1 /* 2 * Kernel Debug Core 3 * 4 * Maintainer: Jason Wessel <[email protected]> 5 * 6 * Copyright (C) 2000-2001 VERITAS Software Corporation. 7 * Copyright (C) 2002-2004 Timesys Corporation 8 * Copyright (C) 2003-2004 Amit S. Kale <[email protected]> 9 * Copyright (C) 2004 Pavel Machek <[email protected]> 10 * Copyright (C) 2004-2006 Tom Rini <[email protected]> 11 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. 12 * Copyright (C) 2005-2009 Wind River Systems, Inc. 13 * Copyright (C) 2007 MontaVista Software, Inc. 14 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <[email protected]> 15 * 16 * Contributors at various stages not listed above: 17 * Jason Wessel ( [email protected] ) 18 * George Anzinger <[email protected]> 19 * Anurekh Saxena ([email protected]) 20 * Lake Stevens Instrument Division (Glenn Engel) 21 * Jim Kingdon, Cygnus Support. 22 * 23 * Original KGDB stub: David Grothe <[email protected]>, 24 * Tigran Aivazian <[email protected]> 25 * 26 * This file is licensed under the terms of the GNU General Public License 27 * version 2. This program is licensed "as is" without any warranty of any 28 * kind, whether express or implied. 29 */ 30 31 #define pr_fmt(fmt) "KGDB: " fmt 32 33 #include <linux/pid_namespace.h> 34 #include <linux/clocksource.h> 35 #include <linux/serial_core.h> 36 #include <linux/interrupt.h> 37 #include <linux/spinlock.h> 38 #include <linux/console.h> 39 #include <linux/threads.h> 40 #include <linux/uaccess.h> 41 #include <linux/kernel.h> 42 #include <linux/module.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/delay.h> 46 #include <linux/sched.h> 47 #include <linux/sysrq.h> 48 #include <linux/reboot.h> 49 #include <linux/init.h> 50 #include <linux/kgdb.h> 51 #include <linux/kdb.h> 52 #include <linux/nmi.h> 53 #include <linux/pid.h> 54 #include <linux/smp.h> 55 #include <linux/mm.h> 56 #include <linux/vmacache.h> 57 #include <linux/rcupdate.h> 58 #include <linux/irq.h> 59 60 #include <asm/cacheflush.h> 61 #include <asm/byteorder.h> 62 #include <linux/atomic.h> 63 64 #include "debug_core.h" 65 66 static int kgdb_break_asap; 67 68 struct debuggerinfo_struct kgdb_info[NR_CPUS]; 69 70 /* kgdb_connected - Is a host GDB connected to us? */ 71 int kgdb_connected; 72 EXPORT_SYMBOL_GPL(kgdb_connected); 73 74 /* All the KGDB handlers are installed */ 75 int kgdb_io_module_registered; 76 77 /* Guard for recursive entry */ 78 static int exception_level; 79 80 struct kgdb_io *dbg_io_ops; 81 static DEFINE_SPINLOCK(kgdb_registration_lock); 82 83 /* Action for the reboot notifier, a global allow kdb to change it */ 84 static int kgdbreboot; 85 /* kgdb console driver is loaded */ 86 static int kgdb_con_registered; 87 /* determine if kgdb console output should be used */ 88 static int kgdb_use_con; 89 /* Flag for alternate operations for early debugging */ 90 bool dbg_is_early = true; 91 /* Next cpu to become the master debug core */ 92 int dbg_switch_cpu; 93 94 /* Use kdb or gdbserver mode */ 95 int dbg_kdb_mode = 1; 96 97 module_param(kgdb_use_con, int, 0644); 98 module_param(kgdbreboot, int, 0644); 99 100 /* 101 * Holds information about breakpoints in a kernel. These breakpoints are 102 * added and removed by gdb. 103 */ 104 static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = { 105 [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED } 106 }; 107 108 /* 109 * The CPU# of the active CPU, or -1 if none: 110 */ 111 atomic_t kgdb_active = ATOMIC_INIT(-1); 112 EXPORT_SYMBOL_GPL(kgdb_active); 113 static DEFINE_RAW_SPINLOCK(dbg_master_lock); 114 static DEFINE_RAW_SPINLOCK(dbg_slave_lock); 115 116 /* 117 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early 118 * bootup code (which might not have percpu set up yet): 119 */ 120 static atomic_t masters_in_kgdb; 121 static atomic_t slaves_in_kgdb; 122 static atomic_t kgdb_break_tasklet_var; 123 atomic_t kgdb_setting_breakpoint; 124 125 struct task_struct *kgdb_usethread; 126 struct task_struct *kgdb_contthread; 127 128 int kgdb_single_step; 129 static pid_t kgdb_sstep_pid; 130 131 /* to keep track of the CPU which is