xref: /linux-6.15/kernel/cpu.c (revision d44d2698)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40 
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44 
45 #include "smpboot.h"
46 
47 /**
48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
49  * @state:	The current cpu state
50  * @target:	The target state
51  * @fail:	Current CPU hotplug callback state
52  * @thread:	Pointer to the hotplug thread
53  * @should_run:	Thread should execute
54  * @rollback:	Perform a rollback
55  * @single:	Single callback invocation
56  * @bringup:	Single callback bringup or teardown selector
57  * @node:	Remote CPU node; for multi-instance, do a
58  *		single entry callback for install/remove
59  * @last:	For multi-instance rollback, remember how far we got
60  * @cb_state:	The state for a single callback (install/uninstall)
61  * @result:	Result of the operation
62  * @ap_sync_state:	State for AP synchronization
63  * @done_up:	Signal completion to the issuer of the task for cpu-up
64  * @done_down:	Signal completion to the issuer of the task for cpu-down
65  */
66 struct cpuhp_cpu_state {
67 	enum cpuhp_state	state;
68 	enum cpuhp_state	target;
69 	enum cpuhp_state	fail;
70 #ifdef CONFIG_SMP
71 	struct task_struct	*thread;
72 	bool			should_run;
73 	bool			rollback;
74 	bool			single;
75 	bool			bringup;
76 	struct hlist_node	*node;
77 	struct hlist_node	*last;
78 	enum cpuhp_state	cb_state;
79 	int			result;
80 	atomic_t		ap_sync_state;
81 	struct completion	done_up;
82 	struct completion	done_down;
83 #endif
84 };
85 
86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
87 	.fail = CPUHP_INVALID,
88 };
89 
90 #ifdef CONFIG_SMP
91 cpumask_t cpus_booted_once_mask;
92 #endif
93 
94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
95 static struct lockdep_map cpuhp_state_up_map =
96 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
97 static struct lockdep_map cpuhp_state_down_map =
98 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
99 
100 
101 static inline void cpuhp_lock_acquire(bool bringup)
102 {
103 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
104 }
105 
106 static inline void cpuhp_lock_release(bool bringup)
107 {
108 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
109 }
110 #else
111 
112 static inline void cpuhp_lock_acquire(bool bringup) { }
113 static inline void cpuhp_lock_release(bool bringup) { }
114 
115 #endif
116 
117 /**
118  * struct cpuhp_step - Hotplug state machine step
119  * @name:	Name of the step
120  * @startup:	Startup function of the step
121  * @teardown:	Teardown function of the step
122  * @cant_stop:	Bringup/teardown can't be stopped at this step
123  * @multi_instance:	State has multiple instances which get added afterwards
124  */
125 struct cpuhp_step {
126 	const char		*name;
127 	union {
128 		int		(*single)(unsigned int cpu);
129 		int		(*multi)(unsigned int cpu,
130 					 struct hlist_node *node);
131 	} startup;
132 	union {
133 		int		(*single)(unsigned int cpu);
134 		int		(*multi)(unsigned int cpu,
135 					 struct hlist_node *node);
136 	} teardown;
137 	/* private: */
138 	struct hlist_head	list;
139 	/* public: */
140 	bool			cant_stop;
141 	bool			multi_instance;
142 };
143 
144 static DEFINE_MUTEX(cpuhp_state_mutex);
145 static struct cpuhp_step cpuhp_hp_states[];
146 
147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
148 {
149 	return cpuhp_hp_states + state;
150 }
151 
152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
153 {
154 	return bringup ? !step->startup.single : !step->teardown.single;
155 }
156 
157 /**
158  * cpuhp_invoke_callback - Invoke the callbacks for a given state
159  * @cpu:	The cpu for which the callback should be invoked
160  * @state:	The state to do callbacks for
161  * @bringup:	True if the bringup callback should be invoked
162  * @node:	For multi-instance, do a single entry callback for install/remove
163  * @lastp:	For multi-instance rollback, remember how far we got
164  *
165  * Called from cpu hotplug and from the state register machinery.
166  *
167  * Return: %0 on success or a negative errno code
168  */
169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
170 				 bool bringup, struct hlist_node *node,
171 				 struct hlist_node **lastp)
172 {
173 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
174 	struct cpuhp_step *step = cpuhp_get_step(state);
175 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
176 	int (*cb)(unsigned int cpu);
177 	int ret, cnt;
178 
179 	if (st->fail == state) {
180 		st->fail = CPUHP_INVALID;
181 		return -EAGAIN;
182 	}
183 
184 	if (cpuhp_step_empty(bringup, step)) {
185 		WARN_ON_ONCE(1);
186 		return 0;
187 	}
188 
189 	if (!step->multi_instance) {
190 		WARN_ON_ONCE(lastp && *lastp);
191 		cb = bringup ? step->startup.single : step->teardown.single;
192 
193 		trace_cpuhp_enter(cpu, st->target, state, cb);
194 		ret = cb(cpu);
195 		trace_cpuhp_exit(cpu, st->state, state, ret);
196 		return ret;
197 	}
198 	cbm = bringup ? step->startup.multi : step->teardown.multi;
199 
200 	/* Single invocation for instance add/remove */
201 	if (node) {
202 		WARN_ON_ONCE(lastp && *lastp);
203 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
204 		ret = cbm(cpu, node);
205 		trace_cpuhp_exit(cpu, st->state, state, ret);
206 		return ret;
207 	}
208 
209 	/* State transition. Invoke on all instances */
210 	cnt = 0;
211 	hlist_for_each(node, &step->list) {
212 		if (lastp && node == *lastp)
213 			break;
214 
215 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216 		ret = cbm(cpu, node);
217 		trace_cpuhp_exit(cpu, st->state, state, ret);
218 		if (ret) {
219 			if (!lastp)
220 				goto err;
221 
222 			*lastp = node;
223 			return ret;
224 		}
225 		cnt++;
226 	}
227 	if (lastp)
228 		*lastp = NULL;
229 	return 0;
230 err:
231 	/* Rollback the instances if one failed */
232 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
233 	if (!cbm)
234 		return ret;
235 
236 	hlist_for_each(node, &step->list) {
237 		if (!cnt--)
238 			break;
239 
240 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
241 		ret = cbm(cpu, node);
242 		trace_cpuhp_exit(cpu, st->state, state, ret);
243 		/*
244 		 * Rollback must not fail,
245 		 */
246 		WARN_ON_ONCE(ret);
247 	}
248 	return ret;
249 }
250 
251 #ifdef CONFIG_SMP
252 static bool cpuhp_is_ap_state(enum cpuhp_state state)
253 {
254 	/*
255 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
256 	 * purposes as that state is handled explicitly in cpu_down.
257 	 */
258 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
259 }
260 
261 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
262 {
263 	struct completion *done = bringup ? &st->done_up : &st->done_down;
264 	wait_for_completion(done);
265 }
266 
267 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
268 {
269 	struct completion *done = bringup ? &st->done_up : &st->done_down;
270 	complete(done);
271 }
272 
273 /*
274  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
275  */
276 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
277 {
278 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
279 }
280 
281 /* Synchronization state management */
282 enum cpuhp_sync_state {
283 	SYNC_STATE_DEAD,
284 	SYNC_STATE_KICKED,
285 	SYNC_STATE_SHOULD_DIE,
286 	SYNC_STATE_ALIVE,
287 	SYNC_STATE_SHOULD_ONLINE,
288 	SYNC_STATE_ONLINE,
289 };
290 
291 #ifdef CONFIG_HOTPLUG_CORE_SYNC
292 /**
293  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
294  * @state:	The synchronization state to set
295  *
296  * No synchronization point. Just update of the synchronization state, but implies
297  * a full barrier so that the AP changes are visible before the control CPU proceeds.
298  */
299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
300 {
301 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
302 
303 	(void)atomic_xchg(st, state);
304 }
305 
306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
307 
308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
309 				      enum cpuhp_sync_state next_state)
310 {
311 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
312 	ktime_t now, end, start = ktime_get();
313 	int sync;
314 
315 	end = start + 10ULL * NSEC_PER_SEC;
316 
317 	sync = atomic_read(st);
318 	while (1) {
319 		if (sync == state) {
320 			if (!atomic_try_cmpxchg(st, &sync, next_state))
321 				continue;
322 			return true;
323 		}
324 
325 		now = ktime_get();
326 		if (now > end) {
327 			/* Timeout. Leave the state unchanged */
328 			return false;
329 		} else if (now - start < NSEC_PER_MSEC) {
330 			/* Poll for one millisecond */
331 			arch_cpuhp_sync_state_poll();
332 		} else {
333 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
334 		}
335 		sync = atomic_read(st);
336 	}
337 	return true;
338 }
339 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
342 
343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
344 /**
345  * cpuhp_ap_report_dead - Update synchronization state to DEAD
346  *
347  * No synchronization point. Just update of the synchronization state.
348  */
349 void cpuhp_ap_report_dead(void)
350 {
351 	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
352 }
353 
354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
355 
356 /*
357  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
358  * because the AP cannot issue complete() at this stage.
359  */
360 static void cpuhp_bp_sync_dead(unsigned int cpu)
361 {
362 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
363 	int sync = atomic_read(st);
364 
365 	do {
366 		/* CPU can have reported dead already. Don't overwrite that! */
367 		if (sync == SYNC_STATE_DEAD)
368 			break;
369 	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
370 
371 	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
372 		/* CPU reached dead state. Invoke the cleanup function */
373 		arch_cpuhp_cleanup_dead_cpu(cpu);
374 		return;
375 	}
376 
377 	/* No further action possible. Emit message and give up. */
378 	pr_err("CPU%u failed to report dead state\n", cpu);
379 }
380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
383 
384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
385 /**
386  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
387  *
388  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
389  * for the BP to release it.
390  */
391 void cpuhp_ap_sync_alive(void)
392 {
393 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
394 
395 	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
396 
397 	/* Wait for the control CPU to release it. */
398 	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
399 		cpu_relax();
400 }
401 
402 static bool cpuhp_can_boot_ap(unsigned int cpu)
403 {
404 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
405 	int sync = atomic_read(st);
406 
407 again:
408 	switch (sync) {
409 	case SYNC_STATE_DEAD:
410 		/* CPU is properly dead */
411 		break;
412 	case SYNC_STATE_KICKED:
413 		/* CPU did not come up in previous attempt */
414 		break;
415 	case SYNC_STATE_ALIVE:
416 		/* CPU is stuck cpuhp_ap_sync_alive(). */
417 		break;
418 	default:
419 		/* CPU failed to report online or dead and is in limbo state. */
420 		return false;
421 	}
422 
423 	/* Prepare for booting */
424 	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
425 		goto again;
426 
427 	return true;
428 }
429 
430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
431 
432 /*
433  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
434  * because the AP cannot issue complete() so early in the bringup.
