xref: /linux-6.15/kernel/cpu.c (revision ccab211a)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40 
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44 
45 #include "smpboot.h"
46 
47 /**
48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
49  * @state:	The current cpu state
50  * @target:	The target state
51  * @fail:	Current CPU hotplug callback state
52  * @thread:	Pointer to the hotplug thread
53  * @should_run:	Thread should execute
54  * @rollback:	Perform a rollback
55  * @single:	Single callback invocation
56  * @bringup:	Single callback bringup or teardown selector
57  * @cpu:	CPU number
58  * @node:	Remote CPU node; for multi-instance, do a
59  *		single entry callback for install/remove
60  * @last:	For multi-instance rollback, remember how far we got
61  * @cb_state:	The state for a single callback (install/uninstall)
62  * @result:	Result of the operation
63  * @ap_sync_state:	State for AP synchronization
64  * @done_up:	Signal completion to the issuer of the task for cpu-up
65  * @done_down:	Signal completion to the issuer of the task for cpu-down
66  */
67 struct cpuhp_cpu_state {
68 	enum cpuhp_state	state;
69 	enum cpuhp_state	target;
70 	enum cpuhp_state	fail;
71 #ifdef CONFIG_SMP
72 	struct task_struct	*thread;
73 	bool			should_run;
74 	bool			rollback;
75 	bool			single;
76 	bool			bringup;
77 	struct hlist_node	*node;
78 	struct hlist_node	*last;
79 	enum cpuhp_state	cb_state;
80 	int			result;
81 	atomic_t		ap_sync_state;
82 	struct completion	done_up;
83 	struct completion	done_down;
84 #endif
85 };
86 
87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88 	.fail = CPUHP_INVALID,
89 };
90 
91 #ifdef CONFIG_SMP
92 cpumask_t cpus_booted_once_mask;
93 #endif
94 
95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96 static struct lockdep_map cpuhp_state_up_map =
97 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98 static struct lockdep_map cpuhp_state_down_map =
99 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100 
101 
102 static inline void cpuhp_lock_acquire(bool bringup)
103 {
104 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105 }
106 
107 static inline void cpuhp_lock_release(bool bringup)
108 {
109 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110 }
111 #else
112 
113 static inline void cpuhp_lock_acquire(bool bringup) { }
114 static inline void cpuhp_lock_release(bool bringup) { }
115 
116 #endif
117 
118 /**
119  * struct cpuhp_step - Hotplug state machine step
120  * @name:	Name of the step
121  * @startup:	Startup function of the step
122  * @teardown:	Teardown function of the step
123  * @cant_stop:	Bringup/teardown can't be stopped at this step
124  * @multi_instance:	State has multiple instances which get added afterwards
125  */
126 struct cpuhp_step {
127 	const char		*name;
128 	union {
129 		int		(*single)(unsigned int cpu);
130 		int		(*multi)(unsigned int cpu,
131 					 struct hlist_node *node);
132 	} startup;
133 	union {
134 		int		(*single)(unsigned int cpu);
135 		int		(*multi)(unsigned int cpu,
136 					 struct hlist_node *node);
137 	} teardown;
138 	/* private: */
139 	struct hlist_head	list;
140 	/* public: */
141 	bool			cant_stop;
142 	bool			multi_instance;
143 };
144 
145 static DEFINE_MUTEX(cpuhp_state_mutex);
146 static struct cpuhp_step cpuhp_hp_states[];
147 
148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149 {
150 	return cpuhp_hp_states + state;
151 }
152 
153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154 {
155 	return bringup ? !step->startup.single : !step->teardown.single;
156 }
157 
158 /**
159  * cpuhp_invoke_callback - Invoke the callbacks for a given state
160  * @cpu:	The cpu for which the callback should be invoked
161  * @state:	The state to do callbacks for
162  * @bringup:	True if the bringup callback should be invoked
163  * @node:	For multi-instance, do a single entry callback for install/remove
164  * @lastp:	For multi-instance rollback, remember how far we got
165  *
166  * Called from cpu hotplug and from the state register machinery.
167  *
168  * Return: %0 on success or a negative errno code
169  */
170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171 				 bool bringup, struct hlist_node *node,
172 				 struct hlist_node **lastp)
173 {
174 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175 	struct cpuhp_step *step = cpuhp_get_step(state);
176 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
177 	int (*cb)(unsigned int cpu);
178 	int ret, cnt;
179 
180 	if (st->fail == state) {
181 		st->fail = CPUHP_INVALID;
182 		return -EAGAIN;
183 	}
184 
185 	if (cpuhp_step_empty(bringup, step)) {
186 		WARN_ON_ONCE(1);
187 		return 0;
188 	}
189 
190 	if (!step->multi_instance) {
191 		WARN_ON_ONCE(lastp && *lastp);
192 		cb = bringup ? step->startup.single : step->teardown.single;
193 
194 		trace_cpuhp_enter(cpu, st->target, state, cb);
195 		ret = cb(cpu);
196 		trace_cpuhp_exit(cpu, st->state, state, ret);
197 		return ret;
198 	}
199 	cbm = bringup ? step->startup.multi : step->teardown.multi;
200 
201 	/* Single invocation for instance add/remove */
202 	if (node) {
203 		WARN_ON_ONCE(lastp && *lastp);
204 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205 		ret = cbm(cpu, node);
206 		trace_cpuhp_exit(cpu, st->state, state, ret);
207 		return ret;
208 	}
209 
210 	/* State transition. Invoke on all instances */
211 	cnt = 0;
212 	hlist_for_each(node, &step->list) {
213 		if (lastp && node == *lastp)
214 			break;
215 
216 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 		ret = cbm(cpu, node);
218 		trace_cpuhp_exit(cpu, st->state, state, ret);
219 		if (ret) {
220 			if (!lastp)
221 				goto err;
222 
223 			*lastp = node;
224 			return ret;
225 		}
226 		cnt++;
227 	}
228 	if (lastp)
229 		*lastp = NULL;
230 	return 0;
231 err:
232 	/* Rollback the instances if one failed */
233 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
234 	if (!cbm)
235 		return ret;
236 
237 	hlist_for_each(node, &step->list) {
238 		if (!cnt--)
239 			break;
240 
241 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242 		ret = cbm(cpu, node);
243 		trace_cpuhp_exit(cpu, st->state, state, ret);
244 		/*
245 		 * Rollback must not fail,
246 		 */
247 		WARN_ON_ONCE(ret);
248 	}
249 	return ret;
250 }
251 
252 #ifdef CONFIG_SMP
253 static bool cpuhp_is_ap_state(enum cpuhp_state state)
254 {
255 	/*
256 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257 	 * purposes as that state is handled explicitly in cpu_down.
258 	 */
259 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
260 }
261 
262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263 {
264 	struct completion *done = bringup ? &st->done_up : &st->done_down;
265 	wait_for_completion(done);
266 }
267 
268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269 {
270 	struct completion *done = bringup ? &st->done_up : &st->done_down;
271 	complete(done);
272 }
273 
274 /*
275  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276  */
277 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278 {
279 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
280 }
281 
282 /* Synchronization state management */
283 enum cpuhp_sync_state {
284 	SYNC_STATE_DEAD,
285 	SYNC_STATE_KICKED,
286 	SYNC_STATE_SHOULD_DIE,
287 	SYNC_STATE_ALIVE,
288 	SYNC_STATE_SHOULD_ONLINE,
289 	SYNC_STATE_ONLINE,
290 };
291 
292 #ifdef CONFIG_HOTPLUG_CORE_SYNC
293 /**
294  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295  * @state:	The synchronization state to set
296  *
297  * No synchronization point. Just update of the synchronization state, but implies
298  * a full barrier so that the AP changes are visible before the control CPU proceeds.
299  */
300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301 {
302 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303 
304 	(void)atomic_xchg(st, state);
305 }
306 
307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308 
309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310 				      enum cpuhp_sync_state next_state)
311 {
312 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313 	ktime_t now, end, start = ktime_get();
314 	int sync;
315 
316 	end = start + 10ULL * NSEC_PER_SEC;
317 
318 	sync = atomic_read(st);
319 	while (1) {
320 		if (sync == state) {
321 			if (!atomic_try_cmpxchg(st, &sync, next_state))
322 				continue;
323 			return true;
324 		}
325 
326 		now = ktime_get();
327 		if (now > end) {
328 			/* Timeout. Leave the state unchanged */
329 			return false;
330 		} else if (now - start < NSEC_PER_MSEC) {
331 			/* Poll for one millisecond */
332 			arch_cpuhp_sync_state_poll();
333 		} else {
334 			usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
335 		}
336 		sync = atomic_read(st);
337 	}
338 	return true;
339 }
340 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343 
344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345 /**
346  * cpuhp_ap_report_dead - Update synchronization state to DEAD
347  *
348  * No synchronization point. Just update of the synchronization state.
349  */
350 void cpuhp_ap_report_dead(void)
351 {
352 	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353 }
354 
355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356 
357 /*
358  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359  * because the AP cannot issue complete() at this stage.
360  */
361 static void cpuhp_bp_sync_dead(unsigned int cpu)
362 {
363 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364 	int sync = atomic_read(st);
365 
366 	do {
367 		/* CPU can have reported dead already. Don't overwrite that! */
368 		if (sync == SYNC_STATE_DEAD)
369 			break;
370 	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371 
372 	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373 		/* CPU reached dead state. Invoke the cleanup function */
374 		arch_cpuhp_cleanup_dead_cpu(cpu);
375 		return;
376 	}
377 
378 	/* No further action possible. Emit message and give up. */
379 	pr_err("CPU%u failed to report dead state\n", cpu);
380 }
381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384 
385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386 /**
387  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388  *
389  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390  * for the BP to release it.
391  */
392 void cpuhp_ap_sync_alive(void)
393 {
394 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395 
396 	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397 
398 	/* Wait for the control CPU to release it. */
399 	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400 		cpu_relax();
401 }
402 
403 static bool cpuhp_can_boot_ap(unsigned int cpu)
404 {
405 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406 	int sync = atomic_read(st);
407 
408 again:
409 	switch (sync) {
410 	case SYNC_STATE_DEAD:
411 		/* CPU is properly dead */
412 		break;
413 	case SYNC_STATE_KICKED:
414 		/* CPU did not come up in previous attempt */
415 		break;
416 	case SYNC_STATE_ALIVE:
417 		/* CPU is stuck cpuhp_ap_sync_alive(). */
418 		break;
419 	default:
420 		/* CPU failed to report online or dead and is in limbo state. */
421 		return false;
422 	}
423 
424 	/* Prepare for booting */
425 	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426 		goto again;
427 
428 	return true;
429 }
430 
431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432 
433 /*
434  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435  * because the AP cannot issue complete() so early in the bringup.
436  */
437 static int cpuhp_bp_sync_alive(unsigned int cpu)
438 {
439 	int ret = 0;
440 
441 	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442 		return 0;
443 
444 	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445 		pr_err("CPU%u failed to report alive state\n", cpu);
446 		ret = -EIO;
447 	}
448 
449 	/* Let the architecture cleanup the kick alive mechanics. */
450 	arch_cpuhp_cleanup_kick_cpu(cpu);
451 	return ret;
452 }
453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457 
458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
459 static DEFINE_MUTEX(cpu_add_remove_lock);
460 bool cpuhp_tasks_frozen;
461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462 
463 /*
464  * The following two APIs (cpu_maps_update_begin/done) must be used when
465  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466  */
467 void cpu_maps_update_begin(void)
468 {
469 	mutex_lock(&cpu_add_remove_lock);
470 }
471 
472 void cpu_maps_update_done(void)
473 {
474 	mutex_unlock(&cpu_add_remove_lock);
475 }
476 
477 /*
478  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479  * Should always be manipulated under cpu_add_remove_lock
480  */
481 static int cpu_hotplug_disabled;
482 
483 #ifdef CONFIG_HOTPLUG_CPU
484 
485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486 
487 void cpus_read_lock(void)
488 {
489 	percpu_down_read(&cpu_hotplug_lock);
490 }
491 EXPORT_SYMBOL_GPL(cpus_read_lock);
492 
493 int cpus_read_trylock(void)
494 {
495 	return percpu_down_read_trylock(&cpu_hotplug_lock);
496 }
497 EXPORT_SYMBOL_GPL(cpus_read_trylock);
498 
499 void cpus_read_unlock(void)
500 {
501 	percpu_up_read(&cpu_hotplug_lock);
502 }
503 EXPORT_SYMBOL_GPL(cpus_read_unlock);
504 
505 void cpus_write_lock(void)
506 {
507 	percpu_down_write(&cpu_hotplug_lock);
508 }
509 
510 void cpus_write_unlock(void)
511 {
512 	percpu_up_write(&cpu_hotplug_lock);
513 }
514 
515 void lockdep_assert_cpus_held(void)
516 {
517 	/*
518 	 * We can't have hotplug operations before userspace starts running,
519 	 * and some init codepaths will knowingly not take the hotplug lock.