doing the single stepping*/ 132 atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1); 133 134 /* 135 * If you are debugging a problem where roundup (the collection of 136 * all other CPUs) is a problem [this should be extremely rare], 137 * then use the nokgdbroundup option to avoid roundup. In that case 138 * the other CPUs might interfere with your debugging context, so 139 * use this with care: 140 */ 141 static int kgdb_do_roundup = 1; 142 143 static int __init opt_nokgdbroundup(char *str) 144 { 145 kgdb_do_roundup = 0; 146 147 return 0; 148 } 149 150 early_param("nokgdbroundup", opt_nokgdbroundup); 151 152 /* 153 * Finally, some KGDB code :-) 154 */ 155 156 /* 157 * Weak aliases for breakpoint management, 158 * can be overridden by architectures when needed: 159 */ 160 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt) 161 { 162 int err; 163 164 err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr, 165 BREAK_INSTR_SIZE); 166 if (err) 167 return err; 168 err = copy_to_kernel_nofault((char *)bpt->bpt_addr, 169 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE); 170 return err; 171 } 172 173 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt) 174 { 175 return copy_to_kernel_nofault((char *)bpt->bpt_addr, 176 (char *)bpt->saved_instr, BREAK_INSTR_SIZE); 177 } 178 179 int __weak kgdb_validate_break_address(unsigned long addr) 180 { 181 struct kgdb_bkpt tmp; 182 int err; 183 184 if (kgdb_within_blocklist(addr)) 185 return -EINVAL; 186 187 /* Validate setting the breakpoint and then removing it. If the 188 * remove fails, the kernel needs to emit a bad message because we 189 * are deep trouble not being able to put things back the way we 190 * found them. 191 */ 192 tmp.bpt_addr = addr; 193 err = kgdb_arch_set_breakpoint(&tmp); 194 if (err) 195 return err; 196 err = kgdb_arch_remove_breakpoint(&tmp); 197 if (err) 198 pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n", 199 addr); 200 return err; 201 } 202 203 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs) 204 { 205 return instruction_pointer(regs); 206 } 207 208 int __weak kgdb_arch_init(void) 209 { 210 return 0; 211 } 212 213 int __weak kgdb_skipexception(int exception, struct pt_regs *regs) 214 { 215 return 0; 216 } 217 218 #ifdef CONFIG_SMP 219 220 /* 221 * Default (weak) implementation for kgdb_roundup_cpus 222 */ 223 224 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd); 225 226 void __weak kgdb_call_nmi_hook(void *ignored) 227 { 228 /* 229 * NOTE: get_irq_regs() is supposed to get the registers from 230 * before the IPI interrupt happened and so is supposed to 231 * show where the processor was. In some situations it's 232 * possible we might be called without an IPI, so it might be 233 * safer to figure out how to make kgdb_breakpoint() work 234 * properly here. 235 */ 236 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs()); 237 } 238 239 void __weak kgdb_roundup_cpus(void) 240 { 241 call_single_data_t *csd; 242 int this_cpu = raw_smp_processor_id(); 243 int cpu; 244 int ret; 245 246 for_each_online_cpu(cpu) { 247 /* No need to roundup ourselves */ 248 if (cpu == this_cpu) 249 continue; 250 251 csd = &per_cpu(kgdb_roundup_csd, cpu); 252 253 /* 254 * If it didn't round up last time, don't try again 255 * since smp_call_function_single_async() will block. 256 * 257 * If rounding_up is false then we know that the 258 * previous call must have at least started and that 259 * means smp_call_function_single_async() won't block. 