435  */
436 static int cpuhp_bp_sync_alive(unsigned int cpu)
437 {
438 	int ret = 0;
439 
440 	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
441 		return 0;
442 
443 	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
444 		pr_err("CPU%u failed to report alive state\n", cpu);
445 		ret = -EIO;
446 	}
447 
448 	/* Let the architecture cleanup the kick alive mechanics. */
449 	arch_cpuhp_cleanup_kick_cpu(cpu);
450 	return ret;
451 }
452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
456 
457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
458 static DEFINE_MUTEX(cpu_add_remove_lock);
459 bool cpuhp_tasks_frozen;
460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
461 
462 /*
463  * The following two APIs (cpu_maps_update_begin/done) must be used when
464  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
465  */
466 void cpu_maps_update_begin(void)
467 {
468 	mutex_lock(&cpu_add_remove_lock);
469 }
470 
471 void cpu_maps_update_done(void)
472 {
473 	mutex_unlock(&cpu_add_remove_lock);
474 }
475 
476 /*
477  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
478  * Should always be manipulated under cpu_add_remove_lock
479  */
480 static int cpu_hotplug_disabled;
481 
482 #ifdef CONFIG_HOTPLUG_CPU
483 
484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
485 
486 static bool cpu_hotplug_offline_disabled __ro_after_init;
487 
488 void cpus_read_lock(void)
489 {
490 	percpu_down_read(&cpu_hotplug_lock);
491 }
492 EXPORT_SYMBOL_GPL(cpus_read_lock);
493 
494 int cpus_read_trylock(void)
495 {
496 	return percpu_down_read_trylock(&cpu_hotplug_lock);
497 }
498 EXPORT_SYMBOL_GPL(cpus_read_trylock);
499 
500 void cpus_read_unlock(void)
501 {
502 	percpu_up_read(&cpu_hotplug_lock);
503 }
504 EXPORT_SYMBOL_GPL(cpus_read_unlock);
505 
506 void cpus_write_lock(void)
507 {
508 	percpu_down_write(&cpu_hotplug_lock);
509 }
510 
511 void cpus_write_unlock(void)
512 {
513 	percpu_up_write(&cpu_hotplug_lock);
514 }
515 
516 void lockdep_assert_cpus_held(void)
517 {
518 	/*
519 	 * We can't have hotplug operations before userspace starts running,
520 	 * and some init codepaths will knowingly not take the hotplug lock.
521 	 * This is all valid, so mute lockdep until it makes sense to report
522 	 * unheld locks.
523 	 */
524 	if (system_state < SYSTEM_RUNNING)
525 		return;
526 
527 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
528 }
529 
530 #ifdef CONFIG_LOCKDEP
531 int lockdep_is_cpus_held(void)
532 {
533 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
534 }
535 #endif
536 
537 static void lockdep_acquire_cpus_lock(void)
538 {
539 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
540 }
541 
542 static void lockdep_release_cpus_lock(void)
543 {
544 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
545 }
546 
547 /* Declare CPU offlining not supported */
548 void cpu_hotplug_disable_offlining(void)
549 {
550 	cpu_maps_update_begin();
551 	cpu_hotplug_offline_disabled = true;
552 	cpu_maps_update_done();
553 }
554 
555 /*
556  * Wait for currently running CPU hotplug operations to complete (if any) and
557  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
558  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
559  * hotplug path before performing hotplug operations. So acquiring that lock
560  * guarantees mutual exclusion from any currently running hotplug operations.
561  */
562 void cpu_hotplug_disable(void)
563 {
564 	cpu_maps_update_begin();
565 	cpu_hotplug_disabled++;
566 	cpu_maps_update_done();
567 }
568 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
569 
570 static void __cpu_hotplug_enable(void)
571 {
572 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
573 		return;
574 	cpu_hotplug_disabled--;
575 }
576 
577 void cpu_hotplug_enable(void)
578 {
579 	cpu_maps_update_begin();
580 	__cpu_hotplug_enable();
581 	cpu_maps_update_done();
582 }
583 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
584 
585 #else
586 
587 static void lockdep_acquire_cpus_lock(void)
588 {
589 }
590 
591 static void lockdep_release_cpus_lock(void)
592 {
593 }
594 
595 #endif	/* CONFIG_HOTPLUG_CPU */
596 
597 /*
598  * Architectures that need SMT-specific errata handling during SMT hotplug
599  * should override this.
600  */
601 void __weak arch_smt_update(void) { }
602 
603 #ifdef CONFIG_HOTPLUG_SMT
604 
605 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
606 static unsigned int cpu_smt_max_threads __ro_after_init;
607 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
608 
609 void __init cpu_smt_disable(bool force)
610 {
611 	if (!cpu_smt_possible())
612 		return;
613 
614 	if (force) {
615 		pr_info("SMT: Force disabled\n");
616 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
617 	} else {
618 		pr_info("SMT: disabled\n");
619 		cpu_smt_control = CPU_SMT_DISABLED;
620 	}
621 	cpu_smt_num_threads = 1;
622 }
623 
624 /*
625  * The decision whether SMT is supported can only be done after the full
626  * CPU identification. Called from architecture code.
627  */
628 void __init cpu_smt_set_num_threads(unsigned int num_threads,
629 				    unsigned int max_threads)
630 {
631 	WARN_ON(!num_threads || (num_threads > max_threads));
632 
633 	if (max_threads == 1)
634 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
635 
636 	cpu_smt_max_threads = max_threads;
637 
638 	/*
639 	 * If SMT has been disabled via the kernel command line or SMT is
640 	 * not supported, set cpu_smt_num_threads to 1 for consistency.
641 	 * If enabled, take the architecture requested number of threads
642 	 * to bring up into account.
643 	 */
644 	if (cpu_smt_control != CPU_SMT_ENABLED)
645 		cpu_smt_num_threads = 1;
646 	else if (num_threads < cpu_smt_num_threads)
647 		cpu_smt_num_threads = num_threads;
648 }
649 
650 static int __init smt_cmdline_disable(char *str)
651 {
652 	cpu_smt_disable(str && !strcmp(str, "force"));
653 	return 0;
654 }
655 early_param("nosmt", smt_cmdline_disable);
656 
657 /*
658  * For Archicture supporting partial SMT states check if the thread is allowed.
659  * Otherwise this has already been checked through cpu_smt_max_threads when
660  * setting the SMT level.
661  */
662 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
663 {
664 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
665 	return topology_smt_thread_allowed(cpu);
666 #else
667 	return true;
668 #endif
669 }
670 
671 static inline bool cpu_bootable(unsigned int cpu)
672 {
673 	if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
674 		return true;
675 
676 	/* All CPUs are bootable if controls are not configured */
677 	if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
678 		return true;
679 
680 	/* All CPUs are bootable if CPU is not SMT capable */
681 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
682 		return true;
683 
684 	if (topology_is_primary_thread(cpu))
685 		return true;
686 
687 	/*
688 	 * On x86 it's required to boot all logical CPUs at least once so
689 	 * that the init code can get a chance to set CR4.MCE on each
690 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
691 	 * core will shutdown the machine.
692 	 */
693 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
694 }
695 
696 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
697 bool cpu_smt_possible(void)
698 {
699 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
700 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
701 }
702 EXPORT_SYMBOL_GPL(cpu_smt_possible);
703 
704 #else
705 static inline bool cpu_bootable(unsigned int cpu) { return true; }
706 #endif
707 
708 static inline enum cpuhp_state
709 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
710 {
711 	enum cpuhp_state prev_state = st->state;
712 	bool bringup = st->state < target;
713 
714 	st->rollback = false;
715 	st->last = NULL;
716 
717 	st->target = target;
718 	st->single = false;
719 	st->bringup = bringup;
720 	if (cpu_dying(cpu) != !bringup)
721 		set_cpu_dying(cpu, !bringup);
722 
723 	return prev_state;
724 }
725 
726 static inline void
727 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
728 		  enum cpuhp_state prev_state)
729 {
730 	bool bringup = !st->bringup;
731 
732 	st->target = prev_state;
733 
734 	/*
735 	 * Already rolling back. No need invert the bringup value or to change
736 	 * the current state.
737 	 */
738 	if (st->rollback)
739 		return;
740 
741 	st->rollback = true;
742 
743 	/*
744 	 * If we have st->last we need to undo partial multi_instance of this
745 	 * state first. Otherwise start undo at the previous state.
746 	 */
747 	if (!st->last) {
748 		if (st->bringup)
749 			st->state--;
750 		else
751 			st->state++;
752 	}
753 
754 	st->bringup = bringup;
755 	if (cpu_dying(cpu) != !bringup)
756 		set_cpu_dying(cpu, !bringup);
757 }
758 
759 /* Regular hotplug invocation of the AP hotplug thread */
760 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
761 {
762 	if (!st->single && st->state == st->target)
763 		return;
764 
765 	st->result = 0;
766 	/*
767 	 * Make sure the above stores are visible before should_run becomes
768 	 * true. Paired with the mb() above in cpuhp_thread_fun()
769 	 */
770 	smp_mb();
771 	st->should_run = true;
772 	wake_up_process(st->thread);
773 	wait_for_ap_thread(st, st->bringup);
774 }
775 
776 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
777 			 enum cpuhp_state target)
778 {
779 	enum cpuhp_state prev_state;
780 	int ret;
781 
782 	prev_state = cpuhp_set_state(cpu, st, target);
783 	__cpuhp_kick_ap(st);
784 	if ((ret = st->result)) {
785 		cpuhp_reset_state(cpu, st, prev_state);
786 		__cpuhp_kick_ap(st);
787 	}
788 
789 	return ret;
790 }
791 
792 static int bringup_wait_for_ap_online(unsigned int cpu)
793 {
794 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
795 
796 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
797 	wait_for_ap_thread(st, true);
798 	if (WARN_ON_ONCE((!cpu_online(cpu))))
799 		return -ECANCELED;
800 
801 	/* Unpark the hotplug thread of the target cpu */
802 	kthread_unpark(st->thread);
803 
804 	/*
805 	 * SMT soft disabling on X86 requires to bring the CPU out of the
806 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
807 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
808 	 * cpu_bootable() check will now return false if this is not the
809 	 * primary sibling.
810 	 */
811 	if (!cpu_bootable(cpu))
812 		return -ECANCELED;
813 	return 0;
814 }
815 
816 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
817 static int cpuhp_kick_ap_alive(unsigned int cpu)
818 {
819 	if (!cpuhp_can_boot_ap(cpu))
820 		return -EAGAIN;
821 
822 	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
823 }
824 
825 static int cpuhp_bringup_ap(unsigned int cpu)
826 {
827 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
828 	int ret;
829 
830 	/*
831 	 * Some architectures have to walk the irq descriptors to
832 	 * setup the vector space for the cpu which comes online.
833 	 * Prevent irq alloc/free across the bringup.
834 	 */
835 	irq_lock_sparse();
836 
837 	ret = cpuhp_bp_sync_alive(cpu);
838 	if (ret)
839 		goto out_unlock;
840 
841 	ret = bringup_wait_for_ap_online(cpu);
842 	if (ret)
843 		goto out_unlock;
844 
845 	irq_unlock_sparse();
846 
847 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
848 		return 0;
849 
850 	return cpuhp_kick_ap(cpu, st, st->target);
851 
852 out_unlock:
853 	irq_unlock_sparse();
854 	return ret;
855 }
856 #else
857 static int bringup_cpu(unsigned int cpu)
858 {
859 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
860 	struct task_struct *idle = idle_thread_get(cpu);
861 	int ret;
862 
863 	if (!cpuhp_can_boot_ap(cpu))
864 		return -EAGAIN;
865 
866 	/*
867 	 * Some architectures have to walk the irq descriptors to
868 	 * setup the vector space for the cpu which comes online.
869 	 *
870 	 * Prevent irq alloc/free across the bringup by acquiring the
871 	 * sparse irq lock. Hold it until the upcoming CPU completes the
872 	 * startup in cpuhp_online_idle() which allows to avoid
873 	 * intermediate synchronization points in the architecture code.
874 	 */
875 	irq_lock_sparse();
876 
877 	ret = __cpu_up(cpu, idle);
878 	if (ret)
879 		goto out_unlock;
880 
881 	ret = cpuhp_bp_sync_alive(cpu);
882 	if (ret)
883 		goto out_unlock;
884 
885 	ret = bringup_wait_for_ap_online(cpu);
886 	if (ret)
887 		goto out_unlock;
888 
889 	irq_unlock_sparse();
890 
891 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
892 		return 0;
893 
894 	return cpuhp_kick_ap(cpu, st, st->target);
895 
896 out_unlock:
897 	irq_unlock_sparse();
898 	return ret;
899 }
900 #endif
901 
902 static int finish_cpu(unsigned int cpu)
903 {
904 	struct task_struct *idle = idle_thread_get(cpu);
905 	struct mm_struct *mm = idle->active_mm;
906 
907 	/*
908 	 * idle_task_exit() will have switched to &init_mm, now
909 	 * clean up any remaining active_mm state.
