1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 32 #include "disasm.h" 33 34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 36 [_id] = & _name ## _verifier_ops, 37 #define BPF_MAP_TYPE(_id, _ops) 38 #define BPF_LINK_TYPE(_id, _name) 39 #include <linux/bpf_types.h> 40 #undef BPF_PROG_TYPE 41 #undef BPF_MAP_TYPE 42 #undef BPF_LINK_TYPE 43 }; 44 45 struct bpf_mem_alloc bpf_global_percpu_ma; 46 static bool bpf_global_percpu_ma_set; 47 48 /* bpf_check() is a static code analyzer that walks eBPF program 49 * instruction by instruction and updates register/stack state. 50 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 51 * 52 * The first pass is depth-first-search to check that the program is a DAG. 53 * It rejects the following programs: 54 * - larger than BPF_MAXINSNS insns 55 * - if loop is present (detected via back-edge) 56 * - unreachable insns exist (shouldn't be a forest. program = one function) 57 * - out of bounds or malformed jumps 58 * The second pass is all possible path descent from the 1st insn. 59 * Since it's analyzing all paths through the program, the length of the 60 * analysis is limited to 64k insn, which may be hit even if total number of 61 * insn is less then 4K, but there are too many branches that change stack/regs. 62 * Number of 'branches to be analyzed' is limited to 1k 63 * 64 * On entry to each instruction, each register has a type, and the instruction 65 * changes the types of the registers depending on instruction semantics. 66 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 67 * copied to R1. 68 * 69 * All registers are 64-bit. 70 * R0 - return register 71 * R1-R5 argument passing registers 72 * R6-R9 callee saved registers 73 * R10 - frame pointer read-only 74 * 75 * At the start of BPF program the register R1 contains a pointer to bpf_context 76 * and has type PTR_TO_CTX. 77 * 78 * Verifier tracks arithmetic operations on pointers in case: 79 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 80 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 81 * 1st insn copies R10 (which has FRAME_PTR) type into R1 82 * and 2nd arithmetic instruction is pattern matched to recognize 83 * that it wants to construct a pointer to some element within stack. 84 * So after 2nd insn, the register R1 has type PTR_TO_STACK 85 * (and -20 constant is saved for further stack bounds checking). 86 * Meaning that this reg is a pointer to stack plus known immediate constant. 87 * 88 * Most of the time the registers have SCALAR_VALUE type, which 89 * means the register has some value, but it's not a valid pointer. 90 * (like pointer plus pointer becomes SCALAR_VALUE type) 91 * 92 * When verifier sees load or store instructions the type of base register 93 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 94 * four pointer types recognized by check_mem_access() function. 95 * 96 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 97 * and the range of [ptr, ptr + map's value_size) is accessible. 98 * 99 * registers used to pass values to function calls are checked against 100 * function argument constraints. 101 * 102 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 103 * It means that the register type passed to this function must be 104 * PTR_TO_STACK and it will be used inside the function as 105 * 'pointer to map element key' 106 * 107 * For example the argument constraints for bpf_map_lookup_elem(): 108 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 109 * .arg1_type = ARG_CONST_MAP_PTR, 110 * .arg2_type = ARG_PTR_TO_MAP_KEY, 111 * 112 * ret_type says that this function returns 'pointer to map elem value or null' 113 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 114 * 2nd argument should be a pointer to stack, which will be used inside 115 * the helper function as a pointer to map element key. 116 * 117 * On the kernel side the helper function looks like: 118 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 119 * { 120 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 121 * void *key = (void *) (unsigned long) r2; 122 * void *value; 123 * 124 * here kernel can access 'key' and 'map' pointers safely, knowing that 125 * [key, key + map->key_size) bytes are valid and were initialized on 126 * the stack of eBPF program. 127 * } 128 * 129 * Corresponding eBPF program may look like: 130 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 131 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 132 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 133 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 134 * here verifier looks at prototype of map_lookup_elem() and sees: 135 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 136 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 137 * 138 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 139 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 140 * and were initialized prior to this call. 141 * If it's ok, then verifier allows this BPF_CALL insn and looks at 142 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 143 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 144 * returns either pointer to map value or NULL. 145 * 146 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 147 * insn, the register holding that pointer in the true branch changes state to 148 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 149 * branch. See check_cond_jmp_op(). 150 * 151 * After the call R0 is set to return type of the function and registers R1-R5 152 * are set to NOT_INIT to indicate that they are no longer readable. 153 * 154 * The following reference types represent a potential reference to a kernel 155 * resource which, after first being allocated, must be checked and freed by 156 * the BPF program: 157 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 158 * 159 * When the verifier sees a helper call return a reference type, it allocates a 160 * pointer id for the reference and stores it in the current function state. 161 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 162 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 163 * passes through a NULL-check conditional. For the branch wherein the state is 164 * changed to CONST_IMM, the verifier releases the reference. 165 * 166 * For each helper function that allocates a reference, such as 167 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 168 * bpf_sk_release(). When a reference type passes into the release function, 169 * the verifier also releases the reference. If any unchecked or unreleased 170 * reference remains at the end of the program, the verifier rejects it. 171 */ 172 173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 174 struct bpf_verifier_stack_elem { 175 /* verifier state is 'st' 176 * before processing instruction 'insn_idx' 177 * and after processing instruction 'prev_insn_idx' 178 */ 179 struct bpf_verifier_state st; 180 int insn_idx; 181 int prev_insn_idx; 182 struct bpf_verifier_stack_elem *next; 183 /* length of verifier log at the time this state was pushed on stack */ 184 u32 log_pos; 185 }; 186 187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 188 #define BPF_COMPLEXITY_LIMIT_STATES 64 189 190 #define BPF_MAP_KEY_POISON (1ULL << 63) 191 #define BPF_MAP_KEY_SEEN (1ULL << 62) 192 193 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 194 195 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 196 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 197 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 198 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 199 static int ref_set_non_owning(struct bpf_verifier_env *env, 200 struct bpf_reg_state *reg); 201 static void specialize_kfunc(struct bpf_verifier_env *env, 202 u32 func_id, u16 offset, unsigned long *addr); 203 static bool is_trusted_reg(const struct bpf_reg_state *reg); 204 205 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 206 { 207 return aux->map_ptr_state.poison; 208 } 209 210 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 211 { 212 return aux->map_ptr_state.unpriv; 213 } 214 215 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 216 struct bpf_map *map, 217 bool unpriv, bool poison) 218 { 219 unpriv |= bpf_map_ptr_unpriv(aux); 220 aux->map_ptr_state.unpriv = unpriv; 221 aux->map_ptr_state.poison = poison; 222 aux->map_ptr_state.map_ptr = map; 223 } 224 225 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 226 { 227 return aux->map_key_state & BPF_MAP_KEY_POISON; 228 } 229 230 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 231 { 232 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 233 } 234 235 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 236 { 237 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 238 } 239 240 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 241 { 242 bool poisoned = bpf_map_key_poisoned(aux); 243 244 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 245 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 246 } 247 248 static bool bpf_helper_call(const struct bpf_insn *insn) 249 { 250 return insn->code == (BPF_JMP | BPF_CALL) && 251 insn->src_reg == 0; 252 } 253 254 static bool bpf_pseudo_call(const struct bpf_insn *insn) 255 { 256 return insn->code == (BPF_JMP | BPF_CALL) && 257 insn->src_reg == BPF_PSEUDO_CALL; 258 } 259 260 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 261 { 262 return insn->code == (BPF_JMP | BPF_CALL) && 263 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 264 } 265 266 struct bpf_call_arg_meta { 267 struct bpf_map *map_ptr; 268 bool raw_mode; 269 bool pkt_access; 270 u8 release_regno; 271 int regno; 272 int access_size; 273 int mem_size; 274 u64 msize_max_value; 275 int ref_obj_id; 276 int dynptr_id; 277 int map_uid; 278 int func_id; 279 struct btf *btf; 280 u32 btf_id; 281 struct btf *ret_btf; 282 u32 ret_btf_id; 283 u32 subprogno; 284 struct btf_field *kptr_field; 285 }; 286 287 struct bpf_kfunc_call_arg_meta { 288 /* In parameters */ 289 struct btf *btf; 290 u32 func_id; 291 u32 kfunc_flags; 292 const struct btf_type *func_proto; 293 const char *func_name; 294 /* Out parameters */ 295 u32 ref_obj_id; 296 u8 release_regno; 297 bool r0_rdonly; 298 u32 ret_btf_id; 299 u64 r0_size; 300 u32 subprogno; 301 struct { 302 u64 value; 303 bool found; 304 } arg_constant; 305 306 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 307 * generally to pass info about user-defined local kptr types to later 308 * verification logic 309 * bpf_obj_drop/bpf_percpu_obj_drop 310 * Record the local kptr type to be drop'd 311 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 312 * Record the local kptr type to be refcount_incr'd and use 313 * arg_owning_ref to determine whether refcount_acquire should be 314 * fallible 315 */ 316 struct btf *arg_btf; 317 u32 arg_btf_id; 318 bool arg_owning_ref; 319 320 struct { 321 struct btf_field *field; 322 } arg_list_head; 323 struct { 324 struct btf_field *field; 325 } arg_rbtree_root; 326 struct { 327 enum bpf_dynptr_type type; 328 u32 id; 329 u32 ref_obj_id; 330 } initialized_dynptr; 331 struct { 332 u8 spi; 333 u8 frameno; 334 } iter; 335 struct { 336 struct bpf_map *ptr; 337 int uid; 338 } map; 339 u64 mem_size; 340 }; 341 342 struct btf *btf_vmlinux; 343 344 static const char *btf_type_name(const struct btf *btf, u32 id) 345 { 346 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 347 } 348 349 static DEFINE_MUTEX(bpf_verifier_lock); 350 static DEFINE_MUTEX(bpf_percpu_ma_lock); 351 352 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 353 { 354 struct bpf_verifier_env *env = private_data; 355 va_list args; 356 357 if (!bpf_verifier_log_needed(&env->log)) 358 return; 359 360 va_start(args, fmt); 361 bpf_verifier_vlog(&env->log, fmt, args); 362 va_end(args); 363 } 364 365 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 366 struct bpf_reg_state *reg, 367 struct bpf_retval_range range, const char *ctx, 368 const char *reg_name) 369 { 370 bool unknown = true; 371 372 verbose(env, "%s the register %s has", ctx, reg_name); 373 if (reg->smin_value > S64_MIN) { 374 verbose(env, " smin=%lld", reg->smin_value); 375 unknown = false; 376 } 377 if (reg->smax_value < S64_MAX) { 378 verbose(env, " smax=%lld", reg->smax_value); 379 unknown = false; 380 } 381 if (unknown) 382 verbose(env, " unknown scalar value"); 383 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 384 } 385 386 static bool type_may_be_null(u32 type) 387 { 388 return type & PTR_MAYBE_NULL; 389 } 390 391 static bool reg_not_null(const struct bpf_reg_state *reg) 392 { 393 enum bpf_reg_type type; 394 395 type = reg->type; 396 if (type_may_be_null(type)) 397 return false; 398 399 type = base_type(type); 400 return type == PTR_TO_SOCKET || 401 type == PTR_TO_TCP_SOCK || 402 type == PTR_TO_MAP_VALUE || 403 type == PTR_TO_MAP_KEY || 404 type == PTR_TO_SOCK_COMMON || 405 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 406 type == PTR_TO_MEM; 407 } 408 409 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 410 { 411 struct btf_record *rec = NULL; 412 struct btf_struct_meta *meta; 413 414 if (reg->type == PTR_TO_MAP_VALUE) { 415 rec = reg->map_ptr->record; 416 } else if (type_is_ptr_alloc_obj(reg->type)) { 417 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 418 if (meta) 419 rec = meta->record; 420 } 421 return rec; 422 } 423 424 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 425 { 426 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 427 428 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 429 } 430 431 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 432 { 433 struct bpf_func_info *info; 434 435 if (!env->prog->aux->func_info) 436 return ""; 437 438 info = &env->prog->aux->func_info[subprog]; 439 return btf_type_name(env->prog->aux->btf, info->type_id); 440 } 441 442 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 443 { 444 struct bpf_subprog_info *info = subprog_info(env, subprog); 445 446 info->is_cb = true; 447 info->is_async_cb = true; 448 info->is_exception_cb = true; 449 } 450 451 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 452 { 453 return subprog_info(env, subprog)->is_exception_cb; 454 } 455 456 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 457 { 458 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 459 } 460 461 static bool type_is_rdonly_mem(u32 type) 462 { 463 return type & MEM_RDONLY; 464 } 465 466 static bool is_acquire_function(enum bpf_func_id func_id, 467 const struct bpf_map *map) 468 { 469 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 470 471 if (func_id == BPF_FUNC_sk_lookup_tcp || 472 func_id == BPF_FUNC_sk_lookup_udp || 473 func_id == BPF_FUNC_skc_lookup_tcp || 474 func_id == BPF_FUNC_ringbuf_reserve || 475 func_id == BPF_FUNC_kptr_xchg) 476 return true; 477 478 if (func_id == BPF_FUNC_map_lookup_elem && 479 (map_type == BPF_MAP_TYPE_SOCKMAP || 480 map_type == BPF_MAP_TYPE_SOCKHASH)) 481 return true; 482 483 return false; 484 } 485 486 static bool is_ptr_cast_function(enum bpf_func_id func_id) 487 { 488 return func_id == BPF_FUNC_tcp_sock || 489 func_id == BPF_FUNC_sk_fullsock || 490 func_id == BPF_FUNC_skc_to_tcp_sock || 491 func_id == BPF_FUNC_skc_to_tcp6_sock || 492 func_id == BPF_FUNC_skc_to_udp6_sock || 493 func_id == BPF_FUNC_skc_to_mptcp_sock || 494 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 495 func_id == BPF_FUNC_skc_to_tcp_request_sock; 496 } 497 498 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 499 { 500 return func_id == BPF_FUNC_dynptr_data; 501 } 502 503 static bool is_sync_callback_calling_kfunc(u32 btf_id); 504 static bool is_async_callback_calling_kfunc(u32 btf_id); 505 static bool is_callback_calling_kfunc(u32 btf_id); 506 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 507 508 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); 509 510 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 511 { 512 return func_id == BPF_FUNC_for_each_map_elem || 513 func_id == BPF_FUNC_find_vma || 514 func_id == BPF_FUNC_loop || 515 func_id == BPF_FUNC_user_ringbuf_drain; 516 } 517 518 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 519 { 520 return func_id == BPF_FUNC_timer_set_callback; 521 } 522 523 static bool is_callback_calling_function(enum bpf_func_id func_id) 524 { 525 return is_sync_callback_calling_function(func_id) || 526 is_async_callback_calling_function(func_id); 527 } 528 529 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 530 { 531 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 532 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 533 } 534 535 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 536 { 537 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || 538 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); 539 } 540 541 static bool is_may_goto_insn(struct bpf_insn *insn) 542 { 543 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 544 } 545 546 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 547 { 548 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 549 } 550 551 static bool is_storage_get_function(enum bpf_func_id func_id) 552 { 553 return func_id == BPF_FUNC_sk_storage_get || 554 func_id == BPF_FUNC_inode_storage_get || 555 func_id == BPF_FUNC_task_storage_get || 556 func_id == BPF_FUNC_cgrp_storage_get; 557 } 558 559 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 560 const struct bpf_map *map) 561 { 562 int ref_obj_uses = 0; 563 564 if (is_ptr_cast_function(func_id)) 565 ref_obj_uses++; 566 if (is_acquire_function(func_id, map)) 567 ref_obj_uses++; 568 if (is_dynptr_ref_function(func_id)) 569 ref_obj_uses++; 570 571 return ref_obj_uses > 1; 572 } 573 574 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 575 { 576 return BPF_CLASS(insn->code) == BPF_STX && 577 BPF_MODE(insn->code) == BPF_ATOMIC && 578 insn->imm == BPF_CMPXCHG; 579 } 580 581 static int __get_spi(s32 off) 582 { 583 return (-off - 1) / BPF_REG_SIZE; 584 } 585 586 static struct bpf_func_state *func(struct bpf_verifier_env *env, 587 const struct bpf_reg_state *reg) 588 { 589 struct bpf_verifier_state *cur = env->cur_state; 590 591 return cur->frame[reg->frameno]; 592 } 593 594 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 595 { 596 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 597 598 /* We need to check that slots between [spi - nr_slots + 1, spi] are 599 * within [0, allocated_stack). 600 * 601 * Please note that the spi grows downwards. For example, a dynptr 602 * takes the size of two stack slots; the first slot will be at 603 * spi and the second slot will be at spi - 1. 604 */ 605 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 606 } 607 608 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 609 const char *obj_kind, int nr_slots) 610 { 611 int off, spi; 612 613 if (!tnum_is_const(reg->var_off)) { 614 verbose(env, "%s has to be at a constant offset\n", obj_kind); 615 return -EINVAL; 616 } 617 618 off = reg->off + reg->var_off.value; 619 if (off % BPF_REG_SIZE) { 620 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 621 return -EINVAL; 622 } 623 624 spi = __get_spi(off); 625 if (spi + 1 < nr_slots) { 626 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 627 return -EINVAL; 628 } 629 630 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 631 return -ERANGE; 632 return spi; 633 } 634 635 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 636 { 637 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 638 } 639 640 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 641 { 642 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 643 } 644 645 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 646 { 647 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 648 case DYNPTR_TYPE_LOCAL: 649 return BPF_DYNPTR_TYPE_LOCAL; 650 case DYNPTR_TYPE_RINGBUF: 651 return BPF_DYNPTR_TYPE_RINGBUF; 652 case DYNPTR_TYPE_SKB: 653 return BPF_DYNPTR_TYPE_SKB; 654 case DYNPTR_TYPE_XDP: 655 return BPF_DYNPTR_TYPE_XDP; 656 default: 657 return BPF_DYNPTR_TYPE_INVALID; 658 } 659 } 660 661 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 662 { 663 switch (type) { 664 case BPF_DYNPTR_TYPE_LOCAL: 665 return DYNPTR_TYPE_LOCAL; 666 case BPF_DYNPTR_TYPE_RINGBUF: 667 return DYNPTR_TYPE_RINGBUF; 668 case BPF_DYNPTR_TYPE_SKB: 669 return DYNPTR_TYPE_SKB; 670 case BPF_DYNPTR_TYPE_XDP: 671 return DYNPTR_TYPE_XDP; 672 default: 673 return 0; 674 } 675 } 676 677 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 678 { 679 return type == BPF_DYNPTR_TYPE_RINGBUF; 680 } 681 682 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 683 enum bpf_dynptr_type type, 684 bool first_slot, int dynptr_id); 685 686 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 687 struct bpf_reg_state *reg); 688 689 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 690 struct bpf_reg_state *sreg1, 691 struct bpf_reg_state *sreg2, 692 enum bpf_dynptr_type type) 693 { 694 int id = ++env->id_gen; 695 696 __mark_dynptr_reg(sreg1, type, true, id); 697 __mark_dynptr_reg(sreg2, type, false, id); 698 } 699 700 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 701 struct bpf_reg_state *reg, 702 enum bpf_dynptr_type type) 703 { 704 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 705 } 706 707 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 708 struct bpf_func_state *state, int spi); 709 710 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 711 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 712 { 713 struct bpf_func_state *state = func(env, reg); 714 enum bpf_dynptr_type type; 715 int spi, i, err; 716 717 spi = dynptr_get_spi(env, reg); 718 if (spi < 0) 719 return spi; 720 721 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 722 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 723 * to ensure that for the following example: 724 * [d1][d1][d2][d2] 725 * spi 3 2 1 0 726 * So marking spi = 2 should lead to destruction of both d1 and d2. In 727 * case they do belong to same dynptr, second call won't see slot_type 728 * as STACK_DYNPTR and will simply skip destruction. 729 */ 730 err = destroy_if_dynptr_stack_slot(env, state, spi); 731 if (err) 732 return err; 733 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 734 if (err) 735 return err; 736 737 for (i = 0; i < BPF_REG_SIZE; i++) { 738 state->stack[spi].slot_type[i] = STACK_DYNPTR; 739 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 740 } 741 742 type = arg_to_dynptr_type(arg_type); 743 if (type == BPF_DYNPTR_TYPE_INVALID) 744 return -EINVAL; 745 746 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 747 &state->stack[spi - 1].spilled_ptr, type); 748 749 if (dynptr_type_refcounted(type)) { 750 /* The id is used to track proper releasing */ 751 int id; 752 753 if (clone_ref_obj_id) 754 id = clone_ref_obj_id; 755 else 756 id = acquire_reference_state(env, insn_idx); 757 758 if (id < 0) 759 return id; 760 761 state->stack[spi].spilled_ptr.ref_obj_id = id; 762 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 763 } 764 765 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 766 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 767 768 return 0; 769 } 770 771 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 772 { 773 int i; 774 775 for (i = 0; i < BPF_REG_SIZE; i++) { 776 state->stack[spi].slot_type[i] = STACK_INVALID; 777 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 778 } 779 780 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 781 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 782 783 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 784 * 785 * While we don't allow reading STACK_INVALID, it is still possible to 786 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 787 * helpers or insns can do partial read of that part without failing, 788 * but check_stack_range_initialized, check_stack_read_var_off, and 789 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 790 * the slot conservatively. Hence we need to prevent those liveness 791 * marking walks. 792 * 793 * This was not a problem before because STACK_INVALID is only set by 794 * default (where the default reg state has its reg->parent as NULL), or 795 * in clean_live_states after REG_LIVE_DONE (at which point 796 * mark_reg_read won't walk reg->parent chain), but not randomly during 797 * verifier state exploration (like we did above). Hence, for our case 798 * parentage chain will still be live (i.e. reg->parent may be 799 * non-NULL), while earlier reg->parent was NULL, so we need 800 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 801 * done later on reads or by mark_dynptr_read as well to unnecessary 802 * mark registers in verifier state. 803 */ 804 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 805 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 806 } 807 808 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 809 { 810 struct bpf_func_state *state = func(env, reg); 811 int spi, ref_obj_id, i; 812 813 spi = dynptr_get_spi(env, reg); 814 if (spi < 0) 815 return spi; 816 817 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 818 invalidate_dynptr(env, state, spi); 819 return 0; 820 } 821 822 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 823 824 /* If the dynptr has a ref_obj_id, then we need to invalidate 825 * two things: 826 * 827 * 1) Any dynptrs with a matching ref_obj_id (clones) 828 * 2) Any slices derived from this dynptr. 829 */ 830 831 /* Invalidate any slices associated with this dynptr */ 832 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 833 834 /* Invalidate any dynptr clones */ 835 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 836 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 837 continue; 838 839 /* it should always be the case that if the ref obj id 840 * matches then the stack slot also belongs to a 841 * dynptr 842 */ 843 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 844 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 845 return -EFAULT; 846 } 847 if (state->stack[i].spilled_ptr.dynptr.first_slot) 848 invalidate_dynptr(env, state, i); 849 } 850 851 return 0; 852 } 853 854 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 855 struct bpf_reg_state *reg); 856 857 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 858 { 859 if (!env->allow_ptr_leaks) 860 __mark_reg_not_init(env, reg); 861 else 862 __mark_reg_unknown(env, reg); 863 } 864 865 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 866 struct bpf_func_state *state, int spi) 867 { 868 struct bpf_func_state *fstate; 869 struct bpf_reg_state *dreg; 870 int i, dynptr_id; 871 872 /* We always ensure that STACK_DYNPTR is never set partially, 873 * hence just checking for slot_type[0] is enough. This is 874 * different for STACK_SPILL, where it may be only set for 875 * 1 byte, so code has to use is_spilled_reg. 876 */ 877 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 878 return 0; 879 880 /* Reposition spi to first slot */ 881 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 882 spi = spi + 1; 883 884 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 885 verbose(env, "cannot overwrite referenced dynptr\n"); 886 return -EINVAL; 887 } 888 889 mark_stack_slot_scratched(env, spi); 890 mark_stack_slot_scratched(env, spi - 1); 891 892 /* Writing partially to one dynptr stack slot destroys both. */ 893 for (i = 0; i < BPF_REG_SIZE; i++) { 894 state->stack[spi].slot_type[i] = STACK_INVALID; 895 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 896 } 897 898 dynptr_id = state->stack[spi].spilled_ptr.id; 899 /* Invalidate any slices associated with this dynptr */ 900 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 901 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 902 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 903 continue; 904 if (dreg->dynptr_id == dynptr_id) 905 mark_reg_invalid(env, dreg); 906 })); 907 908 /* Do not release reference state, we are destroying dynptr on stack, 909 * not using some helper to release it. Just reset register. 910 */ 911 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 912 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 913 914 /* Same reason as unmark_stack_slots_dynptr above */ 915 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 916 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 917 918 return 0; 919 } 920 921 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 922 { 923 int spi; 924 925 if (reg->type == CONST_PTR_TO_DYNPTR) 926 return false; 927 928 spi = dynptr_get_spi(env, reg); 929 930 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 931 * error because this just means the stack state hasn't been updated yet. 932 * We will do check_mem_access to check and update stack bounds later. 933 */ 934 if (spi < 0 && spi != -ERANGE) 935 return false; 936 937 /* We don't need to check if the stack slots are marked by previous 938 * dynptr initializations because we allow overwriting existing unreferenced 939 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 940 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 941 * touching are completely destructed before we reinitialize them for a new 942 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 943 * instead of delaying it until the end where the user will get "Unreleased 944 * reference" error. 945 */ 946 return true; 947 } 948 949 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 950 { 951 struct bpf_func_state *state = func(env, reg); 952 int i, spi; 953 954 /* This already represents first slot of initialized bpf_dynptr. 955 * 956 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 957 * check_func_arg_reg_off's logic, so we don't need to check its 958 * offset and alignment. 959 */ 960 if (reg->type == CONST_PTR_TO_DYNPTR) 961 return true; 962 963 spi = dynptr_get_spi(env, reg); 964 if (spi < 0) 965 return false; 966 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 967 return false; 968 969 for (i = 0; i < BPF_REG_SIZE; i++) { 970 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 971 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 972 return false; 973 } 974 975 return true; 976 } 977 978 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 979 enum bpf_arg_type arg_type) 980 { 981 struct bpf_func_state *state = func(env, reg); 982 enum bpf_dynptr_type dynptr_type; 983 int spi; 984 985 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 986 if (arg_type == ARG_PTR_TO_DYNPTR) 987 return true; 988 989 dynptr_type = arg_to_dynptr_type(arg_type); 990 if (reg->type == CONST_PTR_TO_DYNPTR) { 991 return reg->dynptr.type == dynptr_type; 992 } else { 993 spi = dynptr_get_spi(env, reg); 994 if (spi < 0) 995 return false; 996 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 997 } 998 } 999 1000 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1001 1002 static bool in_rcu_cs(struct bpf_verifier_env *env); 1003 1004 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1005 1006 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1007 struct bpf_kfunc_call_arg_meta *meta, 1008 struct bpf_reg_state *reg, int insn_idx, 1009 struct btf *btf, u32 btf_id, int nr_slots) 1010 { 1011 struct bpf_func_state *state = func(env, reg); 1012 int spi, i, j, id; 1013 1014 spi = iter_get_spi(env, reg, nr_slots); 1015 if (spi < 0) 1016 return spi; 1017 1018 id = acquire_reference_state(env, insn_idx); 1019 if (id < 0) 1020 return id; 1021 1022 for (i = 0; i < nr_slots; i++) { 1023 struct bpf_stack_state *slot = &state->stack[spi - i]; 1024 struct bpf_reg_state *st = &slot->spilled_ptr; 1025 1026 __mark_reg_known_zero(st); 1027 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1028 if (is_kfunc_rcu_protected(meta)) { 1029 if (in_rcu_cs(env)) 1030 st->type |= MEM_RCU; 1031 else 1032 st->type |= PTR_UNTRUSTED; 1033 } 1034 st->live |= REG_LIVE_WRITTEN; 1035 st->ref_obj_id = i == 0 ? id : 0; 1036 st->iter.btf = btf; 1037 st->iter.btf_id = btf_id; 1038 st->iter.state = BPF_ITER_STATE_ACTIVE; 1039 st->iter.depth = 0; 1040 1041 for (j = 0; j < BPF_REG_SIZE; j++) 1042 slot->slot_type[j] = STACK_ITER; 1043 1044 mark_stack_slot_scratched(env, spi - i); 1045 } 1046 1047 return 0; 1048 } 1049 1050 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1051 struct bpf_reg_state *reg, int nr_slots) 1052 { 1053 struct bpf_func_state *state = func(env, reg); 1054 int spi, i, j; 1055 1056 spi = iter_get_spi(env, reg, nr_slots); 1057 if (spi < 0) 1058 return spi; 1059 1060 for (i = 0; i < nr_slots; i++) { 1061 struct bpf_stack_state *slot = &state->stack[spi - i]; 1062 struct bpf_reg_state *st = &slot->spilled_ptr; 1063 1064 if (i == 0) 1065 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1066 1067 __mark_reg_not_init(env, st); 1068 1069 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1070 st->live |= REG_LIVE_WRITTEN; 1071 1072 for (j = 0; j < BPF_REG_SIZE; j++) 1073 slot->slot_type[j] = STACK_INVALID; 1074 1075 mark_stack_slot_scratched(env, spi - i); 1076 } 1077 1078 return 0; 1079 } 1080 1081 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1082 struct bpf_reg_state *reg, int nr_slots) 1083 { 1084 struct bpf_func_state *state = func(env, reg); 1085 int spi, i, j; 1086 1087 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1088 * will do check_mem_access to check and update stack bounds later, so 1089 * return true for that case. 1090 */ 1091 spi = iter_get_spi(env, reg, nr_slots); 1092 if (spi == -ERANGE) 1093 return true; 1094 if (spi < 0) 1095 return false; 1096 1097 for (i = 0; i < nr_slots; i++) { 1098 struct bpf_stack_state *slot = &state->stack[spi - i]; 1099 1100 for (j = 0; j < BPF_REG_SIZE; j++) 1101 if (slot->slot_type[j] == STACK_ITER) 1102 return false; 1103 } 1104 1105 return true; 1106 } 1107 1108 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1109 struct btf *btf, u32 btf_id, int nr_slots) 1110 { 1111 struct bpf_func_state *state = func(env, reg); 1112 int spi, i, j; 1113 1114 spi = iter_get_spi(env, reg, nr_slots); 1115 if (spi < 0) 1116 return -EINVAL; 1117 1118 for (i = 0; i < nr_slots; i++) { 1119 struct bpf_stack_state *slot = &state->stack[spi - i]; 1120 struct bpf_reg_state *st = &slot->spilled_ptr; 1121 1122 if (st->type & PTR_UNTRUSTED) 1123 return -EPROTO; 1124 /* only main (first) slot has ref_obj_id set */ 1125 if (i == 0 && !st->ref_obj_id) 1126 return -EINVAL; 1127 if (i != 0 && st->ref_obj_id) 1128 return -EINVAL; 1129 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1130 return -EINVAL; 1131 1132 for (j = 0; j < BPF_REG_SIZE; j++) 1133 if (slot->slot_type[j] != STACK_ITER) 1134 return -EINVAL; 1135 } 1136 1137 return 0; 1138 } 1139 1140 /* Check if given stack slot is "special": 1141 * - spilled register state (STACK_SPILL); 1142 * - dynptr state (STACK_DYNPTR); 1143 * - iter state (STACK_ITER). 