1 /* 2 * Kernel Debug Core 3 * 4 * Maintainer: Jason Wessel <[email protected]> 5 * 6 * Copyright (C) 2000-2001 VERITAS Software Corporation. 7 * Copyright (C) 2002-2004 Timesys Corporation 8 * Copyright (C) 2003-2004 Amit S. Kale <[email protected]> 9 * Copyright (C) 2004 Pavel Machek <[email protected]> 10 * Copyright (C) 2004-2006 Tom Rini <[email protected]> 11 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. 12 * Copyright (C) 2005-2009 Wind River Systems, Inc. 13 * Copyright (C) 2007 MontaVista Software, Inc. 14 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <[email protected]> 15 * 16 * Contributors at various stages not listed above: 17 * Jason Wessel ( [email protected] ) 18 * George Anzinger <[email protected]> 19 * Anurekh Saxena ([email protected]) 20 * Lake Stevens Instrument Division (Glenn Engel) 21 * Jim Kingdon, Cygnus Support. 22 * 23 * Original KGDB stub: David Grothe <[email protected]>, 24 * Tigran Aivazian <[email protected]> 25 * 26 * This file is licensed under the terms of the GNU General Public License 27 * version 2. This program is licensed "as is" without any warranty of any 28 * kind, whether express or implied. 29 */ 30 31 #define pr_fmt(fmt) "KGDB: " fmt 32 33 #include <linux/pid_namespace.h> 34 #include <linux/clocksource.h> 35 #include <linux/serial_core.h> 36 #include <linux/interrupt.h> 37 #include <linux/spinlock.h> 38 #include <linux/console.h> 39 #include <linux/threads.h> 40 #include <linux/uaccess.h> 41 #include <linux/kernel.h> 42 #include <linux/module.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/delay.h> 46 #include <linux/sched.h> 47 #include <linux/sysrq.h> 48 #include <linux/reboot.h> 49 #include <linux/init.h> 50 #include <linux/kgdb.h> 51 #include <linux/kdb.h> 52 #include <linux/nmi.h> 53 #include <linux/pid.h> 54 #include <linux/smp.h> 55 #include <linux/mm.h> 56 #include <linux/vmacache.h> 57 #include <linux/rcupdate.h> 58 #include <linux/irq.h> 59 60 #include <asm/cacheflush.h> 61 #include <asm/byteorder.h> 62 #include <linux/atomic.h> 63 64 #include "debug_core.h" 65 66 static int kgdb_break_asap; 67 68 struct debuggerinfo_struct kgdb_info[NR_CPUS]; 69 70 /* kgdb_connected - Is a host GDB connected to us? */ 71 int kgdb_connected; 72 EXPORT_SYMBOL_GPL(kgdb_connected); 73 74 /* All the KGDB handlers are installed */ 75 int kgdb_io_module_registered; 76 77 /* Guard for recursive entry */ 78 static int exception_level; 79 80 struct kgdb_io *dbg_io_ops; 81 static DEFINE_SPINLOCK(kgdb_registration_lock); 82 83 /* Action for the reboot notifiter, a global allow kdb to change it */ 84 static int kgdbreboot; 85 /* kgdb console driver is loaded */ 86 static int kgdb_con_registered; 87 /* determine if kgdb console output should be used */ 88 static int kgdb_use_con; 89 /* Flag for alternate operations for early debugging */ 90 bool dbg_is_early = true; 91 /* Next cpu to become the master debug core */ 92 int dbg_switch_cpu; 93 94 /* Use kdb or gdbserver mode */ 95 int dbg_kdb_mode = 1; 96 97 static int __init opt_kgdb_con(char *str) 98 { 99 kgdb_use_con = 1; 100 return 0; 101 } 102 103 early_param("kgdbcon", opt_kgdb_con); 104 105 module_param(kgdb_use_con, int, 0644); 106 module_param(kgdbreboot, int, 0644); 107 108 /* 109 * Holds information about breakpoints in a kernel. These breakpoints are 110 * added and removed by gdb. 111 */ 112 static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = { 113 [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED } 114 }; 115 116 /* 117 * The CPU# of the active CPU, or -1 if none: 118 */ 119 atomic_t kgdb_active = ATOMIC_INIT(-1); 120 EXPORT_SYMBOL_GPL(kgdb_active); 121 static DEFINE_RAW_SPINLOCK(dbg_master_lock); 122 static DEFINE_RAW_SPINLOCK(dbg_slave_lock); 123 124 /* 125 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early 126 * bootup code (which might not have percpu set up yet): 127 */ 128 static atomic_t masters_in_kgdb; 129 static atomic_t slaves_in_kgdb; 