910 	 */
911 	if (mm != &init_mm)
912 		idle->active_mm = &init_mm;
913 	mmdrop_lazy_tlb(mm);
914 	return 0;
915 }
916 
917 /*
918  * Hotplug state machine related functions
919  */
920 
921 /*
922  * Get the next state to run. Empty ones will be skipped. Returns true if a
923  * state must be run.
924  *
925  * st->state will be modified ahead of time, to match state_to_run, as if it
926  * has already ran.
927  */
928 static bool cpuhp_next_state(bool bringup,
929 			     enum cpuhp_state *state_to_run,
930 			     struct cpuhp_cpu_state *st,
931 			     enum cpuhp_state target)
932 {
933 	do {
934 		if (bringup) {
935 			if (st->state >= target)
936 				return false;
937 
938 			*state_to_run = ++st->state;
939 		} else {
940 			if (st->state <= target)
941 				return false;
942 
943 			*state_to_run = st->state--;
944 		}
945 
946 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
947 			break;
948 	} while (true);
949 
950 	return true;
951 }
952 
953 static int __cpuhp_invoke_callback_range(bool bringup,
954 					 unsigned int cpu,
955 					 struct cpuhp_cpu_state *st,
956 					 enum cpuhp_state target,
957 					 bool nofail)
958 {
959 	enum cpuhp_state state;
960 	int ret = 0;
961 
962 	while (cpuhp_next_state(bringup, &state, st, target)) {
963 		int err;
964 
965 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
966 		if (!err)
967 			continue;
968 
969 		if (nofail) {
970 			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
971 				cpu, bringup ? "UP" : "DOWN",
972 				cpuhp_get_step(st->state)->name,
973 				st->state, err);
974 			ret = -1;
975 		} else {
976 			ret = err;
977 			break;
978 		}
979 	}
980 
981 	return ret;
982 }
983 
984 static inline int cpuhp_invoke_callback_range(bool bringup,
985 					      unsigned int cpu,
986 					      struct cpuhp_cpu_state *st,
987 					      enum cpuhp_state target)
988 {
989 	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
990 }
991 
992 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
993 						      unsigned int cpu,
994 						      struct cpuhp_cpu_state *st,
995 						      enum cpuhp_state target)
996 {
997 	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
998 }
999 
1000 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
1001 {
1002 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
1003 		return true;
1004 	/*
1005 	 * When CPU hotplug is disabled, then taking the CPU down is not
1006 	 * possible because takedown_cpu() and the architecture and
1007 	 * subsystem specific mechanisms are not available. So the CPU
1008 	 * which would be completely unplugged again needs to stay around
1009 	 * in the current state.
1010 	 */
1011 	return st->state <= CPUHP_BRINGUP_CPU;
1012 }
1013 
1014 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1015 			      enum cpuhp_state target)
1016 {
1017 	enum cpuhp_state prev_state = st->state;
1018 	int ret = 0;
1019 
1020 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1021 	if (ret) {
1022 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1023 			 ret, cpu, cpuhp_get_step(st->state)->name,
1024 			 st->state);
1025 
1026 		cpuhp_reset_state(cpu, st, prev_state);
1027 		if (can_rollback_cpu(st))
1028 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1029 							    prev_state));
1030 	}
1031 	return ret;
1032 }
1033 
1034 /*
1035  * The cpu hotplug threads manage the bringup and teardown of the cpus
1036  */
1037 static int cpuhp_should_run(unsigned int cpu)
1038 {
1039 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1040 
1041 	return st->should_run;
1042 }
1043 
1044 /*
1045  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1046  * callbacks when a state gets [un]installed at runtime.
1047  *
1048  * Each invocation of this function by the smpboot thread does a single AP
1049  * state callback.
1050  *
1051  * It has 3 modes of operation:
1052  *  - single: runs st->cb_state
1053  *  - up:     runs ++st->state, while st->state < st->target
1054  *  - down:   runs st->state--, while st->state > st->target
1055  *
1056  * When complete or on error, should_run is cleared and the completion is fired.
1057  */
1058 static void cpuhp_thread_fun(unsigned int cpu)
1059 {
1060 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1061 	bool bringup = st->bringup;
1062 	enum cpuhp_state state;
1063 
1064 	if (WARN_ON_ONCE(!st->should_run))
1065 		return;
1066 
1067 	/*
1068 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1069 	 * that if we see ->should_run we also see the rest of the state.
1070 	 */
1071 	smp_mb();
1072 
1073 	/*
1074 	 * The BP holds the hotplug lock, but we're now running on the AP,
1075 	 * ensure that anybody asserting the lock is held, will actually find
1076 	 * it so.
1077 	 */
1078 	lockdep_acquire_cpus_lock();
1079 	cpuhp_lock_acquire(bringup);
1080 
1081 	if (st->single) {
1082 		state = st->cb_state;
1083 		st->should_run = false;
1084 	} else {
1085 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1086 		if (!st->should_run)
1087 			goto end;
1088 	}
1089 
1090 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1091 
1092 	if (cpuhp_is_atomic_state(state)) {
1093 		local_irq_disable();
1094 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1095 		local_irq_enable();
1096 
1097 		/*
1098 		 * STARTING/DYING must not fail!
1099 		 */
1100 		WARN_ON_ONCE(st->result);
1101 	} else {
1102 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1103 	}
1104 
1105 	if (st->result) {
1106 		/*
1107 		 * If we fail on a rollback, we're up a creek without no
1108 		 * paddle, no way forward, no way back. We loose, thanks for
1109 		 * playing.
1110 		 */
1111 		WARN_ON_ONCE(st->rollback);
1112 		st->should_run = false;
1113 	}
1114 
1115 end:
1116 	cpuhp_lock_release(bringup);
1117 	lockdep_release_cpus_lock();
1118 
1119 	if (!st->should_run)
1120 		complete_ap_thread(st, bringup);
1121 }
1122 
1123 /* Invoke a single callback on a remote cpu */
1124 static int
1125 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1126 			 struct hlist_node *node)
1127 {
1128 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1129 	int ret;
1130 
1131 	if (!cpu_online(cpu))
1132 		return 0;
1133 
1134 	cpuhp_lock_acquire(false);
1135 	cpuhp_lock_release(false);
1136 
1137 	cpuhp_lock_acquire(true);
1138 	cpuhp_lock_release(true);
1139 
1140 	/*
1141 	 * If we are up and running, use the hotplug thread. For early calls
1142 	 * we invoke the thread function directly.
1143 	 */
1144 	if (!st->thread)
1145 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1146 
1147 	st->rollback = false;
1148 	st->last = NULL;
1149 
1150 	st->node = node;
1151 	st->bringup = bringup;
1152 	st->cb_state = state;
1153 	st->single = true;
1154 
1155 	__cpuhp_kick_ap(st);
1156 
1157 	/*
1158 	 * If we failed and did a partial, do a rollback.
1159 	 */
1160 	if ((ret = st->result) && st->last) {
1161 		st->rollback = true;
1162 		st->bringup = !bringup;
1163 
1164 		__cpuhp_kick_ap(st);
1165 	}
1166 
1167 	/*
1168 	 * Clean up the leftovers so the next hotplug operation wont use stale
1169 	 * data.
1170 	 */
1171 	st->node = st->last = NULL;
1172 	return ret;
1173 }
1174 
1175 static int cpuhp_kick_ap_work(unsigned int cpu)
1176 {
1177 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1178 	enum cpuhp_state prev_state = st->state;
1179 	int ret;
1180 
1181 	cpuhp_lock_acquire(false);
1182 	cpuhp_lock_release(false);
1183 
1184 	cpuhp_lock_acquire(true);
1185 	cpuhp_lock_release(true);
1186 
1187 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1188 	ret = cpuhp_kick_ap(cpu, st, st->target);
1189 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1190 
1191 	return ret;
1192 }
1193 
1194 static struct smp_hotplug_thread cpuhp_threads = {
1195 	.store			= &cpuhp_state.thread,
1196 	.thread_should_run	= cpuhp_should_run,
1197 	.thread_fn		= cpuhp_thread_fun,
1198 	.thread_comm		= "cpuhp/%u",
1199 	.selfparking		= true,
1200 };
1201 
1202 static __init void cpuhp_init_state(void)
1203 {
1204 	struct cpuhp_cpu_state *st;
1205 	int cpu;
1206 
1207 	for_each_possible_cpu(cpu) {
1208 		st = per_cpu_ptr(&cpuhp_state, cpu);
1209 		init_completion(&st->done_up);
1210 		init_completion(&st->done_down);
1211 	}
1212 }
1213 
1214 void __init cpuhp_threads_init(void)
1215 {
1216 	cpuhp_init_state();
1217 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1218 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
1219 }
1220 
1221 #ifdef CONFIG_HOTPLUG_CPU
1222 #ifndef arch_clear_mm_cpumask_cpu
1223 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1224 #endif
1225 
1226 /**
1227  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1228  * @cpu: a CPU id
1229  *
1230  * This function walks all processes, finds a valid mm struct for each one and
1231  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1232  * trivial, there are various non-obvious corner cases, which this function
1233  * tries to solve in a safe manner.
1234  *
1235  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1236  * be called only for an already offlined CPU.
1237  */
1238 void clear_tasks_mm_cpumask(int cpu)
1239 {
1240 	struct task_struct *p;
1241 
1242 	/*
1243 	 * This function is called after the cpu is taken down and marked
1244 	 * offline, so its not like new tasks will ever get this cpu set in
1245 	 * their mm mask. -- Peter Zijlstra
1246 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
1247 	 * full-fledged tasklist_lock.
1248 	 */
1249 	WARN_ON(cpu_online(cpu));
1250 	rcu_read_lock();
1251 	for_each_process(p) {
1252 		struct task_struct *t;
1253 
1254 		/*
1255 		 * Main thread might exit, but other threads may still have
1256 		 * a valid mm. Find one.
1257 		 */
1258 		t = find_lock_task_mm(p);
1259 		if (!t)
1260 			continue;
1261 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
1262 		task_unlock(t);
1263 	}
1264 	rcu_read_unlock();
1265 }
1266 
1267 /* Take this CPU down. */
1268 static int take_cpu_down(void *_param)
1269 {
1270 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1271 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1272 	int err, cpu = smp_processor_id();
1273 
1274 	/* Ensure this CPU doesn't handle any more interrupts. */
1275 	err = __cpu_disable();
1276 	if (err < 0)
1277 		return err;
1278 
1279 	/*
1280 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1281 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1282 	 */
1283 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1284 
1285 	/*
1286 	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1287 	 */
1288 	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1289 
1290 	/* Park the stopper thread */
1291 	stop_machine_park(cpu);
1292 	return 0;
1293 }
1294 
1295 static int takedown_cpu(unsigned int cpu)
1296 {
1297 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1298 	int err;
1299 
1300 	/* Park the smpboot threads */
1301 	kthread_park(st->thread);
1302 
1303 	/*
1304 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1305 	 * interrupt affinities.
1306 	 */
1307 	irq_lock_sparse();
1308 
1309 	/*
1310 	 * So now all preempt/rcu users must observe !cpu_active().
1311 	 */
1312 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1313 	if (err) {
1314 		/* CPU refused to die */
1315 		irq_unlock_sparse();
1316 		/* Unpark the hotplug thread so we can rollback there */
1317 		kthread_unpark(st->thread);
1318 		return err;
1319 	}
1320 	BUG_ON(cpu_online(cpu));
1321 
1322 	/*
1323 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1324 	 * all runnable tasks from the CPU, there's only the idle task left now
1325 	 * that the migration thread is done doing the stop_machine thing.
1326 	 *
1327 	 * Wait for the stop thread to go away.
1328 	 */
1329 	wait_for_ap_thread(st, false);
1330 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1331 
1332 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1333 	irq_unlock_sparse();
1334 
1335 	hotplug_cpu__broadcast_tick_pull(cpu);
1336 	/* This actually kills the CPU. */
1337 	__cpu_die(cpu);
1338 
1339 	cpuhp_bp_sync_dead(cpu);
1340 
1341 	/*
1342 	 * Callbacks must be re-integrated right away to the RCU state machine.
