xref: /linux-6.15/kernel/debug/debug_core.c (revision b1a57bbf)
1 /*
2  * Kernel Debug Core
3  *
4  * Maintainer: Jason Wessel <[email protected]>
5  *
6  * Copyright (C) 2000-2001 VERITAS Software Corporation.
7  * Copyright (C) 2002-2004 Timesys Corporation
8  * Copyright (C) 2003-2004 Amit S. Kale <[email protected]>
9  * Copyright (C) 2004 Pavel Machek <[email protected]>
10  * Copyright (C) 2004-2006 Tom Rini <[email protected]>
11  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12  * Copyright (C) 2005-2009 Wind River Systems, Inc.
13  * Copyright (C) 2007 MontaVista Software, Inc.
14  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <[email protected]>
15  *
16  * Contributors at various stages not listed above:
17  *  Jason Wessel ( [email protected] )
18  *  George Anzinger <[email protected]>
19  *  Anurekh Saxena ([email protected])
20  *  Lake Stevens Instrument Division (Glenn Engel)
21  *  Jim Kingdon, Cygnus Support.
22  *
23  * Original KGDB stub: David Grothe <[email protected]>,
24  * Tigran Aivazian <[email protected]>
25  *
26  * This file is licensed under the terms of the GNU General Public License
27  * version 2. This program is licensed "as is" without any warranty of any
28  * kind, whether express or implied.
29  */
30 
31 #define pr_fmt(fmt) "KGDB: " fmt
32 
33 #include <linux/pid_namespace.h>
34 #include <linux/clocksource.h>
35 #include <linux/serial_core.h>
36 #include <linux/interrupt.h>
37 #include <linux/spinlock.h>
38 #include <linux/console.h>
39 #include <linux/threads.h>
40 #include <linux/uaccess.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/sched.h>
47 #include <linux/sysrq.h>
48 #include <linux/reboot.h>
49 #include <linux/init.h>
50 #include <linux/kgdb.h>
51 #include <linux/kdb.h>
52 #include <linux/nmi.h>
53 #include <linux/pid.h>
54 #include <linux/smp.h>
55 #include <linux/mm.h>
56 #include <linux/vmacache.h>
57 #include <linux/rcupdate.h>
58 #include <linux/irq.h>
59 
60 #include <asm/cacheflush.h>
61 #include <asm/byteorder.h>
62 #include <linux/atomic.h>
63 
64 #include "debug_core.h"
65 
66 static int kgdb_break_asap;
67 
68 struct debuggerinfo_struct kgdb_info[NR_CPUS];
69 
70 /* kgdb_connected - Is a host GDB connected to us? */
71 int				kgdb_connected;
72 EXPORT_SYMBOL_GPL(kgdb_connected);
73 
74 /* All the KGDB handlers are installed */
75 int			kgdb_io_module_registered;
76 
77 /* Guard for recursive entry */
78 static int			exception_level;
79 
80 struct kgdb_io		*dbg_io_ops;
81 static DEFINE_SPINLOCK(kgdb_registration_lock);
82 
83 /* Action for the reboot notifiter, a global allow kdb to change it */
84 static int kgdbreboot;
85 /* kgdb console driver is loaded */
86 static int kgdb_con_registered;
87 /* determine if kgdb console output should be used */
88 static int kgdb_use_con;
89 /* Flag for alternate operations for early debugging */
90 bool dbg_is_early = true;
91 /* Next cpu to become the master debug core */
92 int dbg_switch_cpu;
93 
94 /* Use kdb or gdbserver mode */
95 int dbg_kdb_mode = 1;
96 
97 static int __init opt_kgdb_con(char *str)
98 {
99 	kgdb_use_con = 1;
100 	return 0;
101 }
102 
103 early_param("kgdbcon", opt_kgdb_con);
104 
105 module_param(kgdb_use_con, int, 0644);
106 module_param(kgdbreboot, int, 0644);
107 
108 /*
109  * Holds information about breakpoints in a kernel. These breakpoints are
110  * added and removed by gdb.