1144 */ 1145 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1146 { 1147 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1148 1149 switch (type) { 1150 case STACK_SPILL: 1151 case STACK_DYNPTR: 1152 case STACK_ITER: 1153 return true; 1154 case STACK_INVALID: 1155 case STACK_MISC: 1156 case STACK_ZERO: 1157 return false; 1158 default: 1159 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1160 return true; 1161 } 1162 } 1163 1164 /* The reg state of a pointer or a bounded scalar was saved when 1165 * it was spilled to the stack. 1166 */ 1167 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1168 { 1169 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1170 } 1171 1172 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1173 { 1174 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1175 stack->spilled_ptr.type == SCALAR_VALUE; 1176 } 1177 1178 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1179 { 1180 return stack->slot_type[0] == STACK_SPILL && 1181 stack->spilled_ptr.type == SCALAR_VALUE; 1182 } 1183 1184 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1185 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1186 * more precise STACK_ZERO. 1187 * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take 1188 * env->allow_ptr_leaks into account and force STACK_MISC, if necessary. 1189 */ 1190 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1191 { 1192 if (*stype == STACK_ZERO) 1193 return; 1194 if (env->allow_ptr_leaks && *stype == STACK_INVALID) 1195 return; 1196 *stype = STACK_MISC; 1197 } 1198 1199 static void scrub_spilled_slot(u8 *stype) 1200 { 1201 if (*stype != STACK_INVALID) 1202 *stype = STACK_MISC; 1203 } 1204 1205 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1206 * small to hold src. This is different from krealloc since we don't want to preserve 1207 * the contents of dst. 1208 * 1209 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1210 * not be allocated. 1211 */ 1212 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1213 { 1214 size_t alloc_bytes; 1215 void *orig = dst; 1216 size_t bytes; 1217 1218 if (ZERO_OR_NULL_PTR(src)) 1219 goto out; 1220 1221 if (unlikely(check_mul_overflow(n, size, &bytes))) 1222 return NULL; 1223 1224 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1225 dst = krealloc(orig, alloc_bytes, flags); 1226 if (!dst) { 1227 kfree(orig); 1228 return NULL; 1229 } 1230 1231 memcpy(dst, src, bytes); 1232 out: 1233 return dst ? dst : ZERO_SIZE_PTR; 1234 } 1235 1236 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1237 * small to hold new_n items. new items are zeroed out if the array grows. 1238 * 1239 * Contrary to krealloc_array, does not free arr if new_n is zero. 1240 */ 1241 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1242 { 1243 size_t alloc_size; 1244 void *new_arr; 1245 1246 if (!new_n || old_n == new_n) 1247 goto out; 1248 1249 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1250 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1251 if (!new_arr) { 1252 kfree(arr); 1253 return NULL; 1254 } 1255 arr = new_arr; 1256 1257 if (new_n > old_n) 1258 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1259 1260 out: 1261 return arr ? arr : ZERO_SIZE_PTR; 1262 } 1263 1264 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1265 { 1266 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1267 sizeof(struct bpf_reference_state), GFP_KERNEL); 1268 if (!dst->refs) 1269 return -ENOMEM; 1270 1271 dst->acquired_refs = src->acquired_refs; 1272 return 0; 1273 } 1274 1275 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1276 { 1277 size_t n = src->allocated_stack / BPF_REG_SIZE; 1278 1279 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1280 GFP_KERNEL); 1281 if (!dst->stack) 1282 return -ENOMEM; 1283 1284 dst->allocated_stack = src->allocated_stack; 1285 return 0; 1286 } 1287 1288 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1289 { 1290 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1291 sizeof(struct bpf_reference_state)); 1292 if (!state->refs) 1293 return -ENOMEM; 1294 1295 state->acquired_refs = n; 1296 return 0; 1297 } 1298 1299 /* Possibly update state->allocated_stack to be at least size bytes. Also 1300 * possibly update the function's high-water mark in its bpf_subprog_info. 1301 */ 1302 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1303 { 1304 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1305 1306 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1307 size = round_up(size, BPF_REG_SIZE); 1308 n = size / BPF_REG_SIZE; 1309 1310 if (old_n >= n) 1311 return 0; 1312 1313 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1314 if (!state->stack) 1315 return -ENOMEM; 1316 1317 state->allocated_stack = size; 1318 1319 /* update known max for given subprogram */ 1320 if (env->subprog_info[state->subprogno].stack_depth < size) 1321 env->subprog_info[state->subprogno].stack_depth = size; 1322 1323 return 0; 1324 } 1325 1326 /* Acquire a pointer id from the env and update the state->refs to include 1327 * this new pointer reference. 1328 * On success, returns a valid pointer id to associate with the register 1329 * On failure, returns a negative errno. 1330 */ 1331 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1332 { 1333 struct bpf_func_state *state = cur_func(env); 1334 int new_ofs = state->acquired_refs; 1335 int id, err; 1336 1337 err = resize_reference_state(state, state->acquired_refs + 1); 1338 if (err) 1339 return err; 1340 id = ++env->id_gen; 1341 state->refs[new_ofs].id = id; 1342 state->refs[new_ofs].insn_idx = insn_idx; 1343 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1344 1345 return id; 1346 } 1347 1348 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1349 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1350 { 1351 int i, last_idx; 1352 1353 last_idx = state->acquired_refs - 1; 1354 for (i = 0; i < state->acquired_refs; i++) { 1355 if (state->refs[i].id == ptr_id) { 1356 /* Cannot release caller references in callbacks */ 1357 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1358 return -EINVAL; 1359 if (last_idx && i != last_idx) 1360 memcpy(&state->refs[i], &state->refs[last_idx], 1361 sizeof(*state->refs)); 1362 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1363 state->acquired_refs--; 1364 return 0; 1365 } 1366 } 1367 return -EINVAL; 1368 } 1369 1370 static void free_func_state(struct bpf_func_state *state) 1371 { 1372 if (!state) 1373 return; 1374 kfree(state->refs); 1375 kfree(state->stack); 1376 kfree(state); 1377 } 1378 1379 static void clear_jmp_history(struct bpf_verifier_state *state) 1380 { 1381 kfree(state->jmp_history); 1382 state->jmp_history = NULL; 1383 state->jmp_history_cnt = 0; 1384 } 1385 1386 static void free_verifier_state(struct bpf_verifier_state *state, 1387 bool free_self) 1388 { 1389 int i; 1390 1391 for (i = 0; i <= state->curframe; i++) { 1392 free_func_state(state->frame[i]); 1393 state->frame[i] = NULL; 1394 } 1395 clear_jmp_history(state); 1396 if (free_self) 1397 kfree(state); 1398 } 1399 1400 /* copy verifier state from src to dst growing dst stack space 1401 * when necessary to accommodate larger src stack 1402 */ 1403 static int copy_func_state(struct bpf_func_state *dst, 1404 const struct bpf_func_state *src) 1405 { 1406 int err; 1407 1408 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1409 err = copy_reference_state(dst, src); 1410 if (err) 1411 return err; 1412 return copy_stack_state(dst, src); 1413 } 1414 1415 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1416 const struct bpf_verifier_state *src) 1417 { 1418 struct bpf_func_state *dst; 1419 int i, err; 1420 1421 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1422 src->jmp_history_cnt, sizeof(*dst_state->jmp_history), 1423 GFP_USER); 1424 if (!dst_state->jmp_history) 1425 return -ENOMEM; 1426 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1427 1428 /* if dst has more stack frames then src frame, free them, this is also 1429 * necessary in case of exceptional exits using bpf_throw. 1430 */ 1431 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1432 free_func_state(dst_state->frame[i]); 1433 dst_state->frame[i] = NULL; 1434 } 1435 dst_state->speculative = src->speculative; 1436 dst_state->active_rcu_lock = src->active_rcu_lock; 1437 dst_state->active_preempt_lock = src->active_preempt_lock; 1438 dst_state->in_sleepable = src->in_sleepable; 1439 dst_state->curframe = src->curframe; 1440 dst_state->active_lock.ptr = src->active_lock.ptr; 1441 dst_state->active_lock.id = src->active_lock.id; 1442 dst_state->branches = src->branches; 1443 dst_state->parent = src->parent; 1444 dst_state->first_insn_idx = src->first_insn_idx; 1445 dst_state->last_insn_idx = src->last_insn_idx; 1446 dst_state->dfs_depth = src->dfs_depth; 1447 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1448 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1449 dst_state->may_goto_depth = src->may_goto_depth; 1450 for (i = 0; i <= src->curframe; i++) { 1451 dst = dst_state->frame[i]; 1452 if (!dst) { 1453 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1454 if (!dst) 1455 return -ENOMEM; 1456 dst_state->frame[i] = dst; 1457 } 1458 err = copy_func_state(dst, src->frame[i]); 1459 if (err) 1460 return err; 1461 } 1462 return 0; 1463 } 1464 1465 static u32 state_htab_size(struct bpf_verifier_env *env) 1466 { 1467 return env->prog->len; 1468 } 1469 1470 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1471 { 1472 struct bpf_verifier_state *cur = env->cur_state; 1473 struct bpf_func_state *state = cur->frame[cur->curframe]; 1474 1475 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1476 } 1477 1478 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1479 { 1480 int fr; 1481 1482 if (a->curframe != b->curframe) 1483 return false; 1484 1485 for (fr = a->curframe; fr >= 0; fr--) 1486 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1487 return false; 1488 1489 return true; 1490 } 1491 1492 /* Open coded iterators allow back-edges in the state graph in order to 1493 * check unbounded loops that iterators. 1494 * 1495 * In is_state_visited() it is necessary to know if explored states are 1496 * part of some loops in order to decide whether non-exact states 1497 * comparison could be used: 1498 * - non-exact states comparison establishes sub-state relation and uses 1499 * read and precision marks to do so, these marks are propagated from 1500 * children states and thus are not guaranteed to be final in a loop; 1501 * - exact states comparison just checks if current and explored states 1502 * are identical (and thus form a back-edge). 1503 * 1504 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1505 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1506 * algorithm for loop structure detection and gives an overview of 1507 * relevant terminology. It also has helpful illustrations. 1508 * 1509 * [1] https://api.semanticscholar.org/CorpusID:15784067 1510 * 1511 * We use a similar algorithm but because loop nested structure is 1512 * irrelevant for verifier ours is significantly simpler and resembles 1513 * strongly connected components algorithm from Sedgewick's textbook. 1514 * 1515 * Define topmost loop entry as a first node of the loop traversed in a 1516 * depth first search starting from initial state. The goal of the loop 1517 * tracking algorithm is to associate topmost loop entries with states 1518 * derived from these entries. 1519 * 1520 * For each step in the DFS states traversal algorithm needs to identify 1521 * the following situations: 1522 * 1523 * initial initial initial 1524 * | | | 1525 * V V V 1526 * ... ... .---------> hdr 1527 * | | | | 1528 * V V | V 1529 * cur .-> succ | .------... 1530 * | | | | | | 1531 * V | V | V V 1532 * succ '-- cur | ... ... 1533 * | | | 1534 * | V V 1535 * | succ <- cur 1536 * | | 1537 * | V 1538 * | ... 1539 * | | 1540 * '----' 1541 * 1542 * (A) successor state of cur (B) successor state of cur or it's entry 1543 * not yet traversed are in current DFS path, thus cur and succ 1544 * are members of the same outermost loop 1545 * 1546 * initial initial 1547 * | | 1548 * V V 1549 * ... ... 1550 * | | 1551 * V V 1552 * .------... .------... 1553 * | | | | 1554 * V V V V 1555 * .-> hdr ... ... ... 1556 * | | | | | 1557 * | V V V V 1558 * | succ <- cur succ <- cur 1559 * | | | 1560 * | V V 1561 * | ... ... 1562 * | | | 1563 * '----' exit 1564 * 1565 * (C) successor state of cur is a part of some loop but this loop 1566 * does not include cur or successor state is not in a loop at all. 1567 * 1568 * Algorithm could be described as the following python code: 1569 * 1570 * traversed = set() # Set of traversed nodes 1571 * entries = {} # Mapping from node to loop entry 1572 * depths = {} # Depth level assigned to graph node 1573 * path = set() # Current DFS path 1574 * 1575 * # Find outermost loop entry known for n 1576 * def get_loop_entry(n): 1577 * h = entries.get(n, None) 1578 * while h in entries and entries[h] != h: 1579 * h = entries[h] 1580 * return h 1581 * 1582 * # Update n's loop entry if h's outermost entry comes 1583 * # before n's outermost entry in current DFS path. 1584 * def update_loop_entry(n, h): 1585 * n1 = get_loop_entry(n) or n 1586 * h1 = get_loop_entry(h) or h 1587 * if h1 in path and depths[h1] <= depths[n1]: 1588 * entries[n] = h1 1589 * 1590 * def dfs(n, depth): 1591 * traversed.add(n) 1592 * path.add(n) 1593 * depths[n] = depth 1594 * for succ in G.successors(n): 1595 * if succ not in traversed: 1596 * # Case A: explore succ and update cur's loop entry 1597 * # only if succ's entry is in current DFS path. 1598 * dfs(succ, depth + 1) 1599 * h = get_loop_entry(succ) 1600 * update_loop_entry(n, h) 1601 * else: 1602 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1603 * update_loop_entry(n, succ) 1604 * path.remove(n) 1605 * 1606 * To adapt this algorithm for use with verifier: 1607 * - use st->branch == 0 as a signal that DFS of succ had been finished 1608 * and cur's loop entry has to be updated (case A), handle this in 1609 * update_branch_counts(); 1610 * - use st->branch > 0 as a signal that st is in the current DFS path; 1611 * - handle cases B and C in is_state_visited(); 1612 * - update topmost loop entry for intermediate states in get_loop_entry(). 1613 */ 1614 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1615 { 1616 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1617 1618 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1619 topmost = topmost->loop_entry; 1620 /* Update loop entries for intermediate states to avoid this 1621 * traversal in future get_loop_entry() calls. 1622 */ 1623 while (st && st->loop_entry != topmost) { 1624 old = st->loop_entry; 1625 st->loop_entry = topmost; 1626 st = old; 1627 } 1628 return topmost; 1629 } 1630 1631 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1632 { 1633 struct bpf_verifier_state *cur1, *hdr1; 1634 1635 cur1 = get_loop_entry(cur) ?: cur; 1636 hdr1 = get_loop_entry(hdr) ?: hdr; 1637 /* The head1->branches check decides between cases B and C in 1638 * comment for get_loop_entry(). If hdr1->branches == 0 then 1639 * head's topmost loop entry is not in current DFS path, 1640 * hence 'cur' and 'hdr' are not in the same loop and there is 1641 * no need to update cur->loop_entry. 1642 */ 1643 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1644 cur->loop_entry = hdr; 1645 hdr->used_as_loop_entry = true; 1646 } 1647 } 1648 1649 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1650 { 1651 while (st) { 1652 u32 br = --st->branches; 1653 1654 /* br == 0 signals that DFS exploration for 'st' is finished, 1655 * thus it is necessary to update parent's loop entry if it 1656 * turned out that st is a part of some loop. 1657 * This is a part of 'case A' in get_loop_entry() comment. 1658 */ 1659 if (br == 0 && st->parent && st->loop_entry) 1660 update_loop_entry(st->parent, st->loop_entry); 1661 1662 /* WARN_ON(br > 1) technically makes sense here, 1663 * but see comment in push_stack(), hence: 1664 */ 1665 WARN_ONCE((int)br < 0, 1666 "BUG update_branch_counts:branches_to_explore=%d\n", 1667 br); 1668 if (br) 1669 break; 1670 st = st->parent; 1671 } 1672 } 1673 1674 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1675 int *insn_idx, bool pop_log) 1676 { 1677 struct bpf_verifier_state *cur = env->cur_state; 1678 struct bpf_verifier_stack_elem *elem, *head = env->head; 1679 int err; 1680 1681 if (env->head == NULL) 1682 return -ENOENT; 1683 1684 if (cur) { 1685 err = copy_verifier_state(cur, &head->st); 1686 if (err) 1687 return err; 1688 } 1689 if (pop_log) 1690 bpf_vlog_reset(&env->log, head->log_pos); 1691 if (insn_idx) 1692 *insn_idx = head->insn_idx; 1693 if (prev_insn_idx) 1694 *prev_insn_idx = head->prev_insn_idx; 1695 elem = head->next; 1696 free_verifier_state(&head->st, false); 1697 kfree(head); 1698 env->head = elem; 1699 env->stack_size--; 1700 return 0; 1701 } 1702 1703 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1704 int insn_idx, int prev_insn_idx, 1705 bool speculative) 1706 { 1707 struct bpf_verifier_state *cur = env->cur_state; 1708 struct bpf_verifier_stack_elem *elem; 1709 int err; 1710 1711 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1712 if (!elem) 1713 goto err; 1714 1715 elem->insn_idx = insn_idx; 1716 elem->prev_insn_idx = prev_insn_idx; 1717 elem->next = env->head; 1718 elem->log_pos = env->log.end_pos; 1719 env->head = elem; 1720 env->stack_size++; 1721 err = copy_verifier_state(&elem->st, cur); 1722 if (err) 1723 goto err; 1724 elem->st.speculative |= speculative; 1725 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1726 verbose(env, "The sequence of %d jumps is too complex.\n", 1727 env->stack_size); 1728 goto err; 1729 } 1730 if (elem->st.parent) { 1731 ++elem->st.parent->branches; 1732 /* WARN_ON(branches > 2) technically makes sense here, 1733 * but 1734 * 1. speculative states will bump 'branches' for non-branch 1735 * instructions 1736 * 2. is_state_visited() heuristics may decide not to create 1737 * a new state for a sequence of branches and all such current 1738 * and cloned states will be pointing to a single parent state 1739 * which might have large 'branches' count. 1740 */ 1741 } 1742 return &elem->st; 1743 err: 1744 free_verifier_state(env->cur_state, true); 1745 env->cur_state = NULL; 1746 /* pop all elements and return */ 1747 while (!pop_stack(env, NULL, NULL, false)); 1748 return NULL; 1749 } 1750 1751 #define CALLER_SAVED_REGS 6 1752 static const int caller_saved[CALLER_SAVED_REGS] = { 1753 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1754 }; 1755 1756 /* This helper doesn't clear reg->id */ 1757 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1758 { 1759 reg->var_off = tnum_const(imm); 1760 reg->smin_value = (s64)imm; 1761 reg->smax_value = (s64)imm; 1762 reg->umin_value = imm; 1763 reg->umax_value = imm; 1764 1765 reg->s32_min_value = (s32)imm; 1766 reg->s32_max_value = (s32)imm; 1767 reg->u32_min_value = (u32)imm; 1768 reg->u32_max_value = (u32)imm; 1769 } 1770 1771 /* Mark the unknown part of a register (variable offset or scalar value) as 1772 * known to have the value @imm. 1773 */ 1774 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1775 { 1776 /* Clear off and union(map_ptr, range) */ 1777 memset(((u8 *)reg) + sizeof(reg->type), 0, 1778 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1779 reg->id = 0; 1780 reg->ref_obj_id = 0; 1781 ___mark_reg_known(reg, imm); 1782 } 1783 1784 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1785 { 1786 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1787 reg->s32_min_value = (s32)imm; 1788 reg->s32_max_value = (s32)imm; 1789 reg->u32_min_value = (u32)imm; 1790 reg->u32_max_value = (u32)imm; 1791 } 1792 1793 /* Mark the 'variable offset' part of a register as zero. This should be 1794 * used only on registers holding a pointer type. 1795 */ 1796 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1797 { 1798 __mark_reg_known(reg, 0); 1799 } 1800 1801 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1802 { 1803 __mark_reg_known(reg, 0); 1804 reg->type = SCALAR_VALUE; 1805 /* all scalars are assumed imprecise initially (unless unprivileged, 1806 * in which case everything is forced to be precise) 1807 */ 1808 reg->precise = !env->bpf_capable; 1809 } 1810 1811 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1812 struct bpf_reg_state *regs, u32 regno) 1813 { 1814 if (WARN_ON(regno >= MAX_BPF_REG)) { 1815 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1816 /* Something bad happened, let's kill all regs */ 1817 for (regno = 0; regno < MAX_BPF_REG; regno++) 1818 __mark_reg_not_init(env, regs + regno); 1819 return; 1820 } 1821 __mark_reg_known_zero(regs + regno); 1822 } 1823 1824 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1825 bool first_slot, int dynptr_id) 1826 { 1827 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1828 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1829 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1830 */ 1831 __mark_reg_known_zero(reg); 1832 reg->type = CONST_PTR_TO_DYNPTR; 1833 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1834 reg->id = dynptr_id; 1835 reg->dynptr.type = type; 1836 reg->dynptr.first_slot = first_slot; 1837 } 1838 1839 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1840 { 1841 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1842 const struct bpf_map *map = reg->map_ptr; 1843 1844 if (map->inner_map_meta) { 1845 reg->type = CONST_PTR_TO_MAP; 1846 reg->map_ptr = map->inner_map_meta; 1847 /* transfer reg's id which is unique for every map_lookup_elem 1848 * as UID of the inner map. 1849 */ 1850 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1851 reg->map_uid = reg->id; 1852 if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE)) 1853 reg->map_uid = reg->id; 1854 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1855 reg->type = PTR_TO_XDP_SOCK; 1856 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1857 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1858 reg->type = PTR_TO_SOCKET; 1859 } else { 1860 reg->type = PTR_TO_MAP_VALUE; 1861 } 1862 return; 1863 } 1864 1865 reg->type &= ~PTR_MAYBE_NULL; 1866 } 1867 1868 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1869 struct btf_field_graph_root *ds_head) 1870 { 1871 __mark_reg_known_zero(®s[regno]); 1872 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1873 regs[regno].btf = ds_head->btf; 1874 regs[regno].btf_id = ds_head->value_btf_id; 1875 regs[regno].off = ds_head->node_offset; 1876 } 1877 1878 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1879 { 1880 return type_is_pkt_pointer(reg->type); 1881 } 1882 1883 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1884 { 1885 return reg_is_pkt_pointer(reg) || 1886 reg->type == PTR_TO_PACKET_END; 1887 } 1888 1889 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 1890 { 1891 return base_type(reg->type) == PTR_TO_MEM && 1892 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 1893 } 1894 1895 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1896 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1897 enum bpf_reg_type which) 1898 { 1899 /* The register can already have a range from prior markings. 1900 * This is fine as long as it hasn't been advanced from its 1901 * origin. 1902 */ 1903 return reg->type == which && 1904 reg->id == 0 && 1905 reg->off == 0 && 1906 tnum_equals_const(reg->var_off, 0); 1907 } 1908 1909 /* Reset the min/max bounds of a register */ 1910 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1911 { 1912 reg->smin_value = S64_MIN; 1913 reg->smax_value = S64_MAX; 1914 reg->umin_value = 0; 1915 reg->umax_value = U64_MAX; 1916 1917 reg->s32_min_value = S32_MIN; 1918 reg->s32_max_value = S32_MAX; 1919 reg->u32_min_value = 0; 1920 reg->u32_max_value = U32_MAX; 1921 } 1922 1923 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1924 { 1925 reg->smin_value = S64_MIN; 1926 reg->smax_value = S64_MAX; 1927 reg->umin_value = 0; 1928 reg->umax_value = U64_MAX; 1929 } 1930 1931 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1932 { 1933 reg->s32_min_value = S32_MIN; 1934 reg->s32_max_value = S32_MAX; 1935 reg->u32_min_value = 0; 1936 reg->u32_max_value = U32_MAX; 1937 } 1938 1939 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1940 { 1941 struct tnum var32_off = tnum_subreg(reg->var_off); 1942 1943 /* min signed is max(sign bit) | min(other bits) */ 1944 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1945 var32_off.value | (var32_off.mask & S32_MIN)); 1946 /* max signed is min(sign bit) | max(other bits) */ 1947 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1948 var32_off.value | (var32_off.mask & S32_MAX)); 1949 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1950 reg->u32_max_value = min(reg->u32_max_value, 1951 (u32)(var32_off.value | var32_off.mask)); 1952 } 1953 1954 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1955 { 1956 /* min signed is max(sign bit) | min(other bits) */ 1957 reg->smin_value = max_t(s64, reg->smin_value, 1958 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1959 /* max signed is min(sign bit) | max(other bits) */ 1960 reg->smax_value = min_t(s64, reg->smax_value, 1961 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1962 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1963 reg->umax_value = min(reg->umax_value, 1964 reg->var_off.value | reg->var_off.mask); 1965 } 1966 1967 static void __update_reg_bounds(struct bpf_reg_state *reg) 1968 { 1969 __update_reg32_bounds(reg); 1970 __update_reg64_bounds(reg); 1971 } 1972 1973 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1974 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1975 { 1976 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 1977 * bits to improve our u32/s32 boundaries. 1978 * 1979 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 1980 * u64) is pretty trivial, it's obvious that in u32 we'll also have 1981 * [10, 20] range. But this property holds for any 64-bit range as 1982 * long as upper 32 bits in that entire range of values stay the same. 1983 * 1984 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 1985 * in decimal) has the same upper 32 bits throughout all the values in 1986 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 1987 * range. 1988 * 1989 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 1990 * following the rules outlined below about u64/s64 correspondence 1991 * (which equally applies to u32 vs s32 correspondence). In general it 1992 * depends on actual hexadecimal values of 32-bit range. They can form 1993 * only valid u32, or only valid s32 ranges in some cases. 1994 * 1995 * So we use all these insights to derive bounds for subregisters here. 1996 */ 1997 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 1998 /* u64 to u32 casting preserves validity of low 32 bits as 1999 * a range, if upper 32 bits are the same 2000 */ 2001 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 2002 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 2003 2004 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 2005 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2006 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2007 } 2008 } 2009 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2010 /* low 32 bits should form a proper u32 range */ 2011 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2012 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2013 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2014 } 2015 /* low 32 bits should form a proper s32 range */ 2016 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2017 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2018 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2019 } 2020 } 2021 /* Special case where upper bits form a small sequence of two 2022 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2023 * 0x00000000 is also valid), while lower bits form a proper s32 range 2024 * going from negative numbers to positive numbers. E.g., let's say we 2025 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2026 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2027 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2028 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2029 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2030 * upper 32 bits. As a random example, s64 range 2031 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2032 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2033 */ 2034 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2035 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2036 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2037 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2038 } 2039 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2040 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2041 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2042 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2043 } 2044 /* if u32 range forms a valid s32 range (due to matching sign bit), 2045 * try to learn from that 2046 */ 2047 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2048 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2049 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2050 } 2051 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2052 * are the same, so combine. This works even in the negative case, e.g. 2053 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2054 */ 2055 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2056 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2057 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2058 } 2059 } 2060 2061 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2062 { 2063 /* If u64 range forms a valid s64 range (due to matching sign bit), 2064 * try to learn from that. Let's do a bit of ASCII art to see when 2065 * this is happening. Let's take u64 range first: 2066 * 2067 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2068 * |-------------------------------|--------------------------------| 2069 * 2070 * Valid u64 range is formed when umin and umax are anywhere in the 2071 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2072 * straightforward. Let's see how s64 range maps onto the same range 2073 * of values, annotated below the line for comparison: 2074 * 2075 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2076 * |-------------------------------|--------------------------------| 2077 * 0 S64_MAX S64_MIN -1 2078 * 2079 * So s64 values basically start in the middle and they are logically 2080 * contiguous to the right of it, wrapping around from -1 to 0, and 2081 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2082 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2083 * more visually as mapped to sign-agnostic range of hex values. 2084 * 2085 * u64 start u64 end 2086 * _______________________________________________________________ 2087 * / \ 2088 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2089 * |-------------------------------|--------------------------------| 2090 * 0 S64_MAX S64_MIN -1 2091 * / \ 2092 * >------------------------------ -------------------------------> 2093 * s64 continues... s64 end s64 start s64 "midpoint" 2094 * 2095 * What this means is that, in general, we can't always derive 2096 * something new about u64 from any random s64 range, and vice versa. 2097 * 2098 * But we can do that in two particular cases. One is when entire 2099 * u64/s64 range is *entirely* contained within left half of the above 2100 * diagram or when it is *entirely* contained in the right half. I.e.: 2101 * 2102 * |-------------------------------|--------------------------------| 2103 * ^ ^ ^ ^ 2104 * A B C D 2105 * 2106 * [A, B] and [C, D] are contained entirely in their respective halves 2107 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2108 * will be non-negative both as u64 and s64 (and in fact it will be 2109 * identical ranges no matter the signedness). [C, D] treated as s64 2110 * will be a range of negative values, while in u64 it will be 2111 * non-negative range of values larger than 0x8000000000000000. 