1 /* 2 * Kernel Debug Core 3 * 4 * Maintainer: Jason Wessel <[email protected]> 5 * 6 * Copyright (C) 2000-2001 VERITAS Software Corporation. 7 * Copyright (C) 2002-2004 Timesys Corporation 8 * Copyright (C) 2003-2004 Amit S. Kale <[email protected]> 9 * Copyright (C) 2004 Pavel Machek <[email protected]> 10 * Copyright (C) 2004-2006 Tom Rini <[email protected]> 11 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. 12 * Copyright (C) 2005-2009 Wind River Systems, Inc. 13 * Copyright (C) 2007 MontaVista Software, Inc. 14 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <[email protected]> 15 * 16 * Contributors at various stages not listed above: 17 * Jason Wessel ( [email protected] ) 18 * George Anzinger <[email protected]> 19 * Anurekh Saxena ([email protected]) 20 * Lake Stevens Instrument Division (Glenn Engel) 21 * Jim Kingdon, Cygnus Support. 22 * 23 * Original KGDB stub: David Grothe <[email protected]>, 24 * Tigran Aivazian <[email protected]> 25 * 26 * This file is licensed under the terms of the GNU General Public License 27 * version 2. This program is licensed "as is" without any warranty of any 28 * kind, whether express or implied. 29 */ 30 31 #define pr_fmt(fmt) "KGDB: " fmt 32 33 #include <linux/pid_namespace.h> 34 #include <linux/clocksource.h> 35 #include <linux/serial_core.h> 36 #include <linux/interrupt.h> 37 #include <linux/spinlock.h> 38 #include <linux/console.h> 39 #include <linux/threads.h> 40 #include <linux/uaccess.h> 41 #include <linux/kernel.h> 42 #include <linux/module.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/delay.h> 46 #include <linux/sched.h> 47 #include <linux/sysrq.h> 48 #include <linux/reboot.h> 49 #include <linux/init.h> 50 #include <linux/kgdb.h> 51 #include <linux/kdb.h> 52 #include <linux/nmi.h> 53 #include <linux/pid.h> 54 #include <linux/smp.h> 55 #include <linux/mm.h> 56 #include <linux/vmacache.h> 57 #include <linux/rcupdate.h> 58 #include <linux/irq.h> 59 60 #include <asm/cacheflush.h> 61 #include <asm/byteorder.h> 62 #include <linux/atomic.h> 63 64 #include "debug_core.h" 65 66 static int kgdb_break_asap; 67 68 struct debuggerinfo_struct kgdb_info[NR_CPUS]; 69 70 /** 71 * kgdb_connected - Is a host GDB connected to us? 72 */ 73 int kgdb_connected; 74 EXPORT_SYMBOL_GPL(kgdb_connected); 75 76 /* All the KGDB handlers are installed */ 77 int kgdb_io_module_registered; 78 79 /* Guard for recursive entry */ 80 static int exception_level; 81 82 struct kgdb_io *dbg_io_ops; 83 static DEFINE_SPINLOCK(kgdb_registration_lock); 84 85 /* Action for the reboot notifiter, a global allow kdb to change it */ 86 static int kgdbreboot; 87 /* kgdb console driver is loaded */ 88 static int kgdb_con_registered; 89 /* determine if kgdb console output should be used */ 90 static int kgdb_use_con; 91 /* Flag for alternate operations for early debugging */ 92 bool dbg_is_early = true; 93 /* Next cpu to become the master debug core */ 94 int dbg_switch_cpu; 95 96 /* Use kdb or gdbserver mode */ 97 int dbg_kdb_mode = 1; 98 99 static int __init opt_kgdb_con(char *str) 100 { 101 kgdb_use_con = 1; 102 return 0; 103 } 104 105 early_param("kgdbcon", opt_kgdb_con); 106 107 module_param(kgdb_use_con, int, 0644); 108 module_param(kgdbreboot, int, 0644); 109 110 /* 111 * Holds information about breakpoints in a kernel. These breakpoints are 112 * added and removed by gdb. 113 */ 114 static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = { 115 [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED } 116 }; 117 118 /* 119 * The CPU# of the active CPU, or -1 if none: 120 */ 121 atomic_t kgdb_active = ATOMIC_INIT(-1); 122 EXPORT_SYMBOL_GPL(kgdb_active); 123 static DEFINE_RAW_SPINLOCK(dbg_master_lock); 124 static DEFINE_RAW_SPINLOCK(dbg_slave_lock); 125 126 /* 127 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early 128 * bootup code (which might not have percpu set up yet): 129 */ 130 static atomic_t masters_in_kgdb; 131 static atomic_t