1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Context tracking: Probe on high level context boundaries such as kernel 4 * and userspace. This includes syscalls and exceptions entry/exit. 5 * 6 * This is used by RCU to remove its dependency on the timer tick while a CPU 7 * runs in userspace. 8 * 9 * Started by Frederic Weisbecker: 10 * 11 * Copyright (C) 2012 Red Hat, Inc., Frederic Weisbecker <[email protected]> 12 * 13 * Many thanks to Gilad Ben-Yossef, Paul McKenney, Ingo Molnar, Andrew Morton, 14 * Steven Rostedt, Peter Zijlstra for suggestions and improvements. 15 * 16 */ 17 18 #include <linux/context_tracking.h> 19 #include <linux/rcupdate.h> 20 #include <linux/sched.h> 21 #include <linux/hardirq.h> 22 #include <linux/export.h> 23 #include <linux/kprobes.h> 24 #include <trace/events/rcu.h> 25 26 27 DEFINE_PER_CPU(struct context_tracking, context_tracking) = { 28 #ifdef CONFIG_CONTEXT_TRACKING_IDLE 29 .dynticks_nesting = 1, 30 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 31 .dynticks = ATOMIC_INIT(1), 32 #endif 33 }; 34 EXPORT_SYMBOL_GPL(context_tracking); 35 36 #ifdef CONFIG_CONTEXT_TRACKING_IDLE 37 #define TPS(x) tracepoint_string(x) 38 39 /* Record the current task on dyntick-idle entry. */ 40 static __always_inline void rcu_dynticks_task_enter(void) 41 { 42 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 43 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 44 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 45 } 46 47 /* Record no current task on dyntick-idle exit. */ 48 static __always_inline void rcu_dynticks_task_exit(void) 49 { 50 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 51 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 52 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 53 } 54 55 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */ 56 static __always_inline void rcu_dynticks_task_trace_enter(void) 57 { 58 #ifdef CONFIG_TASKS_TRACE_RCU 59 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 60 current->trc_reader_special.b.need_mb = true; 61 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 62 } 63 64 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */ 65 static __always_inline void rcu_dynticks_task_trace_exit(void) 66 { 67 #ifdef CONFIG_TASKS_TRACE_RCU 68 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 69 current->trc_reader_special.b.need_mb = false; 70 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 71 } 72 73 /* 74 * Record entry into an extended quiescent state. This is only to be 75 * called when not already in an extended quiescent state, that is, 76 * RCU is watching prior to the call to this function and is no longer 77 * watching upon return. 78 */ 79 static noinstr void rcu_dynticks_eqs_enter(void) 80 { 81 int seq; 82 83 /* 84 * CPUs seeing atomic_add_return() must see prior RCU read-side 85 * critical sections, and we also must force ordering with the 86 * next idle sojourn. 87 */ 88 rcu_dynticks_task_trace_enter(); // Before ->dynticks update! 89 seq = rcu_dynticks_inc(1); 90 // RCU is no longer watching. Better be in extended quiescent state! 91 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & 0x1)); 92 } 93 94 /* 95 * Record exit from an extended quiescent state. This is only to be 96 * called from an extended quiescent state, that is, RCU is not watching 97 * prior to the call to this function and is watching upon return. 98 */ 99 static noinstr void rcu_dynticks_eqs_exit(void) 100 { 101 int seq; 102 103 /* 104 * CPUs seeing atomic_add_return() must see prior idle sojourns, 105 * and we also must force ordering with the next RCU read-side 106 * critical section. 107 */ 108 seq = rcu_dynticks_inc(1); 109 // RCU is now watching. Better not be in an extended quiescent state! 110 rcu_dynticks_task_trace_exit(); // After ->dynticks update! 