xref: /linux-6.15/kernel/debug/debug_core.c (revision f83b04d3)
1 /*
2  * Kernel Debug Core
3  *
4  * Maintainer: Jason Wessel <[email protected]>
5  *
6  * Copyright (C) 2000-2001 VERITAS Software Corporation.
7  * Copyright (C) 2002-2004 Timesys Corporation
8  * Copyright (C) 2003-2004 Amit S. Kale <[email protected]>
9  * Copyright (C) 2004 Pavel Machek <[email protected]>
10  * Copyright (C) 2004-2006 Tom Rini <[email protected]>
11  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12  * Copyright (C) 2005-2009 Wind River Systems, Inc.
13  * Copyright (C) 2007 MontaVista Software, Inc.
14  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <[email protected]>
15  *
16  * Contributors at various stages not listed above:
17  *  Jason Wessel ( [email protected] )
18  *  George Anzinger <[email protected]>
19  *  Anurekh Saxena ([email protected])
20  *  Lake Stevens Instrument Division (Glenn Engel)
21  *  Jim Kingdon, Cygnus Support.
22  *
23  * Original KGDB stub: David Grothe <[email protected]>,
24  * Tigran Aivazian <[email protected]>
25  *
26  * This file is licensed under the terms of the GNU General Public License
27  * version 2. This program is licensed "as is" without any warranty of any
28  * kind, whether express or implied.
29  */
30 
31 #define pr_fmt(fmt) "KGDB: " fmt
32 
33 #include <linux/pid_namespace.h>
34 #include <linux/clocksource.h>
35 #include <linux/serial_core.h>
36 #include <linux/interrupt.h>
37 #include <linux/spinlock.h>
38 #include <linux/console.h>
39 #include <linux/threads.h>
40 #include <linux/uaccess.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/sched.h>
47 #include <linux/sysrq.h>
48 #include <linux/reboot.h>
49 #include <linux/init.h>
50 #include <linux/kgdb.h>
51 #include <linux/kdb.h>
52 #include <linux/nmi.h>
53 #include <linux/pid.h>
54 #include <linux/smp.h>
55 #include <linux/mm.h>
56 #include <linux/vmacache.h>
57 #include <linux/rcupdate.h>
58 #include <linux/irq.h>
59 
60 #include <asm/cacheflush.h>
61 #include <asm/byteorder.h>
62 #include <linux/atomic.h>
63 
64 #include "debug_core.h"
65 
66 static int kgdb_break_asap;
67 
68 struct debuggerinfo_struct kgdb_info[NR_CPUS];
69 
70 /**
71  * kgdb_connected - Is a host GDB connected to us?
72  */
73 int				kgdb_connected;
74 EXPORT_SYMBOL_GPL(kgdb_connected);
75 
76 /* All the KGDB handlers are installed */
77 int			kgdb_io_module_registered;
78 
79 /* Guard for recursive entry */
80 static int			exception_level;
81 
82 struct kgdb_io		*dbg_io_ops;
83 static DEFINE_SPINLOCK(kgdb_registration_lock);
84 
85 /* Action for the reboot notifiter, a global allow kdb to change it */
86 static int kgdbreboot;
87 /* kgdb console driver is loaded */
88 static int kgdb_con_registered;
89 /* determine if kgdb console output should be used */
90 static int kgdb_use_con;
91 /* Flag for alternate operations for early debugging */
92 bool dbg_is_early = true;
93 /* Next cpu to become the master debug core */
94 int dbg_switch_cpu;
95 
96 /* Use kdb or gdbserver mode */
97 int dbg_kdb_mode = 1;
98 
99 static int __init opt_kgdb_con(char *str)
100 {
101 	kgdb_use_con = 1;
102 	return 0;
103 }
104 
105 early_param("kgdbcon", opt_kgdb_con);
106 
107 module_param(kgdb_use_con, int, 0644);
108 module_param(kgdbreboot, int, 0644);
109 
110 /*
111  * Holds information about breakpoints in a kernel. These breakpoints are
112  * added and removed by gdb.
