xref: /linux-6.15/kernel/cpu.c (revision 403f833d)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
32 
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
36 
37 #include "smpboot.h"
38 
39 /**
40  * cpuhp_cpu_state - Per cpu hotplug state storage
41  * @state:	The current cpu state
42  * @target:	The target state
43  * @thread:	Pointer to the hotplug thread
44  * @should_run:	Thread should execute
45  * @rollback:	Perform a rollback
46  * @single:	Single callback invocation
47  * @bringup:	Single callback bringup or teardown selector
48  * @cb_state:	The state for a single callback (install/uninstall)
49  * @result:	Result of the operation
50  * @done_up:	Signal completion to the issuer of the task for cpu-up
51  * @done_down:	Signal completion to the issuer of the task for cpu-down
52  */
53 struct cpuhp_cpu_state {
54 	enum cpuhp_state	state;
55 	enum cpuhp_state	target;
56 	enum cpuhp_state	fail;
57 #ifdef CONFIG_SMP
58 	struct task_struct	*thread;
59 	bool			should_run;
60 	bool			rollback;
61 	bool			single;
62 	bool			bringup;
63 	struct hlist_node	*node;
64 	struct hlist_node	*last;
65 	enum cpuhp_state	cb_state;
66 	int			result;
67 	struct completion	done_up;
68 	struct completion	done_down;
69 #endif
70 };
71 
72 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
73 	.fail = CPUHP_INVALID,
74 };
75 
76 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
77 static struct lockdep_map cpuhp_state_up_map =
78 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
79 static struct lockdep_map cpuhp_state_down_map =
80 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
81 
82 
83 static inline void cpuhp_lock_acquire(bool bringup)
84 {
85 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
86 }
87 
88 static inline void cpuhp_lock_release(bool bringup)
89 {
90 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
91 }
92 #else
93 
94 static inline void cpuhp_lock_acquire(bool bringup) { }
95 static inline void cpuhp_lock_release(bool bringup) { }
96 
97 #endif
98 
99 /**
100  * cpuhp_step - Hotplug state machine step
101  * @name:	Name of the step
102  * @startup:	Startup function of the step
103  * @teardown:	Teardown function of the step
104  * @skip_onerr:	Do not invoke the functions on error rollback
105  *		Will go away once the notifiers	are gone
106  * @cant_stop:	Bringup/teardown can't be stopped at this step
107  */
108 struct cpuhp_step {
109 	const char		*name;
110 	union {
111 		int		(*single)(unsigned int cpu);
112 		int		(*multi)(unsigned int cpu,
113 					 struct hlist_node *node);
114 	} startup;
115 	union {
116 		int		(*single)(unsigned int cpu);
117 		int		(*multi)(unsigned int cpu,
118 					 struct hlist_node *node);
119 	} teardown;
120 	struct hlist_head	list;
121 	bool			skip_onerr;
122 	bool			cant_stop;
123 	bool			multi_instance;
124 };
125 
126 static DEFINE_MUTEX(cpuhp_state_mutex);
127 static struct cpuhp_step cpuhp_hp_states[];
128 
129 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
130 {
131 	return cpuhp_hp_states + state;
132 }
133 
134 /**
135  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
136  * @cpu:	The cpu for which the callback should be invoked
137  * @state:	The state to do callbacks for
138  * @bringup:	True if the bringup callback should be invoked
139  * @node:	For multi-instance, do a single entry callback for install/remove
140  * @lastp:	For multi-instance rollback, remember how far we got
141  *
142  * Called from cpu hotplug and from the state register machinery.
143  */
144 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
145 				 bool bringup, struct hlist_node *node,
146 				 struct hlist_node **lastp)
147 {
148 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
149 	struct cpuhp_step *step = cpuhp_get_step(state);
150 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
151 	int (*cb)(unsigned int cpu);
152 	int ret, cnt;
153 
154 	if (st->fail == state) {
155 		st->fail = CPUHP_INVALID;
156 
157 		if (!(bringup ? step->startup.single : step->teardown.single))
158 			return 0;
159 
160 		return -EAGAIN;
161 	}
162 
163 	if (!step->multi_instance) {
164 		WARN_ON_ONCE(lastp && *lastp);
165 		cb = bringup ? step->startup.single : step->teardown.single;
166 		if (!cb)
167 			return 0;
168 		trace_cpuhp_enter(cpu, st->target, state, cb);
169 		ret = cb(cpu);
170 		trace_cpuhp_exit(cpu, st->state, state, ret);
171 		return ret;
172 	}
173 	cbm = bringup ? step->startup.multi : step->teardown.multi;
174 	if (!cbm)
175 		return 0;
176 
177 	/* Single invocation for instance add/remove */
178 	if (node) {
179 		WARN_ON_ONCE(lastp && *lastp);
180 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
181 		ret = cbm(cpu, node);
182 		trace_cpuhp_exit(cpu, st->state, state, ret);
183 		return ret;
184 	}
185 
186 	/* State transition. Invoke on all instances */
187 	cnt = 0;
188 	hlist_for_each(node, &step->list) {
189 		if (lastp && node == *lastp)
190 			break;
191 
192 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
193 		ret = cbm(cpu, node);
194 		trace_cpuhp_exit(cpu, st->state, state, ret);
195 		if (ret) {
196 			if (!lastp)
197 				goto err;
198 
199 			*lastp = node;
200 			return ret;
201 		}
202 		cnt++;
203 	}
204 	if (lastp)
205 		*lastp = NULL;
206 	return 0;
207 err:
208 	/* Rollback the instances if one failed */
209 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
210 	if (!cbm)
211 		return ret;
212 
213 	hlist_for_each(node, &step->list) {
214 		if (!cnt--)
215 			break;
216 
217 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
218 		ret = cbm(cpu, node);
219 		trace_cpuhp_exit(cpu, st->state, state, ret);
220 		/*
221 		 * Rollback must not fail,
222 		 */
223 		WARN_ON_ONCE(ret);
224 	}
225 	return ret;
226 }
227 
228 #ifdef CONFIG_SMP
229 static bool cpuhp_is_ap_state(enum cpuhp_state state)
230 {
231 	/*
232 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
233 	 * purposes as that state is handled explicitly in cpu_down.
234 	 */
235 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
236 }
237 
238 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
239 {
240 	struct completion *done = bringup ? &st->done_up : &st->done_down;
241 	wait_for_completion(done);
242 }
243 
244 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
245 {
246 	struct completion *done = bringup ? &st->done_up : &st->done_down;
247 	complete(done);
248 }
249 
250 /*
251  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
252  */
253 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
254 {
255 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
256 }
257 
258 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
259 static DEFINE_MUTEX(cpu_add_remove_lock);
260 bool cpuhp_tasks_frozen;
261 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
262 
263 /*
264  * The following two APIs (cpu_maps_update_begin/done) must be used when
265  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
266  */
267 void cpu_maps_update_begin(void)
268 {
269 	mutex_lock(&cpu_add_remove_lock);
270 }
271 
272 void cpu_maps_update_done(void)
273 {
274 	mutex_unlock(&cpu_add_remove_lock);
275 }
276 
277 /*
278  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
279  * Should always be manipulated under cpu_add_remove_lock
280  */
281 static int cpu_hotplug_disabled;
282 
283 #ifdef CONFIG_HOTPLUG_CPU
284 
285 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
286 
287 void cpus_read_lock(void)
288 {
289 	percpu_down_read(&cpu_hotplug_lock);
290 }
291 EXPORT_SYMBOL_GPL(cpus_read_lock);
292 
293 void cpus_read_unlock(void)
294 {
295 	percpu_up_read(&cpu_hotplug_lock);
296 }
297 EXPORT_SYMBOL_GPL(cpus_read_unlock);
298 
299 void cpus_write_lock(void)
300 {
301 	percpu_down_write(&cpu_hotplug_lock);
302 }
303 
304 void cpus_write_unlock(void)
305 {
306 	percpu_up_write(&cpu_hotplug_lock);
307 }
308 
309 void lockdep_assert_cpus_held(void)
310 {
311 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
312 }
313 
314 /*
315  * Wait for currently running CPU hotplug operations to complete (if any) and
316  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
317  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
318  * hotplug path before performing hotplug operations. So acquiring that lock
319  * guarantees mutual exclusion from any currently running hotplug operations.
