &pmu_bus;
11877 	pmu->dev->parent = pmu->parent;
11878 	pmu->dev->release = pmu_dev_release;
11879 
11880 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11881 	if (ret)
11882 		goto free_dev;
11883 
11884 	ret = device_add(pmu->dev);
11885 	if (ret)
11886 		goto free_dev;
11887 
11888 	if (pmu->attr_update) {
11889 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11890 		if (ret)
11891 			goto del_dev;
11892 	}
11893 
11894 out:
11895 	return ret;
11896 
11897 del_dev:
11898 	device_del(pmu->dev);
11899 
11900 free_dev:
11901 	put_device(pmu->dev);
11902 	pmu->dev = NULL;
11903 	goto out;
11904 }
11905 
11906 static struct lock_class_key cpuctx_mutex;
11907 static struct lock_class_key cpuctx_lock;
11908 
11909 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
11910 {
11911 	void *tmp, *val = idr_find(idr, id);
11912 
11913 	if (val != old)
11914 		return false;
11915 
11916 	tmp = idr_replace(idr, new, id);
11917 	if (IS_ERR(tmp))
11918 		return false;
11919 
11920 	WARN_ON_ONCE(tmp != val);
11921 	return true;
11922 }
11923 
11924 static void perf_pmu_free(struct pmu *pmu)
11925 {
11926 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11927 		if (pmu->nr_addr_filters)
11928 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11929 		device_del(pmu->dev);
11930 		put_device(pmu->dev);
11931 	}
11932 	free_percpu(pmu->cpu_pmu_context);
11933 }
11934 
11935 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T))
11936 
11937 int perf_pmu_register(struct pmu *_pmu, const char *name, int type)
11938 {
11939 	int cpu, max = PERF_TYPE_MAX;
11940 
11941 	struct pmu *pmu __free(pmu_unregister) = _pmu;
11942 	guard(mutex)(&pmus_lock);
11943 
11944 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n"))
11945 		return -EINVAL;
11946 
11947 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE,
11948 		      "Can not register a pmu with an invalid scope.\n"))
11949 		return -EINVAL;
11950 
11951 	pmu->name = name;
11952 
11953 	if (type >= 0)
11954 		max = type;
11955 
11956 	CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL);
11957 	if (pmu_type.id < 0)
11958 		return pmu_type.id;
11959 
11960 	WARN_ON(type >= 0 && pmu_type.id != type);
11961 
11962 	pmu->type = pmu_type.id;
11963 	atomic_set(&pmu->exclusive_cnt, 0);
11964 
11965 	if (pmu_bus_running && !pmu->dev) {
11966 		int ret = pmu_dev_alloc(pmu);
11967 		if (ret)
11968 			return ret;
11969 	}
11970 
11971 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11972 	if (!pmu->cpu_pmu_context)
11973 		return -ENOMEM;
11974 
11975 	for_each_possible_cpu(cpu) {
11976 		struct perf_cpu_pmu_context *cpc;
11977 
11978 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11979 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11980 		__perf_mux_hrtimer_init(cpc, cpu);
11981 	}
11982 
11983 	if (!pmu->start_txn) {
11984 		if (pmu->pmu_enable) {
11985 			/*
11986 			 * If we have pmu_enable/pmu_disable calls, install
11987 			 * transaction stubs that use that to try and batch
11988 			 * hardware accesses.
11989 			 */
11990 			pmu->start_txn  = perf_pmu_start_txn;
11991 			pmu->commit_txn = perf_pmu_commit_txn;
11992 			pmu->cancel_txn = perf_pmu_cancel_txn;
11993 		} else {
11994 			pmu->start_txn  = perf_pmu_nop_txn;
11995 			pmu->commit_txn = perf_pmu_nop_int;
11996 			pmu->cancel_txn = perf_pmu_nop_void;
11997 		}
11998 	}
11999 
12000 	if (!pmu->pmu_enable) {
12001 		pmu->pmu_enable  = perf_pmu_nop_void;
12002 		pmu->pmu_disable = perf_pmu_nop_void;
12003 	}
12004 
12005 	if (!pmu->check_period)
12006 		pmu->check_period = perf_event_nop_int;
12007 
12008 	if (!pmu->event_idx)
12009 		pmu->event_idx = perf_event_idx_default;
12010 
12011 	/*
12012 	 * Now that the PMU is complete, make it visible to perf_try_init_event().
12013 	 */
12014 	if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
12015 		return -EINVAL;
12016 	list_add_rcu(&pmu->entry, &pmus);
12017 
12018 	take_idr_id(pmu_type);
12019 	_pmu = no_free_ptr(pmu); // let it rip
12020 	return 0;
12021 }
12022 EXPORT_SYMBOL_GPL(perf_pmu_register);
12023 
12024 void perf_pmu_unregister(struct pmu *pmu)
12025 {
12026 	scoped_guard (mutex, &pmus_lock) {
12027 		list_del_rcu(&pmu->entry);
12028 		idr_remove(&pmu_idr, pmu->type);
12029 	}
12030 
12031 	/*
12032 	 * We dereference the pmu list under both SRCU and regular RCU, so
12033 	 * synchronize against both of those.
12034 	 */
12035 	synchronize_srcu(&pmus_srcu);
12036 	synchronize_rcu();
12037 
12038 	perf_pmu_free(pmu);
12039 }
12040 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
12041 
12042 static inline bool has_extended_regs(struct perf_event *event)
12043 {
12044 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
12045 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
12046 }
12047 
12048 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
12049 {
12050 	struct perf_event_context *ctx = NULL;
12051 	int ret;
12052 
12053 	if (!try_module_get(pmu->module))
12054 		return -ENODEV;
12055 
12056 	/*
12057 	 * A number of pmu->event_init() methods iterate the sibling_list to,
12058 	 * for example, validate if the group fits on the PMU. Therefore,
12059 	 * if this is a sibling event, acquire the ctx->mutex to protect
12060 	 * the sibling_list.
12061 	 */
12062 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12063 		/*
12064 		 * This ctx->mutex can nest when we're called through
12065 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
12066 		 */
12067 		ctx = perf_event_ctx_lock_nested(event->group_leader,
12068 						 SINGLE_DEPTH_NESTING);
12069 		BUG_ON(!ctx);
12070 	}
12071 
12072 	event->pmu = pmu;
12073 	ret = pmu->event_init(event);
12074 
12075 	if (ctx)
12076 		perf_event_ctx_unlock(event->group_leader, ctx);
12077 
12078 	if (!ret) {
12079 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
12080 		    has_extended_regs(event))
12081 			ret = -EOPNOTSUPP;
12082 
12083 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
12084 		    event_has_any_exclude_flag(event))
12085 			ret = -EINVAL;
12086 
12087 		if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12088 			const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12089 			struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope);
12090 			int cpu;
12091 
12092 			if (pmu_cpumask && cpumask) {
12093 				cpu = cpumask_any_and(pmu_cpumask, cpumask);
12094 				if (cpu >= nr_cpu_ids)
12095 					ret = -ENODEV;
12096 				else
12097 					event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12098 			} else {
12099 				ret = -ENODEV;
12100 			}
12101 		}
12102 
12103 		if (ret && event->destroy)
12104 			event->destroy(event);
12105 	}
12106 
12107 	if (ret) {
12108 		event->pmu = NULL;
12109 		module_put(pmu->module);
12110 	}
12111 
12112 	return ret;
12113 }
12114 
12115 static struct pmu *perf_init_event(struct perf_event *event)
12116 {
12117 	bool extended_type = false;
12118 	struct pmu *pmu;
12119 	int type, ret;
12120 
12121 	guard(srcu)(&pmus_srcu);
12122 
12123 	/*
12124 	 * Save original type before calling pmu->event_init() since certain
12125 	 * pmus overwrites event->attr.type to forward event to another pmu.
12126 	 */
12127 	event->orig_type = event->attr.type;
12128 
12129 	/* Try parent's PMU first: */
12130 	if (event->parent && event->parent->pmu) {
12131 		pmu = event->parent->pmu;
12132 		ret = perf_try_init_event(pmu, event);
12133 		if (!ret)
12134 			return pmu;
12135 	}
12136 
12137 	/*
12138 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12139 	 * are often aliases for PERF_TYPE_RAW.
12140 	 */
12141 	type = event->attr.type;
12142 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12143 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12144 		if (!type) {
12145 			type = PERF_TYPE_RAW;
12146 		} else {
12147 			extended_type = true;
12148 			event->attr.config &= PERF_HW_EVENT_MASK;
12149 		}
12150 	}
12151 
12152 again:
12153 	scoped_guard (rcu)
12154 		pmu = idr_find(&pmu_idr, type);
12155 	if (pmu) {
12156 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
12157 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12158 			return ERR_PTR(-ENOENT);
12159 
12160 		ret = perf_try_init_event(pmu, event);
12161 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12162 			type = event->attr.type;
12163 			goto again;
12164 		}
12165 
12166 		if (ret)
12167 			return ERR_PTR(ret);
12168 
12169 		return pmu;
12170 	}
12171 
12172 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12173 		ret = perf_try_init_event(pmu, event);
12174 		if (!ret)
12175 			return pmu;
12176 
12177 		if (ret != -ENOENT)
12178 			return ERR_PTR(ret);
12179 	}
12180 
12181 	return ERR_PTR(-ENOENT);
12182 }
12183 
12184 static void attach_sb_event(struct perf_event *event)
12185 {
12186 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12187 
12188 	raw_spin_lock(&pel->lock);
12189 	list_add_rcu(&event->sb_list, &pel->list);
12190 	raw_spin_unlock(&pel->lock);
12191 }
12192 
12193 /*
12194  * We keep a list of all !task (and therefore per-cpu) events
12195  * that need to receive side-band records.
12196  *
12197  * This avoids having to scan all the various PMU per-cpu contexts
12198  * looking for them.