130 static atomic_t kgdb_break_tasklet_var; 131 atomic_t kgdb_setting_breakpoint; 132 133 struct task_struct *kgdb_usethread; 134 struct task_struct *kgdb_contthread; 135 136 int kgdb_single_step; 137 static pid_t kgdb_sstep_pid; 138 139 /* to keep track of the CPU which is doing the single stepping*/ 140 atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1); 141 142 /* 143 * If you are debugging a problem where roundup (the collection of 144 * all other CPUs) is a problem [this should be extremely rare], 145 * then use the nokgdbroundup option to avoid roundup. In that case 146 * the other CPUs might interfere with your debugging context, so 147 * use this with care: 148 */ 149 static int kgdb_do_roundup = 1; 150 151 static int __init opt_nokgdbroundup(char *str) 152 { 153 kgdb_do_roundup = 0; 154 155 return 0; 156 } 157 158 early_param("nokgdbroundup", opt_nokgdbroundup); 159 160 /* 161 * Finally, some KGDB code :-) 162 */ 163 164 /* 165 * Weak aliases for breakpoint management, 166 * can be overriden by architectures when needed: 167 */ 168 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt) 169 { 170 int err; 171 172 err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr, 173 BREAK_INSTR_SIZE); 174 if (err) 175 return err; 176 err = probe_kernel_write((char *)bpt->bpt_addr, 177 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE); 178 return err; 179 } 180 181 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt) 182 { 183 return probe_kernel_write((char *)bpt->bpt_addr, 184 (char *)bpt->saved_instr, BREAK_INSTR_SIZE); 185 } 186 187 int __weak kgdb_validate_break_address(unsigned long addr) 188 { 189 struct kgdb_bkpt tmp; 190 int err; 191 /* Validate setting the breakpoint and then removing it. If the 192 * remove fails, the kernel needs to emit a bad message because we 193 * are deep trouble not being able to put things back the way we 194 * found them. 195 */ 196 tmp.bpt_addr = addr; 197 err = kgdb_arch_set_breakpoint(&tmp); 198 if (err) 199 return err; 200 err = kgdb_arch_remove_breakpoint(&tmp); 201 if (err) 202 pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n", 203 addr); 204 return err; 205 } 206 207 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs) 208 { 209 return instruction_pointer(regs); 210 } 211 212 int __weak kgdb_arch_init(void) 213 { 214 return 0; 215 } 216 217 int __weak kgdb_skipexception(int exception, struct pt_regs *regs) 218 { 219 return 0; 220 } 221 222 #ifdef CONFIG_SMP 223 224 /* 225 * Default (weak) implementation for kgdb_roundup_cpus 226 */ 227 228 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd); 229 230 void __weak kgdb_call_nmi_hook(void *ignored) 231 { 232 /* 233 * NOTE: get_irq_regs() is supposed to get the registers from 234 * before the IPI interrupt happened and so is supposed to 235 * show where the processor was. In some situations it's 236 * possible we might be called without an IPI, so it might be 237 * safer to figure out how to make kgdb_breakpoint() work 238 * properly here. 239 */ 240 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs()); 241 } 242 243 void __weak kgdb_roundup_cpus(void) 244 { 245 call_single_data_t *csd; 246 int this_cpu = raw_smp_processor_id(); 247 int cpu; 248 int ret; 249 250 for_each_online_cpu(cpu) { 251 /* No need to roundup ourselves */ 252 if (cpu == this_cpu) 253 continue; 254 255 csd = &per_cpu(kgdb_roundup_csd, cpu); 256 257 /* 258 * If it didn't round up last time, don't try again 259 * since smp_call_function_single_async() will block. 260 * 261 * If rounding_up is false then we know that the 262 * previous call must have at least started and that 263 * means smp_call_function_single_async() won't block. 