113  */
114 static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
115 	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
116 };
117 
118 /*
119  * The CPU# of the active CPU, or -1 if none:
120  */
121 atomic_t			kgdb_active = ATOMIC_INIT(-1);
122 EXPORT_SYMBOL_GPL(kgdb_active);
123 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
124 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
125 
126 /*
127  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
128  * bootup code (which might not have percpu set up yet):
129  */
130 static atomic_t			masters_in_kgdb;
131 static atomic_t			slaves_in_kgdb;
132 static atomic_t			kgdb_break_tasklet_var;
133 atomic_t			kgdb_setting_breakpoint;
134 
135 struct task_struct		*kgdb_usethread;
136 struct task_struct		*kgdb_contthread;
137 
138 int				kgdb_single_step;
139 static pid_t			kgdb_sstep_pid;
140 
141 /* to keep track of the CPU which is doing the single stepping*/
142 atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
143 
144 /*
145  * If you are debugging a problem where roundup (the collection of
146  * all other CPUs) is a problem [this should be extremely rare],
147  * then use the nokgdbroundup option to avoid roundup. In that case
148  * the other CPUs might interfere with your debugging context, so
149  * use this with care:
150  */
151 static int kgdb_do_roundup = 1;
152 
153 static int __init opt_nokgdbroundup(char *str)
154 {
155 	kgdb_do_roundup = 0;
156 
157 	return 0;
158 }
159 
160 early_param("nokgdbroundup", opt_nokgdbroundup);
161 
162 /*
163  * Finally, some KGDB code :-)
164  */
165 
166 /*
167  * Weak aliases for breakpoint management,
168  * can be overriden by architectures when needed:
169  */
170 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
171 {
172 	int err;
173 
174 	err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
175 				BREAK_INSTR_SIZE);
176 	if (err)
177 		return err;
178 	err = probe_kernel_write((char *)bpt->bpt_addr,
179 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
180 	return err;
181 }
182 
183 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
184 {
185 	return probe_kernel_write((char *)bpt->bpt_addr,
186 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
187 }
188 
189 int __weak kgdb_validate_break_address(unsigned long addr)
190 {
191 	struct kgdb_bkpt tmp;
192 	int err;
193 	/* Validate setting the breakpoint and then removing it.  If the
194 	 * remove fails, the kernel needs to emit a bad message because we
195 	 * are deep trouble not being able to put things back the way we
196 	 * found them.
197 	 */
198 	tmp.bpt_addr = addr;
199 	err = kgdb_arch_set_breakpoint(&tmp);
200 	if (err)
201 		return err;
202 	err = kgdb_arch_remove_breakpoint(&tmp);
203 	if (err)
204 		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
205 		       addr);
206 	return err;
207 }
208 
209 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
210 {
211 	return instruction_pointer(regs);
212 }
213 
214 int __weak kgdb_arch_init(void)
215 {
216 	return 0;
217 }
218 
219 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
220 {
221 	return 0;
222 }
223 
224 #ifdef CONFIG_SMP
225 
226 /*
227  * Default (weak) implementation for kgdb_roundup_cpus
228  */
229 
230 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd);
231 
232 void __weak kgdb_call_nmi_hook(void *ignored)
233 {
234 	/*
235 	 * NOTE: get_irq_regs() is supposed to get the registers from
236 	 * before the IPI interrupt happened and so is supposed to
237 	 * show where the processor was.  In some situations it's
238 	 * possible we might be called without an IPI, so it might be
239 	 * safer to figure out how to make kgdb_breakpoint() work
240 	 * properly here.
241 	 */
242 	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
243 }
244 
245 void __weak kgdb_roundup_cpus(void)
246 {
247 	call_single_data_t *csd;
248 	int this_cpu = raw_smp_processor_id();
249 	int cpu;
250 	int ret;
251 
252 	for_each_online_cpu(cpu) {
253 		/* No need to roundup ourselves */
254 		if (cpu == this_cpu)
255 			continue;
256 
257 		csd = &per_cpu(kgdb_roundup_csd, cpu);
258 
259 		/*
260 		 * If it didn't round up last time, don't try again
261 		 * since smp_call_function_single_async() will block.
262 		 *
263 		 * If rounding_up is false then we know that the
264 		 * previous call must have at least started and that
265 		 * means smp_call_function_single_async() won't block.