slaves_in_kgdb; 132 static atomic_t kgdb_break_tasklet_var; 133 atomic_t kgdb_setting_breakpoint; 134 135 struct task_struct *kgdb_usethread; 136 struct task_struct *kgdb_contthread; 137 138 int kgdb_single_step; 139 static pid_t kgdb_sstep_pid; 140 141 /* to keep track of the CPU which is doing the single stepping*/ 142 atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1); 143 144 /* 145 * If you are debugging a problem where roundup (the collection of 146 * all other CPUs) is a problem [this should be extremely rare], 147 * then use the nokgdbroundup option to avoid roundup. In that case 148 * the other CPUs might interfere with your debugging context, so 149 * use this with care: 150 */ 151 static int kgdb_do_roundup = 1; 152 153 static int __init opt_nokgdbroundup(char *str) 154 { 155 kgdb_do_roundup = 0; 156 157 return 0; 158 } 159 160 early_param("nokgdbroundup", opt_nokgdbroundup); 161 162 /* 163 * Finally, some KGDB code :-) 164 */ 165 166 /* 167 * Weak aliases for breakpoint management, 168 * can be overriden by architectures when needed: 169 */ 170 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt) 171 { 172 int err; 173 174 err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr, 175 BREAK_INSTR_SIZE); 176 if (err) 177 return err; 178 err = probe_kernel_write((char *)bpt->bpt_addr, 179 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE); 180 return err; 181 } 182 183 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt) 184 { 185 return probe_kernel_write((char *)bpt->bpt_addr, 186 (char *)bpt->saved_instr, BREAK_INSTR_SIZE); 187 } 188 189 int __weak kgdb_validate_break_address(unsigned long addr) 190 { 191 struct kgdb_bkpt tmp; 192 int err; 193 /* Validate setting the breakpoint and then removing it. If the 194 * remove fails, the kernel needs to emit a bad message because we 195 * are deep trouble not being able to put things back the way we 196 * found them. 197 */ 198 tmp.bpt_addr = addr; 199 err = kgdb_arch_set_breakpoint(&tmp); 200 if (err) 201 return err; 202 err = kgdb_arch_remove_breakpoint(&tmp); 203 if (err) 204 pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n", 205 addr); 206 return err; 207 } 208 209 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs) 210 { 211 return instruction_pointer(regs); 212 } 213 214 int __weak kgdb_arch_init(void) 215 { 216 return 0; 217 } 218 219 int __weak kgdb_skipexception(int exception, struct pt_regs *regs) 220 { 221 return 0; 222 } 223 224 #ifdef CONFIG_SMP 225 226 /* 227 * Default (weak) implementation for kgdb_roundup_cpus 228 */ 229 230 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd); 231 232 void __weak kgdb_call_nmi_hook(void *ignored) 233 { 234 /* 235 * NOTE: get_irq_regs() is supposed to get the registers from 236 * before the IPI interrupt happened and so is supposed to 237 * show where the processor was. In some situations it's 238 * possible we might be called without an IPI, so it might be 239 * safer to figure out how to make kgdb_breakpoint() work 240 * properly here. 241 */ 242 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs()); 243 } 244 245 void __weak kgdb_roundup_cpus(void) 246 { 247 call_single_data_t *csd; 248 int this_cpu = raw_smp_processor_id(); 249 int cpu; 250 int ret; 251 252 for_each_online_cpu(cpu) { 253 /* No need to roundup ourselves */ 254 if (cpu == this_cpu) 255 continue; 256 257 csd = &per_cpu(kgdb_roundup_csd, cpu); 258 259 /* 260 * If it didn't round up last time, don't try again 261 * since smp_call_function_single_async() will block. 262 * 263 * If rounding_up is false then we know that the 264 * previous call must have at least started and that 265 * means smp_call_function_single_async() won't block. 