1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/delay.h> 21 #include <linux/export.h> 22 #include <linux/bug.h> 23 #include <linux/kthread.h> 24 #include <linux/stop_machine.h> 25 #include <linux/mutex.h> 26 #include <linux/gfp.h> 27 #include <linux/suspend.h> 28 #include <linux/lockdep.h> 29 #include <linux/tick.h> 30 #include <linux/irq.h> 31 #include <linux/nmi.h> 32 #include <linux/smpboot.h> 33 #include <linux/relay.h> 34 #include <linux/slab.h> 35 #include <linux/scs.h> 36 #include <linux/percpu-rwsem.h> 37 #include <linux/cpuset.h> 38 #include <linux/random.h> 39 #include <linux/cc_platform.h> 40 41 #include <trace/events/power.h> 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/cpuhp.h> 44 45 #include "smpboot.h" 46 47 /** 48 * struct cpuhp_cpu_state - Per cpu hotplug state storage 49 * @state: The current cpu state 50 * @target: The target state 51 * @fail: Current CPU hotplug callback state 52 * @thread: Pointer to the hotplug thread 53 * @should_run: Thread should execute 54 * @rollback: Perform a rollback 55 * @single: Single callback invocation 56 * @bringup: Single callback bringup or teardown selector 57 * @node: Remote CPU node; for multi-instance, do a 58 * single entry callback for install/remove 59 * @last: For multi-instance rollback, remember how far we got 60 * @cb_state: The state for a single callback (install/uninstall) 61 * @result: Result of the operation 62 * @ap_sync_state: State for AP synchronization 63 * @done_up: Signal completion to the issuer of the task for cpu-up 64 * @done_down: Signal completion to the issuer of the task for cpu-down 65 */ 66 struct cpuhp_cpu_state { 67 enum cpuhp_state state; 68 enum cpuhp_state target; 69 enum cpuhp_state fail; 70 #ifdef CONFIG_SMP 71 struct task_struct *thread; 72 bool should_run; 73 bool rollback; 74 bool single; 75 bool bringup; 76 struct hlist_node *node; 77 struct hlist_node *last; 78 enum cpuhp_state cb_state; 79 int result; 80 atomic_t ap_sync_state; 81 struct completion done_up; 82 struct completion done_down; 83 #endif 84 }; 85 86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 87 .fail = CPUHP_INVALID, 88 }; 89 90 #ifdef CONFIG_SMP 91 cpumask_t cpus_booted_once_mask; 92 #endif 93 94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 95 static struct lockdep_map cpuhp_state_up_map = 96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 97 static struct lockdep_map cpuhp_state_down_map = 98 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 99 100 101 static inline void cpuhp_lock_acquire(bool bringup) 102 { 103 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 104 } 105 106 static inline void cpuhp_lock_release(bool bringup) 107 { 108 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 109 } 110 #else 111 112 static inline void cpuhp_lock_acquire(bool bringup) { } 113 static inline void cpuhp_lock_release(bool bringup) { } 114 115 #endif 116 117 /** 118 * struct cpuhp_step - Hotplug state machine step 119 * @name: Name of the step 120 * @startup: Startup function of the step 121 * @teardown: Teardown function of the step 122 * @cant_stop: Bringup/teardown can't be stopped at this step 123 * @multi_instance: State has multiple instances which get added afterwards 124 */ 125 struct cpuhp_step { 126 const char *name; 127 union { 128 int (*single)(unsigned int cpu); 129 int (*multi)(unsigned int cpu, 130 struct hlist_node *node); 131 } startup; 132 union { 133 int (*single)(unsigned int cpu); 134 int (*multi)(unsigned int cpu, 135 struct hlist_node *node); 136 } teardown; 137 /* private: */ 138 struct hlist_head list; 139 /* public: */ 140 bool cant_stop; 141 bool multi_instance; 142 }; 143 144 static DEFINE_MUTEX(cpuhp_state_mutex); 145 static struct cpuhp_step cpuhp_hp_states[]; 146 147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 148 { 149 return cpuhp_hp_states + state; 150 } 151 152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 153 { 154 return bringup ? !step->startup.single : !step->teardown.single; 155 } 156 157 /** 158 * cpuhp_invoke_callback - Invoke the callbacks for a given state 159 * @cpu: The cpu for which the callback should be invoked 160 * @state: The state to do callbacks for 161 * @bringup: True if the bringup callback should be invoked 162 * @node: For multi-instance, do a single entry callback for install/remove 163 * @lastp: For multi-instance rollback, remember how far we got 164 * 165 * Called from cpu hotplug and from the state register machinery. 166 * 167 * Return: %0 on success or a negative errno code 168 */ 169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 170 bool bringup, struct hlist_node *node, 171 struct hlist_node **lastp) 172 { 173 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 174 struct cpuhp_step *step = cpuhp_get_step(state); 175 int (*cbm)(unsigned int cpu, struct hlist_node *node); 176 int (*cb)(unsigned int cpu); 177 int ret, cnt; 178 179 if (st->fail == state) { 180 st->fail = CPUHP_INVALID; 181 return -EAGAIN; 182 } 183 184 if (cpuhp_step_empty(bringup, step)) { 185 WARN_ON_ONCE(1); 186 return 0; 187 } 188 189 if (!step->multi_instance) { 190 WARN_ON_ONCE(lastp && *lastp); 191 cb = bringup ? step->startup.single : step->teardown.single; 192 193 trace_cpuhp_enter(cpu, st->target, state, cb); 194 ret = cb(cpu); 195 trace_cpuhp_exit(cpu, st->state, state, ret); 196 return ret; 197 } 198 cbm = bringup ? step->startup.multi : step->teardown.multi; 199 200 /* Single invocation for instance add/remove */ 201 if (node) { 202 WARN_ON_ONCE(lastp && *lastp); 203 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 204 ret = cbm(cpu, node); 205 trace_cpuhp_exit(cpu, st->state, state, ret); 206 return ret; 207 } 208 209 /* State transition. Invoke on all instances */ 210 cnt = 0; 211 hlist_for_each(node, &step->list) { 212 if (lastp && node == *lastp) 213 break; 214 215 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 216 ret = cbm(cpu, node); 217 trace_cpuhp_exit(cpu, st->state, state, ret); 218 if (ret) { 219 if (!lastp) 220 goto err; 221 222 *lastp = node; 223 return ret; 224 } 225 cnt++; 226 } 227 if (lastp) 228 *lastp = NULL; 229 return 0; 230 err: 231 /* Rollback the instances if one failed */ 232 cbm = !bringup ? step->startup.multi : step->teardown.multi; 233 if (!cbm) 234 return ret; 235 236 hlist_for_each(node, &step->list) { 237 if (!cnt--) 238 break; 239 240 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 241 ret = cbm(cpu, node); 242 trace_cpuhp_exit(cpu, st->state, state, ret); 243 /* 244 * Rollback must not fail, 245 */ 246 WARN_ON_ONCE(ret); 247 } 248 return ret; 249 } 250 251 #ifdef CONFIG_SMP 252 static bool cpuhp_is_ap_state(enum cpuhp_state state) 253 { 254 /* 255 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 256 * purposes as that state is handled explicitly in cpu_down. 257 */ 258 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 259 } 260 261 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 262 { 263 struct completion *done = bringup ? &st->done_up : &st->done_down; 264 wait_for_completion(done); 265 } 266 267 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 268 { 269 struct completion *done = bringup ? &st->done_up : &st->done_down; 270 complete(done); 271 } 272 273 /* 274 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 275 */ 276 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 277 { 278 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 279 } 280 281 /* Synchronization state management */ 282 enum cpuhp_sync_state { 283 SYNC_STATE_DEAD, 284 SYNC_STATE_KICKED, 285 SYNC_STATE_SHOULD_DIE, 286 SYNC_STATE_ALIVE, 287 SYNC_STATE_SHOULD_ONLINE, 288 SYNC_STATE_ONLINE, 289 }; 290 291 #ifdef CONFIG_HOTPLUG_CORE_SYNC 292 /** 293 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown 294 * @state: The synchronization state to set 295 * 296 * No synchronization point. Just update of the synchronization state, but implies 297 * a full barrier so that the AP changes are visible before the control CPU proceeds. 298 */ 299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) 300 { 301 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 302 303 (void)atomic_xchg(st, state); 304 } 305 306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } 307 308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, 309 enum cpuhp_sync_state next_state) 310 { 311 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 312 ktime_t now, end, start = ktime_get(); 313 int sync; 314 315 end = start + 10ULL * NSEC_PER_SEC; 316 317 sync = atomic_read(st); 318 while (1) { 319 if (sync == state) { 320 if (!atomic_try_cmpxchg(st, &sync, next_state)) 321 continue; 322 return true; 323 } 324 325 now = ktime_get(); 326 if (now > end) { 327 /* Timeout. Leave the state unchanged */ 328 return false; 329 } else if (now - start < NSEC_PER_MSEC) { 330 /* Poll for one millisecond */ 331 arch_cpuhp_sync_state_poll(); 332 } else { 333 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 334 } 335 sync = atomic_read(st); 336 } 337 return true; 338 } 339 #else /* CONFIG_HOTPLUG_CORE_SYNC */ 340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } 341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ 342 343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 344 /** 345 * cpuhp_ap_report_dead - Update synchronization state to DEAD 346 * 347 * No synchronization point. Just update of the synchronization state. 348 */ 349 void cpuhp_ap_report_dead(void) 350 { 351 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD); 352 } 353 354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } 355 356 /* 357 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down 358 * because the AP cannot issue complete() at this stage. 359 */ 360 static void cpuhp_bp_sync_dead(unsigned int cpu) 361 { 362 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 363 int sync = atomic_read(st); 364 365 do { 366 /* CPU can have reported dead already. Don't overwrite that! */ 367 if (sync == SYNC_STATE_DEAD) 368 break; 369 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE)); 370 371 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) { 372 /* CPU reached dead state. Invoke the cleanup function */ 373 arch_cpuhp_cleanup_dead_cpu(cpu); 374 return; 375 } 376 377 /* No further action possible. Emit message and give up. */ 378 pr_err("CPU%u failed to report dead state\n", cpu); 379 } 380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } 382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 383 384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL 385 /** 386 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive 387 * 388 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits 389 * for the BP to release it. 390 */ 391 void cpuhp_ap_sync_alive(void) 392 { 393 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 394 395 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE); 396 397 /* Wait for the control CPU to release it. */ 398 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE) 399 cpu_relax(); 400 } 401 402 static bool cpuhp_can_boot_ap(unsigned int cpu) 403 { 404 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 405 int sync = atomic_read(st); 406 407 again: 408 switch (sync) { 409 case SYNC_STATE_DEAD: 410 /* CPU is properly dead */ 411 break; 412 case SYNC_STATE_KICKED: 413 /* CPU did not come up in previous attempt */ 414 break; 415 case SYNC_STATE_ALIVE: 416 /* CPU is stuck cpuhp_ap_sync_alive(). */ 417 break; 418 default: 419 /* CPU failed to report online or dead and is in limbo state. */ 420 return false; 421 } 422 423 /* Prepare for booting */ 424 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED)) 425 goto again; 426 427 return true; 428 } 429 430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } 431 432 /* 433 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up 434 * because the AP cannot issue complete() so early in the bringup. 