111 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & 0x1)); 112 } 113 114 /* 115 * Enter an RCU extended quiescent state, which can be either the 116 * idle loop or adaptive-tickless usermode execution. 117 * 118 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 119 * the possibility of usermode upcalls having messed up our count 120 * of interrupt nesting level during the prior busy period. 121 */ 122 static void noinstr rcu_eqs_enter(bool user) 123 { 124 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 125 126 WARN_ON_ONCE(ct_dynticks_nmi_nesting() != DYNTICK_IRQ_NONIDLE); 127 WRITE_ONCE(ct->dynticks_nmi_nesting, 0); 128 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 129 ct_dynticks_nesting() == 0); 130 if (ct_dynticks_nesting() != 1) { 131 // RCU will still be watching, so just do accounting and leave. 132 ct->dynticks_nesting--; 133 return; 134 } 135 136 instrumentation_begin(); 137 lockdep_assert_irqs_disabled(); 138 trace_rcu_dyntick(TPS("Start"), ct_dynticks_nesting(), 0, ct_dynticks()); 139 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 140 rcu_preempt_deferred_qs(current); 141 142 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 143 instrument_atomic_write(&ct->dynticks, sizeof(ct->dynticks)); 144 145 instrumentation_end(); 146 WRITE_ONCE(ct->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 147 // RCU is watching here ... 148 rcu_dynticks_eqs_enter(); 149 // ... but is no longer watching here. 150 rcu_dynticks_task_enter(); 151 } 152 153 /* 154 * Exit an RCU extended quiescent state, which can be either the 155 * idle loop or adaptive-tickless usermode execution. 156 * 157 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 158 * allow for the possibility of usermode upcalls messing up our count of 159 * interrupt nesting level during the busy period that is just now starting. 160 */ 161 static void noinstr rcu_eqs_exit(bool user) 162 { 163 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 164 long oldval; 165 166 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled()); 167 oldval = ct_dynticks_nesting(); 168 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 169 if (oldval) { 170 // RCU was already watching, so just do accounting and leave. 171 ct->dynticks_nesting++; 172 return; 173 } 174 rcu_dynticks_task_exit(); 175 // RCU is not watching here ... 176 rcu_dynticks_eqs_exit(); 177 // ... but is watching here. 178 instrumentation_begin(); 179 180 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 181 instrument_atomic_write(&ct->dynticks, sizeof(ct->dynticks)); 182 183 trace_rcu_dyntick(TPS("End"), ct_dynticks_nesting(), 1, ct_dynticks()); 184 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 185 WRITE_ONCE(ct->dynticks_nesting, 1); 186 WARN_ON_ONCE(ct_dynticks_nmi_nesting()); 187 WRITE_ONCE(ct->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 188 instrumentation_end(); 189 } 190 191 /** 192 * ct_nmi_exit - inform RCU of exit from NMI context 193 * 194 * If we are returning from the outermost NMI handler that interrupted an 195 * RCU-idle period, update ct->dynticks and ct->dynticks_nmi_nesting 196 * to let the RCU grace-period handling know that the CPU is back to 197 * being RCU-idle. 198 * 199 * If you add or remove a call to ct_nmi_exit(), be sure to test 200 * with CONFIG_RCU_EQS_DEBUG=y. 201 */ 202 void noinstr ct_nmi_exit(void) 203 { 204 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 205 206 instrumentation_begin(); 207 /* 208 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 209 * (We are exiting an NMI handler, so RCU better be paying attention 210 * to us!) 211 */ 212 WARN_ON_ONCE(ct_dynticks_nmi_nesting() <= 0); 213 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 214 215 /* 216 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 217 * leave it in non-RCU-idle state. 