2112 * 2113 * Now, any other range here can't be represented in both u64 and s64 2114 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2115 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2116 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2117 * for example. Similarly, valid s64 range [D, A] (going from negative 2118 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2119 * ranges as u64. Currently reg_state can't represent two segments per 2120 * numeric domain, so in such situations we can only derive maximal 2121 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2122 * 2123 * So we use these facts to derive umin/umax from smin/smax and vice 2124 * versa only if they stay within the same "half". This is equivalent 2125 * to checking sign bit: lower half will have sign bit as zero, upper 2126 * half have sign bit 1. Below in code we simplify this by just 2127 * casting umin/umax as smin/smax and checking if they form valid 2128 * range, and vice versa. Those are equivalent checks. 2129 */ 2130 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2131 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2132 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2133 } 2134 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2135 * are the same, so combine. This works even in the negative case, e.g. 2136 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2137 */ 2138 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2139 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2140 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2141 } 2142 } 2143 2144 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2145 { 2146 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2147 * values on both sides of 64-bit range in hope to have tighter range. 2148 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2149 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2150 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2151 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2152 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2153 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2154 * We just need to make sure that derived bounds we are intersecting 2155 * with are well-formed ranges in respective s64 or u64 domain, just 2156 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2157 */ 2158 __u64 new_umin, new_umax; 2159 __s64 new_smin, new_smax; 2160 2161 /* u32 -> u64 tightening, it's always well-formed */ 2162 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2163 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2164 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2165 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2166 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2167 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2168 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2169 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2170 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2171 2172 /* if s32 can be treated as valid u32 range, we can use it as well */ 2173 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2174 /* s32 -> u64 tightening */ 2175 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2176 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2177 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2178 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2179 /* s32 -> s64 tightening */ 2180 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2181 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2182 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2183 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2184 } 2185 } 2186 2187 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2188 { 2189 __reg32_deduce_bounds(reg); 2190 __reg64_deduce_bounds(reg); 2191 __reg_deduce_mixed_bounds(reg); 2192 } 2193 2194 /* Attempts to improve var_off based on unsigned min/max information */ 2195 static void __reg_bound_offset(struct bpf_reg_state *reg) 2196 { 2197 struct tnum var64_off = tnum_intersect(reg->var_off, 2198 tnum_range(reg->umin_value, 2199 reg->umax_value)); 2200 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2201 tnum_range(reg->u32_min_value, 2202 reg->u32_max_value)); 2203 2204 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2205 } 2206 2207 static void reg_bounds_sync(struct bpf_reg_state *reg) 2208 { 2209 /* We might have learned new bounds from the var_off. */ 2210 __update_reg_bounds(reg); 2211 /* We might have learned something about the sign bit. */ 2212 __reg_deduce_bounds(reg); 2213 __reg_deduce_bounds(reg); 2214 /* We might have learned some bits from the bounds. */ 2215 __reg_bound_offset(reg); 2216 /* Intersecting with the old var_off might have improved our bounds 2217 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2218 * then new var_off is (0; 0x7f...fc) which improves our umax. 2219 */ 2220 __update_reg_bounds(reg); 2221 } 2222 2223 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2224 struct bpf_reg_state *reg, const char *ctx) 2225 { 2226 const char *msg; 2227 2228 if (reg->umin_value > reg->umax_value || 2229 reg->smin_value > reg->smax_value || 2230 reg->u32_min_value > reg->u32_max_value || 2231 reg->s32_min_value > reg->s32_max_value) { 2232 msg = "range bounds violation"; 2233 goto out; 2234 } 2235 2236 if (tnum_is_const(reg->var_off)) { 2237 u64 uval = reg->var_off.value; 2238 s64 sval = (s64)uval; 2239 2240 if (reg->umin_value != uval || reg->umax_value != uval || 2241 reg->smin_value != sval || reg->smax_value != sval) { 2242 msg = "const tnum out of sync with range bounds"; 2243 goto out; 2244 } 2245 } 2246 2247 if (tnum_subreg_is_const(reg->var_off)) { 2248 u32 uval32 = tnum_subreg(reg->var_off).value; 2249 s32 sval32 = (s32)uval32; 2250 2251 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2252 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2253 msg = "const subreg tnum out of sync with range bounds"; 2254 goto out; 2255 } 2256 } 2257 2258 return 0; 2259 out: 2260 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2261 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", 2262 ctx, msg, reg->umin_value, reg->umax_value, 2263 reg->smin_value, reg->smax_value, 2264 reg->u32_min_value, reg->u32_max_value, 2265 reg->s32_min_value, reg->s32_max_value, 2266 reg->var_off.value, reg->var_off.mask); 2267 if (env->test_reg_invariants) 2268 return -EFAULT; 2269 __mark_reg_unbounded(reg); 2270 return 0; 2271 } 2272 2273 static bool __reg32_bound_s64(s32 a) 2274 { 2275 return a >= 0 && a <= S32_MAX; 2276 } 2277 2278 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2279 { 2280 reg->umin_value = reg->u32_min_value; 2281 reg->umax_value = reg->u32_max_value; 2282 2283 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2284 * be positive otherwise set to worse case bounds and refine later 2285 * from tnum. 2286 */ 2287 if (__reg32_bound_s64(reg->s32_min_value) && 2288 __reg32_bound_s64(reg->s32_max_value)) { 2289 reg->smin_value = reg->s32_min_value; 2290 reg->smax_value = reg->s32_max_value; 2291 } else { 2292 reg->smin_value = 0; 2293 reg->smax_value = U32_MAX; 2294 } 2295 } 2296 2297 /* Mark a register as having a completely unknown (scalar) value. */ 2298 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2299 { 2300 /* 2301 * Clear type, off, and union(map_ptr, range) and 2302 * padding between 'type' and union 2303 */ 2304 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2305 reg->type = SCALAR_VALUE; 2306 reg->id = 0; 2307 reg->ref_obj_id = 0; 2308 reg->var_off = tnum_unknown; 2309 reg->frameno = 0; 2310 reg->precise = false; 2311 __mark_reg_unbounded(reg); 2312 } 2313 2314 /* Mark a register as having a completely unknown (scalar) value, 2315 * initialize .precise as true when not bpf capable. 2316 */ 2317 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2318 struct bpf_reg_state *reg) 2319 { 2320 __mark_reg_unknown_imprecise(reg); 2321 reg->precise = !env->bpf_capable; 2322 } 2323 2324 static void mark_reg_unknown(struct bpf_verifier_env *env, 2325 struct bpf_reg_state *regs, u32 regno) 2326 { 2327 if (WARN_ON(regno >= MAX_BPF_REG)) { 2328 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2329 /* Something bad happened, let's kill all regs except FP */ 2330 for (regno = 0; regno < BPF_REG_FP; regno++) 2331 __mark_reg_not_init(env, regs + regno); 2332 return; 2333 } 2334 __mark_reg_unknown(env, regs + regno); 2335 } 2336 2337 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2338 struct bpf_reg_state *reg) 2339 { 2340 __mark_reg_unknown(env, reg); 2341 reg->type = NOT_INIT; 2342 } 2343 2344 static void mark_reg_not_init(struct bpf_verifier_env *env, 2345 struct bpf_reg_state *regs, u32 regno) 2346 { 2347 if (WARN_ON(regno >= MAX_BPF_REG)) { 2348 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2349 /* Something bad happened, let's kill all regs except FP */ 2350 for (regno = 0; regno < BPF_REG_FP; regno++) 2351 __mark_reg_not_init(env, regs + regno); 2352 return; 2353 } 2354 __mark_reg_not_init(env, regs + regno); 2355 } 2356 2357 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2358 struct bpf_reg_state *regs, u32 regno, 2359 enum bpf_reg_type reg_type, 2360 struct btf *btf, u32 btf_id, 2361 enum bpf_type_flag flag) 2362 { 2363 if (reg_type == SCALAR_VALUE) { 2364 mark_reg_unknown(env, regs, regno); 2365 return; 2366 } 2367 mark_reg_known_zero(env, regs, regno); 2368 regs[regno].type = PTR_TO_BTF_ID | flag; 2369 regs[regno].btf = btf; 2370 regs[regno].btf_id = btf_id; 2371 } 2372 2373 #define DEF_NOT_SUBREG (0) 2374 static void init_reg_state(struct bpf_verifier_env *env, 2375 struct bpf_func_state *state) 2376 { 2377 struct bpf_reg_state *regs = state->regs; 2378 int i; 2379 2380 for (i = 0; i < MAX_BPF_REG; i++) { 2381 mark_reg_not_init(env, regs, i); 2382 regs[i].live = REG_LIVE_NONE; 2383 regs[i].parent = NULL; 2384 regs[i].subreg_def = DEF_NOT_SUBREG; 2385 } 2386 2387 /* frame pointer */ 2388 regs[BPF_REG_FP].type = PTR_TO_STACK; 2389 mark_reg_known_zero(env, regs, BPF_REG_FP); 2390 regs[BPF_REG_FP].frameno = state->frameno; 2391 } 2392 2393 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2394 { 2395 return (struct bpf_retval_range){ minval, maxval }; 2396 } 2397 2398 #define BPF_MAIN_FUNC (-1) 2399 static void init_func_state(struct bpf_verifier_env *env, 2400 struct bpf_func_state *state, 2401 int callsite, int frameno, int subprogno) 2402 { 2403 state->callsite = callsite; 2404 state->frameno = frameno; 2405 state->subprogno = subprogno; 2406 state->callback_ret_range = retval_range(0, 0); 2407 init_reg_state(env, state); 2408 mark_verifier_state_scratched(env); 2409 } 2410 2411 /* Similar to push_stack(), but for async callbacks */ 2412 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2413 int insn_idx, int prev_insn_idx, 2414 int subprog, bool is_sleepable) 2415 { 2416 struct bpf_verifier_stack_elem *elem; 2417 struct bpf_func_state *frame; 2418 2419 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2420 if (!elem) 2421 goto err; 2422 2423 elem->insn_idx = insn_idx; 2424 elem->prev_insn_idx = prev_insn_idx; 2425 elem->next = env->head; 2426 elem->log_pos = env->log.end_pos; 2427 env->head = elem; 2428 env->stack_size++; 2429 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2430 verbose(env, 2431 "The sequence of %d jumps is too complex for async cb.\n", 2432 env->stack_size); 2433 goto err; 2434 } 2435 /* Unlike push_stack() do not copy_verifier_state(). 2436 * The caller state doesn't matter. 2437 * This is async callback. It starts in a fresh stack. 2438 * Initialize it similar to do_check_common(). 2439 */ 2440 elem->st.branches = 1; 2441 elem->st.in_sleepable = is_sleepable; 2442 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2443 if (!frame) 2444 goto err; 2445 init_func_state(env, frame, 2446 BPF_MAIN_FUNC /* callsite */, 2447 0 /* frameno within this callchain */, 2448 subprog /* subprog number within this prog */); 2449 elem->st.frame[0] = frame; 2450 return &elem->st; 2451 err: 2452 free_verifier_state(env->cur_state, true); 2453 env->cur_state = NULL; 2454 /* pop all elements and return */ 2455 while (!pop_stack(env, NULL, NULL, false)); 2456 return NULL; 2457 } 2458 2459 2460 enum reg_arg_type { 2461 SRC_OP, /* register is used as source operand */ 2462 DST_OP, /* register is used as destination operand */ 2463 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2464 }; 2465 2466 static int cmp_subprogs(const void *a, const void *b) 2467 { 2468 return ((struct bpf_subprog_info *)a)->start - 2469 ((struct bpf_subprog_info *)b)->start; 2470 } 2471 2472 static int find_subprog(struct bpf_verifier_env *env, int off) 2473 { 2474 struct bpf_subprog_info *p; 2475 2476 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2477 sizeof(env->subprog_info[0]), cmp_subprogs); 2478 if (!p) 2479 return -ENOENT; 2480 return p - env->subprog_info; 2481 2482 } 2483 2484 static int add_subprog(struct bpf_verifier_env *env, int off) 2485 { 2486 int insn_cnt = env->prog->len; 2487 int ret; 2488 2489 if (off >= insn_cnt || off < 0) { 2490 verbose(env, "call to invalid destination\n"); 2491 return -EINVAL; 2492 } 2493 ret = find_subprog(env, off); 2494 if (ret >= 0) 2495 return ret; 2496 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2497 verbose(env, "too many subprograms\n"); 2498 return -E2BIG; 2499 } 2500 /* determine subprog starts. The end is one before the next starts */ 2501 env->subprog_info[env->subprog_cnt++].start = off; 2502 sort(env->subprog_info, env->subprog_cnt, 2503 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2504 return env->subprog_cnt - 1; 2505 } 2506 2507 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 2508 { 2509 struct bpf_prog_aux *aux = env->prog->aux; 2510 struct btf *btf = aux->btf; 2511 const struct btf_type *t; 2512 u32 main_btf_id, id; 2513 const char *name; 2514 int ret, i; 2515 2516 /* Non-zero func_info_cnt implies valid btf */ 2517 if (!aux->func_info_cnt) 2518 return 0; 2519 main_btf_id = aux->func_info[0].type_id; 2520 2521 t = btf_type_by_id(btf, main_btf_id); 2522 if (!t) { 2523 verbose(env, "invalid btf id for main subprog in func_info\n"); 2524 return -EINVAL; 2525 } 2526 2527 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 2528 if (IS_ERR(name)) { 2529 ret = PTR_ERR(name); 2530 /* If there is no tag present, there is no exception callback */ 2531 if (ret == -ENOENT) 2532 ret = 0; 2533 else if (ret == -EEXIST) 2534 verbose(env, "multiple exception callback tags for main subprog\n"); 2535 return ret; 2536 } 2537 2538 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 2539 if (ret < 0) { 2540 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 2541 return ret; 2542 } 2543 id = ret; 2544 t = btf_type_by_id(btf, id); 2545 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 2546 verbose(env, "exception callback '%s' must have global linkage\n", name); 2547 return -EINVAL; 2548 } 2549 ret = 0; 2550 for (i = 0; i < aux->func_info_cnt; i++) { 2551 if (aux->func_info[i].type_id != id) 2552 continue; 2553 ret = aux->func_info[i].insn_off; 2554 /* Further func_info and subprog checks will also happen 2555 * later, so assume this is the right insn_off for now. 2556 */ 2557 if (!ret) { 2558 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 2559 ret = -EINVAL; 2560 } 2561 } 2562 if (!ret) { 2563 verbose(env, "exception callback type id not found in func_info\n"); 2564 ret = -EINVAL; 2565 } 2566 return ret; 2567 } 2568 2569 #define MAX_KFUNC_DESCS 256 2570 #define MAX_KFUNC_BTFS 256 2571 2572 struct bpf_kfunc_desc { 2573 struct btf_func_model func_model; 2574 u32 func_id; 2575 s32 imm; 2576 u16 offset; 2577 unsigned long addr; 2578 }; 2579 2580 struct bpf_kfunc_btf { 2581 struct btf *btf; 2582 struct module *module; 2583 u16 offset; 2584 }; 2585 2586 struct bpf_kfunc_desc_tab { 2587 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2588 * verification. JITs do lookups by bpf_insn, where func_id may not be 2589 * available, therefore at the end of verification do_misc_fixups() 2590 * sorts this by imm and offset. 2591 */ 2592 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2593 u32 nr_descs; 2594 }; 2595 2596 struct bpf_kfunc_btf_tab { 2597 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2598 u32 nr_descs; 2599 }; 2600 2601 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2602 { 2603 const struct bpf_kfunc_desc *d0 = a; 2604 const struct bpf_kfunc_desc *d1 = b; 2605 2606 /* func_id is not greater than BTF_MAX_TYPE */ 2607 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2608 } 2609 2610 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2611 { 2612 const struct bpf_kfunc_btf *d0 = a; 2613 const struct bpf_kfunc_btf *d1 = b; 2614 2615 return d0->offset - d1->offset; 2616 } 2617 2618 static const struct bpf_kfunc_desc * 2619 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2620 { 2621 struct bpf_kfunc_desc desc = { 2622 .func_id = func_id, 2623 .offset = offset, 2624 }; 2625 struct bpf_kfunc_desc_tab *tab; 2626 2627 tab = prog->aux->kfunc_tab; 2628 return bsearch(&desc, tab->descs, tab->nr_descs, 2629 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2630 } 2631 2632 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2633 u16 btf_fd_idx, u8 **func_addr) 2634 { 2635 const struct bpf_kfunc_desc *desc; 2636 2637 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2638 if (!desc) 2639 return -EFAULT; 2640 2641 *func_addr = (u8 *)desc->addr; 2642 return 0; 2643 } 2644 2645 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2646 s16 offset) 2647 { 2648 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2649 struct bpf_kfunc_btf_tab *tab; 2650 struct bpf_kfunc_btf *b; 2651 struct module *mod; 2652 struct btf *btf; 2653 int btf_fd; 2654 2655 tab = env->prog->aux->kfunc_btf_tab; 2656 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2657 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2658 if (!b) { 2659 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2660 verbose(env, "too many different module BTFs\n"); 2661 return ERR_PTR(-E2BIG); 2662 } 2663 2664 if (bpfptr_is_null(env->fd_array)) { 2665 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2666 return ERR_PTR(-EPROTO); 2667 } 2668 2669 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2670 offset * sizeof(btf_fd), 2671 sizeof(btf_fd))) 2672 return ERR_PTR(-EFAULT); 2673 2674 btf = btf_get_by_fd(btf_fd); 2675 if (IS_ERR(btf)) { 2676 verbose(env, "invalid module BTF fd specified\n"); 2677 return btf; 2678 } 2679 2680 if (!btf_is_module(btf)) { 2681 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2682 btf_put(btf); 2683 return ERR_PTR(-EINVAL); 2684 } 2685 2686 mod = btf_try_get_module(btf); 2687 if (!mod) { 2688 btf_put(btf); 2689 return ERR_PTR(-ENXIO); 2690 } 2691 2692 b = &tab->descs[tab->nr_descs++]; 2693 b->btf = btf; 2694 b->module = mod; 2695 b->offset = offset; 2696 2697 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2698 kfunc_btf_cmp_by_off, NULL); 2699 } 2700 return b->btf; 2701 } 2702 2703 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2704 { 2705 if (!tab) 2706 return; 2707 2708 while (tab->nr_descs--) { 2709 module_put(tab->descs[tab->nr_descs].module); 2710 btf_put(tab->descs[tab->nr_descs].btf); 2711 } 2712 kfree(tab); 2713 } 2714 2715 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2716 { 2717 if (offset) { 2718 if (offset < 0) { 2719 /* In the future, this can be allowed to increase limit 2720 * of fd index into fd_array, interpreted as u16. 2721 */ 2722 verbose(env, "negative offset disallowed for kernel module function call\n"); 2723 return ERR_PTR(-EINVAL); 2724 } 2725 2726 return __find_kfunc_desc_btf(env, offset); 2727 } 2728 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2729 } 2730 2731 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2732 { 2733 const struct btf_type *func, *func_proto; 2734 struct bpf_kfunc_btf_tab *btf_tab; 2735 struct bpf_kfunc_desc_tab *tab; 2736 struct bpf_prog_aux *prog_aux; 2737 struct bpf_kfunc_desc *desc; 2738 const char *func_name; 2739 struct btf *desc_btf; 2740 unsigned long call_imm; 2741 unsigned long addr; 2742 int err; 2743 2744 prog_aux = env->prog->aux; 2745 tab = prog_aux->kfunc_tab; 2746 btf_tab = prog_aux->kfunc_btf_tab; 2747 if (!tab) { 2748 if (!btf_vmlinux) { 2749 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2750 return -ENOTSUPP; 2751 } 2752 2753 if (!env->prog->jit_requested) { 2754 verbose(env, "JIT is required for calling kernel function\n"); 2755 return -ENOTSUPP; 2756 } 2757 2758 if (!bpf_jit_supports_kfunc_call()) { 2759 verbose(env, "JIT does not support calling kernel function\n"); 2760 return -ENOTSUPP; 2761 } 2762 2763 if (!env->prog->gpl_compatible) { 2764 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2765 return -EINVAL; 2766 } 2767 2768 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2769 if (!tab) 2770 return -ENOMEM; 2771 prog_aux->kfunc_tab = tab; 2772 } 2773 2774 /* func_id == 0 is always invalid, but instead of returning an error, be 2775 * conservative and wait until the code elimination pass before returning 2776 * error, so that invalid calls that get pruned out can be in BPF programs 2777 * loaded from userspace. It is also required that offset be untouched 2778 * for such calls. 2779 */ 2780 if (!func_id && !offset) 2781 return 0; 2782 2783 if (!btf_tab && offset) { 2784 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2785 if (!btf_tab) 2786 return -ENOMEM; 2787 prog_aux->kfunc_btf_tab = btf_tab; 2788 } 2789 2790 desc_btf = find_kfunc_desc_btf(env, offset); 2791 if (IS_ERR(desc_btf)) { 2792 verbose(env, "failed to find BTF for kernel function\n"); 2793 return PTR_ERR(desc_btf); 2794 } 2795 2796 if (find_kfunc_desc(env->prog, func_id, offset)) 2797 return 0; 2798 2799 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2800 verbose(env, "too many different kernel function calls\n"); 2801 return -E2BIG; 2802 } 2803 2804 func = btf_type_by_id(desc_btf, func_id); 2805 if (!func || !btf_type_is_func(func)) { 2806 verbose(env, "kernel btf_id %u is not a function\n", 2807 func_id); 2808 return -EINVAL; 2809 } 2810 func_proto = btf_type_by_id(desc_btf, func->type); 2811 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2812 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2813 func_id); 2814 return -EINVAL; 2815 } 2816 2817 func_name = btf_name_by_offset(desc_btf, func->name_off); 2818 addr = kallsyms_lookup_name(func_name); 2819 if (!addr) { 2820 verbose(env, "cannot find address for kernel function %s\n", 2821 func_name); 2822 return -EINVAL; 2823 } 2824 specialize_kfunc(env, func_id, offset, &addr); 2825 2826 if (bpf_jit_supports_far_kfunc_call()) { 2827 call_imm = func_id; 2828 } else { 2829 call_imm = BPF_CALL_IMM(addr); 2830 /* Check whether the relative offset overflows desc->imm */ 2831 if ((unsigned long)(s32)call_imm != call_imm) { 2832 verbose(env, "address of kernel function %s is out of range\n", 2833 func_name); 2834 return -EINVAL; 2835 } 2836 } 2837 2838 if (bpf_dev_bound_kfunc_id(func_id)) { 2839 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2840 if (err) 2841 return err; 2842 } 2843 2844 desc = &tab->descs[tab->nr_descs++]; 2845 desc->func_id = func_id; 2846 desc->imm = call_imm; 2847 desc->offset = offset; 2848 desc->addr = addr; 2849 err = btf_distill_func_proto(&env->log, desc_btf, 2850 func_proto, func_name, 2851 &desc->func_model); 2852 if (!err) 2853 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2854 kfunc_desc_cmp_by_id_off, NULL); 2855 return err; 2856 } 2857 2858 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2859 { 2860 const struct bpf_kfunc_desc *d0 = a; 2861 const struct bpf_kfunc_desc *d1 = b; 2862 2863 if (d0->imm != d1->imm) 2864 return d0->imm < d1->imm ? -1 : 1; 2865 if (d0->offset != d1->offset) 2866 return d0->offset < d1->offset ? -1 : 1; 2867 return 0; 2868 } 2869 2870 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2871 { 2872 struct bpf_kfunc_desc_tab *tab; 2873 2874 tab = prog->aux->kfunc_tab; 2875 if (!tab) 2876 return; 2877 2878 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2879 kfunc_desc_cmp_by_imm_off, NULL); 2880 } 2881 2882 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2883 { 2884 return !!prog->aux->kfunc_tab; 2885 } 2886 2887 const struct btf_func_model * 2888 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2889 const struct bpf_insn *insn) 2890 { 2891 const struct bpf_kfunc_desc desc = { 2892 .imm = insn->imm, 2893 .offset = insn->off, 2894 }; 2895 const struct bpf_kfunc_desc *res; 2896 struct bpf_kfunc_desc_tab *tab; 2897 2898 tab = prog->aux->kfunc_tab; 2899 res = bsearch(&desc, tab->descs, tab->nr_descs, 2900 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2901 2902 return res ? &res->func_model : NULL; 2903 } 2904 2905 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2906 { 2907 struct bpf_subprog_info *subprog = env->subprog_info; 2908 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 2909 struct bpf_insn *insn = env->prog->insnsi; 2910 2911 /* Add entry function. */ 2912 ret = add_subprog(env, 0); 2913 if (ret) 2914 return ret; 2915 2916 for (i = 0; i < insn_cnt; i++, insn++) { 2917 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2918 !bpf_pseudo_kfunc_call(insn)) 2919 continue; 2920 2921 if (!env->bpf_capable) { 2922 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2923 return -EPERM; 2924 } 2925 2926 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2927 ret = add_subprog(env, i + insn->imm + 1); 2928 else 2929 ret = add_kfunc_call(env, insn->imm, insn->off); 2930 2931 if (ret < 0) 2932 return ret; 2933 } 2934 2935 ret = bpf_find_exception_callback_insn_off(env); 2936 if (ret < 0) 2937 return ret; 2938 ex_cb_insn = ret; 2939 2940 /* If ex_cb_insn > 0, this means that the main program has a subprog 2941 * marked using BTF decl tag to serve as the exception callback. 2942 */ 2943 if (ex_cb_insn) { 2944 ret = add_subprog(env, ex_cb_insn); 2945 if (ret < 0) 2946 return ret; 2947 for (i = 1; i < env->subprog_cnt; i++) { 2948 if (env->subprog_info[i].start != ex_cb_insn) 2949 continue; 2950 env->exception_callback_subprog = i; 2951 mark_subprog_exc_cb(env, i); 2952 break; 2953 } 2954 } 2955 2956 /* Add a fake 'exit' subprog which could simplify subprog iteration 2957 * logic. 'subprog_cnt' should not be increased. 2958 */ 2959 subprog[env->subprog_cnt].start = insn_cnt; 2960 2961 if (env->log.level & BPF_LOG_LEVEL2) 2962 for (i = 0; i < env->subprog_cnt; i++) 2963 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2964 2965 return 0; 2966 } 2967 2968 static int check_subprogs(struct bpf_verifier_env *env) 2969 { 2970 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2971 struct bpf_subprog_info *subprog = env->subprog_info; 2972 struct bpf_insn *insn = env->prog->insnsi; 2973 int insn_cnt = env->prog->len; 2974 2975 /* now check that all jumps are within the same subprog */ 2976 subprog_start = subprog[cur_subprog].start; 2977 subprog_end = subprog[cur_subprog + 1].start; 2978 for (i = 0; i < insn_cnt; i++) { 2979 u8 code = insn[i].code; 2980 2981 if (code == (BPF_JMP | BPF_CALL) && 2982 insn[i].src_reg == 0 && 2983 insn[i].imm == BPF_FUNC_tail_call) 2984 subprog[cur_subprog].has_tail_call = true; 2985 if (BPF_CLASS(code) == BPF_LD && 2986 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2987 subprog[cur_subprog].has_ld_abs = true; 2988 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2989 goto next; 2990 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2991 goto next; 2992 if (code == (BPF_JMP32 | BPF_JA)) 2993 off = i + insn[i].imm + 1; 2994 else 2995 off = i + insn[i].off + 1; 2996 if (off < subprog_start || off >= subprog_end) { 2997 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2998 return -EINVAL; 2999 } 3000 next: 3001 if (i == subprog_end - 1) { 3002 /* to avoid fall-through from one subprog into another 3003 * the last insn of the subprog should be either exit 3004 * or unconditional jump back or bpf_throw call 3005 */ 3006 if (code != (BPF_JMP | BPF_EXIT) && 3007 code != (BPF_JMP32 | BPF_JA) && 3008 code != (BPF_JMP | BPF_JA)) { 3009 verbose(env, "last insn is not an exit or jmp\n"); 3010 return -EINVAL; 3011 } 3012 subprog_start = subprog_end; 3013 cur_subprog++; 3014 if (cur_subprog < env->subprog_cnt) 3015 subprog_end = subprog[cur_subprog + 1].start; 3016 } 3017 } 3018 return 0; 3019 } 3020 3021 /* Parentage chain of this register (or stack slot) should take care of all 3022 * issues like callee-saved registers, stack slot allocation time, etc. 3023 */ 3024 static int mark_reg_read(struct bpf_verifier_env *env, 3025 const struct bpf_reg_state *state, 3026 struct bpf_reg_state *parent, u8 flag) 3027 { 3028 bool writes = parent == state->parent; /* Observe write marks */ 3029 int cnt = 0; 3030 3031 while (parent) { 3032 /* if read wasn't screened by an earlier write ... */ 3033 if (writes && state->live & REG_LIVE_WRITTEN) 3034 break; 3035 if (parent->live & REG_LIVE_DONE) { 3036 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3037 reg_type_str(env, parent->type), 3038 parent->var_off.value, parent->off); 3039 return -EFAULT; 3040 } 3041 /* The first condition is more likely to be true than the 3042 * second, checked it first. 3043 */ 3044 if ((parent->live & REG_LIVE_READ) == flag || 3045 parent->live & REG_LIVE_READ64) 3046 /* The parentage chain never changes and 3047 * this parent was already marked as LIVE_READ. 3048 * There is no need to keep walking the chain again and 3049 * keep re-marking all parents as LIVE_READ. 3050 * This case happens when the same register is read 3051 * multiple times without writes into it in-between. 3052 * Also, if parent has the stronger REG_LIVE_READ64 set, 3053 * then no need to set the weak REG_LIVE_READ32. 3054 */ 3055 break; 3056 /* ... then we depend on parent's value */ 3057 parent->live |= flag; 3058 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3059 if (flag == REG_LIVE_READ64) 3060 parent->live &= ~REG_LIVE_READ32; 3061 state = parent; 3062 parent = state->parent; 3063 writes = true; 3064 cnt++; 3065 } 3066 3067 if (env->longest_mark_read_walk < cnt) 3068 env->longest_mark_read_walk = cnt; 3069 return 0; 3070 } 3071 3072 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3073 { 3074 struct bpf_func_state *state = func(env, reg); 3075 int spi, ret; 3076 3077 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3078 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3079 * check_kfunc_call. 3080 */ 3081 if (reg->type == CONST_PTR_TO_DYNPTR) 3082 return 0; 3083 spi = dynptr_get_spi(env, reg); 3084 if (spi < 0) 3085 return spi; 3086 /* Caller ensures dynptr is valid and initialized, which means spi is in 3087 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3088 * read. 3089 */ 3090 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3091 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3092 if (ret) 3093 return ret; 3094 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3095 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3096 } 3097 3098 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3099 int spi, int nr_slots) 3100 { 3101 struct bpf_func_state *state = func(env, reg); 3102 int err, i; 3103 3104 for (i = 0; i < nr_slots; i++) { 3105 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3106 3107 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3108 if (err) 3109 return err; 3110 3111 mark_stack_slot_scratched(env, spi - i); 3112 } 3113 3114 return 0; 3115 } 3116 3117 /* This function is supposed to be used by the following 32-bit optimization 3118 * code only. It returns TRUE if the source or destination register operates 3119 * on 64-bit, otherwise return FALSE. 3120 */ 3121 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3122 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3123 { 3124 u8 code, class, op; 3125 3126 code = insn->code; 3127 class = BPF_CLASS(code); 3128 op = BPF_OP(code); 3129 if (class == BPF_JMP) { 3130 /* BPF_EXIT for "main" will reach here. Return TRUE 3131 * conservatively. 3132 */ 3133 if (op == BPF_EXIT) 3134 return true; 3135 if (op == BPF_CALL) { 3136 /* BPF to BPF call will reach here because of marking 3137 * caller saved clobber with DST_OP_NO_MARK for which we 3138 * don't care the register def because they are anyway 3139 * marked as NOT_INIT already. 