266 		 */
267 		if (kgdb_info[cpu].rounding_up)
268 			continue;
269 		kgdb_info[cpu].rounding_up = true;
270 
271 		csd->func = kgdb_call_nmi_hook;
272 		ret = smp_call_function_single_async(cpu, csd);
273 		if (ret)
274 			kgdb_info[cpu].rounding_up = false;
275 	}
276 }
277 
278 #endif
279 
280 /*
281  * Some architectures need cache flushes when we set/clear a
282  * breakpoint:
283  */
284 static void kgdb_flush_swbreak_addr(unsigned long addr)
285 {
286 	if (!CACHE_FLUSH_IS_SAFE)
287 		return;
288 
289 	if (current->mm) {
290 		int i;
291 
292 		for (i = 0; i < VMACACHE_SIZE; i++) {
293 			if (!current->vmacache.vmas[i])
294 				continue;
295 			flush_cache_range(current->vmacache.vmas[i],
296 					  addr, addr + BREAK_INSTR_SIZE);
297 		}
298 	}
299 
300 	/* Force flush instruction cache if it was outside the mm */
301 	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
302 }
303 
304 /*
305  * SW breakpoint management:
306  */
307 int dbg_activate_sw_breakpoints(void)
308 {
309 	int error;
310 	int ret = 0;
311 	int i;
312 
313 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
314 		if (kgdb_break[i].state != BP_SET)
315 			continue;
316 
317 		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
318 		if (error) {
319 			ret = error;
320 			pr_info("BP install failed: %lx\n",
321 				kgdb_break[i].bpt_addr);
322 			continue;
323 		}
324 
325 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
326 		kgdb_break[i].state = BP_ACTIVE;
327 	}
328 	return ret;
329 }
330 
331 int dbg_set_sw_break(unsigned long addr)
332 {
333 	int err = kgdb_validate_break_address(addr);
334 	int breakno = -1;
335 	int i;
336 
337 	if (err)
338 		return err;
339 
340 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
341 		if ((kgdb_break[i].state == BP_SET) &&
342 					(kgdb_break[i].bpt_addr == addr))
343 			return -EEXIST;
344 	}
345 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
346 		if (kgdb_break[i].state == BP_REMOVED &&
347 					kgdb_break[i].bpt_addr == addr) {
348 			breakno = i;
349 			break;
350 		}
351 	}
352 
353 	if (breakno == -1) {
354 		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
355 			if (kgdb_break[i].state == BP_UNDEFINED) {
356 				breakno = i;
357 				break;
358 			}
359 		}
360 	}
361 
362 	if (breakno == -1)
363 		return -E2BIG;
364 
365 	kgdb_break[breakno].state = BP_SET;
366 	kgdb_break[breakno].type = BP_BREAKPOINT;
367 	kgdb_break[breakno].bpt_addr = addr;
368 
369 	return 0;
370 }
371 
372 int dbg_deactivate_sw_breakpoints(void)
373 {
374 	int error;
375 	int ret = 0;
376 	int i;
377 
378 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
379 		if (kgdb_break[i].state != BP_ACTIVE)
380 			continue;
381 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
382 		if (error) {
383 			pr_info("BP remove failed: %lx\n",
384 				kgdb_break[i].bpt_addr);
385 			ret = error;
386 		}
387 
388 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
389 		kgdb_break[i].state = BP_SET;
390 	}
391 	return ret;
392 }
393 
394 int dbg_remove_sw_break(unsigned long addr)
395 {
396 	int i;
397 
398 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
399 		if ((kgdb_break[i].state == BP_SET) &&
400 				(kgdb_break[i].bpt_addr == addr)) {
401 			kgdb_break[i].state = BP_REMOVED;
402 			return 0;
403 		}
404 	}
405 	return -ENOENT;
406 }
407 
408 int kgdb_isremovedbreak(unsigned long addr)
409 {
410 	int i;
411 
412 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
413 		if ((kgdb_break[i].state == BP_REMOVED) &&
414 					(kgdb_break[i].bpt_addr == addr))
415 			return 1;
416 	}
417 	return 0;
418 }
419 
420 int kgdb_has_hit_break(unsigned long addr)
421 {
422 	int i;
423 
424 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
425 		if (kgdb_break[i].state == BP_ACTIVE &&
426 		    kgdb_break[i].bpt_addr == addr)
427 			return 1;
428 	}
429 	return 0;
430 }
431 
432 int dbg_remove_all_break(void)
433 {
434 	int error;
435 	int i;
436 
437 	/* Clear memory breakpoints. */
438 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
439 		if (kgdb_break[i].state != BP_ACTIVE)
440 			goto setundefined;
441 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
442 		if (error)
443 			pr_err("breakpoint remove failed: %lx\n",
444 			       kgdb_break[i].bpt_addr);
445 setundefined:
446 		kgdb_break[i].state = BP_UNDEFINED;
447 	}
448 
449 	/* Clear hardware breakpoints. */
450 	if (arch_kgdb_ops.remove_all_hw_break)
451 		arch_kgdb_ops.remove_all_hw_break();
452 
453 	return 0;
454 }
455 
456 #ifdef CONFIG_KGDB_KDB
457 void kdb_dump_stack_on_cpu(int cpu)
458 {
459 	if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
460 		dump_stack();
461 		return;
462 	}
463 
464 	if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
465 		kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
466 			   cpu);
467 		return;
468 	}
469 
470 	/*
471 	 * In general, architectures don't support dumping the stack of a
472 	 * "running" process that's not the current one.  From the point of
473 	 * view of the Linux, kernel processes that are looping in the kgdb
474 	 * slave loop are still "running".  There's also no API (that actually
475 	 * works across all architectures) that can do a stack crawl based
476 	 * on registers passed as a parameter.
