xref: /linux-6.15/kernel/debug/debug_core.c (revision b18b099e)
1 /*
2  * Kernel Debug Core
3  *
4  * Maintainer: Jason Wessel <[email protected]>
5  *
6  * Copyright (C) 2000-2001 VERITAS Software Corporation.
7  * Copyright (C) 2002-2004 Timesys Corporation
8  * Copyright (C) 2003-2004 Amit S. Kale <[email protected]>
9  * Copyright (C) 2004 Pavel Machek <[email protected]>
10  * Copyright (C) 2004-2006 Tom Rini <[email protected]>
11  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12  * Copyright (C) 2005-2009 Wind River Systems, Inc.
13  * Copyright (C) 2007 MontaVista Software, Inc.
14  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <[email protected]>
15  *
16  * Contributors at various stages not listed above:
17  *  Jason Wessel ( [email protected] )
18  *  George Anzinger <[email protected]>
19  *  Anurekh Saxena ([email protected])
20  *  Lake Stevens Instrument Division (Glenn Engel)
21  *  Jim Kingdon, Cygnus Support.
22  *
23  * Original KGDB stub: David Grothe <[email protected]>,
24  * Tigran Aivazian <[email protected]>
25  *
26  * This file is licensed under the terms of the GNU General Public License
27  * version 2. This program is licensed "as is" without any warranty of any
28  * kind, whether express or implied.
29  */
30 
31 #define pr_fmt(fmt) "KGDB: " fmt
32 
33 #include <linux/pid_namespace.h>
34 #include <linux/clocksource.h>
35 #include <linux/serial_core.h>
36 #include <linux/interrupt.h>
37 #include <linux/spinlock.h>
38 #include <linux/console.h>
39 #include <linux/threads.h>
40 #include <linux/uaccess.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/sched.h>
47 #include <linux/sysrq.h>
48 #include <linux/reboot.h>
49 #include <linux/init.h>
50 #include <linux/kgdb.h>
51 #include <linux/kdb.h>
52 #include <linux/nmi.h>
53 #include <linux/pid.h>
54 #include <linux/smp.h>
55 #include <linux/mm.h>
56 #include <linux/vmacache.h>
57 #include <linux/rcupdate.h>
58 #include <linux/irq.h>
59 
60 #include <asm/cacheflush.h>
61 #include <asm/byteorder.h>
62 #include <linux/atomic.h>
63 
64 #include "debug_core.h"
65 
66 static int kgdb_break_asap;
67 
68 struct debuggerinfo_struct kgdb_info[NR_CPUS];
69 
70 /* kgdb_connected - Is a host GDB connected to us? */
71 int				kgdb_connected;
72 EXPORT_SYMBOL_GPL(kgdb_connected);
73 
74 /* All the KGDB handlers are installed */
75 int			kgdb_io_module_registered;
76 
77 /* Guard for recursive entry */
78 static int			exception_level;
79 
80 struct kgdb_io		*dbg_io_ops;
81 static DEFINE_SPINLOCK(kgdb_registration_lock);
82 
83 /* Action for the reboot notifiter, a global allow kdb to change it */
84 static int kgdbreboot;
85 /* kgdb console driver is loaded */
86 static int kgdb_con_registered;
87 /* determine if kgdb console output should be used */
88 static int kgdb_use_con;
89 /* Flag for alternate operations for early debugging */
90 bool dbg_is_early = true;
91 /* Next cpu to become the master debug core */
92 int dbg_switch_cpu;
93 
94 /* Use kdb or gdbserver mode */
95 int dbg_kdb_mode = 1;
96 
97 module_param(kgdb_use_con, int, 0644);
98 module_param(kgdbreboot, int, 0644);
99 
100 /*
101  * Holds information about breakpoints in a kernel. These breakpoints are
102  * added and removed by gdb.