12199  */
12200 static void account_pmu_sb_event(struct perf_event *event)
12201 {
12202 	if (is_sb_event(event))
12203 		attach_sb_event(event);
12204 }
12205 
12206 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
12207 static void account_freq_event_nohz(void)
12208 {
12209 #ifdef CONFIG_NO_HZ_FULL
12210 	/* Lock so we don't race with concurrent unaccount */
12211 	spin_lock(&nr_freq_lock);
12212 	if (atomic_inc_return(&nr_freq_events) == 1)
12213 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12214 	spin_unlock(&nr_freq_lock);
12215 #endif
12216 }
12217 
12218 static void account_freq_event(void)
12219 {
12220 	if (tick_nohz_full_enabled())
12221 		account_freq_event_nohz();
12222 	else
12223 		atomic_inc(&nr_freq_events);
12224 }
12225 
12226 
12227 static void account_event(struct perf_event *event)
12228 {
12229 	bool inc = false;
12230 
12231 	if (event->parent)
12232 		return;
12233 
12234 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12235 		inc = true;
12236 	if (event->attr.mmap || event->attr.mmap_data)
12237 		atomic_inc(&nr_mmap_events);
12238 	if (event->attr.build_id)
12239 		atomic_inc(&nr_build_id_events);
12240 	if (event->attr.comm)
12241 		atomic_inc(&nr_comm_events);
12242 	if (event->attr.namespaces)
12243 		atomic_inc(&nr_namespaces_events);
12244 	if (event->attr.cgroup)
12245 		atomic_inc(&nr_cgroup_events);
12246 	if (event->attr.task)
12247 		atomic_inc(&nr_task_events);
12248 	if (event->attr.freq)
12249 		account_freq_event();
12250 	if (event->attr.context_switch) {
12251 		atomic_inc(&nr_switch_events);
12252 		inc = true;
12253 	}
12254 	if (has_branch_stack(event))
12255 		inc = true;
12256 	if (is_cgroup_event(event))
12257 		inc = true;
12258 	if (event->attr.ksymbol)
12259 		atomic_inc(&nr_ksymbol_events);
12260 	if (event->attr.bpf_event)
12261 		atomic_inc(&nr_bpf_events);
12262 	if (event->attr.text_poke)
12263 		atomic_inc(&nr_text_poke_events);
12264 
12265 	if (inc) {
12266 		/*
12267 		 * We need the mutex here because static_branch_enable()
12268 		 * must complete *before* the perf_sched_count increment
12269 		 * becomes visible.
12270 		 */
12271 		if (atomic_inc_not_zero(&perf_sched_count))
12272 			goto enabled;
12273 
12274 		mutex_lock(&perf_sched_mutex);
12275 		if (!atomic_read(&perf_sched_count)) {
12276 			static_branch_enable(&perf_sched_events);
12277 			/*
12278 			 * Guarantee that all CPUs observe they key change and
12279 			 * call the perf scheduling hooks before proceeding to
12280 			 * install events that need them.
12281 			 */
12282 			synchronize_rcu();
12283 		}
12284 		/*
12285 		 * Now that we have waited for the sync_sched(), allow further
12286 		 * increments to by-pass the mutex.
12287 		 */
12288 		atomic_inc(&perf_sched_count);
12289 		mutex_unlock(&perf_sched_mutex);
12290 	}
12291 enabled:
12292 
12293 	account_pmu_sb_event(event);
12294 }
12295 
12296 /*
12297  * Allocate and initialize an event structure
12298  */
12299 static struct perf_event *
12300 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12301 		 struct task_struct *task,
12302 		 struct perf_event *group_leader,
12303 		 struct perf_event *parent_event,
12304 		 perf_overflow_handler_t overflow_handler,
12305 		 void *context, int cgroup_fd)
12306 {
12307 	struct pmu *pmu;
12308 	struct hw_perf_event *hwc;
12309 	long err = -EINVAL;
12310 	int node;
12311 
12312 	if ((unsigned)cpu >= nr_cpu_ids) {
12313 		if (!task || cpu != -1)
12314 			return ERR_PTR(-EINVAL);
12315 	}
12316 	if (attr->sigtrap && !task) {
12317 		/* Requires a task: avoid signalling random tasks. */
12318 		return ERR_PTR(-EINVAL);
12319 	}
12320 
12321 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12322 	struct perf_event *event __free(__free_event) =
12323 		kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node);
12324 	if (!event)
12325 		return ERR_PTR(-ENOMEM);
12326 
12327 	/*
12328 	 * Single events are their own group leaders, with an
12329 	 * empty sibling list:
12330 	 */
12331 	if (!group_leader)
12332 		group_leader = event;
12333 
12334 	mutex_init(&event->child_mutex);
12335 	INIT_LIST_HEAD(&event->child_list);
12336 
12337 	INIT_LIST_HEAD(&event->event_entry);
12338 	INIT_LIST_HEAD(&event->sibling_list);
12339 	INIT_LIST_HEAD(&event->active_list);
12340 	init_event_group(event);
12341 	INIT_LIST_HEAD(&event->rb_entry);
12342 	INIT_LIST_HEAD(&event->active_entry);
12343 	INIT_LIST_HEAD(&event->addr_filters.list);
12344 	INIT_HLIST_NODE(&event->hlist_entry);
12345 
12346 
12347 	init_waitqueue_head(&event->waitq);
12348 	init_irq_work(&event->pending_irq, perf_pending_irq);
12349 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12350 	init_task_work(&event->pending_task, perf_pending_task);
12351 	rcuwait_init(&event->pending_work_wait);
12352 
12353 	mutex_init(&event->mmap_mutex);
12354 	raw_spin_lock_init(&event->addr_filters.lock);
12355 
12356 	atomic_long_set(&event->refcount, 1);
12357 	event->cpu		= cpu;
12358 	event->attr		= *attr;
12359 	event->group_leader	= group_leader;
12360 	event->pmu		= NULL;
12361 	event->oncpu		= -1;
12362 
12363 	event->parent		= parent_event;
12364 
12365 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12366 	event->id		= atomic64_inc_return(&perf_event_id);
12367 
12368 	event->state		= PERF_EVENT_STATE_INACTIVE;
12369 
12370 	if (parent_event)
12371 		event->event_caps = parent_event->event_caps;
12372 
12373 	if (task) {
12374 		event->attach_state = PERF_ATTACH_TASK;
12375 		/*
12376 		 * XXX pmu::event_init needs to know what task to account to
12377 		 * and we cannot use the ctx information because we need the
12378 		 * pmu before we get a ctx.
12379 		 */
12380 		event->hw.target = get_task_struct(task);
12381 	}
12382 
12383 	event->clock = &local_clock;
12384 	if (parent_event)
12385 		event->clock = parent_event->clock;
12386 
12387 	if (!overflow_handler && parent_event) {
12388 		overflow_handler = parent_event->overflow_handler;
12389 		context = parent_event->overflow_handler_context;
12390 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12391 		if (parent_event->prog) {
12392 			struct bpf_prog *prog = parent_event->prog;
12393 
12394 			bpf_prog_inc(prog);
12395 			event->prog = prog;
12396 		}
12397 #endif
12398 	}
12399 
12400 	if (overflow_handler) {
12401 		event->overflow_handler	= overflow_handler;
12402 		event->overflow_handler_context = context;
12403 	} else if (is_write_backward(event)){
12404 		event->overflow_handler = perf_event_output_backward;
12405 		event->overflow_handler_context = NULL;
12406 	} else {
12407 		event->overflow_handler = perf_event_output_forward;
12408 		event->overflow_handler_context = NULL;
12409 	}
12410 
12411 	perf_event__state_init(event);
12412 
12413 	pmu = NULL;
12414 
12415 	hwc = &event->hw;
12416 	hwc->sample_period = attr->sample_period;
12417 	if (attr->freq && attr->sample_freq)
12418 		hwc->sample_period = 1;
12419 	hwc->last_period = hwc->sample_period;
12420 
12421 	local64_set(&hwc->period_left, hwc->sample_period);
12422 
12423 	/*
12424 	 * We do not support PERF_SAMPLE_READ on inherited events unless
12425 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12426 	 * collect per-thread samples.
12427 	 * See perf_output_read().
12428 	 */
12429 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12430 		return ERR_PTR(-EINVAL);
12431 
12432 	if (!has_branch_stack(event))
12433 		event->attr.branch_sample_type = 0;
12434 
12435 	pmu = perf_init_event(event);
12436 	if (IS_ERR(pmu))
12437 		return (void*)pmu;
12438 
12439 	/*
12440 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12441 	 * events (they don't make sense as the cgroup will be different
12442 	 * on other CPUs in the uncore mask).
12443 	 */
12444 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1))
12445 		return ERR_PTR(-EINVAL);
12446 
12447 	if (event->attr.aux_output &&
12448 	    (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
12449 	     event->attr.aux_pause || event->attr.aux_resume))
12450 		return ERR_PTR(-EOPNOTSUPP);
12451 
12452 	if (event->attr.aux_pause && event->attr.aux_resume)
12453 		return ERR_PTR(-EINVAL);
12454 
12455 	if (event->attr.aux_start_paused) {
12456 		if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
12457 			return ERR_PTR(-EOPNOTSUPP);
12458 		event->hw.aux_paused = 1;
12459 	}
12460 
12461 	if (cgroup_fd != -1) {
12462 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12463 		if (err)
12464 			return ERR_PTR(err);
12465 	}
12466 
12467 	err = exclusive_event_init(event);
12468 	if (err)
12469 		return ERR_PTR(err);
12470 
12471 	if (has_addr_filter(event)) {
12472 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12473 						    sizeof(struct perf_addr_filter_range),
12474 						    GFP_KERNEL);
12475 		if (!event->addr_filter_ranges)
12476 			return ERR_PTR(-ENOMEM);
12477 
12478 		/*
12479 		 * Clone the parent's vma offsets: they are valid until exec()
12480 		 * even if the mm is not shared with the parent.