3140 */ 3141 if (insn->src_reg == BPF_PSEUDO_CALL) 3142 return false; 3143 /* Helper call will reach here because of arg type 3144 * check, conservatively return TRUE. 3145 */ 3146 if (t == SRC_OP) 3147 return true; 3148 3149 return false; 3150 } 3151 } 3152 3153 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3154 return false; 3155 3156 if (class == BPF_ALU64 || class == BPF_JMP || 3157 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3158 return true; 3159 3160 if (class == BPF_ALU || class == BPF_JMP32) 3161 return false; 3162 3163 if (class == BPF_LDX) { 3164 if (t != SRC_OP) 3165 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3166 /* LDX source must be ptr. */ 3167 return true; 3168 } 3169 3170 if (class == BPF_STX) { 3171 /* BPF_STX (including atomic variants) has multiple source 3172 * operands, one of which is a ptr. Check whether the caller is 3173 * asking about it. 3174 */ 3175 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3176 return true; 3177 return BPF_SIZE(code) == BPF_DW; 3178 } 3179 3180 if (class == BPF_LD) { 3181 u8 mode = BPF_MODE(code); 3182 3183 /* LD_IMM64 */ 3184 if (mode == BPF_IMM) 3185 return true; 3186 3187 /* Both LD_IND and LD_ABS return 32-bit data. */ 3188 if (t != SRC_OP) 3189 return false; 3190 3191 /* Implicit ctx ptr. */ 3192 if (regno == BPF_REG_6) 3193 return true; 3194 3195 /* Explicit source could be any width. */ 3196 return true; 3197 } 3198 3199 if (class == BPF_ST) 3200 /* The only source register for BPF_ST is a ptr. */ 3201 return true; 3202 3203 /* Conservatively return true at default. */ 3204 return true; 3205 } 3206 3207 /* Return the regno defined by the insn, or -1. */ 3208 static int insn_def_regno(const struct bpf_insn *insn) 3209 { 3210 switch (BPF_CLASS(insn->code)) { 3211 case BPF_JMP: 3212 case BPF_JMP32: 3213 case BPF_ST: 3214 return -1; 3215 case BPF_STX: 3216 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3217 (insn->imm & BPF_FETCH)) { 3218 if (insn->imm == BPF_CMPXCHG) 3219 return BPF_REG_0; 3220 else 3221 return insn->src_reg; 3222 } else { 3223 return -1; 3224 } 3225 default: 3226 return insn->dst_reg; 3227 } 3228 } 3229 3230 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3231 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3232 { 3233 int dst_reg = insn_def_regno(insn); 3234 3235 if (dst_reg == -1) 3236 return false; 3237 3238 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3239 } 3240 3241 static void mark_insn_zext(struct bpf_verifier_env *env, 3242 struct bpf_reg_state *reg) 3243 { 3244 s32 def_idx = reg->subreg_def; 3245 3246 if (def_idx == DEF_NOT_SUBREG) 3247 return; 3248 3249 env->insn_aux_data[def_idx - 1].zext_dst = true; 3250 /* The dst will be zero extended, so won't be sub-register anymore. */ 3251 reg->subreg_def = DEF_NOT_SUBREG; 3252 } 3253 3254 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3255 enum reg_arg_type t) 3256 { 3257 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3258 struct bpf_reg_state *reg; 3259 bool rw64; 3260 3261 if (regno >= MAX_BPF_REG) { 3262 verbose(env, "R%d is invalid\n", regno); 3263 return -EINVAL; 3264 } 3265 3266 mark_reg_scratched(env, regno); 3267 3268 reg = ®s[regno]; 3269 rw64 = is_reg64(env, insn, regno, reg, t); 3270 if (t == SRC_OP) { 3271 /* check whether register used as source operand can be read */ 3272 if (reg->type == NOT_INIT) { 3273 verbose(env, "R%d !read_ok\n", regno); 3274 return -EACCES; 3275 } 3276 /* We don't need to worry about FP liveness because it's read-only */ 3277 if (regno == BPF_REG_FP) 3278 return 0; 3279 3280 if (rw64) 3281 mark_insn_zext(env, reg); 3282 3283 return mark_reg_read(env, reg, reg->parent, 3284 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3285 } else { 3286 /* check whether register used as dest operand can be written to */ 3287 if (regno == BPF_REG_FP) { 3288 verbose(env, "frame pointer is read only\n"); 3289 return -EACCES; 3290 } 3291 reg->live |= REG_LIVE_WRITTEN; 3292 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3293 if (t == DST_OP) 3294 mark_reg_unknown(env, regs, regno); 3295 } 3296 return 0; 3297 } 3298 3299 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3300 enum reg_arg_type t) 3301 { 3302 struct bpf_verifier_state *vstate = env->cur_state; 3303 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3304 3305 return __check_reg_arg(env, state->regs, regno, t); 3306 } 3307 3308 static int insn_stack_access_flags(int frameno, int spi) 3309 { 3310 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3311 } 3312 3313 static int insn_stack_access_spi(int insn_flags) 3314 { 3315 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3316 } 3317 3318 static int insn_stack_access_frameno(int insn_flags) 3319 { 3320 return insn_flags & INSN_F_FRAMENO_MASK; 3321 } 3322 3323 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3324 { 3325 env->insn_aux_data[idx].jmp_point = true; 3326 } 3327 3328 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3329 { 3330 return env->insn_aux_data[insn_idx].jmp_point; 3331 } 3332 3333 /* for any branch, call, exit record the history of jmps in the given state */ 3334 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3335 int insn_flags) 3336 { 3337 u32 cnt = cur->jmp_history_cnt; 3338 struct bpf_jmp_history_entry *p; 3339 size_t alloc_size; 3340 3341 /* combine instruction flags if we already recorded this instruction */ 3342 if (env->cur_hist_ent) { 3343 /* atomic instructions push insn_flags twice, for READ and 3344 * WRITE sides, but they should agree on stack slot 3345 */ 3346 WARN_ONCE((env->cur_hist_ent->flags & insn_flags) && 3347 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3348 "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n", 3349 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3350 env->cur_hist_ent->flags |= insn_flags; 3351 return 0; 3352 } 3353 3354 cnt++; 3355 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3356 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3357 if (!p) 3358 return -ENOMEM; 3359 cur->jmp_history = p; 3360 3361 p = &cur->jmp_history[cnt - 1]; 3362 p->idx = env->insn_idx; 3363 p->prev_idx = env->prev_insn_idx; 3364 p->flags = insn_flags; 3365 cur->jmp_history_cnt = cnt; 3366 env->cur_hist_ent = p; 3367 3368 return 0; 3369 } 3370 3371 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, 3372 u32 hist_end, int insn_idx) 3373 { 3374 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) 3375 return &st->jmp_history[hist_end - 1]; 3376 return NULL; 3377 } 3378 3379 /* Backtrack one insn at a time. If idx is not at the top of recorded 3380 * history then previous instruction came from straight line execution. 3381 * Return -ENOENT if we exhausted all instructions within given state. 3382 * 3383 * It's legal to have a bit of a looping with the same starting and ending 3384 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3385 * instruction index is the same as state's first_idx doesn't mean we are 3386 * done. If there is still some jump history left, we should keep going. We 3387 * need to take into account that we might have a jump history between given 3388 * state's parent and itself, due to checkpointing. In this case, we'll have 3389 * history entry recording a jump from last instruction of parent state and 3390 * first instruction of given state. 3391 */ 3392 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3393 u32 *history) 3394 { 3395 u32 cnt = *history; 3396 3397 if (i == st->first_insn_idx) { 3398 if (cnt == 0) 3399 return -ENOENT; 3400 if (cnt == 1 && st->jmp_history[0].idx == i) 3401 return -ENOENT; 3402 } 3403 3404 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3405 i = st->jmp_history[cnt - 1].prev_idx; 3406 (*history)--; 3407 } else { 3408 i--; 3409 } 3410 return i; 3411 } 3412 3413 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3414 { 3415 const struct btf_type *func; 3416 struct btf *desc_btf; 3417 3418 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3419 return NULL; 3420 3421 desc_btf = find_kfunc_desc_btf(data, insn->off); 3422 if (IS_ERR(desc_btf)) 3423 return "<error>"; 3424 3425 func = btf_type_by_id(desc_btf, insn->imm); 3426 return btf_name_by_offset(desc_btf, func->name_off); 3427 } 3428 3429 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3430 { 3431 bt->frame = frame; 3432 } 3433 3434 static inline void bt_reset(struct backtrack_state *bt) 3435 { 3436 struct bpf_verifier_env *env = bt->env; 3437 3438 memset(bt, 0, sizeof(*bt)); 3439 bt->env = env; 3440 } 3441 3442 static inline u32 bt_empty(struct backtrack_state *bt) 3443 { 3444 u64 mask = 0; 3445 int i; 3446 3447 for (i = 0; i <= bt->frame; i++) 3448 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3449 3450 return mask == 0; 3451 } 3452 3453 static inline int bt_subprog_enter(struct backtrack_state *bt) 3454 { 3455 if (bt->frame == MAX_CALL_FRAMES - 1) { 3456 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3457 WARN_ONCE(1, "verifier backtracking bug"); 3458 return -EFAULT; 3459 } 3460 bt->frame++; 3461 return 0; 3462 } 3463 3464 static inline int bt_subprog_exit(struct backtrack_state *bt) 3465 { 3466 if (bt->frame == 0) { 3467 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3468 WARN_ONCE(1, "verifier backtracking bug"); 3469 return -EFAULT; 3470 } 3471 bt->frame--; 3472 return 0; 3473 } 3474 3475 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3476 { 3477 bt->reg_masks[frame] |= 1 << reg; 3478 } 3479 3480 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3481 { 3482 bt->reg_masks[frame] &= ~(1 << reg); 3483 } 3484 3485 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3486 { 3487 bt_set_frame_reg(bt, bt->frame, reg); 3488 } 3489 3490 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3491 { 3492 bt_clear_frame_reg(bt, bt->frame, reg); 3493 } 3494 3495 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3496 { 3497 bt->stack_masks[frame] |= 1ull << slot; 3498 } 3499 3500 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3501 { 3502 bt->stack_masks[frame] &= ~(1ull << slot); 3503 } 3504 3505 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3506 { 3507 return bt->reg_masks[frame]; 3508 } 3509 3510 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3511 { 3512 return bt->reg_masks[bt->frame]; 3513 } 3514 3515 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3516 { 3517 return bt->stack_masks[frame]; 3518 } 3519 3520 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3521 { 3522 return bt->stack_masks[bt->frame]; 3523 } 3524 3525 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3526 { 3527 return bt->reg_masks[bt->frame] & (1 << reg); 3528 } 3529 3530 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 3531 { 3532 return bt->stack_masks[frame] & (1ull << slot); 3533 } 3534 3535 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3536 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3537 { 3538 DECLARE_BITMAP(mask, 64); 3539 bool first = true; 3540 int i, n; 3541 3542 buf[0] = '\0'; 3543 3544 bitmap_from_u64(mask, reg_mask); 3545 for_each_set_bit(i, mask, 32) { 3546 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3547 first = false; 3548 buf += n; 3549 buf_sz -= n; 3550 if (buf_sz < 0) 3551 break; 3552 } 3553 } 3554 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3555 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3556 { 3557 DECLARE_BITMAP(mask, 64); 3558 bool first = true; 3559 int i, n; 3560 3561 buf[0] = '\0'; 3562 3563 bitmap_from_u64(mask, stack_mask); 3564 for_each_set_bit(i, mask, 64) { 3565 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3566 first = false; 3567 buf += n; 3568 buf_sz -= n; 3569 if (buf_sz < 0) 3570 break; 3571 } 3572 } 3573 3574 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3575 3576 /* For given verifier state backtrack_insn() is called from the last insn to 3577 * the first insn. Its purpose is to compute a bitmask of registers and 3578 * stack slots that needs precision in the parent verifier state. 3579 * 3580 * @idx is an index of the instruction we are currently processing; 3581 * @subseq_idx is an index of the subsequent instruction that: 3582 * - *would be* executed next, if jump history is viewed in forward order; 3583 * - *was* processed previously during backtracking. 3584 */ 3585 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3586 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) 3587 { 3588 const struct bpf_insn_cbs cbs = { 3589 .cb_call = disasm_kfunc_name, 3590 .cb_print = verbose, 3591 .private_data = env, 3592 }; 3593 struct bpf_insn *insn = env->prog->insnsi + idx; 3594 u8 class = BPF_CLASS(insn->code); 3595 u8 opcode = BPF_OP(insn->code); 3596 u8 mode = BPF_MODE(insn->code); 3597 u32 dreg = insn->dst_reg; 3598 u32 sreg = insn->src_reg; 3599 u32 spi, i, fr; 3600 3601 if (insn->code == 0) 3602 return 0; 3603 if (env->log.level & BPF_LOG_LEVEL2) { 3604 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3605 verbose(env, "mark_precise: frame%d: regs=%s ", 3606 bt->frame, env->tmp_str_buf); 3607 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3608 verbose(env, "stack=%s before ", env->tmp_str_buf); 3609 verbose(env, "%d: ", idx); 3610 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3611 } 3612 3613 if (class == BPF_ALU || class == BPF_ALU64) { 3614 if (!bt_is_reg_set(bt, dreg)) 3615 return 0; 3616 if (opcode == BPF_END || opcode == BPF_NEG) { 3617 /* sreg is reserved and unused 3618 * dreg still need precision before this insn 3619 */ 3620 return 0; 3621 } else if (opcode == BPF_MOV) { 3622 if (BPF_SRC(insn->code) == BPF_X) { 3623 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3624 * dreg needs precision after this insn 3625 * sreg needs precision before this insn 3626 */ 3627 bt_clear_reg(bt, dreg); 3628 if (sreg != BPF_REG_FP) 3629 bt_set_reg(bt, sreg); 3630 } else { 3631 /* dreg = K 3632 * dreg needs precision after this insn. 3633 * Corresponding register is already marked 3634 * as precise=true in this verifier state. 3635 * No further markings in parent are necessary 3636 */ 3637 bt_clear_reg(bt, dreg); 3638 } 3639 } else { 3640 if (BPF_SRC(insn->code) == BPF_X) { 3641 /* dreg += sreg 3642 * both dreg and sreg need precision 3643 * before this insn 3644 */ 3645 if (sreg != BPF_REG_FP) 3646 bt_set_reg(bt, sreg); 3647 } /* else dreg += K 3648 * dreg still needs precision before this insn 3649 */ 3650 } 3651 } else if (class == BPF_LDX) { 3652 if (!bt_is_reg_set(bt, dreg)) 3653 return 0; 3654 bt_clear_reg(bt, dreg); 3655 3656 /* scalars can only be spilled into stack w/o losing precision. 3657 * Load from any other memory can be zero extended. 3658 * The desire to keep that precision is already indicated 3659 * by 'precise' mark in corresponding register of this state. 3660 * No further tracking necessary. 3661 */ 3662 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3663 return 0; 3664 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3665 * that [fp - off] slot contains scalar that needs to be 3666 * tracked with precision 3667 */ 3668 spi = insn_stack_access_spi(hist->flags); 3669 fr = insn_stack_access_frameno(hist->flags); 3670 bt_set_frame_slot(bt, fr, spi); 3671 } else if (class == BPF_STX || class == BPF_ST) { 3672 if (bt_is_reg_set(bt, dreg)) 3673 /* stx & st shouldn't be using _scalar_ dst_reg 3674 * to access memory. It means backtracking 3675 * encountered a case of pointer subtraction. 3676 */ 3677 return -ENOTSUPP; 3678 /* scalars can only be spilled into stack */ 3679 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3680 return 0; 3681 spi = insn_stack_access_spi(hist->flags); 3682 fr = insn_stack_access_frameno(hist->flags); 3683 if (!bt_is_frame_slot_set(bt, fr, spi)) 3684 return 0; 3685 bt_clear_frame_slot(bt, fr, spi); 3686 if (class == BPF_STX) 3687 bt_set_reg(bt, sreg); 3688 } else if (class == BPF_JMP || class == BPF_JMP32) { 3689 if (bpf_pseudo_call(insn)) { 3690 int subprog_insn_idx, subprog; 3691 3692 subprog_insn_idx = idx + insn->imm + 1; 3693 subprog = find_subprog(env, subprog_insn_idx); 3694 if (subprog < 0) 3695 return -EFAULT; 3696 3697 if (subprog_is_global(env, subprog)) { 3698 /* check that jump history doesn't have any 3699 * extra instructions from subprog; the next 3700 * instruction after call to global subprog 3701 * should be literally next instruction in 3702 * caller program 3703 */ 3704 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3705 /* r1-r5 are invalidated after subprog call, 3706 * so for global func call it shouldn't be set 3707 * anymore 3708 */ 3709 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3710 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3711 WARN_ONCE(1, "verifier backtracking bug"); 3712 return -EFAULT; 3713 } 3714 /* global subprog always sets R0 */ 3715 bt_clear_reg(bt, BPF_REG_0); 3716 return 0; 3717 } else { 3718 /* static subprog call instruction, which 3719 * means that we are exiting current subprog, 3720 * so only r1-r5 could be still requested as 3721 * precise, r0 and r6-r10 or any stack slot in 3722 * the current frame should be zero by now 3723 */ 3724 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3725 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3726 WARN_ONCE(1, "verifier backtracking bug"); 3727 return -EFAULT; 3728 } 3729 /* we are now tracking register spills correctly, 3730 * so any instance of leftover slots is a bug 3731 */ 3732 if (bt_stack_mask(bt) != 0) { 3733 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 3734 WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)"); 3735 return -EFAULT; 3736 } 3737 /* propagate r1-r5 to the caller */ 3738 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3739 if (bt_is_reg_set(bt, i)) { 3740 bt_clear_reg(bt, i); 3741 bt_set_frame_reg(bt, bt->frame - 1, i); 3742 } 3743 } 3744 if (bt_subprog_exit(bt)) 3745 return -EFAULT; 3746 return 0; 3747 } 3748 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3749 /* exit from callback subprog to callback-calling helper or 3750 * kfunc call. Use idx/subseq_idx check to discern it from 3751 * straight line code backtracking. 3752 * Unlike the subprog call handling above, we shouldn't 3753 * propagate precision of r1-r5 (if any requested), as they are 3754 * not actually arguments passed directly to callback subprogs 3755 */ 3756 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3757 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3758 WARN_ONCE(1, "verifier backtracking bug"); 3759 return -EFAULT; 3760 } 3761 if (bt_stack_mask(bt) != 0) { 3762 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 3763 WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)"); 3764 return -EFAULT; 3765 } 3766 /* clear r1-r5 in callback subprog's mask */ 3767 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3768 bt_clear_reg(bt, i); 3769 if (bt_subprog_exit(bt)) 3770 return -EFAULT; 3771 return 0; 3772 } else if (opcode == BPF_CALL) { 3773 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3774 * catch this error later. Make backtracking conservative 3775 * with ENOTSUPP. 3776 */ 3777 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3778 return -ENOTSUPP; 3779 /* regular helper call sets R0 */ 3780 bt_clear_reg(bt, BPF_REG_0); 3781 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3782 /* if backtracing was looking for registers R1-R5 3783 * they should have been found already. 3784 */ 3785 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3786 WARN_ONCE(1, "verifier backtracking bug"); 3787 return -EFAULT; 3788 } 3789 } else if (opcode == BPF_EXIT) { 3790 bool r0_precise; 3791 3792 /* Backtracking to a nested function call, 'idx' is a part of 3793 * the inner frame 'subseq_idx' is a part of the outer frame. 3794 * In case of a regular function call, instructions giving 3795 * precision to registers R1-R5 should have been found already. 3796 * In case of a callback, it is ok to have R1-R5 marked for 3797 * backtracking, as these registers are set by the function 3798 * invoking callback. 3799 */ 3800 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3801 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3802 bt_clear_reg(bt, i); 3803 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3804 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3805 WARN_ONCE(1, "verifier backtracking bug"); 3806 return -EFAULT; 3807 } 3808 3809 /* BPF_EXIT in subprog or callback always returns 3810 * right after the call instruction, so by checking 3811 * whether the instruction at subseq_idx-1 is subprog 3812 * call or not we can distinguish actual exit from 3813 * *subprog* from exit from *callback*. In the former 3814 * case, we need to propagate r0 precision, if 3815 * necessary. In the former we never do that. 3816 */ 3817 r0_precise = subseq_idx - 1 >= 0 && 3818 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3819 bt_is_reg_set(bt, BPF_REG_0); 3820 3821 bt_clear_reg(bt, BPF_REG_0); 3822 if (bt_subprog_enter(bt)) 3823 return -EFAULT; 3824 3825 if (r0_precise) 3826 bt_set_reg(bt, BPF_REG_0); 3827 /* r6-r9 and stack slots will stay set in caller frame 3828 * bitmasks until we return back from callee(s) 3829 */ 3830 return 0; 3831 } else if (BPF_SRC(insn->code) == BPF_X) { 3832 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3833 return 0; 3834 /* dreg <cond> sreg 3835 * Both dreg and sreg need precision before 3836 * this insn. If only sreg was marked precise 3837 * before it would be equally necessary to 3838 * propagate it to dreg. 3839 */ 3840 bt_set_reg(bt, dreg); 3841 bt_set_reg(bt, sreg); 3842 /* else dreg <cond> K 3843 * Only dreg still needs precision before 3844 * this insn, so for the K-based conditional 3845 * there is nothing new to be marked. 3846 */ 3847 } 3848 } else if (class == BPF_LD) { 3849 if (!bt_is_reg_set(bt, dreg)) 3850 return 0; 3851 bt_clear_reg(bt, dreg); 3852 /* It's ld_imm64 or ld_abs or ld_ind. 3853 * For ld_imm64 no further tracking of precision 3854 * into parent is necessary 3855 */ 3856 if (mode == BPF_IND || mode == BPF_ABS) 3857 /* to be analyzed */ 3858 return -ENOTSUPP; 3859 } 3860 return 0; 3861 } 3862 3863 /* the scalar precision tracking algorithm: 3864 * . at the start all registers have precise=false. 3865 * . scalar ranges are tracked as normal through alu and jmp insns. 3866 * . once precise value of the scalar register is used in: 3867 * . ptr + scalar alu 3868 * . if (scalar cond K|scalar) 3869 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3870 * backtrack through the verifier states and mark all registers and 3871 * stack slots with spilled constants that these scalar regisers 3872 * should be precise. 3873 * . during state pruning two registers (or spilled stack slots) 3874 * are equivalent if both are not precise. 3875 * 3876 * Note the verifier cannot simply walk register parentage chain, 3877 * since many different registers and stack slots could have been 3878 * used to compute single precise scalar. 3879 * 3880 * The approach of starting with precise=true for all registers and then 3881 * backtrack to mark a register as not precise when the verifier detects 3882 * that program doesn't care about specific value (e.g., when helper 3883 * takes register as ARG_ANYTHING parameter) is not safe. 3884 * 3885 * It's ok to walk single parentage chain of the verifier states. 3886 * It's possible that this backtracking will go all the way till 1st insn. 3887 * All other branches will be explored for needing precision later. 3888 * 3889 * The backtracking needs to deal with cases like: 3890 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3891 * r9 -= r8 3892 * r5 = r9 3893 * if r5 > 0x79f goto pc+7 3894 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3895 * r5 += 1 3896 * ... 3897 * call bpf_perf_event_output#25 3898 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3899 * 3900 * and this case: 3901 * r6 = 1 3902 * call foo // uses callee's r6 inside to compute r0 3903 * r0 += r6 3904 * if r0 == 0 goto 3905 * 3906 * to track above reg_mask/stack_mask needs to be independent for each frame. 3907 * 3908 * Also if parent's curframe > frame where backtracking started, 3909 * the verifier need to mark registers in both frames, otherwise callees 3910 * may incorrectly prune callers. This is similar to 3911 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3912 * 3913 * For now backtracking falls back into conservative marking. 3914 */ 3915 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3916 struct bpf_verifier_state *st) 3917 { 3918 struct bpf_func_state *func; 3919 struct bpf_reg_state *reg; 3920 int i, j; 3921 3922 if (env->log.level & BPF_LOG_LEVEL2) { 3923 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3924 st->curframe); 3925 } 3926 3927 /* big hammer: mark all scalars precise in this path. 3928 * pop_stack may still get !precise scalars. 3929 * We also skip current state and go straight to first parent state, 3930 * because precision markings in current non-checkpointed state are 3931 * not needed. See why in the comment in __mark_chain_precision below. 3932 */ 3933 for (st = st->parent; st; st = st->parent) { 3934 for (i = 0; i <= st->curframe; i++) { 3935 func = st->frame[i]; 3936 for (j = 0; j < BPF_REG_FP; j++) { 3937 reg = &func->regs[j]; 3938 if (reg->type != SCALAR_VALUE || reg->precise) 3939 continue; 3940 reg->precise = true; 3941 if (env->log.level & BPF_LOG_LEVEL2) { 3942 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3943 i, j); 3944 } 3945 } 3946 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3947 if (!is_spilled_reg(&func->stack[j])) 3948 continue; 3949 reg = &func->stack[j].spilled_ptr; 3950 if (reg->type != SCALAR_VALUE || reg->precise) 3951 continue; 3952 reg->precise = true; 3953 if (env->log.level & BPF_LOG_LEVEL2) { 3954 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3955 i, -(j + 1) * 8); 3956 } 3957 } 3958 } 3959 } 3960 } 3961 3962 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3963 { 3964 struct bpf_func_state *func; 3965 struct bpf_reg_state *reg; 3966 int i, j; 3967 3968 for (i = 0; i <= st->curframe; i++) { 3969 func = st->frame[i]; 3970 for (j = 0; j < BPF_REG_FP; j++) { 3971 reg = &func->regs[j]; 3972 if (reg->type != SCALAR_VALUE) 3973 continue; 3974 reg->precise = false; 3975 } 3976 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3977 if (!is_spilled_reg(&func->stack[j])) 3978 continue; 3979 reg = &func->stack[j].spilled_ptr; 3980 if (reg->type != SCALAR_VALUE) 3981 continue; 3982 reg->precise = false; 3983 } 3984 } 3985 } 3986 3987 static bool idset_contains(struct bpf_idset *s, u32 id) 3988 { 3989 u32 i; 3990 3991 for (i = 0; i < s->count; ++i) 3992 if (s->ids[i] == id) 3993 return true; 3994 3995 return false; 3996 } 3997 3998 static int idset_push(struct bpf_idset *s, u32 id) 3999 { 4000 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 4001 return -EFAULT; 4002 s->ids[s->count++] = id; 4003 return 0; 4004 } 4005 4006 static void idset_reset(struct bpf_idset *s) 4007 { 4008 s->count = 0; 4009 } 4010 4011 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 4012 * Mark all registers with these IDs as precise. 4013 */ 4014 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4015 { 4016 struct bpf_idset *precise_ids = &env->idset_scratch; 4017 struct backtrack_state *bt = &env->bt; 4018 struct bpf_func_state *func; 4019 struct bpf_reg_state *reg; 4020 DECLARE_BITMAP(mask, 64); 4021 int i, fr; 4022 4023 idset_reset(precise_ids); 4024 4025 for (fr = bt->frame; fr >= 0; fr--) { 4026 func = st->frame[fr]; 4027 4028 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4029 for_each_set_bit(i, mask, 32) { 4030 reg = &func->regs[i]; 4031 if (!reg->id || reg->type != SCALAR_VALUE) 4032 continue; 4033 if (idset_push(precise_ids, reg->id)) 4034 return -EFAULT; 4035 } 4036 4037 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4038 for_each_set_bit(i, mask, 64) { 4039 if (i >= func->allocated_stack / BPF_REG_SIZE) 4040 break; 4041 if (!is_spilled_scalar_reg(&func->stack[i])) 4042 continue; 4043 reg = &func->stack[i].spilled_ptr; 4044 if (!reg->id) 4045 continue; 4046 if (idset_push(precise_ids, reg->id)) 4047 return -EFAULT; 4048 } 4049 } 4050 4051 for (fr = 0; fr <= st->curframe; ++fr) { 4052 func = st->frame[fr]; 4053 4054 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 4055 reg = &func->regs[i]; 4056 if (!reg->id) 4057 continue; 4058 if (!idset_contains(precise_ids, reg->id)) 4059 continue; 4060 bt_set_frame_reg(bt, fr, i); 4061 } 4062 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 4063 if (!is_spilled_scalar_reg(&func->stack[i])) 4064 continue; 4065 reg = &func->stack[i].spilled_ptr; 4066 if (!reg->id) 4067 continue; 4068 if (!idset_contains(precise_ids, reg->id)) 4069 continue; 4070 bt_set_frame_slot(bt, fr, i); 4071 } 4072 } 4073 4074 return 0; 4075 } 4076 4077 /* 4078 * __mark_chain_precision() backtracks BPF program instruction sequence and 4079 * chain of verifier states making sure that register *regno* (if regno >= 0) 4080 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4081 * SCALARS, as well as any other registers and slots that contribute to 4082 * a tracked state of given registers/stack slots, depending on specific BPF 4083 * assembly instructions (see backtrack_insns() for exact instruction handling 4084 * logic). This backtracking relies on recorded jmp_history and is able to 4085 * traverse entire chain of parent states. This process ends only when all the 4086 * necessary registers/slots and their transitive dependencies are marked as 4087 * precise. 4088 * 4089 * One important and subtle aspect is that precise marks *do not matter* in 4090 * the currently verified state (current state). It is important to understand 4091 * why this is the case. 4092 * 4093 * First, note that current state is the state that is not yet "checkpointed", 4094 * i.e., it is not yet put into env->explored_states, and it has no children 4095 * states as well. It's ephemeral, and can end up either a) being discarded if 4096 * compatible explored state is found at some point or BPF_EXIT instruction is 4097 * reached or b) checkpointed and put into env->explored_states, branching out 4098 * into one or more children states. 4099 * 4100 * In the former case, precise markings in current state are completely 4101 * ignored by state comparison code (see regsafe() for details). Only 4102 * checkpointed ("old") state precise markings are important, and if old 4103 * state's register/slot is precise, regsafe() assumes current state's 4104 * register/slot as precise and checks value ranges exactly and precisely. If 4105 * states turn out to be compatible, current state's necessary precise 4106 * markings and any required parent states' precise markings are enforced 4107 * after the fact with propagate_precision() logic, after the fact. But it's 4108 * important to realize that in this case, even after marking current state 4109 * registers/slots as precise, we immediately discard current state. So what 4110 * actually matters is any of the precise markings propagated into current 4111 * state's parent states, which are always checkpointed (due to b) case above). 4112 * As such, for scenario a) it doesn't matter if current state has precise 4113 * markings set or not. 4114 * 4115 * Now, for the scenario b), checkpointing and forking into child(ren) 4116 * state(s). Note that before current state gets to checkpointing step, any 4117 * processed instruction always assumes precise SCALAR register/slot 4118 * knowledge: if precise value or range is useful to prune jump branch, BPF 4119 * verifier takes this opportunity enthusiastically. Similarly, when 4120 * register's value is used to calculate offset or memory address, exact 4121 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4122 * what we mentioned above about state comparison ignoring precise markings 4123 * during state comparison, BPF verifier ignores and also assumes precise 4124 * markings *at will* during instruction verification process. But as verifier 4125 * assumes precision, it also propagates any precision dependencies across 4126 * parent states, which are not yet finalized, so can be further restricted 4127 * based on new knowledge gained from restrictions enforced by their children 4128 * states. This is so that once those parent states are finalized, i.e., when 4129 * they have no more active children state, state comparison logic in 4130 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4131 * required for correctness. 4132 * 4133 * To build a bit more intuition, note also that once a state is checkpointed, 4134 * the path we took to get to that state is not important. This is crucial 4135 * property for state pruning. When state is checkpointed and finalized at 4136 * some instruction index, it can be correctly and safely used to "short 4137 * circuit" any *compatible* state that reaches exactly the same instruction 4138 * index. I.e., if we jumped to that instruction from a completely different 4139 * code path than original finalized state was derived from, it doesn't 4140 * matter, current state can be discarded because from that instruction 4141 * forward having a compatible state will ensure we will safely reach the 4142 * exit. States describe preconditions for further exploration, but completely 4143 * forget the history of how we got here. 4144 * 4145 * This also means that even if we needed precise SCALAR range to get to 4146 * finalized state, but from that point forward *that same* SCALAR register is 4147 * never used in a precise context (i.e., it's precise value is not needed for 4148 * correctness), it's correct and safe to mark such register as "imprecise" 4149 * (i.e., precise marking set to false). This is what we rely on when we do 4150 * not set precise marking in current state. If no child state requires 4151 * precision for any given SCALAR register, it's safe to dictate that it can 4152 * be imprecise. If any child state does require this register to be precise, 4153 * we'll mark it precise later retroactively during precise markings 4154 * propagation from child state to parent states. 