266 */ 267 if (kgdb_info[cpu].rounding_up) 268 continue; 269 kgdb_info[cpu].rounding_up = true; 270 271 csd->func = kgdb_call_nmi_hook; 272 ret = smp_call_function_single_async(cpu, csd); 273 if (ret) 274 kgdb_info[cpu].rounding_up = false; 275 } 276 } 277 278 #endif 279 280 /* 281 * Some architectures need cache flushes when we set/clear a 282 * breakpoint: 283 */ 284 static void kgdb_flush_swbreak_addr(unsigned long addr) 285 { 286 if (!CACHE_FLUSH_IS_SAFE) 287 return; 288 289 if (current->mm) { 290 int i; 291 292 for (i = 0; i < VMACACHE_SIZE; i++) { 293 if (!current->vmacache.vmas[i]) 294 continue; 295 flush_cache_range(current->vmacache.vmas[i], 296 addr, addr + BREAK_INSTR_SIZE); 297 } 298 } 299 300 /* Force flush instruction cache if it was outside the mm */ 301 flush_icache_range(addr, addr + BREAK_INSTR_SIZE); 302 } 303 304 /* 305 * SW breakpoint management: 306 */ 307 int dbg_activate_sw_breakpoints(void) 308 { 309 int error; 310 int ret = 0; 311 int i; 312 313 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 314 if (kgdb_break[i].state != BP_SET) 315 continue; 316 317 error = kgdb_arch_set_breakpoint(&kgdb_break[i]); 318 if (error) { 319 ret = error; 320 pr_info("BP install failed: %lx\n", 321 kgdb_break[i].bpt_addr); 322 continue; 323 } 324 325 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr); 326 kgdb_break[i].state = BP_ACTIVE; 327 } 328 return ret; 329 } 330 331 int dbg_set_sw_break(unsigned long addr) 332 { 333 int err = kgdb_validate_break_address(addr); 334 int breakno = -1; 335 int i; 336 337 if (err) 338 return err; 339 340 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 341 if ((kgdb_break[i].state == BP_SET) && 342 (kgdb_break[i].bpt_addr == addr)) 343 return -EEXIST; 344 } 345 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 346 if (kgdb_break[i].state == BP_REMOVED && 347 kgdb_break[i].bpt_addr == addr) { 348 breakno = i; 349 break; 350 } 351 } 352 353 if (breakno == -1) { 354 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 355 if (kgdb_break[i].state == BP_UNDEFINED) { 356 breakno = i; 357 break; 358 } 359 } 360 } 361 362 if (breakno == -1) 363 return -E2BIG; 364 365 kgdb_break[breakno].state = BP_SET; 366 kgdb_break[breakno].type = BP_BREAKPOINT; 367 kgdb_break[breakno].bpt_addr = addr; 368 369 return 0; 370 } 371 372 int dbg_deactivate_sw_breakpoints(void) 373 { 374 int error; 375 int ret = 0; 376 int i; 377 378 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 379 if (kgdb_break[i].state != BP_ACTIVE) 380 continue; 381 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]); 382 if (error) { 383 pr_info("BP remove failed: %lx\n", 384 kgdb_break[i].bpt_addr); 385 ret = error; 386 } 387 388 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr); 389 kgdb_break[i].state = BP_SET; 390 } 391 return ret; 392 } 393 394 int dbg_remove_sw_break(unsigned long addr) 395 { 396 int i; 397 398 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 399 if ((kgdb_break[i].state == BP_SET) && 400 (kgdb_break[i].bpt_addr == addr)) { 401 kgdb_break[i].state = BP_REMOVED; 402 return 0; 403 } 404 } 405 return -ENOENT; 406 } 407 408 int kgdb_isremovedbreak(unsigned long addr) 409 { 410 int i; 411 412 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 413 if ((kgdb_break[i].state == BP_REMOVED) && 414 (kgdb_break[i].bpt_addr == addr)) 415 return 1; 416 } 417 return 0; 418 } 419 420 int kgdb_has_hit_break(unsigned long addr) 421 { 422 int i; 423 424 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 425 if (kgdb_break[i].state == BP_ACTIVE && 426 kgdb_break[i].bpt_addr == addr) 427 return 1; 428 } 429 return 0; 430 } 431 432 int dbg_remove_all_break(void) 433 { 434 int error; 435 int i; 436 437 /* Clear memory breakpoints. */ 438 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 439 if (kgdb_break[i].state != BP_ACTIVE) 440 goto setundefined; 441 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]); 442 if (error) 443 pr_err("breakpoint remove failed: %lx\n", 444 kgdb_break[i].bpt_addr); 445 setundefined: 446 kgdb_break[i].state = BP_UNDEFINED; 447 } 448 449 /* Clear hardware breakpoints. */ 450 if (arch_kgdb_ops.remove_all_hw_break) 451 arch_kgdb_ops.remove_all_hw_break(); 