103  */
104 static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
105 	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
106 };
107 
108 /*
109  * The CPU# of the active CPU, or -1 if none:
110  */
111 atomic_t			kgdb_active = ATOMIC_INIT(-1);
112 EXPORT_SYMBOL_GPL(kgdb_active);
113 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
114 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
115 
116 /*
117  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
118  * bootup code (which might not have percpu set up yet):
119  */
120 static atomic_t			masters_in_kgdb;
121 static atomic_t			slaves_in_kgdb;
122 static atomic_t			kgdb_break_tasklet_var;
123 atomic_t			kgdb_setting_breakpoint;
124 
125 struct task_struct		*kgdb_usethread;
126 struct task_struct		*kgdb_contthread;
127 
128 int				kgdb_single_step;
129 static pid_t			kgdb_sstep_pid;
130 
131 /* to keep track of the CPU which is doing the single stepping*/
132 atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
133 
134 /*
135  * If you are debugging a problem where roundup (the collection of
136  * all other CPUs) is a problem [this should be extremely rare],
137  * then use the nokgdbroundup option to avoid roundup. In that case
138  * the other CPUs might interfere with your debugging context, so
139  * use this with care:
140  */
141 static int kgdb_do_roundup = 1;
142 
143 static int __init opt_nokgdbroundup(char *str)
144 {
145 	kgdb_do_roundup = 0;
146 
147 	return 0;
148 }
149 
150 early_param("nokgdbroundup", opt_nokgdbroundup);
151 
152 /*
153  * Finally, some KGDB code :-)
154  */
155 
156 /*
157  * Weak aliases for breakpoint management,
158  * can be overriden by architectures when needed:
159  */
160 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
161 {
162 	int err;
163 
164 	err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr,
165 				BREAK_INSTR_SIZE);
166 	if (err)
167 		return err;
168 	err = copy_to_kernel_nofault((char *)bpt->bpt_addr,
169 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
170 	return err;
171 }
172 
173 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
174 {
175 	return copy_to_kernel_nofault((char *)bpt->bpt_addr,
176 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
177 }
178 
179 int __weak kgdb_validate_break_address(unsigned long addr)
180 {
181 	struct kgdb_bkpt tmp;
182 	int err;
183 	/* Validate setting the breakpoint and then removing it.  If the
184 	 * remove fails, the kernel needs to emit a bad message because we
185 	 * are deep trouble not being able to put things back the way we
186 	 * found them.
187 	 */
188 	tmp.bpt_addr = addr;
189 	err = kgdb_arch_set_breakpoint(&tmp);
190 	if (err)
191 		return err;
192 	err = kgdb_arch_remove_breakpoint(&tmp);
193 	if (err)
194 		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
195 		       addr);
196 	return err;
197 }
198 
199 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
200 {
201 	return instruction_pointer(regs);
202 }
203 
204 int __weak kgdb_arch_init(void)
205 {
206 	return 0;
207 }
208 
209 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
210 {
211 	return 0;
212 }
213 
214 #ifdef CONFIG_SMP
215 
216 /*
217  * Default (weak) implementation for kgdb_roundup_cpus
218  */
219 
220 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd);
221 
222 void __weak kgdb_call_nmi_hook(void *ignored)
223 {
224 	/*
225 	 * NOTE: get_irq_regs() is supposed to get the registers from
226 	 * before the IPI interrupt happened and so is supposed to
227 	 * show where the processor was.  In some situations it's
228 	 * possible we might be called without an IPI, so it might be
229 	 * safer to figure out how to make kgdb_breakpoint() work
230 	 * properly here.
231 	 */
232 	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
233 }
234 
235 void __weak kgdb_roundup_cpus(void)
236 {
237 	call_single_data_t *csd;
238 	int this_cpu = raw_smp_processor_id();
239 	int cpu;
240 	int ret;
241 
242 	for_each_online_cpu(cpu) {
243 		/* No need to roundup ourselves */
244 		if (cpu == this_cpu)
245 			continue;
246 
247 		csd = &per_cpu(kgdb_roundup_csd, cpu);
248 
249 		/*
250 		 * If it didn't round up last time, don't try again
251 		 * since smp_call_function_single_async() will block.
252 		 *
253 		 * If rounding_up is false then we know that the
254 		 * previous call must have at least started and that
255 		 * means smp_call_function_single_async() won't block.
256 		 */
257 		if (kgdb_info[cpu].rounding_up)
258 			continue;
259 		kgdb_info[cpu].rounding_up = true;
260 
261 		csd->func = kgdb_call_nmi_hook;
262 		ret = smp_call_function_single_async(cpu, csd);
263 		if (ret)
264 			kgdb_info[cpu].rounding_up = false;
265 	}
266 }
267 
268 #endif
269 
270 /*
271  * Some architectures need cache flushes when we set/clear a
272  * breakpoint:
273  */
274 static void kgdb_flush_swbreak_addr(unsigned long addr)
275 {
276 	if (!CACHE_FLUSH_IS_SAFE)
277 		return;
278 
279 	if (current->mm) {
280 		int i;
281 
282 		for (i = 0; i < VMACACHE_SIZE; i++) {
283 			if (!current->vmacache.vmas[i])
284 				continue;
285 			flush_cache_range(current->vmacache.vmas[i],
286 					  addr, addr + BREAK_INSTR_SIZE);