111  */
112 static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
113 	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
114 };
115 
116 /*
117  * The CPU# of the active CPU, or -1 if none:
118  */
119 atomic_t			kgdb_active = ATOMIC_INIT(-1);
120 EXPORT_SYMBOL_GPL(kgdb_active);
121 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
122 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
123 
124 /*
125  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
126  * bootup code (which might not have percpu set up yet):
127  */
128 static atomic_t			masters_in_kgdb;
129 static atomic_t			slaves_in_kgdb;
130 static atomic_t			kgdb_break_tasklet_var;
131 atomic_t			kgdb_setting_breakpoint;
132 
133 struct task_struct		*kgdb_usethread;
134 struct task_struct		*kgdb_contthread;
135 
136 int				kgdb_single_step;
137 static pid_t			kgdb_sstep_pid;
138 
139 /* to keep track of the CPU which is doing the single stepping*/
140 atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
141 
142 /*
143  * If you are debugging a problem where roundup (the collection of
144  * all other CPUs) is a problem [this should be extremely rare],
145  * then use the nokgdbroundup option to avoid roundup. In that case
146  * the other CPUs might interfere with your debugging context, so
147  * use this with care:
148  */
149 static int kgdb_do_roundup = 1;
150 
151 static int __init opt_nokgdbroundup(char *str)
152 {
153 	kgdb_do_roundup = 0;
154 
155 	return 0;
156 }
157 
158 early_param("nokgdbroundup", opt_nokgdbroundup);
159 
160 /*
161  * Finally, some KGDB code :-)
162  */
163 
164 /*
165  * Weak aliases for breakpoint management,
166  * can be overriden by architectures when needed:
167  */
168 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
169 {
170 	int err;
171 
172 	err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
173 				BREAK_INSTR_SIZE);
174 	if (err)
175 		return err;
176 	err = probe_kernel_write((char *)bpt->bpt_addr,
177 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
178 	return err;
179 }
180 
181 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
182 {
183 	return probe_kernel_write((char *)bpt->bpt_addr,
184 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
185 }
186 
187 int __weak kgdb_validate_break_address(unsigned long addr)
188 {
189 	struct kgdb_bkpt tmp;
190 	int err;
191 	/* Validate setting the breakpoint and then removing it.  If the
192 	 * remove fails, the kernel needs to emit a bad message because we
193 	 * are deep trouble not being able to put things back the way we
194 	 * found them.
195 	 */
196 	tmp.bpt_addr = addr;
197 	err = kgdb_arch_set_breakpoint(&tmp);
198 	if (err)
199 		return err;
200 	err = kgdb_arch_remove_breakpoint(&tmp);
201 	if (err)
202 		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
203 		       addr);
204 	return err;
205 }
206 
207 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
208 {
209 	return instruction_pointer(regs);
210 }
211 
212 int __weak kgdb_arch_init(void)
213 {
214 	return 0;
215 }
216 
217 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
218 {
219 	return 0;
220 }
221 
222 #ifdef CONFIG_SMP
223 
224 /*
225  * Default (weak) implementation for kgdb_roundup_cpus
226  */
227 
228 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd);
229 
230 void __weak kgdb_call_nmi_hook(void *ignored)
231 {
232 	/*
233 	 * NOTE: get_irq_regs() is supposed to get the registers from
234 	 * before the IPI interrupt happened and so is supposed to
235 	 * show where the processor was.  In some situations it's
236 	 * possible we might be called without an IPI, so it might be
237 	 * safer to figure out how to make kgdb_breakpoint() work
238 	 * properly here.
239 	 */
240 	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
241 }
242 
243 void __weak kgdb_roundup_cpus(void)
244 {
245 	call_single_data_t *csd;
246 	int this_cpu = raw_smp_processor_id();
247 	int cpu;
248 	int ret;
249 
250 	for_each_online_cpu(cpu) {
251 		/* No need to roundup ourselves */
252 		if (cpu == this_cpu)
253 			continue;
254 
255 		csd = &per_cpu(kgdb_roundup_csd, cpu);
256 
257 		/*
258 		 * If it didn't round up last time, don't try again
259 		 * since smp_call_function_single_async() will block.
260 		 *
261 		 * If rounding_up is false then we know that the
262 		 * previous call must have at least started and that
263 		 * means smp_call_function_single_async() won't block.