452 453 return 0; 454 } 455 456 #ifdef CONFIG_KGDB_KDB 457 void kdb_dump_stack_on_cpu(int cpu) 458 { 459 if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) { 460 dump_stack(); 461 return; 462 } 463 464 if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) { 465 kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n", 466 cpu); 467 return; 468 } 469 470 /* 471 * In general, architectures don't support dumping the stack of a 472 * "running" process that's not the current one. From the point of 473 * view of the Linux, kernel processes that are looping in the kgdb 474 * slave loop are still "running". There's also no API (that actually 475 * works across all architectures) that can do a stack crawl based 476 * on registers passed as a parameter. 477 * 478 * Solve this conundrum by asking slave CPUs to do the backtrace 479 * themselves. 480 */ 481 kgdb_info[cpu].exception_state |= DCPU_WANT_BT; 482 while (kgdb_info[cpu].exception_state & DCPU_WANT_BT) 483 cpu_relax(); 484 } 485 #endif 486 487 /* 488 * Return true if there is a valid kgdb I/O module. Also if no 489 * debugger is attached a message can be printed to the console about 490 * waiting for the debugger to attach. 491 * 492 * The print_wait argument is only to be true when called from inside 493 * the core kgdb_handle_exception, because it will wait for the 494 * debugger to attach. 495 */ 496 static int kgdb_io_ready(int print_wait) 497 { 498 if (!dbg_io_ops) 499 return 0; 500 if (kgdb_connected) 501 return 1; 502 if (atomic_read(&kgdb_setting_breakpoint)) 503 return 1; 504 if (print_wait) { 505 #ifdef CONFIG_KGDB_KDB 506 if (!dbg_kdb_mode) 507 pr_crit("waiting... or $3#33 for KDB\n"); 508 #else 509 pr_crit("Waiting for remote debugger\n"); 510 #endif 511 } 512 return 1; 513 } 514 515 static int kgdb_reenter_check(struct kgdb_state *ks) 516 { 517 unsigned long addr; 518 519 if (atomic_read(&kgdb_active) != raw_smp_processor_id()) 520 return 0; 521 522 /* Panic on recursive debugger calls: */ 523 exception_level++; 524 addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs); 525 dbg_deactivate_sw_breakpoints(); 526 527 /* 528 * If the break point removed ok at the place exception 529 * occurred, try to recover and print a warning to the end 530 * user because the user planted a breakpoint in a place that 531 * KGDB needs in order to function. 532 */ 533 if (dbg_remove_sw_break(addr) == 0) { 534 exception_level = 0; 535 kgdb_skipexception(ks->ex_vector, ks->linux_regs); 536 dbg_activate_sw_breakpoints(); 537 pr_crit("re-enter error: breakpoint removed %lx\n", addr); 538 WARN_ON_ONCE(1); 539 540 return 1; 541 } 542 dbg_remove_all_break(); 543 kgdb_skipexception(ks->ex_vector, ks->linux_regs); 544 545 if (exception_level > 1) { 546 dump_stack(); 547 panic("Recursive entry to debugger"); 548 } 549 550 pr_crit("re-enter exception: ALL breakpoints killed\n"); 551 #ifdef CONFIG_KGDB_KDB 552 /* Allow kdb to debug itself one level */ 553 return 0; 554 #endif 555 dump_stack(); 556 panic("Recursive entry to debugger"); 557 558 return 1; 559 } 560 561 static void dbg_touch_watchdogs(void) 562 { 563 touch_softlockup_watchdog_sync(); 564 clocksource_touch_watchdog(); 565 rcu_cpu_stall_reset(); 566 } 567 568 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs, 569 int exception_state) 570 { 571 unsigned long flags; 572 int sstep_tries = 100; 573 int error; 574 int cpu; 575 int trace_on = 0; 576 int online_cpus = num_online_cpus(); 577 u64 time_left; 578 579 kgdb_info[ks->cpu].enter_kgdb++; 580 kgdb_info[ks->cpu].exception_state |= exception_state; 581 582 if (exception_state == DCPU_WANT_MASTER) 583 atomic_inc(&masters_in_kgdb); 584 else 585 atomic_inc(&slaves_in_kgdb); 586 587 if (arch_kgdb_ops.disable_hw_break) 588 arch_kgdb_ops.disable_hw_break(regs); 589 590 acquirelock: 591 /* 592 * Interrupts will be restored by the 'trap return' code, except when 593 * single stepping. 