435 */ 436 static int cpuhp_bp_sync_alive(unsigned int cpu) 437 { 438 int ret = 0; 439 440 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) 441 return 0; 442 443 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) { 444 pr_err("CPU%u failed to report alive state\n", cpu); 445 ret = -EIO; 446 } 447 448 /* Let the architecture cleanup the kick alive mechanics. */ 449 arch_cpuhp_cleanup_kick_cpu(cpu); 450 return ret; 451 } 452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ 453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } 454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } 455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ 456 457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 458 static DEFINE_MUTEX(cpu_add_remove_lock); 459 bool cpuhp_tasks_frozen; 460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 461 462 /* 463 * The following two APIs (cpu_maps_update_begin/done) must be used when 464 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 465 */ 466 void cpu_maps_update_begin(void) 467 { 468 mutex_lock(&cpu_add_remove_lock); 469 } 470 471 void cpu_maps_update_done(void) 472 { 473 mutex_unlock(&cpu_add_remove_lock); 474 } 475 476 /* 477 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 478 * Should always be manipulated under cpu_add_remove_lock 479 */ 480 static int cpu_hotplug_disabled; 481 482 #ifdef CONFIG_HOTPLUG_CPU 483 484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 485 486 static bool cpu_hotplug_offline_disabled __ro_after_init; 487 488 void cpus_read_lock(void) 489 { 490 percpu_down_read(&cpu_hotplug_lock); 491 } 492 EXPORT_SYMBOL_GPL(cpus_read_lock); 493 494 int cpus_read_trylock(void) 495 { 496 return percpu_down_read_trylock(&cpu_hotplug_lock); 497 } 498 EXPORT_SYMBOL_GPL(cpus_read_trylock); 499 500 void cpus_read_unlock(void) 501 { 502 percpu_up_read(&cpu_hotplug_lock); 503 } 504 EXPORT_SYMBOL_GPL(cpus_read_unlock); 505 506 void cpus_write_lock(void) 507 { 508 percpu_down_write(&cpu_hotplug_lock); 509 } 510 511 void cpus_write_unlock(void) 512 { 513 percpu_up_write(&cpu_hotplug_lock); 514 } 515 516 void lockdep_assert_cpus_held(void) 517 { 518 /* 519 * We can't have hotplug operations before userspace starts running, 520 * and some init codepaths will knowingly not take the hotplug lock. 521 * This is all valid, so mute lockdep until it makes sense to report 522 * unheld locks. 523 */ 524 if (system_state < SYSTEM_RUNNING) 525 return; 526 527 percpu_rwsem_assert_held(&cpu_hotplug_lock); 528 } 529 530 #ifdef CONFIG_LOCKDEP 531 int lockdep_is_cpus_held(void) 532 { 533 return percpu_rwsem_is_held(&cpu_hotplug_lock); 534 } 535 #endif 536 537 static void lockdep_acquire_cpus_lock(void) 538 { 539 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 540 } 541 542 static void lockdep_release_cpus_lock(void) 543 { 544 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 545 } 546 547 /* Declare CPU offlining not supported */ 548 void cpu_hotplug_disable_offlining(void) 549 { 550 cpu_maps_update_begin(); 551 cpu_hotplug_offline_disabled = true; 552 cpu_maps_update_done(); 553 } 554 555 /* 556 * Wait for currently running CPU hotplug operations to complete (if any) and 557 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 558 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 559 * hotplug path before performing hotplug operations. So acquiring that lock 560 * guarantees mutual exclusion from any currently running hotplug operations. 561 */ 562 void cpu_hotplug_disable(void) 563 { 564 cpu_maps_update_begin(); 565 cpu_hotplug_disabled++; 566 cpu_maps_update_done(); 567 } 568 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 569 570 static void __cpu_hotplug_enable(void) 571 { 572 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 573 return; 574 cpu_hotplug_disabled--; 575 } 576 577 void cpu_hotplug_enable(void) 578 { 579 cpu_maps_update_begin(); 580 __cpu_hotplug_enable(); 581 cpu_maps_update_done(); 582 } 583 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 584 585 #else 586 587 static void lockdep_acquire_cpus_lock(void) 588 { 589 } 590 591 static void lockdep_release_cpus_lock(void) 592 { 593 } 594 595 #endif /* CONFIG_HOTPLUG_CPU */ 596 597 /* 598 * Architectures that need SMT-specific errata handling during SMT hotplug 599 * should override this. 600 */ 601 void __weak arch_smt_update(void) { } 602 603 #ifdef CONFIG_HOTPLUG_SMT 604 605 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 606 static unsigned int cpu_smt_max_threads __ro_after_init; 607 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; 608 609 void __init cpu_smt_disable(bool force) 610 { 611 if (!cpu_smt_possible()) 612 return; 613 614 if (force) { 615 pr_info("SMT: Force disabled\n"); 616 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 617 } else { 618 pr_info("SMT: disabled\n"); 619 cpu_smt_control = CPU_SMT_DISABLED; 620 } 621 cpu_smt_num_threads = 1; 622 } 623 624 /* 625 * The decision whether SMT is supported can only be done after the full 626 * CPU identification. Called from architecture code. 627 */ 628 void __init cpu_smt_set_num_threads(unsigned int num_threads, 629 unsigned int max_threads) 630 { 631 WARN_ON(!num_threads || (num_threads > max_threads)); 632 633 if (max_threads == 1) 634 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 635 636 cpu_smt_max_threads = max_threads; 637 638 /* 639 * If SMT has been disabled via the kernel command line or SMT is 640 * not supported, set cpu_smt_num_threads to 1 for consistency. 641 * If enabled, take the architecture requested number of threads 642 * to bring up into account. 643 */ 644 if (cpu_smt_control != CPU_SMT_ENABLED) 645 cpu_smt_num_threads = 1; 646 else if (num_threads < cpu_smt_num_threads) 647 cpu_smt_num_threads = num_threads; 648 } 649 650 static int __init smt_cmdline_disable(char *str) 651 { 652 cpu_smt_disable(str && !strcmp(str, "force")); 653 return 0; 654 } 655 early_param("nosmt", smt_cmdline_disable); 656 657 /* 658 * For Archicture supporting partial SMT states check if the thread is allowed. 659 * Otherwise this has already been checked through cpu_smt_max_threads when 660 * setting the SMT level. 661 */ 662 static inline bool cpu_smt_thread_allowed(unsigned int cpu) 663 { 664 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC 665 return topology_smt_thread_allowed(cpu); 666 #else 667 return true; 668 #endif 669 } 670 671 static inline bool cpu_bootable(unsigned int cpu) 672 { 673 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 674 return true; 675 676 /* All CPUs are bootable if controls are not configured */ 677 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED) 678 return true; 679 680 /* All CPUs are bootable if CPU is not SMT capable */ 681 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 682 return true; 683 684 if (topology_is_primary_thread(cpu)) 685 return true; 686 687 /* 688 * On x86 it's required to boot all logical CPUs at least once so 689 * that the init code can get a chance to set CR4.MCE on each 690 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 691 * core will shutdown the machine. 692 */ 693 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 694 } 695 696 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ 697 bool cpu_smt_possible(void) 698 { 699 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 700 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 701 } 702 EXPORT_SYMBOL_GPL(cpu_smt_possible); 703 704 #else 705 static inline bool cpu_bootable(unsigned int cpu) { return true; } 706 #endif 707 708 static inline enum cpuhp_state 709 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) 710 { 711 enum cpuhp_state prev_state = st->state; 712 bool bringup = st->state < target; 713 714 st->rollback = false; 715 st->last = NULL; 716 717 st->target = target; 718 st->single = false; 719 st->bringup = bringup; 720 if (cpu_dying(cpu) != !bringup) 721 set_cpu_dying(cpu, !bringup); 722 723 return prev_state; 724 } 725 726 static inline void 727 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, 728 enum cpuhp_state prev_state) 729 { 730 bool bringup = !st->bringup; 731 732 st->target = prev_state; 733 734 /* 735 * Already rolling back. No need invert the bringup value or to change 736 * the current state. 737 */ 738 if (st->rollback) 739 return; 740 741 st->rollback = true; 742 743 /* 744 * If we have st->last we need to undo partial multi_instance of this 745 * state first. Otherwise start undo at the previous state. 746 */ 747 if (!st->last) { 748 if (st->bringup) 749 st->state--; 750 else 751 st->state++; 752 } 753 754 st->bringup = bringup; 755 if (cpu_dying(cpu) != !bringup) 756 set_cpu_dying(cpu, !bringup); 757 } 758 759 /* Regular hotplug invocation of the AP hotplug thread */ 760 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 761 { 762 if (!st->single && st->state == st->target) 763 return; 764 765 st->result = 0; 766 /* 767 * Make sure the above stores are visible before should_run becomes 768 * true. Paired with the mb() above in cpuhp_thread_fun() 769 */ 770 smp_mb(); 771 st->should_run = true; 772 wake_up_process(st->thread); 773 wait_for_ap_thread(st, st->bringup); 774 } 775 776 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, 777 enum cpuhp_state target) 778 { 779 enum cpuhp_state prev_state; 780 int ret; 781 782 prev_state = cpuhp_set_state(cpu, st, target); 783 __cpuhp_kick_ap(st); 784 if ((ret = st->result)) { 785 cpuhp_reset_state(cpu, st, prev_state); 786 __cpuhp_kick_ap(st); 787 } 788 789 return ret; 790 } 791 792 static int bringup_wait_for_ap_online(unsigned int cpu) 793 { 794 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 795 796 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 797 wait_for_ap_thread(st, true); 798 if (WARN_ON_ONCE((!cpu_online(cpu)))) 799 return -ECANCELED; 800 801 /* Unpark the hotplug thread of the target cpu */ 802 kthread_unpark(st->thread); 803 804 /* 805 * SMT soft disabling on X86 requires to bring the CPU out of the 806 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 807 * CPU marked itself as booted_once in notify_cpu_starting() so the 808 * cpu_bootable() check will now return false if this is not the 809 * primary sibling. 