320  */
321 void cpu_hotplug_disable(void)
322 {
323 	cpu_maps_update_begin();
324 	cpu_hotplug_disabled++;
325 	cpu_maps_update_done();
326 }
327 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
328 
329 static void __cpu_hotplug_enable(void)
330 {
331 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
332 		return;
333 	cpu_hotplug_disabled--;
334 }
335 
336 void cpu_hotplug_enable(void)
337 {
338 	cpu_maps_update_begin();
339 	__cpu_hotplug_enable();
340 	cpu_maps_update_done();
341 }
342 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
343 #endif	/* CONFIG_HOTPLUG_CPU */
344 
345 static inline enum cpuhp_state
346 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
347 {
348 	enum cpuhp_state prev_state = st->state;
349 
350 	st->rollback = false;
351 	st->last = NULL;
352 
353 	st->target = target;
354 	st->single = false;
355 	st->bringup = st->state < target;
356 
357 	return prev_state;
358 }
359 
360 static inline void
361 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
362 {
363 	st->rollback = true;
364 
365 	/*
366 	 * If we have st->last we need to undo partial multi_instance of this
367 	 * state first. Otherwise start undo at the previous state.
368 	 */
369 	if (!st->last) {
370 		if (st->bringup)
371 			st->state--;
372 		else
373 			st->state++;
374 	}
375 
376 	st->target = prev_state;
377 	st->bringup = !st->bringup;
378 }
379 
380 /* Regular hotplug invocation of the AP hotplug thread */
381 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
382 {
383 	if (!st->single && st->state == st->target)
384 		return;
385 
386 	st->result = 0;
387 	/*
388 	 * Make sure the above stores are visible before should_run becomes
389 	 * true. Paired with the mb() above in cpuhp_thread_fun()
390 	 */
391 	smp_mb();
392 	st->should_run = true;
393 	wake_up_process(st->thread);
394 	wait_for_ap_thread(st, st->bringup);
395 }
396 
397 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
398 {
399 	enum cpuhp_state prev_state;
400 	int ret;
401 
402 	prev_state = cpuhp_set_state(st, target);
403 	__cpuhp_kick_ap(st);
404 	if ((ret = st->result)) {
405 		cpuhp_reset_state(st, prev_state);
406 		__cpuhp_kick_ap(st);
407 	}
408 
409 	return ret;
410 }
411 
412 static int bringup_wait_for_ap(unsigned int cpu)
413 {
414 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
415 
416 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
417 	wait_for_ap_thread(st, true);
418 	if (WARN_ON_ONCE((!cpu_online(cpu))))
419 		return -ECANCELED;
420 
421 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
422 	stop_machine_unpark(cpu);
423 	kthread_unpark(st->thread);
424 
425 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
426 		return 0;
427 
428 	return cpuhp_kick_ap(st, st->target);
429 }
430 
431 static int bringup_cpu(unsigned int cpu)
432 {
433 	struct task_struct *idle = idle_thread_get(cpu);
434 	int ret;
435 
436 	/*
437 	 * Some architectures have to walk the irq descriptors to
438 	 * setup the vector space for the cpu which comes online.
439 	 * Prevent irq alloc/free across the bringup.
440 	 */
441 	irq_lock_sparse();
442 
443 	/* Arch-specific enabling code. */
444 	ret = __cpu_up(cpu, idle);
445 	irq_unlock_sparse();
446 	if (ret)
447 		return ret;
448 	return bringup_wait_for_ap(cpu);
449 }
450 
451 /*
452  * Hotplug state machine related functions
453  */
454 
455 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
456 {
457 	for (st->state--; st->state > st->target; st->state--) {
458 		struct cpuhp_step *step = cpuhp_get_step(st->state);
459 
460 		if (!step->skip_onerr)
461 			cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
462 	}
463 }
464 
465 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
466 			      enum cpuhp_state target)
467 {
468 	enum cpuhp_state prev_state = st->state;
469 	int ret = 0;
470 
471 	while (st->state < target) {
472 		st->state++;
473 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
474 		if (ret) {
475 			st->target = prev_state;
476 			undo_cpu_up(cpu, st);
477 			break;
478 		}
479 	}
480 	return ret;
481 }
482 
483 /*
484  * The cpu hotplug threads manage the bringup and teardown of the cpus
485  */
486 static void cpuhp_create(unsigned int cpu)
487 {
488 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
489 
490 	init_completion(&st->done_up);
491 	init_completion(&st->done_down);
492 }
493 
494 static int cpuhp_should_run(unsigned int cpu)
495 {
496 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
497 
498 	return st->should_run;
499 }
500 
501 /*
502  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
503  * callbacks when a state gets [un]installed at runtime.
504  *
505  * Each invocation of this function by the smpboot thread does a single AP
506  * state callback.
507  *
508  * It has 3 modes of operation:
509  *  - single: runs st->cb_state
510  *  - up:     runs ++st->state, while st->state < st->target
511  *  - down:   runs st->state--, while st->state > st->target
512  *
513  * When complete or on error, should_run is cleared and the completion is fired.
514  */
515 static void cpuhp_thread_fun(unsigned int cpu)
516 {
517 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
518 	bool bringup = st->bringup;
519 	enum cpuhp_state state;
520 
521 	/*
522 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
523 	 * that if we see ->should_run we also see the rest of the state.
524 	 */
525 	smp_mb();
526 
527 	if (WARN_ON_ONCE(!st->should_run))
528 		return;
529 
530 	cpuhp_lock_acquire(bringup);
531 
532 	if (st->single) {
533 		state = st->cb_state;
534 		st->should_run = false;
535 	} else {
536 		if (bringup) {
537 			st->state++;
538 			state = st->state;
539 			st->should_run = (st->state < st->target);
540 			WARN_ON_ONCE(st->state > st->target);
541 		} else {
542 			state = st->state;
543 			st->state--;
544 			st->should_run = (st->state > st->target);
545 			WARN_ON_ONCE(st->state < st->target);
546 		}
547 	}
548 
549 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
550 
551 	if (st->rollback) {
552 		struct cpuhp_step *step = cpuhp_get_step(state);
553 		if (step->skip_onerr)
554 			goto next;
555 	}
556 
557 	if (cpuhp_is_atomic_state(state)) {
558 		local_irq_disable();
559 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
560 		local_irq_enable();
561 
562 		/*
563 		 * STARTING/DYING must not fail!
564 		 */
565 		WARN_ON_ONCE(st->result);
566 	} else {
567 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
568 	}
569 
570 	if (st->result) {
571 		/*
572 		 * If we fail on a rollback, we're up a creek without no
573 		 * paddle, no way forward, no way back. We loose, thanks for
574 		 * playing.