264 */ 265 if (kgdb_info[cpu].rounding_up) 266 continue; 267 kgdb_info[cpu].rounding_up = true; 268 269 csd->func = kgdb_call_nmi_hook; 270 ret = smp_call_function_single_async(cpu, csd); 271 if (ret) 272 kgdb_info[cpu].rounding_up = false; 273 } 274 } 275 276 #endif 277 278 /* 279 * Some architectures need cache flushes when we set/clear a 280 * breakpoint: 281 */ 282 static void kgdb_flush_swbreak_addr(unsigned long addr) 283 { 284 if (!CACHE_FLUSH_IS_SAFE) 285 return; 286 287 if (current->mm) { 288 int i; 289 290 for (i = 0; i < VMACACHE_SIZE; i++) { 291 if (!current->vmacache.vmas[i]) 292 continue; 293 flush_cache_range(current->vmacache.vmas[i], 294 addr, addr + BREAK_INSTR_SIZE); 295 } 296 } 297 298 /* Force flush instruction cache if it was outside the mm */ 299 flush_icache_range(addr, addr + BREAK_INSTR_SIZE); 300 } 301 302 /* 303 * SW breakpoint management: 304 */ 305 int dbg_activate_sw_breakpoints(void) 306 { 307 int error; 308 int ret = 0; 309 int i; 310 311 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 312 if (kgdb_break[i].state != BP_SET) 313 continue; 314 315 error = kgdb_arch_set_breakpoint(&kgdb_break[i]); 316 if (error) { 317 ret = error; 318 pr_info("BP install failed: %lx\n", 319 kgdb_break[i].bpt_addr); 320 continue; 321 } 322 323 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr); 324 kgdb_break[i].state = BP_ACTIVE; 325 } 326 return ret; 327 } 328 329 int dbg_set_sw_break(unsigned long addr) 330 { 331 int err = kgdb_validate_break_address(addr); 332 int breakno = -1; 333 int i; 334 335 if (err) 336 return err; 337 338 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 339 if ((kgdb_break[i].state == BP_SET) && 340 (kgdb_break[i].bpt_addr == addr)) 341 return -EEXIST; 342 } 343 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 344 if (kgdb_break[i].state == BP_REMOVED && 345 kgdb_break[i].bpt_addr == addr) { 346 breakno = i; 347 break; 348 } 349 } 350 351 if (breakno == -1) { 352 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 353 if (kgdb_break[i].state == BP_UNDEFINED) { 354 breakno = i; 355 break; 356 } 357 } 358 } 359 360 if (breakno == -1) 361 return -E2BIG; 362 363 kgdb_break[breakno].state = BP_SET; 364 kgdb_break[breakno].type = BP_BREAKPOINT; 365 kgdb_break[breakno].bpt_addr = addr; 366 367 return 0; 368 } 369 370 int dbg_deactivate_sw_breakpoints(void) 371 { 372 int error; 373 int ret = 0; 374 int i; 375 376 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 377 if (kgdb_break[i].state != BP_ACTIVE) 378 continue; 379 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]); 380 if (error) { 381 pr_info("BP remove failed: %lx\n", 382 kgdb_break[i].bpt_addr); 383 ret = error; 384 } 385 386 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr); 387 kgdb_break[i].state = BP_SET; 388 } 389 return ret; 390 } 391 392 int dbg_remove_sw_break(unsigned long addr) 393 { 394 int i; 395 396 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 397 if ((kgdb_break[i].state == BP_SET) && 398 (kgdb_break[i].bpt_addr == addr)) { 399 kgdb_break[i].state = BP_REMOVED; 400 return 0; 401 } 402 } 403 return -ENOENT; 404 } 405 406 int kgdb_isremovedbreak(unsigned long addr) 407 { 408 int i; 409 410 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 411 if ((kgdb_break[i].state == BP_REMOVED) && 412 (kgdb_break[i].bpt_addr == addr)) 413 return 1; 414 } 415 return 0; 416 } 417 418 int dbg_remove_all_break(void) 419 { 420 int error; 421 int i; 422 423 /* Clear memory breakpoints. */ 424 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 425 if (kgdb_break[i].state != BP_ACTIVE) 426 goto setundefined; 427 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]); 428 if (error) 429 pr_err("breakpoint remove failed: %lx\n", 430 kgdb_break[i].bpt_addr); 431 setundefined: 432 kgdb_break[i].state = BP_UNDEFINED; 433 } 434 435 /* Clear hardware breakpoints. */ 436 if (arch_kgdb_ops.remove_all_hw_break) 437 arch_kgdb_ops.remove_all_hw_break(); 438 439 return 0; 440 } 441 442 #ifdef CONFIG_KGDB_KDB 443 void kdb_dump_stack_on_cpu(int cpu) 444 { 445 if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) { 446 dump_stack(); 447 return; 448 } 449 450 if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) { 451 kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n", 452 cpu); 453 return; 454 } 455 456 /* 457 * In general, architectures don't support dumping the stack of a 458 * "running" process that's not the current one. From the point of 459 * view of the Linux, kernel processes that are looping in the kgdb 460 * slave loop are still "running". There's also no API (that actually 461 * works across all architectures) that can do a stack crawl based 462 * on registers passed as a parameter. 