4155 * 4156 * Skipping precise marking setting in current state is a mild version of 4157 * relying on the above observation. But we can utilize this property even 4158 * more aggressively by proactively forgetting any precise marking in the 4159 * current state (which we inherited from the parent state), right before we 4160 * checkpoint it and branch off into new child state. This is done by 4161 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4162 * finalized states which help in short circuiting more future states. 4163 */ 4164 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4165 { 4166 struct backtrack_state *bt = &env->bt; 4167 struct bpf_verifier_state *st = env->cur_state; 4168 int first_idx = st->first_insn_idx; 4169 int last_idx = env->insn_idx; 4170 int subseq_idx = -1; 4171 struct bpf_func_state *func; 4172 struct bpf_reg_state *reg; 4173 bool skip_first = true; 4174 int i, fr, err; 4175 4176 if (!env->bpf_capable) 4177 return 0; 4178 4179 /* set frame number from which we are starting to backtrack */ 4180 bt_init(bt, env->cur_state->curframe); 4181 4182 /* Do sanity checks against current state of register and/or stack 4183 * slot, but don't set precise flag in current state, as precision 4184 * tracking in the current state is unnecessary. 4185 */ 4186 func = st->frame[bt->frame]; 4187 if (regno >= 0) { 4188 reg = &func->regs[regno]; 4189 if (reg->type != SCALAR_VALUE) { 4190 WARN_ONCE(1, "backtracing misuse"); 4191 return -EFAULT; 4192 } 4193 bt_set_reg(bt, regno); 4194 } 4195 4196 if (bt_empty(bt)) 4197 return 0; 4198 4199 for (;;) { 4200 DECLARE_BITMAP(mask, 64); 4201 u32 history = st->jmp_history_cnt; 4202 struct bpf_jmp_history_entry *hist; 4203 4204 if (env->log.level & BPF_LOG_LEVEL2) { 4205 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4206 bt->frame, last_idx, first_idx, subseq_idx); 4207 } 4208 4209 /* If some register with scalar ID is marked as precise, 4210 * make sure that all registers sharing this ID are also precise. 4211 * This is needed to estimate effect of find_equal_scalars(). 4212 * Do this at the last instruction of each state, 4213 * bpf_reg_state::id fields are valid for these instructions. 4214 * 4215 * Allows to track precision in situation like below: 4216 * 4217 * r2 = unknown value 4218 * ... 4219 * --- state #0 --- 4220 * ... 4221 * r1 = r2 // r1 and r2 now share the same ID 4222 * ... 4223 * --- state #1 {r1.id = A, r2.id = A} --- 4224 * ... 4225 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4226 * ... 4227 * --- state #2 {r1.id = A, r2.id = A} --- 4228 * r3 = r10 4229 * r3 += r1 // need to mark both r1 and r2 4230 */ 4231 if (mark_precise_scalar_ids(env, st)) 4232 return -EFAULT; 4233 4234 if (last_idx < 0) { 4235 /* we are at the entry into subprog, which 4236 * is expected for global funcs, but only if 4237 * requested precise registers are R1-R5 4238 * (which are global func's input arguments) 4239 */ 4240 if (st->curframe == 0 && 4241 st->frame[0]->subprogno > 0 && 4242 st->frame[0]->callsite == BPF_MAIN_FUNC && 4243 bt_stack_mask(bt) == 0 && 4244 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4245 bitmap_from_u64(mask, bt_reg_mask(bt)); 4246 for_each_set_bit(i, mask, 32) { 4247 reg = &st->frame[0]->regs[i]; 4248 bt_clear_reg(bt, i); 4249 if (reg->type == SCALAR_VALUE) 4250 reg->precise = true; 4251 } 4252 return 0; 4253 } 4254 4255 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4256 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4257 WARN_ONCE(1, "verifier backtracking bug"); 4258 return -EFAULT; 4259 } 4260 4261 for (i = last_idx;;) { 4262 if (skip_first) { 4263 err = 0; 4264 skip_first = false; 4265 } else { 4266 hist = get_jmp_hist_entry(st, history, i); 4267 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4268 } 4269 if (err == -ENOTSUPP) { 4270 mark_all_scalars_precise(env, env->cur_state); 4271 bt_reset(bt); 4272 return 0; 4273 } else if (err) { 4274 return err; 4275 } 4276 if (bt_empty(bt)) 4277 /* Found assignment(s) into tracked register in this state. 4278 * Since this state is already marked, just return. 4279 * Nothing to be tracked further in the parent state. 4280 */ 4281 return 0; 4282 subseq_idx = i; 4283 i = get_prev_insn_idx(st, i, &history); 4284 if (i == -ENOENT) 4285 break; 4286 if (i >= env->prog->len) { 4287 /* This can happen if backtracking reached insn 0 4288 * and there are still reg_mask or stack_mask 4289 * to backtrack. 4290 * It means the backtracking missed the spot where 4291 * particular register was initialized with a constant. 4292 */ 4293 verbose(env, "BUG backtracking idx %d\n", i); 4294 WARN_ONCE(1, "verifier backtracking bug"); 4295 return -EFAULT; 4296 } 4297 } 4298 st = st->parent; 4299 if (!st) 4300 break; 4301 4302 for (fr = bt->frame; fr >= 0; fr--) { 4303 func = st->frame[fr]; 4304 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4305 for_each_set_bit(i, mask, 32) { 4306 reg = &func->regs[i]; 4307 if (reg->type != SCALAR_VALUE) { 4308 bt_clear_frame_reg(bt, fr, i); 4309 continue; 4310 } 4311 if (reg->precise) 4312 bt_clear_frame_reg(bt, fr, i); 4313 else 4314 reg->precise = true; 4315 } 4316 4317 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4318 for_each_set_bit(i, mask, 64) { 4319 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4320 verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n", 4321 i, func->allocated_stack / BPF_REG_SIZE); 4322 WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)"); 4323 return -EFAULT; 4324 } 4325 4326 if (!is_spilled_scalar_reg(&func->stack[i])) { 4327 bt_clear_frame_slot(bt, fr, i); 4328 continue; 4329 } 4330 reg = &func->stack[i].spilled_ptr; 4331 if (reg->precise) 4332 bt_clear_frame_slot(bt, fr, i); 4333 else 4334 reg->precise = true; 4335 } 4336 if (env->log.level & BPF_LOG_LEVEL2) { 4337 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4338 bt_frame_reg_mask(bt, fr)); 4339 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4340 fr, env->tmp_str_buf); 4341 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4342 bt_frame_stack_mask(bt, fr)); 4343 verbose(env, "stack=%s: ", env->tmp_str_buf); 4344 print_verifier_state(env, func, true); 4345 } 4346 } 4347 4348 if (bt_empty(bt)) 4349 return 0; 4350 4351 subseq_idx = first_idx; 4352 last_idx = st->last_insn_idx; 4353 first_idx = st->first_insn_idx; 4354 } 4355 4356 /* if we still have requested precise regs or slots, we missed 4357 * something (e.g., stack access through non-r10 register), so 4358 * fallback to marking all precise 4359 */ 4360 if (!bt_empty(bt)) { 4361 mark_all_scalars_precise(env, env->cur_state); 4362 bt_reset(bt); 4363 } 4364 4365 return 0; 4366 } 4367 4368 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4369 { 4370 return __mark_chain_precision(env, regno); 4371 } 4372 4373 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4374 * desired reg and stack masks across all relevant frames 4375 */ 4376 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4377 { 4378 return __mark_chain_precision(env, -1); 4379 } 4380 4381 static bool is_spillable_regtype(enum bpf_reg_type type) 4382 { 4383 switch (base_type(type)) { 4384 case PTR_TO_MAP_VALUE: 4385 case PTR_TO_STACK: 4386 case PTR_TO_CTX: 4387 case PTR_TO_PACKET: 4388 case PTR_TO_PACKET_META: 4389 case PTR_TO_PACKET_END: 4390 case PTR_TO_FLOW_KEYS: 4391 case CONST_PTR_TO_MAP: 4392 case PTR_TO_SOCKET: 4393 case PTR_TO_SOCK_COMMON: 4394 case PTR_TO_TCP_SOCK: 4395 case PTR_TO_XDP_SOCK: 4396 case PTR_TO_BTF_ID: 4397 case PTR_TO_BUF: 4398 case PTR_TO_MEM: 4399 case PTR_TO_FUNC: 4400 case PTR_TO_MAP_KEY: 4401 case PTR_TO_ARENA: 4402 return true; 4403 default: 4404 return false; 4405 } 4406 } 4407 4408 /* Does this register contain a constant zero? */ 4409 static bool register_is_null(struct bpf_reg_state *reg) 4410 { 4411 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4412 } 4413 4414 /* check if register is a constant scalar value */ 4415 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4416 { 4417 return reg->type == SCALAR_VALUE && 4418 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4419 } 4420 4421 /* assuming is_reg_const() is true, return constant value of a register */ 4422 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4423 { 4424 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4425 } 4426 4427 static bool __is_pointer_value(bool allow_ptr_leaks, 4428 const struct bpf_reg_state *reg) 4429 { 4430 if (allow_ptr_leaks) 4431 return false; 4432 4433 return reg->type != SCALAR_VALUE; 4434 } 4435 4436 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 4437 struct bpf_reg_state *src_reg) 4438 { 4439 if (src_reg->type == SCALAR_VALUE && !src_reg->id && 4440 !tnum_is_const(src_reg->var_off)) 4441 /* Ensure that src_reg has a valid ID that will be copied to 4442 * dst_reg and then will be used by find_equal_scalars() to 4443 * propagate min/max range. 4444 */ 4445 src_reg->id = ++env->id_gen; 4446 } 4447 4448 /* Copy src state preserving dst->parent and dst->live fields */ 4449 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4450 { 4451 struct bpf_reg_state *parent = dst->parent; 4452 enum bpf_reg_liveness live = dst->live; 4453 4454 *dst = *src; 4455 dst->parent = parent; 4456 dst->live = live; 4457 } 4458 4459 static void save_register_state(struct bpf_verifier_env *env, 4460 struct bpf_func_state *state, 4461 int spi, struct bpf_reg_state *reg, 4462 int size) 4463 { 4464 int i; 4465 4466 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4467 if (size == BPF_REG_SIZE) 4468 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4469 4470 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4471 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4472 4473 /* size < 8 bytes spill */ 4474 for (; i; i--) 4475 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 4476 } 4477 4478 static bool is_bpf_st_mem(struct bpf_insn *insn) 4479 { 4480 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4481 } 4482 4483 static int get_reg_width(struct bpf_reg_state *reg) 4484 { 4485 return fls64(reg->umax_value); 4486 } 4487 4488 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4489 * stack boundary and alignment are checked in check_mem_access() 4490 */ 4491 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4492 /* stack frame we're writing to */ 4493 struct bpf_func_state *state, 4494 int off, int size, int value_regno, 4495 int insn_idx) 4496 { 4497 struct bpf_func_state *cur; /* state of the current function */ 4498 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4499 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4500 struct bpf_reg_state *reg = NULL; 4501 int insn_flags = insn_stack_access_flags(state->frameno, spi); 4502 4503 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4504 * so it's aligned access and [off, off + size) are within stack limits 4505 */ 4506 if (!env->allow_ptr_leaks && 4507 is_spilled_reg(&state->stack[spi]) && 4508 size != BPF_REG_SIZE) { 4509 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4510 return -EACCES; 4511 } 4512 4513 cur = env->cur_state->frame[env->cur_state->curframe]; 4514 if (value_regno >= 0) 4515 reg = &cur->regs[value_regno]; 4516 if (!env->bypass_spec_v4) { 4517 bool sanitize = reg && is_spillable_regtype(reg->type); 4518 4519 for (i = 0; i < size; i++) { 4520 u8 type = state->stack[spi].slot_type[i]; 4521 4522 if (type != STACK_MISC && type != STACK_ZERO) { 4523 sanitize = true; 4524 break; 4525 } 4526 } 4527 4528 if (sanitize) 4529 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4530 } 4531 4532 err = destroy_if_dynptr_stack_slot(env, state, spi); 4533 if (err) 4534 return err; 4535 4536 mark_stack_slot_scratched(env, spi); 4537 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 4538 bool reg_value_fits; 4539 4540 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 4541 /* Make sure that reg had an ID to build a relation on spill. */ 4542 if (reg_value_fits) 4543 assign_scalar_id_before_mov(env, reg); 4544 save_register_state(env, state, spi, reg, size); 4545 /* Break the relation on a narrowing spill. */ 4546 if (!reg_value_fits) 4547 state->stack[spi].spilled_ptr.id = 0; 4548 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4549 env->bpf_capable) { 4550 struct bpf_reg_state fake_reg = {}; 4551 4552 __mark_reg_known(&fake_reg, insn->imm); 4553 fake_reg.type = SCALAR_VALUE; 4554 save_register_state(env, state, spi, &fake_reg, size); 4555 } else if (reg && is_spillable_regtype(reg->type)) { 4556 /* register containing pointer is being spilled into stack */ 4557 if (size != BPF_REG_SIZE) { 4558 verbose_linfo(env, insn_idx, "; "); 4559 verbose(env, "invalid size of register spill\n"); 4560 return -EACCES; 4561 } 4562 if (state != cur && reg->type == PTR_TO_STACK) { 4563 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4564 return -EINVAL; 4565 } 4566 save_register_state(env, state, spi, reg, size); 4567 } else { 4568 u8 type = STACK_MISC; 4569 4570 /* regular write of data into stack destroys any spilled ptr */ 4571 state->stack[spi].spilled_ptr.type = NOT_INIT; 4572 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4573 if (is_stack_slot_special(&state->stack[spi])) 4574 for (i = 0; i < BPF_REG_SIZE; i++) 4575 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4576 4577 /* only mark the slot as written if all 8 bytes were written 4578 * otherwise read propagation may incorrectly stop too soon 4579 * when stack slots are partially written. 4580 * This heuristic means that read propagation will be 4581 * conservative, since it will add reg_live_read marks 4582 * to stack slots all the way to first state when programs 4583 * writes+reads less than 8 bytes 4584 */ 4585 if (size == BPF_REG_SIZE) 4586 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4587 4588 /* when we zero initialize stack slots mark them as such */ 4589 if ((reg && register_is_null(reg)) || 4590 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4591 /* STACK_ZERO case happened because register spill 4592 * wasn't properly aligned at the stack slot boundary, 4593 * so it's not a register spill anymore; force 4594 * originating register to be precise to make 4595 * STACK_ZERO correct for subsequent states 4596 */ 4597 err = mark_chain_precision(env, value_regno); 4598 if (err) 4599 return err; 4600 type = STACK_ZERO; 4601 } 4602 4603 /* Mark slots affected by this stack write. */ 4604 for (i = 0; i < size; i++) 4605 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 4606 insn_flags = 0; /* not a register spill */ 4607 } 4608 4609 if (insn_flags) 4610 return push_jmp_history(env, env->cur_state, insn_flags); 4611 return 0; 4612 } 4613 4614 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4615 * known to contain a variable offset. 4616 * This function checks whether the write is permitted and conservatively 4617 * tracks the effects of the write, considering that each stack slot in the 4618 * dynamic range is potentially written to. 4619 * 4620 * 'off' includes 'regno->off'. 4621 * 'value_regno' can be -1, meaning that an unknown value is being written to 4622 * the stack. 4623 * 4624 * Spilled pointers in range are not marked as written because we don't know 4625 * what's going to be actually written. This means that read propagation for 4626 * future reads cannot be terminated by this write. 4627 * 4628 * For privileged programs, uninitialized stack slots are considered 4629 * initialized by this write (even though we don't know exactly what offsets 4630 * are going to be written to). The idea is that we don't want the verifier to 4631 * reject future reads that access slots written to through variable offsets. 4632 */ 4633 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4634 /* func where register points to */ 4635 struct bpf_func_state *state, 4636 int ptr_regno, int off, int size, 4637 int value_regno, int insn_idx) 4638 { 4639 struct bpf_func_state *cur; /* state of the current function */ 4640 int min_off, max_off; 4641 int i, err; 4642 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4643 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4644 bool writing_zero = false; 4645 /* set if the fact that we're writing a zero is used to let any 4646 * stack slots remain STACK_ZERO 4647 */ 4648 bool zero_used = false; 4649 4650 cur = env->cur_state->frame[env->cur_state->curframe]; 4651 ptr_reg = &cur->regs[ptr_regno]; 4652 min_off = ptr_reg->smin_value + off; 4653 max_off = ptr_reg->smax_value + off + size; 4654 if (value_regno >= 0) 4655 value_reg = &cur->regs[value_regno]; 4656 if ((value_reg && register_is_null(value_reg)) || 4657 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4658 writing_zero = true; 4659 4660 for (i = min_off; i < max_off; i++) { 4661 int spi; 4662 4663 spi = __get_spi(i); 4664 err = destroy_if_dynptr_stack_slot(env, state, spi); 4665 if (err) 4666 return err; 4667 } 4668 4669 /* Variable offset writes destroy any spilled pointers in range. */ 4670 for (i = min_off; i < max_off; i++) { 4671 u8 new_type, *stype; 4672 int slot, spi; 4673 4674 slot = -i - 1; 4675 spi = slot / BPF_REG_SIZE; 4676 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4677 mark_stack_slot_scratched(env, spi); 4678 4679 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4680 /* Reject the write if range we may write to has not 4681 * been initialized beforehand. If we didn't reject 4682 * here, the ptr status would be erased below (even 4683 * though not all slots are actually overwritten), 4684 * possibly opening the door to leaks. 4685 * 4686 * We do however catch STACK_INVALID case below, and 4687 * only allow reading possibly uninitialized memory 4688 * later for CAP_PERFMON, as the write may not happen to 4689 * that slot. 4690 */ 4691 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4692 insn_idx, i); 4693 return -EINVAL; 4694 } 4695 4696 /* If writing_zero and the spi slot contains a spill of value 0, 4697 * maintain the spill type. 4698 */ 4699 if (writing_zero && *stype == STACK_SPILL && 4700 is_spilled_scalar_reg(&state->stack[spi])) { 4701 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 4702 4703 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 4704 zero_used = true; 4705 continue; 4706 } 4707 } 4708 4709 /* Erase all other spilled pointers. */ 4710 state->stack[spi].spilled_ptr.type = NOT_INIT; 4711 4712 /* Update the slot type. */ 4713 new_type = STACK_MISC; 4714 if (writing_zero && *stype == STACK_ZERO) { 4715 new_type = STACK_ZERO; 4716 zero_used = true; 4717 } 4718 /* If the slot is STACK_INVALID, we check whether it's OK to 4719 * pretend that it will be initialized by this write. The slot 4720 * might not actually be written to, and so if we mark it as 4721 * initialized future reads might leak uninitialized memory. 4722 * For privileged programs, we will accept such reads to slots 4723 * that may or may not be written because, if we're reject 4724 * them, the error would be too confusing. 4725 */ 4726 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4727 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4728 insn_idx, i); 4729 return -EINVAL; 4730 } 4731 *stype = new_type; 4732 } 4733 if (zero_used) { 4734 /* backtracking doesn't work for STACK_ZERO yet. */ 4735 err = mark_chain_precision(env, value_regno); 4736 if (err) 4737 return err; 4738 } 4739 return 0; 4740 } 4741 4742 /* When register 'dst_regno' is assigned some values from stack[min_off, 4743 * max_off), we set the register's type according to the types of the 4744 * respective stack slots. If all the stack values are known to be zeros, then 4745 * so is the destination reg. Otherwise, the register is considered to be 4746 * SCALAR. This function does not deal with register filling; the caller must 4747 * ensure that all spilled registers in the stack range have been marked as 4748 * read. 4749 */ 4750 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4751 /* func where src register points to */ 4752 struct bpf_func_state *ptr_state, 4753 int min_off, int max_off, int dst_regno) 4754 { 4755 struct bpf_verifier_state *vstate = env->cur_state; 4756 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4757 int i, slot, spi; 4758 u8 *stype; 4759 int zeros = 0; 4760 4761 for (i = min_off; i < max_off; i++) { 4762 slot = -i - 1; 4763 spi = slot / BPF_REG_SIZE; 4764 mark_stack_slot_scratched(env, spi); 4765 stype = ptr_state->stack[spi].slot_type; 4766 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4767 break; 4768 zeros++; 4769 } 4770 if (zeros == max_off - min_off) { 4771 /* Any access_size read into register is zero extended, 4772 * so the whole register == const_zero. 4773 */ 4774 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4775 } else { 4776 /* have read misc data from the stack */ 4777 mark_reg_unknown(env, state->regs, dst_regno); 4778 } 4779 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4780 } 4781 4782 /* Read the stack at 'off' and put the results into the register indicated by 4783 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4784 * spilled reg. 4785 * 4786 * 'dst_regno' can be -1, meaning that the read value is not going to a 4787 * register. 4788 * 4789 * The access is assumed to be within the current stack bounds. 4790 */ 4791 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4792 /* func where src register points to */ 4793 struct bpf_func_state *reg_state, 4794 int off, int size, int dst_regno) 4795 { 4796 struct bpf_verifier_state *vstate = env->cur_state; 4797 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4798 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4799 struct bpf_reg_state *reg; 4800 u8 *stype, type; 4801 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 4802 4803 stype = reg_state->stack[spi].slot_type; 4804 reg = ®_state->stack[spi].spilled_ptr; 4805 4806 mark_stack_slot_scratched(env, spi); 4807 4808 if (is_spilled_reg(®_state->stack[spi])) { 4809 u8 spill_size = 1; 4810 4811 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4812 spill_size++; 4813 4814 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4815 if (reg->type != SCALAR_VALUE) { 4816 verbose_linfo(env, env->insn_idx, "; "); 4817 verbose(env, "invalid size of register fill\n"); 4818 return -EACCES; 4819 } 4820 4821 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4822 if (dst_regno < 0) 4823 return 0; 4824 4825 if (size <= spill_size && 4826 bpf_stack_narrow_access_ok(off, size, spill_size)) { 4827 /* The earlier check_reg_arg() has decided the 4828 * subreg_def for this insn. Save it first. 4829 */ 4830 s32 subreg_def = state->regs[dst_regno].subreg_def; 4831 4832 copy_register_state(&state->regs[dst_regno], reg); 4833 state->regs[dst_regno].subreg_def = subreg_def; 4834 4835 /* Break the relation on a narrowing fill. 4836 * coerce_reg_to_size will adjust the boundaries. 4837 */ 4838 if (get_reg_width(reg) > size * BITS_PER_BYTE) 4839 state->regs[dst_regno].id = 0; 4840 } else { 4841 int spill_cnt = 0, zero_cnt = 0; 4842 4843 for (i = 0; i < size; i++) { 4844 type = stype[(slot - i) % BPF_REG_SIZE]; 4845 if (type == STACK_SPILL) { 4846 spill_cnt++; 4847 continue; 4848 } 4849 if (type == STACK_MISC) 4850 continue; 4851 if (type == STACK_ZERO) { 4852 zero_cnt++; 4853 continue; 4854 } 4855 if (type == STACK_INVALID && env->allow_uninit_stack) 4856 continue; 4857 verbose(env, "invalid read from stack off %d+%d size %d\n", 4858 off, i, size); 4859 return -EACCES; 4860 } 4861 4862 if (spill_cnt == size && 4863 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 4864 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4865 /* this IS register fill, so keep insn_flags */ 4866 } else if (zero_cnt == size) { 4867 /* similarly to mark_reg_stack_read(), preserve zeroes */ 4868 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4869 insn_flags = 0; /* not restoring original register state */ 4870 } else { 4871 mark_reg_unknown(env, state->regs, dst_regno); 4872 insn_flags = 0; /* not restoring original register state */ 4873 } 4874 } 4875 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4876 } else if (dst_regno >= 0) { 4877 /* restore register state from stack */ 4878 copy_register_state(&state->regs[dst_regno], reg); 4879 /* mark reg as written since spilled pointer state likely 4880 * has its liveness marks cleared by is_state_visited() 4881 * which resets stack/reg liveness for state transitions 4882 */ 4883 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4884 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4885 /* If dst_regno==-1, the caller is asking us whether 4886 * it is acceptable to use this value as a SCALAR_VALUE 4887 * (e.g. for XADD). 4888 * We must not allow unprivileged callers to do that 4889 * with spilled pointers. 4890 */ 4891 verbose(env, "leaking pointer from stack off %d\n", 4892 off); 4893 return -EACCES; 4894 } 4895 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4896 } else { 4897 for (i = 0; i < size; i++) { 4898 type = stype[(slot - i) % BPF_REG_SIZE]; 4899 if (type == STACK_MISC) 4900 continue; 4901 if (type == STACK_ZERO) 4902 continue; 4903 if (type == STACK_INVALID && env->allow_uninit_stack) 4904 continue; 4905 verbose(env, "invalid read from stack off %d+%d size %d\n", 4906 off, i, size); 4907 return -EACCES; 4908 } 4909 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4910 if (dst_regno >= 0) 4911 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4912 insn_flags = 0; /* we are not restoring spilled register */ 4913 } 4914 if (insn_flags) 4915 return push_jmp_history(env, env->cur_state, insn_flags); 4916 return 0; 4917 } 4918 4919 enum bpf_access_src { 4920 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4921 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4922 }; 4923 4924 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4925 int regno, int off, int access_size, 4926 bool zero_size_allowed, 4927 enum bpf_access_src type, 4928 struct bpf_call_arg_meta *meta); 4929 4930 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4931 { 4932 return cur_regs(env) + regno; 4933 } 4934 4935 /* Read the stack at 'ptr_regno + off' and put the result into the register 4936 * 'dst_regno'. 4937 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4938 * but not its variable offset. 4939 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4940 * 4941 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4942 * filling registers (i.e. reads of spilled register cannot be detected when 4943 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4944 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4945 * offset; for a fixed offset check_stack_read_fixed_off should be used 4946 * instead. 4947 */ 4948 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4949 int ptr_regno, int off, int size, int dst_regno) 4950 { 4951 /* The state of the source register. */ 4952 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4953 struct bpf_func_state *ptr_state = func(env, reg); 4954 int err; 4955 int min_off, max_off; 4956 4957 /* Note that we pass a NULL meta, so raw access will not be permitted. 4958 */ 4959 err = check_stack_range_initialized(env, ptr_regno, off, size, 4960 false, ACCESS_DIRECT, NULL); 4961 if (err) 4962 return err; 4963 4964 min_off = reg->smin_value + off; 4965 max_off = reg->smax_value + off; 4966 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4967 return 0; 4968 } 4969 4970 /* check_stack_read dispatches to check_stack_read_fixed_off or 4971 * check_stack_read_var_off. 4972 * 4973 * The caller must ensure that the offset falls within the allocated stack 4974 * bounds. 4975 * 4976 * 'dst_regno' is a register which will receive the value from the stack. It 4977 * can be -1, meaning that the read value is not going to a register. 4978 */ 4979 static int check_stack_read(struct bpf_verifier_env *env, 4980 int ptr_regno, int off, int size, 4981 int dst_regno) 4982 { 4983 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4984 struct bpf_func_state *state = func(env, reg); 4985 int err; 4986 /* Some accesses are only permitted with a static offset. */ 4987 bool var_off = !tnum_is_const(reg->var_off); 4988 4989 /* The offset is required to be static when reads don't go to a 4990 * register, in order to not leak pointers (see 4991 * check_stack_read_fixed_off). 4992 */ 4993 if (dst_regno < 0 && var_off) { 4994 char tn_buf[48]; 4995 4996 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4997 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4998 tn_buf, off, size); 4999 return -EACCES; 5000 } 5001 /* Variable offset is prohibited for unprivileged mode for simplicity 5002 * since it requires corresponding support in Spectre masking for stack 5003 * ALU. See also retrieve_ptr_limit(). The check in 5004 * check_stack_access_for_ptr_arithmetic() called by 5005 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5006 * with variable offsets, therefore no check is required here. Further, 5007 * just checking it here would be insufficient as speculative stack 5008 * writes could still lead to unsafe speculative behaviour. 5009 */ 5010 if (!var_off) { 5011 off += reg->var_off.value; 5012 err = check_stack_read_fixed_off(env, state, off, size, 5013 dst_regno); 5014 } else { 5015 /* Variable offset stack reads need more conservative handling 5016 * than fixed offset ones. Note that dst_regno >= 0 on this 5017 * branch. 5018 */ 5019 err = check_stack_read_var_off(env, ptr_regno, off, size, 5020 dst_regno); 5021 } 5022 return err; 5023 } 5024 5025 5026 /* check_stack_write dispatches to check_stack_write_fixed_off or 5027 * check_stack_write_var_off. 5028 * 5029 * 'ptr_regno' is the register used as a pointer into the stack. 5030 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5031 * 'value_regno' is the register whose value we're writing to the stack. It can 5032 * be -1, meaning that we're not writing from a register. 5033 * 5034 * The caller must ensure that the offset falls within the maximum stack size. 5035 */ 5036 static int check_stack_write(struct bpf_verifier_env *env, 5037 int ptr_regno, int off, int size, 5038 int value_regno, int insn_idx) 5039 { 5040 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5041 struct bpf_func_state *state = func(env, reg); 5042 int err; 5043 5044 if (tnum_is_const(reg->var_off)) { 5045 off += reg->var_off.value; 5046 err = check_stack_write_fixed_off(env, state, off, size, 5047 value_regno, insn_idx); 5048 } else { 5049 /* Variable offset stack reads need more conservative handling 5050 * than fixed offset ones. 5051 */ 5052 err = check_stack_write_var_off(env, state, 5053 ptr_regno, off, size, 5054 value_regno, insn_idx); 5055 } 5056 return err; 5057 } 5058 5059 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5060 int off, int size, enum bpf_access_type type) 5061 { 5062 struct bpf_reg_state *regs = cur_regs(env); 5063 struct bpf_map *map = regs[regno].map_ptr; 5064 u32 cap = bpf_map_flags_to_cap(map); 5065 5066 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5067 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5068 map->value_size, off, size); 5069 return -EACCES; 5070 } 5071 5072 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5073 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5074 map->value_size, off, size); 5075 return -EACCES; 5076 } 5077 5078 return 0; 5079 } 5080 5081 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5082 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5083 int off, int size, u32 mem_size, 5084 bool zero_size_allowed) 5085 { 5086 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5087 struct bpf_reg_state *reg; 5088 5089 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5090 return 0; 5091 5092 reg = &cur_regs(env)[regno]; 5093 switch (reg->type) { 5094 case PTR_TO_MAP_KEY: 5095 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5096 mem_size, off, size); 5097 break; 5098 case PTR_TO_MAP_VALUE: 5099 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5100 mem_size, off, size); 5101 break; 5102 case PTR_TO_PACKET: 5103 case PTR_TO_PACKET_META: 5104 case PTR_TO_PACKET_END: 5105 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5106 off, size, regno, reg->id, off, mem_size); 5107 break; 5108 case PTR_TO_MEM: 5109 default: 5110 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5111 mem_size, off, size); 5112 } 5113 5114 return -EACCES; 5115 } 5116 5117 /* check read/write into a memory region with possible variable offset */ 5118 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5119 int off, int size, u32 mem_size, 5120 bool zero_size_allowed) 5121 { 5122 struct bpf_verifier_state *vstate = env->cur_state; 5123 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5124 struct bpf_reg_state *reg = &state->regs[regno]; 5125 int err; 5126 5127 /* We may have adjusted the register pointing to memory region, so we 5128 * need to try adding each of min_value and max_value to off 5129 * to make sure our theoretical access will be safe. 5130 * 5131 * The minimum value is only important with signed 5132 * comparisons where we can't assume the floor of a 5133 * value is 0. If we are using signed variables for our 5134 * index'es we need to make sure that whatever we use 5135 * will have a set floor within our range. 5136 */ 5137 if (reg->smin_value < 0 && 5138 (reg->smin_value == S64_MIN || 5139 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5140 reg->smin_value + off < 0)) { 5141 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5142 regno); 5143 return -EACCES; 5144 } 5145 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5146 mem_size, zero_size_allowed); 5147 if (err) { 5148 verbose(env, "R%d min value is outside of the allowed memory range\n", 5149 regno); 5150 return err; 5151 } 5152 5153 /* If we haven't set a max value then we need to bail since we can't be 5154 * sure we won't do bad things. 