810 */ 811 if (!cpu_bootable(cpu)) 812 return -ECANCELED; 813 return 0; 814 } 815 816 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 817 static int cpuhp_kick_ap_alive(unsigned int cpu) 818 { 819 if (!cpuhp_can_boot_ap(cpu)) 820 return -EAGAIN; 821 822 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu)); 823 } 824 825 static int cpuhp_bringup_ap(unsigned int cpu) 826 { 827 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 828 int ret; 829 830 /* 831 * Some architectures have to walk the irq descriptors to 832 * setup the vector space for the cpu which comes online. 833 * Prevent irq alloc/free across the bringup. 834 */ 835 irq_lock_sparse(); 836 837 ret = cpuhp_bp_sync_alive(cpu); 838 if (ret) 839 goto out_unlock; 840 841 ret = bringup_wait_for_ap_online(cpu); 842 if (ret) 843 goto out_unlock; 844 845 irq_unlock_sparse(); 846 847 if (st->target <= CPUHP_AP_ONLINE_IDLE) 848 return 0; 849 850 return cpuhp_kick_ap(cpu, st, st->target); 851 852 out_unlock: 853 irq_unlock_sparse(); 854 return ret; 855 } 856 #else 857 static int bringup_cpu(unsigned int cpu) 858 { 859 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 860 struct task_struct *idle = idle_thread_get(cpu); 861 int ret; 862 863 if (!cpuhp_can_boot_ap(cpu)) 864 return -EAGAIN; 865 866 /* 867 * Some architectures have to walk the irq descriptors to 868 * setup the vector space for the cpu which comes online. 869 * 870 * Prevent irq alloc/free across the bringup by acquiring the 871 * sparse irq lock. Hold it until the upcoming CPU completes the 872 * startup in cpuhp_online_idle() which allows to avoid 873 * intermediate synchronization points in the architecture code. 874 */ 875 irq_lock_sparse(); 876 877 ret = __cpu_up(cpu, idle); 878 if (ret) 879 goto out_unlock; 880 881 ret = cpuhp_bp_sync_alive(cpu); 882 if (ret) 883 goto out_unlock; 884 885 ret = bringup_wait_for_ap_online(cpu); 886 if (ret) 887 goto out_unlock; 888 889 irq_unlock_sparse(); 890 891 if (st->target <= CPUHP_AP_ONLINE_IDLE) 892 return 0; 893 894 return cpuhp_kick_ap(cpu, st, st->target); 895 896 out_unlock: 897 irq_unlock_sparse(); 898 return ret; 899 } 900 #endif 901 902 static int finish_cpu(unsigned int cpu) 903 { 904 struct task_struct *idle = idle_thread_get(cpu); 905 struct mm_struct *mm = idle->active_mm; 906 907 /* 908 * idle_task_exit() will have switched to &init_mm, now 909 * clean up any remaining active_mm state. 910 */ 911 if (mm != &init_mm) 912 idle->active_mm = &init_mm; 913 mmdrop_lazy_tlb(mm); 914 return 0; 915 } 916 917 /* 918 * Hotplug state machine related functions 919 */ 920 921 /* 922 * Get the next state to run. Empty ones will be skipped. Returns true if a 923 * state must be run. 924 * 925 * st->state will be modified ahead of time, to match state_to_run, as if it 926 * has already ran. 927 */ 928 static bool cpuhp_next_state(bool bringup, 929 enum cpuhp_state *state_to_run, 930 struct cpuhp_cpu_state *st, 931 enum cpuhp_state target) 932 { 933 do { 934 if (bringup) { 935 if (st->state >= target) 936 return false; 937 938 *state_to_run = ++st->state; 939 } else { 940 if (st->state <= target) 941 return false; 942 943 *state_to_run = st->state--; 944 } 945 946 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 947 break; 948 } while (true); 949 950 return true; 951 } 952 953 static int __cpuhp_invoke_callback_range(bool bringup, 954 unsigned int cpu, 955 struct cpuhp_cpu_state *st, 956 enum cpuhp_state target, 957 bool nofail) 958 { 959 enum cpuhp_state state; 960 int ret = 0; 961 962 while (cpuhp_next_state(bringup, &state, st, target)) { 963 int err; 964 965 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 966 if (!err) 967 continue; 968 969 if (nofail) { 970 pr_warn("CPU %u %s state %s (%d) failed (%d)\n", 971 cpu, bringup ? "UP" : "DOWN", 972 cpuhp_get_step(st->state)->name, 973 st->state, err); 974 ret = -1; 975 } else { 976 ret = err; 977 break; 978 } 979 } 980 981 return ret; 982 } 983 984 static inline int cpuhp_invoke_callback_range(bool bringup, 985 unsigned int cpu, 986 struct cpuhp_cpu_state *st, 987 enum cpuhp_state target) 988 { 989 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); 990 } 991 992 static inline void cpuhp_invoke_callback_range_nofail(bool bringup, 993 unsigned int cpu, 994 struct cpuhp_cpu_state *st, 995 enum cpuhp_state target) 996 { 997 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); 998 } 999 1000 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 1001 { 1002 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 1003 return true; 1004 /* 1005 * When CPU hotplug is disabled, then taking the CPU down is not 1006 * possible because takedown_cpu() and the architecture and 1007 * subsystem specific mechanisms are not available. So the CPU 1008 * which would be completely unplugged again needs to stay around 1009 * in the current state. 1010 */ 1011 return st->state <= CPUHP_BRINGUP_CPU; 1012 } 1013 1014 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1015 enum cpuhp_state target) 1016 { 1017 enum cpuhp_state prev_state = st->state; 1018 int ret = 0; 1019 1020 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1021 if (ret) { 1022 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 1023 ret, cpu, cpuhp_get_step(st->state)->name, 1024 st->state); 1025 1026 cpuhp_reset_state(cpu, st, prev_state); 1027 if (can_rollback_cpu(st)) 1028 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 1029 prev_state)); 1030 } 1031 return ret; 1032 } 1033 1034 /* 1035 * The cpu hotplug threads manage the bringup and teardown of the cpus 1036 */ 1037 static int cpuhp_should_run(unsigned int cpu) 1038 { 1039 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1040 1041 return st->should_run; 1042 } 1043 1044 /* 1045 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 1046 * callbacks when a state gets [un]installed at runtime. 1047 * 1048 * Each invocation of this function by the smpboot thread does a single AP 1049 * state callback. 1050 * 1051 * It has 3 modes of operation: 1052 * - single: runs st->cb_state 1053 * - up: runs ++st->state, while st->state < st->target 1054 * - down: runs st->state--, while st->state > st->target 1055 * 1056 * When complete or on error, should_run is cleared and the completion is fired. 1057 */ 1058 static void cpuhp_thread_fun(unsigned int cpu) 1059 { 1060 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1061 bool bringup = st->bringup; 1062 enum cpuhp_state state; 1063 1064 if (WARN_ON_ONCE(!st->should_run)) 1065 return; 1066 1067 /* 1068 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 1069 * that if we see ->should_run we also see the rest of the state. 1070 */ 1071 smp_mb(); 1072 1073 /* 1074 * The BP holds the hotplug lock, but we're now running on the AP, 1075 * ensure that anybody asserting the lock is held, will actually find 1076 * it so. 1077 */ 1078 lockdep_acquire_cpus_lock(); 1079 cpuhp_lock_acquire(bringup); 1080 1081 if (st->single) { 1082 state = st->cb_state; 1083 st->should_run = false; 1084 } else { 1085 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 1086 if (!st->should_run) 1087 goto end; 1088 } 1089 1090 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 1091 1092 if (cpuhp_is_atomic_state(state)) { 1093 local_irq_disable(); 1094 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1095 local_irq_enable(); 1096 1097 /* 1098 * STARTING/DYING must not fail! 1099 */ 1100 WARN_ON_ONCE(st->result); 1101 } else { 1102 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1103 } 1104 1105 if (st->result) { 1106 /* 1107 * If we fail on a rollback, we're up a creek without no 1108 * paddle, no way forward, no way back. We loose, thanks for 1109 * playing. 1110 */ 1111 WARN_ON_ONCE(st->rollback); 1112 st->should_run = false; 1113 } 1114 1115 end: 1116 cpuhp_lock_release(bringup); 1117 lockdep_release_cpus_lock(); 1118 1119 if (!st->should_run) 1120 complete_ap_thread(st, bringup); 1121 } 1122 1123 /* Invoke a single callback on a remote cpu */ 1124 static int 1125 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 1126 struct hlist_node *node) 1127 { 1128 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1129 int ret; 1130 1131 if (!cpu_online(cpu)) 1132 return 0; 1133 1134 cpuhp_lock_acquire(false); 1135 cpuhp_lock_release(false); 1136 1137 cpuhp_lock_acquire(true); 1138 cpuhp_lock_release(true); 1139 1140 /* 1141 * If we are up and running, use the hotplug thread. For early calls 1142 * we invoke the thread function directly. 1143 */ 1144 if (!st->thread) 1145 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1146 1147 st->rollback = false; 1148 st->last = NULL; 1149 1150 st->node = node; 1151 st->bringup = bringup; 1152 st->cb_state = state; 1153 st->single = true; 1154 1155 __cpuhp_kick_ap(st); 1156 1157 /* 1158 * If we failed and did a partial, do a rollback. 1159 */ 1160 if ((ret = st->result) && st->last) { 1161 st->rollback = true; 1162 st->bringup = !bringup; 1163 1164 __cpuhp_kick_ap(st); 1165 } 1166 1167 /* 1168 * Clean up the leftovers so the next hotplug operation wont use stale 1169 * data. 1170 */ 1171 st->node = st->last = NULL; 1172 return ret; 1173 } 1174 1175 static int cpuhp_kick_ap_work(unsigned int cpu) 1176 { 1177 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1178 enum cpuhp_state prev_state = st->state; 1179 int ret; 1180 1181 cpuhp_lock_acquire(false); 1182 cpuhp_lock_release(false); 1183 1184 cpuhp_lock_acquire(true); 1185 cpuhp_lock_release(true); 1186 1187 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 1188 ret = cpuhp_kick_ap(cpu, st, st->target); 1189 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 1190 1191 return ret; 1192 } 1193 1194 static struct smp_hotplug_thread cpuhp_threads = { 1195 .store = &cpuhp_state.thread, 1196 .thread_should_run = cpuhp_should_run, 1197 .thread_fn = cpuhp_thread_fun, 1198 .thread_comm = "cpuhp/%u", 1199 .selfparking = true, 1200 }; 1201 1202 static __init void cpuhp_init_state(void) 1203 { 1204 struct cpuhp_cpu_state *st; 1205 int cpu; 1206 1207 for_each_possible_cpu(cpu) { 1208 st = per_cpu_ptr(&cpuhp_state, cpu); 1209 init_completion(&st->done_up); 1210 init_completion(&st->done_down); 1211 } 1212 } 1213 1214 void __init cpuhp_threads_init(void) 1215 { 1216 cpuhp_init_state(); 1217 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 1218 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 1219 } 1220 1221 #ifdef CONFIG_HOTPLUG_CPU 1222 #ifndef arch_clear_mm_cpumask_cpu 1223 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 1224 #endif 1225 1226 /** 1227 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 1228 * @cpu: a CPU id 1229 * 1230 * This function walks all processes, finds a valid mm struct for each one and 1231 * then clears a corresponding bit in mm's cpumask. While this all sounds 1232 * trivial, there are various non-obvious corner cases, which this function 1233 * tries to solve in a safe manner. 