12481 		 */
12482 		if (event->parent) {
12483 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12484 
12485 			raw_spin_lock_irq(&ifh->lock);
12486 			memcpy(event->addr_filter_ranges,
12487 			       event->parent->addr_filter_ranges,
12488 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12489 			raw_spin_unlock_irq(&ifh->lock);
12490 		}
12491 
12492 		/* force hw sync on the address filters */
12493 		event->addr_filters_gen = 1;
12494 	}
12495 
12496 	if (!event->parent) {
12497 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12498 			err = get_callchain_buffers(attr->sample_max_stack);
12499 			if (err)
12500 				return ERR_PTR(err);
12501 			event->attach_state |= PERF_ATTACH_CALLCHAIN;
12502 		}
12503 	}
12504 
12505 	err = security_perf_event_alloc(event);
12506 	if (err)
12507 		return ERR_PTR(err);
12508 
12509 	/* symmetric to unaccount_event() in _free_event() */
12510 	account_event(event);
12511 
12512 	return_ptr(event);
12513 }
12514 
12515 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12516 			  struct perf_event_attr *attr)
12517 {
12518 	u32 size;
12519 	int ret;
12520 
12521 	/* Zero the full structure, so that a short copy will be nice. */
12522 	memset(attr, 0, sizeof(*attr));
12523 
12524 	ret = get_user(size, &uattr->size);
12525 	if (ret)
12526 		return ret;
12527 
12528 	/* ABI compatibility quirk: */
12529 	if (!size)
12530 		size = PERF_ATTR_SIZE_VER0;
12531 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12532 		goto err_size;
12533 
12534 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12535 	if (ret) {
12536 		if (ret == -E2BIG)
12537 			goto err_size;
12538 		return ret;
12539 	}
12540 
12541 	attr->size = size;
12542 
12543 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12544 		return -EINVAL;
12545 
12546 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12547 		return -EINVAL;
12548 
12549 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12550 		return -EINVAL;
12551 
12552 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12553 		u64 mask = attr->branch_sample_type;
12554 
12555 		/* only using defined bits */
12556 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12557 			return -EINVAL;
12558 
12559 		/* at least one branch bit must be set */
12560 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12561 			return -EINVAL;
12562 
12563 		/* propagate priv level, when not set for branch */
12564 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12565 
12566 			/* exclude_kernel checked on syscall entry */
12567 			if (!attr->exclude_kernel)
12568 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12569 
12570 			if (!attr->exclude_user)
12571 				mask |= PERF_SAMPLE_BRANCH_USER;
12572 
12573 			if (!attr->exclude_hv)
12574 				mask |= PERF_SAMPLE_BRANCH_HV;
12575 			/*
12576 			 * adjust user setting (for HW filter setup)
12577 			 */
12578 			attr->branch_sample_type = mask;
12579 		}
12580 		/* privileged levels capture (kernel, hv): check permissions */
12581 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12582 			ret = perf_allow_kernel(attr);
12583 			if (ret)
12584 				return ret;
12585 		}
12586 	}
12587 
12588 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12589 		ret = perf_reg_validate(attr->sample_regs_user);
12590 		if (ret)
12591 			return ret;
12592 	}
12593 
12594 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12595 		if (!arch_perf_have_user_stack_dump())
12596 			return -ENOSYS;
12597 
12598 		/*
12599 		 * We have __u32 type for the size, but so far
12600 		 * we can only use __u16 as maximum due to the
12601 		 * __u16 sample size limit.
12602 		 */
12603 		if (attr->sample_stack_user >= USHRT_MAX)
12604 			return -EINVAL;
12605 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12606 			return -EINVAL;
12607 	}
12608 
12609 	if (!attr->sample_max_stack)
12610 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12611 
12612 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12613 		ret = perf_reg_validate(attr->sample_regs_intr);
12614 
12615 #ifndef CONFIG_CGROUP_PERF
12616 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12617 		return -EINVAL;
12618 #endif
12619 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12620 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12621 		return -EINVAL;
12622 
12623 	if (!attr->inherit && attr->inherit_thread)
12624 		return -EINVAL;
12625 
12626 	if (attr->remove_on_exec && attr->enable_on_exec)
12627 		return -EINVAL;
12628 
12629 	if (attr->sigtrap && !attr->remove_on_exec)
12630 		return -EINVAL;
12631 
12632 out:
12633 	return ret;
12634 
12635 err_size:
12636 	put_user(sizeof(*attr), &uattr->size);
12637 	ret = -E2BIG;
12638 	goto out;
12639 }
12640 
12641 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12642 {
12643 	if (b < a)
12644 		swap(a, b);
12645 
12646 	mutex_lock(a);
12647 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12648 }
12649 
12650 static int
12651 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12652 {
12653 	struct perf_buffer *rb = NULL;
12654 	int ret = -EINVAL;
12655 
12656 	if (!output_event) {
12657 		mutex_lock(&event->mmap_mutex);
12658 		goto set;
12659 	}
12660 
12661 	/* don't allow circular references */
12662 	if (event == output_event)
12663 		goto out;
12664 
12665 	/*
12666 	 * Don't allow cross-cpu buffers
12667 	 */
12668 	if (output_event->cpu != event->cpu)
12669 		goto out;
12670 
12671 	/*
12672 	 * If its not a per-cpu rb, it must be the same task.
12673 	 */
12674 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12675 		goto out;
12676 
12677 	/*
12678 	 * Mixing clocks in the same buffer is trouble you don't need.
12679 	 */
12680 	if (output_event->clock != event->clock)
12681 		goto out;
12682 
12683 	/*
12684 	 * Either writing ring buffer from beginning or from end.
12685 	 * Mixing is not allowed.
12686 	 */
12687 	if (is_write_backward(output_event) != is_write_backward(event))
12688 		goto out;
12689 
12690 	/*
12691 	 * If both events generate aux data, they must be on the same PMU
12692 	 */
12693 	if (has_aux(event) && has_aux(output_event) &&
12694 	    event->pmu != output_event->pmu)
12695 		goto out;
12696 
12697 	/*
12698 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12699 	 * output_event is already on rb->event_list, and the list iteration
12700 	 * restarts after every removal, it is guaranteed this new event is
12701 	 * observed *OR* if output_event is already removed, it's guaranteed we
12702 	 * observe !rb->mmap_count.
12703 	 */
12704 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12705 set:
12706 	/* Can't redirect output if we've got an active mmap() */
12707 	if (atomic_read(&event->mmap_count))
12708 		goto unlock;
12709 
12710 	if (output_event) {
12711 		/* get the rb we want to redirect to */
12712 		rb = ring_buffer_get(output_event);
12713 		if (!rb)
12714 			goto unlock;
12715 
12716 		/* did we race against perf_mmap_close() */
12717 		if (!atomic_read(&rb->mmap_count)) {
12718 			ring_buffer_put(rb);
12719 			goto unlock;
12720 		}
12721 	}
12722 
12723 	ring_buffer_attach(event, rb);
12724 
12725 	ret = 0;
12726 unlock:
12727 	mutex_unlock(&event->mmap_mutex);
12728 	if (output_event)
12729 		mutex_unlock(&output_event->mmap_mutex);
12730 
12731 out:
12732 	return ret;
12733 }
12734 
12735 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12736 {
12737 	bool nmi_safe = false;
12738 
12739 	switch (clk_id) {
12740 	case CLOCK_MONOTONIC:
12741 		event->clock = &ktime_get_mono_fast_ns;
12742 		nmi_safe = true;
12743 		break;
12744 
12745 	case CLOCK_MONOTONIC_RAW:
12746 		event->clock = &ktime_get_raw_fast_ns;
12747 		nmi_safe = true;
12748 		break;
12749 
12750 	case CLOCK_REALTIME:
12751 		event->clock = &ktime_get_real_ns;
12752 		break;
12753 
12754 	case CLOCK_BOOTTIME:
12755 		event->clock = &ktime_get_boottime_ns;
12756 		break;
12757 
12758 	case CLOCK_TAI:
12759 		event->clock = &ktime_get_clocktai_ns;
12760 		break;
12761 
12762 	default:
12763 		return -EINVAL;
12764 	}
12765 
12766 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12767 		return -EINVAL;
12768 
12769 	return 0;
12770 }
12771 
12772 static bool
12773 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12774 {
12775 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12776 	bool is_capable = perfmon_capable();
12777 
12778 	if (attr->sigtrap) {
12779 		/*
12780 		 * perf_event_attr::sigtrap sends signals to the other task.
12781 		 * Require the current task to also have CAP_KILL.
12782 		 */
12783 		rcu_read_lock();
12784 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12785 		rcu_read_unlock();
12786 
12787 		/*
12788 		 * If the required capabilities aren't available, checks for
12789 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12790 		 * can effectively change the target task.
12791 		 */
12792 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12793 	}
12794 
12795 	/*
12796 	 * Preserve ptrace permission check for backwards compatibility. The
12797 	 * ptrace check also includes checks that the current task and other
12798 	 * task have matching uids, and is therefore not done here explicitly.