287 		}
288 	}
289 
290 	/* Force flush instruction cache if it was outside the mm */
291 	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
292 }
293 
294 /*
295  * SW breakpoint management:
296  */
297 int dbg_activate_sw_breakpoints(void)
298 {
299 	int error;
300 	int ret = 0;
301 	int i;
302 
303 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
304 		if (kgdb_break[i].state != BP_SET)
305 			continue;
306 
307 		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
308 		if (error) {
309 			ret = error;
310 			pr_info("BP install failed: %lx\n",
311 				kgdb_break[i].bpt_addr);
312 			continue;
313 		}
314 
315 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
316 		kgdb_break[i].state = BP_ACTIVE;
317 	}
318 	return ret;
319 }
320 
321 int dbg_set_sw_break(unsigned long addr)
322 {
323 	int err = kgdb_validate_break_address(addr);
324 	int breakno = -1;
325 	int i;
326 
327 	if (err)
328 		return err;
329 
330 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
331 		if ((kgdb_break[i].state == BP_SET) &&
332 					(kgdb_break[i].bpt_addr == addr))
333 			return -EEXIST;
334 	}
335 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
336 		if (kgdb_break[i].state == BP_REMOVED &&
337 					kgdb_break[i].bpt_addr == addr) {
338 			breakno = i;
339 			break;
340 		}
341 	}
342 
343 	if (breakno == -1) {
344 		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
345 			if (kgdb_break[i].state == BP_UNDEFINED) {
346 				breakno = i;
347 				break;
348 			}
349 		}
350 	}
351 
352 	if (breakno == -1)
353 		return -E2BIG;
354 
355 	kgdb_break[breakno].state = BP_SET;
356 	kgdb_break[breakno].type = BP_BREAKPOINT;
357 	kgdb_break[breakno].bpt_addr = addr;
358 
359 	return 0;
360 }
361 
362 int dbg_deactivate_sw_breakpoints(void)
363 {
364 	int error;
365 	int ret = 0;
366 	int i;
367 
368 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
369 		if (kgdb_break[i].state != BP_ACTIVE)
370 			continue;
371 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
372 		if (error) {
373 			pr_info("BP remove failed: %lx\n",
374 				kgdb_break[i].bpt_addr);
375 			ret = error;
376 		}
377 
378 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
379 		kgdb_break[i].state = BP_SET;
380 	}
381 	return ret;
382 }
383 
384 int dbg_remove_sw_break(unsigned long addr)
385 {
386 	int i;
387 
388 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
389 		if ((kgdb_break[i].state == BP_SET) &&
390 				(kgdb_break[i].bpt_addr == addr)) {
391 			kgdb_break[i].state = BP_REMOVED;
392 			return 0;
393 		}
394 	}
395 	return -ENOENT;
396 }
397 
398 int kgdb_isremovedbreak(unsigned long addr)
399 {
400 	int i;
401 
402 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
403 		if ((kgdb_break[i].state == BP_REMOVED) &&
404 					(kgdb_break[i].bpt_addr == addr))
405 			return 1;
406 	}
407 	return 0;
408 }
409 
410 int kgdb_has_hit_break(unsigned long addr)
411 {
412 	int i;
413 
414 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
415 		if (kgdb_break[i].state == BP_ACTIVE &&
416 		    kgdb_break[i].bpt_addr == addr)
417 			return 1;
418 	}
419 	return 0;
420 }
421 
422 int dbg_remove_all_break(void)
423 {
424 	int error;
425 	int i;
426 
427 	/* Clear memory breakpoints. */
428 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
429 		if (kgdb_break[i].state != BP_ACTIVE)
430 			goto setundefined;
431 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
432 		if (error)
433 			pr_err("breakpoint remove failed: %lx\n",
434 			       kgdb_break[i].bpt_addr);
435 setundefined:
436 		kgdb_break[i].state = BP_UNDEFINED;
437 	}
438 
439 	/* Clear hardware breakpoints. */
440 	if (arch_kgdb_ops.remove_all_hw_break)
441 		arch_kgdb_ops.remove_all_hw_break();
442 
443 	return 0;
444 }
445 
446 #ifdef CONFIG_KGDB_KDB
447 void kdb_dump_stack_on_cpu(int cpu)
448 {
449 	if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
450 		dump_stack();
451 		return;
452 	}
453 
454 	if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
455 		kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
456 			   cpu);
457 		return;
458 	}
459 
460 	/*
461 	 * In general, architectures don't support dumping the stack of a
462 	 * "running" process that's not the current one.  From the point of
463 	 * view of the Linux, kernel processes that are looping in the kgdb
464 	 * slave loop are still "running".  There's also no API (that actually
465 	 * works across all architectures) that can do a stack crawl based
466 	 * on registers passed as a parameter.
467 	 *
468 	 * Solve this conundrum by asking slave CPUs to do the backtrace
469 	 * themselves.
470 	 */
471 	kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
472 	while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
473 		cpu_relax();
474 }
475 #endif
476 
477 /*
478  * Return true if there is a valid kgdb I/O module.  Also if no
479  * debugger is attached a message can be printed to the console about
480  * waiting for the debugger to attach.
481  *
482  * The print_wait argument is only to be true when called from inside
483  * the core kgdb_handle_exception, because it will wait for the
484  * debugger to attach.