575 		 */
576 		WARN_ON_ONCE(st->rollback);
577 		st->should_run = false;
578 	}
579 
580 next:
581 	cpuhp_lock_release(bringup);
582 
583 	if (!st->should_run)
584 		complete_ap_thread(st, bringup);
585 }
586 
587 /* Invoke a single callback on a remote cpu */
588 static int
589 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
590 			 struct hlist_node *node)
591 {
592 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
593 	int ret;
594 
595 	if (!cpu_online(cpu))
596 		return 0;
597 
598 	cpuhp_lock_acquire(false);
599 	cpuhp_lock_release(false);
600 
601 	cpuhp_lock_acquire(true);
602 	cpuhp_lock_release(true);
603 
604 	/*
605 	 * If we are up and running, use the hotplug thread. For early calls
606 	 * we invoke the thread function directly.
607 	 */
608 	if (!st->thread)
609 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
610 
611 	st->rollback = false;
612 	st->last = NULL;
613 
614 	st->node = node;
615 	st->bringup = bringup;
616 	st->cb_state = state;
617 	st->single = true;
618 
619 	__cpuhp_kick_ap(st);
620 
621 	/*
622 	 * If we failed and did a partial, do a rollback.
623 	 */
624 	if ((ret = st->result) && st->last) {
625 		st->rollback = true;
626 		st->bringup = !bringup;
627 
628 		__cpuhp_kick_ap(st);
629 	}
630 
631 	/*
632 	 * Clean up the leftovers so the next hotplug operation wont use stale
633 	 * data.
634 	 */
635 	st->node = st->last = NULL;
636 	return ret;
637 }
638 
639 static int cpuhp_kick_ap_work(unsigned int cpu)
640 {
641 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
642 	enum cpuhp_state prev_state = st->state;
643 	int ret;
644 
645 	cpuhp_lock_acquire(false);
646 	cpuhp_lock_release(false);
647 
648 	cpuhp_lock_acquire(true);
649 	cpuhp_lock_release(true);
650 
651 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
652 	ret = cpuhp_kick_ap(st, st->target);
653 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
654 
655 	return ret;
656 }
657 
658 static struct smp_hotplug_thread cpuhp_threads = {
659 	.store			= &cpuhp_state.thread,
660 	.create			= &cpuhp_create,
661 	.thread_should_run	= cpuhp_should_run,
662 	.thread_fn		= cpuhp_thread_fun,
663 	.thread_comm		= "cpuhp/%u",
664 	.selfparking		= true,
665 };
666 
667 void __init cpuhp_threads_init(void)
668 {
669 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
670 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
671 }
672 
673 #ifdef CONFIG_HOTPLUG_CPU
674 /**
675  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
676  * @cpu: a CPU id
677  *
678  * This function walks all processes, finds a valid mm struct for each one and
679  * then clears a corresponding bit in mm's cpumask.  While this all sounds
680  * trivial, there are various non-obvious corner cases, which this function
681  * tries to solve in a safe manner.
682  *
683  * Also note that the function uses a somewhat relaxed locking scheme, so it may
684  * be called only for an already offlined CPU.
685  */
686 void clear_tasks_mm_cpumask(int cpu)
687 {
688 	struct task_struct *p;
689 
690 	/*
691 	 * This function is called after the cpu is taken down and marked
692 	 * offline, so its not like new tasks will ever get this cpu set in
693 	 * their mm mask. -- Peter Zijlstra
694 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
695 	 * full-fledged tasklist_lock.
696 	 */
697 	WARN_ON(cpu_online(cpu));
698 	rcu_read_lock();
699 	for_each_process(p) {
700 		struct task_struct *t;
701 
702 		/*
703 		 * Main thread might exit, but other threads may still have
704 		 * a valid mm. Find one.
705 		 */
706 		t = find_lock_task_mm(p);
707 		if (!t)
708 			continue;
709 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
710 		task_unlock(t);
711 	}
712 	rcu_read_unlock();
713 }
714 
715 /* Take this CPU down. */
716 static int take_cpu_down(void *_param)
717 {
718 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
719 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
720 	int err, cpu = smp_processor_id();
721 	int ret;
722 
723 	/* Ensure this CPU doesn't handle any more interrupts. */
724 	err = __cpu_disable();
725 	if (err < 0)
726 		return err;
727 
728 	/*
729 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
730 	 * do this step again.
731 	 */
732 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
733 	st->state--;
734 	/* Invoke the former CPU_DYING callbacks */
735 	for (; st->state > target; st->state--) {
736 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
737 		/*
738 		 * DYING must not fail!
739 		 */
740 		WARN_ON_ONCE(ret);
741 	}
742 
743 	/* Give up timekeeping duties */
744 	tick_handover_do_timer();
745 	/* Park the stopper thread */
746 	stop_machine_park(cpu);
747 	return 0;
748 }
749 
750 static int takedown_cpu(unsigned int cpu)
751 {
752 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
753 	int err;
754 
755 	/* Park the smpboot threads */
756 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
757 	smpboot_park_threads(cpu);
758 
759 	/*
760 	 * Prevent irq alloc/free while the dying cpu reorganizes the
761 	 * interrupt affinities.
762 	 */
763 	irq_lock_sparse();
764 
765 	/*
766 	 * So now all preempt/rcu users must observe !cpu_active().
767 	 */
768 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
769 	if (err) {
770 		/* CPU refused to die */
771 		irq_unlock_sparse();
772 		/* Unpark the hotplug thread so we can rollback there */
773 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
774 		return err;
775 	}
776 	BUG_ON(cpu_online(cpu));
777 
778 	/*
779 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
780 	 * all runnable tasks from the CPU, there's only the idle task left now
781 	 * that the migration thread is done doing the stop_machine thing.
782 	 *
783 	 * Wait for the stop thread to go away.
784 	 */
785 	wait_for_ap_thread(st, false);
786 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
787 
788 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
789 	irq_unlock_sparse();
790 
791 	hotplug_cpu__broadcast_tick_pull(cpu);
792 	/* This actually kills the CPU. */
793 	__cpu_die(cpu);
794 
795 	tick_cleanup_dead_cpu(cpu);
796 	rcutree_migrate_callbacks(cpu);
797 	return 0;
798 }
799 
800 static void cpuhp_complete_idle_dead(void *arg)
801 {
802 	struct cpuhp_cpu_state *st = arg;
803 
804 	complete_ap_thread(st, false);
805 }
806 
807 void cpuhp_report_idle_dead(void)
808 {
809 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
810 
811 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
812 	rcu_report_dead(smp_processor_id());
813 	st->state = CPUHP_AP_IDLE_DEAD;
814 	/*
815 	 * We cannot call complete after rcu_report_dead() so we delegate it
816 	 * to an online cpu.