463 * 464 * Solve this conundrum by asking slave CPUs to do the backtrace 465 * themselves. 466 */ 467 kgdb_info[cpu].exception_state |= DCPU_WANT_BT; 468 while (kgdb_info[cpu].exception_state & DCPU_WANT_BT) 469 cpu_relax(); 470 } 471 #endif 472 473 /* 474 * Return true if there is a valid kgdb I/O module. Also if no 475 * debugger is attached a message can be printed to the console about 476 * waiting for the debugger to attach. 477 * 478 * The print_wait argument is only to be true when called from inside 479 * the core kgdb_handle_exception, because it will wait for the 480 * debugger to attach. 481 */ 482 static int kgdb_io_ready(int print_wait) 483 { 484 if (!dbg_io_ops) 485 return 0; 486 if (kgdb_connected) 487 return 1; 488 if (atomic_read(&kgdb_setting_breakpoint)) 489 return 1; 490 if (print_wait) { 491 #ifdef CONFIG_KGDB_KDB 492 if (!dbg_kdb_mode) 493 pr_crit("waiting... or $3#33 for KDB\n"); 494 #else 495 pr_crit("Waiting for remote debugger\n"); 496 #endif 497 } 498 return 1; 499 } 500 501 static int kgdb_reenter_check(struct kgdb_state *ks) 502 { 503 unsigned long addr; 504 505 if (atomic_read(&kgdb_active) != raw_smp_processor_id()) 506 return 0; 507 508 /* Panic on recursive debugger calls: */ 509 exception_level++; 510 addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs); 511 dbg_deactivate_sw_breakpoints(); 512 513 /* 514 * If the break point removed ok at the place exception 515 * occurred, try to recover and print a warning to the end 516 * user because the user planted a breakpoint in a place that 517 * KGDB needs in order to function. 518 */ 519 if (dbg_remove_sw_break(addr) == 0) { 520 exception_level = 0; 521 kgdb_skipexception(ks->ex_vector, ks->linux_regs); 522 dbg_activate_sw_breakpoints(); 523 pr_crit("re-enter error: breakpoint removed %lx\n", addr); 524 WARN_ON_ONCE(1); 525 526 return 1; 527 } 528 dbg_remove_all_break(); 529 kgdb_skipexception(ks->ex_vector, ks->linux_regs); 530 531 if (exception_level > 1) { 532 dump_stack(); 533 panic("Recursive entry to debugger"); 534 } 535 536 pr_crit("re-enter exception: ALL breakpoints killed\n"); 537 #ifdef CONFIG_KGDB_KDB 538 /* Allow kdb to debug itself one level */ 539 return 0; 540 #endif 541 dump_stack(); 542 panic("Recursive entry to debugger"); 543 544 return 1; 545 } 546 547 static void dbg_touch_watchdogs(void) 548 { 549 touch_softlockup_watchdog_sync(); 550 clocksource_touch_watchdog(); 551 rcu_cpu_stall_reset(); 552 } 553 554 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs, 555 int exception_state) 556 { 557 unsigned long flags; 558 int sstep_tries = 100; 559 int error; 560 int cpu; 561 int trace_on = 0; 562 int online_cpus = num_online_cpus(); 563 u64 time_left; 564 565 kgdb_info[ks->cpu].enter_kgdb++; 566 kgdb_info[ks->cpu].exception_state |= exception_state; 567 568 if (exception_state == DCPU_WANT_MASTER) 569 atomic_inc(&masters_in_kgdb); 570 else 571 atomic_inc(&slaves_in_kgdb); 572 573 if (arch_kgdb_ops.disable_hw_break) 574 arch_kgdb_ops.disable_hw_break(regs); 575 576 acquirelock: 577 /* 578 * Interrupts will be restored by the 'trap return' code, except when 579 * single stepping. 