477 	 *
478 	 * Solve this conundrum by asking slave CPUs to do the backtrace
479 	 * themselves.
480 	 */
481 	kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
482 	while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
483 		cpu_relax();
484 }
485 #endif
486 
487 /*
488  * Return true if there is a valid kgdb I/O module.  Also if no
489  * debugger is attached a message can be printed to the console about
490  * waiting for the debugger to attach.
491  *
492  * The print_wait argument is only to be true when called from inside
493  * the core kgdb_handle_exception, because it will wait for the
494  * debugger to attach.
495  */
496 static int kgdb_io_ready(int print_wait)
497 {
498 	if (!dbg_io_ops)
499 		return 0;
500 	if (kgdb_connected)
501 		return 1;
502 	if (atomic_read(&kgdb_setting_breakpoint))
503 		return 1;
504 	if (print_wait) {
505 #ifdef CONFIG_KGDB_KDB
506 		if (!dbg_kdb_mode)
507 			pr_crit("waiting... or $3#33 for KDB\n");
508 #else
509 		pr_crit("Waiting for remote debugger\n");
510 #endif
511 	}
512 	return 1;
513 }
514 
515 static int kgdb_reenter_check(struct kgdb_state *ks)
516 {
517 	unsigned long addr;
518 
519 	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
520 		return 0;
521 
522 	/* Panic on recursive debugger calls: */
523 	exception_level++;
524 	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
525 	dbg_deactivate_sw_breakpoints();
526 
527 	/*
528 	 * If the break point removed ok at the place exception
529 	 * occurred, try to recover and print a warning to the end
530 	 * user because the user planted a breakpoint in a place that
531 	 * KGDB needs in order to function.
532 	 */
533 	if (dbg_remove_sw_break(addr) == 0) {
534 		exception_level = 0;
535 		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
536 		dbg_activate_sw_breakpoints();
537 		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
538 		WARN_ON_ONCE(1);
539 
540 		return 1;
541 	}
542 	dbg_remove_all_break();
543 	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
544 
545 	if (exception_level > 1) {
546 		dump_stack();
547 		panic("Recursive entry to debugger");
548 	}
549 
550 	pr_crit("re-enter exception: ALL breakpoints killed\n");
551 #ifdef CONFIG_KGDB_KDB
552 	/* Allow kdb to debug itself one level */
553 	return 0;
554 #endif
555 	dump_stack();
556 	panic("Recursive entry to debugger");
557 
558 	return 1;
559 }
560 
561 static void dbg_touch_watchdogs(void)
562 {
563 	touch_softlockup_watchdog_sync();
564 	clocksource_touch_watchdog();
565 	rcu_cpu_stall_reset();
566 }
567 
568 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
569 		int exception_state)
570 {
571 	unsigned long flags;
572 	int sstep_tries = 100;
573 	int error;
574 	int cpu;
575 	int trace_on = 0;
576 	int online_cpus = num_online_cpus();
577 	u64 time_left;
578 
579 	kgdb_info[ks->cpu].enter_kgdb++;
580 	kgdb_info[ks->cpu].exception_state |= exception_state;
581 
582 	if (exception_state == DCPU_WANT_MASTER)
583 		atomic_inc(&masters_in_kgdb);
584 	else
585 		atomic_inc(&slaves_in_kgdb);
586 
587 	if (arch_kgdb_ops.disable_hw_break)
588 		arch_kgdb_ops.disable_hw_break(regs);
589 
590 acquirelock:
591 	/*
592 	 * Interrupts will be restored by the 'trap return' code, except when
593 	 * single stepping.
594 	 */
595 	local_irq_save(flags);
596 
597 	cpu = ks->cpu;
598 	kgdb_info[cpu].debuggerinfo = regs;
599 	kgdb_info[cpu].task = current;
600 	kgdb_info[cpu].ret_state = 0;
601 	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
602 
603 	/* Make sure the above info reaches the primary CPU */
604 	smp_mb();
605 
606 	if (exception_level == 1) {
607 		if (raw_spin_trylock(&dbg_master_lock))
608 			atomic_xchg(&kgdb_active, cpu);
609 		goto cpu_master_loop;
610 	}
611 
612 	/*
613 	 * CPU will loop if it is a slave or request to become a kgdb
614 	 * master cpu and acquire the kgdb_active lock:
615 	 */
616 	while (1) {
617 cpu_loop:
618 		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
619 			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
620 			goto cpu_master_loop;
621 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
622 			if (raw_spin_trylock(&dbg_master_lock)) {
623 				atomic_xchg(&kgdb_active, cpu);
624 				break;
625 			}
626 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
627 			dump_stack();
628 			kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
629 		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
630 			if (!raw_spin_is_locked(&dbg_slave_lock))
631 				goto return_normal;
632 		} else {
633 return_normal:
634 			/* Return to normal operation by executing any
635 			 * hw breakpoint fixup.