1234 * 1235 * Also note that the function uses a somewhat relaxed locking scheme, so it may 1236 * be called only for an already offlined CPU. 1237 */ 1238 void clear_tasks_mm_cpumask(int cpu) 1239 { 1240 struct task_struct *p; 1241 1242 /* 1243 * This function is called after the cpu is taken down and marked 1244 * offline, so its not like new tasks will ever get this cpu set in 1245 * their mm mask. -- Peter Zijlstra 1246 * Thus, we may use rcu_read_lock() here, instead of grabbing 1247 * full-fledged tasklist_lock. 1248 */ 1249 WARN_ON(cpu_online(cpu)); 1250 rcu_read_lock(); 1251 for_each_process(p) { 1252 struct task_struct *t; 1253 1254 /* 1255 * Main thread might exit, but other threads may still have 1256 * a valid mm. Find one. 1257 */ 1258 t = find_lock_task_mm(p); 1259 if (!t) 1260 continue; 1261 arch_clear_mm_cpumask_cpu(cpu, t->mm); 1262 task_unlock(t); 1263 } 1264 rcu_read_unlock(); 1265 } 1266 1267 /* Take this CPU down. */ 1268 static int take_cpu_down(void *_param) 1269 { 1270 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1271 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 1272 int err, cpu = smp_processor_id(); 1273 1274 /* Ensure this CPU doesn't handle any more interrupts. */ 1275 err = __cpu_disable(); 1276 if (err < 0) 1277 return err; 1278 1279 /* 1280 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1281 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1282 */ 1283 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1284 1285 /* 1286 * Invoke the former CPU_DYING callbacks. DYING must not fail! 1287 */ 1288 cpuhp_invoke_callback_range_nofail(false, cpu, st, target); 1289 1290 /* Park the stopper thread */ 1291 stop_machine_park(cpu); 1292 return 0; 1293 } 1294 1295 static int takedown_cpu(unsigned int cpu) 1296 { 1297 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1298 int err; 1299 1300 /* Park the smpboot threads */ 1301 kthread_park(st->thread); 1302 1303 /* 1304 * Prevent irq alloc/free while the dying cpu reorganizes the 1305 * interrupt affinities. 1306 */ 1307 irq_lock_sparse(); 1308 1309 /* 1310 * So now all preempt/rcu users must observe !cpu_active(). 1311 */ 1312 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1313 if (err) { 1314 /* CPU refused to die */ 1315 irq_unlock_sparse(); 1316 /* Unpark the hotplug thread so we can rollback there */ 1317 kthread_unpark(st->thread); 1318 return err; 1319 } 1320 BUG_ON(cpu_online(cpu)); 1321 1322 /* 1323 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1324 * all runnable tasks from the CPU, there's only the idle task left now 1325 * that the migration thread is done doing the stop_machine thing. 1326 * 1327 * Wait for the stop thread to go away. 1328 */ 1329 wait_for_ap_thread(st, false); 1330 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1331 1332 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1333 irq_unlock_sparse(); 1334 1335 hotplug_cpu__broadcast_tick_pull(cpu); 1336 /* This actually kills the CPU. */ 1337 __cpu_die(cpu); 1338 1339 cpuhp_bp_sync_dead(cpu); 1340 1341 /* 1342 * Callbacks must be re-integrated right away to the RCU state machine. 1343 * Otherwise an RCU callback could block a further teardown function 1344 * waiting for its completion. 1345 */ 1346 rcutree_migrate_callbacks(cpu); 1347 1348 return 0; 1349 } 1350 1351 static void cpuhp_complete_idle_dead(void *arg) 1352 { 1353 struct cpuhp_cpu_state *st = arg; 1354 1355 complete_ap_thread(st, false); 1356 } 1357 1358 void cpuhp_report_idle_dead(void) 1359 { 1360 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1361 1362 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1363 tick_assert_timekeeping_handover(); 1364 rcutree_report_cpu_dead(); 1365 st->state = CPUHP_AP_IDLE_DEAD; 1366 /* 1367 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it 1368 * to an online cpu. 1369 */ 1370 smp_call_function_single(cpumask_first(cpu_online_mask), 1371 cpuhp_complete_idle_dead, st, 0); 1372 } 1373 1374 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1375 enum cpuhp_state target) 1376 { 1377 enum cpuhp_state prev_state = st->state; 1378 int ret = 0; 1379 1380 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1381 if (ret) { 1382 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1383 ret, cpu, cpuhp_get_step(st->state)->name, 1384 st->state); 1385 1386 cpuhp_reset_state(cpu, st, prev_state); 1387 1388 if (st->state < prev_state) 1389 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1390 prev_state)); 1391 } 1392 1393 return ret; 1394 } 1395 1396 /* Requires cpu_add_remove_lock to be held */ 1397 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1398 enum cpuhp_state target) 1399 { 1400 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1401 int prev_state, ret = 0; 1402 1403 if (num_online_cpus() == 1) 1404 return -EBUSY; 1405 1406 if (!cpu_present(cpu)) 1407 return -EINVAL; 1408 1409 cpus_write_lock(); 1410 1411 cpuhp_tasks_frozen = tasks_frozen; 1412 1413 prev_state = cpuhp_set_state(cpu, st, target); 1414 /* 1415 * If the current CPU state is in the range of the AP hotplug thread, 1416 * then we need to kick the thread. 1417 */ 1418 if (st->state > CPUHP_TEARDOWN_CPU) { 1419 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1420 ret = cpuhp_kick_ap_work(cpu); 1421 /* 1422 * The AP side has done the error rollback already. Just 1423 * return the error code.. 1424 */ 1425 if (ret) 1426 goto out; 1427 1428 /* 1429 * We might have stopped still in the range of the AP hotplug 1430 * thread. Nothing to do anymore. 1431 */ 1432 if (st->state > CPUHP_TEARDOWN_CPU) 1433 goto out; 1434 1435 st->target = target; 1436 } 1437 /* 1438 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1439 * to do the further cleanups. 1440 */ 1441 ret = cpuhp_down_callbacks(cpu, st, target); 1442 if (ret && st->state < prev_state) { 1443 if (st->state == CPUHP_TEARDOWN_CPU) { 1444 cpuhp_reset_state(cpu, st, prev_state); 1445 __cpuhp_kick_ap(st); 1446 } else { 1447 WARN(1, "DEAD callback error for CPU%d", cpu); 1448 } 1449 } 1450 1451 out: 1452 cpus_write_unlock(); 1453 /* 1454 * Do post unplug cleanup. This is still protected against 1455 * concurrent CPU hotplug via cpu_add_remove_lock. 1456 */ 1457 lockup_detector_cleanup(); 1458 arch_smt_update(); 1459 return ret; 1460 } 1461 1462 struct cpu_down_work { 1463 unsigned int cpu; 1464 enum cpuhp_state target; 1465 }; 1466 1467 static long __cpu_down_maps_locked(void *arg) 1468 { 1469 struct cpu_down_work *work = arg; 1470 1471 return _cpu_down(work->cpu, 0, work->target); 1472 } 1473 1474 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1475 { 1476 struct cpu_down_work work = { .cpu = cpu, .target = target, }; 1477 1478 /* 1479 * If the platform does not support hotplug, report it explicitly to 1480 * differentiate it from a transient offlining failure. 1481 */ 1482 if (cpu_hotplug_offline_disabled) 1483 return -EOPNOTSUPP; 1484 if (cpu_hotplug_disabled) 1485 return -EBUSY; 1486 1487 /* 1488 * Ensure that the control task does not run on the to be offlined 1489 * CPU to prevent a deadlock against cfs_b->period_timer. 1490 * Also keep at least one housekeeping cpu onlined to avoid generating 1491 * an empty sched_domain span. 1492 */ 1493 for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) { 1494 if (cpu != work.cpu) 1495 return work_on_cpu(cpu, __cpu_down_maps_locked, &work); 1496 } 1497 return -EBUSY; 1498 } 1499 1500 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1501 { 1502 int err; 1503 1504 cpu_maps_update_begin(); 1505 err = cpu_down_maps_locked(cpu, target); 1506 cpu_maps_update_done(); 1507 return err; 1508 } 1509 1510 /** 1511 * cpu_device_down - Bring down a cpu device 1512 * @dev: Pointer to the cpu device to offline 1513 * 1514 * This function is meant to be used by device core cpu subsystem only. 1515 * 1516 * Other subsystems should use remove_cpu() instead. 1517 * 1518 * Return: %0 on success or a negative errno code 1519 */ 1520 int cpu_device_down(struct device *dev) 1521 { 1522 return cpu_down(dev->id, CPUHP_OFFLINE); 1523 } 1524 1525 int remove_cpu(unsigned int cpu) 1526 { 1527 int ret; 1528 1529 lock_device_hotplug(); 1530 ret = device_offline(get_cpu_device(cpu)); 1531 unlock_device_hotplug(); 1532 1533 return ret; 1534 } 1535 EXPORT_SYMBOL_GPL(remove_cpu); 1536 1537 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1538 { 1539 unsigned int cpu; 1540 int error; 1541 1542 cpu_maps_update_begin(); 1543 1544 /* 1545 * Make certain the cpu I'm about to reboot on is online. 1546 * 1547 * This is inline to what migrate_to_reboot_cpu() already do. 1548 */ 1549 if (!cpu_online(primary_cpu)) 1550 primary_cpu = cpumask_first(cpu_online_mask); 1551 1552 for_each_online_cpu(cpu) { 1553 if (cpu == primary_cpu) 1554 continue; 1555 1556 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1557 if (error) { 1558 pr_err("Failed to offline CPU%d - error=%d", 1559 cpu, error); 1560 break; 1561 } 1562 } 1563 1564 /* 1565 * Ensure all but the reboot CPU are offline. 1566 */ 1567 BUG_ON(num_online_cpus() > 1); 1568 1569 /* 1570 * Make sure the CPUs won't be enabled by someone else after this 1571 * point. Kexec will reboot to a new kernel shortly resetting 1572 * everything along the way. 1573 */ 1574 cpu_hotplug_disabled++; 1575 1576 cpu_maps_update_done(); 1577 } 1578 1579 #else 1580 #define takedown_cpu NULL 1581 #endif /*CONFIG_HOTPLUG_CPU*/ 1582 1583 /** 1584 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1585 * @cpu: cpu that just started 1586 * 1587 * It must be called by the arch code on the new cpu, before the new cpu 1588 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1589 */ 1590 void notify_cpu_starting(unsigned int cpu) 1591 { 1592 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1593 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1594 1595 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1596 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1597 1598 /* 1599 * STARTING must not fail! 1600 */ 1601 cpuhp_invoke_callback_range_nofail(true, cpu, st, target); 1602 } 1603 1604 /* 1605 * Called from the idle task. Wake up the controlling task which brings the 1606 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1607 * online bringup to the hotplug thread. 1608 */ 1609 void cpuhp_online_idle(enum cpuhp_state state) 1610 { 1611 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1612 1613 /* Happens for the boot cpu */ 1614 if (state != CPUHP_AP_ONLINE_IDLE) 1615 return; 1616 1617 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE); 1618 1619 /* 1620 * Unpark the stopper thread before we start the idle loop (and start 1621 * scheduling); this ensures the stopper task is always available. 1622 */ 1623 stop_machine_unpark(smp_processor_id()); 1624 1625 st->state = CPUHP_AP_ONLINE_IDLE; 1626 complete_ap_thread(st, true); 1627 } 1628 1629 /* Requires cpu_add_remove_lock to be held */ 1630 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1631 { 1632 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1633 struct task_struct *idle; 1634 int ret = 0; 1635 1636 cpus_write_lock(); 1637 1638 if (!cpu_present(cpu)) { 1639 ret = -EINVAL; 1640 goto out; 1641 } 1642 1643 /* 1644 * The caller of cpu_up() might have raced with another 1645 * caller. Nothing to do. 1646 */ 1647 if (st->state >= target) 1648 goto out; 1649 1650 if (st->state == CPUHP_OFFLINE) { 1651 /* Let it fail before we try to bring the cpu up */ 1652 idle = idle_thread_get(cpu); 1653 if (IS_ERR(idle)) { 1654 ret = PTR_ERR(idle); 1655 goto out; 1656 } 1657 1658 /* 1659 * Reset stale stack state from the last time this CPU was online. 