264 		 */
265 		if (kgdb_info[cpu].rounding_up)
266 			continue;
267 		kgdb_info[cpu].rounding_up = true;
268 
269 		csd->func = kgdb_call_nmi_hook;
270 		ret = smp_call_function_single_async(cpu, csd);
271 		if (ret)
272 			kgdb_info[cpu].rounding_up = false;
273 	}
274 }
275 
276 #endif
277 
278 /*
279  * Some architectures need cache flushes when we set/clear a
280  * breakpoint:
281  */
282 static void kgdb_flush_swbreak_addr(unsigned long addr)
283 {
284 	if (!CACHE_FLUSH_IS_SAFE)
285 		return;
286 
287 	if (current->mm) {
288 		int i;
289 
290 		for (i = 0; i < VMACACHE_SIZE; i++) {
291 			if (!current->vmacache.vmas[i])
292 				continue;
293 			flush_cache_range(current->vmacache.vmas[i],
294 					  addr, addr + BREAK_INSTR_SIZE);
295 		}
296 	}
297 
298 	/* Force flush instruction cache if it was outside the mm */
299 	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
300 }
301 
302 /*
303  * SW breakpoint management:
304  */
305 int dbg_activate_sw_breakpoints(void)
306 {
307 	int error;
308 	int ret = 0;
309 	int i;
310 
311 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
312 		if (kgdb_break[i].state != BP_SET)
313 			continue;
314 
315 		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
316 		if (error) {
317 			ret = error;
318 			pr_info("BP install failed: %lx\n",
319 				kgdb_break[i].bpt_addr);
320 			continue;
321 		}
322 
323 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
324 		kgdb_break[i].state = BP_ACTIVE;
325 	}
326 	return ret;
327 }
328 
329 int dbg_set_sw_break(unsigned long addr)
330 {
331 	int err = kgdb_validate_break_address(addr);
332 	int breakno = -1;
333 	int i;
334 
335 	if (err)
336 		return err;
337 
338 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
339 		if ((kgdb_break[i].state == BP_SET) &&
340 					(kgdb_break[i].bpt_addr == addr))
341 			return -EEXIST;
342 	}
343 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
344 		if (kgdb_break[i].state == BP_REMOVED &&
345 					kgdb_break[i].bpt_addr == addr) {
346 			breakno = i;
347 			break;
348 		}
349 	}
350 
351 	if (breakno == -1) {
352 		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
353 			if (kgdb_break[i].state == BP_UNDEFINED) {
354 				breakno = i;
355 				break;
356 			}
357 		}
358 	}
359 
360 	if (breakno == -1)
361 		return -E2BIG;
362 
363 	kgdb_break[breakno].state = BP_SET;
364 	kgdb_break[breakno].type = BP_BREAKPOINT;
365 	kgdb_break[breakno].bpt_addr = addr;
366 
367 	return 0;
368 }
369 
370 int dbg_deactivate_sw_breakpoints(void)
371 {
372 	int error;
373 	int ret = 0;
374 	int i;
375 
376 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
377 		if (kgdb_break[i].state != BP_ACTIVE)
378 			continue;
379 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
380 		if (error) {
381 			pr_info("BP remove failed: %lx\n",
382 				kgdb_break[i].bpt_addr);
383 			ret = error;
384 		}
385 
386 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
387 		kgdb_break[i].state = BP_SET;
388 	}
389 	return ret;
390 }
391 
392 int dbg_remove_sw_break(unsigned long addr)
393 {
394 	int i;
395 
396 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
397 		if ((kgdb_break[i].state == BP_SET) &&
398 				(kgdb_break[i].bpt_addr == addr)) {
399 			kgdb_break[i].state = BP_REMOVED;
400 			return 0;
401 		}
402 	}
403 	return -ENOENT;
404 }
405 
406 int kgdb_isremovedbreak(unsigned long addr)
407 {
408 	int i;
409 
410 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
411 		if ((kgdb_break[i].state == BP_REMOVED) &&
412 					(kgdb_break[i].bpt_addr == addr))
413 			return 1;
414 	}
415 	return 0;
416 }
417 
418 int dbg_remove_all_break(void)
419 {
420 	int error;
421 	int i;
422 
423 	/* Clear memory breakpoints. */
424 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
425 		if (kgdb_break[i].state != BP_ACTIVE)
426 			goto setundefined;
427 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
428 		if (error)
429 			pr_err("breakpoint remove failed: %lx\n",
430 			       kgdb_break[i].bpt_addr);
431 setundefined:
432 		kgdb_break[i].state = BP_UNDEFINED;
433 	}
434 
435 	/* Clear hardware breakpoints. */
436 	if (arch_kgdb_ops.remove_all_hw_break)
437 		arch_kgdb_ops.remove_all_hw_break();
438 
439 	return 0;
440 }
441 
442 #ifdef CONFIG_KGDB_KDB
443 void kdb_dump_stack_on_cpu(int cpu)
444 {
445 	if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
446 		dump_stack();
447 		return;
448 	}
449 
450 	if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
451 		kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
452 			   cpu);
453 		return;
454 	}
455 
456 	/*
457 	 * In general, architectures don't support dumping the stack of a
458 	 * "running" process that's not the current one.  From the point of
459 	 * view of the Linux, kernel processes that are looping in the kgdb
460 	 * slave loop are still "running".  There's also no API (that actually
461 	 * works across all architectures) that can do a stack crawl based
462 	 * on registers passed as a parameter.
463 	 *
464 	 * Solve this conundrum by asking slave CPUs to do the backtrace
465 	 * themselves.