1343 	 * Otherwise an RCU callback could block a further teardown function
1344 	 * waiting for its completion.
1345 	 */
1346 	rcutree_migrate_callbacks(cpu);
1347 
1348 	return 0;
1349 }
1350 
1351 static void cpuhp_complete_idle_dead(void *arg)
1352 {
1353 	struct cpuhp_cpu_state *st = arg;
1354 
1355 	complete_ap_thread(st, false);
1356 }
1357 
1358 void cpuhp_report_idle_dead(void)
1359 {
1360 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1361 
1362 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1363 	tick_assert_timekeeping_handover();
1364 	rcutree_report_cpu_dead();
1365 	st->state = CPUHP_AP_IDLE_DEAD;
1366 	/*
1367 	 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1368 	 * to an online cpu.
1369 	 */
1370 	smp_call_function_single(cpumask_first(cpu_online_mask),
1371 				 cpuhp_complete_idle_dead, st, 0);
1372 }
1373 
1374 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1375 				enum cpuhp_state target)
1376 {
1377 	enum cpuhp_state prev_state = st->state;
1378 	int ret = 0;
1379 
1380 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1381 	if (ret) {
1382 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1383 			 ret, cpu, cpuhp_get_step(st->state)->name,
1384 			 st->state);
1385 
1386 		cpuhp_reset_state(cpu, st, prev_state);
1387 
1388 		if (st->state < prev_state)
1389 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1390 							    prev_state));
1391 	}
1392 
1393 	return ret;
1394 }
1395 
1396 /* Requires cpu_add_remove_lock to be held */
1397 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1398 			   enum cpuhp_state target)
1399 {
1400 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1401 	int prev_state, ret = 0;
1402 
1403 	if (num_online_cpus() == 1)
1404 		return -EBUSY;
1405 
1406 	if (!cpu_present(cpu))
1407 		return -EINVAL;
1408 
1409 	cpus_write_lock();
1410 
1411 	cpuhp_tasks_frozen = tasks_frozen;
1412 
1413 	prev_state = cpuhp_set_state(cpu, st, target);
1414 	/*
1415 	 * If the current CPU state is in the range of the AP hotplug thread,
1416 	 * then we need to kick the thread.
1417 	 */
1418 	if (st->state > CPUHP_TEARDOWN_CPU) {
1419 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1420 		ret = cpuhp_kick_ap_work(cpu);
1421 		/*
1422 		 * The AP side has done the error rollback already. Just
1423 		 * return the error code..
1424 		 */
1425 		if (ret)
1426 			goto out;
1427 
1428 		/*
1429 		 * We might have stopped still in the range of the AP hotplug
1430 		 * thread. Nothing to do anymore.
1431 		 */
1432 		if (st->state > CPUHP_TEARDOWN_CPU)
1433 			goto out;
1434 
1435 		st->target = target;
1436 	}
1437 	/*
1438 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1439 	 * to do the further cleanups.
1440 	 */
1441 	ret = cpuhp_down_callbacks(cpu, st, target);
1442 	if (ret && st->state < prev_state) {
1443 		if (st->state == CPUHP_TEARDOWN_CPU) {
1444 			cpuhp_reset_state(cpu, st, prev_state);
1445 			__cpuhp_kick_ap(st);
1446 		} else {
1447 			WARN(1, "DEAD callback error for CPU%d", cpu);
1448 		}
1449 	}
1450 
1451 out:
1452 	cpus_write_unlock();
1453 	/*
1454 	 * Do post unplug cleanup. This is still protected against
1455 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1456 	 */
1457 	lockup_detector_cleanup();
1458 	arch_smt_update();
1459 	return ret;
1460 }
1461 
1462 struct cpu_down_work {
1463 	unsigned int		cpu;
1464 	enum cpuhp_state	target;
1465 };
1466 
1467 static long __cpu_down_maps_locked(void *arg)
1468 {
1469 	struct cpu_down_work *work = arg;
1470 
1471 	return _cpu_down(work->cpu, 0, work->target);
1472 }
1473 
1474 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1475 {
1476 	struct cpu_down_work work = { .cpu = cpu, .target = target, };
1477 
1478 	/*
1479 	 * If the platform does not support hotplug, report it explicitly to
1480 	 * differentiate it from a transient offlining failure.
1481 	 */
1482 	if (cpu_hotplug_offline_disabled)
1483 		return -EOPNOTSUPP;
1484 	if (cpu_hotplug_disabled)
1485 		return -EBUSY;
1486 
1487 	/*
1488 	 * Ensure that the control task does not run on the to be offlined
1489 	 * CPU to prevent a deadlock against cfs_b->period_timer.
1490 	 * Also keep at least one housekeeping cpu onlined to avoid generating
1491 	 * an empty sched_domain span.
1492 	 */
1493 	for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1494 		if (cpu != work.cpu)
1495 			return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1496 	}
1497 	return -EBUSY;
1498 }
1499 
1500 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1501 {
1502 	int err;
1503 
1504 	cpu_maps_update_begin();
1505 	err = cpu_down_maps_locked(cpu, target);
1506 	cpu_maps_update_done();
1507 	return err;
1508 }
1509 
1510 /**
1511  * cpu_device_down - Bring down a cpu device
1512  * @dev: Pointer to the cpu device to offline
1513  *
1514  * This function is meant to be used by device core cpu subsystem only.
1515  *
1516  * Other subsystems should use remove_cpu() instead.
1517  *
1518  * Return: %0 on success or a negative errno code
1519  */
1520 int cpu_device_down(struct device *dev)
1521 {
1522 	return cpu_down(dev->id, CPUHP_OFFLINE);
1523 }
1524 
1525 int remove_cpu(unsigned int cpu)
1526 {
1527 	int ret;
1528 
1529 	lock_device_hotplug();
1530 	ret = device_offline(get_cpu_device(cpu));
1531 	unlock_device_hotplug();
1532 
1533 	return ret;
1534 }
1535 EXPORT_SYMBOL_GPL(remove_cpu);
1536 
1537 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1538 {
1539 	unsigned int cpu;
1540 	int error;
1541 
1542 	cpu_maps_update_begin();
1543 
1544 	/*
1545 	 * Make certain the cpu I'm about to reboot on is online.
1546 	 *
1547 	 * This is inline to what migrate_to_reboot_cpu() already do.
1548 	 */
1549 	if (!cpu_online(primary_cpu))
1550 		primary_cpu = cpumask_first(cpu_online_mask);
1551 
1552 	for_each_online_cpu(cpu) {
1553 		if (cpu == primary_cpu)
1554 			continue;
1555 
1556 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1557 		if (error) {
1558 			pr_err("Failed to offline CPU%d - error=%d",
1559 				cpu, error);
1560 			break;
1561 		}
1562 	}
1563 
1564 	/*
1565 	 * Ensure all but the reboot CPU are offline.
1566 	 */
1567 	BUG_ON(num_online_cpus() > 1);
1568 
1569 	/*
1570 	 * Make sure the CPUs won't be enabled by someone else after this
1571 	 * point. Kexec will reboot to a new kernel shortly resetting
1572 	 * everything along the way.
1573 	 */
1574 	cpu_hotplug_disabled++;
1575 
1576 	cpu_maps_update_done();
1577 }
1578 
1579 #else
1580 #define takedown_cpu		NULL
1581 #endif /*CONFIG_HOTPLUG_CPU*/
1582 
1583 /**
1584  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1585  * @cpu: cpu that just started
1586  *
1587  * It must be called by the arch code on the new cpu, before the new cpu
1588  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1589  */
1590 void notify_cpu_starting(unsigned int cpu)
1591 {
1592 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1593 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1594 
1595 	rcutree_report_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1596 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1597 
1598 	/*
1599 	 * STARTING must not fail!
1600 	 */
1601 	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1602 }
1603 
1604 /*
1605  * Called from the idle task. Wake up the controlling task which brings the
1606  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1607  * online bringup to the hotplug thread.
1608  */
1609 void cpuhp_online_idle(enum cpuhp_state state)
1610 {
1611 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1612 
1613 	/* Happens for the boot cpu */
1614 	if (state != CPUHP_AP_ONLINE_IDLE)
1615 		return;
1616 
1617 	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1618 
1619 	/*
1620 	 * Unpark the stopper thread before we start the idle loop (and start
1621 	 * scheduling); this ensures the stopper task is always available.
1622 	 */
1623 	stop_machine_unpark(smp_processor_id());
1624 
1625 	st->state = CPUHP_AP_ONLINE_IDLE;
1626 	complete_ap_thread(st, true);
1627 }
1628 
1629 /* Requires cpu_add_remove_lock to be held */
1630 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1631 {
1632 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1633 	struct task_struct *idle;
1634 	int ret = 0;
1635 
1636 	cpus_write_lock();
1637 
1638 	if (!cpu_present(cpu)) {
1639 		ret = -EINVAL;
1640 		goto out;
1641 	}
1642 
1643 	/*
1644 	 * The caller of cpu_up() might have raced with another
1645 	 * caller. Nothing to do.
1646 	 */
1647 	if (st->state >= target)
1648 		goto out;
1649 
1650 	if (st->state == CPUHP_OFFLINE) {
1651 		/* Let it fail before we try to bring the cpu up */
1652 		idle = idle_thread_get(cpu);
1653 		if (IS_ERR(idle)) {
1654 			ret = PTR_ERR(idle);
1655 			goto out;
1656 		}
1657 
1658 		/*
1659 		 * Reset stale stack state from the last time this CPU was online.
1660 		 */
1661 		scs_task_reset(idle);
1662 		kasan_unpoison_task_stack(idle);
1663 	}
1664 
1665 	cpuhp_tasks_frozen = tasks_frozen;
1666 
1667 	cpuhp_set_state(cpu, st, target);
1668 	/*
1669 	 * If the current CPU state is in the range of the AP hotplug thread,
1670 	 * then we need to kick the thread once more.
1671 	 */
1672 	if (st->state > CPUHP_BRINGUP_CPU) {
1673 		ret = cpuhp_kick_ap_work(cpu);
1674 		/*
1675 		 * The AP side has done the error rollback already. Just
1676 		 * return the error code..
1677 		 */
1678 		if (ret)
1679 			goto out;
1680 	}
1681 
1682 	/*
1683 	 * Try to reach the target state. We max out on the BP at
1684 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1685 	 * responsible for bringing it up to the target state.
1686 	 */
1687 	target = min((int)target, CPUHP_BRINGUP_CPU);
1688 	ret = cpuhp_up_callbacks(cpu, st, target);
1689 out:
1690 	cpus_write_unlock();
1691 	arch_smt_update();
1692 	return ret;
1693 }
1694 
1695 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1696 {
1697 	int err = 0;
1698 
1699 	if (!cpu_possible(cpu)) {
1700 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1701 		       cpu);
1702 		return -EINVAL;
1703 	}
1704 
1705 	err = try_online_node(cpu_to_node(cpu));
1706 	if (err)
1707 		return err;
1708 
1709 	cpu_maps_update_begin();
1710 
1711 	if (cpu_hotplug_disabled) {
1712 		err = -EBUSY;
1713 		goto out;
1714 	}
1715 	if (!cpu_bootable(cpu)) {
1716 		err = -EPERM;
1717 		goto out;
1718 	}
1719 
1720 	err = _cpu_up(cpu, 0, target);
1721 out:
1722 	cpu_maps_update_done();
1723 	return err;
1724 }
1725 
1726 /**
1727  * cpu_device_up - Bring up a cpu device
1728  * @dev: Pointer to the cpu device to online
1729  *
1730  * This function is meant to be used by device core cpu subsystem only.
1731  *
1732  * Other subsystems should use add_cpu() instead.