520 	 * This is all valid, so mute lockdep until it makes sense to report
521 	 * unheld locks.
522 	 */
523 	if (system_state < SYSTEM_RUNNING)
524 		return;
525 
526 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
527 }
528 
529 #ifdef CONFIG_LOCKDEP
530 int lockdep_is_cpus_held(void)
531 {
532 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
533 }
534 #endif
535 
536 static void lockdep_acquire_cpus_lock(void)
537 {
538 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
539 }
540 
541 static void lockdep_release_cpus_lock(void)
542 {
543 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
544 }
545 
546 /*
547  * Wait for currently running CPU hotplug operations to complete (if any) and
548  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
549  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
550  * hotplug path before performing hotplug operations. So acquiring that lock
551  * guarantees mutual exclusion from any currently running hotplug operations.
552  */
553 void cpu_hotplug_disable(void)
554 {
555 	cpu_maps_update_begin();
556 	cpu_hotplug_disabled++;
557 	cpu_maps_update_done();
558 }
559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
560 
561 static void __cpu_hotplug_enable(void)
562 {
563 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
564 		return;
565 	cpu_hotplug_disabled--;
566 }
567 
568 void cpu_hotplug_enable(void)
569 {
570 	cpu_maps_update_begin();
571 	__cpu_hotplug_enable();
572 	cpu_maps_update_done();
573 }
574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
575 
576 #else
577 
578 static void lockdep_acquire_cpus_lock(void)
579 {
580 }
581 
582 static void lockdep_release_cpus_lock(void)
583 {
584 }
585 
586 #endif	/* CONFIG_HOTPLUG_CPU */
587 
588 /*
589  * Architectures that need SMT-specific errata handling during SMT hotplug
590  * should override this.
591  */
592 void __weak arch_smt_update(void) { }
593 
594 #ifdef CONFIG_HOTPLUG_SMT
595 
596 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
597 static unsigned int cpu_smt_max_threads __ro_after_init;
598 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
599 
600 void __init cpu_smt_disable(bool force)
601 {
602 	if (!cpu_smt_possible())
603 		return;
604 
605 	if (force) {
606 		pr_info("SMT: Force disabled\n");
607 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
608 	} else {
609 		pr_info("SMT: disabled\n");
610 		cpu_smt_control = CPU_SMT_DISABLED;
611 	}
612 	cpu_smt_num_threads = 1;
613 }
614 
615 /*
616  * The decision whether SMT is supported can only be done after the full
617  * CPU identification. Called from architecture code.
618  */
619 void __init cpu_smt_set_num_threads(unsigned int num_threads,
620 				    unsigned int max_threads)
621 {
622 	WARN_ON(!num_threads || (num_threads > max_threads));
623 
624 	if (max_threads == 1)
625 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
626 
627 	cpu_smt_max_threads = max_threads;
628 
629 	/*
630 	 * If SMT has been disabled via the kernel command line or SMT is
631 	 * not supported, set cpu_smt_num_threads to 1 for consistency.
632 	 * If enabled, take the architecture requested number of threads
633 	 * to bring up into account.
634 	 */
635 	if (cpu_smt_control != CPU_SMT_ENABLED)
636 		cpu_smt_num_threads = 1;
637 	else if (num_threads < cpu_smt_num_threads)
638 		cpu_smt_num_threads = num_threads;
639 }
640 
641 static int __init smt_cmdline_disable(char *str)
642 {
643 	cpu_smt_disable(str && !strcmp(str, "force"));
644 	return 0;
645 }
646 early_param("nosmt", smt_cmdline_disable);
647 
648 /*
649  * For Archicture supporting partial SMT states check if the thread is allowed.
650  * Otherwise this has already been checked through cpu_smt_max_threads when
651  * setting the SMT level.
652  */
653 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
654 {
655 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
656 	return topology_smt_thread_allowed(cpu);
657 #else
658 	return true;
659 #endif
660 }
661 
662 static inline bool cpu_smt_allowed(unsigned int cpu)
663 {
664 	if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
665 		return true;
666 
667 	if (topology_is_primary_thread(cpu))
668 		return true;
669 
670 	/*
671 	 * On x86 it's required to boot all logical CPUs at least once so
672 	 * that the init code can get a chance to set CR4.MCE on each
673 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
674 	 * core will shutdown the machine.
675 	 */
676 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
677 }
678 
679 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
680 bool cpu_smt_possible(void)
681 {
682 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
683 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
684 }
685 EXPORT_SYMBOL_GPL(cpu_smt_possible);
686 
687 #else
688 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
689 #endif
690 
691 static inline enum cpuhp_state
692 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
693 {
694 	enum cpuhp_state prev_state = st->state;
695 	bool bringup = st->state < target;
696 
697 	st->rollback = false;
698 	st->last = NULL;
699 
700 	st->target = target;
701 	st->single = false;
702 	st->bringup = bringup;
703 	if (cpu_dying(cpu) != !bringup)
704 		set_cpu_dying(cpu, !bringup);
705 
706 	return prev_state;
707 }
708 
709 static inline void
710 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
711 		  enum cpuhp_state prev_state)
712 {
713 	bool bringup = !st->bringup;
714 
715 	st->target = prev_state;
716 
717 	/*
718 	 * Already rolling back. No need invert the bringup value or to change
719 	 * the current state.
720 	 */
721 	if (st->rollback)
722 		return;
723 
724 	st->rollback = true;
725 
726 	/*
727 	 * If we have st->last we need to undo partial multi_instance of this
728 	 * state first. Otherwise start undo at the previous state.
729 	 */
730 	if (!st->last) {
731 		if (st->bringup)
732 			st->state--;
733 		else
734 			st->state++;
735 	}
736 
737 	st->bringup = bringup;
738 	if (cpu_dying(cpu) != !bringup)
739 		set_cpu_dying(cpu, !bringup);
740 }
741 
742 /* Regular hotplug invocation of the AP hotplug thread */
743 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
744 {
745 	if (!st->single && st->state == st->target)
746 		return;
747 
748 	st->result = 0;
749 	/*
750 	 * Make sure the above stores are visible before should_run becomes
751 	 * true. Paired with the mb() above in cpuhp_thread_fun()
752 	 */
753 	smp_mb();
754 	st->should_run = true;
755 	wake_up_process(st->thread);
756 	wait_for_ap_thread(st, st->bringup);
757 }
758 
759 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
760 			 enum cpuhp_state target)
761 {
762 	enum cpuhp_state prev_state;
763 	int ret;
764 
765 	prev_state = cpuhp_set_state(cpu, st, target);
766 	__cpuhp_kick_ap(st);
767 	if ((ret = st->result)) {
768 		cpuhp_reset_state(cpu, st, prev_state);
769 		__cpuhp_kick_ap(st);
770 	}
771 
772 	return ret;
773 }
774 
775 static int bringup_wait_for_ap_online(unsigned int cpu)
776 {
777 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
778 
779 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
780 	wait_for_ap_thread(st, true);
781 	if (WARN_ON_ONCE((!cpu_online(cpu))))
782 		return -ECANCELED;
783 
784 	/* Unpark the hotplug thread of the target cpu */
785 	kthread_unpark(st->thread);
786 
787 	/*
788 	 * SMT soft disabling on X86 requires to bring the CPU out of the
789 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
790 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
791 	 * cpu_smt_allowed() check will now return false if this is not the
792 	 * primary sibling.
793 	 */
794 	if (!cpu_smt_allowed(cpu))
795 		return -ECANCELED;
796 	return 0;
797 }
798 
799 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
800 static int cpuhp_kick_ap_alive(unsigned int cpu)
801 {
802 	if (!cpuhp_can_boot_ap(cpu))
803 		return -EAGAIN;
804 
805 	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
806 }
807 
808 static int cpuhp_bringup_ap(unsigned int cpu)
809 {
810 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
811 	int ret;
812 
813 	/*
814 	 * Some architectures have to walk the irq descriptors to
815 	 * setup the vector space for the cpu which comes online.
816 	 * Prevent irq alloc/free across the bringup.
817 	 */
818 	irq_lock_sparse();
819 
820 	ret = cpuhp_bp_sync_alive(cpu);
821 	if (ret)
822 		goto out_unlock;
823 
824 	ret = bringup_wait_for_ap_online(cpu);
825 	if (ret)
826 		goto out_unlock;
827 
828 	irq_unlock_sparse();
829 
830 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
831 		return 0;
832 
833 	return cpuhp_kick_ap(cpu, st, st->target);
834 
835 out_unlock:
836 	irq_unlock_sparse();
837 	return ret;
838 }
839 #else
840 static int bringup_cpu(unsigned int cpu)
841 {
842 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
843 	struct task_struct *idle = idle_thread_get(cpu);
844 	int ret;
845 
846 	if (!cpuhp_can_boot_ap(cpu))
847 		return -EAGAIN;
848 
849 	/*
850 	 * Some architectures have to walk the irq descriptors to
851 	 * setup the vector space for the cpu which comes online.
852 	 *
853 	 * Prevent irq alloc/free across the bringup by acquiring the
854 	 * sparse irq lock. Hold it until the upcoming CPU completes the
855 	 * startup in cpuhp_online_idle() which allows to avoid
856 	 * intermediate synchronization points in the architecture code.
857 	 */
858 	irq_lock_sparse();
859 
860 	ret = __cpu_up(cpu, idle);
861 	if (ret)
862 		goto out_unlock;
863 
864 	ret = cpuhp_bp_sync_alive(cpu);
865 	if (ret)
866 		goto out_unlock;
867 
868 	ret = bringup_wait_for_ap_online(cpu);
869 	if (ret)
870 		goto out_unlock;
871 
872 	irq_unlock_sparse();
873 
874 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
875 		return 0;
876 
877 	return cpuhp_kick_ap(cpu, st, st->target);
878 
879 out_unlock:
880 	irq_unlock_sparse();
881 	return ret;
882 }
883 #endif
884 
885 static int finish_cpu(unsigned int cpu)
886 {
887 	struct task_struct *idle = idle_thread_get(cpu);
888 	struct mm_struct *mm = idle->active_mm;
889 
890 	/*
891 	 * idle_task_exit() will have switched to &init_mm, now
892 	 * clean up any remaining active_mm state.
893 	 */
894 	if (mm != &init_mm)
895 		idle->active_mm = &init_mm;
896 	mmdrop_lazy_tlb(mm);
897 	return 0;
898 }
899 
900 /*
901  * Hotplug state machine related functions
902  */
903 
904 /*
905  * Get the next state to run. Empty ones will be skipped. Returns true if a
906  * state must be run.
907  *
908  * st->state will be modified ahead of time, to match state_to_run, as if it
909  * has already ran.