260 */ 261 if (kgdb_info[cpu].rounding_up) 262 continue; 263 kgdb_info[cpu].rounding_up = true; 264 265 csd->func = kgdb_call_nmi_hook; 266 ret = smp_call_function_single_async(cpu, csd); 267 if (ret) 268 kgdb_info[cpu].rounding_up = false; 269 } 270 } 271 272 #endif 273 274 /* 275 * Some architectures need cache flushes when we set/clear a 276 * breakpoint: 277 */ 278 static void kgdb_flush_swbreak_addr(unsigned long addr) 279 { 280 if (!CACHE_FLUSH_IS_SAFE) 281 return; 282 283 if (current->mm) { 284 int i; 285 286 for (i = 0; i < VMACACHE_SIZE; i++) { 287 if (!current->vmacache.vmas[i]) 288 continue; 289 flush_cache_range(current->vmacache.vmas[i], 290 addr, addr + BREAK_INSTR_SIZE); 291 } 292 } 293 294 /* Force flush instruction cache if it was outside the mm */ 295 flush_icache_range(addr, addr + BREAK_INSTR_SIZE); 296 } 297 298 /* 299 * SW breakpoint management: 300 */ 301 int dbg_activate_sw_breakpoints(void) 302 { 303 int error; 304 int ret = 0; 305 int i; 306 307 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 308 if (kgdb_break[i].state != BP_SET) 309 continue; 310 311 error = kgdb_arch_set_breakpoint(&kgdb_break[i]); 312 if (error) { 313 ret = error; 314 pr_info("BP install failed: %lx\n", 315 kgdb_break[i].bpt_addr); 316 continue; 317 } 318 319 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr); 320 kgdb_break[i].state = BP_ACTIVE; 321 } 322 return ret; 323 } 324 325 int dbg_set_sw_break(unsigned long addr) 326 { 327 int err = kgdb_validate_break_address(addr); 328 int breakno = -1; 329 int i; 330 331 if (err) 332 return err; 333 334 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 335 if ((kgdb_break[i].state == BP_SET) && 336 (kgdb_break[i].bpt_addr == addr)) 337 return -EEXIST; 338 } 339 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 340 if (kgdb_break[i].state == BP_REMOVED && 341 kgdb_break[i].bpt_addr == addr) { 342 breakno = i; 343 break; 344 } 345 } 346 347 if (breakno == -1) { 348 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 349 if (kgdb_break[i].state == BP_UNDEFINED) { 350 breakno = i; 351 break; 352 } 353 } 354 } 355 356 if (breakno == -1) 357 return -E2BIG; 358 359 kgdb_break[breakno].state = BP_SET; 360 kgdb_break[breakno].type = BP_BREAKPOINT; 361 kgdb_break[breakno].bpt_addr = addr; 362 363 return 0; 364 } 365 366 int dbg_deactivate_sw_breakpoints(void) 367 { 368 int error; 369 int ret = 0; 370 int i; 371 372 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 373 if (kgdb_break[i].state != BP_ACTIVE) 374 continue; 375 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]); 376 if (error) { 377 pr_info("BP remove failed: %lx\n", 378 kgdb_break[i].bpt_addr); 379 ret = error; 380 } 381 382 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr); 383 kgdb_break[i].state = BP_SET; 384 } 385 return ret; 386 } 387 388 int dbg_remove_sw_break(unsigned long addr) 389 { 390 int i; 391 392 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 393 if ((kgdb_break[i].state == BP_SET) && 394 (kgdb_break[i].bpt_addr == addr)) { 395 kgdb_break[i].state = BP_REMOVED; 396 return 0; 397 } 398 } 399 return -ENOENT; 400 } 401 402 int kgdb_isremovedbreak(unsigned long addr) 403 { 404 int i; 405 406 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 407 if ((kgdb_break[i].state == BP_REMOVED) && 408 (kgdb_break[i].bpt_addr == addr)) 409 return 1; 410 } 411 return 0; 412 } 413 414 int kgdb_has_hit_break(unsigned long addr) 415 { 416 int i; 417 418 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 419 if (kgdb_break[i].state == BP_ACTIVE && 420 kgdb_break[i].bpt_addr == addr) 421 return 1; 422 } 423 return 0; 424 } 425 426 int dbg_remove_all_break(void) 427 { 428 int error; 429 int i; 430 431 /* Clear memory breakpoints. */ 432 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 433 if (kgdb_break[i].state != BP_ACTIVE) 434 goto setundefined; 435 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]); 436 if (error) 437 pr_err("breakpoint remove failed: %lx\n", 438 kgdb_break[i].bpt_addr); 439 setundefined: 440 kgdb_break[i].state = BP_UNDEFINED; 441 } 442 443 /* Clear hardware breakpoints. */ 444 if (arch_kgdb_ops.remove_all_hw_break) 445 arch_kgdb_ops.remove_all_hw_break(); 446 447 return 0; 448 } 449 450 #ifdef CONFIG_KGDB_KDB 451 void kdb_dump_stack_on_cpu(int cpu) 452 { 453 if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) { 454 dump_stack(); 455 return; 456 } 457 458 if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) { 459 kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n", 460 cpu); 461 return; 462 } 463 464 /* 465 * In general, architectures don't support dumping the stack of a 466 * "running" process that's not the current one. From the point of 467 * view of the Linux, kernel processes that are looping in the kgdb 468 * slave loop are still "running". There's also no API (that actually 469 * works across all architectures) that can do a stack crawl based 470 * on registers passed as a parameter. 