12799 	 */
12800 	return is_capable || ptrace_may_access(task, ptrace_mode);
12801 }
12802 
12803 /**
12804  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12805  *
12806  * @attr_uptr:	event_id type attributes for monitoring/sampling
12807  * @pid:		target pid
12808  * @cpu:		target cpu
12809  * @group_fd:		group leader event fd
12810  * @flags:		perf event open flags
12811  */
12812 SYSCALL_DEFINE5(perf_event_open,
12813 		struct perf_event_attr __user *, attr_uptr,
12814 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12815 {
12816 	struct perf_event *group_leader = NULL, *output_event = NULL;
12817 	struct perf_event_pmu_context *pmu_ctx;
12818 	struct perf_event *event, *sibling;
12819 	struct perf_event_attr attr;
12820 	struct perf_event_context *ctx;
12821 	struct file *event_file = NULL;
12822 	struct task_struct *task = NULL;
12823 	struct pmu *pmu;
12824 	int event_fd;
12825 	int move_group = 0;
12826 	int err;
12827 	int f_flags = O_RDWR;
12828 	int cgroup_fd = -1;
12829 
12830 	/* for future expandability... */
12831 	if (flags & ~PERF_FLAG_ALL)
12832 		return -EINVAL;
12833 
12834 	err = perf_copy_attr(attr_uptr, &attr);
12835 	if (err)
12836 		return err;
12837 
12838 	/* Do we allow access to perf_event_open(2) ? */
12839 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12840 	if (err)
12841 		return err;
12842 
12843 	if (!attr.exclude_kernel) {
12844 		err = perf_allow_kernel(&attr);
12845 		if (err)
12846 			return err;
12847 	}
12848 
12849 	if (attr.namespaces) {
12850 		if (!perfmon_capable())
12851 			return -EACCES;
12852 	}
12853 
12854 	if (attr.freq) {
12855 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12856 			return -EINVAL;
12857 	} else {
12858 		if (attr.sample_period & (1ULL << 63))
12859 			return -EINVAL;
12860 	}
12861 
12862 	/* Only privileged users can get physical addresses */
12863 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12864 		err = perf_allow_kernel(&attr);
12865 		if (err)
12866 			return err;
12867 	}
12868 
12869 	/* REGS_INTR can leak data, lockdown must prevent this */
12870 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12871 		err = security_locked_down(LOCKDOWN_PERF);
12872 		if (err)
12873 			return err;
12874 	}
12875 
12876 	/*
12877 	 * In cgroup mode, the pid argument is used to pass the fd
12878 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12879 	 * designates the cpu on which to monitor threads from that
12880 	 * cgroup.
12881 	 */
12882 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12883 		return -EINVAL;
12884 
12885 	if (flags & PERF_FLAG_FD_CLOEXEC)
12886 		f_flags |= O_CLOEXEC;
12887 
12888 	event_fd = get_unused_fd_flags(f_flags);
12889 	if (event_fd < 0)
12890 		return event_fd;
12891 
12892 	CLASS(fd, group)(group_fd);     // group_fd == -1 => empty
12893 	if (group_fd != -1) {
12894 		if (!is_perf_file(group)) {
12895 			err = -EBADF;
12896 			goto err_fd;
12897 		}
12898 		group_leader = fd_file(group)->private_data;
12899 		if (flags & PERF_FLAG_FD_OUTPUT)
12900 			output_event = group_leader;
12901 		if (flags & PERF_FLAG_FD_NO_GROUP)
12902 			group_leader = NULL;
12903 	}
12904 
12905 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12906 		task = find_lively_task_by_vpid(pid);
12907 		if (IS_ERR(task)) {
12908 			err = PTR_ERR(task);
12909 			goto err_fd;
12910 		}
12911 	}
12912 
12913 	if (task && group_leader &&
12914 	    group_leader->attr.inherit != attr.inherit) {
12915 		err = -EINVAL;
12916 		goto err_task;
12917 	}
12918 
12919 	if (flags & PERF_FLAG_PID_CGROUP)
12920 		cgroup_fd = pid;
12921 
12922 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12923 				 NULL, NULL, cgroup_fd);
12924 	if (IS_ERR(event)) {
12925 		err = PTR_ERR(event);
12926 		goto err_task;
12927 	}
12928 
12929 	if (is_sampling_event(event)) {
12930 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12931 			err = -EOPNOTSUPP;
12932 			goto err_alloc;
12933 		}
12934 	}
12935 
12936 	/*
12937 	 * Special case software events and allow them to be part of
12938 	 * any hardware group.
12939 	 */
12940 	pmu = event->pmu;
12941 
12942 	if (attr.use_clockid) {
12943 		err = perf_event_set_clock(event, attr.clockid);
12944 		if (err)
12945 			goto err_alloc;
12946 	}
12947 
12948 	if (pmu->task_ctx_nr == perf_sw_context)
12949 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12950 
12951 	if (task) {
12952 		err = down_read_interruptible(&task->signal->exec_update_lock);
12953 		if (err)
12954 			goto err_alloc;
12955 
12956 		/*
12957 		 * We must hold exec_update_lock across this and any potential
12958 		 * perf_install_in_context() call for this new event to
12959 		 * serialize against exec() altering our credentials (and the
12960 		 * perf_event_exit_task() that could imply).
12961 		 */
12962 		err = -EACCES;
12963 		if (!perf_check_permission(&attr, task))
12964 			goto err_cred;
12965 	}
12966 
12967 	/*
12968 	 * Get the target context (task or percpu):
12969 	 */
12970 	ctx = find_get_context(task, event);
12971 	if (IS_ERR(ctx)) {
12972 		err = PTR_ERR(ctx);
12973 		goto err_cred;
12974 	}
12975 
12976 	mutex_lock(&ctx->mutex);
12977 
12978 	if (ctx->task == TASK_TOMBSTONE) {
12979 		err = -ESRCH;
12980 		goto err_locked;
12981 	}
12982 
12983 	if (!task) {
12984 		/*
12985 		 * Check if the @cpu we're creating an event for is online.
12986 		 *
12987 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12988 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12989 		 */
12990 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12991 
12992 		if (!cpuctx->online) {
12993 			err = -ENODEV;
12994 			goto err_locked;
12995 		}
12996 	}
12997 
12998 	if (group_leader) {
12999 		err = -EINVAL;
13000 
13001 		/*
13002 		 * Do not allow a recursive hierarchy (this new sibling
13003 		 * becoming part of another group-sibling):
13004 		 */
13005 		if (group_leader->group_leader != group_leader)
13006 			goto err_locked;
13007 
13008 		/* All events in a group should have the same clock */
13009 		if (group_leader->clock != event->clock)
13010 			goto err_locked;
13011 
13012 		/*
13013 		 * Make sure we're both events for the same CPU;
13014 		 * grouping events for different CPUs is broken; since
13015 		 * you can never concurrently schedule them anyhow.
13016 		 */
13017 		if (group_leader->cpu != event->cpu)
13018 			goto err_locked;
13019 
13020 		/*
13021 		 * Make sure we're both on the same context; either task or cpu.
13022 		 */
13023 		if (group_leader->ctx != ctx)
13024 			goto err_locked;
13025 
13026 		/*
13027 		 * Only a group leader can be exclusive or pinned
13028 		 */
13029 		if (attr.exclusive || attr.pinned)
13030 			goto err_locked;
13031 
13032 		if (is_software_event(event) &&
13033 		    !in_software_context(group_leader)) {
13034 			/*
13035 			 * If the event is a sw event, but the group_leader
13036 			 * is on hw context.
13037 			 *
13038 			 * Allow the addition of software events to hw
13039 			 * groups, this is safe because software events
13040 			 * never fail to schedule.
13041 			 *
13042 			 * Note the comment that goes with struct
13043 			 * perf_event_pmu_context.
13044 			 */
13045 			pmu = group_leader->pmu_ctx->pmu;
13046 		} else if (!is_software_event(event)) {
13047 			if (is_software_event(group_leader) &&
13048 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13049 				/*
13050 				 * In case the group is a pure software group, and we
13051 				 * try to add a hardware event, move the whole group to
13052 				 * the hardware context.
13053 				 */
13054 				move_group = 1;
13055 			}
13056 
13057 			/* Don't allow group of multiple hw events from different pmus */
13058 			if (!in_software_context(group_leader) &&
13059 			    group_leader->pmu_ctx->pmu != pmu)
13060 				goto err_locked;
13061 		}
13062 	}
13063 
13064 	/*
13065 	 * Now that we're certain of the pmu; find the pmu_ctx.
13066 	 */
13067 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13068 	if (IS_ERR(pmu_ctx)) {
13069 		err = PTR_ERR(pmu_ctx);
13070 		goto err_locked;
13071 	}
13072 	event->pmu_ctx = pmu_ctx;
13073 
13074 	if (output_event) {
13075 		err = perf_event_set_output(event, output_event);
13076 		if (err)
13077 			goto err_context;
13078 	}
13079 
13080 	if (!perf_event_validate_size(event)) {
13081 		err = -E2BIG;
13082 		goto err_context;
13083 	}
13084 
13085 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13086 		err = -EINVAL;
13087 		goto err_context;
13088 	}
13089 
13090 	/*
13091 	 * Must be under the same ctx::mutex as perf_install_in_context(),
13092 	 * because we need to serialize with concurrent event creation.
13093 	 */
13094 	if (!exclusive_event_installable(event, ctx)) {
13095 		err = -EBUSY;
13096 		goto err_context;
13097 	}
13098 
13099 	WARN_ON_ONCE(ctx->parent_ctx);
13100 
13101 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13102 	if (IS_ERR(event_file)) {
13103 		err = PTR_ERR(event_file);
13104 		event_file = NULL;
13105 		goto err_context;
13106 	}
13107 
13108 	/*
13109 	 * This is the point on no return; we cannot fail hereafter. This is
13110 	 * where we start modifying current state.
13111 	 */
13112 
13113 	if (move_group) {
13114 		perf_remove_from_context(group_leader, 0);
13115 		put_pmu_ctx(group_leader->pmu_ctx);
13116 
13117 		for_each_sibling_event(sibling, group_leader) {
13118 			perf_remove_from_context(sibling, 0);
13119 			put_pmu_ctx(sibling->pmu_ctx);
13120 		}
13121 
13122 		/*
13123 		 * Install the group siblings before the group leader.
13124 		 *
13125 		 * Because a group leader will try and install the entire group
13126 		 * (through the sibling list, which is still in-tact), we can
13127 		 * end up with siblings installed in the wrong context.
13128 		 *
13129 		 * By installing siblings first we NO-OP because they're not
13130 		 * reachable through the group lists.