485  */
486 static int kgdb_io_ready(int print_wait)
487 {
488 	if (!dbg_io_ops)
489 		return 0;
490 	if (kgdb_connected)
491 		return 1;
492 	if (atomic_read(&kgdb_setting_breakpoint))
493 		return 1;
494 	if (print_wait) {
495 #ifdef CONFIG_KGDB_KDB
496 		if (!dbg_kdb_mode)
497 			pr_crit("waiting... or $3#33 for KDB\n");
498 #else
499 		pr_crit("Waiting for remote debugger\n");
500 #endif
501 	}
502 	return 1;
503 }
504 
505 static int kgdb_reenter_check(struct kgdb_state *ks)
506 {
507 	unsigned long addr;
508 
509 	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
510 		return 0;
511 
512 	/* Panic on recursive debugger calls: */
513 	exception_level++;
514 	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
515 	dbg_deactivate_sw_breakpoints();
516 
517 	/*
518 	 * If the break point removed ok at the place exception
519 	 * occurred, try to recover and print a warning to the end
520 	 * user because the user planted a breakpoint in a place that
521 	 * KGDB needs in order to function.
522 	 */
523 	if (dbg_remove_sw_break(addr) == 0) {
524 		exception_level = 0;
525 		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
526 		dbg_activate_sw_breakpoints();
527 		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
528 		WARN_ON_ONCE(1);
529 
530 		return 1;
531 	}
532 	dbg_remove_all_break();
533 	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
534 
535 	if (exception_level > 1) {
536 		dump_stack();
537 		kgdb_io_module_registered = false;
538 		panic("Recursive entry to debugger");
539 	}
540 
541 	pr_crit("re-enter exception: ALL breakpoints killed\n");
542 #ifdef CONFIG_KGDB_KDB
543 	/* Allow kdb to debug itself one level */
544 	return 0;
545 #endif
546 	dump_stack();
547 	panic("Recursive entry to debugger");
548 
549 	return 1;
550 }
551 
552 static void dbg_touch_watchdogs(void)
553 {
554 	touch_softlockup_watchdog_sync();
555 	clocksource_touch_watchdog();
556 	rcu_cpu_stall_reset();
557 }
558 
559 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
560 		int exception_state)
561 {
562 	unsigned long flags;
563 	int sstep_tries = 100;
564 	int error;
565 	int cpu;
566 	int trace_on = 0;
567 	int online_cpus = num_online_cpus();
568 	u64 time_left;
569 
570 	kgdb_info[ks->cpu].enter_kgdb++;
571 	kgdb_info[ks->cpu].exception_state |= exception_state;
572 
573 	if (exception_state == DCPU_WANT_MASTER)
574 		atomic_inc(&masters_in_kgdb);
575 	else
576 		atomic_inc(&slaves_in_kgdb);
577 
578 	if (arch_kgdb_ops.disable_hw_break)
579 		arch_kgdb_ops.disable_hw_break(regs);
580 
581 acquirelock:
582 	rcu_read_lock();
583 	/*
584 	 * Interrupts will be restored by the 'trap return' code, except when
585 	 * single stepping.
586 	 */
587 	local_irq_save(flags);
588 
589 	cpu = ks->cpu;
590 	kgdb_info[cpu].debuggerinfo = regs;
591 	kgdb_info[cpu].task = current;
592 	kgdb_info[cpu].ret_state = 0;
593 	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
594 
595 	/* Make sure the above info reaches the primary CPU */
596 	smp_mb();
597 
598 	if (exception_level == 1) {
599 		if (raw_spin_trylock(&dbg_master_lock))
600 			atomic_xchg(&kgdb_active, cpu);
601 		goto cpu_master_loop;
602 	}
603 
604 	/*
605 	 * CPU will loop if it is a slave or request to become a kgdb
606 	 * master cpu and acquire the kgdb_active lock:
607 	 */
608 	while (1) {
609 cpu_loop:
610 		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
611 			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
612 			goto cpu_master_loop;
613 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
614 			if (raw_spin_trylock(&dbg_master_lock)) {
615 				atomic_xchg(&kgdb_active, cpu);
616 				break;
617 			}
618 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
619 			dump_stack();
620 			kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
621 		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
622 			if (!raw_spin_is_locked(&dbg_slave_lock))
623 				goto return_normal;
624 		} else {
625 return_normal:
626 			/* Return to normal operation by executing any
627 			 * hw breakpoint fixup.
628 			 */
629 			if (arch_kgdb_ops.correct_hw_break)
630 				arch_kgdb_ops.correct_hw_break();
631 			if (trace_on)
632 				tracing_on();
633 			kgdb_info[cpu].debuggerinfo = NULL;
634 			kgdb_info[cpu].task = NULL;
635 			kgdb_info[cpu].exception_state &=
636 				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
637 			kgdb_info[cpu].enter_kgdb--;
638 			smp_mb__before_atomic();
639 			atomic_dec(&slaves_in_kgdb);
640 			dbg_touch_watchdogs();
641 			local_irq_restore(flags);
642 			rcu_read_unlock();
643 			return 0;
644 		}
645 		cpu_relax();
646 	}
647 
648 	/*
649 	 * For single stepping, try to only enter on the processor
650 	 * that was single stepping.  To guard against a deadlock, the
651 	 * kernel will only try for the value of sstep_tries before
652 	 * giving up and continuing on.