471 * 472 * Solve this conundrum by asking slave CPUs to do the backtrace 473 * themselves. 474 */ 475 kgdb_info[cpu].exception_state |= DCPU_WANT_BT; 476 while (kgdb_info[cpu].exception_state & DCPU_WANT_BT) 477 cpu_relax(); 478 } 479 #endif 480 481 /* 482 * Return true if there is a valid kgdb I/O module. Also if no 483 * debugger is attached a message can be printed to the console about 484 * waiting for the debugger to attach. 485 * 486 * The print_wait argument is only to be true when called from inside 487 * the core kgdb_handle_exception, because it will wait for the 488 * debugger to attach. 489 */ 490 static int kgdb_io_ready(int print_wait) 491 { 492 if (!dbg_io_ops) 493 return 0; 494 if (kgdb_connected) 495 return 1; 496 if (atomic_read(&kgdb_setting_breakpoint)) 497 return 1; 498 if (print_wait) { 499 #ifdef CONFIG_KGDB_KDB 500 if (!dbg_kdb_mode) 501 pr_crit("waiting... or $3#33 for KDB\n"); 502 #else 503 pr_crit("Waiting for remote debugger\n"); 504 #endif 505 } 506 return 1; 507 } 508 509 static int kgdb_reenter_check(struct kgdb_state *ks) 510 { 511 unsigned long addr; 512 513 if (atomic_read(&kgdb_active) != raw_smp_processor_id()) 514 return 0; 515 516 /* Panic on recursive debugger calls: */ 517 exception_level++; 518 addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs); 519 dbg_deactivate_sw_breakpoints(); 520 521 /* 522 * If the break point removed ok at the place exception 523 * occurred, try to recover and print a warning to the end 524 * user because the user planted a breakpoint in a place that 525 * KGDB needs in order to function. 526 */ 527 if (dbg_remove_sw_break(addr) == 0) { 528 exception_level = 0; 529 kgdb_skipexception(ks->ex_vector, ks->linux_regs); 530 dbg_activate_sw_breakpoints(); 531 pr_crit("re-enter error: breakpoint removed %lx\n", addr); 532 WARN_ON_ONCE(1); 533 534 return 1; 535 } 536 dbg_remove_all_break(); 537 kgdb_skipexception(ks->ex_vector, ks->linux_regs); 538 539 if (exception_level > 1) { 540 dump_stack(); 541 kgdb_io_module_registered = false; 542 panic("Recursive entry to debugger"); 543 } 544 545 pr_crit("re-enter exception: ALL breakpoints killed\n"); 546 #ifdef CONFIG_KGDB_KDB 547 /* Allow kdb to debug itself one level */ 548 return 0; 549 #endif 550 dump_stack(); 551 panic("Recursive entry to debugger"); 552 553 return 1; 554 } 555 556 static void dbg_touch_watchdogs(void) 557 { 558 touch_softlockup_watchdog_sync(); 559 clocksource_touch_watchdog(); 560 rcu_cpu_stall_reset(); 561 } 562 563 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs, 564 int exception_state) 565 { 566 unsigned long flags; 567 int sstep_tries = 100; 568 int error; 569 int cpu; 570 int trace_on = 0; 571 int online_cpus = num_online_cpus(); 572 u64 time_left; 573 574 kgdb_info[ks->cpu].enter_kgdb++; 575 kgdb_info[ks->cpu].exception_state |= exception_state; 576 577 if (exception_state == DCPU_WANT_MASTER) 578 atomic_inc(&masters_in_kgdb); 579 else 580 atomic_inc(&slaves_in_kgdb); 581 582 if (arch_kgdb_ops.disable_hw_break) 583 arch_kgdb_ops.disable_hw_break(regs); 584 585 acquirelock: 586 rcu_read_lock(); 587 /* 588 * Interrupts will be restored by the 'trap return' code, except when 589 * single stepping. 