13131 		 */
13132 		for_each_sibling_event(sibling, group_leader) {
13133 			sibling->pmu_ctx = pmu_ctx;
13134 			get_pmu_ctx(pmu_ctx);
13135 			perf_event__state_init(sibling);
13136 			perf_install_in_context(ctx, sibling, sibling->cpu);
13137 		}
13138 
13139 		/*
13140 		 * Removing from the context ends up with disabled
13141 		 * event. What we want here is event in the initial
13142 		 * startup state, ready to be add into new context.
13143 		 */
13144 		group_leader->pmu_ctx = pmu_ctx;
13145 		get_pmu_ctx(pmu_ctx);
13146 		perf_event__state_init(group_leader);
13147 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
13148 	}
13149 
13150 	/*
13151 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
13152 	 * that we're serialized against further additions and before
13153 	 * perf_install_in_context() which is the point the event is active and
13154 	 * can use these values.
13155 	 */
13156 	perf_event__header_size(event);
13157 	perf_event__id_header_size(event);
13158 
13159 	event->owner = current;
13160 
13161 	perf_install_in_context(ctx, event, event->cpu);
13162 	perf_unpin_context(ctx);
13163 
13164 	mutex_unlock(&ctx->mutex);
13165 
13166 	if (task) {
13167 		up_read(&task->signal->exec_update_lock);
13168 		put_task_struct(task);
13169 	}
13170 
13171 	mutex_lock(&current->perf_event_mutex);
13172 	list_add_tail(&event->owner_entry, &current->perf_event_list);
13173 	mutex_unlock(&current->perf_event_mutex);
13174 
13175 	/*
13176 	 * File reference in group guarantees that group_leader has been
13177 	 * kept alive until we place the new event on the sibling_list.
13178 	 * This ensures destruction of the group leader will find
13179 	 * the pointer to itself in perf_group_detach().
13180 	 */
13181 	fd_install(event_fd, event_file);
13182 	return event_fd;
13183 
13184 err_context:
13185 	put_pmu_ctx(event->pmu_ctx);
13186 	event->pmu_ctx = NULL; /* _free_event() */
13187 err_locked:
13188 	mutex_unlock(&ctx->mutex);
13189 	perf_unpin_context(ctx);
13190 	put_ctx(ctx);
13191 err_cred:
13192 	if (task)
13193 		up_read(&task->signal->exec_update_lock);
13194 err_alloc:
13195 	free_event(event);
13196 err_task:
13197 	if (task)
13198 		put_task_struct(task);
13199 err_fd:
13200 	put_unused_fd(event_fd);
13201 	return err;
13202 }
13203 
13204 /**
13205  * perf_event_create_kernel_counter
13206  *
13207  * @attr: attributes of the counter to create
13208  * @cpu: cpu in which the counter is bound
13209  * @task: task to profile (NULL for percpu)
13210  * @overflow_handler: callback to trigger when we hit the event
13211  * @context: context data could be used in overflow_handler callback
13212  */
13213 struct perf_event *
13214 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13215 				 struct task_struct *task,
13216 				 perf_overflow_handler_t overflow_handler,
13217 				 void *context)
13218 {
13219 	struct perf_event_pmu_context *pmu_ctx;
13220 	struct perf_event_context *ctx;
13221 	struct perf_event *event;
13222 	struct pmu *pmu;
13223 	int err;
13224 
13225 	/*
13226 	 * Grouping is not supported for kernel events, neither is 'AUX',
13227 	 * make sure the caller's intentions are adjusted.
13228 	 */
13229 	if (attr->aux_output || attr->aux_action)
13230 		return ERR_PTR(-EINVAL);
13231 
13232 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13233 				 overflow_handler, context, -1);
13234 	if (IS_ERR(event)) {
13235 		err = PTR_ERR(event);
13236 		goto err;
13237 	}
13238 
13239 	/* Mark owner so we could distinguish it from user events. */
13240 	event->owner = TASK_TOMBSTONE;
13241 	pmu = event->pmu;
13242 
13243 	if (pmu->task_ctx_nr == perf_sw_context)
13244 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13245 
13246 	/*
13247 	 * Get the target context (task or percpu):
13248 	 */
13249 	ctx = find_get_context(task, event);
13250 	if (IS_ERR(ctx)) {
13251 		err = PTR_ERR(ctx);
13252 		goto err_alloc;
13253 	}
13254 
13255 	WARN_ON_ONCE(ctx->parent_ctx);
13256 	mutex_lock(&ctx->mutex);
13257 	if (ctx->task == TASK_TOMBSTONE) {
13258 		err = -ESRCH;
13259 		goto err_unlock;
13260 	}
13261 
13262 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13263 	if (IS_ERR(pmu_ctx)) {
13264 		err = PTR_ERR(pmu_ctx);
13265 		goto err_unlock;
13266 	}
13267 	event->pmu_ctx = pmu_ctx;
13268 
13269 	if (!task) {
13270 		/*
13271 		 * Check if the @cpu we're creating an event for is online.
13272 		 *
13273 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13274 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13275 		 */
13276 		struct perf_cpu_context *cpuctx =
13277 			container_of(ctx, struct perf_cpu_context, ctx);
13278 		if (!cpuctx->online) {
13279 			err = -ENODEV;
13280 			goto err_pmu_ctx;
13281 		}
13282 	}
13283 
13284 	if (!exclusive_event_installable(event, ctx)) {
13285 		err = -EBUSY;
13286 		goto err_pmu_ctx;
13287 	}
13288 
13289 	perf_install_in_context(ctx, event, event->cpu);
13290 	perf_unpin_context(ctx);
13291 	mutex_unlock(&ctx->mutex);
13292 
13293 	return event;
13294 
13295 err_pmu_ctx:
13296 	put_pmu_ctx(pmu_ctx);
13297 	event->pmu_ctx = NULL; /* _free_event() */
13298 err_unlock:
13299 	mutex_unlock(&ctx->mutex);
13300 	perf_unpin_context(ctx);
13301 	put_ctx(ctx);
13302 err_alloc:
13303 	free_event(event);
13304 err:
13305 	return ERR_PTR(err);
13306 }
13307 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13308 
13309 static void __perf_pmu_remove(struct perf_event_context *ctx,
13310 			      int cpu, struct pmu *pmu,
13311 			      struct perf_event_groups *groups,
13312 			      struct list_head *events)
13313 {
13314 	struct perf_event *event, *sibling;
13315 
13316 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13317 		perf_remove_from_context(event, 0);
13318 		put_pmu_ctx(event->pmu_ctx);
13319 		list_add(&event->migrate_entry, events);
13320 
13321 		for_each_sibling_event(sibling, event) {
13322 			perf_remove_from_context(sibling, 0);
13323 			put_pmu_ctx(sibling->pmu_ctx);
13324 			list_add(&sibling->migrate_entry, events);
13325 		}
13326 	}
13327 }
13328 
13329 static void __perf_pmu_install_event(struct pmu *pmu,
13330 				     struct perf_event_context *ctx,
13331 				     int cpu, struct perf_event *event)
13332 {
13333 	struct perf_event_pmu_context *epc;
13334 	struct perf_event_context *old_ctx = event->ctx;
13335 
13336 	get_ctx(ctx); /* normally find_get_context() */
13337 
13338 	event->cpu = cpu;
13339 	epc = find_get_pmu_context(pmu, ctx, event);
13340 	event->pmu_ctx = epc;
13341 
13342 	if (event->state >= PERF_EVENT_STATE_OFF)
13343 		event->state = PERF_EVENT_STATE_INACTIVE;
13344 	perf_install_in_context(ctx, event, cpu);
13345 
13346 	/*
13347 	 * Now that event->ctx is updated and visible, put the old ctx.
13348 	 */
13349 	put_ctx(old_ctx);
13350 }
13351 
13352 static void __perf_pmu_install(struct perf_event_context *ctx,
13353 			       int cpu, struct pmu *pmu, struct list_head *events)
13354 {
13355 	struct perf_event *event, *tmp;
13356 
13357 	/*
13358 	 * Re-instate events in 2 passes.
13359 	 *
13360 	 * Skip over group leaders and only install siblings on this first
13361 	 * pass, siblings will not get enabled without a leader, however a
13362 	 * leader will enable its siblings, even if those are still on the old
13363 	 * context.
13364 	 */
13365 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13366 		if (event->group_leader == event)
13367 			continue;
13368 
13369 		list_del(&event->migrate_entry);
13370 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13371 	}
13372 
13373 	/*
13374 	 * Once all the siblings are setup properly, install the group leaders
13375 	 * to make it go.
13376 	 */
13377 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13378 		list_del(&event->migrate_entry);
13379 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13380 	}
13381 }
13382 
13383 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13384 {
13385 	struct perf_event_context *src_ctx, *dst_ctx;
13386 	LIST_HEAD(events);
13387 
13388 	/*
13389 	 * Since per-cpu context is persistent, no need to grab an extra
13390 	 * reference.
13391 	 */
13392 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13393 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13394 
13395 	/*
13396 	 * See perf_event_ctx_lock() for comments on the details
13397 	 * of swizzling perf_event::ctx.
13398 	 */
13399 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13400 
13401 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13402 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13403 
13404 	if (!list_empty(&events)) {
13405 		/*
13406 		 * Wait for the events to quiesce before re-instating them.