218 */ 219 if (ct_dynticks_nmi_nesting() != 1) { 220 trace_rcu_dyntick(TPS("--="), ct_dynticks_nmi_nesting(), ct_dynticks_nmi_nesting() - 2, 221 ct_dynticks()); 222 WRITE_ONCE(ct->dynticks_nmi_nesting, /* No store tearing. */ 223 ct_dynticks_nmi_nesting() - 2); 224 instrumentation_end(); 225 return; 226 } 227 228 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 229 trace_rcu_dyntick(TPS("Startirq"), ct_dynticks_nmi_nesting(), 0, ct_dynticks()); 230 WRITE_ONCE(ct->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 231 232 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 233 instrument_atomic_write(&ct->dynticks, sizeof(ct->dynticks)); 234 instrumentation_end(); 235 236 // RCU is watching here ... 237 rcu_dynticks_eqs_enter(); 238 // ... but is no longer watching here. 239 240 if (!in_nmi()) 241 rcu_dynticks_task_enter(); 242 } 243 244 /** 245 * ct_nmi_enter - inform RCU of entry to NMI context 246 * 247 * If the CPU was idle from RCU's viewpoint, update ct->dynticks and 248 * ct->dynticks_nmi_nesting to let the RCU grace-period handling know 249 * that the CPU is active. This implementation permits nested NMIs, as 250 * long as the nesting level does not overflow an int. (You will probably 251 * run out of stack space first.) 252 * 253 * If you add or remove a call to ct_nmi_enter(), be sure to test 254 * with CONFIG_RCU_EQS_DEBUG=y. 255 */ 256 void noinstr ct_nmi_enter(void) 257 { 258 long incby = 2; 259 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 260 261 /* Complain about underflow. */ 262 WARN_ON_ONCE(ct_dynticks_nmi_nesting() < 0); 263 264 /* 265 * If idle from RCU viewpoint, atomically increment ->dynticks 266 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 267 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 268 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 269 * to be in the outermost NMI handler that interrupted an RCU-idle 270 * period (observation due to Andy Lutomirski). 271 */ 272 if (rcu_dynticks_curr_cpu_in_eqs()) { 273 274 if (!in_nmi()) 275 rcu_dynticks_task_exit(); 276 277 // RCU is not watching here ... 278 rcu_dynticks_eqs_exit(); 279 // ... but is watching here. 280 281 instrumentation_begin(); 282 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs() 283 instrument_atomic_read(&ct->dynticks, sizeof(ct->dynticks)); 284 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 285 instrument_atomic_write(&ct->dynticks, sizeof(ct->dynticks)); 286 287 incby = 1; 288 } else if (!in_nmi()) { 289 instrumentation_begin(); 290 rcu_irq_enter_check_tick(); 291 } else { 292 instrumentation_begin(); 293 } 294 295 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 296 ct_dynticks_nmi_nesting(), 297 ct_dynticks_nmi_nesting() + incby, ct_dynticks()); 298 instrumentation_end(); 299 WRITE_ONCE(ct->dynticks_nmi_nesting, /* Prevent store tearing. */ 300 ct_dynticks_nmi_nesting() + incby); 301 barrier(); 302 } 303 304 /** 305 * ct_idle_enter - inform RCU that current CPU is entering idle 306 * 307 * Enter idle mode, in other words, -leave- the mode in which RCU 308 * read-side critical sections can occur. (Though RCU read-side 309 * critical sections can occur in irq handlers in idle, a possibility 310 * handled by irq_enter() and irq_exit().) 311 * 312 * If you add or remove a call to ct_idle_enter(), be sure to test with 313 * CONFIG_RCU_EQS_DEBUG=y. 314 */ 315 void noinstr ct_idle_enter(void) 316 { 317 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled()); 318 rcu_eqs_enter(false); 319 } 320 EXPORT_SYMBOL_GPL(ct_idle_enter); 321 322 /** 323 * ct_idle_exit - inform RCU that current CPU is leaving idle 324 * 325 * Exit idle mode, in other words, -enter- the mode in which RCU 326 * read-side critical sections can occur. 327 * 328 * If you add or remove a call to ct_idle_exit(), be sure to test with 329 * CONFIG_RCU_EQS_DEBUG=y. 330 */ 331 void noinstr ct_idle_exit(void) 332 { 333 unsigned long flags; 334 335 raw_local_irq_save(flags); 336 rcu_eqs_exit(false); 337 raw_local_irq_restore(flags); 338 } 339 EXPORT_SYMBOL_GPL(ct_idle_exit); 340 341 /** 342 * ct_irq_enter - inform RCU that current CPU is entering irq away from idle 343 * 344 * Enter an interrupt handler, which might possibly result in exiting 345 * idle mode, in other words, entering the mode in which read-side critical 346 * sections can occur. The caller must have disabled interrupts. 