910  */
911 static bool cpuhp_next_state(bool bringup,
912 			     enum cpuhp_state *state_to_run,
913 			     struct cpuhp_cpu_state *st,
914 			     enum cpuhp_state target)
915 {
916 	do {
917 		if (bringup) {
918 			if (st->state >= target)
919 				return false;
920 
921 			*state_to_run = ++st->state;
922 		} else {
923 			if (st->state <= target)
924 				return false;
925 
926 			*state_to_run = st->state--;
927 		}
928 
929 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
930 			break;
931 	} while (true);
932 
933 	return true;
934 }
935 
936 static int __cpuhp_invoke_callback_range(bool bringup,
937 					 unsigned int cpu,
938 					 struct cpuhp_cpu_state *st,
939 					 enum cpuhp_state target,
940 					 bool nofail)
941 {
942 	enum cpuhp_state state;
943 	int ret = 0;
944 
945 	while (cpuhp_next_state(bringup, &state, st, target)) {
946 		int err;
947 
948 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
949 		if (!err)
950 			continue;
951 
952 		if (nofail) {
953 			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
954 				cpu, bringup ? "UP" : "DOWN",
955 				cpuhp_get_step(st->state)->name,
956 				st->state, err);
957 			ret = -1;
958 		} else {
959 			ret = err;
960 			break;
961 		}
962 	}
963 
964 	return ret;
965 }
966 
967 static inline int cpuhp_invoke_callback_range(bool bringup,
968 					      unsigned int cpu,
969 					      struct cpuhp_cpu_state *st,
970 					      enum cpuhp_state target)
971 {
972 	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
973 }
974 
975 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
976 						      unsigned int cpu,
977 						      struct cpuhp_cpu_state *st,
978 						      enum cpuhp_state target)
979 {
980 	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
981 }
982 
983 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
984 {
985 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
986 		return true;
987 	/*
988 	 * When CPU hotplug is disabled, then taking the CPU down is not
989 	 * possible because takedown_cpu() and the architecture and
990 	 * subsystem specific mechanisms are not available. So the CPU
991 	 * which would be completely unplugged again needs to stay around
992 	 * in the current state.
993 	 */
994 	return st->state <= CPUHP_BRINGUP_CPU;
995 }
996 
997 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
998 			      enum cpuhp_state target)
999 {
1000 	enum cpuhp_state prev_state = st->state;
1001 	int ret = 0;
1002 
1003 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1004 	if (ret) {
1005 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1006 			 ret, cpu, cpuhp_get_step(st->state)->name,
1007 			 st->state);
1008 
1009 		cpuhp_reset_state(cpu, st, prev_state);
1010 		if (can_rollback_cpu(st))
1011 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1012 							    prev_state));
1013 	}
1014 	return ret;
1015 }
1016 
1017 /*
1018  * The cpu hotplug threads manage the bringup and teardown of the cpus
1019  */
1020 static int cpuhp_should_run(unsigned int cpu)
1021 {
1022 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1023 
1024 	return st->should_run;
1025 }
1026 
1027 /*
1028  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1029  * callbacks when a state gets [un]installed at runtime.
1030  *
1031  * Each invocation of this function by the smpboot thread does a single AP
1032  * state callback.
1033  *
1034  * It has 3 modes of operation:
1035  *  - single: runs st->cb_state
1036  *  - up:     runs ++st->state, while st->state < st->target
1037  *  - down:   runs st->state--, while st->state > st->target
1038  *
1039  * When complete or on error, should_run is cleared and the completion is fired.
1040  */
1041 static void cpuhp_thread_fun(unsigned int cpu)
1042 {
1043 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1044 	bool bringup = st->bringup;
1045 	enum cpuhp_state state;
1046 
1047 	if (WARN_ON_ONCE(!st->should_run))
1048 		return;
1049 
1050 	/*
1051 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1052 	 * that if we see ->should_run we also see the rest of the state.
1053 	 */
1054 	smp_mb();
1055 
1056 	/*
1057 	 * The BP holds the hotplug lock, but we're now running on the AP,
1058 	 * ensure that anybody asserting the lock is held, will actually find
1059 	 * it so.
1060 	 */
1061 	lockdep_acquire_cpus_lock();
1062 	cpuhp_lock_acquire(bringup);
1063 
1064 	if (st->single) {
1065 		state = st->cb_state;
1066 		st->should_run = false;
1067 	} else {
1068 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1069 		if (!st->should_run)
1070 			goto end;
1071 	}
1072 
1073 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1074 
1075 	if (cpuhp_is_atomic_state(state)) {
1076 		local_irq_disable();
1077 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1078 		local_irq_enable();
1079 
1080 		/*
1081 		 * STARTING/DYING must not fail!
1082 		 */
1083 		WARN_ON_ONCE(st->result);
1084 	} else {
1085 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1086 	}
1087 
1088 	if (st->result) {
1089 		/*
1090 		 * If we fail on a rollback, we're up a creek without no
1091 		 * paddle, no way forward, no way back. We loose, thanks for
1092 		 * playing.
1093 		 */
1094 		WARN_ON_ONCE(st->rollback);
1095 		st->should_run = false;
1096 	}
1097 
1098 end:
1099 	cpuhp_lock_release(bringup);
1100 	lockdep_release_cpus_lock();
1101 
1102 	if (!st->should_run)
1103 		complete_ap_thread(st, bringup);
1104 }
1105 
1106 /* Invoke a single callback on a remote cpu */
1107 static int
1108 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1109 			 struct hlist_node *node)
1110 {
1111 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1112 	int ret;
1113 
1114 	if (!cpu_online(cpu))
1115 		return 0;
1116 
1117 	cpuhp_lock_acquire(false);
1118 	cpuhp_lock_release(false);
1119 
1120 	cpuhp_lock_acquire(true);
1121 	cpuhp_lock_release(true);
1122 
1123 	/*
1124 	 * If we are up and running, use the hotplug thread. For early calls
1125 	 * we invoke the thread function directly.
1126 	 */
1127 	if (!st->thread)
1128 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1129 
1130 	st->rollback = false;
1131 	st->last = NULL;
1132 
1133 	st->node = node;
1134 	st->bringup = bringup;
1135 	st->cb_state = state;
1136 	st->single = true;
1137 
1138 	__cpuhp_kick_ap(st);
1139 
1140 	/*
1141 	 * If we failed and did a partial, do a rollback.
1142 	 */
1143 	if ((ret = st->result) && st->last) {
1144 		st->rollback = true;
1145 		st->bringup = !bringup;
1146 
1147 		__cpuhp_kick_ap(st);
1148 	}
1149 
1150 	/*
1151 	 * Clean up the leftovers so the next hotplug operation wont use stale
1152 	 * data.
1153 	 */
1154 	st->node = st->last = NULL;
1155 	return ret;
1156 }
1157 
1158 static int cpuhp_kick_ap_work(unsigned int cpu)
1159 {
1160 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1161 	enum cpuhp_state prev_state = st->state;
1162 	int ret;
1163 
1164 	cpuhp_lock_acquire(false);
1165 	cpuhp_lock_release(false);
1166 
1167 	cpuhp_lock_acquire(true);
1168 	cpuhp_lock_release(true);
1169 
1170 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1171 	ret = cpuhp_kick_ap(cpu, st, st->target);
1172 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1173 
1174 	return ret;
1175 }
1176 
1177 static struct smp_hotplug_thread cpuhp_threads = {
1178 	.store			= &cpuhp_state.thread,
1179 	.thread_should_run	= cpuhp_should_run,
1180 	.thread_fn		= cpuhp_thread_fun,
1181 	.thread_comm		= "cpuhp/%u",
1182 	.selfparking		= true,
1183 };
1184 
1185 static __init void cpuhp_init_state(void)
1186 {
1187 	struct cpuhp_cpu_state *st;
1188 	int cpu;
1189 
1190 	for_each_possible_cpu(cpu) {
1191 		st = per_cpu_ptr(&cpuhp_state, cpu);
1192 		init_completion(&st->done_up);
1193 		init_completion(&st->done_down);
1194 	}
1195 }
1196 
1197 void __init cpuhp_threads_init(void)
1198 {
1199 	cpuhp_init_state();
1200 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1201 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
1202 }
1203 
1204 /*
1205  *
1206  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1207  * protected region.
1208  *
1209  * The operation is still serialized against concurrent CPU hotplug via
1210  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
1211  * serialized against other hotplug related activity like adding or
1212  * removing of state callbacks and state instances, which invoke either the
1213  * startup or the teardown callback of the affected state.
1214  *
1215  * This is required for subsystems which are unfixable vs. CPU hotplug and
1216  * evade lock inversion problems by scheduling work which has to be
1217  * completed _before_ cpu_up()/_cpu_down() returns.
1218  *
1219  * Don't even think about adding anything to this for any new code or even
1220  * drivers. It's only purpose is to keep existing lock order trainwrecks
1221  * working.
1222  *
1223  * For cpu_down() there might be valid reasons to finish cleanups which are
1224  * not required to be done under cpu_hotplug_lock, but that's a different
1225  * story and would be not invoked via this.
1226  */
1227 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1228 {
1229 	/*
1230 	 * cpusets delegate hotplug operations to a worker to "solve" the
1231 	 * lock order problems. Wait for the worker, but only if tasks are
1232 	 * _not_ frozen (suspend, hibernate) as that would wait forever.
1233 	 *
1234 	 * The wait is required because otherwise the hotplug operation
1235 	 * returns with inconsistent state, which could even be observed in
1236 	 * user space when a new CPU is brought up. The CPU plug uevent
1237 	 * would be delivered and user space reacting on it would fail to
1238 	 * move tasks to the newly plugged CPU up to the point where the
1239 	 * work has finished because up to that point the newly plugged CPU
1240 	 * is not assignable in cpusets/cgroups. On unplug that's not
1241 	 * necessarily a visible issue, but it is still inconsistent state,
1242 	 * which is the real problem which needs to be "fixed". This can't
1243 	 * prevent the transient state between scheduling the work and
1244 	 * returning from waiting for it.
1245 	 */
1246 	if (!tasks_frozen)
1247 		cpuset_wait_for_hotplug();
1248 }
1249 
1250 #ifdef CONFIG_HOTPLUG_CPU
1251 #ifndef arch_clear_mm_cpumask_cpu
1252 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1253 #endif
1254 
1255 /**
1256  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1257  * @cpu: a CPU id
1258  *
1259  * This function walks all processes, finds a valid mm struct for each one and
1260  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1261  * trivial, there are various non-obvious corner cases, which this function
1262  * tries to solve in a safe manner.
1263  *
1264  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1265  * be called only for an already offlined CPU.
1266  */
1267 void clear_tasks_mm_cpumask(int cpu)
1268 {
1269 	struct task_struct *p;
1270 
1271 	/*
1272 	 * This function is called after the cpu is taken down and marked
1273 	 * offline, so its not like new tasks will ever get this cpu set in
1274 	 * their mm mask. -- Peter Zijlstra
1275 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
1276 	 * full-fledged tasklist_lock.
1277 	 */
1278 	WARN_ON(cpu_online(cpu));
1279 	rcu_read_lock();
1280 	for_each_process(p) {
1281 		struct task_struct *t;
1282 
1283 		/*
1284 		 * Main thread might exit, but other threads may still have
1285 		 * a valid mm. Find one.
1286 		 */
1287 		t = find_lock_task_mm(p);
1288 		if (!t)
1289 			continue;
1290 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
1291 		task_unlock(t);
1292 	}
1293 	rcu_read_unlock();
1294 }
1295 
1296 /* Take this CPU down. */
1297 static int take_cpu_down(void *_param)
1298 {
1299 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1300 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1301 	int err, cpu = smp_processor_id();
1302 
1303 	/* Ensure this CPU doesn't handle any more interrupts. */
1304 	err = __cpu_disable();
1305 	if (err < 0)
1306 		return err;
1307 
1308 	/*
1309 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1310 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1311 	 */
1312 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1313 
1314 	/*
1315 	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1316 	 */
1317 	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1318 
1319 	/* Give up timekeeping duties */
1320 	tick_handover_do_timer();
1321 	/* Remove CPU from timer broadcasting */
1322 	tick_offline_cpu(cpu);
1323 	/* Park the stopper thread */
1324 	stop_machine_park(cpu);
1325 	return 0;
1326 }
1327 
1328 static int takedown_cpu(unsigned int cpu)
1329 {
1330 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1331 	int err;
1332 
1333 	/* Park the smpboot threads */
1334 	kthread_park(st->thread);
1335 
1336 	/*
1337 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1338 	 * interrupt affinities.