594 */ 595 local_irq_save(flags); 596 597 cpu = ks->cpu; 598 kgdb_info[cpu].debuggerinfo = regs; 599 kgdb_info[cpu].task = current; 600 kgdb_info[cpu].ret_state = 0; 601 kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT; 602 603 /* Make sure the above info reaches the primary CPU */ 604 smp_mb(); 605 606 if (exception_level == 1) { 607 if (raw_spin_trylock(&dbg_master_lock)) 608 atomic_xchg(&kgdb_active, cpu); 609 goto cpu_master_loop; 610 } 611 612 /* 613 * CPU will loop if it is a slave or request to become a kgdb 614 * master cpu and acquire the kgdb_active lock: 615 */ 616 while (1) { 617 cpu_loop: 618 if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) { 619 kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER; 620 goto cpu_master_loop; 621 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) { 622 if (raw_spin_trylock(&dbg_master_lock)) { 623 atomic_xchg(&kgdb_active, cpu); 624 break; 625 } 626 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) { 627 dump_stack(); 628 kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT; 629 } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) { 630 if (!raw_spin_is_locked(&dbg_slave_lock)) 631 goto return_normal; 632 } else { 633 return_normal: 634 /* Return to normal operation by executing any 635 * hw breakpoint fixup. 636 */ 637 if (arch_kgdb_ops.correct_hw_break) 638 arch_kgdb_ops.correct_hw_break(); 639 if (trace_on) 640 tracing_on(); 641 kgdb_info[cpu].debuggerinfo = NULL; 642 kgdb_info[cpu].task = NULL; 643 kgdb_info[cpu].exception_state &= 644 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE); 645 kgdb_info[cpu].enter_kgdb--; 646 smp_mb__before_atomic(); 647 atomic_dec(&slaves_in_kgdb); 648 dbg_touch_watchdogs(); 649 local_irq_restore(flags); 650 return 0; 651 } 652 cpu_relax(); 653 } 654 655 /* 656 * For single stepping, try to only enter on the processor 657 * that was single stepping. To guard against a deadlock, the 658 * kernel will only try for the value of sstep_tries before 659 * giving up and continuing on. 660 */ 661 if (atomic_read(&kgdb_cpu_doing_single_step) != -1 && 662 (kgdb_info[cpu].task && 663 kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) { 664 atomic_set(&kgdb_active, -1); 665 raw_spin_unlock(&dbg_master_lock); 666 dbg_touch_watchdogs(); 667 local_irq_restore(flags); 668 669 goto acquirelock; 670 } 671 672 if (!kgdb_io_ready(1)) { 673 kgdb_info[cpu].ret_state = 1; 674 goto kgdb_restore; /* No I/O connection, resume the system */ 675 } 676 677 /* 678 * Don't enter if we have hit a removed breakpoint. 679 */ 680 if (kgdb_skipexception(ks->ex_vector, ks->linux_regs)) 681 goto kgdb_restore; 682 683 /* Call the I/O driver's pre_exception routine */ 684 if (dbg_io_ops->pre_exception) 685 dbg_io_ops->pre_exception(); 686 687 /* 688 * Get the passive CPU lock which will hold all the non-primary 689 * CPU in a spin state while the debugger is active 690 */ 691 if (!kgdb_single_step) 692 raw_spin_lock(&dbg_slave_lock); 693 694 #ifdef CONFIG_SMP 695 /* If send_ready set, slaves are already waiting */ 696 if (ks->send_ready) 697 atomic_set(ks->send_ready, 1); 698 699 /* Signal the other CPUs to enter kgdb_wait() */ 700 else if ((!kgdb_single_step) && kgdb_do_roundup) 701 kgdb_roundup_cpus(); 702 #endif 703 704 /* 705 * Wait for the other CPUs to be notified and be waiting for us: 706 */ 707 time_left = MSEC_PER_SEC; 708 while (kgdb_do_roundup && --time_left && 709 (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) != 710 online_cpus) 711 udelay(1000); 712 if (!time_left) 713 pr_crit("Timed out waiting for secondary CPUs.