636 			 */
637 			if (arch_kgdb_ops.correct_hw_break)
638 				arch_kgdb_ops.correct_hw_break();
639 			if (trace_on)
640 				tracing_on();
641 			kgdb_info[cpu].debuggerinfo = NULL;
642 			kgdb_info[cpu].task = NULL;
643 			kgdb_info[cpu].exception_state &=
644 				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
645 			kgdb_info[cpu].enter_kgdb--;
646 			smp_mb__before_atomic();
647 			atomic_dec(&slaves_in_kgdb);
648 			dbg_touch_watchdogs();
649 			local_irq_restore(flags);
650 			return 0;
651 		}
652 		cpu_relax();
653 	}
654 
655 	/*
656 	 * For single stepping, try to only enter on the processor
657 	 * that was single stepping.  To guard against a deadlock, the
658 	 * kernel will only try for the value of sstep_tries before
659 	 * giving up and continuing on.
660 	 */
661 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
662 	    (kgdb_info[cpu].task &&
663 	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
664 		atomic_set(&kgdb_active, -1);
665 		raw_spin_unlock(&dbg_master_lock);
666 		dbg_touch_watchdogs();
667 		local_irq_restore(flags);
668 
669 		goto acquirelock;
670 	}
671 
672 	if (!kgdb_io_ready(1)) {
673 		kgdb_info[cpu].ret_state = 1;
674 		goto kgdb_restore; /* No I/O connection, resume the system */
675 	}
676 
677 	/*
678 	 * Don't enter if we have hit a removed breakpoint.
679 	 */
680 	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
681 		goto kgdb_restore;
682 
683 	/* Call the I/O driver's pre_exception routine */
684 	if (dbg_io_ops->pre_exception)
685 		dbg_io_ops->pre_exception();
686 
687 	/*
688 	 * Get the passive CPU lock which will hold all the non-primary
689 	 * CPU in a spin state while the debugger is active
690 	 */
691 	if (!kgdb_single_step)
692 		raw_spin_lock(&dbg_slave_lock);
693 
694 #ifdef CONFIG_SMP
695 	/* If send_ready set, slaves are already waiting */
696 	if (ks->send_ready)
697 		atomic_set(ks->send_ready, 1);
698 
699 	/* Signal the other CPUs to enter kgdb_wait() */
700 	else if ((!kgdb_single_step) && kgdb_do_roundup)
701 		kgdb_roundup_cpus();
702 #endif
703 
704 	/*
705 	 * Wait for the other CPUs to be notified and be waiting for us:
706 	 */
707 	time_left = MSEC_PER_SEC;
708 	while (kgdb_do_roundup && --time_left &&
709 	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
710 		   online_cpus)
711 		udelay(1000);
712 	if (!time_left)
713 		pr_crit("Timed out waiting for secondary CPUs.\n");
714 
715 	/*
716 	 * At this point the primary processor is completely
717 	 * in the debugger and all secondary CPUs are quiescent
718 	 */
719 	dbg_deactivate_sw_breakpoints();
720 	kgdb_single_step = 0;
721 	kgdb_contthread = current;
722 	exception_level = 0;
723 	trace_on = tracing_is_on();
724 	if (trace_on)
725 		tracing_off();
726 
727 	while (1) {
728 cpu_master_loop:
729 		if (dbg_kdb_mode) {
730 			kgdb_connected = 1;
731 			error = kdb_stub(ks);
732 			if (error == -1)
733 				continue;
734 			kgdb_connected = 0;
735 		} else {
736 			error = gdb_serial_stub(ks);
737 		}
738 
739 		if (error == DBG_PASS_EVENT) {
740 			dbg_kdb_mode = !dbg_kdb_mode;
741 		} else if (error == DBG_SWITCH_CPU_EVENT) {
742 			kgdb_info[dbg_switch_cpu].exception_state |=
743 				DCPU_NEXT_MASTER;
744 			goto cpu_loop;
745 		} else {
746 			kgdb_info[cpu].ret_state = error;
747 			break;
748 		}
749 	}
750 
751 	/* Call the I/O driver's post_exception routine */
752 	if (dbg_io_ops->post_exception)
753 		dbg_io_ops->post_exception();
754 
755 	if (!kgdb_single_step) {
756 		raw_spin_unlock(&dbg_slave_lock);
757 		/* Wait till all the CPUs have quit from the debugger. */
758 		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
759 			cpu_relax();
760 	}
761 
762 kgdb_restore:
763 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