653 	 */
654 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
655 	    (kgdb_info[cpu].task &&
656 	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
657 		atomic_set(&kgdb_active, -1);
658 		raw_spin_unlock(&dbg_master_lock);
659 		dbg_touch_watchdogs();
660 		local_irq_restore(flags);
661 		rcu_read_unlock();
662 
663 		goto acquirelock;
664 	}
665 
666 	if (!kgdb_io_ready(1)) {
667 		kgdb_info[cpu].ret_state = 1;
668 		goto kgdb_restore; /* No I/O connection, resume the system */
669 	}
670 
671 	/*
672 	 * Don't enter if we have hit a removed breakpoint.
673 	 */
674 	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
675 		goto kgdb_restore;
676 
677 	atomic_inc(&ignore_console_lock_warning);
678 
679 	/* Call the I/O driver's pre_exception routine */
680 	if (dbg_io_ops->pre_exception)
681 		dbg_io_ops->pre_exception();
682 
683 	/*
684 	 * Get the passive CPU lock which will hold all the non-primary
685 	 * CPU in a spin state while the debugger is active
686 	 */
687 	if (!kgdb_single_step)
688 		raw_spin_lock(&dbg_slave_lock);
689 
690 #ifdef CONFIG_SMP
691 	/* If send_ready set, slaves are already waiting */
692 	if (ks->send_ready)
693 		atomic_set(ks->send_ready, 1);
694 
695 	/* Signal the other CPUs to enter kgdb_wait() */
696 	else if ((!kgdb_single_step) && kgdb_do_roundup)
697 		kgdb_roundup_cpus();
698 #endif
699 
700 	/*
701 	 * Wait for the other CPUs to be notified and be waiting for us:
702 	 */
703 	time_left = MSEC_PER_SEC;
704 	while (kgdb_do_roundup && --time_left &&
705 	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
706 		   online_cpus)
707 		udelay(1000);
708 	if (!time_left)
709 		pr_crit("Timed out waiting for secondary CPUs.\n");
710 
711 	/*
712 	 * At this point the primary processor is completely
713 	 * in the debugger and all secondary CPUs are quiescent
714 	 */
715 	dbg_deactivate_sw_breakpoints();
716 	kgdb_single_step = 0;
717 	kgdb_contthread = current;
718 	exception_level = 0;
719 	trace_on = tracing_is_on();
720 	if (trace_on)
721 		tracing_off();
722 
723 	while (1) {
724 cpu_master_loop:
725 		if (dbg_kdb_mode) {
726 			kgdb_connected = 1;
727 			error = kdb_stub(ks);
728 			if (error == -1)
729 				continue;
730 			kgdb_connected = 0;
731 		} else {
732 			error = gdb_serial_stub(ks);
733 		}
734 
735 		if (error == DBG_PASS_EVENT) {
736 			dbg_kdb_mode = !dbg_kdb_mode;
737 		} else if (error == DBG_SWITCH_CPU_EVENT) {
738 			kgdb_info[dbg_switch_cpu].exception_state |=
739 				DCPU_NEXT_MASTER;
740 			goto cpu_loop;
741 		} else {
742 			kgdb_info[cpu].ret_state = error;
743 			break;
744 		}
745 	}
746 
747 	/* Call the I/O driver's post_exception routine */
748 	if (dbg_io_ops->post_exception)
749 		dbg_io_ops->post_exception();
750 
751 	atomic_dec(&ignore_console_lock_warning);
752 
753 	if (!kgdb_single_step) {
754 		raw_spin_unlock(&dbg_slave_lock);
755 		/* Wait till all the CPUs have quit from the debugger. */
756 		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
757 			cpu_relax();
758 	}
759 
760 kgdb_restore:
761 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
762 		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
763 		if (kgdb_info[sstep_cpu].task)
764 			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
765 		else
766 			kgdb_sstep_pid = 0;
767 	}
768 	if (arch_kgdb_ops.correct_hw_break)
769 		arch_kgdb_ops.correct_hw_break();
770 	if (trace_on)
771 		tracing_on();
772 
773 	kgdb_info[cpu].debuggerinfo = NULL;
774 	kgdb_info[cpu].task = NULL;
775 	kgdb_info[cpu].exception_state &=
776 		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
777 	kgdb_info[cpu].enter_kgdb--;
778 	smp_mb__before_atomic();
779 	atomic_dec(&masters_in_kgdb);
780 	/* Free kgdb_active */
781 	atomic_set(&kgdb_active, -1);
782 	raw_spin_unlock(&dbg_master_lock);
783 	dbg_touch_watchdogs();
784 	local_irq_restore(flags);
785 	rcu_read_unlock();
786 
787 	return kgdb_info[cpu].ret_state;
788 }
789 
790 /*
791  * kgdb_handle_exception() - main entry point from a kernel exception
792  *
793  * Locking hierarchy:
794  *	interface locks, if any (begin_session)
795  *	kgdb lock (kgdb_active)
796  */
797 int
798 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
799 {
800 	struct kgdb_state kgdb_var;
801 	struct kgdb_state *ks = &kgdb_var;
802 	int ret = 0;
803 
804 	if (arch_kgdb_ops.enable_nmi)
805 		arch_kgdb_ops.enable_nmi(0);
806 	/*
807 	 * Avoid entering the debugger if we were triggered due to an oops
808 	 * but panic_timeout indicates the system should automatically
809 	 * reboot on panic. We don't want to get stuck waiting for input
810 	 * on such systems, especially if its "just" an oops.