817 	 */
818 	smp_call_function_single(cpumask_first(cpu_online_mask),
819 				 cpuhp_complete_idle_dead, st, 0);
820 }
821 
822 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
823 {
824 	for (st->state++; st->state < st->target; st->state++) {
825 		struct cpuhp_step *step = cpuhp_get_step(st->state);
826 
827 		if (!step->skip_onerr)
828 			cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
829 	}
830 }
831 
832 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
833 				enum cpuhp_state target)
834 {
835 	enum cpuhp_state prev_state = st->state;
836 	int ret = 0;
837 
838 	for (; st->state > target; st->state--) {
839 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
840 		if (ret) {
841 			st->target = prev_state;
842 			undo_cpu_down(cpu, st);
843 			break;
844 		}
845 	}
846 	return ret;
847 }
848 
849 /* Requires cpu_add_remove_lock to be held */
850 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
851 			   enum cpuhp_state target)
852 {
853 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
854 	int prev_state, ret = 0;
855 
856 	if (num_online_cpus() == 1)
857 		return -EBUSY;
858 
859 	if (!cpu_present(cpu))
860 		return -EINVAL;
861 
862 	cpus_write_lock();
863 
864 	cpuhp_tasks_frozen = tasks_frozen;
865 
866 	prev_state = cpuhp_set_state(st, target);
867 	/*
868 	 * If the current CPU state is in the range of the AP hotplug thread,
869 	 * then we need to kick the thread.
870 	 */
871 	if (st->state > CPUHP_TEARDOWN_CPU) {
872 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
873 		ret = cpuhp_kick_ap_work(cpu);
874 		/*
875 		 * The AP side has done the error rollback already. Just
876 		 * return the error code..
877 		 */
878 		if (ret)
879 			goto out;
880 
881 		/*
882 		 * We might have stopped still in the range of the AP hotplug
883 		 * thread. Nothing to do anymore.
884 		 */
885 		if (st->state > CPUHP_TEARDOWN_CPU)
886 			goto out;
887 
888 		st->target = target;
889 	}
890 	/*
891 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
892 	 * to do the further cleanups.
893 	 */
894 	ret = cpuhp_down_callbacks(cpu, st, target);
895 	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
896 		cpuhp_reset_state(st, prev_state);
897 		__cpuhp_kick_ap(st);
898 	}
899 
900 out:
901 	cpus_write_unlock();
902 	/*
903 	 * Do post unplug cleanup. This is still protected against
904 	 * concurrent CPU hotplug via cpu_add_remove_lock.
905 	 */
906 	lockup_detector_cleanup();
907 	return ret;
908 }
909 
910 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
911 {
912 	int err;
913 
914 	cpu_maps_update_begin();
915 
916 	if (cpu_hotplug_disabled) {
917 		err = -EBUSY;
918 		goto out;
919 	}
920 
921 	err = _cpu_down(cpu, 0, target);
922 
923 out:
924 	cpu_maps_update_done();
925 	return err;
926 }
927 
928 int cpu_down(unsigned int cpu)
929 {
930 	return do_cpu_down(cpu, CPUHP_OFFLINE);
931 }
932 EXPORT_SYMBOL(cpu_down);
933 
934 #else
935 #define takedown_cpu		NULL
936 #endif /*CONFIG_HOTPLUG_CPU*/
937 
938 /**
939  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
940  * @cpu: cpu that just started
941  *
942  * It must be called by the arch code on the new cpu, before the new cpu
943  * enables interrupts and before the "boot" cpu returns from __cpu_up().
944  */
945 void notify_cpu_starting(unsigned int cpu)
946 {
947 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
948 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
949 	int ret;
950 
951 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
952 	while (st->state < target) {
953 		st->state++;
954 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
955 		/*
956 		 * STARTING must not fail!
957 		 */
958 		WARN_ON_ONCE(ret);
959 	}
960 }
961 
962 /*
963  * Called from the idle task. Wake up the controlling task which brings the
964  * stopper and the hotplug thread of the upcoming CPU up and then delegates
965  * the rest of the online bringup to the hotplug thread.
966  */
967 void cpuhp_online_idle(enum cpuhp_state state)
968 {
969 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
970 
971 	/* Happens for the boot cpu */
972 	if (state != CPUHP_AP_ONLINE_IDLE)
973 		return;
974 
975 	st->state = CPUHP_AP_ONLINE_IDLE;
976 	complete_ap_thread(st, true);
977 }
978 
979 /* Requires cpu_add_remove_lock to be held */
980 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
981 {
982 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
983 	struct task_struct *idle;
984 	int ret = 0;
985 
986 	cpus_write_lock();
987 
988 	if (!cpu_present(cpu)) {
989 		ret = -EINVAL;
990 		goto out;
991 	}
992 
993 	/*
994 	 * The caller of do_cpu_up might have raced with another
995 	 * caller. Ignore it for now.
996 	 */
997 	if (st->state >= target)
998 		goto out;
999 
1000 	if (st->state == CPUHP_OFFLINE) {
1001 		/* Let it fail before we try to bring the cpu up */
1002 		idle = idle_thread_get(cpu);
1003 		if (IS_ERR(idle)) {
1004 			ret = PTR_ERR(idle);
1005 			goto out;
1006 		}
1007 	}
1008 
1009 	cpuhp_tasks_frozen = tasks_frozen;
1010 
1011 	cpuhp_set_state(st, target);
1012 	/*
1013 	 * If the current CPU state is in the range of the AP hotplug thread,
1014 	 * then we need to kick the thread once more.
1015 	 */
1016 	if (st->state > CPUHP_BRINGUP_CPU) {
1017 		ret = cpuhp_kick_ap_work(cpu);
1018 		/*
1019 		 * The AP side has done the error rollback already. Just
1020 		 * return the error code..
1021 		 */
1022 		if (ret)
1023 			goto out;
1024 	}
1025 
1026 	/*
1027 	 * Try to reach the target state. We max out on the BP at
1028 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1029 	 * responsible for bringing it up to the target state.
1030 	 */
1031 	target = min((int)target, CPUHP_BRINGUP_CPU);
1032 	ret = cpuhp_up_callbacks(cpu, st, target);
1033 out:
1034 	cpus_write_unlock();
1035 	return ret;
1036 }
1037 
1038 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1039 {
1040 	int err = 0;
1041 
1042 	if (!cpu_possible(cpu)) {
1043 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1044 		       cpu);
1045 #if defined(CONFIG_IA64)
1046 		pr_err("please check additional_cpus= boot parameter\n");
1047 #endif
1048 		return -EINVAL;
1049 	}
1050 
1051 	err = try_online_node(cpu_to_node(cpu));
1052 	if (err)
1053 		return err;
1054 
1055 	cpu_maps_update_begin();
1056 
1057 	if (cpu_hotplug_disabled) {
1058 		err = -EBUSY;
1059 		goto out;
1060 	}
1061 
1062 	err = _cpu_up(cpu, 0, target);
1063 out:
1064 	cpu_maps_update_done();
1065 	return err;
1066 }
1067 
1068 int cpu_up(unsigned int cpu)
1069 {
1070 	return do_cpu_up(cpu, CPUHP_ONLINE);
1071 }
1072 EXPORT_SYMBOL_GPL(cpu_up);
1073 
1074 #ifdef CONFIG_PM_SLEEP_SMP
1075 static cpumask_var_t frozen_cpus;
1076 
1077 int freeze_secondary_cpus(int primary)
1078 {
1079 	int cpu, error = 0;
1080 
1081 	cpu_maps_update_begin();
1082 	if (!cpu_online(primary))
1083 		primary = cpumask_first(cpu_online_mask);
1084 	/*
1085 	 * We take down all of the non-boot CPUs in one shot to avoid races
1086 	 * with the userspace trying to use the CPU hotplug at the same time
1087 	 */
1088 	cpumask_clear(frozen_cpus);
1089 
1090 	pr_info("Disabling non-boot CPUs ...\n");
1091 	for_each_online_cpu(cpu) {
1092 		if (cpu == primary)
1093 			continue;
1094 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1095 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1096 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1097 		if (!error)
1098 			cpumask_set_cpu(cpu, frozen_cpus);
1099 		else {
1100 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1101 			break;
1102 		}
1103 	}
1104 
1105 	if (!error)
1106 		BUG_ON(num_online_cpus() > 1);
1107 	else
1108 		pr_err("Non-boot CPUs are not disabled\n");
1109 
1110 	/*
1111 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1112 	 * this even in case of failure as all disable_nonboot_cpus() users are
1113 	 * supposed to do enable_nonboot_cpus() on the failure path.