1339 	 */
1340 	irq_lock_sparse();
1341 
1342 	/*
1343 	 * So now all preempt/rcu users must observe !cpu_active().
1344 	 */
1345 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1346 	if (err) {
1347 		/* CPU refused to die */
1348 		irq_unlock_sparse();
1349 		/* Unpark the hotplug thread so we can rollback there */
1350 		kthread_unpark(st->thread);
1351 		return err;
1352 	}
1353 	BUG_ON(cpu_online(cpu));
1354 
1355 	/*
1356 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1357 	 * all runnable tasks from the CPU, there's only the idle task left now
1358 	 * that the migration thread is done doing the stop_machine thing.
1359 	 *
1360 	 * Wait for the stop thread to go away.
1361 	 */
1362 	wait_for_ap_thread(st, false);
1363 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1364 
1365 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1366 	irq_unlock_sparse();
1367 
1368 	hotplug_cpu__broadcast_tick_pull(cpu);
1369 	/* This actually kills the CPU. */
1370 	__cpu_die(cpu);
1371 
1372 	cpuhp_bp_sync_dead(cpu);
1373 
1374 	tick_cleanup_dead_cpu(cpu);
1375 	rcutree_migrate_callbacks(cpu);
1376 	return 0;
1377 }
1378 
1379 static void cpuhp_complete_idle_dead(void *arg)
1380 {
1381 	struct cpuhp_cpu_state *st = arg;
1382 
1383 	complete_ap_thread(st, false);
1384 }
1385 
1386 void cpuhp_report_idle_dead(void)
1387 {
1388 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1389 
1390 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1391 	rcu_report_dead(smp_processor_id());
1392 	st->state = CPUHP_AP_IDLE_DEAD;
1393 	/*
1394 	 * We cannot call complete after rcu_report_dead() so we delegate it
1395 	 * to an online cpu.
1396 	 */
1397 	smp_call_function_single(cpumask_first(cpu_online_mask),
1398 				 cpuhp_complete_idle_dead, st, 0);
1399 }
1400 
1401 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1402 				enum cpuhp_state target)
1403 {
1404 	enum cpuhp_state prev_state = st->state;
1405 	int ret = 0;
1406 
1407 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1408 	if (ret) {
1409 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1410 			 ret, cpu, cpuhp_get_step(st->state)->name,
1411 			 st->state);
1412 
1413 		cpuhp_reset_state(cpu, st, prev_state);
1414 
1415 		if (st->state < prev_state)
1416 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1417 							    prev_state));
1418 	}
1419 
1420 	return ret;
1421 }
1422 
1423 /* Requires cpu_add_remove_lock to be held */
1424 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1425 			   enum cpuhp_state target)
1426 {
1427 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1428 	int prev_state, ret = 0;
1429 
1430 	if (num_online_cpus() == 1)
1431 		return -EBUSY;
1432 
1433 	if (!cpu_present(cpu))
1434 		return -EINVAL;
1435 
1436 	cpus_write_lock();
1437 
1438 	cpuhp_tasks_frozen = tasks_frozen;
1439 
1440 	prev_state = cpuhp_set_state(cpu, st, target);
1441 	/*
1442 	 * If the current CPU state is in the range of the AP hotplug thread,
1443 	 * then we need to kick the thread.
1444 	 */
1445 	if (st->state > CPUHP_TEARDOWN_CPU) {
1446 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1447 		ret = cpuhp_kick_ap_work(cpu);
1448 		/*
1449 		 * The AP side has done the error rollback already. Just
1450 		 * return the error code..
1451 		 */
1452 		if (ret)
1453 			goto out;
1454 
1455 		/*
1456 		 * We might have stopped still in the range of the AP hotplug
1457 		 * thread. Nothing to do anymore.
1458 		 */
1459 		if (st->state > CPUHP_TEARDOWN_CPU)
1460 			goto out;
1461 
1462 		st->target = target;
1463 	}
1464 	/*
1465 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1466 	 * to do the further cleanups.
1467 	 */
1468 	ret = cpuhp_down_callbacks(cpu, st, target);
1469 	if (ret && st->state < prev_state) {
1470 		if (st->state == CPUHP_TEARDOWN_CPU) {
1471 			cpuhp_reset_state(cpu, st, prev_state);
1472 			__cpuhp_kick_ap(st);
1473 		} else {
1474 			WARN(1, "DEAD callback error for CPU%d", cpu);
1475 		}
1476 	}
1477 
1478 out:
1479 	cpus_write_unlock();
1480 	/*
1481 	 * Do post unplug cleanup. This is still protected against
1482 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1483 	 */
1484 	lockup_detector_cleanup();
1485 	arch_smt_update();
1486 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1487 	return ret;
1488 }
1489 
1490 struct cpu_down_work {
1491 	unsigned int		cpu;
1492 	enum cpuhp_state	target;
1493 };
1494 
1495 static long __cpu_down_maps_locked(void *arg)
1496 {
1497 	struct cpu_down_work *work = arg;
1498 
1499 	return _cpu_down(work->cpu, 0, work->target);
1500 }
1501 
1502 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1503 {
1504 	struct cpu_down_work work = { .cpu = cpu, .target = target, };
1505 
1506 	/*
1507 	 * If the platform does not support hotplug, report it explicitly to
1508 	 * differentiate it from a transient offlining failure.
1509 	 */
1510 	if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1511 		return -EOPNOTSUPP;
1512 	if (cpu_hotplug_disabled)
1513 		return -EBUSY;
1514 
1515 	/*
1516 	 * Ensure that the control task does not run on the to be offlined
1517 	 * CPU to prevent a deadlock against cfs_b->period_timer.
1518 	 */
1519 	cpu = cpumask_any_but(cpu_online_mask, cpu);
1520 	if (cpu >= nr_cpu_ids)
1521 		return -EBUSY;
1522 	return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1523 }
1524 
1525 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1526 {
1527 	int err;
1528 
1529 	cpu_maps_update_begin();
1530 	err = cpu_down_maps_locked(cpu, target);
1531 	cpu_maps_update_done();
1532 	return err;
1533 }
1534 
1535 /**
1536  * cpu_device_down - Bring down a cpu device
1537  * @dev: Pointer to the cpu device to offline
1538  *
1539  * This function is meant to be used by device core cpu subsystem only.
1540  *
1541  * Other subsystems should use remove_cpu() instead.
1542  *
1543  * Return: %0 on success or a negative errno code
1544  */
1545 int cpu_device_down(struct device *dev)
1546 {
1547 	return cpu_down(dev->id, CPUHP_OFFLINE);
1548 }
1549 
1550 int remove_cpu(unsigned int cpu)
1551 {
1552 	int ret;
1553 
1554 	lock_device_hotplug();
1555 	ret = device_offline(get_cpu_device(cpu));
1556 	unlock_device_hotplug();
1557 
1558 	return ret;
1559 }
1560 EXPORT_SYMBOL_GPL(remove_cpu);
1561 
1562 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1563 {
1564 	unsigned int cpu;
1565 	int error;
1566 
1567 	cpu_maps_update_begin();
1568 
1569 	/*
1570 	 * Make certain the cpu I'm about to reboot on is online.
1571 	 *
1572 	 * This is inline to what migrate_to_reboot_cpu() already do.
1573 	 */
1574 	if (!cpu_online(primary_cpu))
1575 		primary_cpu = cpumask_first(cpu_online_mask);
1576 
1577 	for_each_online_cpu(cpu) {
1578 		if (cpu == primary_cpu)
1579 			continue;
1580 
1581 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1582 		if (error) {
1583 			pr_err("Failed to offline CPU%d - error=%d",
1584 				cpu, error);
1585 			break;
1586 		}
1587 	}
1588 
1589 	/*
1590 	 * Ensure all but the reboot CPU are offline.
1591 	 */
1592 	BUG_ON(num_online_cpus() > 1);
1593 
1594 	/*
1595 	 * Make sure the CPUs won't be enabled by someone else after this
1596 	 * point. Kexec will reboot to a new kernel shortly resetting
1597 	 * everything along the way.
1598 	 */
1599 	cpu_hotplug_disabled++;
1600 
1601 	cpu_maps_update_done();
1602 }
1603 
1604 #else
1605 #define takedown_cpu		NULL
1606 #endif /*CONFIG_HOTPLUG_CPU*/
1607 
1608 /**
1609  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1610  * @cpu: cpu that just started
1611  *
1612  * It must be called by the arch code on the new cpu, before the new cpu
1613  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1614  */
1615 void notify_cpu_starting(unsigned int cpu)
1616 {
1617 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1618 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1619 
1620 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1621 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1622 
1623 	/*
1624 	 * STARTING must not fail!
1625 	 */
1626 	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1627 }
1628 
1629 /*
1630  * Called from the idle task. Wake up the controlling task which brings the
1631  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1632  * online bringup to the hotplug thread.
1633  */
1634 void cpuhp_online_idle(enum cpuhp_state state)
1635 {
1636 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1637 
1638 	/* Happens for the boot cpu */
1639 	if (state != CPUHP_AP_ONLINE_IDLE)
1640 		return;
1641 
1642 	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1643 
1644 	/*
1645 	 * Unpark the stopper thread before we start the idle loop (and start
1646 	 * scheduling); this ensures the stopper task is always available.
1647 	 */
1648 	stop_machine_unpark(smp_processor_id());
1649 
1650 	st->state = CPUHP_AP_ONLINE_IDLE;
1651 	complete_ap_thread(st, true);
1652 }
1653 
1654 /* Requires cpu_add_remove_lock to be held */
1655 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1656 {
1657 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1658 	struct task_struct *idle;
1659 	int ret = 0;
1660 
1661 	cpus_write_lock();
1662 
1663 	if (!cpu_present(cpu)) {
1664 		ret = -EINVAL;
1665 		goto out;
1666 	}
1667 
1668 	/*
1669 	 * The caller of cpu_up() might have raced with another
1670 	 * caller. Nothing to do.
1671 	 */
1672 	if (st->state >= target)
1673 		goto out;
1674 
1675 	if (st->state == CPUHP_OFFLINE) {
1676 		/* Let it fail before we try to bring the cpu up */
1677 		idle = idle_thread_get(cpu);
1678 		if (IS_ERR(idle)) {
1679 			ret = PTR_ERR(idle);
1680 			goto out;
1681 		}
1682 
1683 		/*
1684 		 * Reset stale stack state from the last time this CPU was online.
1685 		 */
1686 		scs_task_reset(idle);
1687 		kasan_unpoison_task_stack(idle);
1688 	}
1689 
1690 	cpuhp_tasks_frozen = tasks_frozen;
1691 
1692 	cpuhp_set_state(cpu, st, target);
1693 	/*
1694 	 * If the current CPU state is in the range of the AP hotplug thread,
1695 	 * then we need to kick the thread once more.
1696 	 */
1697 	if (st->state > CPUHP_BRINGUP_CPU) {
1698 		ret = cpuhp_kick_ap_work(cpu);
1699 		/*
1700 		 * The AP side has done the error rollback already. Just
1701 		 * return the error code..
1702 		 */
1703 		if (ret)
1704 			goto out;
1705 	}
1706 
1707 	/*
1708 	 * Try to reach the target state. We max out on the BP at
1709 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1710 	 * responsible for bringing it up to the target state.