811 	 */
812 	if (signo != SIGTRAP && panic_timeout)
813 		return 1;
814 
815 	memset(ks, 0, sizeof(struct kgdb_state));
816 	ks->cpu			= raw_smp_processor_id();
817 	ks->ex_vector		= evector;
818 	ks->signo		= signo;
819 	ks->err_code		= ecode;
820 	ks->linux_regs		= regs;
821 
822 	if (kgdb_reenter_check(ks))
823 		goto out; /* Ouch, double exception ! */
824 	if (kgdb_info[ks->cpu].enter_kgdb != 0)
825 		goto out;
826 
827 	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
828 out:
829 	if (arch_kgdb_ops.enable_nmi)
830 		arch_kgdb_ops.enable_nmi(1);
831 	return ret;
832 }
833 
834 /*
835  * GDB places a breakpoint at this function to know dynamically loaded objects.
836  */
837 static int module_event(struct notifier_block *self, unsigned long val,
838 	void *data)
839 {
840 	return 0;
841 }
842 
843 static struct notifier_block dbg_module_load_nb = {
844 	.notifier_call	= module_event,
845 };
846 
847 int kgdb_nmicallback(int cpu, void *regs)
848 {
849 #ifdef CONFIG_SMP
850 	struct kgdb_state kgdb_var;
851 	struct kgdb_state *ks = &kgdb_var;
852 
853 	kgdb_info[cpu].rounding_up = false;
854 
855 	memset(ks, 0, sizeof(struct kgdb_state));
856 	ks->cpu			= cpu;
857 	ks->linux_regs		= regs;
858 
859 	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
860 			raw_spin_is_locked(&dbg_master_lock)) {
861 		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
862 		return 0;
863 	}
864 #endif
865 	return 1;
866 }
867 
868 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
869 							atomic_t *send_ready)
870 {
871 #ifdef CONFIG_SMP
872 	if (!kgdb_io_ready(0) || !send_ready)
873 		return 1;
874 
875 	if (kgdb_info[cpu].enter_kgdb == 0) {
876 		struct kgdb_state kgdb_var;
877 		struct kgdb_state *ks = &kgdb_var;
878 
879 		memset(ks, 0, sizeof(struct kgdb_state));
880 		ks->cpu			= cpu;
881 		ks->ex_vector		= trapnr;
882 		ks->signo		= SIGTRAP;
883 		ks->err_code		= err_code;
884 		ks->linux_regs		= regs;
885 		ks->send_ready		= send_ready;
886 		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
887 		return 0;
888 	}
889 #endif
890 	return 1;
891 }
892 
893 static void kgdb_console_write(struct console *co, const char *s,
894    unsigned count)
895 {
896 	unsigned long flags;
897 
898 	/* If we're debugging, or KGDB has not connected, don't try
899 	 * and print. */
900 	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
901 		return;
902 
903 	local_irq_save(flags);
904 	gdbstub_msg_write(s, count);
905 	local_irq_restore(flags);
906 }
907 
908 static struct console kgdbcons = {
909 	.name		= "kgdb",
910 	.write		= kgdb_console_write,
911 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
912 	.index		= -1,
913 };
914 
915 static int __init opt_kgdb_con(char *str)
916 {
917 	kgdb_use_con = 1;
918 
919 	if (kgdb_io_module_registered && !kgdb_con_registered) {
920 		register_console(&kgdbcons);
921 		kgdb_con_registered = 1;
922 	}
923 
924 	return 0;
925 }
926 
927 early_param("kgdbcon", opt_kgdb_con);
928 
929 #ifdef CONFIG_MAGIC_SYSRQ
930 static void sysrq_handle_dbg(int key)
931 {
932 	if (!dbg_io_ops) {
933 		pr_crit("ERROR: No KGDB I/O module available\n");
934 		return;
935 	}
936 	if (!kgdb_connected) {
937 #ifdef CONFIG_KGDB_KDB
938 		if (!dbg_kdb_mode)
939 			pr_crit("KGDB or $3#33 for KDB\n");
940 #else
941 		pr_crit("Entering KGDB\n");
942 #endif
943 	}
944 
945 	kgdb_breakpoint();
946 }
947 
948 static const struct sysrq_key_op sysrq_dbg_op = {
949 	.handler	= sysrq_handle_dbg,
950 	.help_msg	= "debug(g)",
951 	.action_msg	= "DEBUG",
952 };
953 #endif
954 
955 void kgdb_panic(const char *msg)
956 {
957 	if (!kgdb_io_module_registered)
958 		return;
959 
960 	/*
961 	 * We don't want to get stuck waiting for input from user if
962 	 * "panic_timeout" indicates the system should automatically
963 	 * reboot on panic.