1733  *
1734  * Return: %0 on success or a negative errno code
1735  */
1736 int cpu_device_up(struct device *dev)
1737 {
1738 	return cpu_up(dev->id, CPUHP_ONLINE);
1739 }
1740 
1741 int add_cpu(unsigned int cpu)
1742 {
1743 	int ret;
1744 
1745 	lock_device_hotplug();
1746 	ret = device_online(get_cpu_device(cpu));
1747 	unlock_device_hotplug();
1748 
1749 	return ret;
1750 }
1751 EXPORT_SYMBOL_GPL(add_cpu);
1752 
1753 /**
1754  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1755  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1756  *
1757  * On some architectures like arm64, we can hibernate on any CPU, but on
1758  * wake up the CPU we hibernated on might be offline as a side effect of
1759  * using maxcpus= for example.
1760  *
1761  * Return: %0 on success or a negative errno code
1762  */
1763 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1764 {
1765 	int ret;
1766 
1767 	if (!cpu_online(sleep_cpu)) {
1768 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1769 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1770 		if (ret) {
1771 			pr_err("Failed to bring hibernate-CPU up!\n");
1772 			return ret;
1773 		}
1774 	}
1775 	return 0;
1776 }
1777 
1778 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1779 				      enum cpuhp_state target)
1780 {
1781 	unsigned int cpu;
1782 
1783 	for_each_cpu(cpu, mask) {
1784 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1785 
1786 		if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1787 			/*
1788 			 * If this failed then cpu_up() might have only
1789 			 * rolled back to CPUHP_BP_KICK_AP for the final
1790 			 * online. Clean it up. NOOP if already rolled back.
1791 			 */
1792 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1793 		}
1794 
1795 		if (!--ncpus)
1796 			break;
1797 	}
1798 }
1799 
1800 #ifdef CONFIG_HOTPLUG_PARALLEL
1801 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1802 
1803 static int __init parallel_bringup_parse_param(char *arg)
1804 {
1805 	return kstrtobool(arg, &__cpuhp_parallel_bringup);
1806 }
1807 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1808 
1809 #ifdef CONFIG_HOTPLUG_SMT
1810 static inline bool cpuhp_smt_aware(void)
1811 {
1812 	return cpu_smt_max_threads > 1;
1813 }
1814 
1815 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1816 {
1817 	return cpu_primary_thread_mask;
1818 }
1819 #else
1820 static inline bool cpuhp_smt_aware(void)
1821 {
1822 	return false;
1823 }
1824 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1825 {
1826 	return cpu_none_mask;
1827 }
1828 #endif
1829 
1830 bool __weak arch_cpuhp_init_parallel_bringup(void)
1831 {
1832 	return true;
1833 }
1834 
1835 /*
1836  * On architectures which have enabled parallel bringup this invokes all BP
1837  * prepare states for each of the to be onlined APs first. The last state
1838  * sends the startup IPI to the APs. The APs proceed through the low level
1839  * bringup code in parallel and then wait for the control CPU to release
1840  * them one by one for the final onlining procedure.
1841  *
1842  * This avoids waiting for each AP to respond to the startup IPI in
1843  * CPUHP_BRINGUP_CPU.
1844  */
1845 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1846 {
1847 	const struct cpumask *mask = cpu_present_mask;
1848 
1849 	if (__cpuhp_parallel_bringup)
1850 		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1851 	if (!__cpuhp_parallel_bringup)
1852 		return false;
1853 
1854 	if (cpuhp_smt_aware()) {
1855 		const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1856 		static struct cpumask tmp_mask __initdata;
1857 
1858 		/*
1859 		 * X86 requires to prevent that SMT siblings stopped while
1860 		 * the primary thread does a microcode update for various
1861 		 * reasons. Bring the primary threads up first.
1862 		 */
1863 		cpumask_and(&tmp_mask, mask, pmask);
1864 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1865 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1866 		/* Account for the online CPUs */
1867 		ncpus -= num_online_cpus();
1868 		if (!ncpus)
1869 			return true;
1870 		/* Create the mask for secondary CPUs */
1871 		cpumask_andnot(&tmp_mask, mask, pmask);
1872 		mask = &tmp_mask;
1873 	}
1874 
1875 	/* Bring the not-yet started CPUs up */
1876 	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1877 	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1878 	return true;
1879 }
1880 #else
1881 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1882 #endif /* CONFIG_HOTPLUG_PARALLEL */
1883 
1884 void __init bringup_nonboot_cpus(unsigned int max_cpus)
1885 {
1886 	if (!max_cpus)
1887 		return;
1888 
1889 	/* Try parallel bringup optimization if enabled */
1890 	if (cpuhp_bringup_cpus_parallel(max_cpus))
1891 		return;
1892 
1893 	/* Full per CPU serialized bringup */
1894 	cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
1895 }
1896 
1897 #ifdef CONFIG_PM_SLEEP_SMP
1898 static cpumask_var_t frozen_cpus;
1899 
1900 int freeze_secondary_cpus(int primary)
1901 {
1902 	int cpu, error = 0;
1903 
1904 	cpu_maps_update_begin();
1905 	if (primary == -1) {
1906 		primary = cpumask_first(cpu_online_mask);
1907 		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1908 			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1909 	} else {
1910 		if (!cpu_online(primary))
1911 			primary = cpumask_first(cpu_online_mask);
1912 	}
1913 
1914 	/*
1915 	 * We take down all of the non-boot CPUs in one shot to avoid races
1916 	 * with the userspace trying to use the CPU hotplug at the same time
1917 	 */
1918 	cpumask_clear(frozen_cpus);
1919 
1920 	pr_info("Disabling non-boot CPUs ...\n");
1921 	for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) {
1922 		if (!cpu_online(cpu) || cpu == primary)
1923 			continue;
1924 
1925 		if (pm_wakeup_pending()) {
1926 			pr_info("Wakeup pending. Abort CPU freeze\n");
1927 			error = -EBUSY;
1928 			break;
1929 		}
1930 
1931 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1932 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1933 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1934 		if (!error)
1935 			cpumask_set_cpu(cpu, frozen_cpus);
1936 		else {
1937 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1938 			break;
1939 		}
1940 	}
1941 
1942 	if (!error)
1943 		BUG_ON(num_online_cpus() > 1);
1944 	else
1945 		pr_err("Non-boot CPUs are not disabled\n");
1946 
1947 	/*
1948 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1949 	 * this even in case of failure as all freeze_secondary_cpus() users are
1950 	 * supposed to do thaw_secondary_cpus() on the failure path.
1951 	 */
1952 	cpu_hotplug_disabled++;
1953 
1954 	cpu_maps_update_done();
1955 	return error;
1956 }
1957 
1958 void __weak arch_thaw_secondary_cpus_begin(void)
1959 {
1960 }
1961 
1962 void __weak arch_thaw_secondary_cpus_end(void)
1963 {
1964 }
1965 
1966 void thaw_secondary_cpus(void)
1967 {
1968 	int cpu, error;
1969 
1970 	/* Allow everyone to use the CPU hotplug again */
1971 	cpu_maps_update_begin();
1972 	__cpu_hotplug_enable();
1973 	if (cpumask_empty(frozen_cpus))
1974 		goto out;
1975 
1976 	pr_info("Enabling non-boot CPUs ...\n");
1977 
1978 	arch_thaw_secondary_cpus_begin();
1979 
1980 	for_each_cpu(cpu, frozen_cpus) {
1981 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1982 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1983 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1984 		if (!error) {
1985 			pr_info("CPU%d is up\n", cpu);
1986 			continue;
1987 		}
1988 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1989 	}
1990 
1991 	arch_thaw_secondary_cpus_end();
1992 
1993 	cpumask_clear(frozen_cpus);
1994 out:
1995 	cpu_maps_update_done();
1996 }
1997 
1998 static int __init alloc_frozen_cpus(void)
1999 {
2000 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2001 		return -ENOMEM;
2002 	return 0;
2003 }
2004 core_initcall(alloc_frozen_cpus);
2005 
2006 /*
2007  * When callbacks for CPU hotplug notifications are being executed, we must
2008  * ensure that the state of the system with respect to the tasks being frozen
2009  * or not, as reported by the notification, remains unchanged *throughout the
2010  * duration* of the execution of the callbacks.
2011  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2012  *
2013  * This synchronization is implemented by mutually excluding regular CPU
2014  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2015  * Hibernate notifications.
2016  */
2017 static int
2018 cpu_hotplug_pm_callback(struct notifier_block *nb,
2019 			unsigned long action, void *ptr)
2020 {
2021 	switch (action) {
2022 
2023 	case PM_SUSPEND_PREPARE:
2024 	case PM_HIBERNATION_PREPARE:
2025 		cpu_hotplug_disable();
2026 		break;
2027 
2028 	case PM_POST_SUSPEND:
2029 	case PM_POST_HIBERNATION:
2030 		cpu_hotplug_enable();
2031 		break;
2032 
2033 	default:
2034 		return NOTIFY_DONE;
2035 	}
2036 
2037 	return NOTIFY_OK;
2038 }
2039 
2040 
2041 static int __init cpu_hotplug_pm_sync_init(void)
2042 {
2043 	/*
2044 	 * cpu_hotplug_pm_callback has higher priority than x86
2045 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2046 	 * to disable cpu hotplug to avoid cpu hotplug race.
2047 	 */
2048 	pm_notifier(cpu_hotplug_pm_callback, 0);
2049 	return 0;
2050 }
2051 core_initcall(cpu_hotplug_pm_sync_init);
2052 
2053 #endif /* CONFIG_PM_SLEEP_SMP */
2054 
2055 int __boot_cpu_id;
2056 
2057 #endif /* CONFIG_SMP */
2058 
2059 /* Boot processor state steps */
2060 static struct cpuhp_step cpuhp_hp_states[] = {
2061 	[CPUHP_OFFLINE] = {
2062 		.name			= "offline",
2063 		.startup.single		= NULL,
2064 		.teardown.single	= NULL,
2065 	},
2066 #ifdef CONFIG_SMP
2067 	[CPUHP_CREATE_THREADS]= {
2068 		.name			= "threads:prepare",
2069 		.startup.single		= smpboot_create_threads,
2070 		.teardown.single	= NULL,
2071 		.cant_stop		= true,
2072 	},
2073 	[CPUHP_PERF_PREPARE] = {
2074 		.name			= "perf:prepare",
2075 		.startup.single		= perf_event_init_cpu,
2076 		.teardown.single	= perf_event_exit_cpu,
2077 	},
2078 	[CPUHP_RANDOM_PREPARE] = {
2079 		.name			= "random:prepare",
2080 		.startup.single		= random_prepare_cpu,
2081 		.teardown.single	= NULL,
2082 	},
2083 	[CPUHP_WORKQUEUE_PREP] = {
2084 		.name			= "workqueue:prepare",
2085 		.startup.single		= workqueue_prepare_cpu,
2086 		.teardown.single	= NULL,
2087 	},
2088 	[CPUHP_HRTIMERS_PREPARE] = {
2089 		.name			= "hrtimers:prepare",
2090 		.startup.single		= hrtimers_prepare_cpu,
2091 		.teardown.single	= NULL,
2092 	},
2093 	[CPUHP_SMPCFD_PREPARE] = {
2094 		.name			= "smpcfd:prepare",
2095 		.startup.single		= smpcfd_prepare_cpu,
2096 		.teardown.single	= smpcfd_dead_cpu,
2097 	},
2098 	[CPUHP_RELAY_PREPARE] = {
2099 		.name			= "relay:prepare",
2100 		.startup.single		= relay_prepare_cpu,
2101 		.teardown.single	= NULL,
2102 	},
2103 	[CPUHP_RCUTREE_PREP] = {
2104 		.name			= "RCU/tree:prepare",
2105 		.startup.single		= rcutree_prepare_cpu,
2106 		.teardown.single	= rcutree_dead_cpu,
2107 	},
2108 	/*
2109 	 * On the tear-down path, timers_dead_cpu() must be invoked
2110 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
2111 	 * otherwise a RCU stall occurs.