580 */ 581 local_irq_save(flags); 582 583 cpu = ks->cpu; 584 kgdb_info[cpu].debuggerinfo = regs; 585 kgdb_info[cpu].task = current; 586 kgdb_info[cpu].ret_state = 0; 587 kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT; 588 589 /* Make sure the above info reaches the primary CPU */ 590 smp_mb(); 591 592 if (exception_level == 1) { 593 if (raw_spin_trylock(&dbg_master_lock)) 594 atomic_xchg(&kgdb_active, cpu); 595 goto cpu_master_loop; 596 } 597 598 /* 599 * CPU will loop if it is a slave or request to become a kgdb 600 * master cpu and acquire the kgdb_active lock: 601 */ 602 while (1) { 603 cpu_loop: 604 if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) { 605 kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER; 606 goto cpu_master_loop; 607 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) { 608 if (raw_spin_trylock(&dbg_master_lock)) { 609 atomic_xchg(&kgdb_active, cpu); 610 break; 611 } 612 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) { 613 dump_stack(); 614 kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT; 615 } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) { 616 if (!raw_spin_is_locked(&dbg_slave_lock)) 617 goto return_normal; 618 } else { 619 return_normal: 620 /* Return to normal operation by executing any 621 * hw breakpoint fixup. 622 */ 623 if (arch_kgdb_ops.correct_hw_break) 624 arch_kgdb_ops.correct_hw_break(); 625 if (trace_on) 626 tracing_on(); 627 kgdb_info[cpu].debuggerinfo = NULL; 628 kgdb_info[cpu].task = NULL; 629 kgdb_info[cpu].exception_state &= 630 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE); 631 kgdb_info[cpu].enter_kgdb--; 632 smp_mb__before_atomic(); 633 atomic_dec(&slaves_in_kgdb); 634 dbg_touch_watchdogs(); 635 local_irq_restore(flags); 636 return 0; 637 } 638 cpu_relax(); 639 } 640 641 /* 642 * For single stepping, try to only enter on the processor 643 * that was single stepping. To guard against a deadlock, the 644 * kernel will only try for the value of sstep_tries before 645 * giving up and continuing on. 646 */ 647 if (atomic_read(&kgdb_cpu_doing_single_step) != -1 && 648 (kgdb_info[cpu].task && 649 kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) { 650 atomic_set(&kgdb_active, -1); 651 raw_spin_unlock(&dbg_master_lock); 652 dbg_touch_watchdogs(); 653 local_irq_restore(flags); 654 655 goto acquirelock; 656 } 657 658 if (!kgdb_io_ready(1)) { 659 kgdb_info[cpu].ret_state = 1; 660 goto kgdb_restore; /* No I/O connection, resume the system */ 661 } 662 663 /* 664 * Don't enter if we have hit a removed breakpoint. 665 */ 666 if (kgdb_skipexception(ks->ex_vector, ks->linux_regs)) 667 goto kgdb_restore; 668 669 atomic_inc(&ignore_console_lock_warning); 670 671 /* Call the I/O driver's pre_exception routine */ 672 if (dbg_io_ops->pre_exception) 673 dbg_io_ops->pre_exception(); 674 675 /* 676 * Get the passive CPU lock which will hold all the non-primary 677 * CPU in a spin state while the debugger is active 678 */ 679 if (!kgdb_single_step) 680 raw_spin_lock(&dbg_slave_lock); 681 682 #ifdef CONFIG_SMP 683 /* If send_ready set, slaves are already waiting */ 684 if (ks->send_ready) 685 atomic_set(ks->send_ready, 1); 686 687 /* Signal the other CPUs to enter kgdb_wait() */ 688 else if ((!kgdb_single_step) && kgdb_do_roundup) 689 kgdb_roundup_cpus(); 690 #endif 691 692 /* 693 * Wait for the other CPUs to be notified and be waiting for us: 694 */ 695 time_left = MSEC_PER_SEC; 696 while (kgdb_do_roundup && --time_left && 697 (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) != 698 online_cpus) 699 udelay(1000); 700 if (!time_left) 701 pr_crit("Timed out waiting for secondary CPUs.\n"); 702 703 /* 704 * At this point the primary processor is completely 705 * in the debugger and all secondary CPUs are quiescent 706 */ 707 dbg_deactivate_sw_breakpoints(); 708 kgdb_single_step = 0; 709 kgdb_contthread = current; 710 exception_level = 0; 711 trace_on = tracing_is_on(); 712 if (trace_on) 713 tracing_off(); 714 715 while (1) { 716 cpu_master_loop: 717 if (dbg_kdb_mode) { 718 kgdb_connected = 1; 719 error = kdb_stub(ks); 720 if (error == -1) 721 continue; 722 kgdb_connected = 0; 723 } else { 724 error = gdb_serial_stub(ks); 725 } 726 727 if (error == DBG_PASS_EVENT) { 728 dbg_kdb_mode = !dbg_kdb_mode; 729 } else if (error == DBG_SWITCH_CPU_EVENT) { 730 kgdb_info[dbg_switch_cpu].exception_state |= 731 DCPU_NEXT_MASTER; 732 goto cpu_loop; 733 } else { 734 kgdb_info[cpu].ret_state = error; 735 break; 736 } 737 } 738 739 /* Call the I/O driver's post_exception routine */ 740 if (dbg_io_ops->post_exception) 741 dbg_io_ops->post_exception(); 742 743 atomic_dec(&ignore_console_lock_warning); 744 745 if (!kgdb_single_step) { 746 raw_spin_unlock(&dbg_slave_lock); 747 /* Wait till all the CPUs have quit from the debugger. */ 748 while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb)) 749 cpu_relax(); 750 } 751 752 kgdb_restore: 753 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) { 754 int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step); 755 if (kgdb_info[sstep_cpu].task) 756 kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid; 757 else 758 kgdb_sstep_pid = 0; 759 } 760 if (arch_kgdb_ops.correct_hw_break) 761 arch_kgdb_ops.correct_hw_break(); 762 if (trace_on) 763 tracing_on(); 764 765 kgdb_info[cpu].debuggerinfo = NULL; 766 kgdb_info[cpu].task = NULL; 767 kgdb_info[cpu].exception_state &= 768 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE); 769 kgdb_info[cpu].enter_kgdb--; 770 smp_mb__before_atomic(); 771 atomic_dec(&masters_in_kgdb); 772 /* Free kgdb_active */ 773 atomic_set(&kgdb_active, -1); 774 raw_spin_unlock(&dbg_master_lock); 775 dbg_touch_watchdogs(); 776 local_irq_restore(flags); 777 778 return kgdb_info[cpu].ret_state; 779 } 780 781 /* 782 * kgdb_handle_exception() - main entry point from a kernel exception 783 * 784 * Locking hierarchy: 785 * interface locks, if any (begin_session) 786 * kgdb lock (kgdb_active) 787 */ 788 int 789 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs) 790 { 791 struct kgdb_state kgdb_var; 792 struct kgdb_state *ks = &kgdb_var; 793 int ret = 0; 794 795 if (arch_kgdb_ops.enable_nmi) 796 arch_kgdb_ops.enable_nmi(0); 797 /* 798 * Avoid entering the debugger if we were triggered due to an oops 799 * but panic_timeout indicates the system should automatically 800 * reboot on panic. We don't want to get stuck waiting for input 801 * on such systems, especially if its "just" an oops. 802 */ 803 if (signo != SIGTRAP && panic_timeout) 804 return 1; 805 806 memset(ks, 0, sizeof(struct kgdb_state)); 807 ks->cpu = raw_smp_processor_id(); 808 ks->ex_vector = evector; 809 ks->signo = signo; 810 ks->err_code = ecode; 811 ks->linux_regs = regs; 812 813 if (kgdb_reenter_check(ks)) 814 goto out; /* Ouch, double exception ! */ 815 if (kgdb_info[ks->cpu].enter_kgdb != 0) 816 goto out; 817 818 ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER); 819 out: 820 if (arch_kgdb_ops.enable_nmi) 821 arch_kgdb_ops.enable_nmi(1); 822 return ret; 823 } 824 825 /* 826 * GDB places a breakpoint at this function to know dynamically loaded objects. 827 */ 828 static int module_event(struct notifier_block *self, unsigned long val, 829 void *data) 830 { 831 return 0; 832 } 833 834 static struct notifier_block dbg_module_load_nb = { 835 .notifier_call = module_event, 836 }; 837 838 int kgdb_nmicallback(int cpu, void *regs) 839 { 840 #ifdef CONFIG_SMP 841 struct kgdb_state kgdb_var; 842 struct kgdb_state *ks = &kgdb_var; 843 844 kgdb_info[cpu].rounding_up = false; 845 846 memset(ks, 0, sizeof(struct kgdb_state)); 847 ks->cpu = cpu; 848 ks->linux_regs = regs; 849 850 if (kgdb_info[ks->cpu].enter_kgdb == 0 && 851 raw_spin_is_locked(&dbg_master_lock)) { 852 kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE); 853 return 0; 854 } 855 #endif 856 return 1; 857 } 858 859 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code, 860 atomic_t *send_ready) 861 { 862 #ifdef CONFIG_SMP 863 if (!kgdb_io_ready(0) || !send_ready) 864 return 1; 865 866 if (kgdb_info[cpu].enter_kgdb == 0) { 867 struct kgdb_state kgdb_var; 868 struct kgdb_state *ks = &kgdb_var; 869 870 memset(ks, 0, sizeof(struct kgdb_state)); 871 ks->cpu = cpu; 872 ks->ex_vector = trapnr; 873 