1711 	 */
1712 	target = min((int)target, CPUHP_BRINGUP_CPU);
1713 	ret = cpuhp_up_callbacks(cpu, st, target);
1714 out:
1715 	cpus_write_unlock();
1716 	arch_smt_update();
1717 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1718 	return ret;
1719 }
1720 
1721 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1722 {
1723 	int err = 0;
1724 
1725 	if (!cpu_possible(cpu)) {
1726 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1727 		       cpu);
1728 		return -EINVAL;
1729 	}
1730 
1731 	err = try_online_node(cpu_to_node(cpu));
1732 	if (err)
1733 		return err;
1734 
1735 	cpu_maps_update_begin();
1736 
1737 	if (cpu_hotplug_disabled) {
1738 		err = -EBUSY;
1739 		goto out;
1740 	}
1741 	if (!cpu_smt_allowed(cpu)) {
1742 		err = -EPERM;
1743 		goto out;
1744 	}
1745 
1746 	err = _cpu_up(cpu, 0, target);
1747 out:
1748 	cpu_maps_update_done();
1749 	return err;
1750 }
1751 
1752 /**
1753  * cpu_device_up - Bring up a cpu device
1754  * @dev: Pointer to the cpu device to online
1755  *
1756  * This function is meant to be used by device core cpu subsystem only.
1757  *
1758  * Other subsystems should use add_cpu() instead.
1759  *
1760  * Return: %0 on success or a negative errno code
1761  */
1762 int cpu_device_up(struct device *dev)
1763 {
1764 	return cpu_up(dev->id, CPUHP_ONLINE);
1765 }
1766 
1767 int add_cpu(unsigned int cpu)
1768 {
1769 	int ret;
1770 
1771 	lock_device_hotplug();
1772 	ret = device_online(get_cpu_device(cpu));
1773 	unlock_device_hotplug();
1774 
1775 	return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(add_cpu);
1778 
1779 /**
1780  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1781  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1782  *
1783  * On some architectures like arm64, we can hibernate on any CPU, but on
1784  * wake up the CPU we hibernated on might be offline as a side effect of
1785  * using maxcpus= for example.
1786  *
1787  * Return: %0 on success or a negative errno code
1788  */
1789 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1790 {
1791 	int ret;
1792 
1793 	if (!cpu_online(sleep_cpu)) {
1794 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1795 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1796 		if (ret) {
1797 			pr_err("Failed to bring hibernate-CPU up!\n");
1798 			return ret;
1799 		}
1800 	}
1801 	return 0;
1802 }
1803 
1804 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1805 				      enum cpuhp_state target)
1806 {
1807 	unsigned int cpu;
1808 
1809 	for_each_cpu(cpu, mask) {
1810 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1811 
1812 		if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1813 			/*
1814 			 * If this failed then cpu_up() might have only
1815 			 * rolled back to CPUHP_BP_KICK_AP for the final
1816 			 * online. Clean it up. NOOP if already rolled back.
1817 			 */
1818 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1819 		}
1820 
1821 		if (!--ncpus)
1822 			break;
1823 	}
1824 }
1825 
1826 #ifdef CONFIG_HOTPLUG_PARALLEL
1827 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1828 
1829 static int __init parallel_bringup_parse_param(char *arg)
1830 {
1831 	return kstrtobool(arg, &__cpuhp_parallel_bringup);
1832 }
1833 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1834 
1835 static inline bool cpuhp_smt_aware(void)
1836 {
1837 	return cpu_smt_max_threads > 1;
1838 }
1839 
1840 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1841 {
1842 	return cpu_primary_thread_mask;
1843 }
1844 
1845 /*
1846  * On architectures which have enabled parallel bringup this invokes all BP
1847  * prepare states for each of the to be onlined APs first. The last state
1848  * sends the startup IPI to the APs. The APs proceed through the low level
1849  * bringup code in parallel and then wait for the control CPU to release
1850  * them one by one for the final onlining procedure.
1851  *
1852  * This avoids waiting for each AP to respond to the startup IPI in
1853  * CPUHP_BRINGUP_CPU.
1854  */
1855 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1856 {
1857 	const struct cpumask *mask = cpu_present_mask;
1858 
1859 	if (__cpuhp_parallel_bringup)
1860 		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1861 	if (!__cpuhp_parallel_bringup)
1862 		return false;
1863 
1864 	if (cpuhp_smt_aware()) {
1865 		const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1866 		static struct cpumask tmp_mask __initdata;
1867 
1868 		/*
1869 		 * X86 requires to prevent that SMT siblings stopped while
1870 		 * the primary thread does a microcode update for various
1871 		 * reasons. Bring the primary threads up first.
1872 		 */
1873 		cpumask_and(&tmp_mask, mask, pmask);
1874 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1875 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1876 		/* Account for the online CPUs */
1877 		ncpus -= num_online_cpus();
1878 		if (!ncpus)
1879 			return true;
1880 		/* Create the mask for secondary CPUs */
1881 		cpumask_andnot(&tmp_mask, mask, pmask);
1882 		mask = &tmp_mask;
1883 	}
1884 
1885 	/* Bring the not-yet started CPUs up */
1886 	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1887 	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1888 	return true;
1889 }
1890 #else
1891 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1892 #endif /* CONFIG_HOTPLUG_PARALLEL */
1893 
1894 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1895 {
1896 	/* Try parallel bringup optimization if enabled */
1897 	if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
1898 		return;
1899 
1900 	/* Full per CPU serialized bringup */
1901 	cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
1902 }
1903 
1904 #ifdef CONFIG_PM_SLEEP_SMP
1905 static cpumask_var_t frozen_cpus;
1906 
1907 int freeze_secondary_cpus(int primary)
1908 {
1909 	int cpu, error = 0;
1910 
1911 	cpu_maps_update_begin();
1912 	if (primary == -1) {
1913 		primary = cpumask_first(cpu_online_mask);
1914 		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1915 			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1916 	} else {
1917 		if (!cpu_online(primary))
1918 			primary = cpumask_first(cpu_online_mask);
1919 	}
1920 
1921 	/*
1922 	 * We take down all of the non-boot CPUs in one shot to avoid races
1923 	 * with the userspace trying to use the CPU hotplug at the same time
1924 	 */
1925 	cpumask_clear(frozen_cpus);
1926 
1927 	pr_info("Disabling non-boot CPUs ...\n");
1928 	for_each_online_cpu(cpu) {
1929 		if (cpu == primary)
1930 			continue;
1931 
1932 		if (pm_wakeup_pending()) {
1933 			pr_info("Wakeup pending. Abort CPU freeze\n");
1934 			error = -EBUSY;
1935 			break;
1936 		}
1937 
1938 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1939 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1940 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1941 		if (!error)
1942 			cpumask_set_cpu(cpu, frozen_cpus);
1943 		else {
1944 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1945 			break;
1946 		}
1947 	}
1948 
1949 	if (!error)
1950 		BUG_ON(num_online_cpus() > 1);
1951 	else
1952 		pr_err("Non-boot CPUs are not disabled\n");
1953 
1954 	/*
1955 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1956 	 * this even in case of failure as all freeze_secondary_cpus() users are
1957 	 * supposed to do thaw_secondary_cpus() on the failure path.
1958 	 */
1959 	cpu_hotplug_disabled++;
1960 
1961 	cpu_maps_update_done();
1962 	return error;
1963 }
1964 
1965 void __weak arch_thaw_secondary_cpus_begin(void)
1966 {
1967 }
1968 
1969 void __weak arch_thaw_secondary_cpus_end(void)
1970 {
1971 }
1972 
1973 void thaw_secondary_cpus(void)
1974 {
1975 	int cpu, error;
1976 
1977 	/* Allow everyone to use the CPU hotplug again */
1978 	cpu_maps_update_begin();
1979 	__cpu_hotplug_enable();
1980 	if (cpumask_empty(frozen_cpus))
1981 		goto out;
1982 
1983 	pr_info("Enabling non-boot CPUs ...\n");
1984 
1985 	arch_thaw_secondary_cpus_begin();
1986 
1987 	for_each_cpu(cpu, frozen_cpus) {
1988 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1989 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1990 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1991 		if (!error) {
1992 			pr_info("CPU%d is up\n", cpu);
1993 			continue;
1994 		}
1995 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1996 	}
1997 
1998 	arch_thaw_secondary_cpus_end();
1999 
2000 	cpumask_clear(frozen_cpus);
2001 out:
2002 	cpu_maps_update_done();
2003 }
2004 
2005 static int __init alloc_frozen_cpus(void)
2006 {
2007 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2008 		return -ENOMEM;
2009 	return 0;
2010 }
2011 core_initcall(alloc_frozen_cpus);
2012 
2013 /*
2014  * When callbacks for CPU hotplug notifications are being executed, we must
2015  * ensure that the state of the system with respect to the tasks being frozen
2016  * or not, as reported by the notification, remains unchanged *throughout the
2017  * duration* of the execution of the callbacks.
2018  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2019  *
2020  * This synchronization is implemented by mutually excluding regular CPU
2021  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2022  * Hibernate notifications.
2023  */
2024 static int
2025 cpu_hotplug_pm_callback(struct notifier_block *nb,
2026 			unsigned long action, void *ptr)
2027 {
2028 	switch (action) {
2029 
2030 	case PM_SUSPEND_PREPARE:
2031 	case PM_HIBERNATION_PREPARE:
2032 		cpu_hotplug_disable();
2033 		break;
2034 
2035 	case PM_POST_SUSPEND:
2036 	case PM_POST_HIBERNATION:
2037 		cpu_hotplug_enable();
2038 		break;
2039 
2040 	default:
2041 		return NOTIFY_DONE;
2042 	}
2043 
2044 	return NOTIFY_OK;
2045 }
2046 
2047 
2048 static int __init cpu_hotplug_pm_sync_init(void)
2049 {
2050 	/*
2051 	 * cpu_hotplug_pm_callback has higher priority than x86
2052 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2053 	 * to disable cpu hotplug to avoid cpu hotplug race.
2054 	 */
2055 	pm_notifier(cpu_hotplug_pm_callback, 0);
2056 	return 0;
2057 }
2058 core_initcall(cpu_hotplug_pm_sync_init);
2059 
2060 #endif /* CONFIG_PM_SLEEP_SMP */
2061 
2062 int __boot_cpu_id;
2063 
2064 #endif /* CONFIG_SMP */
2065 
2066 /* Boot processor state steps */
2067 static struct cpuhp_step cpuhp_hp_states[] = {
2068 	[CPUHP_OFFLINE] = {
2069 		.name			= "offline",
2070 		.startup.single		= NULL,
2071 		.teardown.single	= NULL,
2072 	},
2073 #ifdef CONFIG_SMP
2074 	[CPUHP_CREATE_THREADS]= {
2075 		.name			= "threads:prepare",
2076 		.startup.single		= smpboot_create_threads,
2077 		.teardown.single	= NULL,
2078 		.cant_stop		= true,
2079 	},
2080 	[CPUHP_PERF_PREPARE] = {
2081 		.name			= "perf:prepare",
2082 		.startup.single		= perf_event_init_cpu,
2083 		.teardown.single	= perf_event_exit_cpu,
2084 	},
2085 	[CPUHP_RANDOM_PREPARE] = {
2086 		.name			= "random:prepare",
2087 		.startup.single		= random_prepare_cpu,
2088 		.teardown.single	= NULL,
2089 	},
2090 	[CPUHP_WORKQUEUE_PREP] = {
2091 		.name			= "workqueue:prepare",
2092 		.startup.single		= workqueue_prepare_cpu,
2093 		.teardown.single	= NULL,
2094 	},
2095 	[CPUHP_HRTIMERS_PREPARE] = {
2096 		.name			= "hrtimers:prepare",
2097 		.startup.single		= hrtimers_prepare_cpu,
2098 		.teardown.single	= hrtimers_dead_cpu,
2099 	},
2100 	[CPUHP_SMPCFD_PREPARE] = {
2101 		.name			= "smpcfd:prepare",
2102 		.startup.single		= smpcfd_prepare_cpu,
2103 		.teardown.single	= smpcfd_dead_cpu,
2104 	},
2105 	[CPUHP_RELAY_PREPARE] = {
2106 		.name			= "relay:prepare",
2107 		.startup.single		= relay_prepare_cpu,
2108 		.teardown.single	= NULL,
2109 	},
2110 	[CPUHP_SLAB_PREPARE] = {
2111 		.name			= "slab:prepare",
2112 		.startup.single		= slab_prepare_cpu,
2113 		.teardown.single	= slab_dead_cpu,
2114 	},
2115 	[CPUHP_RCUTREE_PREP] = {
2116 		.name			= "RCU/tree:prepare",
2117 		.startup.single		= rcutree_prepare_cpu,
2118 		.teardown.single	= rcutree_dead_cpu,
2119 	},
2120 	/*
2121 	 * On the tear-down path, timers_dead_cpu() must be invoked
2122 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
2123 	 * otherwise a RCU stall occurs.