764 		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
765 		if (kgdb_info[sstep_cpu].task)
766 			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
767 		else
768 			kgdb_sstep_pid = 0;
769 	}
770 	if (arch_kgdb_ops.correct_hw_break)
771 		arch_kgdb_ops.correct_hw_break();
772 	if (trace_on)
773 		tracing_on();
774 
775 	kgdb_info[cpu].debuggerinfo = NULL;
776 	kgdb_info[cpu].task = NULL;
777 	kgdb_info[cpu].exception_state &=
778 		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
779 	kgdb_info[cpu].enter_kgdb--;
780 	smp_mb__before_atomic();
781 	atomic_dec(&masters_in_kgdb);
782 	/* Free kgdb_active */
783 	atomic_set(&kgdb_active, -1);
784 	raw_spin_unlock(&dbg_master_lock);
785 	dbg_touch_watchdogs();
786 	local_irq_restore(flags);
787 
788 	return kgdb_info[cpu].ret_state;
789 }
790 
791 /*
792  * kgdb_handle_exception() - main entry point from a kernel exception
793  *
794  * Locking hierarchy:
795  *	interface locks, if any (begin_session)
796  *	kgdb lock (kgdb_active)
797  */
798 int
799 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
800 {
801 	struct kgdb_state kgdb_var;
802 	struct kgdb_state *ks = &kgdb_var;
803 	int ret = 0;
804 
805 	if (arch_kgdb_ops.enable_nmi)
806 		arch_kgdb_ops.enable_nmi(0);
807 	/*
808 	 * Avoid entering the debugger if we were triggered due to an oops
809 	 * but panic_timeout indicates the system should automatically
810 	 * reboot on panic. We don't want to get stuck waiting for input
811 	 * on such systems, especially if its "just" an oops.
812 	 */
813 	if (signo != SIGTRAP && panic_timeout)
814 		return 1;
815 
816 	memset(ks, 0, sizeof(struct kgdb_state));
817 	ks->cpu			= raw_smp_processor_id();
818 	ks->ex_vector		= evector;
819 	ks->signo		= signo;
820 	ks->err_code		= ecode;
821 	ks->linux_regs		= regs;
822 
823 	if (kgdb_reenter_check(ks))
824 		goto out; /* Ouch, double exception ! */
825 	if (kgdb_info[ks->cpu].enter_kgdb != 0)
826 		goto out;
827 
828 	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
829 out:
830 	if (arch_kgdb_ops.enable_nmi)
831 		arch_kgdb_ops.enable_nmi(1);
832 	return ret;
833 }
834 
835 /*
836  * GDB places a breakpoint at this function to know dynamically loaded objects.
837  */
838 static int module_event(struct notifier_block *self, unsigned long val,
839 	void *data)
840 {
841 	return 0;
842 }
843 
844 static struct notifier_block dbg_module_load_nb = {
845 	.notifier_call	= module_event,
846 };
847 
848 int kgdb_nmicallback(int cpu, void *regs)
849 {
850 #ifdef CONFIG_SMP
851 	struct kgdb_state kgdb_var;
852 	struct kgdb_state *ks = &kgdb_var;
853 
854 	kgdb_info[cpu].rounding_up = false;
855 
856 	memset(ks, 0, sizeof(struct kgdb_state));
857 	ks->cpu			= cpu;
858 	ks->linux_regs		= regs;
859 
860 	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
861 			raw_spin_is_locked(&dbg_master_lock)) {
862 		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
863 		return 0;
864 	}
865 #endif
866 	return 1;
867 }
868 
869 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
870 							atomic_t *send_ready)
871 {
872 #ifdef CONFIG_SMP
873 	if (!kgdb_io_ready(0) || !send_ready)
874 		return 1;
875 
876 	if (kgdb_info[cpu].enter_kgdb == 0) {
877 		struct kgdb_state kgdb_var;
878 		struct kgdb_state *ks = &kgdb_var;
879 
880 		memset(ks, 0, sizeof(struct kgdb_state));
881 		ks->cpu			= cpu;
882 		ks->ex_vector		= trapnr;
883 		ks->signo		= SIGTRAP;
884 		ks->err_code		= err_code;
885 		ks->linux_regs		= regs;
886 		ks->send_ready		= send_ready;
887 		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
888 		return 0;
889 	}
890 #endif
891 	return 1;
892 }
893 
894 static void kgdb_console_write(struct console *co, const char *s,
895    unsigned count)
896 {
897 	unsigned long flags;
898 
899 	/* If we're debugging, or KGDB has not connected, don't try