590 */ 591 local_irq_save(flags); 592 593 cpu = ks->cpu; 594 kgdb_info[cpu].debuggerinfo = regs; 595 kgdb_info[cpu].task = current; 596 kgdb_info[cpu].ret_state = 0; 597 kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT; 598 599 /* Make sure the above info reaches the primary CPU */ 600 smp_mb(); 601 602 if (exception_level == 1) { 603 if (raw_spin_trylock(&dbg_master_lock)) 604 atomic_xchg(&kgdb_active, cpu); 605 goto cpu_master_loop; 606 } 607 608 /* 609 * CPU will loop if it is a slave or request to become a kgdb 610 * master cpu and acquire the kgdb_active lock: 611 */ 612 while (1) { 613 cpu_loop: 614 if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) { 615 kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER; 616 goto cpu_master_loop; 617 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) { 618 if (raw_spin_trylock(&dbg_master_lock)) { 619 atomic_xchg(&kgdb_active, cpu); 620 break; 621 } 622 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) { 623 dump_stack(); 624 kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT; 625 } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) { 626 if (!raw_spin_is_locked(&dbg_slave_lock)) 627 goto return_normal; 628 } else { 629 return_normal: 630 /* Return to normal operation by executing any 631 * hw breakpoint fixup. 632 */ 633 if (arch_kgdb_ops.correct_hw_break) 634 arch_kgdb_ops.correct_hw_break(); 635 if (trace_on) 636 tracing_on(); 637 kgdb_info[cpu].debuggerinfo = NULL; 638 kgdb_info[cpu].task = NULL; 639 kgdb_info[cpu].exception_state &= 640 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE); 641 kgdb_info[cpu].enter_kgdb--; 642 smp_mb__before_atomic(); 643 atomic_dec(&slaves_in_kgdb); 644 dbg_touch_watchdogs(); 645 local_irq_restore(flags); 646 rcu_read_unlock(); 647 return 0; 648 } 649 cpu_relax(); 650 } 651 652 /* 653 * For single stepping, try to only enter on the processor 654 * that was single stepping. To guard against a deadlock, the 655 * kernel will only try for the value of sstep_tries before 656 * giving up and continuing on. 657 */ 658 if (atomic_read(&kgdb_cpu_doing_single_step) != -1 && 659 (kgdb_info[cpu].task && 660 kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) { 661 atomic_set(&kgdb_active, -1); 662 raw_spin_unlock(&dbg_master_lock); 663 dbg_touch_watchdogs(); 664 local_irq_restore(flags); 665 rcu_read_unlock(); 666 667 goto acquirelock; 668 } 669 670 if (!kgdb_io_ready(1)) { 671 kgdb_info[cpu].ret_state = 1; 672 goto kgdb_restore; /* No I/O connection, resume the system */ 673 } 674 675 /* 676 * Don't enter if we have hit a removed breakpoint. 677 */ 678 if (kgdb_skipexception(ks->ex_vector, ks->linux_regs)) 679 goto kgdb_restore; 680 681 atomic_inc(&ignore_console_lock_warning); 682 683 /* Call the I/O driver's pre_exception routine */ 684 if (dbg_io_ops->pre_exception) 685 dbg_io_ops->pre_exception(); 686 687 /* 688 * Get the passive CPU lock which will hold all the non-primary 689 * CPU in a spin state while the debugger is active 690 */ 691 if (!kgdb_single_step) 692 raw_spin_lock(&dbg_slave_lock); 693 694 #ifdef CONFIG_SMP 695 /* If send_ready set, slaves are already waiting */ 696 if (ks->send_ready) 697 atomic_set(ks->send_ready, 1); 698 699 /* Signal the other CPUs to enter kgdb_wait() */ 700 else if ((!kgdb_single_step) && kgdb_do_roundup) 701 kgdb_roundup_cpus(); 702 #endif 703 704 /* 705 * Wait for the other CPUs to be notified and be waiting for us: 706 */ 707 time_left = MSEC_PER_SEC; 708 while (kgdb_do_roundup && --time_left && 709 (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) != 710 online_cpus) 711 udelay(1000); 712 if (!time_left) 713 pr_crit("Timed out waiting for secondary CPUs.\n"); 714 715 /* 716 * At this point the primary processor is completely 717 * in the debugger and all secondary CPUs are quiescent 718 */ 719 dbg_deactivate_sw_breakpoints(); 720 kgdb_single_step = 0; 721 kgdb_contthread = current; 722 exception_level = 0; 723 trace_on = tracing_is_on(); 724 if (trace_on) 725 tracing_off(); 726 727 while (1) { 728 cpu_master_loop: 729 if (dbg_kdb_mode) { 730 kgdb_connected = 1; 731 error = kdb_stub(ks); 732 if (error == -1) 733 continue; 734 kgdb_connected = 0; 735 } else { 736 error = gdb_serial_stub(ks); 737 } 738 739 if (error == DBG_PASS_EVENT) { 740 dbg_kdb_mode = !dbg_kdb_mode; 741 } else if (error == DBG_SWITCH_CPU_EVENT) { 742 kgdb_info[dbg_switch_cpu].exception_state |= 743 DCPU_NEXT_MASTER; 744 goto cpu_loop; 745 } else { 746 kgdb_info[cpu].ret_state = error; 747 break; 748 } 749 } 750 751 /* Call the I/O driver's post_exception routine */ 752 if (dbg_io_ops->post_exception) 753 dbg_io_ops->post_exception(); 754 755 atomic_dec(&ignore_console_lock_warning); 