347 * 348 * Note that the Linux kernel is fully capable of entering an interrupt 349 * handler that it never exits, for example when doing upcalls to user mode! 350 * This code assumes that the idle loop never does upcalls to user mode. 351 * If your architecture's idle loop does do upcalls to user mode (or does 352 * anything else that results in unbalanced calls to the irq_enter() and 353 * irq_exit() functions), RCU will give you what you deserve, good and hard. 354 * But very infrequently and irreproducibly. 355 * 356 * Use things like work queues to work around this limitation. 357 * 358 * You have been warned. 359 * 360 * If you add or remove a call to ct_irq_enter(), be sure to test with 361 * CONFIG_RCU_EQS_DEBUG=y. 362 */ 363 noinstr void ct_irq_enter(void) 364 { 365 lockdep_assert_irqs_disabled(); 366 ct_nmi_enter(); 367 } 368 369 /** 370 * ct_irq_exit - inform RCU that current CPU is exiting irq towards idle 371 * 372 * Exit from an interrupt handler, which might possibly result in entering 373 * idle mode, in other words, leaving the mode in which read-side critical 374 * sections can occur. The caller must have disabled interrupts. 375 * 376 * This code assumes that the idle loop never does anything that might 377 * result in unbalanced calls to irq_enter() and irq_exit(). If your 378 * architecture's idle loop violates this assumption, RCU will give you what 379 * you deserve, good and hard. But very infrequently and irreproducibly. 380 * 381 * Use things like work queues to work around this limitation. 382 * 383 * You have been warned. 384 * 385 * If you add or remove a call to ct_irq_exit(), be sure to test with 386 * CONFIG_RCU_EQS_DEBUG=y. 387 */ 388 noinstr void ct_irq_exit(void) 389 { 390 lockdep_assert_irqs_disabled(); 391 ct_nmi_exit(); 392 } 393 394 /* 395 * Wrapper for ct_irq_enter() where interrupts are enabled. 396 * 397 * If you add or remove a call to ct_irq_enter_irqson(), be sure to test 398 * with CONFIG_RCU_EQS_DEBUG=y. 399 */ 400 void ct_irq_enter_irqson(void) 401 { 402 unsigned long flags; 403 404 local_irq_save(flags); 405 ct_irq_enter(); 406 local_irq_restore(flags); 407 } 408 409 /* 410 * Wrapper for ct_irq_exit() where interrupts are enabled. 411 * 412 * If you add or remove a call to ct_irq_exit_irqson(), be sure to test 413 * with CONFIG_RCU_EQS_DEBUG=y. 414 */ 415 void ct_irq_exit_irqson(void) 416 { 417 unsigned long flags; 418 419 local_irq_save(flags); 420 ct_irq_exit(); 421 local_irq_restore(flags); 422 } 423 #else 424 static __always_inline void rcu_eqs_enter(bool user) { } 425 static __always_inline void rcu_eqs_exit(bool user) { } 426 #endif /* #ifdef CONFIG_CONTEXT_TRACKING_IDLE */ 427 428 #ifdef CONFIG_CONTEXT_TRACKING_USER 429 430 #define CREATE_TRACE_POINTS 431 #include <trace/events/context_tracking.h> 432 433 DEFINE_STATIC_KEY_FALSE(context_tracking_key); 434 EXPORT_SYMBOL_GPL(context_tracking_key); 435 436 static noinstr bool context_tracking_recursion_enter(void) 437 { 438 int recursion; 439 440 recursion = __this_cpu_inc_return(context_tracking.recursion); 441 if (recursion == 1) 442 return true; 443 444 WARN_ONCE((recursion < 1), "Invalid context tracking recursion value %d\n", recursion); 445 __this_cpu_dec(context_tracking.recursion); 446 447 return false; 448 } 449 450 static __always_inline void context_tracking_recursion_exit(void) 451 { 452 __this_cpu_dec(context_tracking.recursion); 453 } 454 455 /** 456 * __ct_user_enter - Inform the context tracking that the CPU is going 457 * to enter user or guest space mode. 458 * 459 * This function must be called right before we switch from the kernel 460 * to user or guest space, when it's guaranteed the remaining kernel 461 * instructions to execute won't use any RCU read side critical section 462 * because this function sets RCU in extended quiescent state. 