ks->signo = SIGTRAP; 874 ks->err_code = err_code; 875 ks->linux_regs = regs; 876 ks->send_ready = send_ready; 877 kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER); 878 return 0; 879 } 880 #endif 881 return 1; 882 } 883 884 static void kgdb_console_write(struct console *co, const char *s, 885 unsigned count) 886 { 887 unsigned long flags; 888 889 /* If we're debugging, or KGDB has not connected, don't try 890 * and print. */ 891 if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode) 892 return; 893 894 local_irq_save(flags); 895 gdbstub_msg_write(s, count); 896 local_irq_restore(flags); 897 } 898 899 static struct console kgdbcons = { 900 .name = "kgdb", 901 .write = kgdb_console_write, 902 .flags = CON_PRINTBUFFER | CON_ENABLED, 903 .index = -1, 904 }; 905 906 #ifdef CONFIG_MAGIC_SYSRQ 907 static void sysrq_handle_dbg(int key) 908 { 909 if (!dbg_io_ops) { 910 pr_crit("ERROR: No KGDB I/O module available\n"); 911 return; 912 } 913 if (!kgdb_connected) { 914 #ifdef CONFIG_KGDB_KDB 915 if (!dbg_kdb_mode) 916 pr_crit("KGDB or $3#33 for KDB\n"); 917 #else 918 pr_crit("Entering KGDB\n"); 919 #endif 920 } 921 922 kgdb_breakpoint(); 923 } 924 925 static struct sysrq_key_op sysrq_dbg_op = { 926 .handler = sysrq_handle_dbg, 927 .help_msg = "debug(g)", 928 .action_msg = "DEBUG", 929 }; 930 #endif 931 932 void kgdb_panic(const char *msg) 933 { 934 if (!kgdb_io_module_registered) 935 return; 936 937 /* 938 * We don't want to get stuck waiting for input from user if 939 * "panic_timeout" indicates the system should automatically 940 * reboot on panic. 941 */ 942 if (panic_timeout) 943 return; 944 945 if (dbg_kdb_mode) 946 kdb_printf("PANIC: %s\n", msg); 947 948 kgdb_breakpoint(); 949 } 950 951 static void kgdb_initial_breakpoint(void) 952 { 953 kgdb_break_asap = 0; 954 955 pr_crit("Waiting for connection from remote gdb...\n"); 956 kgdb_breakpoint(); 957 } 958 959 void __weak kgdb_arch_late(void) 960 { 961 } 962 963 void __init dbg_late_init(void) 964 { 965 dbg_is_early = false; 966 if (kgdb_io_module_registered) 967 kgdb_arch_late(); 968 kdb_init(KDB_INIT_FULL); 969 970 if (kgdb_io_module_registered && kgdb_break_asap) 971 kgdb_initial_breakpoint(); 972 } 973 974 static int 975 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x) 976 { 977 /* 978 * Take the following action on reboot notify depending on value: 979 * 1 == Enter debugger 980 * 0 == [the default] detatch debug client 981 * -1 == Do nothing... and use this until the board resets 982 */ 983 switch (kgdbreboot) { 984 case 1: 985 kgdb_breakpoint(); 986 case -1: 987 goto done; 988 } 989 if (!dbg_kdb_mode) 990 gdbstub_exit(code); 991 done: 992 return NOTIFY_DONE; 993 } 994 995 static struct notifier_block dbg_reboot_notifier = { 996 .notifier_call = dbg_notify_reboot, 997 .next = NULL, 998 .priority = INT_MAX, 999 }; 1000 1001 static void kgdb_register_callbacks(void) 1002 { 1003 if (!kgdb_io_module_registered) { 1004 kgdb_io_module_registered = 1; 1005 kgdb_arch_init(); 1006 if (!dbg_is_early) 1007 kgdb_arch_late(); 1008 register_module_notifier(&dbg_module_load_nb); 1009 register_reboot_notifier(&dbg_reboot_notifier); 1010 #ifdef CONFIG_MAGIC_SYSRQ 1011 register_sysrq_key('g', &sysrq_dbg_op); 1012 #endif 1013 if (kgdb_use_con && !kgdb_con_registered) { 1014 register_console(&kgdbcons); 1015 kgdb_con_registered = 1; 1016 } 1017 } 1018 } 1019 1020 static void kgdb_unregister_callbacks(void) 1021 { 1022 /* 1023 * When this routine is called KGDB should unregister from 1024 * handlers and clean up, making sure it is not handling any 1025 * break exceptions at the time. 1026 */ 1027 if (kgdb_io_module_registered) { 1028 kgdb_io_module_registered = 0; 1029 unregister_reboot_notifier(&dbg_reboot_notifier); 1030 unregister_module_notifier(&dbg_module_load_nb); 1031 kgdb_arch_exit(); 1032 #ifdef CONFIG_MAGIC_SYSRQ 1033 unregister_sysrq_key('g', &sysrq_dbg_op); 1034 #endif 1035 if (kgdb_con_registered) { 1036 unregister_console(&kgdbcons); 1037 kgdb_con_registered = 0; 1038 } 1039 } 1040 } 1041 1042 /* 1043 * There are times a tasklet needs to be used vs a compiled in 1044 * break point so as to cause an exception outside a kgdb I/O module, 1045 * such as is the case with kgdboe, where calling a breakpoint in the 1046 * I/O driver itself would be fatal. 