1660 */ 1661 scs_task_reset(idle); 1662 kasan_unpoison_task_stack(idle); 1663 } 1664 1665 cpuhp_tasks_frozen = tasks_frozen; 1666 1667 cpuhp_set_state(cpu, st, target); 1668 /* 1669 * If the current CPU state is in the range of the AP hotplug thread, 1670 * then we need to kick the thread once more. 1671 */ 1672 if (st->state > CPUHP_BRINGUP_CPU) { 1673 ret = cpuhp_kick_ap_work(cpu); 1674 /* 1675 * The AP side has done the error rollback already. Just 1676 * return the error code.. 1677 */ 1678 if (ret) 1679 goto out; 1680 } 1681 1682 /* 1683 * Try to reach the target state. We max out on the BP at 1684 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1685 * responsible for bringing it up to the target state. 1686 */ 1687 target = min((int)target, CPUHP_BRINGUP_CPU); 1688 ret = cpuhp_up_callbacks(cpu, st, target); 1689 out: 1690 cpus_write_unlock(); 1691 arch_smt_update(); 1692 return ret; 1693 } 1694 1695 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1696 { 1697 int err = 0; 1698 1699 if (!cpu_possible(cpu)) { 1700 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1701 cpu); 1702 return -EINVAL; 1703 } 1704 1705 err = try_online_node(cpu_to_node(cpu)); 1706 if (err) 1707 return err; 1708 1709 cpu_maps_update_begin(); 1710 1711 if (cpu_hotplug_disabled) { 1712 err = -EBUSY; 1713 goto out; 1714 } 1715 if (!cpu_bootable(cpu)) { 1716 err = -EPERM; 1717 goto out; 1718 } 1719 1720 err = _cpu_up(cpu, 0, target); 1721 out: 1722 cpu_maps_update_done(); 1723 return err; 1724 } 1725 1726 /** 1727 * cpu_device_up - Bring up a cpu device 1728 * @dev: Pointer to the cpu device to online 1729 * 1730 * This function is meant to be used by device core cpu subsystem only. 1731 * 1732 * Other subsystems should use add_cpu() instead. 1733 * 1734 * Return: %0 on success or a negative errno code 1735 */ 1736 int cpu_device_up(struct device *dev) 1737 { 1738 return cpu_up(dev->id, CPUHP_ONLINE); 1739 } 1740 1741 int add_cpu(unsigned int cpu) 1742 { 1743 int ret; 1744 1745 lock_device_hotplug(); 1746 ret = device_online(get_cpu_device(cpu)); 1747 unlock_device_hotplug(); 1748 1749 return ret; 1750 } 1751 EXPORT_SYMBOL_GPL(add_cpu); 1752 1753 /** 1754 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1755 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1756 * 1757 * On some architectures like arm64, we can hibernate on any CPU, but on 1758 * wake up the CPU we hibernated on might be offline as a side effect of 1759 * using maxcpus= for example. 1760 * 1761 * Return: %0 on success or a negative errno code 1762 */ 1763 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1764 { 1765 int ret; 1766 1767 if (!cpu_online(sleep_cpu)) { 1768 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1769 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1770 if (ret) { 1771 pr_err("Failed to bring hibernate-CPU up!\n"); 1772 return ret; 1773 } 1774 } 1775 return 0; 1776 } 1777 1778 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, 1779 enum cpuhp_state target) 1780 { 1781 unsigned int cpu; 1782 1783 for_each_cpu(cpu, mask) { 1784 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1785 1786 if (cpu_up(cpu, target) && can_rollback_cpu(st)) { 1787 /* 1788 * If this failed then cpu_up() might have only 1789 * rolled back to CPUHP_BP_KICK_AP for the final 1790 * online. Clean it up. NOOP if already rolled back. 1791 */ 1792 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); 1793 } 1794 1795 if (!--ncpus) 1796 break; 1797 } 1798 } 1799 1800 #ifdef CONFIG_HOTPLUG_PARALLEL 1801 static bool __cpuhp_parallel_bringup __ro_after_init = true; 1802 1803 static int __init parallel_bringup_parse_param(char *arg) 1804 { 1805 return kstrtobool(arg, &__cpuhp_parallel_bringup); 1806 } 1807 early_param("cpuhp.parallel", parallel_bringup_parse_param); 1808 1809 #ifdef CONFIG_HOTPLUG_SMT 1810 static inline bool cpuhp_smt_aware(void) 1811 { 1812 return cpu_smt_max_threads > 1; 1813 } 1814 1815 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1816 { 1817 return cpu_primary_thread_mask; 1818 } 1819 #else 1820 static inline bool cpuhp_smt_aware(void) 1821 { 1822 return false; 1823 } 1824 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1825 { 1826 return cpu_none_mask; 1827 } 1828 #endif 1829 1830 bool __weak arch_cpuhp_init_parallel_bringup(void) 1831 { 1832 return true; 1833 } 1834 1835 /* 1836 * On architectures which have enabled parallel bringup this invokes all BP 1837 * prepare states for each of the to be onlined APs first. The last state 1838 * sends the startup IPI to the APs. The APs proceed through the low level 1839 * bringup code in parallel and then wait for the control CPU to release 1840 * them one by one for the final onlining procedure. 1841 * 1842 * This avoids waiting for each AP to respond to the startup IPI in 1843 * CPUHP_BRINGUP_CPU. 1844 */ 1845 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) 1846 { 1847 const struct cpumask *mask = cpu_present_mask; 1848 1849 if (__cpuhp_parallel_bringup) 1850 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); 1851 if (!__cpuhp_parallel_bringup) 1852 return false; 1853 1854 if (cpuhp_smt_aware()) { 1855 const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); 1856 static struct cpumask tmp_mask __initdata; 1857 1858 /* 1859 * X86 requires to prevent that SMT siblings stopped while 1860 * the primary thread does a microcode update for various 1861 * reasons. Bring the primary threads up first. 1862 */ 1863 cpumask_and(&tmp_mask, mask, pmask); 1864 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP); 1865 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE); 1866 /* Account for the online CPUs */ 1867 ncpus -= num_online_cpus(); 1868 if (!ncpus) 1869 return true; 1870 /* Create the mask for secondary CPUs */ 1871 cpumask_andnot(&tmp_mask, mask, pmask); 1872 mask = &tmp_mask; 1873 } 1874 1875 /* Bring the not-yet started CPUs up */ 1876 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP); 1877 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE); 1878 return true; 1879 } 1880 #else 1881 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } 1882 #endif /* CONFIG_HOTPLUG_PARALLEL */ 1883 1884 void __init bringup_nonboot_cpus(unsigned int max_cpus) 1885 { 1886 if (!max_cpus) 1887 return; 1888 1889 /* Try parallel bringup optimization if enabled */ 1890 if (cpuhp_bringup_cpus_parallel(max_cpus)) 1891 return; 1892 1893 /* Full per CPU serialized bringup */ 1894 cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE); 1895 } 1896 1897 #ifdef CONFIG_PM_SLEEP_SMP 1898 static cpumask_var_t frozen_cpus; 1899 1900 int freeze_secondary_cpus(int primary) 1901 { 1902 int cpu, error = 0; 1903 1904 cpu_maps_update_begin(); 1905 if (primary == -1) { 1906 primary = cpumask_first(cpu_online_mask); 1907 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1908 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1909 } else { 1910 if (!cpu_online(primary)) 1911 primary = cpumask_first(cpu_online_mask); 1912 } 1913 1914 /* 1915 * We take down all of the non-boot CPUs in one shot to avoid races 1916 * with the userspace trying to use the CPU hotplug at the same time 1917 */ 1918 cpumask_clear(frozen_cpus); 1919 1920 pr_info("Disabling non-boot CPUs ...\n"); 1921 for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) { 1922 if (!cpu_online(cpu) || cpu == primary) 1923 continue; 1924 1925 if (pm_wakeup_pending()) { 1926 pr_info("Wakeup pending. Abort CPU freeze\n"); 1927 error = -EBUSY; 1928 break; 1929 } 1930 1931 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1932 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1933 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1934 if (!error) 1935 cpumask_set_cpu(cpu, frozen_cpus); 1936 else { 1937 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1938 break; 1939 } 1940 } 1941 1942 if (!error) 1943 BUG_ON(num_online_cpus() > 1); 1944 else 1945 pr_err("Non-boot CPUs are not disabled\n"); 1946 1947 /* 1948 * Make sure the CPUs won't be enabled by someone else. We need to do 1949 * this even in case of failure as all freeze_secondary_cpus() users are 1950 * supposed to do thaw_secondary_cpus() on the failure path. 1951 */ 1952 cpu_hotplug_disabled++; 1953 1954 cpu_maps_update_done(); 1955 return error; 1956 } 1957 1958 void __weak arch_thaw_secondary_cpus_begin(void) 1959 { 1960 } 1961 1962 void __weak arch_thaw_secondary_cpus_end(void) 1963 { 1964 } 1965 1966 void thaw_secondary_cpus(void) 1967 { 1968 int cpu, error; 1969 1970 /* Allow everyone to use the CPU hotplug again */ 1971 cpu_maps_update_begin(); 1972 __cpu_hotplug_enable(); 1973 if (cpumask_empty(frozen_cpus)) 1974 goto out; 1975 1976 pr_info("Enabling non-boot CPUs ...\n"); 1977 1978 arch_thaw_secondary_cpus_begin(); 1979 1980 for_each_cpu(cpu, frozen_cpus) { 1981 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1982 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1983 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1984 if (!error) { 1985 pr_info("CPU%d is up\n", cpu); 1986 continue; 1987 } 1988 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1989 } 1990 1991 arch_thaw_secondary_cpus_end(); 1992 1993 cpumask_clear(frozen_cpus); 1994 out: 1995 cpu_maps_update_done(); 1996 } 1997 1998 static int __init alloc_frozen_cpus(void) 1999 { 2000 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 2001 return -ENOMEM; 2002 return 0; 2003 } 2004 core_initcall(alloc_frozen_cpus); 2005 2006 /* 2007 * When callbacks for CPU hotplug notifications are being executed, we must 2008 * ensure that the state of the system with respect to the tasks being frozen 2009 * or not, as reported by the notification, remains unchanged *throughout the 2010 * duration* of the execution of the callbacks. 2011 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 2012 * 2013 * This synchronization is implemented by mutually excluding regular CPU 2014 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 2015 * Hibernate notifications. 