466 	 */
467 	kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
468 	while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
469 		cpu_relax();
470 }
471 #endif
472 
473 /*
474  * Return true if there is a valid kgdb I/O module.  Also if no
475  * debugger is attached a message can be printed to the console about
476  * waiting for the debugger to attach.
477  *
478  * The print_wait argument is only to be true when called from inside
479  * the core kgdb_handle_exception, because it will wait for the
480  * debugger to attach.
481  */
482 static int kgdb_io_ready(int print_wait)
483 {
484 	if (!dbg_io_ops)
485 		return 0;
486 	if (kgdb_connected)
487 		return 1;
488 	if (atomic_read(&kgdb_setting_breakpoint))
489 		return 1;
490 	if (print_wait) {
491 #ifdef CONFIG_KGDB_KDB
492 		if (!dbg_kdb_mode)
493 			pr_crit("waiting... or $3#33 for KDB\n");
494 #else
495 		pr_crit("Waiting for remote debugger\n");
496 #endif
497 	}
498 	return 1;
499 }
500 
501 static int kgdb_reenter_check(struct kgdb_state *ks)
502 {
503 	unsigned long addr;
504 
505 	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
506 		return 0;
507 
508 	/* Panic on recursive debugger calls: */
509 	exception_level++;
510 	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
511 	dbg_deactivate_sw_breakpoints();
512 
513 	/*
514 	 * If the break point removed ok at the place exception
515 	 * occurred, try to recover and print a warning to the end
516 	 * user because the user planted a breakpoint in a place that
517 	 * KGDB needs in order to function.
518 	 */
519 	if (dbg_remove_sw_break(addr) == 0) {
520 		exception_level = 0;
521 		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
522 		dbg_activate_sw_breakpoints();
523 		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
524 		WARN_ON_ONCE(1);
525 
526 		return 1;
527 	}
528 	dbg_remove_all_break();
529 	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
530 
531 	if (exception_level > 1) {
532 		dump_stack();
533 		panic("Recursive entry to debugger");
534 	}
535 
536 	pr_crit("re-enter exception: ALL breakpoints killed\n");
537 #ifdef CONFIG_KGDB_KDB
538 	/* Allow kdb to debug itself one level */
539 	return 0;
540 #endif
541 	dump_stack();
542 	panic("Recursive entry to debugger");
543 
544 	return 1;
545 }
546 
547 static void dbg_touch_watchdogs(void)
548 {
549 	touch_softlockup_watchdog_sync();
550 	clocksource_touch_watchdog();
551 	rcu_cpu_stall_reset();
552 }
553 
554 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
555 		int exception_state)
556 {
557 	unsigned long flags;
558 	int sstep_tries = 100;
559 	int error;
560 	int cpu;
561 	int trace_on = 0;
562 	int online_cpus = num_online_cpus();
563 	u64 time_left;
564 
565 	kgdb_info[ks->cpu].enter_kgdb++;
566 	kgdb_info[ks->cpu].exception_state |= exception_state;
567 
568 	if (exception_state == DCPU_WANT_MASTER)
569 		atomic_inc(&masters_in_kgdb);
570 	else
571 		atomic_inc(&slaves_in_kgdb);
572 
573 	if (arch_kgdb_ops.disable_hw_break)
574 		arch_kgdb_ops.disable_hw_break(regs);
575 
576 acquirelock:
577 	/*
578 	 * Interrupts will be restored by the 'trap return' code, except when
579 	 * single stepping.
580 	 */
581 	local_irq_save(flags);
582 
583 	cpu = ks->cpu;
584 	kgdb_info[cpu].debuggerinfo = regs;
585 	kgdb_info[cpu].task = current;
586 	kgdb_info[cpu].ret_state = 0;
587 	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
588 
589 	/* Make sure the above info reaches the primary CPU */
590 	smp_mb();
591 
592 	if (exception_level == 1) {
593 		if (raw_spin_trylock(&dbg_master_lock))
594 			atomic_xchg(&kgdb_active, cpu);
595 		goto cpu_master_loop;
596 	}
597 
598 	/*
599 	 * CPU will loop if it is a slave or request to become a kgdb
600 	 * master cpu and acquire the kgdb_active lock:
601 	 */
602 	while (1) {
603 cpu_loop:
604 		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
605 			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
606 			goto cpu_master_loop;
607 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
608 			if (raw_spin_trylock(&dbg_master_lock)) {
609 				atomic_xchg(&kgdb_active, cpu);
610 				break;
611 			}
612 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
613 			dump_stack();
614 			kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
615 		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
616 			if (!raw_spin_is_locked(&dbg_slave_lock))
617 				goto return_normal;
618 		} else {
619 return_normal:
620 			/* Return to normal operation by executing any
621 			 * hw breakpoint fixup.