463 */ 464 void noinstr __ct_user_enter(enum ctx_state state) 465 { 466 lockdep_assert_irqs_disabled(); 467 468 /* Kernel threads aren't supposed to go to userspace */ 469 WARN_ON_ONCE(!current->mm); 470 471 if (!context_tracking_recursion_enter()) 472 return; 473 474 if ( __this_cpu_read(context_tracking.state) != state) { 475 if (__this_cpu_read(context_tracking.active)) { 476 /* 477 * At this stage, only low level arch entry code remains and 478 * then we'll run in userspace. We can assume there won't be 479 * any RCU read-side critical section until the next call to 480 * user_exit() or ct_irq_enter(). Let's remove RCU's dependency 481 * on the tick. 482 */ 483 if (state == CONTEXT_USER) { 484 instrumentation_begin(); 485 trace_user_enter(0); 486 vtime_user_enter(current); 487 instrumentation_end(); 488 } 489 /* 490 * Other than generic entry implementation, we may be past the last 491 * rescheduling opportunity in the entry code. Trigger a self IPI 492 * that will fire and reschedule once we resume in user/guest mode. 493 */ 494 rcu_irq_work_resched(); 495 /* 496 * Enter RCU idle mode right before resuming userspace. No use of RCU 497 * is permitted between this call and rcu_eqs_exit(). This way the 498 * CPU doesn't need to maintain the tick for RCU maintenance purposes 499 * when the CPU runs in userspace. 500 */ 501 rcu_eqs_enter(true); 502 } 503 /* 504 * Even if context tracking is disabled on this CPU, because it's outside 505 * the full dynticks mask for example, we still have to keep track of the 506 * context transitions and states to prevent inconsistency on those of 507 * other CPUs. 508 * If a task triggers an exception in userspace, sleep on the exception 509 * handler and then migrate to another CPU, that new CPU must know where 510 * the exception returns by the time we call exception_exit(). 511 * This information can only be provided by the previous CPU when it called 512 * exception_enter(). 513 * OTOH we can spare the calls to vtime and RCU when context_tracking.active 514 * is false because we know that CPU is not tickless. 515 */ 516 __this_cpu_write(context_tracking.state, state); 517 } 518 context_tracking_recursion_exit(); 519 } 520 EXPORT_SYMBOL_GPL(__ct_user_enter); 521 522 /* 523 * OBSOLETE: 524 * This function should be noinstr but the below local_irq_restore() is 525 * unsafe because it involves illegal RCU uses through tracing and lockdep. 526 * This is unlikely to be fixed as this function is obsolete. The preferred 527 * way is to call __context_tracking_enter() through user_enter_irqoff() 528 * or context_tracking_guest_enter(). It should be the arch entry code 529 * responsibility to call into context tracking with IRQs disabled. 530 */ 531 void ct_user_enter(enum ctx_state state) 532 { 533 unsigned long flags; 534 535 /* 536 * Some contexts may involve an exception occuring in an irq, 537 * leading to that nesting: 538 * ct_irq_enter() rcu_eqs_exit(true) rcu_eqs_enter(true) ct_irq_exit() 539 * This would mess up the dyntick_nesting count though. And rcu_irq_*() 540 * helpers are enough to protect RCU uses inside the exception. So 541 * just return immediately if we detect we are in an IRQ. 542 */ 543 if (in_interrupt()) 544 return; 545 546 local_irq_save(flags); 547 __ct_user_enter(state); 548 local_irq_restore(flags); 549 } 550 NOKPROBE_SYMBOL(ct_user_enter); 551 EXPORT_SYMBOL_GPL(ct_user_enter); 552 553 /** 554 * user_enter_callable() - Unfortunate ASM callable version of user_enter() for 555 * archs that didn't manage to check the context tracking 556 * static key from low level code. 557 * 558 * This OBSOLETE function should be noinstr but it unsafely calls 559 * local_irq_restore(), involving illegal RCU uses through tracing and lockdep. 