1114 	 */
1115 	cpu_hotplug_disabled++;
1116 
1117 	cpu_maps_update_done();
1118 	return error;
1119 }
1120 
1121 void __weak arch_enable_nonboot_cpus_begin(void)
1122 {
1123 }
1124 
1125 void __weak arch_enable_nonboot_cpus_end(void)
1126 {
1127 }
1128 
1129 void enable_nonboot_cpus(void)
1130 {
1131 	int cpu, error;
1132 
1133 	/* Allow everyone to use the CPU hotplug again */
1134 	cpu_maps_update_begin();
1135 	__cpu_hotplug_enable();
1136 	if (cpumask_empty(frozen_cpus))
1137 		goto out;
1138 
1139 	pr_info("Enabling non-boot CPUs ...\n");
1140 
1141 	arch_enable_nonboot_cpus_begin();
1142 
1143 	for_each_cpu(cpu, frozen_cpus) {
1144 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1145 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1146 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1147 		if (!error) {
1148 			pr_info("CPU%d is up\n", cpu);
1149 			continue;
1150 		}
1151 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1152 	}
1153 
1154 	arch_enable_nonboot_cpus_end();
1155 
1156 	cpumask_clear(frozen_cpus);
1157 out:
1158 	cpu_maps_update_done();
1159 }
1160 
1161 static int __init alloc_frozen_cpus(void)
1162 {
1163 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1164 		return -ENOMEM;
1165 	return 0;
1166 }
1167 core_initcall(alloc_frozen_cpus);
1168 
1169 /*
1170  * When callbacks for CPU hotplug notifications are being executed, we must
1171  * ensure that the state of the system with respect to the tasks being frozen
1172  * or not, as reported by the notification, remains unchanged *throughout the
1173  * duration* of the execution of the callbacks.
1174  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1175  *
1176  * This synchronization is implemented by mutually excluding regular CPU
1177  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1178  * Hibernate notifications.
1179  */
1180 static int
1181 cpu_hotplug_pm_callback(struct notifier_block *nb,
1182 			unsigned long action, void *ptr)
1183 {
1184 	switch (action) {
1185 
1186 	case PM_SUSPEND_PREPARE:
1187 	case PM_HIBERNATION_PREPARE:
1188 		cpu_hotplug_disable();
1189 		break;
1190 
1191 	case PM_POST_SUSPEND:
1192 	case PM_POST_HIBERNATION:
1193 		cpu_hotplug_enable();
1194 		break;
1195 
1196 	default:
1197 		return NOTIFY_DONE;
1198 	}
1199 
1200 	return NOTIFY_OK;
1201 }
1202 
1203 
1204 static int __init cpu_hotplug_pm_sync_init(void)
1205 {
1206 	/*
1207 	 * cpu_hotplug_pm_callback has higher priority than x86
1208 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1209 	 * to disable cpu hotplug to avoid cpu hotplug race.
1210 	 */
1211 	pm_notifier(cpu_hotplug_pm_callback, 0);
1212 	return 0;
1213 }
1214 core_initcall(cpu_hotplug_pm_sync_init);
1215 
1216 #endif /* CONFIG_PM_SLEEP_SMP */
1217 
1218 int __boot_cpu_id;
1219 
1220 #endif /* CONFIG_SMP */
1221 
1222 /* Boot processor state steps */
1223 static struct cpuhp_step cpuhp_hp_states[] = {
1224 	[CPUHP_OFFLINE] = {
1225 		.name			= "offline",
1226 		.startup.single		= NULL,
1227 		.teardown.single	= NULL,
1228 	},
1229 #ifdef CONFIG_SMP
1230 	[CPUHP_CREATE_THREADS]= {
1231 		.name			= "threads:prepare",
1232 		.startup.single		= smpboot_create_threads,
1233 		.teardown.single	= NULL,
1234 		.cant_stop		= true,
1235 	},
1236 	[CPUHP_PERF_PREPARE] = {
1237 		.name			= "perf:prepare",
1238 		.startup.single		= perf_event_init_cpu,
1239 		.teardown.single	= perf_event_exit_cpu,
1240 	},
1241 	[CPUHP_WORKQUEUE_PREP] = {
1242 		.name			= "workqueue:prepare",
1243 		.startup.single		= workqueue_prepare_cpu,
1244 		.teardown.single	= NULL,
1245 	},
1246 	[CPUHP_HRTIMERS_PREPARE] = {
1247 		.name			= "hrtimers:prepare",
1248 		.startup.single		= hrtimers_prepare_cpu,
1249 		.teardown.single	= hrtimers_dead_cpu,
1250 	},
1251 	[CPUHP_SMPCFD_PREPARE] = {
1252 		.name			= "smpcfd:prepare",
1253 		.startup.single		= smpcfd_prepare_cpu,
1254 		.teardown.single	= smpcfd_dead_cpu,
1255 	},
1256 	[CPUHP_RELAY_PREPARE] = {
1257 		.name			= "relay:prepare",
1258 		.startup.single		= relay_prepare_cpu,
1259 		.teardown.single	= NULL,
1260 	},
1261 	[CPUHP_SLAB_PREPARE] = {
1262 		.name			= "slab:prepare",
1263 		.startup.single		= slab_prepare_cpu,
1264 		.teardown.single	= slab_dead_cpu,
1265 	},
1266 	[CPUHP_RCUTREE_PREP] = {
1267 		.name			= "RCU/tree:prepare",
1268 		.startup.single		= rcutree_prepare_cpu,
1269 		.teardown.single	= rcutree_dead_cpu,
1270 	},
1271 	/*
1272 	 * On the tear-down path, timers_dead_cpu() must be invoked
1273 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1274 	 * otherwise a RCU stall occurs.
1275 	 */
1276 	[CPUHP_TIMERS_PREPARE] = {
1277 		.name			= "timers:prepare",
1278 		.startup.single		= timers_prepare_cpu,
1279 		.teardown.single	= timers_dead_cpu,
1280 	},
1281 	/* Kicks the plugged cpu into life */
1282 	[CPUHP_BRINGUP_CPU] = {
1283 		.name			= "cpu:bringup",
1284 		.startup.single		= bringup_cpu,
1285 		.teardown.single	= NULL,
1286 		.cant_stop		= true,
1287 	},
1288 	/* Final state before CPU kills itself */
1289 	[CPUHP_AP_IDLE_DEAD] = {
1290 		.name			= "idle:dead",
1291 	},
1292 	/*
1293 	 * Last state before CPU enters the idle loop to die. Transient state
1294 	 * for synchronization.