622 			 */
623 			if (arch_kgdb_ops.correct_hw_break)
624 				arch_kgdb_ops.correct_hw_break();
625 			if (trace_on)
626 				tracing_on();
627 			kgdb_info[cpu].debuggerinfo = NULL;
628 			kgdb_info[cpu].task = NULL;
629 			kgdb_info[cpu].exception_state &=
630 				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
631 			kgdb_info[cpu].enter_kgdb--;
632 			smp_mb__before_atomic();
633 			atomic_dec(&slaves_in_kgdb);
634 			dbg_touch_watchdogs();
635 			local_irq_restore(flags);
636 			return 0;
637 		}
638 		cpu_relax();
639 	}
640 
641 	/*
642 	 * For single stepping, try to only enter on the processor
643 	 * that was single stepping.  To guard against a deadlock, the
644 	 * kernel will only try for the value of sstep_tries before
645 	 * giving up and continuing on.
646 	 */
647 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
648 	    (kgdb_info[cpu].task &&
649 	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
650 		atomic_set(&kgdb_active, -1);
651 		raw_spin_unlock(&dbg_master_lock);
652 		dbg_touch_watchdogs();
653 		local_irq_restore(flags);
654 
655 		goto acquirelock;
656 	}
657 
658 	if (!kgdb_io_ready(1)) {
659 		kgdb_info[cpu].ret_state = 1;
660 		goto kgdb_restore; /* No I/O connection, resume the system */
661 	}
662 
663 	/*
664 	 * Don't enter if we have hit a removed breakpoint.
665 	 */
666 	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
667 		goto kgdb_restore;
668 
669 	atomic_inc(&ignore_console_lock_warning);
670 
671 	/* Call the I/O driver's pre_exception routine */
672 	if (dbg_io_ops->pre_exception)
673 		dbg_io_ops->pre_exception();
674 
675 	/*
676 	 * Get the passive CPU lock which will hold all the non-primary
677 	 * CPU in a spin state while the debugger is active
678 	 */
679 	if (!kgdb_single_step)
680 		raw_spin_lock(&dbg_slave_lock);
681 
682 #ifdef CONFIG_SMP
683 	/* If send_ready set, slaves are already waiting */
684 	if (ks->send_ready)
685 		atomic_set(ks->send_ready, 1);
686 
687 	/* Signal the other CPUs to enter kgdb_wait() */
688 	else if ((!kgdb_single_step) && kgdb_do_roundup)
689 		kgdb_roundup_cpus();
690 #endif
691 
692 	/*
693 	 * Wait for the other CPUs to be notified and be waiting for us:
694 	 */
695 	time_left = MSEC_PER_SEC;
696 	while (kgdb_do_roundup && --time_left &&
697 	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
698 		   online_cpus)
699 		udelay(1000);
700 	if (!time_left)
701 		pr_crit("Timed out waiting for secondary CPUs.\n");
702 
703 	/*
704 	 * At this point the primary processor is completely
705 	 * in the debugger and all secondary CPUs are quiescent
706 	 */
707 	dbg_deactivate_sw_breakpoints();
708 	kgdb_single_step = 0;
709 	kgdb_contthread = current;
710 	exception_level = 0;
711 	trace_on = tracing_is_on();
712 	if (trace_on)
713 		tracing_off();
714 
715 	while (1) {
716 cpu_master_loop:
717 		if (dbg_kdb_mode) {
718 			kgdb_connected = 1;
719 			error = kdb_stub(ks);
720 			if (error == -1)
721 				continue;
722 			kgdb_connected = 0;
723 		} else {
724 			error = gdb_serial_stub(ks);
725 		}
726 
727 		if (error == DBG_PASS_EVENT) {
728 			dbg_kdb_mode = !dbg_kdb_mode;
729 		} else if (error == DBG_SWITCH_CPU_EVENT) {
730 			kgdb_info[dbg_switch_cpu].exception_state |=
731 				DCPU_NEXT_MASTER;
732 			goto cpu_loop;
733 		} else {
734 			kgdb_info[cpu].ret_state = error;
735 			break;
736 		}
737 	}
738 
739 	/* Call the I/O driver's post_exception routine */
740 	if (dbg_io_ops->post_exception)
741 		dbg_io_ops->post_exception();
742 
743 	atomic_dec(&ignore_console_lock_warning);
744 
745 	if (!kgdb_single_step) {
746 		raw_spin_unlock(&dbg_slave_lock);
747 		/* Wait till all the CPUs have quit from the debugger. */
748 		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
749 			cpu_relax();
750 	}
751 
752 kgdb_restore:
753 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
754 		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
755 		if (kgdb_info[sstep_cpu].task)
756 			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
757 		else
758 			kgdb_sstep_pid = 0;
759 	}
760 	if (arch_kgdb_ops.correct_hw_break)
761 		arch_kgdb_ops.correct_hw_break();
762 	if (trace_on)
763 		tracing_on();
764 
765 	kgdb_info[cpu].debuggerinfo = NULL;
766 	kgdb_info[cpu].task = NULL;
767 	kgdb_info[cpu].exception_state &=
768 		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
769 	kgdb_info[cpu].enter_kgdb--;
770 	smp_mb__before_atomic();
771 	atomic_dec(&masters_in_kgdb);