5155 * If reg->umax_value + off could overflow, treat that as unbounded too. 5156 */ 5157 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5158 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5159 regno); 5160 return -EACCES; 5161 } 5162 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5163 mem_size, zero_size_allowed); 5164 if (err) { 5165 verbose(env, "R%d max value is outside of the allowed memory range\n", 5166 regno); 5167 return err; 5168 } 5169 5170 return 0; 5171 } 5172 5173 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5174 const struct bpf_reg_state *reg, int regno, 5175 bool fixed_off_ok) 5176 { 5177 /* Access to this pointer-typed register or passing it to a helper 5178 * is only allowed in its original, unmodified form. 5179 */ 5180 5181 if (reg->off < 0) { 5182 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5183 reg_type_str(env, reg->type), regno, reg->off); 5184 return -EACCES; 5185 } 5186 5187 if (!fixed_off_ok && reg->off) { 5188 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5189 reg_type_str(env, reg->type), regno, reg->off); 5190 return -EACCES; 5191 } 5192 5193 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5194 char tn_buf[48]; 5195 5196 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5197 verbose(env, "variable %s access var_off=%s disallowed\n", 5198 reg_type_str(env, reg->type), tn_buf); 5199 return -EACCES; 5200 } 5201 5202 return 0; 5203 } 5204 5205 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5206 const struct bpf_reg_state *reg, int regno) 5207 { 5208 return __check_ptr_off_reg(env, reg, regno, false); 5209 } 5210 5211 static int map_kptr_match_type(struct bpf_verifier_env *env, 5212 struct btf_field *kptr_field, 5213 struct bpf_reg_state *reg, u32 regno) 5214 { 5215 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5216 int perm_flags; 5217 const char *reg_name = ""; 5218 5219 if (btf_is_kernel(reg->btf)) { 5220 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5221 5222 /* Only unreferenced case accepts untrusted pointers */ 5223 if (kptr_field->type == BPF_KPTR_UNREF) 5224 perm_flags |= PTR_UNTRUSTED; 5225 } else { 5226 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5227 if (kptr_field->type == BPF_KPTR_PERCPU) 5228 perm_flags |= MEM_PERCPU; 5229 } 5230 5231 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5232 goto bad_type; 5233 5234 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5235 reg_name = btf_type_name(reg->btf, reg->btf_id); 5236 5237 /* For ref_ptr case, release function check should ensure we get one 5238 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5239 * normal store of unreferenced kptr, we must ensure var_off is zero. 5240 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5241 * reg->off and reg->ref_obj_id are not needed here. 5242 */ 5243 if (__check_ptr_off_reg(env, reg, regno, true)) 5244 return -EACCES; 5245 5246 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5247 * we also need to take into account the reg->off. 5248 * 5249 * We want to support cases like: 5250 * 5251 * struct foo { 5252 * struct bar br; 5253 * struct baz bz; 5254 * }; 5255 * 5256 * struct foo *v; 5257 * v = func(); // PTR_TO_BTF_ID 5258 * val->foo = v; // reg->off is zero, btf and btf_id match type 5259 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5260 * // first member type of struct after comparison fails 5261 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5262 * // to match type 5263 * 5264 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5265 * is zero. We must also ensure that btf_struct_ids_match does not walk 5266 * the struct to match type against first member of struct, i.e. reject 5267 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5268 * strict mode to true for type match. 5269 */ 5270 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5271 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5272 kptr_field->type != BPF_KPTR_UNREF)) 5273 goto bad_type; 5274 return 0; 5275 bad_type: 5276 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5277 reg_type_str(env, reg->type), reg_name); 5278 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5279 if (kptr_field->type == BPF_KPTR_UNREF) 5280 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5281 targ_name); 5282 else 5283 verbose(env, "\n"); 5284 return -EINVAL; 5285 } 5286 5287 static bool in_sleepable(struct bpf_verifier_env *env) 5288 { 5289 return env->prog->sleepable || 5290 (env->cur_state && env->cur_state->in_sleepable); 5291 } 5292 5293 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5294 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5295 */ 5296 static bool in_rcu_cs(struct bpf_verifier_env *env) 5297 { 5298 return env->cur_state->active_rcu_lock || 5299 env->cur_state->active_lock.ptr || 5300 !in_sleepable(env); 5301 } 5302 5303 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5304 BTF_SET_START(rcu_protected_types) 5305 BTF_ID(struct, prog_test_ref_kfunc) 5306 #ifdef CONFIG_CGROUPS 5307 BTF_ID(struct, cgroup) 5308 #endif 5309 #ifdef CONFIG_BPF_JIT 5310 BTF_ID(struct, bpf_cpumask) 5311 #endif 5312 BTF_ID(struct, task_struct) 5313 BTF_ID(struct, bpf_crypto_ctx) 5314 BTF_SET_END(rcu_protected_types) 5315 5316 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5317 { 5318 if (!btf_is_kernel(btf)) 5319 return true; 5320 return btf_id_set_contains(&rcu_protected_types, btf_id); 5321 } 5322 5323 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5324 { 5325 struct btf_struct_meta *meta; 5326 5327 if (btf_is_kernel(kptr_field->kptr.btf)) 5328 return NULL; 5329 5330 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5331 kptr_field->kptr.btf_id); 5332 5333 return meta ? meta->record : NULL; 5334 } 5335 5336 static bool rcu_safe_kptr(const struct btf_field *field) 5337 { 5338 const struct btf_field_kptr *kptr = &field->kptr; 5339 5340 return field->type == BPF_KPTR_PERCPU || 5341 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5342 } 5343 5344 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5345 { 5346 struct btf_record *rec; 5347 u32 ret; 5348 5349 ret = PTR_MAYBE_NULL; 5350 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5351 ret |= MEM_RCU; 5352 if (kptr_field->type == BPF_KPTR_PERCPU) 5353 ret |= MEM_PERCPU; 5354 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5355 ret |= MEM_ALLOC; 5356 5357 rec = kptr_pointee_btf_record(kptr_field); 5358 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5359 ret |= NON_OWN_REF; 5360 } else { 5361 ret |= PTR_UNTRUSTED; 5362 } 5363 5364 return ret; 5365 } 5366 5367 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5368 int value_regno, int insn_idx, 5369 struct btf_field *kptr_field) 5370 { 5371 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5372 int class = BPF_CLASS(insn->code); 5373 struct bpf_reg_state *val_reg; 5374 5375 /* Things we already checked for in check_map_access and caller: 5376 * - Reject cases where variable offset may touch kptr 5377 * - size of access (must be BPF_DW) 5378 * - tnum_is_const(reg->var_off) 5379 * - kptr_field->offset == off + reg->var_off.value 5380 */ 5381 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5382 if (BPF_MODE(insn->code) != BPF_MEM) { 5383 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5384 return -EACCES; 5385 } 5386 5387 /* We only allow loading referenced kptr, since it will be marked as 5388 * untrusted, similar to unreferenced kptr. 5389 */ 5390 if (class != BPF_LDX && 5391 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5392 verbose(env, "store to referenced kptr disallowed\n"); 5393 return -EACCES; 5394 } 5395 5396 if (class == BPF_LDX) { 5397 val_reg = reg_state(env, value_regno); 5398 /* We can simply mark the value_regno receiving the pointer 5399 * value from map as PTR_TO_BTF_ID, with the correct type. 5400 */ 5401 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5402 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); 5403 /* For mark_ptr_or_null_reg */ 5404 val_reg->id = ++env->id_gen; 5405 } else if (class == BPF_STX) { 5406 val_reg = reg_state(env, value_regno); 5407 if (!register_is_null(val_reg) && 5408 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5409 return -EACCES; 5410 } else if (class == BPF_ST) { 5411 if (insn->imm) { 5412 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5413 kptr_field->offset); 5414 return -EACCES; 5415 } 5416 } else { 5417 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5418 return -EACCES; 5419 } 5420 return 0; 5421 } 5422 5423 /* check read/write into a map element with possible variable offset */ 5424 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5425 int off, int size, bool zero_size_allowed, 5426 enum bpf_access_src src) 5427 { 5428 struct bpf_verifier_state *vstate = env->cur_state; 5429 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5430 struct bpf_reg_state *reg = &state->regs[regno]; 5431 struct bpf_map *map = reg->map_ptr; 5432 struct btf_record *rec; 5433 int err, i; 5434 5435 err = check_mem_region_access(env, regno, off, size, map->value_size, 5436 zero_size_allowed); 5437 if (err) 5438 return err; 5439 5440 if (IS_ERR_OR_NULL(map->record)) 5441 return 0; 5442 rec = map->record; 5443 for (i = 0; i < rec->cnt; i++) { 5444 struct btf_field *field = &rec->fields[i]; 5445 u32 p = field->offset; 5446 5447 /* If any part of a field can be touched by load/store, reject 5448 * this program. To check that [x1, x2) overlaps with [y1, y2), 5449 * it is sufficient to check x1 < y2 && y1 < x2. 5450 */ 5451 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5452 p < reg->umax_value + off + size) { 5453 switch (field->type) { 5454 case BPF_KPTR_UNREF: 5455 case BPF_KPTR_REF: 5456 case BPF_KPTR_PERCPU: 5457 if (src != ACCESS_DIRECT) { 5458 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5459 return -EACCES; 5460 } 5461 if (!tnum_is_const(reg->var_off)) { 5462 verbose(env, "kptr access cannot have variable offset\n"); 5463 return -EACCES; 5464 } 5465 if (p != off + reg->var_off.value) { 5466 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5467 p, off + reg->var_off.value); 5468 return -EACCES; 5469 } 5470 if (size != bpf_size_to_bytes(BPF_DW)) { 5471 verbose(env, "kptr access size must be BPF_DW\n"); 5472 return -EACCES; 5473 } 5474 break; 5475 default: 5476 verbose(env, "%s cannot be accessed directly by load/store\n", 5477 btf_field_type_name(field->type)); 5478 return -EACCES; 5479 } 5480 } 5481 } 5482 return 0; 5483 } 5484 5485 #define MAX_PACKET_OFF 0xffff 5486 5487 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5488 const struct bpf_call_arg_meta *meta, 5489 enum bpf_access_type t) 5490 { 5491 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5492 5493 switch (prog_type) { 5494 /* Program types only with direct read access go here! */ 5495 case BPF_PROG_TYPE_LWT_IN: 5496 case BPF_PROG_TYPE_LWT_OUT: 5497 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5498 case BPF_PROG_TYPE_SK_REUSEPORT: 5499 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5500 case BPF_PROG_TYPE_CGROUP_SKB: 5501 if (t == BPF_WRITE) 5502 return false; 5503 fallthrough; 5504 5505 /* Program types with direct read + write access go here! */ 5506 case BPF_PROG_TYPE_SCHED_CLS: 5507 case BPF_PROG_TYPE_SCHED_ACT: 5508 case BPF_PROG_TYPE_XDP: 5509 case BPF_PROG_TYPE_LWT_XMIT: 5510 case BPF_PROG_TYPE_SK_SKB: 5511 case BPF_PROG_TYPE_SK_MSG: 5512 if (meta) 5513 return meta->pkt_access; 5514 5515 env->seen_direct_write = true; 5516 return true; 5517 5518 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5519 if (t == BPF_WRITE) 5520 env->seen_direct_write = true; 5521 5522 return true; 5523 5524 default: 5525 return false; 5526 } 5527 } 5528 5529 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5530 int size, bool zero_size_allowed) 5531 { 5532 struct bpf_reg_state *regs = cur_regs(env); 5533 struct bpf_reg_state *reg = ®s[regno]; 5534 int err; 5535 5536 /* We may have added a variable offset to the packet pointer; but any 5537 * reg->range we have comes after that. We are only checking the fixed 5538 * offset. 5539 */ 5540 5541 /* We don't allow negative numbers, because we aren't tracking enough 5542 * detail to prove they're safe. 5543 */ 5544 if (reg->smin_value < 0) { 5545 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5546 regno); 5547 return -EACCES; 5548 } 5549 5550 err = reg->range < 0 ? -EINVAL : 5551 __check_mem_access(env, regno, off, size, reg->range, 5552 zero_size_allowed); 5553 if (err) { 5554 verbose(env, "R%d offset is outside of the packet\n", regno); 5555 return err; 5556 } 5557 5558 /* __check_mem_access has made sure "off + size - 1" is within u16. 5559 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5560 * otherwise find_good_pkt_pointers would have refused to set range info 5561 * that __check_mem_access would have rejected this pkt access. 5562 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5563 */ 5564 env->prog->aux->max_pkt_offset = 5565 max_t(u32, env->prog->aux->max_pkt_offset, 5566 off + reg->umax_value + size - 1); 5567 5568 return err; 5569 } 5570 5571 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5572 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5573 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5574 struct btf **btf, u32 *btf_id) 5575 { 5576 struct bpf_insn_access_aux info = { 5577 .reg_type = *reg_type, 5578 .log = &env->log, 5579 }; 5580 5581 if (env->ops->is_valid_access && 5582 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5583 /* A non zero info.ctx_field_size indicates that this field is a 5584 * candidate for later verifier transformation to load the whole 5585 * field and then apply a mask when accessed with a narrower 5586 * access than actual ctx access size. A zero info.ctx_field_size 5587 * will only allow for whole field access and rejects any other 5588 * type of narrower access. 5589 */ 5590 *reg_type = info.reg_type; 5591 5592 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5593 *btf = info.btf; 5594 *btf_id = info.btf_id; 5595 } else { 5596 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5597 } 5598 /* remember the offset of last byte accessed in ctx */ 5599 if (env->prog->aux->max_ctx_offset < off + size) 5600 env->prog->aux->max_ctx_offset = off + size; 5601 return 0; 5602 } 5603 5604 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5605 return -EACCES; 5606 } 5607 5608 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5609 int size) 5610 { 5611 if (size < 0 || off < 0 || 5612 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5613 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5614 off, size); 5615 return -EACCES; 5616 } 5617 return 0; 5618 } 5619 5620 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5621 u32 regno, int off, int size, 5622 enum bpf_access_type t) 5623 { 5624 struct bpf_reg_state *regs = cur_regs(env); 5625 struct bpf_reg_state *reg = ®s[regno]; 5626 struct bpf_insn_access_aux info = {}; 5627 bool valid; 5628 5629 if (reg->smin_value < 0) { 5630 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5631 regno); 5632 return -EACCES; 5633 } 5634 5635 switch (reg->type) { 5636 case PTR_TO_SOCK_COMMON: 5637 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5638 break; 5639 case PTR_TO_SOCKET: 5640 valid = bpf_sock_is_valid_access(off, size, t, &info); 5641 break; 5642 case PTR_TO_TCP_SOCK: 5643 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5644 break; 5645 case PTR_TO_XDP_SOCK: 5646 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5647 break; 5648 default: 5649 valid = false; 5650 } 5651 5652 5653 if (valid) { 5654 env->insn_aux_data[insn_idx].ctx_field_size = 5655 info.ctx_field_size; 5656 return 0; 5657 } 5658 5659 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5660 regno, reg_type_str(env, reg->type), off, size); 5661 5662 return -EACCES; 5663 } 5664 5665 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5666 { 5667 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5668 } 5669 5670 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5671 { 5672 const struct bpf_reg_state *reg = reg_state(env, regno); 5673 5674 return reg->type == PTR_TO_CTX; 5675 } 5676 5677 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5678 { 5679 const struct bpf_reg_state *reg = reg_state(env, regno); 5680 5681 return type_is_sk_pointer(reg->type); 5682 } 5683 5684 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5685 { 5686 const struct bpf_reg_state *reg = reg_state(env, regno); 5687 5688 return type_is_pkt_pointer(reg->type); 5689 } 5690 5691 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5692 { 5693 const struct bpf_reg_state *reg = reg_state(env, regno); 5694 5695 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5696 return reg->type == PTR_TO_FLOW_KEYS; 5697 } 5698 5699 static bool is_arena_reg(struct bpf_verifier_env *env, int regno) 5700 { 5701 const struct bpf_reg_state *reg = reg_state(env, regno); 5702 5703 return reg->type == PTR_TO_ARENA; 5704 } 5705 5706 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5707 #ifdef CONFIG_NET 5708 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5709 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5710 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5711 #endif 5712 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5713 }; 5714 5715 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5716 { 5717 /* A referenced register is always trusted. */ 5718 if (reg->ref_obj_id) 5719 return true; 5720 5721 /* Types listed in the reg2btf_ids are always trusted */ 5722 if (reg2btf_ids[base_type(reg->type)]) 5723 return true; 5724 5725 /* If a register is not referenced, it is trusted if it has the 5726 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5727 * other type modifiers may be safe, but we elect to take an opt-in 5728 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5729 * not. 5730 * 5731 * Eventually, we should make PTR_TRUSTED the single source of truth 5732 * for whether a register is trusted. 5733 */ 5734 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5735 !bpf_type_has_unsafe_modifiers(reg->type); 5736 } 5737 5738 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5739 { 5740 return reg->type & MEM_RCU; 5741 } 5742 5743 static void clear_trusted_flags(enum bpf_type_flag *flag) 5744 { 5745 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5746 } 5747 5748 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5749 const struct bpf_reg_state *reg, 5750 int off, int size, bool strict) 5751 { 5752 struct tnum reg_off; 5753 int ip_align; 5754 5755 /* Byte size accesses are always allowed. */ 5756 if (!strict || size == 1) 5757 return 0; 5758 5759 /* For platforms that do not have a Kconfig enabling 5760 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5761 * NET_IP_ALIGN is universally set to '2'. And on platforms 5762 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5763 * to this code only in strict mode where we want to emulate 5764 * the NET_IP_ALIGN==2 checking. Therefore use an 5765 * unconditional IP align value of '2'. 5766 */ 5767 ip_align = 2; 5768 5769 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5770 if (!tnum_is_aligned(reg_off, size)) { 5771 char tn_buf[48]; 5772 5773 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5774 verbose(env, 5775 "misaligned packet access off %d+%s+%d+%d size %d\n", 5776 ip_align, tn_buf, reg->off, off, size); 5777 return -EACCES; 5778 } 5779 5780 return 0; 5781 } 5782 5783 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5784 const struct bpf_reg_state *reg, 5785 const char *pointer_desc, 5786 int off, int size, bool strict) 5787 { 5788 struct tnum reg_off; 5789 5790 /* Byte size accesses are always allowed. */ 5791 if (!strict || size == 1) 5792 return 0; 5793 5794 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5795 if (!tnum_is_aligned(reg_off, size)) { 5796 char tn_buf[48]; 5797 5798 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5799 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5800 pointer_desc, tn_buf, reg->off, off, size); 5801 return -EACCES; 5802 } 5803 5804 return 0; 5805 } 5806 5807 static int check_ptr_alignment(struct bpf_verifier_env *env, 5808 const struct bpf_reg_state *reg, int off, 5809 int size, bool strict_alignment_once) 5810 { 5811 bool strict = env->strict_alignment || strict_alignment_once; 5812 const char *pointer_desc = ""; 5813 5814 switch (reg->type) { 5815 case PTR_TO_PACKET: 5816 case PTR_TO_PACKET_META: 5817 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5818 * right in front, treat it the very same way. 5819 */ 5820 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5821 case PTR_TO_FLOW_KEYS: 5822 pointer_desc = "flow keys "; 5823 break; 5824 case PTR_TO_MAP_KEY: 5825 pointer_desc = "key "; 5826 break; 5827 case PTR_TO_MAP_VALUE: 5828 pointer_desc = "value "; 5829 break; 5830 case PTR_TO_CTX: 5831 pointer_desc = "context "; 5832 break; 5833 case PTR_TO_STACK: 5834 pointer_desc = "stack "; 5835 /* The stack spill tracking logic in check_stack_write_fixed_off() 5836 * and check_stack_read_fixed_off() relies on stack accesses being 5837 * aligned. 5838 */ 5839 strict = true; 5840 break; 5841 case PTR_TO_SOCKET: 5842 pointer_desc = "sock "; 5843 break; 5844 case PTR_TO_SOCK_COMMON: 5845 pointer_desc = "sock_common "; 5846 break; 5847 case PTR_TO_TCP_SOCK: 5848 pointer_desc = "tcp_sock "; 5849 break; 5850 case PTR_TO_XDP_SOCK: 5851 pointer_desc = "xdp_sock "; 5852 break; 5853 case PTR_TO_ARENA: 5854 return 0; 5855 default: 5856 break; 5857 } 5858 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5859 strict); 5860 } 5861 5862 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 5863 { 5864 if (env->prog->jit_requested) 5865 return round_up(stack_depth, 16); 5866 5867 /* round up to 32-bytes, since this is granularity 5868 * of interpreter stack size 5869 */ 5870 return round_up(max_t(u32, stack_depth, 1), 32); 5871 } 5872 5873 /* starting from main bpf function walk all instructions of the function 5874 * and recursively walk all callees that given function can call. 5875 * Ignore jump and exit insns. 5876 * Since recursion is prevented by check_cfg() this algorithm 5877 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5878 */ 5879 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5880 { 5881 struct bpf_subprog_info *subprog = env->subprog_info; 5882 struct bpf_insn *insn = env->prog->insnsi; 5883 int depth = 0, frame = 0, i, subprog_end; 5884 bool tail_call_reachable = false; 5885 int ret_insn[MAX_CALL_FRAMES]; 5886 int ret_prog[MAX_CALL_FRAMES]; 5887 int j; 5888 5889 i = subprog[idx].start; 5890 process_func: 5891 /* protect against potential stack overflow that might happen when 5892 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5893 * depth for such case down to 256 so that the worst case scenario 5894 * would result in 8k stack size (32 which is tailcall limit * 256 = 5895 * 8k). 5896 * 5897 * To get the idea what might happen, see an example: 5898 * func1 -> sub rsp, 128 5899 * subfunc1 -> sub rsp, 256 5900 * tailcall1 -> add rsp, 256 5901 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5902 * subfunc2 -> sub rsp, 64 5903 * subfunc22 -> sub rsp, 128 5904 * tailcall2 -> add rsp, 128 5905 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5906 * 5907 * tailcall will unwind the current stack frame but it will not get rid 5908 * of caller's stack as shown on the example above. 5909 */ 5910 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5911 verbose(env, 5912 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5913 depth); 5914 return -EACCES; 5915 } 5916 depth += round_up_stack_depth(env, subprog[idx].stack_depth); 5917 if (depth > MAX_BPF_STACK) { 5918 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5919 frame + 1, depth); 5920 return -EACCES; 5921 } 5922 continue_func: 5923 subprog_end = subprog[idx + 1].start; 5924 for (; i < subprog_end; i++) { 5925 int next_insn, sidx; 5926 5927 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 5928 bool err = false; 5929 5930 if (!is_bpf_throw_kfunc(insn + i)) 5931 continue; 5932 if (subprog[idx].is_cb) 5933 err = true; 5934 for (int c = 0; c < frame && !err; c++) { 5935 if (subprog[ret_prog[c]].is_cb) { 5936 err = true; 5937 break; 5938 } 5939 } 5940 if (!err) 5941 continue; 5942 verbose(env, 5943 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 5944 i, idx); 5945 return -EINVAL; 5946 } 5947 5948 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5949 continue; 5950 /* remember insn and function to return to */ 5951 ret_insn[frame] = i + 1; 5952 ret_prog[frame] = idx; 5953 5954 /* find the callee */ 5955 next_insn = i + insn[i].imm + 1; 5956 sidx = find_subprog(env, next_insn); 5957 if (sidx < 0) { 5958 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5959 next_insn); 5960 return -EFAULT; 5961 } 5962 if (subprog[sidx].is_async_cb) { 5963 if (subprog[sidx].has_tail_call) { 5964 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5965 return -EFAULT; 5966 } 5967 /* async callbacks don't increase bpf prog stack size unless called directly */ 5968 if (!bpf_pseudo_call(insn + i)) 5969 continue; 5970 if (subprog[sidx].is_exception_cb) { 5971 verbose(env, "insn %d cannot call exception cb directly\n", i); 5972 return -EINVAL; 5973 } 5974 } 5975 i = next_insn; 5976 idx = sidx; 5977 5978 if (subprog[idx].has_tail_call) 5979 tail_call_reachable = true; 5980 5981 frame++; 5982 if (frame >= MAX_CALL_FRAMES) { 5983 verbose(env, "the call stack of %d frames is too deep !\n", 5984 frame); 5985 return -E2BIG; 5986 } 5987 goto process_func; 5988 } 5989 /* if tail call got detected across bpf2bpf calls then mark each of the 5990 * currently present subprog frames as tail call reachable subprogs; 5991 * this info will be utilized by JIT so that we will be preserving the 5992 * tail call counter throughout bpf2bpf calls combined with tailcalls 5993 */ 5994 if (tail_call_reachable) 5995 for (j = 0; j < frame; j++) { 5996 if (subprog[ret_prog[j]].is_exception_cb) { 5997 verbose(env, "cannot tail call within exception cb\n"); 5998 return -EINVAL; 5999 } 6000 subprog[ret_prog[j]].tail_call_reachable = true; 6001 } 6002 if (subprog[0].tail_call_reachable) 6003 env->prog->aux->tail_call_reachable = true; 6004 6005 /* end of for() loop means the last insn of the 'subprog' 6006 * was reached. Doesn't matter whether it was JA or EXIT 6007 */ 6008 if (frame == 0) 6009 return 0; 6010 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 6011 frame--; 6012 i = ret_insn[frame]; 6013 idx = ret_prog[frame]; 6014 goto continue_func; 6015 } 6016 6017 static int check_max_stack_depth(struct bpf_verifier_env *env) 6018 { 6019 struct bpf_subprog_info *si = env->subprog_info; 6020 int ret; 6021 6022 for (int i = 0; i < env->subprog_cnt; i++) { 6023 if (!i || si[i].is_async_cb) { 6024 ret = check_max_stack_depth_subprog(env, i); 6025 if (ret < 0) 6026 return ret; 6027 } 6028 continue; 6029 } 6030 return 0; 6031 } 6032 6033 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6034 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6035 const struct bpf_insn *insn, int idx) 6036 { 6037 int start = idx + insn->imm + 1, subprog; 6038 6039 subprog = find_subprog(env, start); 6040 if (subprog < 0) { 6041 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6042 start); 6043 return -EFAULT; 6044 } 6045 return env->subprog_info[subprog].stack_depth; 6046 } 6047 #endif 6048 6049 static int __check_buffer_access(struct bpf_verifier_env *env, 6050 const char *buf_info, 6051 const struct bpf_reg_state *reg, 6052 int regno, int off, int size) 6053 { 6054 if (off < 0) { 6055 verbose(env, 6056 "R%d invalid %s buffer access: off=%d, size=%d\n", 6057 regno, buf_info, off, size); 6058 return -EACCES; 6059 } 6060 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6061 char tn_buf[48]; 6062 6063 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6064 verbose(env, 6065 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6066 regno, off, tn_buf); 6067 return -EACCES; 6068 } 6069 6070 return 0; 6071 } 6072 6073 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6074 const struct bpf_reg_state *reg, 6075 int regno, int off, int size) 6076 { 6077 int err; 6078 6079 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6080 if (err) 6081 return err; 6082 6083 if (off + size > env->prog->aux->max_tp_access) 6084 env->prog->aux->max_tp_access = off + size; 6085 6086 return 0; 6087 } 6088 6089 static int check_buffer_access(struct bpf_verifier_env *env, 6090 const struct bpf_reg_state *reg, 6091 int regno, int off, int size, 6092 bool zero_size_allowed, 6093 u32 *max_access) 6094 { 6095 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6096 int err; 6097 6098 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6099 if (err) 6100 return err; 6101 6102 if (off + size > *max_access) 6103 *max_access = off + size; 6104 6105 return 0; 6106 } 6107 6108 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6109 static void zext_32_to_64(struct bpf_reg_state *reg) 6110 { 6111 reg->var_off = tnum_subreg(reg->var_off); 6112 __reg_assign_32_into_64(reg); 6113 } 6114 6115 /* truncate register to smaller size (in bytes) 6116 * must be called with size < BPF_REG_SIZE 6117 */ 6118 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6119 { 6120 u64 mask; 6121 6122 /* clear high bits in bit representation */ 6123 reg->var_off = tnum_cast(reg->var_off, size); 6124 6125 /* fix arithmetic bounds */ 6126 mask = ((u64)1 << (size * 8)) - 1; 6127 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6128 reg->umin_value &= mask; 6129 reg->umax_value &= mask; 6130 } else { 6131 reg->umin_value = 0; 6132 reg->umax_value = mask; 6133 } 6134 reg->smin_value = reg->umin_value; 6135 reg->smax_value = reg->umax_value; 6136 6137 /* If size is smaller than 32bit register the 32bit register 6138 * values are also truncated so we push 64-bit bounds into 6139 * 32-bit bounds. Above were truncated < 32-bits already. 6140 */ 6141 if (size < 4) 6142 __mark_reg32_unbounded(reg); 6143 6144 reg_bounds_sync(reg); 6145 } 6146 6147 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6148 { 6149 if (size == 1) { 6150 reg->smin_value = reg->s32_min_value = S8_MIN; 6151 reg->smax_value = reg->s32_max_value = S8_MAX; 6152 } else if (size == 2) { 6153 reg->smin_value = reg->s32_min_value = S16_MIN; 6154 reg->smax_value = reg->s32_max_value = S16_MAX; 6155 } else { 6156 /* size == 4 */ 6157 reg->smin_value = reg->s32_min_value = S32_MIN; 6158 reg->smax_value = reg->s32_max_value = S32_MAX; 6159 } 6160 reg->umin_value = reg->u32_min_value = 0; 6161 reg->umax_value = U64_MAX; 6162 reg->u32_max_value = U32_MAX; 6163 reg->var_off = tnum_unknown; 6164 } 6165 6166 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6167 { 6168 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6169 u64 top_smax_value, top_smin_value; 6170 u64 num_bits = size * 8; 6171 6172 if (tnum_is_const(reg->var_off)) { 6173 u64_cval = reg->var_off.value; 6174 if (size == 1) 6175 reg->var_off = tnum_const((s8)u64_cval); 6176 else if (size == 2) 6177 reg->var_off = tnum_const((s16)u64_cval); 6178 else 6179 /* size == 4 */ 6180 reg->var_off = tnum_const((s32)u64_cval); 6181 6182 u64_cval = reg->var_off.value; 6183 reg->smax_value = reg->smin_value = u64_cval; 6184 reg->umax_value = reg->umin_value = u64_cval; 6185 reg->s32_max_value = reg->s32_min_value = u64_cval; 6186 reg->u32_max_value = reg->u32_min_value = u64_cval; 6187 return; 6188 } 6189 6190 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6191 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6192 6193 if (top_smax_value != top_smin_value) 6194 goto out; 6195 6196 /* find the s64_min and s64_min after sign extension */ 6197 if (size == 1) { 6198 init_s64_max = (s8)reg->smax_value; 6199 init_s64_min = (s8)reg->smin_value; 6200 } else if (size == 2) { 6201 init_s64_max = (s16)reg->smax_value; 6202 init_s64_min = (s16)reg->smin_value; 6203 } else { 6204 init_s64_max = (s32)reg->smax_value; 6205 init_s64_min = (s32)reg->smin_value; 6206 } 6207 6208 s64_max = max(init_s64_max, init_s64_min); 6209 s64_min = min(init_s64_max, init_s64_min); 6210 6211 /* both of s64_max/s64_min positive or negative */ 6212 if ((s64_max >= 0) == (s64_min >= 0)) { 6213 reg->smin_value = reg->s32_min_value = s64_min; 6214 reg->smax_value = reg->s32_max_value = s64_max; 6215 reg->umin_value = reg->u32_min_value = s64_min; 6216 reg->umax_value = reg->u32_max_value = s64_max; 6217 reg->var_off = tnum_range(s64_min, s64_max); 6218 return; 6219 } 6220 6221 out: 6222 set_sext64_default_val(reg, size); 6223 } 6224 6225 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6226 { 6227 if (size == 1) { 6228 reg->s32_min_value = S8_MIN; 6229 reg->s32_max_value = S8_MAX; 6230 } else { 6231 /* size == 2 */ 6232 reg->s32_min_value = S16_MIN; 6233 reg->s32_max_value = S16_MAX; 6234 } 6235 reg->u32_min_value = 0; 6236 reg->u32_max_value = U32_MAX; 6237 } 6238 6239 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6240 { 6241 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6242 u32 top_smax_value, top_smin_value; 6243 u32 num_bits = size * 8; 6244 6245 if (tnum_is_const(reg->var_off)) { 6246 u32_val = reg->var_off.value; 6247 if (size == 1) 6248 reg->var_off = tnum_const((s8)u32_val); 6249 else 6250 reg->var_off = tnum_const((s16)u32_val); 6251 6252 u32_val = reg->var_off.value; 6253 reg->s32_min_value = reg->s32_max_value = u32_val; 6254 reg->u32_min_value = reg->u32_max_value = u32_val; 6255 return; 6256 } 6257 6258 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6259 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6260 6261 if (top_smax_value != top_smin_value) 6262 goto out; 6263 6264 /* find the s32_min and s32_min after sign extension */ 6265 if (size == 1) { 6266 init_s32_max = (s8)reg->s32_max_value; 6267 init_s32_min = (s8)reg->s32_min_value; 6268 } else { 6269 /* size == 2 */ 6270 init_s32_max = (s16)reg->s32_max_value; 6271 init_s32_min = (s16)reg->s32_min_value; 6272 } 6273 s32_max = max(init_s32_max, init_s32_min); 6274 s32_min = min(init_s32_max, init_s32_min); 6275 6276 if ((s32_min >= 0) == (s32_max >= 0)) { 6277 reg->s32_min_value = s32_min; 6278 reg->s32_max_value = s32_max; 6279 reg->u32_min_value = (u32)s32_min; 6280 reg->u32_max_value = (u32)s32_max; 6281 return; 6282 } 6283 6284 out: 6285 set_sext32_default_val(reg, size); 6286 } 6287 6288 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6289 { 6290 /* A map is considered read-only if the following condition are true: 6291 * 6292 * 1) BPF program side cannot change any of the map content. The 6293 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6294 * and was set at map creation time. 6295 * 2) The map value(s) have been initialized from user space by a 6296 * loader and then "frozen", such that no new map update/delete 6297 * operations from syscall side are possible for the rest of 6298 * the map's lifetime from that point onwards. 