2016 */ 2017 static int 2018 cpu_hotplug_pm_callback(struct notifier_block *nb, 2019 unsigned long action, void *ptr) 2020 { 2021 switch (action) { 2022 2023 case PM_SUSPEND_PREPARE: 2024 case PM_HIBERNATION_PREPARE: 2025 cpu_hotplug_disable(); 2026 break; 2027 2028 case PM_POST_SUSPEND: 2029 case PM_POST_HIBERNATION: 2030 cpu_hotplug_enable(); 2031 break; 2032 2033 default: 2034 return NOTIFY_DONE; 2035 } 2036 2037 return NOTIFY_OK; 2038 } 2039 2040 2041 static int __init cpu_hotplug_pm_sync_init(void) 2042 { 2043 /* 2044 * cpu_hotplug_pm_callback has higher priority than x86 2045 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 2046 * to disable cpu hotplug to avoid cpu hotplug race. 2047 */ 2048 pm_notifier(cpu_hotplug_pm_callback, 0); 2049 return 0; 2050 } 2051 core_initcall(cpu_hotplug_pm_sync_init); 2052 2053 #endif /* CONFIG_PM_SLEEP_SMP */ 2054 2055 int __boot_cpu_id; 2056 2057 #endif /* CONFIG_SMP */ 2058 2059 /* Boot processor state steps */ 2060 static struct cpuhp_step cpuhp_hp_states[] = { 2061 [CPUHP_OFFLINE] = { 2062 .name = "offline", 2063 .startup.single = NULL, 2064 .teardown.single = NULL, 2065 }, 2066 #ifdef CONFIG_SMP 2067 [CPUHP_CREATE_THREADS]= { 2068 .name = "threads:prepare", 2069 .startup.single = smpboot_create_threads, 2070 .teardown.single = NULL, 2071 .cant_stop = true, 2072 }, 2073 [CPUHP_PERF_PREPARE] = { 2074 .name = "perf:prepare", 2075 .startup.single = perf_event_init_cpu, 2076 .teardown.single = perf_event_exit_cpu, 2077 }, 2078 [CPUHP_RANDOM_PREPARE] = { 2079 .name = "random:prepare", 2080 .startup.single = random_prepare_cpu, 2081 .teardown.single = NULL, 2082 }, 2083 [CPUHP_WORKQUEUE_PREP] = { 2084 .name = "workqueue:prepare", 2085 .startup.single = workqueue_prepare_cpu, 2086 .teardown.single = NULL, 2087 }, 2088 [CPUHP_HRTIMERS_PREPARE] = { 2089 .name = "hrtimers:prepare", 2090 .startup.single = hrtimers_prepare_cpu, 2091 .teardown.single = NULL, 2092 }, 2093 [CPUHP_SMPCFD_PREPARE] = { 2094 .name = "smpcfd:prepare", 2095 .startup.single = smpcfd_prepare_cpu, 2096 .teardown.single = smpcfd_dead_cpu, 2097 }, 2098 [CPUHP_RELAY_PREPARE] = { 2099 .name = "relay:prepare", 2100 .startup.single = relay_prepare_cpu, 2101 .teardown.single = NULL, 2102 }, 2103 [CPUHP_RCUTREE_PREP] = { 2104 .name = "RCU/tree:prepare", 2105 .startup.single = rcutree_prepare_cpu, 2106 .teardown.single = rcutree_dead_cpu, 2107 }, 2108 /* 2109 * On the tear-down path, timers_dead_cpu() must be invoked 2110 * before blk_mq_queue_reinit_notify() from notify_dead(), 2111 * otherwise a RCU stall occurs. 2112 */ 2113 [CPUHP_TIMERS_PREPARE] = { 2114 .name = "timers:prepare", 2115 .startup.single = timers_prepare_cpu, 2116 .teardown.single = timers_dead_cpu, 2117 }, 2118 2119 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 2120 /* 2121 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until 2122 * the next step will release it. 2123 */ 2124 [CPUHP_BP_KICK_AP] = { 2125 .name = "cpu:kick_ap", 2126 .startup.single = cpuhp_kick_ap_alive, 2127 }, 2128 2129 /* 2130 * Waits for the AP to reach cpuhp_ap_sync_alive() and then 2131 * releases it for the complete bringup. 2132 */ 2133 [CPUHP_BRINGUP_CPU] = { 2134 .name = "cpu:bringup", 2135 .startup.single = cpuhp_bringup_ap, 2136 .teardown.single = finish_cpu, 2137 .cant_stop = true, 2138 }, 2139 #else 2140 /* 2141 * All-in-one CPU bringup state which includes the kick alive. 2142 */ 2143 [CPUHP_BRINGUP_CPU] = { 2144 .name = "cpu:bringup", 2145 .startup.single = bringup_cpu, 2146 .teardown.single = finish_cpu, 2147 .cant_stop = true, 2148 }, 2149 #endif 2150 /* Final state before CPU kills itself */ 2151 [CPUHP_AP_IDLE_DEAD] = { 2152 .name = "idle:dead", 2153 }, 2154 /* 2155 * Last state before CPU enters the idle loop to die. Transient state 2156 * for synchronization. 2157 */ 2158 [CPUHP_AP_OFFLINE] = { 2159 .name = "ap:offline", 2160 .cant_stop = true, 2161 }, 2162 /* First state is scheduler control. Interrupts are disabled */ 2163 [CPUHP_AP_SCHED_STARTING] = { 2164 .name = "sched:starting", 2165 .startup.single = sched_cpu_starting, 2166 .teardown.single = sched_cpu_dying, 2167 }, 2168 [CPUHP_AP_RCUTREE_DYING] = { 2169 .name = "RCU/tree:dying", 2170 .startup.single = NULL, 2171 .teardown.single = rcutree_dying_cpu, 2172 }, 2173 [CPUHP_AP_SMPCFD_DYING] = { 2174 .name = "smpcfd:dying", 2175 .startup.single = NULL, 2176 .teardown.single = smpcfd_dying_cpu, 2177 }, 2178 [CPUHP_AP_HRTIMERS_DYING] = { 2179 .name = "hrtimers:dying", 2180 .startup.single = NULL, 2181 .teardown.single = hrtimers_cpu_dying, 2182 }, 2183 [CPUHP_AP_TICK_DYING] = { 2184 .name = "tick:dying", 2185 .startup.single = NULL, 2186 .teardown.single = tick_cpu_dying, 2187 }, 2188 /* Entry state on starting. Interrupts enabled from here on. Transient 2189 * state for synchronsization */ 2190 [CPUHP_AP_ONLINE] = { 2191 .name = "ap:online", 2192 }, 2193 /* 2194 * Handled on control processor until the plugged processor manages 2195 * this itself. 2196 */ 2197 [CPUHP_TEARDOWN_CPU] = { 2198 .name = "cpu:teardown", 2199 .startup.single = NULL, 2200 .teardown.single = takedown_cpu, 2201 .cant_stop = true, 2202 }, 2203 2204 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 2205 .name = "sched:waitempty", 2206 .startup.single = NULL, 2207 .teardown.single = sched_cpu_wait_empty, 2208 }, 2209 2210 /* Handle smpboot threads park/unpark */ 2211 [CPUHP_AP_SMPBOOT_THREADS] = { 2212 .name = "smpboot/threads:online", 2213 .startup.single = smpboot_unpark_threads, 2214 .teardown.single = smpboot_park_threads, 2215 }, 2216 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 2217 .name = "irq/affinity:online", 2218 .startup.single = irq_affinity_online_cpu, 2219 .teardown.single = NULL, 2220 }, 2221 [CPUHP_AP_PERF_ONLINE] = { 2222 .name = "perf:online", 2223 .startup.single = perf_event_init_cpu, 2224 .teardown.single = perf_event_exit_cpu, 2225 }, 2226 [CPUHP_AP_WATCHDOG_ONLINE] = { 2227 .name = "lockup_detector:online", 2228 .startup.single = lockup_detector_online_cpu, 2229 .teardown.single = lockup_detector_offline_cpu, 2230 }, 2231 [CPUHP_AP_WORKQUEUE_ONLINE] = { 2232 .name = "workqueue:online", 2233 .startup.single = workqueue_online_cpu, 2234 .teardown.single = workqueue_offline_cpu, 2235 }, 2236 [CPUHP_AP_RANDOM_ONLINE] = { 2237 .name = "random:online", 2238 .startup.single = random_online_cpu, 2239 .teardown.single = NULL, 2240 }, 2241 [CPUHP_AP_RCUTREE_ONLINE] = { 2242 .name = "RCU/tree:online", 2243 .startup.single = rcutree_online_cpu, 2244 .teardown.single = rcutree_offline_cpu, 2245 }, 2246 #endif 2247 /* 2248 * The dynamically registered state space is here 2249 */ 2250 2251 #ifdef CONFIG_SMP 2252 /* Last state is scheduler control setting the cpu active */ 2253 [CPUHP_AP_ACTIVE] = { 2254 .name = "sched:active", 2255 .startup.single = sched_cpu_activate, 2256 .teardown.single = sched_cpu_deactivate, 2257 }, 2258 #endif 2259 2260 /* CPU is fully up and running. */ 2261 [CPUHP_ONLINE] = { 2262 .name = "online", 2263 .startup.single = NULL, 2264 .teardown.single = NULL, 2265 }, 2266 }; 2267 2268 /* Sanity check for callbacks */ 2269 static int cpuhp_cb_check(enum cpuhp_state state) 2270 { 2271 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 2272 return -EINVAL; 2273 return 0; 2274 } 2275 2276 /* 2277 * Returns a free for dynamic slot assignment of the Online state. The states 2278 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 2279 * by having no name assigned. 2280 */ 2281 static int cpuhp_reserve_state(enum cpuhp_state state) 2282 { 2283 enum cpuhp_state i, end; 2284 struct cpuhp_step *step; 2285 2286 switch (state) { 2287 case CPUHP_AP_ONLINE_DYN: 2288 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 2289 end = CPUHP_AP_ONLINE_DYN_END; 2290 break; 2291 case CPUHP_BP_PREPARE_DYN: 2292 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 2293 end = CPUHP_BP_PREPARE_DYN_END; 2294 break; 2295 default: 2296 return -EINVAL; 2297 } 2298 2299 for (i = state; i <= end; i++, step++) { 2300 if (!step->name) 2301 return i; 2302 } 2303 WARN(1, "No more dynamic states available for CPU hotplug\n"); 2304 return -ENOSPC; 2305 } 2306 2307 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 2308 int (*startup)(unsigned int cpu), 2309 int (*teardown)(unsigned int cpu), 2310 bool multi_instance) 2311 { 2312 /* (Un)Install the callbacks for further cpu hotplug operations */ 2313 struct cpuhp_step *sp; 2314 int ret = 0; 2315 2316 /* 2317 * If name is NULL, then the state gets removed. 2318 * 2319 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 2320 * the first allocation from these dynamic ranges, so the removal 2321 * would trigger a new allocation and clear the wrong (already 2322 * empty) state, leaving the callbacks of the to be cleared state 2323 * dangling, which causes wreckage on the next hotplug operation. 2324 */ 2325 if (name && (state == CPUHP_AP_ONLINE_DYN || 2326 state == CPUHP_BP_PREPARE_DYN)) { 2327 ret = cpuhp_reserve_state(state); 2328 if (ret < 0) 2329 return ret; 2330 state = ret; 2331 } 2332 sp = cpuhp_get_step(state); 2333 if (name && sp->name) 2334 return -EBUSY; 2335 2336 sp->startup.single = startup; 2337 sp->teardown.single = teardown; 2338 sp->name = name; 2339 sp->multi_instance = multi_instance; 2340 INIT_HLIST_HEAD(&sp->list); 2341 return ret; 2342 } 2343 2344 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 2345 { 2346 return cpuhp_get_step(state)->teardown.single; 2347 } 2348 2349 /* 2350 * Call the startup/teardown function for a step either on the AP or 2351 * on the current CPU. 2352 */ 2353 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 2354 struct hlist_node *node) 2355 { 2356 struct cpuhp_step *sp = cpuhp_get_step(state); 2357 int ret; 2358 2359 /* 2360 * If there's nothing to do, we done. 2361 * Relies on the union for multi_instance. 2362 */ 2363 if (cpuhp_step_empty(bringup, sp)) 2364 return 0; 2365 /* 2366 * The non AP bound callbacks can fail on bringup. On teardown 2367 * e.g. module removal we crash for now. 2368 */ 2369 #ifdef CONFIG_SMP 2370 if (cpuhp_is_ap_state(state)) 2371 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 2372 else 2373 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2374 #else 2375 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2376 #endif 2377 BUG_ON(ret && !bringup); 2378 return ret; 2379 } 2380 2381 /* 2382 * Called from __cpuhp_setup_state on a recoverable failure. 2383 * 2384 * Note: The teardown callbacks for rollback are not allowed to fail! 2385 */ 2386 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 2387 struct hlist_node *node) 2388 { 2389 int cpu; 2390 2391 /* Roll back the already executed steps on the other cpus */ 2392 for_each_present_cpu(cpu) { 2393 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2394 int cpustate = st->state; 2395 2396 if (cpu >= failedcpu) 2397 break; 2398 2399 /* Did we invoke the startup call on that cpu ? */ 2400 if (cpustate >= state) 2401 cpuhp_issue_call(cpu, state, false, node); 2402 } 2403 } 2404 2405 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 2406 struct hlist_node *node, 2407 bool invoke) 2408 { 2409 struct cpuhp_step *sp; 2410 int cpu; 2411 int ret; 2412 2413 lockdep_assert_cpus_held(); 2414 2415 sp = cpuhp_get_step(state); 2416 if (sp->multi_instance == false) 2417 return -EINVAL; 2418 2419 mutex_lock(&cpuhp_state_mutex); 2420 2421 if (!invoke || !sp->startup.multi) 2422 goto add_node; 2423 2424 /* 2425 * Try to call the startup callback for each present cpu 2426 * depending on the hotplug state of the cpu. 2427 */ 2428 for_each_present_cpu(cpu) { 2429 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2430 int cpustate = st->state; 2431 2432 if (cpustate < state) 2433 continue; 2434 2435 ret = cpuhp_issue_call(cpu, state, true, node); 2436 if (ret) { 2437 if (sp->teardown.multi) 2438 cpuhp_rollback_install(cpu, state, node); 2439 goto unlock; 2440 } 2441 } 2442 add_node: 2443 ret = 0; 2444 hlist_add_head(node, &sp->list); 2445 unlock: 2446 mutex_unlock(&cpuhp_state_mutex); 2447 return ret; 2448 } 2449 2450 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2451 bool invoke) 2452 { 2453 int ret; 2454 2455 cpus_read_lock(); 2456 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2457 cpus_read_unlock(); 2458 return ret; 2459 } 2460 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2461 2462 /** 2463 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2464 * @state: The state to setup 2465 * @name: Name of the step 2466 * @invoke: If true, the startup function is invoked for cpus where 2467 * cpu state >= @state 2468 * @startup: startup callback function 2469 * @teardown: teardown callback function 2470 * @multi_instance: State is set up for multiple instances which get 2471 * added afterwards. 