2124 	 */
2125 	[CPUHP_TIMERS_PREPARE] = {
2126 		.name			= "timers:prepare",
2127 		.startup.single		= timers_prepare_cpu,
2128 		.teardown.single	= timers_dead_cpu,
2129 	},
2130 
2131 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2132 	/*
2133 	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2134 	 * the next step will release it.
2135 	 */
2136 	[CPUHP_BP_KICK_AP] = {
2137 		.name			= "cpu:kick_ap",
2138 		.startup.single		= cpuhp_kick_ap_alive,
2139 	},
2140 
2141 	/*
2142 	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2143 	 * releases it for the complete bringup.
2144 	 */
2145 	[CPUHP_BRINGUP_CPU] = {
2146 		.name			= "cpu:bringup",
2147 		.startup.single		= cpuhp_bringup_ap,
2148 		.teardown.single	= finish_cpu,
2149 		.cant_stop		= true,
2150 	},
2151 #else
2152 	/*
2153 	 * All-in-one CPU bringup state which includes the kick alive.
2154 	 */
2155 	[CPUHP_BRINGUP_CPU] = {
2156 		.name			= "cpu:bringup",
2157 		.startup.single		= bringup_cpu,
2158 		.teardown.single	= finish_cpu,
2159 		.cant_stop		= true,
2160 	},
2161 #endif
2162 	/* Final state before CPU kills itself */
2163 	[CPUHP_AP_IDLE_DEAD] = {
2164 		.name			= "idle:dead",
2165 	},
2166 	/*
2167 	 * Last state before CPU enters the idle loop to die. Transient state
2168 	 * for synchronization.
2169 	 */
2170 	[CPUHP_AP_OFFLINE] = {
2171 		.name			= "ap:offline",
2172 		.cant_stop		= true,
2173 	},
2174 	/* First state is scheduler control. Interrupts are disabled */
2175 	[CPUHP_AP_SCHED_STARTING] = {
2176 		.name			= "sched:starting",
2177 		.startup.single		= sched_cpu_starting,
2178 		.teardown.single	= sched_cpu_dying,
2179 	},
2180 	[CPUHP_AP_RCUTREE_DYING] = {
2181 		.name			= "RCU/tree:dying",
2182 		.startup.single		= NULL,
2183 		.teardown.single	= rcutree_dying_cpu,
2184 	},
2185 	[CPUHP_AP_SMPCFD_DYING] = {
2186 		.name			= "smpcfd:dying",
2187 		.startup.single		= NULL,
2188 		.teardown.single	= smpcfd_dying_cpu,
2189 	},
2190 	/* Entry state on starting. Interrupts enabled from here on. Transient
2191 	 * state for synchronsization */
2192 	[CPUHP_AP_ONLINE] = {
2193 		.name			= "ap:online",
2194 	},
2195 	/*
2196 	 * Handled on control processor until the plugged processor manages
2197 	 * this itself.
2198 	 */
2199 	[CPUHP_TEARDOWN_CPU] = {
2200 		.name			= "cpu:teardown",
2201 		.startup.single		= NULL,
2202 		.teardown.single	= takedown_cpu,
2203 		.cant_stop		= true,
2204 	},
2205 
2206 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
2207 		.name			= "sched:waitempty",
2208 		.startup.single		= NULL,
2209 		.teardown.single	= sched_cpu_wait_empty,
2210 	},
2211 
2212 	/* Handle smpboot threads park/unpark */
2213 	[CPUHP_AP_SMPBOOT_THREADS] = {
2214 		.name			= "smpboot/threads:online",
2215 		.startup.single		= smpboot_unpark_threads,
2216 		.teardown.single	= smpboot_park_threads,
2217 	},
2218 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2219 		.name			= "irq/affinity:online",
2220 		.startup.single		= irq_affinity_online_cpu,
2221 		.teardown.single	= NULL,
2222 	},
2223 	[CPUHP_AP_PERF_ONLINE] = {
2224 		.name			= "perf:online",
2225 		.startup.single		= perf_event_init_cpu,
2226 		.teardown.single	= perf_event_exit_cpu,
2227 	},
2228 	[CPUHP_AP_WATCHDOG_ONLINE] = {
2229 		.name			= "lockup_detector:online",
2230 		.startup.single		= lockup_detector_online_cpu,
2231 		.teardown.single	= lockup_detector_offline_cpu,
2232 	},
2233 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
2234 		.name			= "workqueue:online",
2235 		.startup.single		= workqueue_online_cpu,
2236 		.teardown.single	= workqueue_offline_cpu,
2237 	},
2238 	[CPUHP_AP_RANDOM_ONLINE] = {
2239 		.name			= "random:online",
2240 		.startup.single		= random_online_cpu,
2241 		.teardown.single	= NULL,
2242 	},
2243 	[CPUHP_AP_RCUTREE_ONLINE] = {
2244 		.name			= "RCU/tree:online",
2245 		.startup.single		= rcutree_online_cpu,
2246 		.teardown.single	= rcutree_offline_cpu,
2247 	},
2248 #endif
2249 	/*
2250 	 * The dynamically registered state space is here
2251 	 */
2252 
2253 #ifdef CONFIG_SMP
2254 	/* Last state is scheduler control setting the cpu active */
2255 	[CPUHP_AP_ACTIVE] = {
2256 		.name			= "sched:active",
2257 		.startup.single		= sched_cpu_activate,
2258 		.teardown.single	= sched_cpu_deactivate,
2259 	},
2260 #endif
2261 
2262 	/* CPU is fully up and running. */
2263 	[CPUHP_ONLINE] = {
2264 		.name			= "online",
2265 		.startup.single		= NULL,
2266 		.teardown.single	= NULL,
2267 	},
2268 };
2269 
2270 /* Sanity check for callbacks */
2271 static int cpuhp_cb_check(enum cpuhp_state state)
2272 {
2273 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2274 		return -EINVAL;
2275 	return 0;
2276 }
2277 
2278 /*
2279  * Returns a free for dynamic slot assignment of the Online state. The states
2280  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2281  * by having no name assigned.
2282  */
2283 static int cpuhp_reserve_state(enum cpuhp_state state)
2284 {
2285 	enum cpuhp_state i, end;
2286 	struct cpuhp_step *step;
2287 
2288 	switch (state) {
2289 	case CPUHP_AP_ONLINE_DYN:
2290 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2291 		end = CPUHP_AP_ONLINE_DYN_END;
2292 		break;
2293 	case CPUHP_BP_PREPARE_DYN:
2294 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2295 		end = CPUHP_BP_PREPARE_DYN_END;
2296 		break;
2297 	default:
2298 		return -EINVAL;
2299 	}
2300 
2301 	for (i = state; i <= end; i++, step++) {
2302 		if (!step->name)
2303 			return i;
2304 	}
2305 	WARN(1, "No more dynamic states available for CPU hotplug\n");
2306 	return -ENOSPC;
2307 }
2308 
2309 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2310 				 int (*startup)(unsigned int cpu),
2311 				 int (*teardown)(unsigned int cpu),
2312 				 bool multi_instance)
2313 {
2314 	/* (Un)Install the callbacks for further cpu hotplug operations */
2315 	struct cpuhp_step *sp;
2316 	int ret = 0;
2317 
2318 	/*
2319 	 * If name is NULL, then the state gets removed.
2320 	 *
2321 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2322 	 * the first allocation from these dynamic ranges, so the removal
2323 	 * would trigger a new allocation and clear the wrong (already
2324 	 * empty) state, leaving the callbacks of the to be cleared state
2325 	 * dangling, which causes wreckage on the next hotplug operation.
2326 	 */
2327 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
2328 		     state == CPUHP_BP_PREPARE_DYN)) {
2329 		ret = cpuhp_reserve_state(state);
2330 		if (ret < 0)
2331 			return ret;
2332 		state = ret;
2333 	}
2334 	sp = cpuhp_get_step(state);
2335 	if (name && sp->name)
2336 		return -EBUSY;
2337 
2338 	sp->startup.single = startup;
2339 	sp->teardown.single = teardown;
2340 	sp->name = name;
2341 	sp->multi_instance = multi_instance;
2342 	INIT_HLIST_HEAD(&sp->list);
2343 	return ret;
2344 }
2345 
2346 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2347 {
2348 	return cpuhp_get_step(state)->teardown.single;
2349 }
2350 
2351 /*
2352  * Call the startup/teardown function for a step either on the AP or
2353  * on the current CPU.
2354  */
2355 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2356 			    struct hlist_node *node)
2357 {
2358 	struct cpuhp_step *sp = cpuhp_get_step(state);
2359 	int ret;
2360 
2361 	/*
2362 	 * If there's nothing to do, we done.
2363 	 * Relies on the union for multi_instance.
2364 	 */
2365 	if (cpuhp_step_empty(bringup, sp))
2366 		return 0;
2367 	/*
2368 	 * The non AP bound callbacks can fail on bringup. On teardown
2369 	 * e.g. module removal we crash for now.
2370 	 */
2371 #ifdef CONFIG_SMP
2372 	if (cpuhp_is_ap_state(state))
2373 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2374 	else
2375 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2376 #else
2377 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2378 #endif
2379 	BUG_ON(ret && !bringup);
2380 	return ret;
2381 }
2382 
2383 /*
2384  * Called from __cpuhp_setup_state on a recoverable failure.
2385  *
2386  * Note: The teardown callbacks for rollback are not allowed to fail!
2387  */
2388 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2389 				   struct hlist_node *node)
2390 {
2391 	int cpu;
2392 
2393 	/* Roll back the already executed steps on the other cpus */
2394 	for_each_present_cpu(cpu) {
2395 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2396 		int cpustate = st->state;
2397 
2398 		if (cpu >= failedcpu)
2399 			break;
2400 
2401 		/* Did we invoke the startup call on that cpu ? */
2402 		if (cpustate >= state)
2403 			cpuhp_issue_call(cpu, state, false, node);
2404 	}
2405 }
2406 
2407 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2408 					  struct hlist_node *node,
2409 					  bool invoke)
2410 {
2411 	struct cpuhp_step *sp;
2412 	int cpu;
2413 	int ret;
2414 
2415 	lockdep_assert_cpus_held();
2416 
2417 	sp = cpuhp_get_step(state);
2418 	if (sp->multi_instance == false)
2419 		return -EINVAL;
2420 
2421 	mutex_lock(&cpuhp_state_mutex);
2422 
2423 	if (!invoke || !sp->startup.multi)
2424 		goto add_node;
2425 
2426 	/*
2427 	 * Try to call the startup callback for each present cpu
2428 	 * depending on the hotplug state of the cpu.