6299 * 3) Any parallel/pending map update/delete operations from syscall 6300 * side have been completed. Only after that point, it's safe to 6301 * assume that map value(s) are immutable. 6302 */ 6303 return (map->map_flags & BPF_F_RDONLY_PROG) && 6304 READ_ONCE(map->frozen) && 6305 !bpf_map_write_active(map); 6306 } 6307 6308 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6309 bool is_ldsx) 6310 { 6311 void *ptr; 6312 u64 addr; 6313 int err; 6314 6315 err = map->ops->map_direct_value_addr(map, &addr, off); 6316 if (err) 6317 return err; 6318 ptr = (void *)(long)addr + off; 6319 6320 switch (size) { 6321 case sizeof(u8): 6322 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6323 break; 6324 case sizeof(u16): 6325 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6326 break; 6327 case sizeof(u32): 6328 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6329 break; 6330 case sizeof(u64): 6331 *val = *(u64 *)ptr; 6332 break; 6333 default: 6334 return -EINVAL; 6335 } 6336 return 0; 6337 } 6338 6339 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6340 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6341 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6342 6343 /* 6344 * Allow list few fields as RCU trusted or full trusted. 6345 * This logic doesn't allow mix tagging and will be removed once GCC supports 6346 * btf_type_tag. 6347 */ 6348 6349 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6350 BTF_TYPE_SAFE_RCU(struct task_struct) { 6351 const cpumask_t *cpus_ptr; 6352 struct css_set __rcu *cgroups; 6353 struct task_struct __rcu *real_parent; 6354 struct task_struct *group_leader; 6355 }; 6356 6357 BTF_TYPE_SAFE_RCU(struct cgroup) { 6358 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6359 struct kernfs_node *kn; 6360 }; 6361 6362 BTF_TYPE_SAFE_RCU(struct css_set) { 6363 struct cgroup *dfl_cgrp; 6364 }; 6365 6366 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6367 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6368 struct file __rcu *exe_file; 6369 }; 6370 6371 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6372 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6373 */ 6374 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6375 struct sock *sk; 6376 }; 6377 6378 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6379 struct sock *sk; 6380 }; 6381 6382 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6383 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6384 struct seq_file *seq; 6385 }; 6386 6387 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6388 struct bpf_iter_meta *meta; 6389 struct task_struct *task; 6390 }; 6391 6392 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6393 struct file *file; 6394 }; 6395 6396 BTF_TYPE_SAFE_TRUSTED(struct file) { 6397 struct inode *f_inode; 6398 }; 6399 6400 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6401 /* no negative dentry-s in places where bpf can see it */ 6402 struct inode *d_inode; 6403 }; 6404 6405 BTF_TYPE_SAFE_TRUSTED(struct socket) { 6406 struct sock *sk; 6407 }; 6408 6409 static bool type_is_rcu(struct bpf_verifier_env *env, 6410 struct bpf_reg_state *reg, 6411 const char *field_name, u32 btf_id) 6412 { 6413 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6414 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6415 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6416 6417 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6418 } 6419 6420 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6421 struct bpf_reg_state *reg, 6422 const char *field_name, u32 btf_id) 6423 { 6424 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6425 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6426 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6427 6428 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6429 } 6430 6431 static bool type_is_trusted(struct bpf_verifier_env *env, 6432 struct bpf_reg_state *reg, 6433 const char *field_name, u32 btf_id) 6434 { 6435 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6436 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6437 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6438 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6439 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6440 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 6441 6442 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6443 } 6444 6445 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6446 struct bpf_reg_state *regs, 6447 int regno, int off, int size, 6448 enum bpf_access_type atype, 6449 int value_regno) 6450 { 6451 struct bpf_reg_state *reg = regs + regno; 6452 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6453 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6454 const char *field_name = NULL; 6455 enum bpf_type_flag flag = 0; 6456 u32 btf_id = 0; 6457 int ret; 6458 6459 if (!env->allow_ptr_leaks) { 6460 verbose(env, 6461 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6462 tname); 6463 return -EPERM; 6464 } 6465 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6466 verbose(env, 6467 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6468 tname); 6469 return -EINVAL; 6470 } 6471 if (off < 0) { 6472 verbose(env, 6473 "R%d is ptr_%s invalid negative access: off=%d\n", 6474 regno, tname, off); 6475 return -EACCES; 6476 } 6477 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6478 char tn_buf[48]; 6479 6480 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6481 verbose(env, 6482 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6483 regno, tname, off, tn_buf); 6484 return -EACCES; 6485 } 6486 6487 if (reg->type & MEM_USER) { 6488 verbose(env, 6489 "R%d is ptr_%s access user memory: off=%d\n", 6490 regno, tname, off); 6491 return -EACCES; 6492 } 6493 6494 if (reg->type & MEM_PERCPU) { 6495 verbose(env, 6496 "R%d is ptr_%s access percpu memory: off=%d\n", 6497 regno, tname, off); 6498 return -EACCES; 6499 } 6500 6501 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6502 if (!btf_is_kernel(reg->btf)) { 6503 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6504 return -EFAULT; 6505 } 6506 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6507 } else { 6508 /* Writes are permitted with default btf_struct_access for 6509 * program allocated objects (which always have ref_obj_id > 0), 6510 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6511 */ 6512 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6513 verbose(env, "only read is supported\n"); 6514 return -EACCES; 6515 } 6516 6517 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6518 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 6519 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6520 return -EFAULT; 6521 } 6522 6523 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6524 } 6525 6526 if (ret < 0) 6527 return ret; 6528 6529 if (ret != PTR_TO_BTF_ID) { 6530 /* just mark; */ 6531 6532 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6533 /* If this is an untrusted pointer, all pointers formed by walking it 6534 * also inherit the untrusted flag. 6535 */ 6536 flag = PTR_UNTRUSTED; 6537 6538 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6539 /* By default any pointer obtained from walking a trusted pointer is no 6540 * longer trusted, unless the field being accessed has explicitly been 6541 * marked as inheriting its parent's state of trust (either full or RCU). 6542 * For example: 6543 * 'cgroups' pointer is untrusted if task->cgroups dereference 6544 * happened in a sleepable program outside of bpf_rcu_read_lock() 6545 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6546 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6547 * 6548 * A regular RCU-protected pointer with __rcu tag can also be deemed 6549 * trusted if we are in an RCU CS. Such pointer can be NULL. 6550 */ 6551 if (type_is_trusted(env, reg, field_name, btf_id)) { 6552 flag |= PTR_TRUSTED; 6553 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6554 if (type_is_rcu(env, reg, field_name, btf_id)) { 6555 /* ignore __rcu tag and mark it MEM_RCU */ 6556 flag |= MEM_RCU; 6557 } else if (flag & MEM_RCU || 6558 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6559 /* __rcu tagged pointers can be NULL */ 6560 flag |= MEM_RCU | PTR_MAYBE_NULL; 6561 6562 /* We always trust them */ 6563 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6564 flag & PTR_UNTRUSTED) 6565 flag &= ~PTR_UNTRUSTED; 6566 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6567 /* keep as-is */ 6568 } else { 6569 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6570 clear_trusted_flags(&flag); 6571 } 6572 } else { 6573 /* 6574 * If not in RCU CS or MEM_RCU pointer can be NULL then 6575 * aggressively mark as untrusted otherwise such 6576 * pointers will be plain PTR_TO_BTF_ID without flags 6577 * and will be allowed to be passed into helpers for 6578 * compat reasons. 6579 */ 6580 flag = PTR_UNTRUSTED; 6581 } 6582 } else { 6583 /* Old compat. Deprecated */ 6584 clear_trusted_flags(&flag); 6585 } 6586 6587 if (atype == BPF_READ && value_regno >= 0) 6588 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6589 6590 return 0; 6591 } 6592 6593 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6594 struct bpf_reg_state *regs, 6595 int regno, int off, int size, 6596 enum bpf_access_type atype, 6597 int value_regno) 6598 { 6599 struct bpf_reg_state *reg = regs + regno; 6600 struct bpf_map *map = reg->map_ptr; 6601 struct bpf_reg_state map_reg; 6602 enum bpf_type_flag flag = 0; 6603 const struct btf_type *t; 6604 const char *tname; 6605 u32 btf_id; 6606 int ret; 6607 6608 if (!btf_vmlinux) { 6609 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6610 return -ENOTSUPP; 6611 } 6612 6613 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6614 verbose(env, "map_ptr access not supported for map type %d\n", 6615 map->map_type); 6616 return -ENOTSUPP; 6617 } 6618 6619 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6620 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6621 6622 if (!env->allow_ptr_leaks) { 6623 verbose(env, 6624 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6625 tname); 6626 return -EPERM; 6627 } 6628 6629 if (off < 0) { 6630 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6631 regno, tname, off); 6632 return -EACCES; 6633 } 6634 6635 if (atype != BPF_READ) { 6636 verbose(env, "only read from %s is supported\n", tname); 6637 return -EACCES; 6638 } 6639 6640 /* Simulate access to a PTR_TO_BTF_ID */ 6641 memset(&map_reg, 0, sizeof(map_reg)); 6642 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6643 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6644 if (ret < 0) 6645 return ret; 6646 6647 if (value_regno >= 0) 6648 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6649 6650 return 0; 6651 } 6652 6653 /* Check that the stack access at the given offset is within bounds. The 6654 * maximum valid offset is -1. 6655 * 6656 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6657 * -state->allocated_stack for reads. 6658 */ 6659 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 6660 s64 off, 6661 struct bpf_func_state *state, 6662 enum bpf_access_type t) 6663 { 6664 int min_valid_off; 6665 6666 if (t == BPF_WRITE || env->allow_uninit_stack) 6667 min_valid_off = -MAX_BPF_STACK; 6668 else 6669 min_valid_off = -state->allocated_stack; 6670 6671 if (off < min_valid_off || off > -1) 6672 return -EACCES; 6673 return 0; 6674 } 6675 6676 /* Check that the stack access at 'regno + off' falls within the maximum stack 6677 * bounds. 6678 * 6679 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6680 */ 6681 static int check_stack_access_within_bounds( 6682 struct bpf_verifier_env *env, 6683 int regno, int off, int access_size, 6684 enum bpf_access_src src, enum bpf_access_type type) 6685 { 6686 struct bpf_reg_state *regs = cur_regs(env); 6687 struct bpf_reg_state *reg = regs + regno; 6688 struct bpf_func_state *state = func(env, reg); 6689 s64 min_off, max_off; 6690 int err; 6691 char *err_extra; 6692 6693 if (src == ACCESS_HELPER) 6694 /* We don't know if helpers are reading or writing (or both). */ 6695 err_extra = " indirect access to"; 6696 else if (type == BPF_READ) 6697 err_extra = " read from"; 6698 else 6699 err_extra = " write to"; 6700 6701 if (tnum_is_const(reg->var_off)) { 6702 min_off = (s64)reg->var_off.value + off; 6703 max_off = min_off + access_size; 6704 } else { 6705 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6706 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6707 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6708 err_extra, regno); 6709 return -EACCES; 6710 } 6711 min_off = reg->smin_value + off; 6712 max_off = reg->smax_value + off + access_size; 6713 } 6714 6715 err = check_stack_slot_within_bounds(env, min_off, state, type); 6716 if (!err && max_off > 0) 6717 err = -EINVAL; /* out of stack access into non-negative offsets */ 6718 if (!err && access_size < 0) 6719 /* access_size should not be negative (or overflow an int); others checks 6720 * along the way should have prevented such an access. 6721 */ 6722 err = -EFAULT; /* invalid negative access size; integer overflow? */ 6723 6724 if (err) { 6725 if (tnum_is_const(reg->var_off)) { 6726 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6727 err_extra, regno, off, access_size); 6728 } else { 6729 char tn_buf[48]; 6730 6731 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6732 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 6733 err_extra, regno, tn_buf, off, access_size); 6734 } 6735 return err; 6736 } 6737 6738 /* Note that there is no stack access with offset zero, so the needed stack 6739 * size is -min_off, not -min_off+1. 6740 */ 6741 return grow_stack_state(env, state, -min_off /* size */); 6742 } 6743 6744 /* check whether memory at (regno + off) is accessible for t = (read | write) 6745 * if t==write, value_regno is a register which value is stored into memory 6746 * if t==read, value_regno is a register which will receive the value from memory 6747 * if t==write && value_regno==-1, some unknown value is stored into memory 6748 * if t==read && value_regno==-1, don't care what we read from memory 6749 */ 6750 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6751 int off, int bpf_size, enum bpf_access_type t, 6752 int value_regno, bool strict_alignment_once, bool is_ldsx) 6753 { 6754 struct bpf_reg_state *regs = cur_regs(env); 6755 struct bpf_reg_state *reg = regs + regno; 6756 int size, err = 0; 6757 6758 size = bpf_size_to_bytes(bpf_size); 6759 if (size < 0) 6760 return size; 6761 6762 /* alignment checks will add in reg->off themselves */ 6763 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6764 if (err) 6765 return err; 6766 6767 /* for access checks, reg->off is just part of off */ 6768 off += reg->off; 6769 6770 if (reg->type == PTR_TO_MAP_KEY) { 6771 if (t == BPF_WRITE) { 6772 verbose(env, "write to change key R%d not allowed\n", regno); 6773 return -EACCES; 6774 } 6775 6776 err = check_mem_region_access(env, regno, off, size, 6777 reg->map_ptr->key_size, false); 6778 if (err) 6779 return err; 6780 if (value_regno >= 0) 6781 mark_reg_unknown(env, regs, value_regno); 6782 } else if (reg->type == PTR_TO_MAP_VALUE) { 6783 struct btf_field *kptr_field = NULL; 6784 6785 if (t == BPF_WRITE && value_regno >= 0 && 6786 is_pointer_value(env, value_regno)) { 6787 verbose(env, "R%d leaks addr into map\n", value_regno); 6788 return -EACCES; 6789 } 6790 err = check_map_access_type(env, regno, off, size, t); 6791 if (err) 6792 return err; 6793 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6794 if (err) 6795 return err; 6796 if (tnum_is_const(reg->var_off)) 6797 kptr_field = btf_record_find(reg->map_ptr->record, 6798 off + reg->var_off.value, BPF_KPTR); 6799 if (kptr_field) { 6800 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6801 } else if (t == BPF_READ && value_regno >= 0) { 6802 struct bpf_map *map = reg->map_ptr; 6803 6804 /* if map is read-only, track its contents as scalars */ 6805 if (tnum_is_const(reg->var_off) && 6806 bpf_map_is_rdonly(map) && 6807 map->ops->map_direct_value_addr) { 6808 int map_off = off + reg->var_off.value; 6809 u64 val = 0; 6810 6811 err = bpf_map_direct_read(map, map_off, size, 6812 &val, is_ldsx); 6813 if (err) 6814 return err; 6815 6816 regs[value_regno].type = SCALAR_VALUE; 6817 __mark_reg_known(®s[value_regno], val); 6818 } else { 6819 mark_reg_unknown(env, regs, value_regno); 6820 } 6821 } 6822 } else if (base_type(reg->type) == PTR_TO_MEM) { 6823 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6824 6825 if (type_may_be_null(reg->type)) { 6826 verbose(env, "R%d invalid mem access '%s'\n", regno, 6827 reg_type_str(env, reg->type)); 6828 return -EACCES; 6829 } 6830 6831 if (t == BPF_WRITE && rdonly_mem) { 6832 verbose(env, "R%d cannot write into %s\n", 6833 regno, reg_type_str(env, reg->type)); 6834 return -EACCES; 6835 } 6836 6837 if (t == BPF_WRITE && value_regno >= 0 && 6838 is_pointer_value(env, value_regno)) { 6839 verbose(env, "R%d leaks addr into mem\n", value_regno); 6840 return -EACCES; 6841 } 6842 6843 err = check_mem_region_access(env, regno, off, size, 6844 reg->mem_size, false); 6845 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6846 mark_reg_unknown(env, regs, value_regno); 6847 } else if (reg->type == PTR_TO_CTX) { 6848 enum bpf_reg_type reg_type = SCALAR_VALUE; 6849 struct btf *btf = NULL; 6850 u32 btf_id = 0; 6851 6852 if (t == BPF_WRITE && value_regno >= 0 && 6853 is_pointer_value(env, value_regno)) { 6854 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6855 return -EACCES; 6856 } 6857 6858 err = check_ptr_off_reg(env, reg, regno); 6859 if (err < 0) 6860 return err; 6861 6862 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6863 &btf_id); 6864 if (err) 6865 verbose_linfo(env, insn_idx, "; "); 6866 if (!err && t == BPF_READ && value_regno >= 0) { 6867 /* ctx access returns either a scalar, or a 6868 * PTR_TO_PACKET[_META,_END]. In the latter 6869 * case, we know the offset is zero. 6870 */ 6871 if (reg_type == SCALAR_VALUE) { 6872 mark_reg_unknown(env, regs, value_regno); 6873 } else { 6874 mark_reg_known_zero(env, regs, 6875 value_regno); 6876 if (type_may_be_null(reg_type)) 6877 regs[value_regno].id = ++env->id_gen; 6878 /* A load of ctx field could have different 6879 * actual load size with the one encoded in the 6880 * insn. When the dst is PTR, it is for sure not 6881 * a sub-register. 6882 */ 6883 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6884 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6885 regs[value_regno].btf = btf; 6886 regs[value_regno].btf_id = btf_id; 6887 } 6888 } 6889 regs[value_regno].type = reg_type; 6890 } 6891 6892 } else if (reg->type == PTR_TO_STACK) { 6893 /* Basic bounds checks. */ 6894 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6895 if (err) 6896 return err; 6897 6898 if (t == BPF_READ) 6899 err = check_stack_read(env, regno, off, size, 6900 value_regno); 6901 else 6902 err = check_stack_write(env, regno, off, size, 6903 value_regno, insn_idx); 6904 } else if (reg_is_pkt_pointer(reg)) { 6905 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6906 verbose(env, "cannot write into packet\n"); 6907 return -EACCES; 6908 } 6909 if (t == BPF_WRITE && value_regno >= 0 && 6910 is_pointer_value(env, value_regno)) { 6911 verbose(env, "R%d leaks addr into packet\n", 6912 value_regno); 6913 return -EACCES; 6914 } 6915 err = check_packet_access(env, regno, off, size, false); 6916 if (!err && t == BPF_READ && value_regno >= 0) 6917 mark_reg_unknown(env, regs, value_regno); 6918 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6919 if (t == BPF_WRITE && value_regno >= 0 && 6920 is_pointer_value(env, value_regno)) { 6921 verbose(env, "R%d leaks addr into flow keys\n", 6922 value_regno); 6923 return -EACCES; 6924 } 6925 6926 err = check_flow_keys_access(env, off, size); 6927 if (!err && t == BPF_READ && value_regno >= 0) 6928 mark_reg_unknown(env, regs, value_regno); 6929 } else if (type_is_sk_pointer(reg->type)) { 6930 if (t == BPF_WRITE) { 6931 verbose(env, "R%d cannot write into %s\n", 6932 regno, reg_type_str(env, reg->type)); 6933 return -EACCES; 6934 } 6935 err = check_sock_access(env, insn_idx, regno, off, size, t); 6936 if (!err && value_regno >= 0) 6937 mark_reg_unknown(env, regs, value_regno); 6938 } else if (reg->type == PTR_TO_TP_BUFFER) { 6939 err = check_tp_buffer_access(env, reg, regno, off, size); 6940 if (!err && t == BPF_READ && value_regno >= 0) 6941 mark_reg_unknown(env, regs, value_regno); 6942 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6943 !type_may_be_null(reg->type)) { 6944 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6945 value_regno); 6946 } else if (reg->type == CONST_PTR_TO_MAP) { 6947 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6948 value_regno); 6949 } else if (base_type(reg->type) == PTR_TO_BUF) { 6950 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6951 u32 *max_access; 6952 6953 if (rdonly_mem) { 6954 if (t == BPF_WRITE) { 6955 verbose(env, "R%d cannot write into %s\n", 6956 regno, reg_type_str(env, reg->type)); 6957 return -EACCES; 6958 } 6959 max_access = &env->prog->aux->max_rdonly_access; 6960 } else { 6961 max_access = &env->prog->aux->max_rdwr_access; 6962 } 6963 6964 err = check_buffer_access(env, reg, regno, off, size, false, 6965 max_access); 6966 6967 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6968 mark_reg_unknown(env, regs, value_regno); 6969 } else if (reg->type == PTR_TO_ARENA) { 6970 if (t == BPF_READ && value_regno >= 0) 6971 mark_reg_unknown(env, regs, value_regno); 6972 } else { 6973 verbose(env, "R%d invalid mem access '%s'\n", regno, 6974 reg_type_str(env, reg->type)); 6975 return -EACCES; 6976 } 6977 6978 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6979 regs[value_regno].type == SCALAR_VALUE) { 6980 if (!is_ldsx) 6981 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6982 coerce_reg_to_size(®s[value_regno], size); 6983 else 6984 coerce_reg_to_size_sx(®s[value_regno], size); 6985 } 6986 return err; 6987 } 6988 6989 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 6990 bool allow_trust_mismatch); 6991 6992 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6993 { 6994 int load_reg; 6995 int err; 6996 6997 switch (insn->imm) { 6998 case BPF_ADD: 6999 case BPF_ADD | BPF_FETCH: 7000 case BPF_AND: 7001 case BPF_AND | BPF_FETCH: 7002 case BPF_OR: 7003 case BPF_OR | BPF_FETCH: 7004 case BPF_XOR: 7005 case BPF_XOR | BPF_FETCH: 7006 case BPF_XCHG: 7007 case BPF_CMPXCHG: 7008 break; 7009 default: 7010 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 7011 return -EINVAL; 7012 } 7013 7014 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7015 verbose(env, "invalid atomic operand size\n"); 7016 return -EINVAL; 7017 } 7018 7019 /* check src1 operand */ 7020 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7021 if (err) 7022 return err; 7023 7024 /* check src2 operand */ 7025 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7026 if (err) 7027 return err; 7028 7029 if (insn->imm == BPF_CMPXCHG) { 7030 /* Check comparison of R0 with memory location */ 7031 const u32 aux_reg = BPF_REG_0; 7032 7033 err = check_reg_arg(env, aux_reg, SRC_OP); 7034 if (err) 7035 return err; 7036 7037 if (is_pointer_value(env, aux_reg)) { 7038 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7039 return -EACCES; 7040 } 7041 } 7042 7043 if (is_pointer_value(env, insn->src_reg)) { 7044 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7045 return -EACCES; 7046 } 7047 7048 if (is_ctx_reg(env, insn->dst_reg) || 7049 is_pkt_reg(env, insn->dst_reg) || 7050 is_flow_key_reg(env, insn->dst_reg) || 7051 is_sk_reg(env, insn->dst_reg) || 7052 (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) { 7053 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7054 insn->dst_reg, 7055 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7056 return -EACCES; 7057 } 7058 7059 if (insn->imm & BPF_FETCH) { 7060 if (insn->imm == BPF_CMPXCHG) 7061 load_reg = BPF_REG_0; 7062 else 7063 load_reg = insn->src_reg; 7064 7065 /* check and record load of old value */ 7066 err = check_reg_arg(env, load_reg, DST_OP); 7067 if (err) 7068 return err; 7069 } else { 7070 /* This instruction accesses a memory location but doesn't 7071 * actually load it into a register. 7072 */ 7073 load_reg = -1; 7074 } 7075 7076 /* Check whether we can read the memory, with second call for fetch 7077 * case to simulate the register fill. 7078 */ 7079 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7080 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7081 if (!err && load_reg >= 0) 7082 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7083 BPF_SIZE(insn->code), BPF_READ, load_reg, 7084 true, false); 7085 if (err) 7086 return err; 7087 7088 if (is_arena_reg(env, insn->dst_reg)) { 7089 err = save_aux_ptr_type(env, PTR_TO_ARENA, false); 7090 if (err) 7091 return err; 7092 } 7093 /* Check whether we can write into the same memory. */ 7094 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7095 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7096 if (err) 7097 return err; 7098 return 0; 7099 } 7100 7101 /* When register 'regno' is used to read the stack (either directly or through 7102 * a helper function) make sure that it's within stack boundary and, depending 7103 * on the access type and privileges, that all elements of the stack are 7104 * initialized. 7105 * 7106 * 'off' includes 'regno->off', but not its dynamic part (if any). 7107 * 7108 * All registers that have been spilled on the stack in the slots within the 7109 * read offsets are marked as read. 7110 */ 7111 static int check_stack_range_initialized( 7112 struct bpf_verifier_env *env, int regno, int off, 7113 int access_size, bool zero_size_allowed, 7114 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7115 { 7116 struct bpf_reg_state *reg = reg_state(env, regno); 7117 struct bpf_func_state *state = func(env, reg); 7118 int err, min_off, max_off, i, j, slot, spi; 7119 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7120 enum bpf_access_type bounds_check_type; 7121 /* Some accesses can write anything into the stack, others are 7122 * read-only. 7123 */ 7124 bool clobber = false; 7125 7126 if (access_size == 0 && !zero_size_allowed) { 7127 verbose(env, "invalid zero-sized read\n"); 7128 return -EACCES; 7129 } 7130 7131 if (type == ACCESS_HELPER) { 7132 /* The bounds checks for writes are more permissive than for 7133 * reads. However, if raw_mode is not set, we'll do extra 7134 * checks below. 7135 */ 7136 bounds_check_type = BPF_WRITE; 7137 clobber = true; 7138 } else { 7139 bounds_check_type = BPF_READ; 7140 } 7141 err = check_stack_access_within_bounds(env, regno, off, access_size, 7142 type, bounds_check_type); 7143 if (err) 7144 return err; 7145 7146 7147 if (tnum_is_const(reg->var_off)) { 7148 min_off = max_off = reg->var_off.value + off; 7149 } else { 7150 /* Variable offset is prohibited for unprivileged mode for 7151 * simplicity since it requires corresponding support in 7152 * Spectre masking for stack ALU. 7153 * See also retrieve_ptr_limit(). 7154 */ 7155 if (!env->bypass_spec_v1) { 7156 char tn_buf[48]; 7157 7158 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7159 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7160 regno, err_extra, tn_buf); 7161 return -EACCES; 7162 } 7163 /* Only initialized buffer on stack is allowed to be accessed 7164 * with variable offset. With uninitialized buffer it's hard to 7165 * guarantee that whole memory is marked as initialized on 7166 * helper return since specific bounds are unknown what may 7167 * cause uninitialized stack leaking. 7168 */ 7169 if (meta && meta->raw_mode) 7170 meta = NULL; 7171 7172 min_off = reg->smin_value + off; 7173 max_off = reg->smax_value + off; 7174 } 7175 7176 if (meta && meta->raw_mode) { 7177 /* Ensure we won't be overwriting dynptrs when simulating byte 7178 * by byte access in check_helper_call using meta.access_size. 7179 * This would be a problem if we have a helper in the future 7180 * which takes: 7181 * 7182 * helper(uninit_mem, len, dynptr) 7183 * 7184 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7185 * may end up writing to dynptr itself when touching memory from 7186 * arg 1. This can be relaxed on a case by case basis for known 7187 * safe cases, but reject due to the possibilitiy of aliasing by 7188 * default. 7189 */ 7190 for (i = min_off; i < max_off + access_size; i++) { 7191 int stack_off = -i - 1; 7192 7193 spi = __get_spi(i); 7194 /* raw_mode may write past allocated_stack */ 7195 if (state->allocated_stack <= stack_off) 7196 continue; 7197 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7198 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7199 return -EACCES; 7200 } 7201 } 7202 meta->access_size = access_size; 7203 meta->regno = regno; 7204 return 0; 7205 } 7206 7207 for (i = min_off; i < max_off + access_size; i++) { 7208 u8 *stype; 7209 7210 slot = -i - 1; 7211 spi = slot / BPF_REG_SIZE; 7212 if (state->allocated_stack <= slot) { 7213 verbose(env, "verifier bug: allocated_stack too small"); 7214 return -EFAULT; 7215 } 7216 7217 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7218 if (*stype == STACK_MISC) 7219 goto mark; 7220 if ((*stype == STACK_ZERO) || 7221 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7222 if (clobber) { 7223 /* helper can write anything into the stack */ 7224 *stype = STACK_MISC; 7225 } 7226 goto mark; 7227 } 7228 7229 if (is_spilled_reg(&state->stack[spi]) && 7230 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7231 env->allow_ptr_leaks)) { 7232 if (clobber) { 7233 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7234 for (j = 0; j < BPF_REG_SIZE; j++) 7235 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7236 } 7237 goto mark; 7238 } 7239 7240 if (tnum_is_const(reg->var_off)) { 7241 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7242 err_extra, regno, min_off, i - min_off, access_size); 7243 } else { 7244 char tn_buf[48]; 7245 7246 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7247 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7248 err_extra, regno, tn_buf, i - min_off, access_size); 7249 } 7250 return -EACCES; 7251 mark: 7252 /* reading any byte out of 8-byte 'spill_slot' will cause 7253 * the whole slot to be marked as 'read' 7254 */ 7255 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7256 state->stack[spi].spilled_ptr.parent, 7257 REG_LIVE_READ64); 7258 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7259 * be sure that whether stack slot is written to or not. Hence, 7260 * we must still conservatively propagate reads upwards even if 7261 * helper may write to the entire memory range. 