13407 		 */
13408 		synchronize_rcu();
13409 
13410 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13411 	}
13412 
13413 	mutex_unlock(&dst_ctx->mutex);
13414 	mutex_unlock(&src_ctx->mutex);
13415 }
13416 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13417 
13418 static void sync_child_event(struct perf_event *child_event)
13419 {
13420 	struct perf_event *parent_event = child_event->parent;
13421 	u64 child_val;
13422 
13423 	if (child_event->attr.inherit_stat) {
13424 		struct task_struct *task = child_event->ctx->task;
13425 
13426 		if (task && task != TASK_TOMBSTONE)
13427 			perf_event_read_event(child_event, task);
13428 	}
13429 
13430 	child_val = perf_event_count(child_event, false);
13431 
13432 	/*
13433 	 * Add back the child's count to the parent's count:
13434 	 */
13435 	atomic64_add(child_val, &parent_event->child_count);
13436 	atomic64_add(child_event->total_time_enabled,
13437 		     &parent_event->child_total_time_enabled);
13438 	atomic64_add(child_event->total_time_running,
13439 		     &parent_event->child_total_time_running);
13440 }
13441 
13442 static void
13443 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13444 {
13445 	struct perf_event *parent_event = event->parent;
13446 	unsigned long detach_flags = 0;
13447 
13448 	if (parent_event) {
13449 		/*
13450 		 * Do not destroy the 'original' grouping; because of the
13451 		 * context switch optimization the original events could've
13452 		 * ended up in a random child task.
13453 		 *
13454 		 * If we were to destroy the original group, all group related
13455 		 * operations would cease to function properly after this
13456 		 * random child dies.
13457 		 *
13458 		 * Do destroy all inherited groups, we don't care about those
13459 		 * and being thorough is better.
13460 		 */
13461 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13462 		mutex_lock(&parent_event->child_mutex);
13463 	}
13464 
13465 	perf_remove_from_context(event, detach_flags);
13466 
13467 	raw_spin_lock_irq(&ctx->lock);
13468 	if (event->state > PERF_EVENT_STATE_EXIT)
13469 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13470 	raw_spin_unlock_irq(&ctx->lock);
13471 
13472 	/*
13473 	 * Child events can be freed.
13474 	 */
13475 	if (parent_event) {
13476 		mutex_unlock(&parent_event->child_mutex);
13477 		/*
13478 		 * Kick perf_poll() for is_event_hup();
13479 		 */
13480 		perf_event_wakeup(parent_event);
13481 		free_event(event);
13482 		put_event(parent_event);
13483 		return;
13484 	}
13485 
13486 	/*
13487 	 * Parent events are governed by their filedesc, retain them.
13488 	 */
13489 	perf_event_wakeup(event);
13490 }
13491 
13492 static void perf_event_exit_task_context(struct task_struct *child)
13493 {
13494 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13495 	struct perf_event *child_event, *next;
13496 
13497 	WARN_ON_ONCE(child != current);
13498 
13499 	child_ctx = perf_pin_task_context(child);
13500 	if (!child_ctx)
13501 		return;
13502 
13503 	/*
13504 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13505 	 * ctx::mutex over the entire thing. This serializes against almost
13506 	 * everything that wants to access the ctx.
13507 	 *
13508 	 * The exception is sys_perf_event_open() /
13509 	 * perf_event_create_kernel_count() which does find_get_context()
13510 	 * without ctx::mutex (it cannot because of the move_group double mutex
13511 	 * lock thing). See the comments in perf_install_in_context().
13512 	 */
13513 	mutex_lock(&child_ctx->mutex);
13514 
13515 	/*
13516 	 * In a single ctx::lock section, de-schedule the events and detach the
13517 	 * context from the task such that we cannot ever get it scheduled back
13518 	 * in.
13519 	 */
13520 	raw_spin_lock_irq(&child_ctx->lock);
13521 	task_ctx_sched_out(child_ctx, NULL, EVENT_ALL);
13522 
13523 	/*
13524 	 * Now that the context is inactive, destroy the task <-> ctx relation
13525 	 * and mark the context dead.
13526 	 */
13527 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13528 	put_ctx(child_ctx); /* cannot be last */
13529 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13530 	put_task_struct(current); /* cannot be last */
13531 
13532 	clone_ctx = unclone_ctx(child_ctx);
13533 	raw_spin_unlock_irq(&child_ctx->lock);
13534 
13535 	if (clone_ctx)
13536 		put_ctx(clone_ctx);
13537 
13538 	/*
13539 	 * Report the task dead after unscheduling the events so that we
13540 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13541 	 * get a few PERF_RECORD_READ events.
13542 	 */
13543 	perf_event_task(child, child_ctx, 0);
13544 
13545 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13546 		perf_event_exit_event(child_event, child_ctx);
13547 
13548 	mutex_unlock(&child_ctx->mutex);
13549 
13550 	put_ctx(child_ctx);
13551 }
13552 
13553 /*
13554  * When a child task exits, feed back event values to parent events.
13555  *
13556  * Can be called with exec_update_lock held when called from
13557  * setup_new_exec().
13558  */
13559 void perf_event_exit_task(struct task_struct *child)
13560 {
13561 	struct perf_event *event, *tmp;
13562 
13563 	mutex_lock(&child->perf_event_mutex);
13564 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13565 				 owner_entry) {
13566 		list_del_init(&event->owner_entry);
13567 
13568 		/*
13569 		 * Ensure the list deletion is visible before we clear
13570 		 * the owner, closes a race against perf_release() where
13571 		 * we need to serialize on the owner->perf_event_mutex.
13572 		 */
13573 		smp_store_release(&event->owner, NULL);
13574 	}
13575 	mutex_unlock(&child->perf_event_mutex);
13576 
13577 	perf_event_exit_task_context(child);
13578 
13579 	/*
13580 	 * The perf_event_exit_task_context calls perf_event_task
13581 	 * with child's task_ctx, which generates EXIT events for
13582 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13583 	 * At this point we need to send EXIT events to cpu contexts.
13584 	 */
13585 	perf_event_task(child, NULL, 0);
13586 }
13587 
13588 static void perf_free_event(struct perf_event *event,
13589 			    struct perf_event_context *ctx)
13590 {
13591 	struct perf_event *parent = event->parent;
13592 
13593 	if (WARN_ON_ONCE(!parent))
13594 		return;
13595 
13596 	mutex_lock(&parent->child_mutex);
13597 	list_del_init(&event->child_list);
13598 	mutex_unlock(&parent->child_mutex);
13599 
13600 	put_event(parent);
13601 
13602 	raw_spin_lock_irq(&ctx->lock);
13603 	perf_group_detach(event);
13604 	list_del_event(event, ctx);
13605 	raw_spin_unlock_irq(&ctx->lock);
13606 	free_event(event);
13607 }
13608 
13609 /*
13610  * Free a context as created by inheritance by perf_event_init_task() below,
13611  * used by fork() in case of fail.
13612  *
13613  * Even though the task has never lived, the context and events have been
13614  * exposed through the child_list, so we must take care tearing it all down.
13615  */
13616 void perf_event_free_task(struct task_struct *task)
13617 {
13618 	struct perf_event_context *ctx;
13619 	struct perf_event *event, *tmp;
13620 
13621 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13622 	if (!ctx)
13623 		return;
13624 
13625 	mutex_lock(&ctx->mutex);
13626 	raw_spin_lock_irq(&ctx->lock);
13627 	/*
13628 	 * Destroy the task <-> ctx relation and mark the context dead.
13629 	 *
13630 	 * This is important because even though the task hasn't been
13631 	 * exposed yet the context has been (through child_list).
13632 	 */
13633 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13634 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13635 	put_task_struct(task); /* cannot be last */
13636 	raw_spin_unlock_irq(&ctx->lock);
13637 
13638 
13639 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13640 		perf_free_event(event, ctx);
13641 
13642 	mutex_unlock(&ctx->mutex);
13643 
13644 	/*
13645 	 * perf_event_release_kernel() could've stolen some of our
13646 	 * child events and still have them on its free_list. In that
13647 	 * case we must wait for these events to have been freed (in
13648 	 * particular all their references to this task must've been
13649 	 * dropped).
13650 	 *
13651 	 * Without this copy_process() will unconditionally free this
13652 	 * task (irrespective of its reference count) and
13653 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13654 	 * use-after-free.
13655 	 *
13656 	 * Wait for all events to drop their context reference.
13657 	 */
13658 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13659 	put_ctx(ctx); /* must be last */
13660 }
13661 
13662 void perf_event_delayed_put(struct task_struct *task)
13663 {
13664 	WARN_ON_ONCE(task->perf_event_ctxp);
13665 }
13666 
13667 struct file *perf_event_get(unsigned int fd)
13668 {
13669 	struct file *file = fget(fd);
13670 	if (!file)
13671 		return ERR_PTR(-EBADF);
13672 
13673 	if (file->f_op != &perf_fops) {
13674 		fput(file);
13675 		return ERR_PTR(-EBADF);
13676 	}
13677 
13678 	return file;
13679 }
13680 
13681 const struct perf_event *perf_get_event(struct file *file)
13682 {
13683 	if (file->f_op != &perf_fops)
13684 		return ERR_PTR(-EINVAL);
13685 
13686 	return file->private_data;
13687 }
13688 
13689 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13690 {
13691 	if (!event)
13692 		return ERR_PTR(-EINVAL);
13693 
13694 	return &event->attr;
13695 }
13696 
13697 int perf_allow_kernel(struct perf_event_attr *attr)
13698 {
13699 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13700 		return -EACCES;
13701 
13702 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13703 }
13704 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13705 
13706 /*
13707  * Inherit an event from parent task to child task.