964 	 */
965 	if (panic_timeout)
966 		return;
967 
968 	if (dbg_kdb_mode)
969 		kdb_printf("PANIC: %s\n", msg);
970 
971 	kgdb_breakpoint();
972 }
973 
974 static void kgdb_initial_breakpoint(void)
975 {
976 	kgdb_break_asap = 0;
977 
978 	pr_crit("Waiting for connection from remote gdb...\n");
979 	kgdb_breakpoint();
980 }
981 
982 void __weak kgdb_arch_late(void)
983 {
984 }
985 
986 void __init dbg_late_init(void)
987 {
988 	dbg_is_early = false;
989 	if (kgdb_io_module_registered)
990 		kgdb_arch_late();
991 	kdb_init(KDB_INIT_FULL);
992 
993 	if (kgdb_io_module_registered && kgdb_break_asap)
994 		kgdb_initial_breakpoint();
995 }
996 
997 static int
998 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
999 {
1000 	/*
1001 	 * Take the following action on reboot notify depending on value:
1002 	 *    1 == Enter debugger
1003 	 *    0 == [the default] detatch debug client
1004 	 *   -1 == Do nothing... and use this until the board resets
1005 	 */
1006 	switch (kgdbreboot) {
1007 	case 1:
1008 		kgdb_breakpoint();
1009 	case -1:
1010 		goto done;
1011 	}
1012 	if (!dbg_kdb_mode)
1013 		gdbstub_exit(code);
1014 done:
1015 	return NOTIFY_DONE;
1016 }
1017 
1018 static struct notifier_block dbg_reboot_notifier = {
1019 	.notifier_call		= dbg_notify_reboot,
1020 	.next			= NULL,
1021 	.priority		= INT_MAX,
1022 };
1023 
1024 static void kgdb_register_callbacks(void)
1025 {
1026 	if (!kgdb_io_module_registered) {
1027 		kgdb_io_module_registered = 1;
1028 		kgdb_arch_init();
1029 		if (!dbg_is_early)
1030 			kgdb_arch_late();
1031 		register_module_notifier(&dbg_module_load_nb);
1032 		register_reboot_notifier(&dbg_reboot_notifier);
1033 #ifdef CONFIG_MAGIC_SYSRQ
1034 		register_sysrq_key('g', &sysrq_dbg_op);
1035 #endif
1036 		if (kgdb_use_con && !kgdb_con_registered) {
1037 			register_console(&kgdbcons);
1038 			kgdb_con_registered = 1;
1039 		}
1040 	}
1041 }
1042 
1043 static void kgdb_unregister_callbacks(void)
1044 {
1045 	/*
1046 	 * When this routine is called KGDB should unregister from
1047 	 * handlers and clean up, making sure it is not handling any
1048 	 * break exceptions at the time.
1049 	 */
1050 	if (kgdb_io_module_registered) {
1051 		kgdb_io_module_registered = 0;
1052 		unregister_reboot_notifier(&dbg_reboot_notifier);
1053 		unregister_module_notifier(&dbg_module_load_nb);
1054 		kgdb_arch_exit();
1055 #ifdef CONFIG_MAGIC_SYSRQ
1056 		unregister_sysrq_key('g', &sysrq_dbg_op);
1057 #endif
1058 		if (kgdb_con_registered) {
1059 			unregister_console(&kgdbcons);
1060 			kgdb_con_registered = 0;
1061 		}
1062 	}
1063 }
1064 
1065 /*
1066  * There are times a tasklet needs to be used vs a compiled in
1067  * break point so as to cause an exception outside a kgdb I/O module,
1068  * such as is the case with kgdboe, where calling a breakpoint in the
1069  * I/O driver itself would be fatal.