772 	/* Free kgdb_active */
773 	atomic_set(&kgdb_active, -1);
774 	raw_spin_unlock(&dbg_master_lock);
775 	dbg_touch_watchdogs();
776 	local_irq_restore(flags);
777 
778 	return kgdb_info[cpu].ret_state;
779 }
780 
781 /*
782  * kgdb_handle_exception() - main entry point from a kernel exception
783  *
784  * Locking hierarchy:
785  *	interface locks, if any (begin_session)
786  *	kgdb lock (kgdb_active)
787  */
788 int
789 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
790 {
791 	struct kgdb_state kgdb_var;
792 	struct kgdb_state *ks = &kgdb_var;
793 	int ret = 0;
794 
795 	if (arch_kgdb_ops.enable_nmi)
796 		arch_kgdb_ops.enable_nmi(0);
797 	/*
798 	 * Avoid entering the debugger if we were triggered due to an oops
799 	 * but panic_timeout indicates the system should automatically
800 	 * reboot on panic. We don't want to get stuck waiting for input
801 	 * on such systems, especially if its "just" an oops.
802 	 */
803 	if (signo != SIGTRAP && panic_timeout)
804 		return 1;
805 
806 	memset(ks, 0, sizeof(struct kgdb_state));
807 	ks->cpu			= raw_smp_processor_id();
808 	ks->ex_vector		= evector;
809 	ks->signo		= signo;
810 	ks->err_code		= ecode;
811 	ks->linux_regs		= regs;
812 
813 	if (kgdb_reenter_check(ks))
814 		goto out; /* Ouch, double exception ! */
815 	if (kgdb_info[ks->cpu].enter_kgdb != 0)
816 		goto out;
817 
818 	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
819 out:
820 	if (arch_kgdb_ops.enable_nmi)
821 		arch_kgdb_ops.enable_nmi(1);
822 	return ret;
823 }
824 
825 /*
826  * GDB places a breakpoint at this function to know dynamically loaded objects.
827  */
828 static int module_event(struct notifier_block *self, unsigned long val,
829 	void *data)
830 {
831 	return 0;
832 }
833 
834 static struct notifier_block dbg_module_load_nb = {
835 	.notifier_call	= module_event,
836 };
837 
838 int kgdb_nmicallback(int cpu, void *regs)
839 {
840 #ifdef CONFIG_SMP
841 	struct kgdb_state kgdb_var;
842 	struct kgdb_state *ks = &kgdb_var;
843 
844 	kgdb_info[cpu].rounding_up = false;
845 
846 	memset(ks, 0, sizeof(struct kgdb_state));
847 	ks->cpu			= cpu;
848 	ks->linux_regs		= regs;
849 
850 	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
851 			raw_spin_is_locked(&dbg_master_lock)) {
852 		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
853 		return 0;
854 	}
855 #endif
856 	return 1;
857 }
858 
859 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
860 							atomic_t *send_ready)
861 {
862 #ifdef CONFIG_SMP
863 	if (!kgdb_io_ready(0) || !send_ready)
864 		return 1;
865 
866 	if (kgdb_info[cpu].enter_kgdb == 0) {
867 		struct kgdb_state kgdb_var;
868 		struct kgdb_state *ks = &kgdb_var;
869 
870 		memset(ks, 0, sizeof(struct kgdb_state));
871 		ks->cpu			= cpu;
872 		ks->ex_vector		= trapnr;
873 		ks->signo		= SIGTRAP;
874 		ks->err_code		= err_code;
875 		ks->linux_regs		= regs;
876 		ks->send_ready		= send_ready;
877 		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
878 		return 0;
879 	}
880 #endif
881 	return 1;
882 }
883 
884 static void kgdb_console_write(struct console *co, const char *s,
885    unsigned count)
886 {
887 	unsigned long flags;
888 
889 	/* If we're debugging, or KGDB has not connected, don't try
890 	 * and print. */
891 	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
892 		return;
893 
894 	local_irq_save(flags);
895 	gdbstub_msg_write(s, count);
896 	local_irq_restore(flags);
897 }
898 
899 static struct console kgdbcons = {
900 	.name		= "kgdb",
901 	.write		= kgdb_console_write,
902 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
903 	.index		= -1,
904 };
905 
906 #ifdef CONFIG_MAGIC_SYSRQ
907 static void sysrq_handle_dbg(int key)
908 {
909 	if (!dbg_io_ops) {
910 		pr_crit("ERROR: No KGDB I/O module available\n");
911 		return;
912 	}
913 	if (!kgdb_connected) {
914 #ifdef CONFIG_KGDB_KDB
915 		if (!dbg_kdb_mode)
916 			pr_crit("KGDB or $3#33 for KDB\n");
917 #else
918 		pr_crit("Entering KGDB\n");
919 #endif
920 	}
921 
922 	kgdb_breakpoint();
923 }
924 
925 static struct sysrq_key_op sysrq_dbg_op = {
926 	.handler	= sysrq_handle_dbg,
927 	.help_msg	= "debug(g)",
928 	.action_msg	= "DEBUG",
929 };
930 #endif
931 
932 void kgdb_panic(const char *msg)
933 {
934 	if (!kgdb_io_module_registered)
935 		return;
936 
937 	/*
938 	 * We don't want to get stuck waiting for input from user if
939 	 * "panic_timeout" indicates the system should automatically
940 	 * reboot on panic.