900 	 * and print. */
901 	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
902 		return;
903 
904 	local_irq_save(flags);
905 	gdbstub_msg_write(s, count);
906 	local_irq_restore(flags);
907 }
908 
909 static struct console kgdbcons = {
910 	.name		= "kgdb",
911 	.write		= kgdb_console_write,
912 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
913 	.index		= -1,
914 };
915 
916 #ifdef CONFIG_MAGIC_SYSRQ
917 static void sysrq_handle_dbg(int key)
918 {
919 	if (!dbg_io_ops) {
920 		pr_crit("ERROR: No KGDB I/O module available\n");
921 		return;
922 	}
923 	if (!kgdb_connected) {
924 #ifdef CONFIG_KGDB_KDB
925 		if (!dbg_kdb_mode)
926 			pr_crit("KGDB or $3#33 for KDB\n");
927 #else
928 		pr_crit("Entering KGDB\n");
929 #endif
930 	}
931 
932 	kgdb_breakpoint();
933 }
934 
935 static struct sysrq_key_op sysrq_dbg_op = {
936 	.handler	= sysrq_handle_dbg,
937 	.help_msg	= "debug(g)",
938 	.action_msg	= "DEBUG",
939 };
940 #endif
941 
942 void kgdb_panic(const char *msg)
943 {
944 	if (!kgdb_io_module_registered)
945 		return;
946 
947 	/*
948 	 * We don't want to get stuck waiting for input from user if
949 	 * "panic_timeout" indicates the system should automatically
950 	 * reboot on panic.
951 	 */
952 	if (panic_timeout)
953 		return;
954 
955 	if (dbg_kdb_mode)
956 		kdb_printf("PANIC: %s\n", msg);
957 
958 	kgdb_breakpoint();
959 }
960 
961 void __weak kgdb_arch_late(void)
962 {
963 }
964 
965 void __init dbg_late_init(void)
966 {
967 	dbg_is_early = false;
968 	if (kgdb_io_module_registered)
969 		kgdb_arch_late();
970 	kdb_init(KDB_INIT_FULL);
971 }
972 
973 static int
974 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
975 {
976 	/*
977 	 * Take the following action on reboot notify depending on value:
978 	 *    1 == Enter debugger
979 	 *    0 == [the default] detatch debug client
980 	 *   -1 == Do nothing... and use this until the board resets
981 	 */
982 	switch (kgdbreboot) {
983 	case 1:
984 		kgdb_breakpoint();
985 	case -1:
986 		goto done;
987 	}
988 	if (!dbg_kdb_mode)
989 		gdbstub_exit(code);
990 done:
991 	return NOTIFY_DONE;
992 }
993 
994 static struct notifier_block dbg_reboot_notifier = {
995 	.notifier_call		= dbg_notify_reboot,
996 	.next			= NULL,
997 	.priority		= INT_MAX,
998 };
999 
1000 static void kgdb_register_callbacks(void)
1001 {
1002 	if (!kgdb_io_module_registered) {
1003 		kgdb_io_module_registered = 1;
1004 		kgdb_arch_init();
1005 		if (!dbg_is_early)
1006 			kgdb_arch_late();
1007 		register_module_notifier(&dbg_module_load_nb);
1008 		register_reboot_notifier(&dbg_reboot_notifier);
1009 #ifdef CONFIG_MAGIC_SYSRQ
1010 		register_sysrq_key('g', &sysrq_dbg_op);
1011 #endif
1012 		if (kgdb_use_con && !kgdb_con_registered) {
1013 			register_console(&kgdbcons);
1014 			kgdb_con_registered = 1;
1015 		}
1016 	}
1017 }
1018 
1019 static void kgdb_unregister_callbacks(void)
1020 {
1021 	/*
1022 	 * When this routine is called KGDB should unregister from
1023 	 * handlers and clean up, making sure it is not handling any
1024 	 * break exceptions at the time.
1025 	 */
1026 	if (kgdb_io_module_registered) {
1027 		kgdb_io_module_registered = 0;
1028 		unregister_reboot_notifier(&dbg_reboot_notifier);
1029 		unregister_module_notifier(&dbg_module_load_nb);
1030 		kgdb_arch_exit();
1031 #ifdef CONFIG_MAGIC_SYSRQ
1032 		unregister_sysrq_key('g', &sysrq_dbg_op);
1033 #endif
1034 		if (kgdb_con_registered) {
1035 			unregister_console(&kgdbcons);
1036 			kgdb_con_registered = 0;
1037 		}
1038 	}
1039 }
1040 
1041 /*
1042  * There are times a tasklet needs to be used vs a compiled in
1043  * break point so as to cause an exception outside a kgdb I/O module,
1044  * such as is the case with kgdboe, where calling a breakpoint in the
1045  * I/O driver itself would be fatal.