2472 * 2473 * The caller needs to hold cpus read locked while calling this function. 2474 * Return: 2475 * On success: 2476 * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN; 2477 * 0 for all other states 2478 * On failure: proper (negative) error code 2479 */ 2480 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2481 const char *name, bool invoke, 2482 int (*startup)(unsigned int cpu), 2483 int (*teardown)(unsigned int cpu), 2484 bool multi_instance) 2485 { 2486 int cpu, ret = 0; 2487 bool dynstate; 2488 2489 lockdep_assert_cpus_held(); 2490 2491 if (cpuhp_cb_check(state) || !name) 2492 return -EINVAL; 2493 2494 mutex_lock(&cpuhp_state_mutex); 2495 2496 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2497 multi_instance); 2498 2499 dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN; 2500 if (ret > 0 && dynstate) { 2501 state = ret; 2502 ret = 0; 2503 } 2504 2505 if (ret || !invoke || !startup) 2506 goto out; 2507 2508 /* 2509 * Try to call the startup callback for each present cpu 2510 * depending on the hotplug state of the cpu. 2511 */ 2512 for_each_present_cpu(cpu) { 2513 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2514 int cpustate = st->state; 2515 2516 if (cpustate < state) 2517 continue; 2518 2519 ret = cpuhp_issue_call(cpu, state, true, NULL); 2520 if (ret) { 2521 if (teardown) 2522 cpuhp_rollback_install(cpu, state, NULL); 2523 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2524 goto out; 2525 } 2526 } 2527 out: 2528 mutex_unlock(&cpuhp_state_mutex); 2529 /* 2530 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN, 2531 * return the dynamically allocated state in case of success. 2532 */ 2533 if (!ret && dynstate) 2534 return state; 2535 return ret; 2536 } 2537 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2538 2539 int __cpuhp_setup_state(enum cpuhp_state state, 2540 const char *name, bool invoke, 2541 int (*startup)(unsigned int cpu), 2542 int (*teardown)(unsigned int cpu), 2543 bool multi_instance) 2544 { 2545 int ret; 2546 2547 cpus_read_lock(); 2548 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2549 teardown, multi_instance); 2550 cpus_read_unlock(); 2551 return ret; 2552 } 2553 EXPORT_SYMBOL(__cpuhp_setup_state); 2554 2555 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2556 struct hlist_node *node, bool invoke) 2557 { 2558 struct cpuhp_step *sp = cpuhp_get_step(state); 2559 int cpu; 2560 2561 BUG_ON(cpuhp_cb_check(state)); 2562 2563 if (!sp->multi_instance) 2564 return -EINVAL; 2565 2566 cpus_read_lock(); 2567 mutex_lock(&cpuhp_state_mutex); 2568 2569 if (!invoke || !cpuhp_get_teardown_cb(state)) 2570 goto remove; 2571 /* 2572 * Call the teardown callback for each present cpu depending 2573 * on the hotplug state of the cpu. This function is not 2574 * allowed to fail currently! 2575 */ 2576 for_each_present_cpu(cpu) { 2577 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2578 int cpustate = st->state; 2579 2580 if (cpustate >= state) 2581 cpuhp_issue_call(cpu, state, false, node); 2582 } 2583 2584 remove: 2585 hlist_del(node); 2586 mutex_unlock(&cpuhp_state_mutex); 2587 cpus_read_unlock(); 2588 2589 return 0; 2590 } 2591 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2592 2593 /** 2594 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2595 * @state: The state to remove 2596 * @invoke: If true, the teardown function is invoked for cpus where 2597 * cpu state >= @state 2598 * 2599 * The caller needs to hold cpus read locked while calling this function. 2600 * The teardown callback is currently not allowed to fail. Think 2601 * about module removal! 2602 */ 2603 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2604 { 2605 struct cpuhp_step *sp = cpuhp_get_step(state); 2606 int cpu; 2607 2608 BUG_ON(cpuhp_cb_check(state)); 2609 2610 lockdep_assert_cpus_held(); 2611 2612 mutex_lock(&cpuhp_state_mutex); 2613 if (sp->multi_instance) { 2614 WARN(!hlist_empty(&sp->list), 2615 "Error: Removing state %d which has instances left.\n", 2616 state); 2617 goto remove; 2618 } 2619 2620 if (!invoke || !cpuhp_get_teardown_cb(state)) 2621 goto remove; 2622 2623 /* 2624 * Call the teardown callback for each present cpu depending 2625 * on the hotplug state of the cpu. This function is not 2626 * allowed to fail currently! 2627 */ 2628 for_each_present_cpu(cpu) { 2629 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2630 int cpustate = st->state; 2631 2632 if (cpustate >= state) 2633 cpuhp_issue_call(cpu, state, false, NULL); 2634 } 2635 remove: 2636 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2637 mutex_unlock(&cpuhp_state_mutex); 2638 } 2639 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2640 2641 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2642 { 2643 cpus_read_lock(); 2644 __cpuhp_remove_state_cpuslocked(state, invoke); 2645 cpus_read_unlock(); 2646 } 2647 EXPORT_SYMBOL(__cpuhp_remove_state); 2648 2649 #ifdef CONFIG_HOTPLUG_SMT 2650 static void cpuhp_offline_cpu_device(unsigned int cpu) 2651 { 2652 struct device *dev = get_cpu_device(cpu); 2653 2654 dev->offline = true; 2655 /* Tell user space about the state change */ 2656 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2657 } 2658 2659 static void cpuhp_online_cpu_device(unsigned int cpu) 2660 { 2661 struct device *dev = get_cpu_device(cpu); 2662 2663 dev->offline = false; 2664 /* Tell user space about the state change */ 2665 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2666 } 2667 2668 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2669 { 2670 int cpu, ret = 0; 2671 2672 cpu_maps_update_begin(); 2673 for_each_online_cpu(cpu) { 2674 if (topology_is_primary_thread(cpu)) 2675 continue; 2676 /* 2677 * Disable can be called with CPU_SMT_ENABLED when changing 2678 * from a higher to lower number of SMT threads per core. 2679 */ 2680 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 2681 continue; 2682 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2683 if (ret) 2684 break; 2685 /* 2686 * As this needs to hold the cpu maps lock it's impossible 2687 * to call device_offline() because that ends up calling 2688 * cpu_down() which takes cpu maps lock. cpu maps lock 2689 * needs to be held as this might race against in kernel 2690 * abusers of the hotplug machinery (thermal management). 2691 * 2692 * So nothing would update device:offline state. That would 2693 * leave the sysfs entry stale and prevent onlining after 2694 * smt control has been changed to 'off' again. This is 2695 * called under the sysfs hotplug lock, so it is properly 2696 * serialized against the regular offline usage. 2697 */ 2698 cpuhp_offline_cpu_device(cpu); 2699 } 2700 if (!ret) 2701 cpu_smt_control = ctrlval; 2702 cpu_maps_update_done(); 2703 return ret; 2704 } 2705 2706 /* Check if the core a CPU belongs to is online */ 2707 #if !defined(topology_is_core_online) 2708 static inline bool topology_is_core_online(unsigned int cpu) 2709 { 2710 return true; 2711 } 2712 #endif 2713 2714 int cpuhp_smt_enable(void) 2715 { 2716 int cpu, ret = 0; 2717 2718 cpu_maps_update_begin(); 2719 cpu_smt_control = CPU_SMT_ENABLED; 2720 for_each_present_cpu(cpu) { 2721 /* Skip online CPUs and CPUs on offline nodes */ 2722 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2723 continue; 2724 if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu)) 2725 continue; 2726 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2727 if (ret) 2728 break; 2729 /* See comment in cpuhp_smt_disable() */ 2730 cpuhp_online_cpu_device(cpu); 2731 } 2732 cpu_maps_update_done(); 2733 return ret; 2734 } 2735 #endif 2736 2737 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2738 static ssize_t state_show(struct device *dev, 2739 struct device_attribute *attr, char *buf) 2740 { 2741 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2742 2743 return sprintf(buf, "%d\n", st->state); 2744 } 2745 static DEVICE_ATTR_RO(state); 2746 2747 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2748 const char *buf, size_t count) 2749 { 2750 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2751 struct cpuhp_step *sp; 2752 int target, ret; 2753 2754 ret = kstrtoint(buf, 10, &target); 2755 if (ret) 2756 return ret; 2757 2758 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2759 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2760 return -EINVAL; 2761 #else 2762 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2763 return -EINVAL; 2764 #endif 2765 2766 ret = lock_device_hotplug_sysfs(); 2767 if (ret) 2768 return ret; 2769 2770 mutex_lock(&cpuhp_state_mutex); 2771 sp = cpuhp_get_step(target); 2772 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2773 mutex_unlock(&cpuhp_state_mutex); 2774 if (ret) 2775 goto out; 2776 2777 if (st->state < target) 2778 ret = cpu_up(dev->id, target); 2779 else if (st->state > target) 2780 ret = cpu_down(dev->id, target); 2781 else if (WARN_ON(st->target != target)) 2782 st->target = target; 2783 out: 2784 unlock_device_hotplug(); 2785 return ret ? ret : count; 2786 } 2787 2788 static ssize_t target_show(struct device *dev, 2789 struct device_attribute *attr, char *buf) 2790 { 2791 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2792 2793 return sprintf(buf, "%d\n", st->target); 2794 } 2795 static DEVICE_ATTR_RW(target); 2796 2797 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2798 const char *buf, size_t count) 2799 { 2800 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2801 struct cpuhp_step *sp; 2802 int fail, ret; 2803 2804 ret = kstrtoint(buf, 10, &fail); 2805 if (ret) 2806 return ret; 2807 2808 if (fail == CPUHP_INVALID) { 2809 st->fail = fail; 2810 return count; 2811 } 2812 2813 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2814 return -EINVAL; 2815 2816 /* 2817 * Cannot fail STARTING/DYING callbacks. 2818 */ 2819 if (cpuhp_is_atomic_state(fail)) 2820 return -EINVAL; 2821 2822 /* 2823 * DEAD callbacks cannot fail... 2824 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2825 * triggering STARTING callbacks, a failure in this state would 2826 * hinder rollback. 2827 */ 2828 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2829 return -EINVAL; 2830 2831 /* 2832 * Cannot fail anything that doesn't have callbacks. 