1295 	 */
1296 	[CPUHP_AP_OFFLINE] = {
1297 		.name			= "ap:offline",
1298 		.cant_stop		= true,
1299 	},
1300 	/* First state is scheduler control. Interrupts are disabled */
1301 	[CPUHP_AP_SCHED_STARTING] = {
1302 		.name			= "sched:starting",
1303 		.startup.single		= sched_cpu_starting,
1304 		.teardown.single	= sched_cpu_dying,
1305 	},
1306 	[CPUHP_AP_RCUTREE_DYING] = {
1307 		.name			= "RCU/tree:dying",
1308 		.startup.single		= NULL,
1309 		.teardown.single	= rcutree_dying_cpu,
1310 	},
1311 	[CPUHP_AP_SMPCFD_DYING] = {
1312 		.name			= "smpcfd:dying",
1313 		.startup.single		= NULL,
1314 		.teardown.single	= smpcfd_dying_cpu,
1315 	},
1316 	/* Entry state on starting. Interrupts enabled from here on. Transient
1317 	 * state for synchronsization */
1318 	[CPUHP_AP_ONLINE] = {
1319 		.name			= "ap:online",
1320 	},
1321 	/*
1322 	 * Handled on controll processor until the plugged processor manages
1323 	 * this itself.
1324 	 */
1325 	[CPUHP_TEARDOWN_CPU] = {
1326 		.name			= "cpu:teardown",
1327 		.startup.single		= NULL,
1328 		.teardown.single	= takedown_cpu,
1329 		.cant_stop		= true,
1330 	},
1331 	/* Handle smpboot threads park/unpark */
1332 	[CPUHP_AP_SMPBOOT_THREADS] = {
1333 		.name			= "smpboot/threads:online",
1334 		.startup.single		= smpboot_unpark_threads,
1335 		.teardown.single	= NULL,
1336 	},
1337 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1338 		.name			= "irq/affinity:online",
1339 		.startup.single		= irq_affinity_online_cpu,
1340 		.teardown.single	= NULL,
1341 	},
1342 	[CPUHP_AP_PERF_ONLINE] = {
1343 		.name			= "perf:online",
1344 		.startup.single		= perf_event_init_cpu,
1345 		.teardown.single	= perf_event_exit_cpu,
1346 	},
1347 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1348 		.name			= "lockup_detector:online",
1349 		.startup.single		= lockup_detector_online_cpu,
1350 		.teardown.single	= lockup_detector_offline_cpu,
1351 	},
1352 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1353 		.name			= "workqueue:online",
1354 		.startup.single		= workqueue_online_cpu,
1355 		.teardown.single	= workqueue_offline_cpu,
1356 	},
1357 	[CPUHP_AP_RCUTREE_ONLINE] = {
1358 		.name			= "RCU/tree:online",
1359 		.startup.single		= rcutree_online_cpu,
1360 		.teardown.single	= rcutree_offline_cpu,
1361 	},
1362 #endif
1363 	/*
1364 	 * The dynamically registered state space is here
1365 	 */
1366 
1367 #ifdef CONFIG_SMP
1368 	/* Last state is scheduler control setting the cpu active */
1369 	[CPUHP_AP_ACTIVE] = {
1370 		.name			= "sched:active",
1371 		.startup.single		= sched_cpu_activate,
1372 		.teardown.single	= sched_cpu_deactivate,
1373 	},
1374 #endif
1375 
1376 	/* CPU is fully up and running. */
1377 	[CPUHP_ONLINE] = {
1378 		.name			= "online",
1379 		.startup.single		= NULL,
1380 		.teardown.single	= NULL,
1381 	},
1382 };
1383 
1384 /* Sanity check for callbacks */
1385 static int cpuhp_cb_check(enum cpuhp_state state)
1386 {
1387 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1388 		return -EINVAL;
1389 	return 0;
1390 }
1391 
1392 /*
1393  * Returns a free for dynamic slot assignment of the Online state. The states
1394  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1395  * by having no name assigned.
1396  */
1397 static int cpuhp_reserve_state(enum cpuhp_state state)
1398 {
1399 	enum cpuhp_state i, end;
1400 	struct cpuhp_step *step;
1401 
1402 	switch (state) {
1403 	case CPUHP_AP_ONLINE_DYN:
1404 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1405 		end = CPUHP_AP_ONLINE_DYN_END;
1406 		break;
1407 	case CPUHP_BP_PREPARE_DYN:
1408 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1409 		end = CPUHP_BP_PREPARE_DYN_END;
1410 		break;
1411 	default:
1412 		return -EINVAL;
1413 	}
1414 
1415 	for (i = state; i <= end; i++, step++) {
1416 		if (!step->name)
1417 			return i;
1418 	}
1419 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1420 	return -ENOSPC;
1421 }
1422 
1423 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1424 				 int (*startup)(unsigned int cpu),
1425 				 int (*teardown)(unsigned int cpu),
1426 				 bool multi_instance)
1427 {
1428 	/* (Un)Install the callbacks for further cpu hotplug operations */
1429 	struct cpuhp_step *sp;
1430 	int ret = 0;
1431 
1432 	/*
1433 	 * If name is NULL, then the state gets removed.
1434 	 *
1435 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1436 	 * the first allocation from these dynamic ranges, so the removal
1437 	 * would trigger a new allocation and clear the wrong (already
1438 	 * empty) state, leaving the callbacks of the to be cleared state
1439 	 * dangling, which causes wreckage on the next hotplug operation.
1440 	 */
1441 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1442 		     state == CPUHP_BP_PREPARE_DYN)) {
1443 		ret = cpuhp_reserve_state(state);
1444 		if (ret < 0)
1445 			return ret;
1446 		state = ret;
1447 	}
1448 	sp = cpuhp_get_step(state);
1449 	if (name && sp->name)
1450 		return -EBUSY;
1451 
1452 	sp->startup.single = startup;
1453 	sp->teardown.single = teardown;
1454 	sp->name = name;
1455 	sp->multi_instance = multi_instance;
1456 	INIT_HLIST_HEAD(&sp->list);
1457 	return ret;
1458 }
1459 
1460 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1461 {
1462 	return cpuhp_get_step(state)->teardown.single;
1463 }
1464 
1465 /*
1466  * Call the startup/teardown function for a step either on the AP or
1467  * on the current CPU.
1468  */
1469 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1470 			    struct hlist_node *node)
1471 {
1472 	struct cpuhp_step *sp = cpuhp_get_step(state);
1473 	int ret;
1474 
1475 	/*
1476 	 * If there's nothing to do, we done.
1477 	 * Relies on the union for multi_instance.
1478 	 */
1479 	if ((bringup && !sp->startup.single) ||
1480 	    (!bringup && !sp->teardown.single))
1481 		return 0;
1482 	/*
1483 	 * The non AP bound callbacks can fail on bringup. On teardown
1484 	 * e.g. module removal we crash for now.
1485 	 */
1486 #ifdef CONFIG_SMP
1487 	if (cpuhp_is_ap_state(state))
1488 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1489 	else
1490 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1491 #else
1492 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1493 #endif
1494 	BUG_ON(ret && !bringup);
1495 	return ret;
1496 }
1497 
1498 /*
1499  * Called from __cpuhp_setup_state on a recoverable failure.
1500  *
1501  * Note: The teardown callbacks for rollback are not allowed to fail!