756 757 if (!kgdb_single_step) { 758 raw_spin_unlock(&dbg_slave_lock); 759 /* Wait till all the CPUs have quit from the debugger. */ 760 while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb)) 761 cpu_relax(); 762 } 763 764 kgdb_restore: 765 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) { 766 int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step); 767 if (kgdb_info[sstep_cpu].task) 768 kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid; 769 else 770 kgdb_sstep_pid = 0; 771 } 772 if (arch_kgdb_ops.correct_hw_break) 773 arch_kgdb_ops.correct_hw_break(); 774 if (trace_on) 775 tracing_on(); 776 777 kgdb_info[cpu].debuggerinfo = NULL; 778 kgdb_info[cpu].task = NULL; 779 kgdb_info[cpu].exception_state &= 780 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE); 781 kgdb_info[cpu].enter_kgdb--; 782 smp_mb__before_atomic(); 783 atomic_dec(&masters_in_kgdb); 784 /* Free kgdb_active */ 785 atomic_set(&kgdb_active, -1); 786 raw_spin_unlock(&dbg_master_lock); 787 dbg_touch_watchdogs(); 788 local_irq_restore(flags); 789 rcu_read_unlock(); 790 791 return kgdb_info[cpu].ret_state; 792 } 793 794 /* 795 * kgdb_handle_exception() - main entry point from a kernel exception 796 * 797 * Locking hierarchy: 798 * interface locks, if any (begin_session) 799 * kgdb lock (kgdb_active) 800 */ 801 int 802 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs) 803 { 804 struct kgdb_state kgdb_var; 805 struct kgdb_state *ks = &kgdb_var; 806 int ret = 0; 807 808 if (arch_kgdb_ops.enable_nmi) 809 arch_kgdb_ops.enable_nmi(0); 810 /* 811 * Avoid entering the debugger if we were triggered due to an oops 812 * but panic_timeout indicates the system should automatically 813 * reboot on panic. We don't want to get stuck waiting for input 814 * on such systems, especially if its "just" an oops. 815 */ 816 if (signo != SIGTRAP && panic_timeout) 817 return 1; 818 819 memset(ks, 0, sizeof(struct kgdb_state)); 820 ks->cpu = raw_smp_processor_id(); 821 ks->ex_vector = evector; 822 ks->signo = signo; 823 ks->err_code = ecode; 824 ks->linux_regs = regs; 825 826 if (kgdb_reenter_check(ks)) 827 goto out; /* Ouch, double exception ! */ 828 if (kgdb_info[ks->cpu].enter_kgdb != 0) 829 goto out; 830 831 ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER); 832 out: 833 if (arch_kgdb_ops.enable_nmi) 834 arch_kgdb_ops.enable_nmi(1); 835 return ret; 836 } 837 838 /* 839 * GDB places a breakpoint at this function to know dynamically loaded objects. 840 */ 841 static int module_event(struct notifier_block *self, unsigned long val, 842 void *data) 843 { 844 return 0; 845 } 846 847 static struct notifier_block dbg_module_load_nb = { 848 .notifier_call = module_event, 849 }; 850 851 int kgdb_nmicallback(int cpu, void *regs) 852 { 853 #ifdef CONFIG_SMP 854 struct kgdb_state kgdb_var; 855 struct kgdb_state *ks = &kgdb_var; 856 857 kgdb_info[cpu].rounding_up = false; 858 859 memset(ks, 0, sizeof(struct kgdb_state)); 860 ks->cpu = cpu; 861 ks->linux_regs = regs; 862 863 if (kgdb_info[ks->cpu].enter_kgdb == 0 && 864 raw_spin_is_locked(&dbg_master_lock)) { 865 kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE); 866 return 0; 867 } 868 #endif 869 return 1; 870 } 871 872 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code, 873 atomic_t *send_ready) 874 { 875 #ifdef CONFIG_SMP 876 if (!kgdb_io_ready(0) || !send_ready) 877 return 1; 878 879 if (kgdb_info[cpu].enter_kgdb == 0) { 880 struct kgdb_state kgdb_var; 881 struct kgdb_state *ks = &kgdb_var; 882 883 memset(ks, 0, sizeof(struct kgdb_state)); 884 ks->cpu = cpu; 885 ks->ex_vector = trapnr; 886 ks->signo = SIGTRAP; 887 ks->err_code = err_code; 888 ks->linux_regs = regs; 889 ks->send_ready = send_ready; 890 kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER); 891 return 0; 892 } 893 #endif 894 return 1; 895 } 896 897 static void kgdb_console_write(struct console *co, const char *s, 898 unsigned count) 899 { 900 unsigned long flags; 901 902 /* If we're debugging, or KGDB has not connected, don't try 903 * and print. */ 904 if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode) 