2833 */ 2834 mutex_lock(&cpuhp_state_mutex); 2835 sp = cpuhp_get_step(fail); 2836 if (!sp->startup.single && !sp->teardown.single) 2837 ret = -EINVAL; 2838 mutex_unlock(&cpuhp_state_mutex); 2839 if (ret) 2840 return ret; 2841 2842 st->fail = fail; 2843 2844 return count; 2845 } 2846 2847 static ssize_t fail_show(struct device *dev, 2848 struct device_attribute *attr, char *buf) 2849 { 2850 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2851 2852 return sprintf(buf, "%d\n", st->fail); 2853 } 2854 2855 static DEVICE_ATTR_RW(fail); 2856 2857 static struct attribute *cpuhp_cpu_attrs[] = { 2858 &dev_attr_state.attr, 2859 &dev_attr_target.attr, 2860 &dev_attr_fail.attr, 2861 NULL 2862 }; 2863 2864 static const struct attribute_group cpuhp_cpu_attr_group = { 2865 .attrs = cpuhp_cpu_attrs, 2866 .name = "hotplug", 2867 NULL 2868 }; 2869 2870 static ssize_t states_show(struct device *dev, 2871 struct device_attribute *attr, char *buf) 2872 { 2873 ssize_t cur, res = 0; 2874 int i; 2875 2876 mutex_lock(&cpuhp_state_mutex); 2877 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2878 struct cpuhp_step *sp = cpuhp_get_step(i); 2879 2880 if (sp->name) { 2881 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2882 buf += cur; 2883 res += cur; 2884 } 2885 } 2886 mutex_unlock(&cpuhp_state_mutex); 2887 return res; 2888 } 2889 static DEVICE_ATTR_RO(states); 2890 2891 static struct attribute *cpuhp_cpu_root_attrs[] = { 2892 &dev_attr_states.attr, 2893 NULL 2894 }; 2895 2896 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2897 .attrs = cpuhp_cpu_root_attrs, 2898 .name = "hotplug", 2899 NULL 2900 }; 2901 2902 #ifdef CONFIG_HOTPLUG_SMT 2903 2904 static bool cpu_smt_num_threads_valid(unsigned int threads) 2905 { 2906 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) 2907 return threads >= 1 && threads <= cpu_smt_max_threads; 2908 return threads == 1 || threads == cpu_smt_max_threads; 2909 } 2910 2911 static ssize_t 2912 __store_smt_control(struct device *dev, struct device_attribute *attr, 2913 const char *buf, size_t count) 2914 { 2915 int ctrlval, ret, num_threads, orig_threads; 2916 bool force_off; 2917 2918 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2919 return -EPERM; 2920 2921 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2922 return -ENODEV; 2923 2924 if (sysfs_streq(buf, "on")) { 2925 ctrlval = CPU_SMT_ENABLED; 2926 num_threads = cpu_smt_max_threads; 2927 } else if (sysfs_streq(buf, "off")) { 2928 ctrlval = CPU_SMT_DISABLED; 2929 num_threads = 1; 2930 } else if (sysfs_streq(buf, "forceoff")) { 2931 ctrlval = CPU_SMT_FORCE_DISABLED; 2932 num_threads = 1; 2933 } else if (kstrtoint(buf, 10, &num_threads) == 0) { 2934 if (num_threads == 1) 2935 ctrlval = CPU_SMT_DISABLED; 2936 else if (cpu_smt_num_threads_valid(num_threads)) 2937 ctrlval = CPU_SMT_ENABLED; 2938 else 2939 return -EINVAL; 2940 } else { 2941 return -EINVAL; 2942 } 2943 2944 ret = lock_device_hotplug_sysfs(); 2945 if (ret) 2946 return ret; 2947 2948 orig_threads = cpu_smt_num_threads; 2949 cpu_smt_num_threads = num_threads; 2950 2951 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; 2952 2953 if (num_threads > orig_threads) 2954 ret = cpuhp_smt_enable(); 2955 else if (num_threads < orig_threads || force_off) 2956 ret = cpuhp_smt_disable(ctrlval); 2957 2958 unlock_device_hotplug(); 2959 return ret ? ret : count; 2960 } 2961 2962 #else /* !CONFIG_HOTPLUG_SMT */ 2963 static ssize_t 2964 __store_smt_control(struct device *dev, struct device_attribute *attr, 2965 const char *buf, size_t count) 2966 { 2967 return -ENODEV; 2968 } 2969 #endif /* CONFIG_HOTPLUG_SMT */ 2970 2971 static const char *smt_states[] = { 2972 [CPU_SMT_ENABLED] = "on", 2973 [CPU_SMT_DISABLED] = "off", 2974 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2975 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2976 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2977 }; 2978 2979 static ssize_t control_show(struct device *dev, 2980 struct device_attribute *attr, char *buf) 2981 { 2982 const char *state = smt_states[cpu_smt_control]; 2983 2984 #ifdef CONFIG_HOTPLUG_SMT 2985 /* 2986 * If SMT is enabled but not all threads are enabled then show the 2987 * number of threads. If all threads are enabled show "on". Otherwise 2988 * show the state name. 2989 */ 2990 if (cpu_smt_control == CPU_SMT_ENABLED && 2991 cpu_smt_num_threads != cpu_smt_max_threads) 2992 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads); 2993 #endif 2994 2995 return sysfs_emit(buf, "%s\n", state); 2996 } 2997 2998 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 2999 const char *buf, size_t count) 3000 { 3001 return __store_smt_control(dev, attr, buf, count); 3002 } 3003 static DEVICE_ATTR_RW(control); 3004 3005 static ssize_t active_show(struct device *dev, 3006 struct device_attribute *attr, char *buf) 3007 { 3008 return sysfs_emit(buf, "%d\n", sched_smt_active()); 3009 } 3010 static DEVICE_ATTR_RO(active); 3011 3012 static struct attribute *cpuhp_smt_attrs[] = { 3013 &dev_attr_control.attr, 3014 &dev_attr_active.attr, 3015 NULL 3016 }; 3017 3018 static const struct attribute_group cpuhp_smt_attr_group = { 3019 .attrs = cpuhp_smt_attrs, 3020 .name = "smt", 3021 NULL 3022 }; 3023 3024 static int __init cpu_smt_sysfs_init(void) 3025 { 3026 struct device *dev_root; 3027 int ret = -ENODEV; 3028 3029 dev_root = bus_get_dev_root(&cpu_subsys); 3030 if (dev_root) { 3031 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); 3032 put_device(dev_root); 3033 } 3034 return ret; 3035 } 3036 3037 static int __init cpuhp_sysfs_init(void) 3038 { 3039 struct device *dev_root; 3040 int cpu, ret; 3041 3042 ret = cpu_smt_sysfs_init(); 3043 if (ret) 3044 return ret; 3045 3046 dev_root = bus_get_dev_root(&cpu_subsys); 3047 if (dev_root) { 3048 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); 3049 put_device(dev_root); 3050 if (ret) 3051 return ret; 3052 } 3053 3054 for_each_possible_cpu(cpu) { 3055 struct device *dev = get_cpu_device(cpu); 3056 3057 if (!dev) 3058 continue; 3059 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 3060 if (ret) 3061 return ret; 3062 } 3063 return 0; 3064 } 3065 device_initcall(cpuhp_sysfs_init); 3066 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 3067 3068 /* 3069 * cpu_bit_bitmap[] is a special, "compressed" data structure that 3070 * represents all NR_CPUS bits binary values of 1<<nr. 3071 * 3072 * It is used by cpumask_of() to get a constant address to a CPU 3073 * mask value that has a single bit set only. 3074 */ 3075 3076 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 3077 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 3078 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 3079 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 3080 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 3081 3082 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 3083 3084 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 3085 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 3086 #if BITS_PER_LONG > 32 3087 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 3088 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 3089 #endif 3090 }; 3091 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 3092 3093 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 3094 EXPORT_SYMBOL(cpu_all_bits); 3095 3096 #ifdef CONFIG_INIT_ALL_POSSIBLE 3097 struct cpumask __cpu_possible_mask __ro_after_init 3098 = {CPU_BITS_ALL}; 3099 #else 3100 struct cpumask __cpu_possible_mask __ro_after_init; 3101 #endif 3102 EXPORT_SYMBOL(__cpu_possible_mask); 3103 3104 struct cpumask __cpu_online_mask __read_mostly; 3105 EXPORT_SYMBOL(__cpu_online_mask); 3106 3107 struct cpumask __cpu_enabled_mask __read_mostly; 3108 EXPORT_SYMBOL(__cpu_enabled_mask); 3109 3110 struct cpumask __cpu_present_mask __read_mostly; 3111 EXPORT_SYMBOL(__cpu_present_mask); 3112 3113 struct cpumask __cpu_active_mask __read_mostly; 3114 EXPORT_SYMBOL(__cpu_active_mask); 3115 3116 struct cpumask __cpu_dying_mask __read_mostly; 3117 EXPORT_SYMBOL(__cpu_dying_mask); 3118 3119 atomic_t __num_online_cpus __read_mostly; 3120 EXPORT_SYMBOL(__num_online_cpus); 3121 3122 void init_cpu_present(const struct cpumask *src) 3123 { 3124 cpumask_copy(&__cpu_present_mask, src); 3125 } 3126 3127 void init_cpu_possible(const struct cpumask *src) 3128 { 3129 cpumask_copy(&__cpu_possible_mask, src); 3130 } 3131 3132 void init_cpu_online(const struct cpumask *src) 3133 { 3134 cpumask_copy(&__cpu_online_mask, src); 3135 } 3136 3137 void set_cpu_online(unsigned int cpu, bool online) 3138 { 3139 /* 3140 * atomic_inc/dec() is required to handle the horrid abuse of this 3141 * function by the reboot and kexec code which invoke it from 3142 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 3143 * regular CPU hotplug is properly serialized. 3144 * 3145 * Note, that the fact that __num_online_cpus is of type atomic_t 3146 * does not protect readers which are not serialized against 3147 * concurrent hotplug operations. 3148 */ 3149 if (online) { 3150 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 3151 atomic_inc(&__num_online_cpus); 3152 } else { 3153 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 3154 atomic_dec(&__num_online_cpus); 3155 } 3156 } 3157 3158 /* 3159 * Activate the first processor. 3160 */ 3161 void __init boot_cpu_init(void) 3162 { 3163 int cpu = smp_processor_id(); 3164 3165 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 3166 set_cpu_online(cpu, true); 3167 set_cpu_active(cpu, true); 3168 set_cpu_present(cpu, true); 3169 set_cpu_possible(cpu, true); 3170 3171 #ifdef CONFIG_SMP 3172 __boot_cpu_id = cpu; 3173 #endif 3174 } 3175 3176 /* 3177 * Must be called _AFTER_ setting up the per_cpu areas 3178 */ 3179 void __init boot_cpu_hotplug_init(void) 3180 { 3181 #ifdef CONFIG_SMP 3182 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 3183 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE); 3184 #endif 3185 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 3186 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); 3187 } 3188 3189 #ifdef CONFIG_CPU_MITIGATIONS 3190 /* 3191 * These are used for a global "mitigations=" cmdline option for toggling 3192 * optional CPU mitigations. 3193 */ 3194 enum cpu_mitigations { 3195 CPU_MITIGATIONS_OFF, 3196 CPU_MITIGATIONS_AUTO, 3197 CPU_MITIGATIONS_AUTO_NOSMT, 3198 }; 3199 3200 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO; 3201 3202 static int __init mitigations_parse_cmdline(char *arg) 3203 { 3204 if (!strcmp(arg, "off")) 3205 cpu_mitigations = CPU_MITIGATIONS_OFF; 3206 else if (!strcmp(arg, "auto")) 3207 cpu_mitigations = CPU_MITIGATIONS_AUTO; 3208 else if (!strcmp(arg, "auto,nosmt")) 3209 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 3210 else 3211 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 3212 arg); 3213 3214 return 0; 3215 } 3216 3217 /* mitigations=off */ 3218 bool cpu_mitigations_off(void) 3219 { 3220 return cpu_mitigations == CPU_MITIGATIONS_OFF; 3221 } 3222 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 3223 3224 /* mitigations=auto,nosmt */ 3225 bool cpu_mitigations_auto_nosmt(void) 3226 { 3227 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 3228 } 3229 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 3230 #else 3231 static int __init mitigations_parse_cmdline(char *arg) 3232 { 3233 pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n"); 3234 return 0; 3235 } 3236 #endif 3237 early_param("mitigations", mitigations_parse_cmdline); 3238