2429 	 */
2430 	for_each_present_cpu(cpu) {
2431 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2432 		int cpustate = st->state;
2433 
2434 		if (cpustate < state)
2435 			continue;
2436 
2437 		ret = cpuhp_issue_call(cpu, state, true, node);
2438 		if (ret) {
2439 			if (sp->teardown.multi)
2440 				cpuhp_rollback_install(cpu, state, node);
2441 			goto unlock;
2442 		}
2443 	}
2444 add_node:
2445 	ret = 0;
2446 	hlist_add_head(node, &sp->list);
2447 unlock:
2448 	mutex_unlock(&cpuhp_state_mutex);
2449 	return ret;
2450 }
2451 
2452 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2453 			       bool invoke)
2454 {
2455 	int ret;
2456 
2457 	cpus_read_lock();
2458 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2459 	cpus_read_unlock();
2460 	return ret;
2461 }
2462 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2463 
2464 /**
2465  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2466  * @state:		The state to setup
2467  * @name:		Name of the step
2468  * @invoke:		If true, the startup function is invoked for cpus where
2469  *			cpu state >= @state
2470  * @startup:		startup callback function
2471  * @teardown:		teardown callback function
2472  * @multi_instance:	State is set up for multiple instances which get
2473  *			added afterwards.
2474  *
2475  * The caller needs to hold cpus read locked while calling this function.
2476  * Return:
2477  *   On success:
2478  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2479  *      0 for all other states
2480  *   On failure: proper (negative) error code
2481  */
2482 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2483 				   const char *name, bool invoke,
2484 				   int (*startup)(unsigned int cpu),
2485 				   int (*teardown)(unsigned int cpu),
2486 				   bool multi_instance)
2487 {
2488 	int cpu, ret = 0;
2489 	bool dynstate;
2490 
2491 	lockdep_assert_cpus_held();
2492 
2493 	if (cpuhp_cb_check(state) || !name)
2494 		return -EINVAL;
2495 
2496 	mutex_lock(&cpuhp_state_mutex);
2497 
2498 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2499 				    multi_instance);
2500 
2501 	dynstate = state == CPUHP_AP_ONLINE_DYN;
2502 	if (ret > 0 && dynstate) {
2503 		state = ret;
2504 		ret = 0;
2505 	}
2506 
2507 	if (ret || !invoke || !startup)
2508 		goto out;
2509 
2510 	/*
2511 	 * Try to call the startup callback for each present cpu
2512 	 * depending on the hotplug state of the cpu.
2513 	 */
2514 	for_each_present_cpu(cpu) {
2515 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2516 		int cpustate = st->state;
2517 
2518 		if (cpustate < state)
2519 			continue;
2520 
2521 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2522 		if (ret) {
2523 			if (teardown)
2524 				cpuhp_rollback_install(cpu, state, NULL);
2525 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2526 			goto out;
2527 		}
2528 	}
2529 out:
2530 	mutex_unlock(&cpuhp_state_mutex);
2531 	/*
2532 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2533 	 * dynamically allocated state in case of success.
2534 	 */
2535 	if (!ret && dynstate)
2536 		return state;
2537 	return ret;
2538 }
2539 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2540 
2541 int __cpuhp_setup_state(enum cpuhp_state state,
2542 			const char *name, bool invoke,
2543 			int (*startup)(unsigned int cpu),
2544 			int (*teardown)(unsigned int cpu),
2545 			bool multi_instance)
2546 {
2547 	int ret;
2548 
2549 	cpus_read_lock();
2550 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2551 					     teardown, multi_instance);
2552 	cpus_read_unlock();
2553 	return ret;
2554 }
2555 EXPORT_SYMBOL(__cpuhp_setup_state);
2556 
2557 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2558 				  struct hlist_node *node, bool invoke)
2559 {
2560 	struct cpuhp_step *sp = cpuhp_get_step(state);
2561 	int cpu;
2562 
2563 	BUG_ON(cpuhp_cb_check(state));
2564 
2565 	if (!sp->multi_instance)
2566 		return -EINVAL;
2567 
2568 	cpus_read_lock();
2569 	mutex_lock(&cpuhp_state_mutex);
2570 
2571 	if (!invoke || !cpuhp_get_teardown_cb(state))
2572 		goto remove;
2573 	/*
2574 	 * Call the teardown callback for each present cpu depending
2575 	 * on the hotplug state of the cpu. This function is not
2576 	 * allowed to fail currently!
2577 	 */
2578 	for_each_present_cpu(cpu) {
2579 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2580 		int cpustate = st->state;
2581 
2582 		if (cpustate >= state)
2583 			cpuhp_issue_call(cpu, state, false, node);
2584 	}
2585 
2586 remove:
2587 	hlist_del(node);
2588 	mutex_unlock(&cpuhp_state_mutex);
2589 	cpus_read_unlock();
2590 
2591 	return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2594 
2595 /**
2596  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2597  * @state:	The state to remove
2598  * @invoke:	If true, the teardown function is invoked for cpus where
2599  *		cpu state >= @state
2600  *
2601  * The caller needs to hold cpus read locked while calling this function.
2602  * The teardown callback is currently not allowed to fail. Think
2603  * about module removal!
2604  */
2605 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2606 {
2607 	struct cpuhp_step *sp = cpuhp_get_step(state);
2608 	int cpu;
2609 
2610 	BUG_ON(cpuhp_cb_check(state));
2611 
2612 	lockdep_assert_cpus_held();
2613 
2614 	mutex_lock(&cpuhp_state_mutex);
2615 	if (sp->multi_instance) {
2616 		WARN(!hlist_empty(&sp->list),
2617 		     "Error: Removing state %d which has instances left.\n",
2618 		     state);
2619 		goto remove;
2620 	}
2621 
2622 	if (!invoke || !cpuhp_get_teardown_cb(state))
2623 		goto remove;
2624 
2625 	/*
2626 	 * Call the teardown callback for each present cpu depending
2627 	 * on the hotplug state of the cpu. This function is not
2628 	 * allowed to fail currently!
2629 	 */
2630 	for_each_present_cpu(cpu) {
2631 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2632 		int cpustate = st->state;
2633 
2634 		if (cpustate >= state)
2635 			cpuhp_issue_call(cpu, state, false, NULL);
2636 	}
2637 remove:
2638 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2639 	mutex_unlock(&cpuhp_state_mutex);
2640 }
2641 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2642 
2643 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2644 {
2645 	cpus_read_lock();
2646 	__cpuhp_remove_state_cpuslocked(state, invoke);
2647 	cpus_read_unlock();
2648 }
2649 EXPORT_SYMBOL(__cpuhp_remove_state);
2650 
2651 #ifdef CONFIG_HOTPLUG_SMT
2652 static void cpuhp_offline_cpu_device(unsigned int cpu)
2653 {
2654 	struct device *dev = get_cpu_device(cpu);
2655 
2656 	dev->offline = true;
2657 	/* Tell user space about the state change */
2658 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2659 }
2660 
2661 static void cpuhp_online_cpu_device(unsigned int cpu)
2662 {
2663 	struct device *dev = get_cpu_device(cpu);
2664 
2665 	dev->offline = false;
2666 	/* Tell user space about the state change */
2667 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2668 }
2669 
2670 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2671 {
2672 	int cpu, ret = 0;
2673 
2674 	cpu_maps_update_begin();
2675 	for_each_online_cpu(cpu) {
2676 		if (topology_is_primary_thread(cpu))
2677 			continue;
2678 		/*
2679 		 * Disable can be called with CPU_SMT_ENABLED when changing
2680 		 * from a higher to lower number of SMT threads per core.
2681 		 */
2682 		if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2683 			continue;
2684 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2685 		if (ret)
2686 			break;
2687 		/*
2688 		 * As this needs to hold the cpu maps lock it's impossible
2689 		 * to call device_offline() because that ends up calling
2690 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2691 		 * needs to be held as this might race against in kernel
2692 		 * abusers of the hotplug machinery (thermal management).
2693 		 *
2694 		 * So nothing would update device:offline state. That would
2695 		 * leave the sysfs entry stale and prevent onlining after
2696 		 * smt control has been changed to 'off' again. This is
2697 		 * called under the sysfs hotplug lock, so it is properly
2698 		 * serialized against the regular offline usage.
2699 		 */
2700 		cpuhp_offline_cpu_device(cpu);
2701 	}
2702 	if (!ret)
2703 		cpu_smt_control = ctrlval;
2704 	cpu_maps_update_done();
2705 	return ret;
2706 }
2707 
2708 int cpuhp_smt_enable(void)
2709 {
2710 	int cpu, ret = 0;
2711 
2712 	cpu_maps_update_begin();
2713 	cpu_smt_control = CPU_SMT_ENABLED;
2714 	for_each_present_cpu(cpu) {
2715 		/* Skip online CPUs and CPUs on offline nodes */
2716 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2717 			continue;
2718 		if (!cpu_smt_thread_allowed(cpu))
2719 			continue;
2720 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2721 		if (ret)
2722 			break;
2723 		/* See comment in cpuhp_smt_disable() */
2724 		cpuhp_online_cpu_device(cpu);
2725 	}
2726 	cpu_maps_update_done();
2727 	return ret;
2728 }
2729 #endif
2730 
2731 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2732 static ssize_t state_show(struct device *dev,
2733 			  struct device_attribute *attr, char *buf)
2734 {
2735 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2736 
2737 	return sprintf(buf, "%d\n", st->state);
2738 }
2739 static DEVICE_ATTR_RO(state);
2740 
2741 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2742 			    const char *buf, size_t count)
2743 {
2744 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2745 	struct cpuhp_step *sp;
2746 	int target, ret;
2747 
2748 	ret = kstrtoint(buf, 10, &target);
2749 	if (ret)
2750 		return ret;
2751 
2752 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2753 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2754 		return -EINVAL;
2755 #else
2756 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2757 		return -EINVAL;
2758 #endif
2759 
2760 	ret = lock_device_hotplug_sysfs();
2761 	if (ret)
2762 		return ret;
2763 
2764 	mutex_lock(&cpuhp_state_mutex);
2765 	sp = cpuhp_get_step(target);
2766 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2767 	mutex_unlock(&cpuhp_state_mutex);
2768 	if (ret)
2769 		goto out;
2770 
2771 	if (st->state < target)
2772 		ret = cpu_up(dev->id, target);
2773 	else if (st->state > target)
2774 		ret = cpu_down(dev->id, target);
2775 	else if (WARN_ON(st->target != target))
2776 		st->target = target;
2777 out:
2778 	unlock_device_hotplug();
2779 	return ret ? ret : count;
2780 }
2781 
2782 static ssize_t target_show(struct device *dev,
2783 			   struct device_attribute *attr, char *buf)
2784 {
2785 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2786 
2787 	return sprintf(buf, "%d\n", st->target);
2788 }
2789 static DEVICE_ATTR_RW(target);
2790 
2791 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2792 			  const char *buf, size_t count)
2793 {
2794 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2795 	struct cpuhp_step *sp;
2796 	int fail, ret;
2797 
2798 	ret = kstrtoint(buf, 10, &fail);
2799 	if (ret)
2800 		return ret;
2801 
2802 	if (fail == CPUHP_INVALID) {
2803 		st->fail = fail;
2804 		return count;
2805 	}
2806 
2807 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2808 		return -EINVAL;
2809 
2810 	/*
2811 	 * Cannot fail STARTING/DYING callbacks.
2812 	 */
2813 	if (cpuhp_is_atomic_state(fail))
2814 		return -EINVAL;
2815 
2816 	/*
2817 	 * DEAD callbacks cannot fail...
2818 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2819 	 * triggering STARTING callbacks, a failure in this state would
2820 	 * hinder rollback.
2821 	 */
2822 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2823 		return -EINVAL;
2824 
2825 	/*
2826 	 * Cannot fail anything that doesn't have callbacks.