560 * This is unlikely to be fixed as this function is obsolete. The preferred 561 * way is to call user_enter_irqoff(). It should be the arch entry code 562 * responsibility to call into context tracking with IRQs disabled. 563 */ 564 void user_enter_callable(void) 565 { 566 user_enter(); 567 } 568 NOKPROBE_SYMBOL(user_enter_callable); 569 570 /** 571 * __ct_user_exit - Inform the context tracking that the CPU is 572 * exiting user or guest mode and entering the kernel. 573 * 574 * This function must be called after we entered the kernel from user or 575 * guest space before any use of RCU read side critical section. This 576 * potentially include any high level kernel code like syscalls, exceptions, 577 * signal handling, etc... 578 * 579 * This call supports re-entrancy. This way it can be called from any exception 580 * handler without needing to know if we came from userspace or not. 581 */ 582 void noinstr __ct_user_exit(enum ctx_state state) 583 { 584 if (!context_tracking_recursion_enter()) 585 return; 586 587 if (__this_cpu_read(context_tracking.state) == state) { 588 if (__this_cpu_read(context_tracking.active)) { 589 /* 590 * Exit RCU idle mode while entering the kernel because it can 591 * run a RCU read side critical section anytime. 592 */ 593 rcu_eqs_exit(true); 594 if (state == CONTEXT_USER) { 595 instrumentation_begin(); 596 vtime_user_exit(current); 597 trace_user_exit(0); 598 instrumentation_end(); 599 } 600 } 601 __this_cpu_write(context_tracking.state, CONTEXT_KERNEL); 602 } 603 context_tracking_recursion_exit(); 604 } 605 EXPORT_SYMBOL_GPL(__ct_user_exit); 606 607 /* 608 * OBSOLETE: 609 * This function should be noinstr but the below local_irq_save() is 610 * unsafe because it involves illegal RCU uses through tracing and lockdep. 611 * This is unlikely to be fixed as this function is obsolete. The preferred 612 * way is to call __context_tracking_exit() through user_exit_irqoff() 613 * or context_tracking_guest_exit(). It should be the arch entry code 614 * responsibility to call into context tracking with IRQs disabled. 615 */ 616 void ct_user_exit(enum ctx_state state) 617 { 618 unsigned long flags; 619 620 if (in_interrupt()) 621 return; 622 623 local_irq_save(flags); 624 __ct_user_exit(state); 625 local_irq_restore(flags); 626 } 627 NOKPROBE_SYMBOL(ct_user_exit); 628 EXPORT_SYMBOL_GPL(ct_user_exit); 629 630 /** 631 * user_exit_callable() - Unfortunate ASM callable version of user_exit() for 632 * archs that didn't manage to check the context tracking 633 * static key from low level code. 634 * 635 * This OBSOLETE function should be noinstr but it unsafely calls local_irq_save(), 636 * involving illegal RCU uses through tracing and lockdep. This is unlikely 637 * to be fixed as this function is obsolete. The preferred way is to call 638 * user_exit_irqoff(). It should be the arch entry code responsibility to 639 * call into context tracking with IRQs disabled. 640 */ 641 void user_exit_callable(void) 642 { 643 user_exit(); 644 } 645 NOKPROBE_SYMBOL(user_exit_callable); 646 647 void __init ct_cpu_track_user(int cpu) 648 { 649 static __initdata bool initialized = false; 650 651 if (!per_cpu(context_tracking.active, cpu)) { 652 per_cpu(context_tracking.active, cpu) = true; 653 static_branch_inc(&context_tracking_key); 654 } 655 656 if (initialized) 657 return; 658 659 #ifdef CONFIG_HAVE_TIF_NOHZ 660 /* 661 * Set TIF_NOHZ to init/0 and let it propagate to all tasks through fork 662 * This assumes that init is the only task at this early boot stage. 663 */ 664 set_tsk_thread_flag(&init_task, TIF_NOHZ); 665 #endif 666 WARN_ON_ONCE(!tasklist_empty()); 667 668 initialized = true; 669 } 670 671 #ifdef CONFIG_CONTEXT_TRACKING_USER_FORCE 672 void __init context_tracking_init(void) 673 { 674 int cpu; 675 676 for_each_possible_cpu(cpu) 677 ct_cpu_track_user(cpu); 678 } 679 #endif 680 681 #endif /* #ifdef CONFIG_CONTEXT_TRACKING_USER */ 682