2112 	 */
2113 	[CPUHP_TIMERS_PREPARE] = {
2114 		.name			= "timers:prepare",
2115 		.startup.single		= timers_prepare_cpu,
2116 		.teardown.single	= timers_dead_cpu,
2117 	},
2118 
2119 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2120 	/*
2121 	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2122 	 * the next step will release it.
2123 	 */
2124 	[CPUHP_BP_KICK_AP] = {
2125 		.name			= "cpu:kick_ap",
2126 		.startup.single		= cpuhp_kick_ap_alive,
2127 	},
2128 
2129 	/*
2130 	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2131 	 * releases it for the complete bringup.
2132 	 */
2133 	[CPUHP_BRINGUP_CPU] = {
2134 		.name			= "cpu:bringup",
2135 		.startup.single		= cpuhp_bringup_ap,
2136 		.teardown.single	= finish_cpu,
2137 		.cant_stop		= true,
2138 	},
2139 #else
2140 	/*
2141 	 * All-in-one CPU bringup state which includes the kick alive.
2142 	 */
2143 	[CPUHP_BRINGUP_CPU] = {
2144 		.name			= "cpu:bringup",
2145 		.startup.single		= bringup_cpu,
2146 		.teardown.single	= finish_cpu,
2147 		.cant_stop		= true,
2148 	},
2149 #endif
2150 	/* Final state before CPU kills itself */
2151 	[CPUHP_AP_IDLE_DEAD] = {
2152 		.name			= "idle:dead",
2153 	},
2154 	/*
2155 	 * Last state before CPU enters the idle loop to die. Transient state
2156 	 * for synchronization.
2157 	 */
2158 	[CPUHP_AP_OFFLINE] = {
2159 		.name			= "ap:offline",
2160 		.cant_stop		= true,
2161 	},
2162 	/* First state is scheduler control. Interrupts are disabled */
2163 	[CPUHP_AP_SCHED_STARTING] = {
2164 		.name			= "sched:starting",
2165 		.startup.single		= sched_cpu_starting,
2166 		.teardown.single	= sched_cpu_dying,
2167 	},
2168 	[CPUHP_AP_RCUTREE_DYING] = {
2169 		.name			= "RCU/tree:dying",
2170 		.startup.single		= NULL,
2171 		.teardown.single	= rcutree_dying_cpu,
2172 	},
2173 	[CPUHP_AP_SMPCFD_DYING] = {
2174 		.name			= "smpcfd:dying",
2175 		.startup.single		= NULL,
2176 		.teardown.single	= smpcfd_dying_cpu,
2177 	},
2178 	[CPUHP_AP_HRTIMERS_DYING] = {
2179 		.name			= "hrtimers:dying",
2180 		.startup.single		= NULL,
2181 		.teardown.single	= hrtimers_cpu_dying,
2182 	},
2183 	[CPUHP_AP_TICK_DYING] = {
2184 		.name			= "tick:dying",
2185 		.startup.single		= NULL,
2186 		.teardown.single	= tick_cpu_dying,
2187 	},
2188 	/* Entry state on starting. Interrupts enabled from here on. Transient
2189 	 * state for synchronsization */
2190 	[CPUHP_AP_ONLINE] = {
2191 		.name			= "ap:online",
2192 	},
2193 	/*
2194 	 * Handled on control processor until the plugged processor manages
2195 	 * this itself.
2196 	 */
2197 	[CPUHP_TEARDOWN_CPU] = {
2198 		.name			= "cpu:teardown",
2199 		.startup.single		= NULL,
2200 		.teardown.single	= takedown_cpu,
2201 		.cant_stop		= true,
2202 	},
2203 
2204 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
2205 		.name			= "sched:waitempty",
2206 		.startup.single		= NULL,
2207 		.teardown.single	= sched_cpu_wait_empty,
2208 	},
2209 
2210 	/* Handle smpboot threads park/unpark */
2211 	[CPUHP_AP_SMPBOOT_THREADS] = {
2212 		.name			= "smpboot/threads:online",
2213 		.startup.single		= smpboot_unpark_threads,
2214 		.teardown.single	= smpboot_park_threads,
2215 	},
2216 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2217 		.name			= "irq/affinity:online",
2218 		.startup.single		= irq_affinity_online_cpu,
2219 		.teardown.single	= NULL,
2220 	},
2221 	[CPUHP_AP_PERF_ONLINE] = {
2222 		.name			= "perf:online",
2223 		.startup.single		= perf_event_init_cpu,
2224 		.teardown.single	= perf_event_exit_cpu,
2225 	},
2226 	[CPUHP_AP_WATCHDOG_ONLINE] = {
2227 		.name			= "lockup_detector:online",
2228 		.startup.single		= lockup_detector_online_cpu,
2229 		.teardown.single	= lockup_detector_offline_cpu,
2230 	},
2231 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
2232 		.name			= "workqueue:online",
2233 		.startup.single		= workqueue_online_cpu,
2234 		.teardown.single	= workqueue_offline_cpu,
2235 	},
2236 	[CPUHP_AP_RANDOM_ONLINE] = {
2237 		.name			= "random:online",
2238 		.startup.single		= random_online_cpu,
2239 		.teardown.single	= NULL,
2240 	},
2241 	[CPUHP_AP_RCUTREE_ONLINE] = {
2242 		.name			= "RCU/tree:online",
2243 		.startup.single		= rcutree_online_cpu,
2244 		.teardown.single	= rcutree_offline_cpu,
2245 	},
2246 #endif
2247 	/*
2248 	 * The dynamically registered state space is here
2249 	 */
2250 
2251 #ifdef CONFIG_SMP
2252 	/* Last state is scheduler control setting the cpu active */
2253 	[CPUHP_AP_ACTIVE] = {
2254 		.name			= "sched:active",
2255 		.startup.single		= sched_cpu_activate,
2256 		.teardown.single	= sched_cpu_deactivate,
2257 	},
2258 #endif
2259 
2260 	/* CPU is fully up and running. */
2261 	[CPUHP_ONLINE] = {
2262 		.name			= "online",
2263 		.startup.single		= NULL,
2264 		.teardown.single	= NULL,
2265 	},
2266 };
2267 
2268 /* Sanity check for callbacks */
2269 static int cpuhp_cb_check(enum cpuhp_state state)
2270 {
2271 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2272 		return -EINVAL;
2273 	return 0;
2274 }
2275 
2276 /*
2277  * Returns a free for dynamic slot assignment of the Online state. The states
2278  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2279  * by having no name assigned.
2280  */
2281 static int cpuhp_reserve_state(enum cpuhp_state state)
2282 {
2283 	enum cpuhp_state i, end;
2284 	struct cpuhp_step *step;
2285 
2286 	switch (state) {
2287 	case CPUHP_AP_ONLINE_DYN:
2288 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2289 		end = CPUHP_AP_ONLINE_DYN_END;
2290 		break;
2291 	case CPUHP_BP_PREPARE_DYN:
2292 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2293 		end = CPUHP_BP_PREPARE_DYN_END;
2294 		break;
2295 	default:
2296 		return -EINVAL;
2297 	}
2298 
2299 	for (i = state; i <= end; i++, step++) {
2300 		if (!step->name)
2301 			return i;
2302 	}
2303 	WARN(1, "No more dynamic states available for CPU hotplug\n");
2304 	return -ENOSPC;
2305 }
2306 
2307 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2308 				 int (*startup)(unsigned int cpu),
2309 				 int (*teardown)(unsigned int cpu),
2310 				 bool multi_instance)
2311 {
2312 	/* (Un)Install the callbacks for further cpu hotplug operations */
2313 	struct cpuhp_step *sp;
2314 	int ret = 0;
2315 
2316 	/*
2317 	 * If name is NULL, then the state gets removed.
2318 	 *
2319 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2320 	 * the first allocation from these dynamic ranges, so the removal
2321 	 * would trigger a new allocation and clear the wrong (already
2322 	 * empty) state, leaving the callbacks of the to be cleared state
2323 	 * dangling, which causes wreckage on the next hotplug operation.
2324 	 */
2325 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
2326 		     state == CPUHP_BP_PREPARE_DYN)) {
2327 		ret = cpuhp_reserve_state(state);
2328 		if (ret < 0)
2329 			return ret;
2330 		state = ret;
2331 	}
2332 	sp = cpuhp_get_step(state);
2333 	if (name && sp->name)
2334 		return -EBUSY;
2335 
2336 	sp->startup.single = startup;
2337 	sp->teardown.single = teardown;
2338 	sp->name = name;
2339 	sp->multi_instance = multi_instance;
2340 	INIT_HLIST_HEAD(&sp->list);
2341 	return ret;
2342 }
2343 
2344 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2345 {
2346 	return cpuhp_get_step(state)->teardown.single;
2347 }
2348 
2349 /*
2350  * Call the startup/teardown function for a step either on the AP or
2351  * on the current CPU.
2352  */
2353 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2354 			    struct hlist_node *node)
2355 {
2356 	struct cpuhp_step *sp = cpuhp_get_step(state);
2357 	int ret;
2358 
2359 	/*
2360 	 * If there's nothing to do, we done.
2361 	 * Relies on the union for multi_instance.
2362 	 */
2363 	if (cpuhp_step_empty(bringup, sp))
2364 		return 0;
2365 	/*
2366 	 * The non AP bound callbacks can fail on bringup. On teardown
2367 	 * e.g. module removal we crash for now.
2368 	 */
2369 #ifdef CONFIG_SMP
2370 	if (cpuhp_is_ap_state(state))
2371 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2372 	else
2373 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2374 #else
2375 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2376 #endif
2377 	BUG_ON(ret && !bringup);
2378 	return ret;
2379 }
2380 
2381 /*
2382  * Called from __cpuhp_setup_state on a recoverable failure.
2383  *
2384  * Note: The teardown callbacks for rollback are not allowed to fail!
2385  */
2386 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2387 				   struct hlist_node *node)
2388 {
2389 	int cpu;
2390 
2391 	/* Roll back the already executed steps on the other cpus */
2392 	for_each_present_cpu(cpu) {
2393 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2394 		int cpustate = st->state;
2395 
2396 		if (cpu >= failedcpu)
2397 			break;
2398 
2399 		/* Did we invoke the startup call on that cpu ? */
2400 		if (cpustate >= state)
2401 			cpuhp_issue_call(cpu, state, false, node);
2402 	}
2403 }
2404 
2405 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2406 					  struct hlist_node *node,
2407 					  bool invoke)
2408 {
2409 	struct cpuhp_step *sp;
2410 	int cpu;
2411 	int ret;
2412 
2413 	lockdep_assert_cpus_held();
2414 
2415 	sp = cpuhp_get_step(state);
2416 	if (sp->multi_instance == false)
2417 		return -EINVAL;
2418 
2419 	mutex_lock(&cpuhp_state_mutex);
2420 
2421 	if (!invoke || !sp->startup.multi)
2422 		goto add_node;
2423 
2424 	/*
2425 	 * Try to call the startup callback for each present cpu
2426 	 * depending on the hotplug state of the cpu.
2427 	 */
2428 	for_each_present_cpu(cpu) {
2429 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2430 		int cpustate = st->state;
2431 
2432 		if (cpustate < state)
2433 			continue;
2434 
2435 		ret = cpuhp_issue_call(cpu, state, true, node);
2436 		if (ret) {
2437 			if (sp->teardown.multi)
2438 				cpuhp_rollback_install(cpu, state, node);
2439 			goto unlock;
2440 		}
2441 	}
2442 add_node:
2443 	ret = 0;
2444 	hlist_add_head(node, &sp->list);
2445 unlock:
2446 	mutex_unlock(&cpuhp_state_mutex);
2447 	return ret;
2448 }
2449 
2450 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2451 			       bool invoke)
2452 {
2453 	int ret;
2454 
2455 	cpus_read_lock();
2456 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2457 	cpus_read_unlock();
2458 	return ret;
2459 }
2460 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2461 
2462 /**
2463  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2464  * @state:		The state to setup
2465  * @name:		Name of the step
2466  * @invoke:		If true, the startup function is invoked for cpus where
2467  *			cpu state >= @state
2468  * @startup:		startup callback function
2469  * @teardown:		teardown callback function
2470  * @multi_instance:	State is set up for multiple instances which get
2471  *			added afterwards.