\n"); 714 715 /* 716 * At this point the primary processor is completely 717 * in the debugger and all secondary CPUs are quiescent 718 */ 719 dbg_deactivate_sw_breakpoints(); 720 kgdb_single_step = 0; 721 kgdb_contthread = current; 722 exception_level = 0; 723 trace_on = tracing_is_on(); 724 if (trace_on) 725 tracing_off(); 726 727 while (1) { 728 cpu_master_loop: 729 if (dbg_kdb_mode) { 730 kgdb_connected = 1; 731 error = kdb_stub(ks); 732 if (error == -1) 733 continue; 734 kgdb_connected = 0; 735 } else { 736 error = gdb_serial_stub(ks); 737 } 738 739 if (error == DBG_PASS_EVENT) { 740 dbg_kdb_mode = !dbg_kdb_mode; 741 } else if (error == DBG_SWITCH_CPU_EVENT) { 742 kgdb_info[dbg_switch_cpu].exception_state |= 743 DCPU_NEXT_MASTER; 744 goto cpu_loop; 745 } else { 746 kgdb_info[cpu].ret_state = error; 747 break; 748 } 749 } 750 751 /* Call the I/O driver's post_exception routine */ 752 if (dbg_io_ops->post_exception) 753 dbg_io_ops->post_exception(); 754 755 if (!kgdb_single_step) { 756 raw_spin_unlock(&dbg_slave_lock); 757 /* Wait till all the CPUs have quit from the debugger. */ 758 while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb)) 759 cpu_relax(); 760 } 761 762 kgdb_restore: 763 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) { 764 int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step); 765 if (kgdb_info[sstep_cpu].task) 766 kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid; 767 else 768 kgdb_sstep_pid = 0; 769 } 770 if (arch_kgdb_ops.correct_hw_break) 771 arch_kgdb_ops.correct_hw_break(); 772 if (trace_on) 773 tracing_on(); 774 775 kgdb_info[cpu].debuggerinfo = NULL; 776 kgdb_info[cpu].task = NULL; 777 kgdb_info[cpu].exception_state &= 778 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE); 779 kgdb_info[cpu].enter_kgdb--; 780 smp_mb__before_atomic(); 781 atomic_dec(&masters_in_kgdb); 782 /* Free kgdb_active */ 783 atomic_set(&kgdb_active, -1); 784 raw_spin_unlock(&dbg_master_lock); 785 dbg_touch_watchdogs(); 786 local_irq_restore(flags); 787 788 return kgdb_info[cpu].ret_state; 789 } 790 791 /* 792 * kgdb_handle_exception() - main entry point from a kernel exception 793 * 794 * Locking hierarchy: 795 * interface locks, if any (begin_session) 796 * kgdb lock (kgdb_active) 797 */ 798 int 799 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs) 800 { 801 struct kgdb_state kgdb_var; 802 struct kgdb_state *ks = &kgdb_var; 803 int ret = 0; 804 805 if (arch_kgdb_ops.enable_nmi) 806 arch_kgdb_ops.enable_nmi(0); 807 /* 808 * Avoid entering the debugger if we were triggered due to an oops 809 * but panic_timeout indicates the system should automatically 810 * reboot on panic. We don't want to get stuck waiting for input 811 * on such systems, especially if its "just" an oops. 812 */ 813 if (signo != SIGTRAP && panic_timeout) 814 return 1; 815 816 memset(ks, 0, sizeof(struct kgdb_state)); 817 ks->cpu = raw_smp_processor_id(); 818 ks->ex_vector = evector; 819 ks->signo = signo; 820 ks->err_code = ecode; 821 ks->linux_regs = regs; 822 823 if (kgdb_reenter_check(ks)) 824 goto out; /* Ouch, double exception ! */ 825 if (kgdb_info[ks->cpu].enter_kgdb != 0) 826 goto out; 827 828 ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER); 829 out: 830 if (arch_kgdb_ops.enable_nmi) 831 arch_kgdb_ops.enable_nmi(1); 832 return ret; 833 } 834 835 /* 836 * GDB places a breakpoint at this function to know dynamically loaded objects. 837 */ 838 static int module_event(struct notifier_block *self, unsigned long val, 839 void *data) 840 { 841 return 0; 842 } 843 844 static struct notifier_block dbg_module_load_nb = { 845 .notifier_call = module_event, 846 }; 847 848 int kgdb_nmicallback(int cpu, void *regs) 849 { 850 #ifdef CONFIG_SMP 851 struct kgdb_state kgdb_var; 852 struct kgdb_state *ks = &kgdb_var; 853 854 kgdb_info[cpu].rounding_up = false; 855 856 memset(ks, 0, sizeof(struct kgdb_state)); 857 ks->cpu = cpu; 858 ks->linux_regs = regs; 859 860 if (kgdb_info[ks->cpu].enter_kgdb == 0 && 861 raw_spin_is_locked(&dbg_master_lock)) { 862 kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE); 863 return 0; 864 } 865 #endif 866 return 1; 867 } 868 869 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code, 870 atomic_t *send_ready) 871 { 872 #ifdef CONFIG_SMP 873 if (!kgdb_io_ready(0) || !send_ready) 874 return 1; 875 876 if (kgdb_info[cpu].enter_kgdb == 0) { 877 struct kgdb_state kgdb_var; 878 struct kgdb_state *ks = &kgdb_var; 879 880 memset(ks, 0, sizeof(struct kgdb_state)); 881 ks->cpu = cpu; 882 ks->ex_vector = trapnr; 883 ks->signo = SIGTRAP; 884 ks->err_code = err_code; 885 ks->linux_regs = regs; 886 ks->send_ready = send_ready; 887 kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER); 888 return 0; 889 } 890 #endif 891 return 1; 892 } 893 894 static void kgdb_console_write(struct console *co, const char *s, 895 unsigned count) 896 { 897 unsigned long flags; 898 899 /* If we're debugging, or KGDB has not connected, don't try 900 * and print. */ 901 if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode) 902 return; 903 904 local_irq_save(flags); 905 gdbstub_msg_write(s, count); 906 local_irq_restore(flags); 907 } 908 909 static struct console kgdbcons = { 910 .name = "kgdb", 911 .write = kgdb_console_write, 912 .flags = CON_PRINTBUFFER | CON_ENABLED, 913 .index = -1, 914 }; 915 916 #ifdef CONFIG_MAGIC_SYSRQ 917 static void sysrq_handle_dbg(int key) 918 { 919 if (!dbg_io_ops) { 920 pr_crit("ERROR: No KGDB I/O module available\n"); 921 return; 922 } 923 if (!kgdb_connected) { 924 #ifdef CONFIG_KGDB_KDB 925 if (!dbg_kdb_mode) 926 pr_crit("KGDB or $3#33 for KDB\n"); 927 #else 928 pr_crit("Entering KGDB\n"); 929 #endif 930 } 931 932 kgdb_breakpoint(); 933 } 934 935 static struct sysrq_key_op sysrq_dbg_op = { 936 .handler = sysrq_handle_dbg, 937 .help_msg = "debug(g)", 938 .action_msg = "DEBUG", 939 }; 940 #endif 941 942 void kgdb_panic(const char *msg) 943 { 944 if (!kgdb_io_module_registered) 945 return; 946 947 /* 948 * We don't want to get stuck waiting for input from user if 949 * "panic_timeout" indicates the system should automatically 950 * reboot on panic. 951 */ 952 if (panic_timeout) 953 return; 954 955 if (dbg_kdb_mode) 956 kdb_printf("PANIC: %s\n", msg); 957 958 kgdb_breakpoint(); 959 } 960 961 void __weak kgdb_arch_late(void) 962 { 963 } 964 965 void __init dbg_late_init(void) 966 { 967 dbg_is_early = false; 968 if (kgdb_io_module_registered) 969 kgdb_arch_late(); 970 kdb_init(KDB_INIT_FULL); 971 } 972 973 static int 974 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x) 975 { 976 /* 977 * Take the following action on reboot notify depending on value: 978 * 1 == Enter debugger 979 * 0 == [the default] detatch debug client 980 * -1 == Do nothing... and use this until the board resets 981 */ 982 switch (kgdbreboot) { 983 case 1: 984 kgdb_breakpoint(); 985 case -1: 986 goto done; 987 } 988 if (!dbg_kdb_mode) 989 gdbstub_exit(code); 990 done: 991 return NOTIFY_DONE; 992 } 993 994 static struct notifier_block dbg_reboot_notifier = { 995 .notifier_call = dbg_notify_reboot, 996 .next = NULL, 997 .priority = INT_MAX, 998 }; 999 1000 static void kgdb_register_callbacks(void) 1001 { 1002 if (!kgdb_io_module_registered) { 1003 kgdb_io_module_registered = 1; 1004 kgdb_arch_init(); 1005 if (!dbg_is_early) 1006 kgdb_arch_late(); 1007 register_module_notifier(&dbg_module_load_nb); 1008 register_reboot_notifier(&dbg_reboot_notifier); 1009 #ifdef CONFIG_MAGIC_SYSRQ 1010 register_sysrq_key('g', &sysrq_dbg_op); 1011 #endif 1012 if (kgdb_use_con && !kgdb_con_registered) { 1013 register_console(&kgdbcons); 1014 kgdb_con_registered = 1; 1015 } 1016 } 1017 } 1018 1019 static void kgdb_unregister_callbacks(void) 1020 { 1021 /* 1022 * When this routine is called KGDB should unregister from 1023 * handlers and clean up, making sure it is not handling any 1024 * break exceptions at the time. 1025 */ 1026 if (kgdb_io_module_registered) { 1027 kgdb_io_module_registered = 0; 1028 unregister_reboot_notifier(&dbg_reboot_notifier); 1029 unregister_module_notifier(&dbg_module_load_nb); 1030 kgdb_arch_exit(); 1031 #ifdef CONFIG_MAGIC_SYSRQ 1032 unregister_sysrq_key('g', &sysrq_dbg_op); 1033 #endif 1034 if (kgdb_con_registered) { 1035 unregister_console(&kgdbcons); 1036 kgdb_con_registered = 0; 1037 } 1038 } 1039 } 1040 1041 /* 1042 * There are times a tasklet needs to be used vs a compiled in 1043 * break point so as to cause an exception outside a kgdb I/O module, 1044 * such as is the case with kgdboe, where calling a breakpoint in the 1045 * I/O driver itself would be fatal. 