905 return; 906 907 local_irq_save(flags); 908 gdbstub_msg_write(s, count); 909 local_irq_restore(flags); 910 } 911 912 static struct console kgdbcons = { 913 .name = "kgdb", 914 .write = kgdb_console_write, 915 .flags = CON_PRINTBUFFER | CON_ENABLED, 916 .index = -1, 917 }; 918 919 static int __init opt_kgdb_con(char *str) 920 { 921 kgdb_use_con = 1; 922 923 if (kgdb_io_module_registered && !kgdb_con_registered) { 924 register_console(&kgdbcons); 925 kgdb_con_registered = 1; 926 } 927 928 return 0; 929 } 930 931 early_param("kgdbcon", opt_kgdb_con); 932 933 #ifdef CONFIG_MAGIC_SYSRQ 934 static void sysrq_handle_dbg(int key) 935 { 936 if (!dbg_io_ops) { 937 pr_crit("ERROR: No KGDB I/O module available\n"); 938 return; 939 } 940 if (!kgdb_connected) { 941 #ifdef CONFIG_KGDB_KDB 942 if (!dbg_kdb_mode) 943 pr_crit("KGDB or $3#33 for KDB\n"); 944 #else 945 pr_crit("Entering KGDB\n"); 946 #endif 947 } 948 949 kgdb_breakpoint(); 950 } 951 952 static const struct sysrq_key_op sysrq_dbg_op = { 953 .handler = sysrq_handle_dbg, 954 .help_msg = "debug(g)", 955 .action_msg = "DEBUG", 956 }; 957 #endif 958 959 void kgdb_panic(const char *msg) 960 { 961 if (!kgdb_io_module_registered) 962 return; 963 964 /* 965 * We don't want to get stuck waiting for input from user if 966 * "panic_timeout" indicates the system should automatically 967 * reboot on panic. 968 */ 969 if (panic_timeout) 970 return; 971 972 if (dbg_kdb_mode) 973 kdb_printf("PANIC: %s\n", msg); 974 975 kgdb_breakpoint(); 976 } 977 978 static void kgdb_initial_breakpoint(void) 979 { 980 kgdb_break_asap = 0; 981 982 pr_crit("Waiting for connection from remote gdb...\n"); 983 kgdb_breakpoint(); 984 } 985 986 void __weak kgdb_arch_late(void) 987 { 988 } 989 990 void __init dbg_late_init(void) 991 { 992 dbg_is_early = false; 993 if (kgdb_io_module_registered) 994 kgdb_arch_late(); 995 kdb_init(KDB_INIT_FULL); 996 997 if (kgdb_io_module_registered && kgdb_break_asap) 998 kgdb_initial_breakpoint(); 999 } 1000 1001 static int 1002 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x) 1003 { 1004 /* 1005 * Take the following action on reboot notify depending on value: 1006 * 1 == Enter debugger 1007 * 0 == [the default] detatch debug client 1008 * -1 == Do nothing... and use this until the board resets 1009 */ 1010 switch (kgdbreboot) { 1011 case 1: 1012 kgdb_breakpoint(); 1013 case -1: 1014 goto done; 1015 } 1016 if (!dbg_kdb_mode) 1017 gdbstub_exit(code); 1018 done: 1019 return NOTIFY_DONE; 1020 } 1021 1022 static struct notifier_block dbg_reboot_notifier = { 1023 .notifier_call = dbg_notify_reboot, 1024 .next = NULL, 1025 .priority = INT_MAX, 1026 }; 1027 1028 static void kgdb_register_callbacks(void) 1029 { 1030 if (!kgdb_io_module_registered) { 1031 kgdb_io_module_registered = 1; 1032 kgdb_arch_init(); 1033 if (!dbg_is_early) 1034 kgdb_arch_late(); 1035 register_module_notifier(&dbg_module_load_nb); 1036 register_reboot_notifier(&dbg_reboot_notifier); 1037 #ifdef CONFIG_MAGIC_SYSRQ 1038 register_sysrq_key('g', &sysrq_dbg_op); 1039 #endif 1040 if (kgdb_use_con && !kgdb_con_registered) { 1041 register_console(&kgdbcons); 1042 kgdb_con_registered = 1; 1043 } 1044 } 1045 } 1046 1047 static void kgdb_unregister_callbacks(void) 1048 { 1049 /* 1050 * When this routine is called KGDB should unregister from 1051 * handlers and clean up, making sure it is not handling any 1052 * break exceptions at the time. 1053 */ 1054 if (kgdb_io_module_registered) { 1055 kgdb_io_module_registered = 0; 1056 unregister_reboot_notifier(&dbg_reboot_notifier); 1057 unregister_module_notifier(&dbg_module_load_nb); 1058 kgdb_arch_exit(); 1059 #ifdef CONFIG_MAGIC_SYSRQ 1060 unregister_sysrq_key('g', &sysrq_dbg_op); 1061 #endif 1062 if (kgdb_con_registered) { 1063 unregister_console(&kgdbcons); 1064 kgdb_con_registered = 0; 1065 } 1066 } 1067 } 1068 1069 /* 1070 * There are times a tasklet needs to be used vs a compiled in 1071 * break point so as to cause an exception outside a kgdb I/O module, 1072 * such as is the case with kgdboe, where calling a breakpoint in the 1073 * I/O driver itself would be fatal. 