1046  */
1047 static void kgdb_tasklet_bpt(unsigned long ing)
1048 {
1049 	kgdb_breakpoint();
1050 	atomic_set(&kgdb_break_tasklet_var, 0);
1051 }
1052 
1053 static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0);
1054 
1055 void kgdb_schedule_breakpoint(void)
1056 {
1057 	if (atomic_read(&kgdb_break_tasklet_var) ||
1058 		atomic_read(&kgdb_active) != -1 ||
1059 		atomic_read(&kgdb_setting_breakpoint))
1060 		return;
1061 	atomic_inc(&kgdb_break_tasklet_var);
1062 	tasklet_schedule(&kgdb_tasklet_breakpoint);
1063 }
1064 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
1065 
1066 static void kgdb_initial_breakpoint(void)
1067 {
1068 	kgdb_break_asap = 0;
1069 
1070 	pr_crit("Waiting for connection from remote gdb...\n");
1071 	kgdb_breakpoint();
1072 }
1073 
1074 /**
1075  *	kgdb_register_io_module - register KGDB IO module
1076  *	@new_dbg_io_ops: the io ops vector
1077  *
1078  *	Register it with the KGDB core.
1079  */
1080 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1081 {
1082 	int err;
1083 
1084 	spin_lock(&kgdb_registration_lock);
1085 
1086 	if (dbg_io_ops) {
1087 		spin_unlock(&kgdb_registration_lock);
1088 
1089 		pr_err("Another I/O driver is already registered with KGDB\n");
1090 		return -EBUSY;
1091 	}
1092 
1093 	if (new_dbg_io_ops->init) {
1094 		err = new_dbg_io_ops->init();
1095 		if (err) {
1096 			spin_unlock(&kgdb_registration_lock);
1097 			return err;
1098 		}
1099 	}
1100 
1101 	dbg_io_ops = new_dbg_io_ops;
1102 
1103 	spin_unlock(&kgdb_registration_lock);
1104 
1105 	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1106 
1107 	/* Arm KGDB now. */
1108 	kgdb_register_callbacks();
1109 
1110 	if (kgdb_break_asap)
1111 		kgdb_initial_breakpoint();
1112 
1113 	return 0;
1114 }
1115 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1116 
1117 /**
1118  *	kkgdb_unregister_io_module - unregister KGDB IO module
1119  *	@old_dbg_io_ops: the io ops vector
1120  *
1121  *	Unregister it with the KGDB core.
1122  */
1123 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1124 {
1125 	BUG_ON(kgdb_connected);
1126 
1127 	/*
1128 	 * KGDB is no longer able to communicate out, so
1129 	 * unregister our callbacks and reset state.
1130 	 */
1131 	kgdb_unregister_callbacks();
1132 
1133 	spin_lock(&kgdb_registration_lock);
1134 
1135 	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1136 	dbg_io_ops = NULL;
1137 
1138 	spin_unlock(&kgdb_registration_lock);
1139 
1140 	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1141 		old_dbg_io_ops->name);
1142 }
1143 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1144 
1145 int dbg_io_get_char(void)
1146 {
1147 	int ret = dbg_io_ops->read_char();
1148 	if (ret == NO_POLL_CHAR)
1149 		return -1;
1150 	if (!dbg_kdb_mode)
1151 		return ret;
1152 	if (ret == 127)
1153 		return 8;
1154 	return ret;
1155 }
1156 
1157 /**
1158  * kgdb_breakpoint - generate breakpoint exception
1159  *
1160  * This function will generate a breakpoint exception.  It is used at the
1161  * beginning of a program to sync up with a debugger and can be used
1162  * otherwise as a quick means to stop program execution and "break" into
1163  * the debugger.
1164  */
1165 noinline void kgdb_breakpoint(void)
1166 {
1167 	atomic_inc(&kgdb_setting_breakpoint);
1168 	wmb(); /* Sync point before breakpoint */
1169 	arch_kgdb_breakpoint();
1170 	wmb(); /* Sync point after breakpoint */
1171 	atomic_dec(&kgdb_setting_breakpoint);
1172 }
1173 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1174 
1175 static int __init opt_kgdb_wait(char *str)
1176 {
1177 	kgdb_break_asap = 1;
1178 
1179 	kdb_init(KDB_INIT_EARLY);
1180 	if (kgdb_io_module_registered)
1181 		kgdb_initial_breakpoint();
1182 
1183 	return 0;
1184 }
1185 
1186 early_param("kgdbwait", opt_kgdb_wait);
1187