2472  *
2473  * The caller needs to hold cpus read locked while calling this function.
2474  * Return:
2475  *   On success:
2476  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN;
2477  *      0 for all other states
2478  *   On failure: proper (negative) error code
2479  */
2480 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2481 				   const char *name, bool invoke,
2482 				   int (*startup)(unsigned int cpu),
2483 				   int (*teardown)(unsigned int cpu),
2484 				   bool multi_instance)
2485 {
2486 	int cpu, ret = 0;
2487 	bool dynstate;
2488 
2489 	lockdep_assert_cpus_held();
2490 
2491 	if (cpuhp_cb_check(state) || !name)
2492 		return -EINVAL;
2493 
2494 	mutex_lock(&cpuhp_state_mutex);
2495 
2496 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2497 				    multi_instance);
2498 
2499 	dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN;
2500 	if (ret > 0 && dynstate) {
2501 		state = ret;
2502 		ret = 0;
2503 	}
2504 
2505 	if (ret || !invoke || !startup)
2506 		goto out;
2507 
2508 	/*
2509 	 * Try to call the startup callback for each present cpu
2510 	 * depending on the hotplug state of the cpu.
2511 	 */
2512 	for_each_present_cpu(cpu) {
2513 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2514 		int cpustate = st->state;
2515 
2516 		if (cpustate < state)
2517 			continue;
2518 
2519 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2520 		if (ret) {
2521 			if (teardown)
2522 				cpuhp_rollback_install(cpu, state, NULL);
2523 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2524 			goto out;
2525 		}
2526 	}
2527 out:
2528 	mutex_unlock(&cpuhp_state_mutex);
2529 	/*
2530 	 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN,
2531 	 * return the dynamically allocated state in case of success.
2532 	 */
2533 	if (!ret && dynstate)
2534 		return state;
2535 	return ret;
2536 }
2537 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2538 
2539 int __cpuhp_setup_state(enum cpuhp_state state,
2540 			const char *name, bool invoke,
2541 			int (*startup)(unsigned int cpu),
2542 			int (*teardown)(unsigned int cpu),
2543 			bool multi_instance)
2544 {
2545 	int ret;
2546 
2547 	cpus_read_lock();
2548 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2549 					     teardown, multi_instance);
2550 	cpus_read_unlock();
2551 	return ret;
2552 }
2553 EXPORT_SYMBOL(__cpuhp_setup_state);
2554 
2555 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2556 				  struct hlist_node *node, bool invoke)
2557 {
2558 	struct cpuhp_step *sp = cpuhp_get_step(state);
2559 	int cpu;
2560 
2561 	BUG_ON(cpuhp_cb_check(state));
2562 
2563 	if (!sp->multi_instance)
2564 		return -EINVAL;
2565 
2566 	cpus_read_lock();
2567 	mutex_lock(&cpuhp_state_mutex);
2568 
2569 	if (!invoke || !cpuhp_get_teardown_cb(state))
2570 		goto remove;
2571 	/*
2572 	 * Call the teardown callback for each present cpu depending
2573 	 * on the hotplug state of the cpu. This function is not
2574 	 * allowed to fail currently!
2575 	 */
2576 	for_each_present_cpu(cpu) {
2577 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2578 		int cpustate = st->state;
2579 
2580 		if (cpustate >= state)
2581 			cpuhp_issue_call(cpu, state, false, node);
2582 	}
2583 
2584 remove:
2585 	hlist_del(node);
2586 	mutex_unlock(&cpuhp_state_mutex);
2587 	cpus_read_unlock();
2588 
2589 	return 0;
2590 }
2591 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2592 
2593 /**
2594  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2595  * @state:	The state to remove
2596  * @invoke:	If true, the teardown function is invoked for cpus where
2597  *		cpu state >= @state
2598  *
2599  * The caller needs to hold cpus read locked while calling this function.
2600  * The teardown callback is currently not allowed to fail. Think
2601  * about module removal!
2602  */
2603 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2604 {
2605 	struct cpuhp_step *sp = cpuhp_get_step(state);
2606 	int cpu;
2607 
2608 	BUG_ON(cpuhp_cb_check(state));
2609 
2610 	lockdep_assert_cpus_held();
2611 
2612 	mutex_lock(&cpuhp_state_mutex);
2613 	if (sp->multi_instance) {
2614 		WARN(!hlist_empty(&sp->list),
2615 		     "Error: Removing state %d which has instances left.\n",
2616 		     state);
2617 		goto remove;
2618 	}
2619 
2620 	if (!invoke || !cpuhp_get_teardown_cb(state))
2621 		goto remove;
2622 
2623 	/*
2624 	 * Call the teardown callback for each present cpu depending
2625 	 * on the hotplug state of the cpu. This function is not
2626 	 * allowed to fail currently!
2627 	 */
2628 	for_each_present_cpu(cpu) {
2629 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2630 		int cpustate = st->state;
2631 
2632 		if (cpustate >= state)
2633 			cpuhp_issue_call(cpu, state, false, NULL);
2634 	}
2635 remove:
2636 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2637 	mutex_unlock(&cpuhp_state_mutex);
2638 }
2639 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2640 
2641 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2642 {
2643 	cpus_read_lock();
2644 	__cpuhp_remove_state_cpuslocked(state, invoke);
2645 	cpus_read_unlock();
2646 }
2647 EXPORT_SYMBOL(__cpuhp_remove_state);
2648 
2649 #ifdef CONFIG_HOTPLUG_SMT
2650 static void cpuhp_offline_cpu_device(unsigned int cpu)
2651 {
2652 	struct device *dev = get_cpu_device(cpu);
2653 
2654 	dev->offline = true;
2655 	/* Tell user space about the state change */
2656 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2657 }
2658 
2659 static void cpuhp_online_cpu_device(unsigned int cpu)
2660 {
2661 	struct device *dev = get_cpu_device(cpu);
2662 
2663 	dev->offline = false;
2664 	/* Tell user space about the state change */
2665 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2666 }
2667 
2668 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2669 {
2670 	int cpu, ret = 0;
2671 
2672 	cpu_maps_update_begin();
2673 	for_each_online_cpu(cpu) {
2674 		if (topology_is_primary_thread(cpu))
2675 			continue;
2676 		/*
2677 		 * Disable can be called with CPU_SMT_ENABLED when changing
2678 		 * from a higher to lower number of SMT threads per core.
2679 		 */
2680 		if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2681 			continue;
2682 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2683 		if (ret)
2684 			break;
2685 		/*
2686 		 * As this needs to hold the cpu maps lock it's impossible
2687 		 * to call device_offline() because that ends up calling
2688 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2689 		 * needs to be held as this might race against in kernel
2690 		 * abusers of the hotplug machinery (thermal management).
2691 		 *
2692 		 * So nothing would update device:offline state. That would
2693 		 * leave the sysfs entry stale and prevent onlining after
2694 		 * smt control has been changed to 'off' again. This is
2695 		 * called under the sysfs hotplug lock, so it is properly
2696 		 * serialized against the regular offline usage.
2697 		 */
2698 		cpuhp_offline_cpu_device(cpu);
2699 	}
2700 	if (!ret)
2701 		cpu_smt_control = ctrlval;
2702 	cpu_maps_update_done();
2703 	return ret;
2704 }
2705 
2706 /* Check if the core a CPU belongs to is online */
2707 #if !defined(topology_is_core_online)
2708 static inline bool topology_is_core_online(unsigned int cpu)
2709 {
2710 	return true;
2711 }
2712 #endif
2713 
2714 int cpuhp_smt_enable(void)
2715 {
2716 	int cpu, ret = 0;
2717 
2718 	cpu_maps_update_begin();
2719 	cpu_smt_control = CPU_SMT_ENABLED;
2720 	for_each_present_cpu(cpu) {
2721 		/* Skip online CPUs and CPUs on offline nodes */
2722 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2723 			continue;
2724 		if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu))
2725 			continue;
2726 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2727 		if (ret)
2728 			break;
2729 		/* See comment in cpuhp_smt_disable() */
2730 		cpuhp_online_cpu_device(cpu);
2731 	}
2732 	cpu_maps_update_done();
2733 	return ret;
2734 }
2735 #endif
2736 
2737 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2738 static ssize_t state_show(struct device *dev,
2739 			  struct device_attribute *attr, char *buf)
2740 {
2741 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2742 
2743 	return sprintf(buf, "%d\n", st->state);
2744 }
2745 static DEVICE_ATTR_RO(state);
2746 
2747 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2748 			    const char *buf, size_t count)
2749 {
2750 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2751 	struct cpuhp_step *sp;
2752 	int target, ret;
2753 
2754 	ret = kstrtoint(buf, 10, &target);
2755 	if (ret)
2756 		return ret;
2757 
2758 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2759 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2760 		return -EINVAL;
2761 #else
2762 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2763 		return -EINVAL;
2764 #endif
2765 
2766 	ret = lock_device_hotplug_sysfs();
2767 	if (ret)
2768 		return ret;
2769 
2770 	mutex_lock(&cpuhp_state_mutex);
2771 	sp = cpuhp_get_step(target);
2772 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2773 	mutex_unlock(&cpuhp_state_mutex);
2774 	if (ret)
2775 		goto out;
2776 
2777 	if (st->state < target)
2778 		ret = cpu_up(dev->id, target);
2779 	else if (st->state > target)
2780 		ret = cpu_down(dev->id, target);
2781 	else if (WARN_ON(st->target != target))
2782 		st->target = target;
2783 out:
2784 	unlock_device_hotplug();
2785 	return ret ? ret : count;
2786 }
2787 
2788 static ssize_t target_show(struct device *dev,
2789 			   struct device_attribute *attr, char *buf)
2790 {
2791 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2792 
2793 	return sprintf(buf, "%d\n", st->target);
2794 }
2795 static DEVICE_ATTR_RW(target);
2796 
2797 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2798 			  const char *buf, size_t count)
2799 {
2800 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2801 	struct cpuhp_step *sp;
2802 	int fail, ret;
2803 
2804 	ret = kstrtoint(buf, 10, &fail);
2805 	if (ret)
2806 		return ret;
2807 
2808 	if (fail == CPUHP_INVALID) {
2809 		st->fail = fail;
2810 		return count;
2811 	}
2812 
2813 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2814 		return -EINVAL;
2815 
2816 	/*
2817 	 * Cannot fail STARTING/DYING callbacks.
2818 	 */
2819 	if (cpuhp_is_atomic_state(fail))
2820 		return -EINVAL;
2821 
2822 	/*
2823 	 * DEAD callbacks cannot fail...
2824 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2825 	 * triggering STARTING callbacks, a failure in this state would
2826 	 * hinder rollback.
2827 	 */
2828 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2829 		return -EINVAL;
2830 
2831 	/*
2832 	 * Cannot fail anything that doesn't have callbacks.