13708  *
13709  * Returns:
13710  *  - valid pointer on success
13711  *  - NULL for orphaned events
13712  *  - IS_ERR() on error
13713  */
13714 static struct perf_event *
13715 inherit_event(struct perf_event *parent_event,
13716 	      struct task_struct *parent,
13717 	      struct perf_event_context *parent_ctx,
13718 	      struct task_struct *child,
13719 	      struct perf_event *group_leader,
13720 	      struct perf_event_context *child_ctx)
13721 {
13722 	enum perf_event_state parent_state = parent_event->state;
13723 	struct perf_event_pmu_context *pmu_ctx;
13724 	struct perf_event *child_event;
13725 	unsigned long flags;
13726 
13727 	/*
13728 	 * Instead of creating recursive hierarchies of events,
13729 	 * we link inherited events back to the original parent,
13730 	 * which has a filp for sure, which we use as the reference
13731 	 * count:
13732 	 */
13733 	if (parent_event->parent)
13734 		parent_event = parent_event->parent;
13735 
13736 	child_event = perf_event_alloc(&parent_event->attr,
13737 					   parent_event->cpu,
13738 					   child,
13739 					   group_leader, parent_event,
13740 					   NULL, NULL, -1);
13741 	if (IS_ERR(child_event))
13742 		return child_event;
13743 
13744 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13745 	if (IS_ERR(pmu_ctx)) {
13746 		free_event(child_event);
13747 		return ERR_CAST(pmu_ctx);
13748 	}
13749 	child_event->pmu_ctx = pmu_ctx;
13750 
13751 	/*
13752 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13753 	 * must be under the same lock in order to serialize against
13754 	 * perf_event_release_kernel(), such that either we must observe
13755 	 * is_orphaned_event() or they will observe us on the child_list.
13756 	 */
13757 	mutex_lock(&parent_event->child_mutex);
13758 	if (is_orphaned_event(parent_event) ||
13759 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13760 		mutex_unlock(&parent_event->child_mutex);
13761 		/* task_ctx_data is freed with child_ctx */
13762 		free_event(child_event);
13763 		return NULL;
13764 	}
13765 
13766 	get_ctx(child_ctx);
13767 
13768 	/*
13769 	 * Make the child state follow the state of the parent event,
13770 	 * not its attr.disabled bit.  We hold the parent's mutex,
13771 	 * so we won't race with perf_event_{en, dis}able_family.
13772 	 */
13773 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13774 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13775 	else
13776 		child_event->state = PERF_EVENT_STATE_OFF;
13777 
13778 	if (parent_event->attr.freq) {
13779 		u64 sample_period = parent_event->hw.sample_period;
13780 		struct hw_perf_event *hwc = &child_event->hw;
13781 
13782 		hwc->sample_period = sample_period;
13783 		hwc->last_period   = sample_period;
13784 
13785 		local64_set(&hwc->period_left, sample_period);
13786 	}
13787 
13788 	child_event->ctx = child_ctx;
13789 	child_event->overflow_handler = parent_event->overflow_handler;
13790 	child_event->overflow_handler_context
13791 		= parent_event->overflow_handler_context;
13792 
13793 	/*
13794 	 * Precalculate sample_data sizes
13795 	 */
13796 	perf_event__header_size(child_event);
13797 	perf_event__id_header_size(child_event);
13798 
13799 	/*
13800 	 * Link it up in the child's context:
13801 	 */
13802 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13803 	add_event_to_ctx(child_event, child_ctx);
13804 	child_event->attach_state |= PERF_ATTACH_CHILD;
13805 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13806 
13807 	/*
13808 	 * Link this into the parent event's child list
13809 	 */
13810 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13811 	mutex_unlock(&parent_event->child_mutex);
13812 
13813 	return child_event;
13814 }
13815 
13816 /*
13817  * Inherits an event group.
13818  *
13819  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13820  * This matches with perf_event_release_kernel() removing all child events.
13821  *
13822  * Returns:
13823  *  - 0 on success
13824  *  - <0 on error
13825  */
13826 static int inherit_group(struct perf_event *parent_event,
13827 	      struct task_struct *parent,
13828 	      struct perf_event_context *parent_ctx,
13829 	      struct task_struct *child,
13830 	      struct perf_event_context *child_ctx)
13831 {
13832 	struct perf_event *leader;
13833 	struct perf_event *sub;
13834 	struct perf_event *child_ctr;
13835 
13836 	leader = inherit_event(parent_event, parent, parent_ctx,
13837 				 child, NULL, child_ctx);
13838 	if (IS_ERR(leader))
13839 		return PTR_ERR(leader);
13840 	/*
13841 	 * @leader can be NULL here because of is_orphaned_event(). In this
13842 	 * case inherit_event() will create individual events, similar to what
13843 	 * perf_group_detach() would do anyway.
13844 	 */
13845 	for_each_sibling_event(sub, parent_event) {
13846 		child_ctr = inherit_event(sub, parent, parent_ctx,
13847 					    child, leader, child_ctx);
13848 		if (IS_ERR(child_ctr))
13849 			return PTR_ERR(child_ctr);
13850 
13851 		if (sub->aux_event == parent_event && child_ctr &&
13852 		    !perf_get_aux_event(child_ctr, leader))
13853 			return -EINVAL;
13854 	}
13855 	if (leader)
13856 		leader->group_generation = parent_event->group_generation;
13857 	return 0;
13858 }
13859 
13860 /*
13861  * Creates the child task context and tries to inherit the event-group.
13862  *
13863  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13864  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13865  * consistent with perf_event_release_kernel() removing all child events.
13866  *
13867  * Returns:
13868  *  - 0 on success
13869  *  - <0 on error
13870  */
13871 static int
13872 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13873 		   struct perf_event_context *parent_ctx,
13874 		   struct task_struct *child,
13875 		   u64 clone_flags, int *inherited_all)
13876 {
13877 	struct perf_event_context *child_ctx;
13878 	int ret;
13879 
13880 	if (!event->attr.inherit ||
13881 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13882 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13883 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13884 		*inherited_all = 0;
13885 		return 0;
13886 	}
13887 
13888 	child_ctx = child->perf_event_ctxp;
13889 	if (!child_ctx) {
13890 		/*
13891 		 * This is executed from the parent task context, so
13892 		 * inherit events that have been marked for cloning.
13893 		 * First allocate and initialize a context for the
13894 		 * child.
13895 		 */
13896 		child_ctx = alloc_perf_context(child);
13897 		if (!child_ctx)
13898 			return -ENOMEM;
13899 
13900 		child->perf_event_ctxp = child_ctx;
13901 	}
13902 
13903 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13904 	if (ret)
13905 		*inherited_all = 0;
13906 
13907 	return ret;
13908 }
13909 
13910 /*
13911  * Initialize the perf_event context in task_struct
13912  */
13913 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13914 {
13915 	struct perf_event_context *child_ctx, *parent_ctx;
13916 	struct perf_event_context *cloned_ctx;
13917 	struct perf_event *event;
13918 	struct task_struct *parent = current;
13919 	int inherited_all = 1;
13920 	unsigned long flags;
13921 	int ret = 0;
13922 
13923 	if (likely(!parent->perf_event_ctxp))
13924 		return 0;
13925 
13926 	/*
13927 	 * If the parent's context is a clone, pin it so it won't get
13928 	 * swapped under us.
13929 	 */
13930 	parent_ctx = perf_pin_task_context(parent);
13931 	if (!parent_ctx)
13932 		return 0;
13933 
13934 	/*
13935 	 * No need to check if parent_ctx != NULL here; since we saw
13936 	 * it non-NULL earlier, the only reason for it to become NULL
13937 	 * is if we exit, and since we're currently in the middle of
13938 	 * a fork we can't be exiting at the same time.
13939 	 */
13940 
13941 	/*
13942 	 * Lock the parent list. No need to lock the child - not PID
13943 	 * hashed yet and not running, so nobody can access it.
13944 	 */
13945 	mutex_lock(&parent_ctx->mutex);
13946 
13947 	/*
13948 	 * We dont have to disable NMIs - we are only looking at
13949 	 * the list, not manipulating it:
13950 	 */
13951 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13952 		ret = inherit_task_group(event, parent, parent_ctx,
13953 					 child, clone_flags, &inherited_all);
13954 		if (ret)
13955 			goto out_unlock;
13956 	}
13957 
13958 	/*
13959 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13960 	 * to allocations, but we need to prevent rotation because
13961 	 * rotate_ctx() will change the list from interrupt context.
13962 	 */
13963 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13964 	parent_ctx->rotate_disable = 1;
13965 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13966 
13967 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13968 		ret = inherit_task_group(event, parent, parent_ctx,
13969 					 child, clone_flags, &inherited_all);
13970 		if (ret)
13971 			goto out_unlock;
13972 	}
13973 
13974 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13975 	parent_ctx->rotate_disable = 0;
13976 
13977 	child_ctx = child->perf_event_ctxp;
13978 
13979 	if (child_ctx && inherited_all) {
13980 		/*
13981 		 * Mark the child context as a clone of the parent
13982 		 * context, or of whatever the parent is a clone of.
13983 		 *
13984 		 * Note that if the parent is a clone, the holding of
13985 		 * parent_ctx->lock avoids it from being uncloned.