941 	 */
942 	if (panic_timeout)
943 		return;
944 
945 	if (dbg_kdb_mode)
946 		kdb_printf("PANIC: %s\n", msg);
947 
948 	kgdb_breakpoint();
949 }
950 
951 static void kgdb_initial_breakpoint(void)
952 {
953 	kgdb_break_asap = 0;
954 
955 	pr_crit("Waiting for connection from remote gdb...\n");
956 	kgdb_breakpoint();
957 }
958 
959 void __weak kgdb_arch_late(void)
960 {
961 }
962 
963 void __init dbg_late_init(void)
964 {
965 	dbg_is_early = false;
966 	if (kgdb_io_module_registered)
967 		kgdb_arch_late();
968 	kdb_init(KDB_INIT_FULL);
969 
970 	if (kgdb_io_module_registered && kgdb_break_asap)
971 		kgdb_initial_breakpoint();
972 }
973 
974 static int
975 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
976 {
977 	/*
978 	 * Take the following action on reboot notify depending on value:
979 	 *    1 == Enter debugger
980 	 *    0 == [the default] detatch debug client
981 	 *   -1 == Do nothing... and use this until the board resets
982 	 */
983 	switch (kgdbreboot) {
984 	case 1:
985 		kgdb_breakpoint();
986 	case -1:
987 		goto done;
988 	}
989 	if (!dbg_kdb_mode)
990 		gdbstub_exit(code);
991 done:
992 	return NOTIFY_DONE;
993 }
994 
995 static struct notifier_block dbg_reboot_notifier = {
996 	.notifier_call		= dbg_notify_reboot,
997 	.next			= NULL,
998 	.priority		= INT_MAX,
999 };
1000 
1001 static void kgdb_register_callbacks(void)
1002 {
1003 	if (!kgdb_io_module_registered) {
1004 		kgdb_io_module_registered = 1;
1005 		kgdb_arch_init();
1006 		if (!dbg_is_early)
1007 			kgdb_arch_late();
1008 		register_module_notifier(&dbg_module_load_nb);
1009 		register_reboot_notifier(&dbg_reboot_notifier);
1010 #ifdef CONFIG_MAGIC_SYSRQ
1011 		register_sysrq_key('g', &sysrq_dbg_op);
1012 #endif
1013 		if (kgdb_use_con && !kgdb_con_registered) {
1014 			register_console(&kgdbcons);
1015 			kgdb_con_registered = 1;
1016 		}
1017 	}
1018 }
1019 
1020 static void kgdb_unregister_callbacks(void)
1021 {
1022 	/*
1023 	 * When this routine is called KGDB should unregister from
1024 	 * handlers and clean up, making sure it is not handling any
1025 	 * break exceptions at the time.
1026 	 */
1027 	if (kgdb_io_module_registered) {
1028 		kgdb_io_module_registered = 0;
1029 		unregister_reboot_notifier(&dbg_reboot_notifier);
1030 		unregister_module_notifier(&dbg_module_load_nb);
1031 		kgdb_arch_exit();
1032 #ifdef CONFIG_MAGIC_SYSRQ
1033 		unregister_sysrq_key('g', &sysrq_dbg_op);
1034 #endif
1035 		if (kgdb_con_registered) {
1036 			unregister_console(&kgdbcons);
1037 			kgdb_con_registered = 0;
1038 		}
1039 	}
1040 }
1041 
1042 /*
1043  * There are times a tasklet needs to be used vs a compiled in
1044  * break point so as to cause an exception outside a kgdb I/O module,
1045  * such as is the case with kgdboe, where calling a breakpoint in the
1046  * I/O driver itself would be fatal.