1047 */ 1048 static void kgdb_tasklet_bpt(unsigned long ing) 1049 { 1050 kgdb_breakpoint(); 1051 atomic_set(&kgdb_break_tasklet_var, 0); 1052 } 1053 1054 static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0); 1055 1056 void kgdb_schedule_breakpoint(void) 1057 { 1058 if (atomic_read(&kgdb_break_tasklet_var) || 1059 atomic_read(&kgdb_active) != -1 || 1060 atomic_read(&kgdb_setting_breakpoint)) 1061 return; 1062 atomic_inc(&kgdb_break_tasklet_var); 1063 tasklet_schedule(&kgdb_tasklet_breakpoint); 1064 } 1065 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint); 1066 1067 /** 1068 * kgdb_register_io_module - register KGDB IO module 1069 * @new_dbg_io_ops: the io ops vector 1070 * 1071 * Register it with the KGDB core. 1072 */ 1073 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops) 1074 { 1075 int err; 1076 1077 spin_lock(&kgdb_registration_lock); 1078 1079 if (dbg_io_ops) { 1080 spin_unlock(&kgdb_registration_lock); 1081 1082 pr_err("Another I/O driver is already registered with KGDB\n"); 1083 return -EBUSY; 1084 } 1085 1086 if (new_dbg_io_ops->init) { 1087 err = new_dbg_io_ops->init(); 1088 if (err) { 1089 spin_unlock(&kgdb_registration_lock); 1090 return err; 1091 } 1092 } 1093 1094 dbg_io_ops = new_dbg_io_ops; 1095 1096 spin_unlock(&kgdb_registration_lock); 1097 1098 pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name); 1099 1100 /* Arm KGDB now. */ 1101 kgdb_register_callbacks(); 1102 1103 if (kgdb_break_asap && 1104 (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))) 1105 kgdb_initial_breakpoint(); 1106 1107 return 0; 1108 } 1109 EXPORT_SYMBOL_GPL(kgdb_register_io_module); 1110 1111 /** 1112 * kkgdb_unregister_io_module - unregister KGDB IO module 1113 * @old_dbg_io_ops: the io ops vector 1114 * 1115 * Unregister it with the KGDB core. 1116 */ 1117 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops) 1118 { 1119 BUG_ON(kgdb_connected); 1120 1121 /* 1122 * KGDB is no longer able to communicate out, so 1123 * unregister our callbacks and reset state. 1124 */ 1125 kgdb_unregister_callbacks(); 1126 1127 spin_lock(&kgdb_registration_lock); 1128 1129 WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops); 1130 dbg_io_ops = NULL; 1131 1132 spin_unlock(&kgdb_registration_lock); 1133 1134 pr_info("Unregistered I/O driver %s, debugger disabled\n", 1135 old_dbg_io_ops->name); 1136 } 1137 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module); 1138 1139 int dbg_io_get_char(void) 1140 { 1141 int ret = dbg_io_ops->read_char(); 1142 if (ret == NO_POLL_CHAR) 1143 return -1; 1144 if (!dbg_kdb_mode) 1145 return ret; 1146 if (ret == 127) 1147 return 8; 1148 return ret; 1149 } 1150 1151 /** 1152 * kgdb_breakpoint - generate breakpoint exception 1153 * 1154 * This function will generate a breakpoint exception. It is used at the 1155 * beginning of a program to sync up with a debugger and can be used 1156 * otherwise as a quick means to stop program execution and "break" into 1157 * the debugger. 1158 */ 1159 noinline void kgdb_breakpoint(void) 1160 { 1161 atomic_inc(&kgdb_setting_breakpoint); 1162 wmb(); /* Sync point before breakpoint */ 1163 arch_kgdb_breakpoint(); 1164 wmb(); /* Sync point after breakpoint */ 1165 atomic_dec(&kgdb_setting_breakpoint); 1166 } 1167 EXPORT_SYMBOL_GPL(kgdb_breakpoint); 1168 1169 static int __init opt_kgdb_wait(char *str) 1170 { 1171 kgdb_break_asap = 1; 1172 1173 kdb_init(KDB_INIT_EARLY); 1174 if (kgdb_io_module_registered && 1175 IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)) 1176 kgdb_initial_breakpoint(); 1177 1178 return 0; 1179 } 1180 1181 early_param("kgdbwait", opt_kgdb_wait); 1182