1074 */ 1075 static void kgdb_tasklet_bpt(unsigned long ing) 1076 { 1077 kgdb_breakpoint(); 1078 atomic_set(&kgdb_break_tasklet_var, 0); 1079 } 1080 1081 static DECLARE_TASKLET_OLD(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt); 1082 1083 void kgdb_schedule_breakpoint(void) 1084 { 1085 if (atomic_read(&kgdb_break_tasklet_var) || 1086 atomic_read(&kgdb_active) != -1 || 1087 atomic_read(&kgdb_setting_breakpoint)) 1088 return; 1089 atomic_inc(&kgdb_break_tasklet_var); 1090 tasklet_schedule(&kgdb_tasklet_breakpoint); 1091 } 1092 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint); 1093 1094 /** 1095 * kgdb_register_io_module - register KGDB IO module 1096 * @new_dbg_io_ops: the io ops vector 1097 * 1098 * Register it with the KGDB core. 1099 */ 1100 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops) 1101 { 1102 struct kgdb_io *old_dbg_io_ops; 1103 int err; 1104 1105 spin_lock(&kgdb_registration_lock); 1106 1107 old_dbg_io_ops = dbg_io_ops; 1108 if (old_dbg_io_ops) { 1109 if (!old_dbg_io_ops->deinit) { 1110 spin_unlock(&kgdb_registration_lock); 1111 1112 pr_err("KGDB I/O driver %s can't replace %s.\n", 1113 new_dbg_io_ops->name, old_dbg_io_ops->name); 1114 return -EBUSY; 1115 } 1116 pr_info("Replacing I/O driver %s with %s\n", 1117 old_dbg_io_ops->name, new_dbg_io_ops->name); 1118 } 1119 1120 if (new_dbg_io_ops->init) { 1121 err = new_dbg_io_ops->init(); 1122 if (err) { 1123 spin_unlock(&kgdb_registration_lock); 1124 return err; 1125 } 1126 } 1127 1128 dbg_io_ops = new_dbg_io_ops; 1129 1130 spin_unlock(&kgdb_registration_lock); 1131 1132 if (old_dbg_io_ops) { 1133 old_dbg_io_ops->deinit(); 1134 return 0; 1135 } 1136 1137 pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name); 1138 1139 /* Arm KGDB now. */ 1140 kgdb_register_callbacks(); 1141 1142 if (kgdb_break_asap && 1143 (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))) 1144 kgdb_initial_breakpoint(); 1145 1146 return 0; 1147 } 1148 EXPORT_SYMBOL_GPL(kgdb_register_io_module); 1149 1150 /** 1151 * kkgdb_unregister_io_module - unregister KGDB IO module 1152 * @old_dbg_io_ops: the io ops vector 1153 * 1154 * Unregister it with the KGDB core. 1155 */ 1156 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops) 1157 { 1158 BUG_ON(kgdb_connected); 1159 1160 /* 1161 * KGDB is no longer able to communicate out, so 1162 * unregister our callbacks and reset state. 1163 */ 1164 kgdb_unregister_callbacks(); 1165 1166 spin_lock(&kgdb_registration_lock); 1167 1168 WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops); 1169 dbg_io_ops = NULL; 1170 1171 spin_unlock(&kgdb_registration_lock); 1172 1173 if (old_dbg_io_ops->deinit) 1174 old_dbg_io_ops->deinit(); 1175 1176 pr_info("Unregistered I/O driver %s, debugger disabled\n", 1177 old_dbg_io_ops->name); 1178 } 1179 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module); 1180 1181 int dbg_io_get_char(void) 1182 { 1183 int ret = dbg_io_ops->read_char(); 1184 if (ret == NO_POLL_CHAR) 1185 return -1; 1186 if (!dbg_kdb_mode) 1187 return ret; 1188 if (ret == 127) 1189 return 8; 1190 return ret; 1191 } 1192 1193 /** 1194 * kgdb_breakpoint - generate breakpoint exception 1195 * 1196 * This function will generate a breakpoint exception. It is used at the 1197 * beginning of a program to sync up with a debugger and can be used 1198 * otherwise as a quick means to stop program execution and "break" into 1199 * the debugger. 1200 */ 1201 noinline void kgdb_breakpoint(void) 1202 { 1203 atomic_inc(&kgdb_setting_breakpoint); 1204 wmb(); /* Sync point before breakpoint */ 1205 arch_kgdb_breakpoint(); 1206 wmb(); /* Sync point after breakpoint */ 1207 atomic_dec(&kgdb_setting_breakpoint); 1208 } 1209 EXPORT_SYMBOL_GPL(kgdb_breakpoint); 1210 1211 static int __init opt_kgdb_wait(char *str) 1212 { 1213 kgdb_break_asap = 1; 1214 1215 kdb_init(KDB_INIT_EARLY); 1216 if (kgdb_io_module_registered && 1217 IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)) 1218 kgdb_initial_breakpoint(); 1219 1220 return 0; 1221 } 1222 1223 early_param("kgdbwait", opt_kgdb_wait); 1224