1047  */
1048 static void kgdb_tasklet_bpt(unsigned long ing)
1049 {
1050 	kgdb_breakpoint();
1051 	atomic_set(&kgdb_break_tasklet_var, 0);
1052 }
1053 
1054 static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0);
1055 
1056 void kgdb_schedule_breakpoint(void)
1057 {
1058 	if (atomic_read(&kgdb_break_tasklet_var) ||
1059 		atomic_read(&kgdb_active) != -1 ||
1060 		atomic_read(&kgdb_setting_breakpoint))
1061 		return;
1062 	atomic_inc(&kgdb_break_tasklet_var);
1063 	tasklet_schedule(&kgdb_tasklet_breakpoint);
1064 }
1065 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
1066 
1067 /**
1068  *	kgdb_register_io_module - register KGDB IO module
1069  *	@new_dbg_io_ops: the io ops vector
1070  *
1071  *	Register it with the KGDB core.
1072  */
1073 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1074 {
1075 	int err;
1076 
1077 	spin_lock(&kgdb_registration_lock);
1078 
1079 	if (dbg_io_ops) {
1080 		spin_unlock(&kgdb_registration_lock);
1081 
1082 		pr_err("Another I/O driver is already registered with KGDB\n");
1083 		return -EBUSY;
1084 	}
1085 
1086 	if (new_dbg_io_ops->init) {
1087 		err = new_dbg_io_ops->init();
1088 		if (err) {
1089 			spin_unlock(&kgdb_registration_lock);
1090 			return err;
1091 		}
1092 	}
1093 
1094 	dbg_io_ops = new_dbg_io_ops;
1095 
1096 	spin_unlock(&kgdb_registration_lock);
1097 
1098 	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1099 
1100 	/* Arm KGDB now. */
1101 	kgdb_register_callbacks();
1102 
1103 	if (kgdb_break_asap &&
1104 	    (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
1105 		kgdb_initial_breakpoint();
1106 
1107 	return 0;
1108 }
1109 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1110 
1111 /**
1112  *	kkgdb_unregister_io_module - unregister KGDB IO module
1113  *	@old_dbg_io_ops: the io ops vector
1114  *
1115  *	Unregister it with the KGDB core.
1116  */
1117 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1118 {
1119 	BUG_ON(kgdb_connected);
1120 
1121 	/*
1122 	 * KGDB is no longer able to communicate out, so
1123 	 * unregister our callbacks and reset state.
1124 	 */
1125 	kgdb_unregister_callbacks();
1126 
1127 	spin_lock(&kgdb_registration_lock);
1128 
1129 	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1130 	dbg_io_ops = NULL;
1131 
1132 	spin_unlock(&kgdb_registration_lock);
1133 
1134 	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1135 		old_dbg_io_ops->name);
1136 }
1137 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1138 
1139 int dbg_io_get_char(void)
1140 {
1141 	int ret = dbg_io_ops->read_char();
1142 	if (ret == NO_POLL_CHAR)
1143 		return -1;
1144 	if (!dbg_kdb_mode)
1145 		return ret;
1146 	if (ret == 127)
1147 		return 8;
1148 	return ret;
1149 }
1150 
1151 /**
1152  * kgdb_breakpoint - generate breakpoint exception
1153  *
1154  * This function will generate a breakpoint exception.  It is used at the
1155  * beginning of a program to sync up with a debugger and can be used
1156  * otherwise as a quick means to stop program execution and "break" into
1157  * the debugger.
1158  */
1159 noinline void kgdb_breakpoint(void)
1160 {
1161 	atomic_inc(&kgdb_setting_breakpoint);
1162 	wmb(); /* Sync point before breakpoint */
1163 	arch_kgdb_breakpoint();
1164 	wmb(); /* Sync point after breakpoint */
1165 	atomic_dec(&kgdb_setting_breakpoint);
1166 }
1167 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1168 
1169 static int __init opt_kgdb_wait(char *str)
1170 {
1171 	kgdb_break_asap = 1;
1172 
1173 	kdb_init(KDB_INIT_EARLY);
1174 	if (kgdb_io_module_registered &&
1175 	    IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
1176 		kgdb_initial_breakpoint();
1177 
1178 	return 0;
1179 }
1180 
1181 early_param("kgdbwait", opt_kgdb_wait);
1182