1046 */ 1047 static void kgdb_tasklet_bpt(unsigned long ing) 1048 { 1049 kgdb_breakpoint(); 1050 atomic_set(&kgdb_break_tasklet_var, 0); 1051 } 1052 1053 static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0); 1054 1055 void kgdb_schedule_breakpoint(void) 1056 { 1057 if (atomic_read(&kgdb_break_tasklet_var) || 1058 atomic_read(&kgdb_active) != -1 || 1059 atomic_read(&kgdb_setting_breakpoint)) 1060 return; 1061 atomic_inc(&kgdb_break_tasklet_var); 1062 tasklet_schedule(&kgdb_tasklet_breakpoint); 1063 } 1064 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint); 1065 1066 static void kgdb_initial_breakpoint(void) 1067 { 1068 kgdb_break_asap = 0; 1069 1070 pr_crit("Waiting for connection from remote gdb...\n"); 1071 kgdb_breakpoint(); 1072 } 1073 1074 /** 1075 * kgdb_register_io_module - register KGDB IO module 1076 * @new_dbg_io_ops: the io ops vector 1077 * 1078 * Register it with the KGDB core. 1079 */ 1080 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops) 1081 { 1082 int err; 1083 1084 spin_lock(&kgdb_registration_lock); 1085 1086 if (dbg_io_ops) { 1087 spin_unlock(&kgdb_registration_lock); 1088 1089 pr_err("Another I/O driver is already registered with KGDB\n"); 1090 return -EBUSY; 1091 } 1092 1093 if (new_dbg_io_ops->init) { 1094 err = new_dbg_io_ops->init(); 1095 if (err) { 1096 spin_unlock(&kgdb_registration_lock); 1097 return err; 1098 } 1099 } 1100 1101 dbg_io_ops = new_dbg_io_ops; 1102 1103 spin_unlock(&kgdb_registration_lock); 1104 1105 pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name); 1106 1107 /* Arm KGDB now. */ 1108 kgdb_register_callbacks(); 1109 1110 if (kgdb_break_asap) 1111 kgdb_initial_breakpoint(); 1112 1113 return 0; 1114 } 1115 EXPORT_SYMBOL_GPL(kgdb_register_io_module); 1116 1117 /** 1118 * kkgdb_unregister_io_module - unregister KGDB IO module 1119 * @old_dbg_io_ops: the io ops vector 1120 * 1121 * Unregister it with the KGDB core. 1122 */ 1123 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops) 1124 { 1125 BUG_ON(kgdb_connected); 1126 1127 /* 1128 * KGDB is no longer able to communicate out, so 1129 * unregister our callbacks and reset state. 1130 */ 1131 kgdb_unregister_callbacks(); 1132 1133 spin_lock(&kgdb_registration_lock); 1134 1135 WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops); 1136 dbg_io_ops = NULL; 1137 1138 spin_unlock(&kgdb_registration_lock); 1139 1140 pr_info("Unregistered I/O driver %s, debugger disabled\n", 1141 old_dbg_io_ops->name); 1142 } 1143 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module); 1144 1145 int dbg_io_get_char(void) 1146 { 1147 int ret = dbg_io_ops->read_char(); 1148 if (ret == NO_POLL_CHAR) 1149 return -1; 1150 if (!dbg_kdb_mode) 1151 return ret; 1152 if (ret == 127) 1153 return 8; 1154 return ret; 1155 } 1156 1157 /** 1158 * kgdb_breakpoint - generate breakpoint exception 1159 * 1160 * This function will generate a breakpoint exception. It is used at the 1161 * beginning of a program to sync up with a debugger and can be used 1162 * otherwise as a quick means to stop program execution and "break" into 1163 * the debugger. 1164 */ 1165 noinline void kgdb_breakpoint(void) 1166 { 1167 atomic_inc(&kgdb_setting_breakpoint); 1168 wmb(); /* Sync point before breakpoint */ 1169 arch_kgdb_breakpoint(); 1170 wmb(); /* Sync point after breakpoint */ 1171 atomic_dec(&kgdb_setting_breakpoint); 1172 } 1173 EXPORT_SYMBOL_GPL(kgdb_breakpoint); 1174 1175 static int __init opt_kgdb_wait(char *str) 1176 { 1177 kgdb_break_asap = 1; 1178 1179 kdb_init(KDB_INIT_EARLY); 1180 if (kgdb_io_module_registered) 1181 kgdb_initial_breakpoint(); 1182 1183 return 0; 1184 } 1185 1186 early_param("kgdbwait", opt_kgdb_wait); 1187