1502  */
1503 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1504 				   struct hlist_node *node)
1505 {
1506 	int cpu;
1507 
1508 	/* Roll back the already executed steps on the other cpus */
1509 	for_each_present_cpu(cpu) {
1510 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1511 		int cpustate = st->state;
1512 
1513 		if (cpu >= failedcpu)
1514 			break;
1515 
1516 		/* Did we invoke the startup call on that cpu ? */
1517 		if (cpustate >= state)
1518 			cpuhp_issue_call(cpu, state, false, node);
1519 	}
1520 }
1521 
1522 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1523 					  struct hlist_node *node,
1524 					  bool invoke)
1525 {
1526 	struct cpuhp_step *sp;
1527 	int cpu;
1528 	int ret;
1529 
1530 	lockdep_assert_cpus_held();
1531 
1532 	sp = cpuhp_get_step(state);
1533 	if (sp->multi_instance == false)
1534 		return -EINVAL;
1535 
1536 	mutex_lock(&cpuhp_state_mutex);
1537 
1538 	if (!invoke || !sp->startup.multi)
1539 		goto add_node;
1540 
1541 	/*
1542 	 * Try to call the startup callback for each present cpu
1543 	 * depending on the hotplug state of the cpu.
1544 	 */
1545 	for_each_present_cpu(cpu) {
1546 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1547 		int cpustate = st->state;
1548 
1549 		if (cpustate < state)
1550 			continue;
1551 
1552 		ret = cpuhp_issue_call(cpu, state, true, node);
1553 		if (ret) {
1554 			if (sp->teardown.multi)
1555 				cpuhp_rollback_install(cpu, state, node);
1556 			goto unlock;
1557 		}
1558 	}
1559 add_node:
1560 	ret = 0;
1561 	hlist_add_head(node, &sp->list);
1562 unlock:
1563 	mutex_unlock(&cpuhp_state_mutex);
1564 	return ret;
1565 }
1566 
1567 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1568 			       bool invoke)
1569 {
1570 	int ret;
1571 
1572 	cpus_read_lock();
1573 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1574 	cpus_read_unlock();
1575 	return ret;
1576 }
1577 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1578 
1579 /**
1580  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1581  * @state:		The state to setup
1582  * @invoke:		If true, the startup function is invoked for cpus where
1583  *			cpu state >= @state
1584  * @startup:		startup callback function
1585  * @teardown:		teardown callback function
1586  * @multi_instance:	State is set up for multiple instances which get
1587  *			added afterwards.
1588  *
1589  * The caller needs to hold cpus read locked while calling this function.
1590  * Returns:
1591  *   On success:
1592  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1593  *      0 for all other states
1594  *   On failure: proper (negative) error code
1595  */
1596 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1597 				   const char *name, bool invoke,
1598 				   int (*startup)(unsigned int cpu),
1599 				   int (*teardown)(unsigned int cpu),
1600 				   bool multi_instance)
1601 {
1602 	int cpu, ret = 0;
1603 	bool dynstate;
1604 
1605 	lockdep_assert_cpus_held();
1606 
1607 	if (cpuhp_cb_check(state) || !name)
1608 		return -EINVAL;
1609 
1610 	mutex_lock(&cpuhp_state_mutex);
1611 
1612 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1613 				    multi_instance);
1614 
1615 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1616 	if (ret > 0 && dynstate) {
1617 		state = ret;
1618 		ret = 0;
1619 	}
1620 
1621 	if (ret || !invoke || !startup)
1622 		goto out;
1623 
1624 	/*
1625 	 * Try to call the startup callback for each present cpu
1626 	 * depending on the hotplug state of the cpu.
1627 	 */
1628 	for_each_present_cpu(cpu) {
1629 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1630 		int cpustate = st->state;
1631 
1632 		if (cpustate < state)
1633 			continue;
1634 
1635 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1636 		if (ret) {
1637 			if (teardown)
1638 				cpuhp_rollback_install(cpu, state, NULL);
1639 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1640 			goto out;
1641 		}
1642 	}
1643 out:
1644 	mutex_unlock(&cpuhp_state_mutex);
1645 	/*
1646 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1647 	 * dynamically allocated state in case of success.
1648 	 */
1649 	if (!ret && dynstate)
1650 		return state;
1651 	return ret;
1652 }
1653 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1654 
1655 int __cpuhp_setup_state(enum cpuhp_state state,
1656 			const char *name, bool invoke,
1657 			int (*startup)(unsigned int cpu),
1658 			int (*teardown)(unsigned int cpu),
1659 			bool multi_instance)
1660 {
1661 	int ret;
1662 
1663 	cpus_read_lock();
1664 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1665 					     teardown, multi_instance);
1666 	cpus_read_unlock();
1667 	return ret;
1668 }
1669 EXPORT_SYMBOL(__cpuhp_setup_state);
1670 
1671 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1672 				  struct hlist_node *node, bool invoke)
1673 {
1674 	struct cpuhp_step *sp = cpuhp_get_step(state);
1675 	int cpu;
1676 
1677 	BUG_ON(cpuhp_cb_check(state));
1678 
1679 	if (!sp->multi_instance)
1680 		return -EINVAL;
1681 
1682 	cpus_read_lock();
1683 	mutex_lock(&cpuhp_state_mutex);
1684 
1685 	if (!invoke || !cpuhp_get_teardown_cb(state))
1686 		goto remove;
1687 	/*
1688 	 * Call the teardown callback for each present cpu depending
1689 	 * on the hotplug state of the cpu. This function is not
1690 	 * allowed to fail currently!
1691 	 */
1692 	for_each_present_cpu(cpu) {
1693 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1694 		int cpustate = st->state;
1695 
1696 		if (cpustate >= state)
1697 			cpuhp_issue_call(cpu, state, false, node);
1698 	}
1699 
1700 remove:
1701 	hlist_del(node);
1702 	mutex_unlock(&cpuhp_state_mutex);
1703 	cpus_read_unlock();
1704 
1705 	return 0;
1706 }
1707 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1708 
1709 /**
1710  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1711  * @state:	The state to remove
1712  * @invoke:	If true, the teardown function is invoked for cpus where
1713  *		cpu state >= @state
1714  *
1715  * The caller needs to hold cpus read locked while calling this function.
1716  * The teardown callback is currently not allowed to fail. Think
1717  * about module removal!
1718  */
1719 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1720 {
1721 	struct cpuhp_step *sp = cpuhp_get_step(state);
1722 	int cpu;
1723 
1724 	BUG_ON(cpuhp_cb_check(state));
1725 
1726 	lockdep_assert_cpus_held();
1727 
1728 	mutex_lock(&cpuhp_state_mutex);
1729 	if (sp->multi_instance) {
1730 		WARN(!hlist_empty(&sp->list),
1731 		     "Error: Removing state %d which has instances left.\n",
1732 		     state);
1733 		goto remove;
1734 	}
1735 
1736 	if (!invoke || !cpuhp_get_teardown_cb(state))
1737 		goto remove;
1738 
1739 	/*
1740 	 * Call the teardown callback for each present cpu depending
1741 	 * on the hotplug state of the cpu. This function is not
1742 	 * allowed to fail currently!