1070  */
1071 static void kgdb_tasklet_bpt(unsigned long ing)
1072 {
1073 	kgdb_breakpoint();
1074 	atomic_set(&kgdb_break_tasklet_var, 0);
1075 }
1076 
1077 static DECLARE_TASKLET_OLD(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt);
1078 
1079 void kgdb_schedule_breakpoint(void)
1080 {
1081 	if (atomic_read(&kgdb_break_tasklet_var) ||
1082 		atomic_read(&kgdb_active) != -1 ||
1083 		atomic_read(&kgdb_setting_breakpoint))
1084 		return;
1085 	atomic_inc(&kgdb_break_tasklet_var);
1086 	tasklet_schedule(&kgdb_tasklet_breakpoint);
1087 }
1088 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
1089 
1090 /**
1091  *	kgdb_register_io_module - register KGDB IO module
1092  *	@new_dbg_io_ops: the io ops vector
1093  *
1094  *	Register it with the KGDB core.
1095  */
1096 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1097 {
1098 	struct kgdb_io *old_dbg_io_ops;
1099 	int err;
1100 
1101 	spin_lock(&kgdb_registration_lock);
1102 
1103 	old_dbg_io_ops = dbg_io_ops;
1104 	if (old_dbg_io_ops) {
1105 		if (!old_dbg_io_ops->deinit) {
1106 			spin_unlock(&kgdb_registration_lock);
1107 
1108 			pr_err("KGDB I/O driver %s can't replace %s.\n",
1109 				new_dbg_io_ops->name, old_dbg_io_ops->name);
1110 			return -EBUSY;
1111 		}
1112 		pr_info("Replacing I/O driver %s with %s\n",
1113 			old_dbg_io_ops->name, new_dbg_io_ops->name);
1114 	}
1115 
1116 	if (new_dbg_io_ops->init) {
1117 		err = new_dbg_io_ops->init();
1118 		if (err) {
1119 			spin_unlock(&kgdb_registration_lock);
1120 			return err;
1121 		}
1122 	}
1123 
1124 	dbg_io_ops = new_dbg_io_ops;
1125 
1126 	spin_unlock(&kgdb_registration_lock);
1127 
1128 	if (old_dbg_io_ops) {
1129 		old_dbg_io_ops->deinit();
1130 		return 0;
1131 	}
1132 
1133 	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1134 
1135 	/* Arm KGDB now. */
1136 	kgdb_register_callbacks();
1137 
1138 	if (kgdb_break_asap &&
1139 	    (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
1140 		kgdb_initial_breakpoint();
1141 
1142 	return 0;
1143 }
1144 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1145 
1146 /**
1147  *	kkgdb_unregister_io_module - unregister KGDB IO module
1148  *	@old_dbg_io_ops: the io ops vector
1149  *
1150  *	Unregister it with the KGDB core.
1151  */
1152 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1153 {
1154 	BUG_ON(kgdb_connected);
1155 
1156 	/*
1157 	 * KGDB is no longer able to communicate out, so
1158 	 * unregister our callbacks and reset state.
1159 	 */
1160 	kgdb_unregister_callbacks();
1161 
1162 	spin_lock(&kgdb_registration_lock);
1163 
1164 	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1165 	dbg_io_ops = NULL;
1166 
1167 	spin_unlock(&kgdb_registration_lock);
1168 
1169 	if (old_dbg_io_ops->deinit)
1170 		old_dbg_io_ops->deinit();
1171 
1172 	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1173 		old_dbg_io_ops->name);
1174 }
1175 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1176 
1177 int dbg_io_get_char(void)
1178 {
1179 	int ret = dbg_io_ops->read_char();
1180 	if (ret == NO_POLL_CHAR)
1181 		return -1;
1182 	if (!dbg_kdb_mode)
1183 		return ret;
1184 	if (ret == 127)
1185 		return 8;
1186 	return ret;
1187 }
1188 
1189 /**
1190  * kgdb_breakpoint - generate breakpoint exception
1191  *
1192  * This function will generate a breakpoint exception.  It is used at the
1193  * beginning of a program to sync up with a debugger and can be used
1194  * otherwise as a quick means to stop program execution and "break" into
1195  * the debugger.
1196  */
1197 noinline void kgdb_breakpoint(void)
1198 {
1199 	atomic_inc(&kgdb_setting_breakpoint);
1200 	wmb(); /* Sync point before breakpoint */
1201 	arch_kgdb_breakpoint();
1202 	wmb(); /* Sync point after breakpoint */
1203 	atomic_dec(&kgdb_setting_breakpoint);
1204 }
1205 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1206 
1207 static int __init opt_kgdb_wait(char *str)
1208 {
1209 	kgdb_break_asap = 1;
1210 
1211 	kdb_init(KDB_INIT_EARLY);
1212 	if (kgdb_io_module_registered &&
1213 	    IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
1214 		kgdb_initial_breakpoint();
1215 
1216 	return 0;
1217 }
1218 
1219 early_param("kgdbwait", opt_kgdb_wait);
1220