2827 	 */
2828 	mutex_lock(&cpuhp_state_mutex);
2829 	sp = cpuhp_get_step(fail);
2830 	if (!sp->startup.single && !sp->teardown.single)
2831 		ret = -EINVAL;
2832 	mutex_unlock(&cpuhp_state_mutex);
2833 	if (ret)
2834 		return ret;
2835 
2836 	st->fail = fail;
2837 
2838 	return count;
2839 }
2840 
2841 static ssize_t fail_show(struct device *dev,
2842 			 struct device_attribute *attr, char *buf)
2843 {
2844 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2845 
2846 	return sprintf(buf, "%d\n", st->fail);
2847 }
2848 
2849 static DEVICE_ATTR_RW(fail);
2850 
2851 static struct attribute *cpuhp_cpu_attrs[] = {
2852 	&dev_attr_state.attr,
2853 	&dev_attr_target.attr,
2854 	&dev_attr_fail.attr,
2855 	NULL
2856 };
2857 
2858 static const struct attribute_group cpuhp_cpu_attr_group = {
2859 	.attrs = cpuhp_cpu_attrs,
2860 	.name = "hotplug",
2861 	NULL
2862 };
2863 
2864 static ssize_t states_show(struct device *dev,
2865 				 struct device_attribute *attr, char *buf)
2866 {
2867 	ssize_t cur, res = 0;
2868 	int i;
2869 
2870 	mutex_lock(&cpuhp_state_mutex);
2871 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2872 		struct cpuhp_step *sp = cpuhp_get_step(i);
2873 
2874 		if (sp->name) {
2875 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2876 			buf += cur;
2877 			res += cur;
2878 		}
2879 	}
2880 	mutex_unlock(&cpuhp_state_mutex);
2881 	return res;
2882 }
2883 static DEVICE_ATTR_RO(states);
2884 
2885 static struct attribute *cpuhp_cpu_root_attrs[] = {
2886 	&dev_attr_states.attr,
2887 	NULL
2888 };
2889 
2890 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2891 	.attrs = cpuhp_cpu_root_attrs,
2892 	.name = "hotplug",
2893 	NULL
2894 };
2895 
2896 #ifdef CONFIG_HOTPLUG_SMT
2897 
2898 static bool cpu_smt_num_threads_valid(unsigned int threads)
2899 {
2900 	if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2901 		return threads >= 1 && threads <= cpu_smt_max_threads;
2902 	return threads == 1 || threads == cpu_smt_max_threads;
2903 }
2904 
2905 static ssize_t
2906 __store_smt_control(struct device *dev, struct device_attribute *attr,
2907 		    const char *buf, size_t count)
2908 {
2909 	int ctrlval, ret, num_threads, orig_threads;
2910 	bool force_off;
2911 
2912 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2913 		return -EPERM;
2914 
2915 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2916 		return -ENODEV;
2917 
2918 	if (sysfs_streq(buf, "on")) {
2919 		ctrlval = CPU_SMT_ENABLED;
2920 		num_threads = cpu_smt_max_threads;
2921 	} else if (sysfs_streq(buf, "off")) {
2922 		ctrlval = CPU_SMT_DISABLED;
2923 		num_threads = 1;
2924 	} else if (sysfs_streq(buf, "forceoff")) {
2925 		ctrlval = CPU_SMT_FORCE_DISABLED;
2926 		num_threads = 1;
2927 	} else if (kstrtoint(buf, 10, &num_threads) == 0) {
2928 		if (num_threads == 1)
2929 			ctrlval = CPU_SMT_DISABLED;
2930 		else if (cpu_smt_num_threads_valid(num_threads))
2931 			ctrlval = CPU_SMT_ENABLED;
2932 		else
2933 			return -EINVAL;
2934 	} else {
2935 		return -EINVAL;
2936 	}
2937 
2938 	ret = lock_device_hotplug_sysfs();
2939 	if (ret)
2940 		return ret;
2941 
2942 	orig_threads = cpu_smt_num_threads;
2943 	cpu_smt_num_threads = num_threads;
2944 
2945 	force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2946 
2947 	if (num_threads > orig_threads)
2948 		ret = cpuhp_smt_enable();
2949 	else if (num_threads < orig_threads || force_off)
2950 		ret = cpuhp_smt_disable(ctrlval);
2951 
2952 	unlock_device_hotplug();
2953 	return ret ? ret : count;
2954 }
2955 
2956 #else /* !CONFIG_HOTPLUG_SMT */
2957 static ssize_t
2958 __store_smt_control(struct device *dev, struct device_attribute *attr,
2959 		    const char *buf, size_t count)
2960 {
2961 	return -ENODEV;
2962 }
2963 #endif /* CONFIG_HOTPLUG_SMT */
2964 
2965 static const char *smt_states[] = {
2966 	[CPU_SMT_ENABLED]		= "on",
2967 	[CPU_SMT_DISABLED]		= "off",
2968 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2969 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2970 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2971 };
2972 
2973 static ssize_t control_show(struct device *dev,
2974 			    struct device_attribute *attr, char *buf)
2975 {
2976 	const char *state = smt_states[cpu_smt_control];
2977 
2978 #ifdef CONFIG_HOTPLUG_SMT
2979 	/*
2980 	 * If SMT is enabled but not all threads are enabled then show the
2981 	 * number of threads. If all threads are enabled show "on". Otherwise
2982 	 * show the state name.
2983 	 */
2984 	if (cpu_smt_control == CPU_SMT_ENABLED &&
2985 	    cpu_smt_num_threads != cpu_smt_max_threads)
2986 		return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2987 #endif
2988 
2989 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2990 }
2991 
2992 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2993 			     const char *buf, size_t count)
2994 {
2995 	return __store_smt_control(dev, attr, buf, count);
2996 }
2997 static DEVICE_ATTR_RW(control);
2998 
2999 static ssize_t active_show(struct device *dev,
3000 			   struct device_attribute *attr, char *buf)
3001 {
3002 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
3003 }
3004 static DEVICE_ATTR_RO(active);
3005 
3006 static struct attribute *cpuhp_smt_attrs[] = {
3007 	&dev_attr_control.attr,
3008 	&dev_attr_active.attr,
3009 	NULL
3010 };
3011 
3012 static const struct attribute_group cpuhp_smt_attr_group = {
3013 	.attrs = cpuhp_smt_attrs,
3014 	.name = "smt",
3015 	NULL
3016 };
3017 
3018 static int __init cpu_smt_sysfs_init(void)
3019 {
3020 	struct device *dev_root;
3021 	int ret = -ENODEV;
3022 
3023 	dev_root = bus_get_dev_root(&cpu_subsys);
3024 	if (dev_root) {
3025 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3026 		put_device(dev_root);
3027 	}
3028 	return ret;
3029 }
3030 
3031 static int __init cpuhp_sysfs_init(void)
3032 {
3033 	struct device *dev_root;
3034 	int cpu, ret;
3035 
3036 	ret = cpu_smt_sysfs_init();
3037 	if (ret)
3038 		return ret;
3039 
3040 	dev_root = bus_get_dev_root(&cpu_subsys);
3041 	if (dev_root) {
3042 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3043 		put_device(dev_root);
3044 		if (ret)
3045 			return ret;
3046 	}
3047 
3048 	for_each_possible_cpu(cpu) {
3049 		struct device *dev = get_cpu_device(cpu);
3050 
3051 		if (!dev)
3052 			continue;
3053 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3054 		if (ret)
3055 			return ret;
3056 	}
3057 	return 0;
3058 }
3059 device_initcall(cpuhp_sysfs_init);
3060 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3061 
3062 /*
3063  * cpu_bit_bitmap[] is a special, "compressed" data structure that
3064  * represents all NR_CPUS bits binary values of 1<<nr.
3065  *
3066  * It is used by cpumask_of() to get a constant address to a CPU
3067  * mask value that has a single bit set only.
3068  */
3069 
3070 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3071 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
3072 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3073 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3074 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3075 
3076 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3077 
3078 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
3079 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
3080 #if BITS_PER_LONG > 32
3081 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
3082 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
3083 #endif
3084 };
3085 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3086 
3087 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3088 EXPORT_SYMBOL(cpu_all_bits);
3089 
3090 #ifdef CONFIG_INIT_ALL_POSSIBLE
3091 struct cpumask __cpu_possible_mask __read_mostly
3092 	= {CPU_BITS_ALL};
3093 #else
3094 struct cpumask __cpu_possible_mask __read_mostly;
3095 #endif
3096 EXPORT_SYMBOL(__cpu_possible_mask);
3097 
3098 struct cpumask __cpu_online_mask __read_mostly;
3099 EXPORT_SYMBOL(__cpu_online_mask);
3100 
3101 struct cpumask __cpu_present_mask __read_mostly;
3102 EXPORT_SYMBOL(__cpu_present_mask);
3103 
3104 struct cpumask __cpu_active_mask __read_mostly;
3105 EXPORT_SYMBOL(__cpu_active_mask);
3106 
3107 struct cpumask __cpu_dying_mask __read_mostly;
3108 EXPORT_SYMBOL(__cpu_dying_mask);
3109 
3110 atomic_t __num_online_cpus __read_mostly;
3111 EXPORT_SYMBOL(__num_online_cpus);
3112 
3113 void init_cpu_present(const struct cpumask *src)
3114 {
3115 	cpumask_copy(&__cpu_present_mask, src);
3116 }
3117 
3118 void init_cpu_possible(const struct cpumask *src)
3119 {
3120 	cpumask_copy(&__cpu_possible_mask, src);
3121 }
3122 
3123 void init_cpu_online(const struct cpumask *src)
3124 {
3125 	cpumask_copy(&__cpu_online_mask, src);
3126 }
3127 
3128 void set_cpu_online(unsigned int cpu, bool online)
3129 {
3130 	/*
3131 	 * atomic_inc/dec() is required to handle the horrid abuse of this
3132 	 * function by the reboot and kexec code which invoke it from
3133 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3134 	 * regular CPU hotplug is properly serialized.
3135 	 *
3136 	 * Note, that the fact that __num_online_cpus is of type atomic_t
3137 	 * does not protect readers which are not serialized against
3138 	 * concurrent hotplug operations.
3139 	 */
3140 	if (online) {
3141 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3142 			atomic_inc(&__num_online_cpus);
3143 	} else {
3144 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3145 			atomic_dec(&__num_online_cpus);
3146 	}
3147 }
3148 
3149 /*
3150  * Activate the first processor.
3151  */
3152 void __init boot_cpu_init(void)
3153 {
3154 	int cpu = smp_processor_id();
3155 
3156 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
3157 	set_cpu_online(cpu, true);
3158 	set_cpu_active(cpu, true);
3159 	set_cpu_present(cpu, true);
3160 	set_cpu_possible(cpu, true);
3161 
3162 #ifdef CONFIG_SMP
3163 	__boot_cpu_id = cpu;
3164 #endif
3165 }
3166 
3167 /*
3168  * Must be called _AFTER_ setting up the per_cpu areas
3169  */
3170 void __init boot_cpu_hotplug_init(void)
3171 {
3172 #ifdef CONFIG_SMP
3173 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3174 	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3175 #endif
3176 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3177 	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3178 }
3179 
3180 /*
3181  * These are used for a global "mitigations=" cmdline option for toggling
3182  * optional CPU mitigations.
3183  */
3184 enum cpu_mitigations {
3185 	CPU_MITIGATIONS_OFF,
3186 	CPU_MITIGATIONS_AUTO,
3187 	CPU_MITIGATIONS_AUTO_NOSMT,
3188 };
3189 
3190 static enum cpu_mitigations cpu_mitigations __ro_after_init =
3191 	CPU_MITIGATIONS_AUTO;
3192 
3193 static int __init mitigations_parse_cmdline(char *arg)
3194 {
3195 	if (!strcmp(arg, "off"))
3196 		cpu_mitigations = CPU_MITIGATIONS_OFF;
3197 	else if (!strcmp(arg, "auto"))
3198 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
3199 	else if (!strcmp(arg, "auto,nosmt"))
3200 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3201 	else
3202 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3203 			arg);
3204 
3205 	return 0;
3206 }
3207 early_param("mitigations", mitigations_parse_cmdline);
3208 
3209 /* mitigations=off */
3210 bool cpu_mitigations_off(void)
3211 {
3212 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
3213 }
3214 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3215 
3216 /* mitigations=auto,nosmt */
3217 bool cpu_mitigations_auto_nosmt(void)
3218 {
3219 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3220 }
3221 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3222