1743 	 */
1744 	for_each_present_cpu(cpu) {
1745 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1746 		int cpustate = st->state;
1747 
1748 		if (cpustate >= state)
1749 			cpuhp_issue_call(cpu, state, false, NULL);
1750 	}
1751 remove:
1752 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1753 	mutex_unlock(&cpuhp_state_mutex);
1754 }
1755 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1756 
1757 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1758 {
1759 	cpus_read_lock();
1760 	__cpuhp_remove_state_cpuslocked(state, invoke);
1761 	cpus_read_unlock();
1762 }
1763 EXPORT_SYMBOL(__cpuhp_remove_state);
1764 
1765 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1766 static ssize_t show_cpuhp_state(struct device *dev,
1767 				struct device_attribute *attr, char *buf)
1768 {
1769 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1770 
1771 	return sprintf(buf, "%d\n", st->state);
1772 }
1773 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1774 
1775 static ssize_t write_cpuhp_target(struct device *dev,
1776 				  struct device_attribute *attr,
1777 				  const char *buf, size_t count)
1778 {
1779 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1780 	struct cpuhp_step *sp;
1781 	int target, ret;
1782 
1783 	ret = kstrtoint(buf, 10, &target);
1784 	if (ret)
1785 		return ret;
1786 
1787 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1788 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1789 		return -EINVAL;
1790 #else
1791 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1792 		return -EINVAL;
1793 #endif
1794 
1795 	ret = lock_device_hotplug_sysfs();
1796 	if (ret)
1797 		return ret;
1798 
1799 	mutex_lock(&cpuhp_state_mutex);
1800 	sp = cpuhp_get_step(target);
1801 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1802 	mutex_unlock(&cpuhp_state_mutex);
1803 	if (ret)
1804 		goto out;
1805 
1806 	if (st->state < target)
1807 		ret = do_cpu_up(dev->id, target);
1808 	else
1809 		ret = do_cpu_down(dev->id, target);
1810 out:
1811 	unlock_device_hotplug();
1812 	return ret ? ret : count;
1813 }
1814 
1815 static ssize_t show_cpuhp_target(struct device *dev,
1816 				 struct device_attribute *attr, char *buf)
1817 {
1818 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1819 
1820 	return sprintf(buf, "%d\n", st->target);
1821 }
1822 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1823 
1824 
1825 static ssize_t write_cpuhp_fail(struct device *dev,
1826 				struct device_attribute *attr,
1827 				const char *buf, size_t count)
1828 {
1829 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1830 	struct cpuhp_step *sp;
1831 	int fail, ret;
1832 
1833 	ret = kstrtoint(buf, 10, &fail);
1834 	if (ret)
1835 		return ret;
1836 
1837 	/*
1838 	 * Cannot fail STARTING/DYING callbacks.
1839 	 */
1840 	if (cpuhp_is_atomic_state(fail))
1841 		return -EINVAL;
1842 
1843 	/*
1844 	 * Cannot fail anything that doesn't have callbacks.
1845 	 */
1846 	mutex_lock(&cpuhp_state_mutex);
1847 	sp = cpuhp_get_step(fail);
1848 	if (!sp->startup.single && !sp->teardown.single)
1849 		ret = -EINVAL;
1850 	mutex_unlock(&cpuhp_state_mutex);
1851 	if (ret)
1852 		return ret;
1853 
1854 	st->fail = fail;
1855 
1856 	return count;
1857 }
1858 
1859 static ssize_t show_cpuhp_fail(struct device *dev,
1860 			       struct device_attribute *attr, char *buf)
1861 {
1862 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1863 
1864 	return sprintf(buf, "%d\n", st->fail);
1865 }
1866 
1867 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1868 
1869 static struct attribute *cpuhp_cpu_attrs[] = {
1870 	&dev_attr_state.attr,
1871 	&dev_attr_target.attr,
1872 	&dev_attr_fail.attr,
1873 	NULL
1874 };
1875 
1876 static const struct attribute_group cpuhp_cpu_attr_group = {
1877 	.attrs = cpuhp_cpu_attrs,
1878 	.name = "hotplug",
1879 	NULL
1880 };
1881 
1882 static ssize_t show_cpuhp_states(struct device *dev,
1883 				 struct device_attribute *attr, char *buf)
1884 {
1885 	ssize_t cur, res = 0;
1886 	int i;
1887 
1888 	mutex_lock(&cpuhp_state_mutex);
1889 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1890 		struct cpuhp_step *sp = cpuhp_get_step(i);
1891 
1892 		if (sp->name) {
1893 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1894 			buf += cur;
1895 			res += cur;
1896 		}
1897 	}
1898 	mutex_unlock(&cpuhp_state_mutex);
1899 	return res;
1900 }
1901 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1902 
1903 static struct attribute *cpuhp_cpu_root_attrs[] = {
1904 	&dev_attr_states.attr,
1905 	NULL
1906 };
1907 
1908 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1909 	.attrs = cpuhp_cpu_root_attrs,
1910 	.name = "hotplug",
1911 	NULL
1912 };
1913 
1914 static int __init cpuhp_sysfs_init(void)
1915 {
1916 	int cpu, ret;
1917 
1918 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1919 				 &cpuhp_cpu_root_attr_group);
1920 	if (ret)
1921 		return ret;
1922 
1923 	for_each_possible_cpu(cpu) {
1924 		struct device *dev = get_cpu_device(cpu);
1925 
1926 		if (!dev)
1927 			continue;
1928 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1929 		if (ret)
1930 			return ret;
1931 	}
1932 	return 0;
1933 }
1934 device_initcall(cpuhp_sysfs_init);
1935 #endif
1936 
1937 /*
1938  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1939  * represents all NR_CPUS bits binary values of 1<<nr.
1940  *
1941  * It is used by cpumask_of() to get a constant address to a CPU
1942  * mask value that has a single bit set only.
1943  */
1944 
1945 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1946 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1947 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1948 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1949 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1950 
1951 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1952 
1953 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1954 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1955 #if BITS_PER_LONG > 32
1956 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1957 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1958 #endif
1959 };
1960 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1961 
1962 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1963 EXPORT_SYMBOL(cpu_all_bits);
1964 
1965 #ifdef CONFIG_INIT_ALL_POSSIBLE
1966 struct cpumask __cpu_possible_mask __read_mostly
1967 	= {CPU_BITS_ALL};
1968 #else
1969 struct cpumask __cpu_possible_mask __read_mostly;
1970 #endif
1971 EXPORT_SYMBOL(__cpu_possible_mask);
1972 
1973 struct cpumask __cpu_online_mask __read_mostly;
1974 EXPORT_SYMBOL(__cpu_online_mask);
1975 
1976 struct cpumask __cpu_present_mask __read_mostly;
1977 EXPORT_SYMBOL(__cpu_present_mask);
1978 
1979 struct cpumask __cpu_active_mask __read_mostly;
1980 EXPORT_SYMBOL(__cpu_active_mask);
1981 
1982 void init_cpu_present(const struct cpumask *src)
1983 {
1984 	cpumask_copy(&__cpu_present_mask, src);
1985 }
1986 
1987 void init_cpu_possible(const struct cpumask *src)
1988 {
1989 	cpumask_copy(&__cpu_possible_mask, src);
1990 }
1991 
1992 void init_cpu_online(const struct cpumask *src)
1993 {
1994 	cpumask_copy(&__cpu_online_mask, src);
1995 }
1996 
1997 /*
1998  * Activate the first processor.
1999  */
2000 void __init boot_cpu_init(void)
2001 {
2002 	int cpu = smp_processor_id();
2003 
2004 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2005 	set_cpu_online(cpu, true);
2006 	set_cpu_active(cpu, true);
2007 	set_cpu_present(cpu, true);
2008 	set_cpu_possible(cpu, true);
2009 
2010 #ifdef CONFIG_SMP
2011 	__boot_cpu_id = cpu;
2012 #endif
2013 }
2014 
2015 /*
2016  * Must be called _AFTER_ setting up the per_cpu areas
2017  */
2018 void __init boot_cpu_hotplug_init(void)
2019 {
2020 	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2021 }
2022