2833 	 */
2834 	mutex_lock(&cpuhp_state_mutex);
2835 	sp = cpuhp_get_step(fail);
2836 	if (!sp->startup.single && !sp->teardown.single)
2837 		ret = -EINVAL;
2838 	mutex_unlock(&cpuhp_state_mutex);
2839 	if (ret)
2840 		return ret;
2841 
2842 	st->fail = fail;
2843 
2844 	return count;
2845 }
2846 
2847 static ssize_t fail_show(struct device *dev,
2848 			 struct device_attribute *attr, char *buf)
2849 {
2850 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2851 
2852 	return sprintf(buf, "%d\n", st->fail);
2853 }
2854 
2855 static DEVICE_ATTR_RW(fail);
2856 
2857 static struct attribute *cpuhp_cpu_attrs[] = {
2858 	&dev_attr_state.attr,
2859 	&dev_attr_target.attr,
2860 	&dev_attr_fail.attr,
2861 	NULL
2862 };
2863 
2864 static const struct attribute_group cpuhp_cpu_attr_group = {
2865 	.attrs = cpuhp_cpu_attrs,
2866 	.name = "hotplug",
2867 	NULL
2868 };
2869 
2870 static ssize_t states_show(struct device *dev,
2871 				 struct device_attribute *attr, char *buf)
2872 {
2873 	ssize_t cur, res = 0;
2874 	int i;
2875 
2876 	mutex_lock(&cpuhp_state_mutex);
2877 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2878 		struct cpuhp_step *sp = cpuhp_get_step(i);
2879 
2880 		if (sp->name) {
2881 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2882 			buf += cur;
2883 			res += cur;
2884 		}
2885 	}
2886 	mutex_unlock(&cpuhp_state_mutex);
2887 	return res;
2888 }
2889 static DEVICE_ATTR_RO(states);
2890 
2891 static struct attribute *cpuhp_cpu_root_attrs[] = {
2892 	&dev_attr_states.attr,
2893 	NULL
2894 };
2895 
2896 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2897 	.attrs = cpuhp_cpu_root_attrs,
2898 	.name = "hotplug",
2899 	NULL
2900 };
2901 
2902 #ifdef CONFIG_HOTPLUG_SMT
2903 
2904 static bool cpu_smt_num_threads_valid(unsigned int threads)
2905 {
2906 	if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2907 		return threads >= 1 && threads <= cpu_smt_max_threads;
2908 	return threads == 1 || threads == cpu_smt_max_threads;
2909 }
2910 
2911 static ssize_t
2912 __store_smt_control(struct device *dev, struct device_attribute *attr,
2913 		    const char *buf, size_t count)
2914 {
2915 	int ctrlval, ret, num_threads, orig_threads;
2916 	bool force_off;
2917 
2918 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2919 		return -EPERM;
2920 
2921 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2922 		return -ENODEV;
2923 
2924 	if (sysfs_streq(buf, "on")) {
2925 		ctrlval = CPU_SMT_ENABLED;
2926 		num_threads = cpu_smt_max_threads;
2927 	} else if (sysfs_streq(buf, "off")) {
2928 		ctrlval = CPU_SMT_DISABLED;
2929 		num_threads = 1;
2930 	} else if (sysfs_streq(buf, "forceoff")) {
2931 		ctrlval = CPU_SMT_FORCE_DISABLED;
2932 		num_threads = 1;
2933 	} else if (kstrtoint(buf, 10, &num_threads) == 0) {
2934 		if (num_threads == 1)
2935 			ctrlval = CPU_SMT_DISABLED;
2936 		else if (cpu_smt_num_threads_valid(num_threads))
2937 			ctrlval = CPU_SMT_ENABLED;
2938 		else
2939 			return -EINVAL;
2940 	} else {
2941 		return -EINVAL;
2942 	}
2943 
2944 	ret = lock_device_hotplug_sysfs();
2945 	if (ret)
2946 		return ret;
2947 
2948 	orig_threads = cpu_smt_num_threads;
2949 	cpu_smt_num_threads = num_threads;
2950 
2951 	force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2952 
2953 	if (num_threads > orig_threads)
2954 		ret = cpuhp_smt_enable();
2955 	else if (num_threads < orig_threads || force_off)
2956 		ret = cpuhp_smt_disable(ctrlval);
2957 
2958 	unlock_device_hotplug();
2959 	return ret ? ret : count;
2960 }
2961 
2962 #else /* !CONFIG_HOTPLUG_SMT */
2963 static ssize_t
2964 __store_smt_control(struct device *dev, struct device_attribute *attr,
2965 		    const char *buf, size_t count)
2966 {
2967 	return -ENODEV;
2968 }
2969 #endif /* CONFIG_HOTPLUG_SMT */
2970 
2971 static const char *smt_states[] = {
2972 	[CPU_SMT_ENABLED]		= "on",
2973 	[CPU_SMT_DISABLED]		= "off",
2974 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2975 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2976 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2977 };
2978 
2979 static ssize_t control_show(struct device *dev,
2980 			    struct device_attribute *attr, char *buf)
2981 {
2982 	const char *state = smt_states[cpu_smt_control];
2983 
2984 #ifdef CONFIG_HOTPLUG_SMT
2985 	/*
2986 	 * If SMT is enabled but not all threads are enabled then show the
2987 	 * number of threads. If all threads are enabled show "on". Otherwise
2988 	 * show the state name.
2989 	 */
2990 	if (cpu_smt_control == CPU_SMT_ENABLED &&
2991 	    cpu_smt_num_threads != cpu_smt_max_threads)
2992 		return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2993 #endif
2994 
2995 	return sysfs_emit(buf, "%s\n", state);
2996 }
2997 
2998 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2999 			     const char *buf, size_t count)
3000 {
3001 	return __store_smt_control(dev, attr, buf, count);
3002 }
3003 static DEVICE_ATTR_RW(control);
3004 
3005 static ssize_t active_show(struct device *dev,
3006 			   struct device_attribute *attr, char *buf)
3007 {
3008 	return sysfs_emit(buf, "%d\n", sched_smt_active());
3009 }
3010 static DEVICE_ATTR_RO(active);
3011 
3012 static struct attribute *cpuhp_smt_attrs[] = {
3013 	&dev_attr_control.attr,
3014 	&dev_attr_active.attr,
3015 	NULL
3016 };
3017 
3018 static const struct attribute_group cpuhp_smt_attr_group = {
3019 	.attrs = cpuhp_smt_attrs,
3020 	.name = "smt",
3021 	NULL
3022 };
3023 
3024 static int __init cpu_smt_sysfs_init(void)
3025 {
3026 	struct device *dev_root;
3027 	int ret = -ENODEV;
3028 
3029 	dev_root = bus_get_dev_root(&cpu_subsys);
3030 	if (dev_root) {
3031 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3032 		put_device(dev_root);
3033 	}
3034 	return ret;
3035 }
3036 
3037 static int __init cpuhp_sysfs_init(void)
3038 {
3039 	struct device *dev_root;
3040 	int cpu, ret;
3041 
3042 	ret = cpu_smt_sysfs_init();
3043 	if (ret)
3044 		return ret;
3045 
3046 	dev_root = bus_get_dev_root(&cpu_subsys);
3047 	if (dev_root) {
3048 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3049 		put_device(dev_root);
3050 		if (ret)
3051 			return ret;
3052 	}
3053 
3054 	for_each_possible_cpu(cpu) {
3055 		struct device *dev = get_cpu_device(cpu);
3056 
3057 		if (!dev)
3058 			continue;
3059 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3060 		if (ret)
3061 			return ret;
3062 	}
3063 	return 0;
3064 }
3065 device_initcall(cpuhp_sysfs_init);
3066 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3067 
3068 /*
3069  * cpu_bit_bitmap[] is a special, "compressed" data structure that
3070  * represents all NR_CPUS bits binary values of 1<<nr.
3071  *
3072  * It is used by cpumask_of() to get a constant address to a CPU
3073  * mask value that has a single bit set only.
3074  */
3075 
3076 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3077 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
3078 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3079 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3080 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3081 
3082 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3083 
3084 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
3085 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
3086 #if BITS_PER_LONG > 32
3087 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
3088 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
3089 #endif
3090 };
3091 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3092 
3093 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3094 EXPORT_SYMBOL(cpu_all_bits);
3095 
3096 #ifdef CONFIG_INIT_ALL_POSSIBLE
3097 struct cpumask __cpu_possible_mask __ro_after_init
3098 	= {CPU_BITS_ALL};
3099 #else
3100 struct cpumask __cpu_possible_mask __ro_after_init;
3101 #endif
3102 EXPORT_SYMBOL(__cpu_possible_mask);
3103 
3104 struct cpumask __cpu_online_mask __read_mostly;
3105 EXPORT_SYMBOL(__cpu_online_mask);
3106 
3107 struct cpumask __cpu_enabled_mask __read_mostly;
3108 EXPORT_SYMBOL(__cpu_enabled_mask);
3109 
3110 struct cpumask __cpu_present_mask __read_mostly;
3111 EXPORT_SYMBOL(__cpu_present_mask);
3112 
3113 struct cpumask __cpu_active_mask __read_mostly;
3114 EXPORT_SYMBOL(__cpu_active_mask);
3115 
3116 struct cpumask __cpu_dying_mask __read_mostly;
3117 EXPORT_SYMBOL(__cpu_dying_mask);
3118 
3119 atomic_t __num_online_cpus __read_mostly;
3120 EXPORT_SYMBOL(__num_online_cpus);
3121 
3122 void init_cpu_present(const struct cpumask *src)
3123 {
3124 	cpumask_copy(&__cpu_present_mask, src);
3125 }
3126 
3127 void init_cpu_possible(const struct cpumask *src)
3128 {
3129 	cpumask_copy(&__cpu_possible_mask, src);
3130 }
3131 
3132 void init_cpu_online(const struct cpumask *src)
3133 {
3134 	cpumask_copy(&__cpu_online_mask, src);
3135 }
3136 
3137 void set_cpu_online(unsigned int cpu, bool online)
3138 {
3139 	/*
3140 	 * atomic_inc/dec() is required to handle the horrid abuse of this
3141 	 * function by the reboot and kexec code which invoke it from
3142 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3143 	 * regular CPU hotplug is properly serialized.
3144 	 *
3145 	 * Note, that the fact that __num_online_cpus is of type atomic_t
3146 	 * does not protect readers which are not serialized against
3147 	 * concurrent hotplug operations.
3148 	 */
3149 	if (online) {
3150 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3151 			atomic_inc(&__num_online_cpus);
3152 	} else {
3153 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3154 			atomic_dec(&__num_online_cpus);
3155 	}
3156 }
3157 
3158 /*
3159  * Activate the first processor.
3160  */
3161 void __init boot_cpu_init(void)
3162 {
3163 	int cpu = smp_processor_id();
3164 
3165 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
3166 	set_cpu_online(cpu, true);
3167 	set_cpu_active(cpu, true);
3168 	set_cpu_present(cpu, true);
3169 	set_cpu_possible(cpu, true);
3170 
3171 #ifdef CONFIG_SMP
3172 	__boot_cpu_id = cpu;
3173 #endif
3174 }
3175 
3176 /*
3177  * Must be called _AFTER_ setting up the per_cpu areas
3178  */
3179 void __init boot_cpu_hotplug_init(void)
3180 {
3181 #ifdef CONFIG_SMP
3182 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3183 	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3184 #endif
3185 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3186 	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3187 }
3188 
3189 #ifdef CONFIG_CPU_MITIGATIONS
3190 /*
3191  * These are used for a global "mitigations=" cmdline option for toggling
3192  * optional CPU mitigations.
3193  */
3194 enum cpu_mitigations {
3195 	CPU_MITIGATIONS_OFF,
3196 	CPU_MITIGATIONS_AUTO,
3197 	CPU_MITIGATIONS_AUTO_NOSMT,
3198 };
3199 
3200 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
3201 
3202 static int __init mitigations_parse_cmdline(char *arg)
3203 {
3204 	if (!strcmp(arg, "off"))
3205 		cpu_mitigations = CPU_MITIGATIONS_OFF;
3206 	else if (!strcmp(arg, "auto"))
3207 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
3208 	else if (!strcmp(arg, "auto,nosmt"))
3209 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3210 	else
3211 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3212 			arg);
3213 
3214 	return 0;
3215 }
3216 
3217 /* mitigations=off */
3218 bool cpu_mitigations_off(void)
3219 {
3220 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
3221 }
3222 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3223 
3224 /* mitigations=auto,nosmt */
3225 bool cpu_mitigations_auto_nosmt(void)
3226 {
3227 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3228 }
3229 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3230 #else
3231 static int __init mitigations_parse_cmdline(char *arg)
3232 {
3233 	pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
3234 	return 0;
3235 }
3236 #endif
3237 early_param("mitigations", mitigations_parse_cmdline);
3238