13986 		 */
13987 		cloned_ctx = parent_ctx->parent_ctx;
13988 		if (cloned_ctx) {
13989 			child_ctx->parent_ctx = cloned_ctx;
13990 			child_ctx->parent_gen = parent_ctx->parent_gen;
13991 		} else {
13992 			child_ctx->parent_ctx = parent_ctx;
13993 			child_ctx->parent_gen = parent_ctx->generation;
13994 		}
13995 		get_ctx(child_ctx->parent_ctx);
13996 	}
13997 
13998 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13999 out_unlock:
14000 	mutex_unlock(&parent_ctx->mutex);
14001 
14002 	perf_unpin_context(parent_ctx);
14003 	put_ctx(parent_ctx);
14004 
14005 	return ret;
14006 }
14007 
14008 /*
14009  * Initialize the perf_event context in task_struct
14010  */
14011 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
14012 {
14013 	int ret;
14014 
14015 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
14016 	child->perf_event_ctxp = NULL;
14017 	mutex_init(&child->perf_event_mutex);
14018 	INIT_LIST_HEAD(&child->perf_event_list);
14019 
14020 	ret = perf_event_init_context(child, clone_flags);
14021 	if (ret) {
14022 		perf_event_free_task(child);
14023 		return ret;
14024 	}
14025 
14026 	return 0;
14027 }
14028 
14029 static void __init perf_event_init_all_cpus(void)
14030 {
14031 	struct swevent_htable *swhash;
14032 	struct perf_cpu_context *cpuctx;
14033 	int cpu;
14034 
14035 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
14036 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
14037 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
14038 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14039 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14040 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
14041 
14042 
14043 	for_each_possible_cpu(cpu) {
14044 		swhash = &per_cpu(swevent_htable, cpu);
14045 		mutex_init(&swhash->hlist_mutex);
14046 
14047 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14048 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14049 
14050 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14051 
14052 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14053 		__perf_event_init_context(&cpuctx->ctx);
14054 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14055 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14056 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14057 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14058 		cpuctx->heap = cpuctx->heap_default;
14059 	}
14060 }
14061 
14062 static void perf_swevent_init_cpu(unsigned int cpu)
14063 {
14064 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14065 
14066 	mutex_lock(&swhash->hlist_mutex);
14067 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14068 		struct swevent_hlist *hlist;
14069 
14070 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14071 		WARN_ON(!hlist);
14072 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
14073 	}
14074 	mutex_unlock(&swhash->hlist_mutex);
14075 }
14076 
14077 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
14078 static void __perf_event_exit_context(void *__info)
14079 {
14080 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14081 	struct perf_event_context *ctx = __info;
14082 	struct perf_event *event;
14083 
14084 	raw_spin_lock(&ctx->lock);
14085 	ctx_sched_out(ctx, NULL, EVENT_TIME);
14086 	list_for_each_entry(event, &ctx->event_list, event_entry)
14087 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14088 	raw_spin_unlock(&ctx->lock);
14089 }
14090 
14091 static void perf_event_clear_cpumask(unsigned int cpu)
14092 {
14093 	int target[PERF_PMU_MAX_SCOPE];
14094 	unsigned int scope;
14095 	struct pmu *pmu;
14096 
14097 	cpumask_clear_cpu(cpu, perf_online_mask);
14098 
14099 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14100 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14101 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14102 
14103 		target[scope] = -1;
14104 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14105 			continue;
14106 
14107 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14108 			continue;
14109 		target[scope] = cpumask_any_but(cpumask, cpu);
14110 		if (target[scope] < nr_cpu_ids)
14111 			cpumask_set_cpu(target[scope], pmu_cpumask);
14112 	}
14113 
14114 	/* migrate */
14115 	list_for_each_entry(pmu, &pmus, entry) {
14116 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14117 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14118 			continue;
14119 
14120 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14121 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14122 	}
14123 }
14124 
14125 static void perf_event_exit_cpu_context(int cpu)
14126 {
14127 	struct perf_cpu_context *cpuctx;
14128 	struct perf_event_context *ctx;
14129 
14130 	// XXX simplify cpuctx->online
14131 	mutex_lock(&pmus_lock);
14132 	/*
14133 	 * Clear the cpumasks, and migrate to other CPUs if possible.
14134 	 * Must be invoked before the __perf_event_exit_context.
14135 	 */
14136 	perf_event_clear_cpumask(cpu);
14137 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14138 	ctx = &cpuctx->ctx;
14139 
14140 	mutex_lock(&ctx->mutex);
14141 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14142 	cpuctx->online = 0;
14143 	mutex_unlock(&ctx->mutex);
14144 	mutex_unlock(&pmus_lock);
14145 }
14146 #else
14147 
14148 static void perf_event_exit_cpu_context(int cpu) { }
14149 
14150 #endif
14151 
14152 static void perf_event_setup_cpumask(unsigned int cpu)
14153 {
14154 	struct cpumask *pmu_cpumask;
14155 	unsigned int scope;
14156 
14157 	/*
14158 	 * Early boot stage, the cpumask hasn't been set yet.
14159 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14160 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14161 	 */
14162 	if (cpumask_empty(perf_online_mask)) {
14163 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14164 			pmu_cpumask = perf_scope_cpumask(scope);
14165 			if (WARN_ON_ONCE(!pmu_cpumask))
14166 				continue;
14167 			cpumask_set_cpu(cpu, pmu_cpumask);
14168 		}
14169 		goto end;
14170 	}
14171 
14172 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14173 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14174 
14175 		pmu_cpumask = perf_scope_cpumask(scope);
14176 
14177 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14178 			continue;
14179 
14180 		if (!cpumask_empty(cpumask) &&
14181 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14182 			cpumask_set_cpu(cpu, pmu_cpumask);
14183 	}
14184 end:
14185 	cpumask_set_cpu(cpu, perf_online_mask);
14186 }
14187 
14188 int perf_event_init_cpu(unsigned int cpu)
14189 {
14190 	struct perf_cpu_context *cpuctx;
14191 	struct perf_event_context *ctx;
14192 
14193 	perf_swevent_init_cpu(cpu);
14194 
14195 	mutex_lock(&pmus_lock);
14196 	perf_event_setup_cpumask(cpu);
14197 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14198 	ctx = &cpuctx->ctx;
14199 
14200 	mutex_lock(&ctx->mutex);
14201 	cpuctx->online = 1;
14202 	mutex_unlock(&ctx->mutex);
14203 	mutex_unlock(&pmus_lock);
14204 
14205 	return 0;
14206 }
14207 
14208 int perf_event_exit_cpu(unsigned int cpu)
14209 {
14210 	perf_event_exit_cpu_context(cpu);
14211 	return 0;
14212 }
14213 
14214 static int
14215 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14216 {
14217 	int cpu;
14218 
14219 	for_each_online_cpu(cpu)
14220 		perf_event_exit_cpu(cpu);
14221 
14222 	return NOTIFY_OK;
14223 }
14224 
14225 /*
14226  * Run the perf reboot notifier at the very last possible moment so that
14227  * the generic watchdog code runs as long as possible.
14228  */
14229 static struct notifier_block perf_reboot_notifier = {
14230 	.notifier_call = perf_reboot,
14231 	.priority = INT_MIN,
14232 };
14233 
14234 void __init perf_event_init(void)
14235 {
14236 	int ret;
14237 
14238 	idr_init(&pmu_idr);
14239 
14240 	perf_event_init_all_cpus();
14241 	init_srcu_struct(&pmus_srcu);
14242 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14243 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14244 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14245 	perf_tp_register();
14246 	perf_event_init_cpu(smp_processor_id());
14247 	register_reboot_notifier(&perf_reboot_notifier);
14248 
14249 	ret = init_hw_breakpoint();
14250 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14251 
14252 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14253 
14254 	/*
14255 	 * Build time assertion that we keep the data_head at the intended
14256 	 * location.  IOW, validation we got the __reserved[] size right.
14257 	 */
14258 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14259 		     != 1024);
14260 }
14261 
14262 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14263 			      char *page)
14264 {
14265 	struct perf_pmu_events_attr *pmu_attr =
14266 		container_of(attr, struct perf_pmu_events_attr, attr);
14267 
14268 	if (pmu_attr->event_str)
14269 		return sprintf(page, "%s\n", pmu_attr->event_str);
14270 
14271 	return 0;
14272 }
14273 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14274 
14275 static int __init perf_event_sysfs_init(void)
14276 {
14277 	struct pmu *pmu;
14278 	int ret;
14279 
14280 	mutex_lock(&pmus_lock);
14281 
14282 	ret = bus_register(&pmu_bus);
14283 	if (ret)
14284 		goto unlock;
14285 
14286 	list_for_each_entry(pmu, &pmus, entry) {
14287 		if (pmu->dev)
14288 			continue;
14289 
14290 		ret = pmu_dev_alloc(pmu);
14291 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14292 	}
14293 	pmu_bus_running = 1;
14294 	ret = 0;
14295 
14296 unlock:
14297 	mutex_unlock(&pmus_lock);
14298 
14299 	return ret;
14300 }
14301 device_initcall(perf_event_sysfs_init);
14302 
14303 #ifdef CONFIG_CGROUP_PERF
14304 static struct cgroup_subsys_state *
14305 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14306 {
14307 	struct perf_cgroup *jc;
14308 
14309 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14310 	if (!jc)
14311 		return ERR_PTR(-ENOMEM);
14312 
14313 	jc->info = alloc_percpu(struct perf_cgroup_info);
14314 	if (!jc->info) {
14315 		kfree(jc);
14316 		return ERR_PTR(-ENOMEM);
14317 	}
14318 
14319 	return &jc->css;
14320 }
14321 
14322 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14323 {
14324 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14325 
14326 	free_percpu(jc->info);
14327 	kfree(jc);
14328 }
14329 
14330 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14331 {
14332 	perf_event_cgroup(css->cgroup);
14333 	return 0;
14334 }
14335 
14336 static int __perf_cgroup_move(void *info)
14337 {
14338 	struct task_struct *task = info;
14339 
14340 	preempt_disable();
14341 	perf_cgroup_switch(task);
14342 	preempt_enable();
14343 
14344 	return 0;
14345 }
14346 
14347 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14348 {
14349 	struct task_struct *task;
14350 	struct cgroup_subsys_state *css;
14351 
14352 	cgroup_taskset_for_each(task, css, tset)
14353 		task_function_call(task, __perf_cgroup_move, task);
14354 }
14355 
14356 struct cgroup_subsys perf_event_cgrp_subsys = {
14357 	.css_alloc	= perf_cgroup_css_alloc,
14358 	.css_free	= perf_cgroup_css_free,
14359 	.css_online	= perf_cgroup_css_online,
14360 	.attach		= perf_cgroup_attach,
14361 	/*
14362 	 * Implicitly enable on dfl hierarchy so that perf events can
14363 	 * always be filtered by cgroup2 path as long as perf_event
14364 	 * controller is not mounted on a legacy hierarchy.
14365 	 */
14366 	.implicit_on_dfl = true,
14367 	.threaded	= true,
14368 };
14369 #endif /* CONFIG_CGROUP_PERF */
14370 
14371 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14372