7262 */ 7263 } 7264 return 0; 7265 } 7266 7267 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7268 int access_size, bool zero_size_allowed, 7269 struct bpf_call_arg_meta *meta) 7270 { 7271 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7272 u32 *max_access; 7273 7274 switch (base_type(reg->type)) { 7275 case PTR_TO_PACKET: 7276 case PTR_TO_PACKET_META: 7277 return check_packet_access(env, regno, reg->off, access_size, 7278 zero_size_allowed); 7279 case PTR_TO_MAP_KEY: 7280 if (meta && meta->raw_mode) { 7281 verbose(env, "R%d cannot write into %s\n", regno, 7282 reg_type_str(env, reg->type)); 7283 return -EACCES; 7284 } 7285 return check_mem_region_access(env, regno, reg->off, access_size, 7286 reg->map_ptr->key_size, false); 7287 case PTR_TO_MAP_VALUE: 7288 if (check_map_access_type(env, regno, reg->off, access_size, 7289 meta && meta->raw_mode ? BPF_WRITE : 7290 BPF_READ)) 7291 return -EACCES; 7292 return check_map_access(env, regno, reg->off, access_size, 7293 zero_size_allowed, ACCESS_HELPER); 7294 case PTR_TO_MEM: 7295 if (type_is_rdonly_mem(reg->type)) { 7296 if (meta && meta->raw_mode) { 7297 verbose(env, "R%d cannot write into %s\n", regno, 7298 reg_type_str(env, reg->type)); 7299 return -EACCES; 7300 } 7301 } 7302 return check_mem_region_access(env, regno, reg->off, 7303 access_size, reg->mem_size, 7304 zero_size_allowed); 7305 case PTR_TO_BUF: 7306 if (type_is_rdonly_mem(reg->type)) { 7307 if (meta && meta->raw_mode) { 7308 verbose(env, "R%d cannot write into %s\n", regno, 7309 reg_type_str(env, reg->type)); 7310 return -EACCES; 7311 } 7312 7313 max_access = &env->prog->aux->max_rdonly_access; 7314 } else { 7315 max_access = &env->prog->aux->max_rdwr_access; 7316 } 7317 return check_buffer_access(env, reg, regno, reg->off, 7318 access_size, zero_size_allowed, 7319 max_access); 7320 case PTR_TO_STACK: 7321 return check_stack_range_initialized( 7322 env, 7323 regno, reg->off, access_size, 7324 zero_size_allowed, ACCESS_HELPER, meta); 7325 case PTR_TO_BTF_ID: 7326 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7327 access_size, BPF_READ, -1); 7328 case PTR_TO_CTX: 7329 /* in case the function doesn't know how to access the context, 7330 * (because we are in a program of type SYSCALL for example), we 7331 * can not statically check its size. 7332 * Dynamically check it now. 7333 */ 7334 if (!env->ops->convert_ctx_access) { 7335 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7336 int offset = access_size - 1; 7337 7338 /* Allow zero-byte read from PTR_TO_CTX */ 7339 if (access_size == 0) 7340 return zero_size_allowed ? 0 : -EACCES; 7341 7342 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7343 atype, -1, false, false); 7344 } 7345 7346 fallthrough; 7347 default: /* scalar_value or invalid ptr */ 7348 /* Allow zero-byte read from NULL, regardless of pointer type */ 7349 if (zero_size_allowed && access_size == 0 && 7350 register_is_null(reg)) 7351 return 0; 7352 7353 verbose(env, "R%d type=%s ", regno, 7354 reg_type_str(env, reg->type)); 7355 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7356 return -EACCES; 7357 } 7358 } 7359 7360 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 7361 * size. 7362 * 7363 * @regno is the register containing the access size. regno-1 is the register 7364 * containing the pointer. 7365 */ 7366 static int check_mem_size_reg(struct bpf_verifier_env *env, 7367 struct bpf_reg_state *reg, u32 regno, 7368 bool zero_size_allowed, 7369 struct bpf_call_arg_meta *meta) 7370 { 7371 int err; 7372 7373 /* This is used to refine r0 return value bounds for helpers 7374 * that enforce this value as an upper bound on return values. 7375 * See do_refine_retval_range() for helpers that can refine 7376 * the return value. C type of helper is u32 so we pull register 7377 * bound from umax_value however, if negative verifier errors 7378 * out. Only upper bounds can be learned because retval is an 7379 * int type and negative retvals are allowed. 7380 */ 7381 meta->msize_max_value = reg->umax_value; 7382 7383 /* The register is SCALAR_VALUE; the access check 7384 * happens using its boundaries. 7385 */ 7386 if (!tnum_is_const(reg->var_off)) 7387 /* For unprivileged variable accesses, disable raw 7388 * mode so that the program is required to 7389 * initialize all the memory that the helper could 7390 * just partially fill up. 7391 */ 7392 meta = NULL; 7393 7394 if (reg->smin_value < 0) { 7395 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7396 regno); 7397 return -EACCES; 7398 } 7399 7400 if (reg->umin_value == 0 && !zero_size_allowed) { 7401 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 7402 regno, reg->umin_value, reg->umax_value); 7403 return -EACCES; 7404 } 7405 7406 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7407 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7408 regno); 7409 return -EACCES; 7410 } 7411 err = check_helper_mem_access(env, regno - 1, 7412 reg->umax_value, 7413 zero_size_allowed, meta); 7414 if (!err) 7415 err = mark_chain_precision(env, regno); 7416 return err; 7417 } 7418 7419 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7420 u32 regno, u32 mem_size) 7421 { 7422 bool may_be_null = type_may_be_null(reg->type); 7423 struct bpf_reg_state saved_reg; 7424 struct bpf_call_arg_meta meta; 7425 int err; 7426 7427 if (register_is_null(reg)) 7428 return 0; 7429 7430 memset(&meta, 0, sizeof(meta)); 7431 /* Assuming that the register contains a value check if the memory 7432 * access is safe. Temporarily save and restore the register's state as 7433 * the conversion shouldn't be visible to a caller. 7434 */ 7435 if (may_be_null) { 7436 saved_reg = *reg; 7437 mark_ptr_not_null_reg(reg); 7438 } 7439 7440 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7441 /* Check access for BPF_WRITE */ 7442 meta.raw_mode = true; 7443 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7444 7445 if (may_be_null) 7446 *reg = saved_reg; 7447 7448 return err; 7449 } 7450 7451 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7452 u32 regno) 7453 { 7454 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7455 bool may_be_null = type_may_be_null(mem_reg->type); 7456 struct bpf_reg_state saved_reg; 7457 struct bpf_call_arg_meta meta; 7458 int err; 7459 7460 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7461 7462 memset(&meta, 0, sizeof(meta)); 7463 7464 if (may_be_null) { 7465 saved_reg = *mem_reg; 7466 mark_ptr_not_null_reg(mem_reg); 7467 } 7468 7469 err = check_mem_size_reg(env, reg, regno, true, &meta); 7470 /* Check access for BPF_WRITE */ 7471 meta.raw_mode = true; 7472 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7473 7474 if (may_be_null) 7475 *mem_reg = saved_reg; 7476 return err; 7477 } 7478 7479 /* Implementation details: 7480 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7481 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7482 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7483 * Two separate bpf_obj_new will also have different reg->id. 7484 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7485 * clears reg->id after value_or_null->value transition, since the verifier only 7486 * cares about the range of access to valid map value pointer and doesn't care 7487 * about actual address of the map element. 7488 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7489 * reg->id > 0 after value_or_null->value transition. By doing so 7490 * two bpf_map_lookups will be considered two different pointers that 7491 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7492 * returned from bpf_obj_new. 7493 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7494 * dead-locks. 7495 * Since only one bpf_spin_lock is allowed the checks are simpler than 7496 * reg_is_refcounted() logic. The verifier needs to remember only 7497 * one spin_lock instead of array of acquired_refs. 7498 * cur_state->active_lock remembers which map value element or allocated 7499 * object got locked and clears it after bpf_spin_unlock. 7500 */ 7501 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7502 bool is_lock) 7503 { 7504 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7505 struct bpf_verifier_state *cur = env->cur_state; 7506 bool is_const = tnum_is_const(reg->var_off); 7507 u64 val = reg->var_off.value; 7508 struct bpf_map *map = NULL; 7509 struct btf *btf = NULL; 7510 struct btf_record *rec; 7511 7512 if (!is_const) { 7513 verbose(env, 7514 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7515 regno); 7516 return -EINVAL; 7517 } 7518 if (reg->type == PTR_TO_MAP_VALUE) { 7519 map = reg->map_ptr; 7520 if (!map->btf) { 7521 verbose(env, 7522 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7523 map->name); 7524 return -EINVAL; 7525 } 7526 } else { 7527 btf = reg->btf; 7528 } 7529 7530 rec = reg_btf_record(reg); 7531 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7532 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7533 map ? map->name : "kptr"); 7534 return -EINVAL; 7535 } 7536 if (rec->spin_lock_off != val + reg->off) { 7537 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7538 val + reg->off, rec->spin_lock_off); 7539 return -EINVAL; 7540 } 7541 if (is_lock) { 7542 if (cur->active_lock.ptr) { 7543 verbose(env, 7544 "Locking two bpf_spin_locks are not allowed\n"); 7545 return -EINVAL; 7546 } 7547 if (map) 7548 cur->active_lock.ptr = map; 7549 else 7550 cur->active_lock.ptr = btf; 7551 cur->active_lock.id = reg->id; 7552 } else { 7553 void *ptr; 7554 7555 if (map) 7556 ptr = map; 7557 else 7558 ptr = btf; 7559 7560 if (!cur->active_lock.ptr) { 7561 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7562 return -EINVAL; 7563 } 7564 if (cur->active_lock.ptr != ptr || 7565 cur->active_lock.id != reg->id) { 7566 verbose(env, "bpf_spin_unlock of different lock\n"); 7567 return -EINVAL; 7568 } 7569 7570 invalidate_non_owning_refs(env); 7571 7572 cur->active_lock.ptr = NULL; 7573 cur->active_lock.id = 0; 7574 } 7575 return 0; 7576 } 7577 7578 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7579 struct bpf_call_arg_meta *meta) 7580 { 7581 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7582 bool is_const = tnum_is_const(reg->var_off); 7583 struct bpf_map *map = reg->map_ptr; 7584 u64 val = reg->var_off.value; 7585 7586 if (!is_const) { 7587 verbose(env, 7588 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7589 regno); 7590 return -EINVAL; 7591 } 7592 if (!map->btf) { 7593 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7594 map->name); 7595 return -EINVAL; 7596 } 7597 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7598 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7599 return -EINVAL; 7600 } 7601 if (map->record->timer_off != val + reg->off) { 7602 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7603 val + reg->off, map->record->timer_off); 7604 return -EINVAL; 7605 } 7606 if (meta->map_ptr) { 7607 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7608 return -EFAULT; 7609 } 7610 meta->map_uid = reg->map_uid; 7611 meta->map_ptr = map; 7612 return 0; 7613 } 7614 7615 static int process_wq_func(struct bpf_verifier_env *env, int regno, 7616 struct bpf_kfunc_call_arg_meta *meta) 7617 { 7618 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7619 struct bpf_map *map = reg->map_ptr; 7620 u64 val = reg->var_off.value; 7621 7622 if (map->record->wq_off != val + reg->off) { 7623 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n", 7624 val + reg->off, map->record->wq_off); 7625 return -EINVAL; 7626 } 7627 meta->map.uid = reg->map_uid; 7628 meta->map.ptr = map; 7629 return 0; 7630 } 7631 7632 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7633 struct bpf_call_arg_meta *meta) 7634 { 7635 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7636 struct bpf_map *map_ptr = reg->map_ptr; 7637 struct btf_field *kptr_field; 7638 u32 kptr_off; 7639 7640 if (!tnum_is_const(reg->var_off)) { 7641 verbose(env, 7642 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7643 regno); 7644 return -EINVAL; 7645 } 7646 if (!map_ptr->btf) { 7647 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7648 map_ptr->name); 7649 return -EINVAL; 7650 } 7651 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7652 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7653 return -EINVAL; 7654 } 7655 7656 meta->map_ptr = map_ptr; 7657 kptr_off = reg->off + reg->var_off.value; 7658 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7659 if (!kptr_field) { 7660 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7661 return -EACCES; 7662 } 7663 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 7664 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7665 return -EACCES; 7666 } 7667 meta->kptr_field = kptr_field; 7668 return 0; 7669 } 7670 7671 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7672 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7673 * 7674 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7675 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7676 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7677 * 7678 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7679 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7680 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7681 * mutate the view of the dynptr and also possibly destroy it. In the latter 7682 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7683 * memory that dynptr points to. 7684 * 7685 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7686 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7687 * readonly dynptr view yet, hence only the first case is tracked and checked. 7688 * 7689 * This is consistent with how C applies the const modifier to a struct object, 7690 * where the pointer itself inside bpf_dynptr becomes const but not what it 7691 * points to. 7692 * 7693 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7694 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7695 */ 7696 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7697 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7698 { 7699 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7700 int err; 7701 7702 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7703 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7704 */ 7705 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7706 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7707 return -EFAULT; 7708 } 7709 7710 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7711 * constructing a mutable bpf_dynptr object. 7712 * 7713 * Currently, this is only possible with PTR_TO_STACK 7714 * pointing to a region of at least 16 bytes which doesn't 7715 * contain an existing bpf_dynptr. 7716 * 7717 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7718 * mutated or destroyed. However, the memory it points to 7719 * may be mutated. 7720 * 7721 * None - Points to a initialized dynptr that can be mutated and 7722 * destroyed, including mutation of the memory it points 7723 * to. 7724 */ 7725 if (arg_type & MEM_UNINIT) { 7726 int i; 7727 7728 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7729 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7730 return -EINVAL; 7731 } 7732 7733 /* we write BPF_DW bits (8 bytes) at a time */ 7734 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7735 err = check_mem_access(env, insn_idx, regno, 7736 i, BPF_DW, BPF_WRITE, -1, false, false); 7737 if (err) 7738 return err; 7739 } 7740 7741 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7742 } else /* MEM_RDONLY and None case from above */ { 7743 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7744 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7745 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7746 return -EINVAL; 7747 } 7748 7749 if (!is_dynptr_reg_valid_init(env, reg)) { 7750 verbose(env, 7751 "Expected an initialized dynptr as arg #%d\n", 7752 regno); 7753 return -EINVAL; 7754 } 7755 7756 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7757 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7758 verbose(env, 7759 "Expected a dynptr of type %s as arg #%d\n", 7760 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7761 return -EINVAL; 7762 } 7763 7764 err = mark_dynptr_read(env, reg); 7765 } 7766 return err; 7767 } 7768 7769 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7770 { 7771 struct bpf_func_state *state = func(env, reg); 7772 7773 return state->stack[spi].spilled_ptr.ref_obj_id; 7774 } 7775 7776 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7777 { 7778 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7779 } 7780 7781 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7782 { 7783 return meta->kfunc_flags & KF_ITER_NEW; 7784 } 7785 7786 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7787 { 7788 return meta->kfunc_flags & KF_ITER_NEXT; 7789 } 7790 7791 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7792 { 7793 return meta->kfunc_flags & KF_ITER_DESTROY; 7794 } 7795 7796 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7797 { 7798 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7799 * kfunc is iter state pointer 7800 */ 7801 return arg == 0 && is_iter_kfunc(meta); 7802 } 7803 7804 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7805 struct bpf_kfunc_call_arg_meta *meta) 7806 { 7807 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7808 const struct btf_type *t; 7809 const struct btf_param *arg; 7810 int spi, err, i, nr_slots; 7811 u32 btf_id; 7812 7813 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7814 arg = &btf_params(meta->func_proto)[0]; 7815 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7816 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7817 nr_slots = t->size / BPF_REG_SIZE; 7818 7819 if (is_iter_new_kfunc(meta)) { 7820 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7821 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7822 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7823 iter_type_str(meta->btf, btf_id), regno); 7824 return -EINVAL; 7825 } 7826 7827 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7828 err = check_mem_access(env, insn_idx, regno, 7829 i, BPF_DW, BPF_WRITE, -1, false, false); 7830 if (err) 7831 return err; 7832 } 7833 7834 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 7835 if (err) 7836 return err; 7837 } else { 7838 /* iter_next() or iter_destroy() expect initialized iter state*/ 7839 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 7840 switch (err) { 7841 case 0: 7842 break; 7843 case -EINVAL: 7844 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7845 iter_type_str(meta->btf, btf_id), regno); 7846 return err; 7847 case -EPROTO: 7848 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 7849 return err; 7850 default: 7851 return err; 7852 } 7853 7854 spi = iter_get_spi(env, reg, nr_slots); 7855 if (spi < 0) 7856 return spi; 7857 7858 err = mark_iter_read(env, reg, spi, nr_slots); 7859 if (err) 7860 return err; 7861 7862 /* remember meta->iter info for process_iter_next_call() */ 7863 meta->iter.spi = spi; 7864 meta->iter.frameno = reg->frameno; 7865 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7866 7867 if (is_iter_destroy_kfunc(meta)) { 7868 err = unmark_stack_slots_iter(env, reg, nr_slots); 7869 if (err) 7870 return err; 7871 } 7872 } 7873 7874 return 0; 7875 } 7876 7877 /* Look for a previous loop entry at insn_idx: nearest parent state 7878 * stopped at insn_idx with callsites matching those in cur->frame. 7879 */ 7880 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 7881 struct bpf_verifier_state *cur, 7882 int insn_idx) 7883 { 7884 struct bpf_verifier_state_list *sl; 7885 struct bpf_verifier_state *st; 7886 7887 /* Explored states are pushed in stack order, most recent states come first */ 7888 sl = *explored_state(env, insn_idx); 7889 for (; sl; sl = sl->next) { 7890 /* If st->branches != 0 state is a part of current DFS verification path, 7891 * hence cur & st for a loop. 7892 */ 7893 st = &sl->state; 7894 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 7895 st->dfs_depth < cur->dfs_depth) 7896 return st; 7897 } 7898 7899 return NULL; 7900 } 7901 7902 static void reset_idmap_scratch(struct bpf_verifier_env *env); 7903 static bool regs_exact(const struct bpf_reg_state *rold, 7904 const struct bpf_reg_state *rcur, 7905 struct bpf_idmap *idmap); 7906 7907 static void maybe_widen_reg(struct bpf_verifier_env *env, 7908 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7909 struct bpf_idmap *idmap) 7910 { 7911 if (rold->type != SCALAR_VALUE) 7912 return; 7913 if (rold->type != rcur->type) 7914 return; 7915 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 7916 return; 7917 __mark_reg_unknown(env, rcur); 7918 } 7919 7920 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 7921 struct bpf_verifier_state *old, 7922 struct bpf_verifier_state *cur) 7923 { 7924 struct bpf_func_state *fold, *fcur; 7925 int i, fr; 7926 7927 reset_idmap_scratch(env); 7928 for (fr = old->curframe; fr >= 0; fr--) { 7929 fold = old->frame[fr]; 7930 fcur = cur->frame[fr]; 7931 7932 for (i = 0; i < MAX_BPF_REG; i++) 7933 maybe_widen_reg(env, 7934 &fold->regs[i], 7935 &fcur->regs[i], 7936 &env->idmap_scratch); 7937 7938 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 7939 if (!is_spilled_reg(&fold->stack[i]) || 7940 !is_spilled_reg(&fcur->stack[i])) 7941 continue; 7942 7943 maybe_widen_reg(env, 7944 &fold->stack[i].spilled_ptr, 7945 &fcur->stack[i].spilled_ptr, 7946 &env->idmap_scratch); 7947 } 7948 } 7949 return 0; 7950 } 7951 7952 /* process_iter_next_call() is called when verifier gets to iterator's next 7953 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7954 * to it as just "iter_next()" in comments below. 7955 * 7956 * BPF verifier relies on a crucial contract for any iter_next() 7957 * implementation: it should *eventually* return NULL, and once that happens 7958 * it should keep returning NULL. That is, once iterator exhausts elements to 7959 * iterate, it should never reset or spuriously return new elements. 7960 * 7961 * With the assumption of such contract, process_iter_next_call() simulates 7962 * a fork in the verifier state to validate loop logic correctness and safety 7963 * without having to simulate infinite amount of iterations. 7964 * 7965 * In current state, we first assume that iter_next() returned NULL and 7966 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7967 * conditions we should not form an infinite loop and should eventually reach 7968 * exit. 7969 * 7970 * Besides that, we also fork current state and enqueue it for later 7971 * verification. In a forked state we keep iterator state as ACTIVE 7972 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7973 * also bump iteration depth to prevent erroneous infinite loop detection 7974 * later on (see iter_active_depths_differ() comment for details). In this 7975 * state we assume that we'll eventually loop back to another iter_next() 7976 * calls (it could be in exactly same location or in some other instruction, 7977 * it doesn't matter, we don't make any unnecessary assumptions about this, 7978 * everything revolves around iterator state in a stack slot, not which 7979 * instruction is calling iter_next()). When that happens, we either will come 7980 * to iter_next() with equivalent state and can conclude that next iteration 7981 * will proceed in exactly the same way as we just verified, so it's safe to 7982 * assume that loop converges. If not, we'll go on another iteration 7983 * simulation with a different input state, until all possible starting states 7984 * are validated or we reach maximum number of instructions limit. 7985 * 7986 * This way, we will either exhaustively discover all possible input states 7987 * that iterator loop can start with and eventually will converge, or we'll 7988 * effectively regress into bounded loop simulation logic and either reach 7989 * maximum number of instructions if loop is not provably convergent, or there 7990 * is some statically known limit on number of iterations (e.g., if there is 7991 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7992 * 7993 * Iteration convergence logic in is_state_visited() relies on exact 7994 * states comparison, which ignores read and precision marks. 7995 * This is necessary because read and precision marks are not finalized 7996 * while in the loop. Exact comparison might preclude convergence for 7997 * simple programs like below: 7998 * 7999 * i = 0; 8000 * while(iter_next(&it)) 8001 * i++; 8002 * 8003 * At each iteration step i++ would produce a new distinct state and 8004 * eventually instruction processing limit would be reached. 8005 * 8006 * To avoid such behavior speculatively forget (widen) range for 8007 * imprecise scalar registers, if those registers were not precise at the 8008 * end of the previous iteration and do not match exactly. 8009 * 8010 * This is a conservative heuristic that allows to verify wide range of programs, 8011 * however it precludes verification of programs that conjure an 8012 * imprecise value on the first loop iteration and use it as precise on a second. 8013 * For example, the following safe program would fail to verify: 8014 * 8015 * struct bpf_num_iter it; 8016 * int arr[10]; 8017 * int i = 0, a = 0; 8018 * bpf_iter_num_new(&it, 0, 10); 8019 * while (bpf_iter_num_next(&it)) { 8020 * if (a == 0) { 8021 * a = 1; 8022 * i = 7; // Because i changed verifier would forget 8023 * // it's range on second loop entry. 8024 * } else { 8025 * arr[i] = 42; // This would fail to verify. 8026 * } 8027 * } 8028 * bpf_iter_num_destroy(&it); 8029 */ 8030 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 8031 struct bpf_kfunc_call_arg_meta *meta) 8032 { 8033 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 8034 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 8035 struct bpf_reg_state *cur_iter, *queued_iter; 8036 int iter_frameno = meta->iter.frameno; 8037 int iter_spi = meta->iter.spi; 8038 8039 BTF_TYPE_EMIT(struct bpf_iter); 8040 8041 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8042 8043 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 8044 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 8045 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 8046 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 8047 return -EFAULT; 8048 } 8049 8050 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 8051 /* Because iter_next() call is a checkpoint is_state_visitied() 8052 * should guarantee parent state with same call sites and insn_idx. 8053 */ 8054 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 8055 !same_callsites(cur_st->parent, cur_st)) { 8056 verbose(env, "bug: bad parent state for iter next call"); 8057 return -EFAULT; 8058 } 8059 /* Note cur_st->parent in the call below, it is necessary to skip 8060 * checkpoint created for cur_st by is_state_visited() 8061 * right at this instruction. 8062 */ 8063 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 8064 /* branch out active iter state */ 8065 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 8066 if (!queued_st) 8067 return -ENOMEM; 8068 8069 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8070 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 8071 queued_iter->iter.depth++; 8072 if (prev_st) 8073 widen_imprecise_scalars(env, prev_st, queued_st); 8074 8075 queued_fr = queued_st->frame[queued_st->curframe]; 8076 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 8077 } 8078 8079 /* switch to DRAINED state, but keep the depth unchanged */ 8080 /* mark current iter state as drained and assume returned NULL */ 8081 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 8082 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 8083 8084 return 0; 8085 } 8086 8087 static bool arg_type_is_mem_size(enum bpf_arg_type type) 8088 { 8089 return type == ARG_CONST_SIZE || 8090 type == ARG_CONST_SIZE_OR_ZERO; 8091 } 8092 8093 static bool arg_type_is_release(enum bpf_arg_type type) 8094 { 8095 return type & OBJ_RELEASE; 8096 } 8097 8098 static bool arg_type_is_dynptr(enum bpf_arg_type type) 8099 { 8100 return base_type(type) == ARG_PTR_TO_DYNPTR; 8101 } 8102 8103 static int int_ptr_type_to_size(enum bpf_arg_type type) 8104 { 8105 if (type == ARG_PTR_TO_INT) 8106 return sizeof(u32); 8107 else if (type == ARG_PTR_TO_LONG) 8108 return sizeof(u64); 8109 8110 return -EINVAL; 8111 } 8112 8113 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8114 const struct bpf_call_arg_meta *meta, 8115 enum bpf_arg_type *arg_type) 8116 { 8117 if (!meta->map_ptr) { 8118 /* kernel subsystem misconfigured verifier */ 8119 verbose(env, "invalid map_ptr to access map->type\n"); 8120 return -EACCES; 8121 } 8122 8123 switch (meta->map_ptr->map_type) { 8124 case BPF_MAP_TYPE_SOCKMAP: 8125 case BPF_MAP_TYPE_SOCKHASH: 8126 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8127 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8128 } else { 8129 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8130 return -EINVAL; 8131 } 8132 break; 8133 case BPF_MAP_TYPE_BLOOM_FILTER: 8134 if (meta->func_id == BPF_FUNC_map_peek_elem) 8135 *arg_type = ARG_PTR_TO_MAP_VALUE; 8136 break; 8137 default: 8138 break; 8139 } 8140 return 0; 8141 } 8142 8143 struct bpf_reg_types { 8144 const enum bpf_reg_type types[10]; 8145 u32 *btf_id; 8146 }; 8147 8148 static const struct bpf_reg_types sock_types = { 8149 .types = { 8150 PTR_TO_SOCK_COMMON, 8151 PTR_TO_SOCKET, 8152 PTR_TO_TCP_SOCK, 8153 PTR_TO_XDP_SOCK, 8154 }, 8155 }; 8156 8157 #ifdef CONFIG_NET 8158 static const struct bpf_reg_types btf_id_sock_common_types = { 8159 .types = { 8160 PTR_TO_SOCK_COMMON, 8161 PTR_TO_SOCKET, 8162 PTR_TO_TCP_SOCK, 8163 PTR_TO_XDP_SOCK, 8164 PTR_TO_BTF_ID, 8165 PTR_TO_BTF_ID | PTR_TRUSTED, 8166 }, 8167 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8168 }; 8169 #endif 8170 8171 static const struct bpf_reg_types mem_types = { 8172 .types = { 8173 PTR_TO_STACK, 8174 PTR_TO_PACKET, 8175 PTR_TO_PACKET_META, 8176 PTR_TO_MAP_KEY, 8177 PTR_TO_MAP_VALUE, 8178 PTR_TO_MEM, 8179 PTR_TO_MEM | MEM_RINGBUF, 8180 PTR_TO_BUF, 8181 PTR_TO_BTF_ID | PTR_TRUSTED, 8182 }, 8183 }; 8184 8185 static const struct bpf_reg_types int_ptr_types = { 8186 .types = { 8187 PTR_TO_STACK, 8188 PTR_TO_PACKET, 8189 PTR_TO_PACKET_META, 8190 PTR_TO_MAP_KEY, 8191 PTR_TO_MAP_VALUE, 8192 }, 8193 }; 8194 8195 static const struct bpf_reg_types spin_lock_types = { 8196 .types = { 8197 PTR_TO_MAP_VALUE, 8198 PTR_TO_BTF_ID | MEM_ALLOC, 8199 } 8200 }; 8201 8202 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8203 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8204 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8205 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8206 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8207 static const struct bpf_reg_types btf_ptr_types = { 8208 .types = { 8209 PTR_TO_BTF_ID, 8210 PTR_TO_BTF_ID | PTR_TRUSTED, 8211 PTR_TO_BTF_ID | MEM_RCU, 8212 }, 8213 }; 8214 static const struct bpf_reg_types percpu_btf_ptr_types = { 8215 .types = { 8216 PTR_TO_BTF_ID | MEM_PERCPU, 8217 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 8218 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8219 } 8220 }; 8221 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8222 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8223 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8224 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8225 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8226 static const struct bpf_reg_types dynptr_types = { 8227 .types = { 8228 PTR_TO_STACK, 8229 CONST_PTR_TO_DYNPTR, 8230 } 8231 }; 8232 8233 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8234 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8235 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8236 [ARG_CONST_SIZE] = &scalar_types, 8237 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8238 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8239 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8240 [ARG_PTR_TO_CTX] = &context_types, 8241 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8242 #ifdef CONFIG_NET 8243 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8244 #endif 8245 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8246 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8247 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8248 [ARG_PTR_TO_MEM] = &mem_types, 8249 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8250 [ARG_PTR_TO_INT] = &int_ptr_types, 8251 [ARG_PTR_TO_LONG] = &int_ptr_types, 8252 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8253 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8254 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8255 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8256 [ARG_PTR_TO_TIMER] = &timer_types, 8257 [ARG_PTR_TO_KPTR] = &kptr_types, 8258 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8259 }; 8260 8261 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8262 enum bpf_arg_type arg_type, 8263 const u32 *arg_btf_id, 8264 struct bpf_call_arg_meta *meta) 8265 { 8266 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8267 enum bpf_reg_type expected, type = reg->type; 8268 const struct bpf_reg_types *compatible; 8269 int i, j; 8270 8271 compatible = compatible_reg_types[base_type(arg_type)]; 8272 if (!compatible) { 8273 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8274 return -EFAULT; 8275 } 8276 8277 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8278 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8279 * 8280 * Same for MAYBE_NULL: 8281 * 8282 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8283 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8284 * 8285 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8286 * 8287 * Therefore we fold these flags depending on the arg_type before comparison. 8288 */ 8289 if (arg_type & MEM_RDONLY) 8290 type &= ~MEM_RDONLY; 8291 if (arg_type & PTR_MAYBE_NULL) 8292 type &= ~PTR_MAYBE_NULL; 8293 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8294 type &= ~DYNPTR_TYPE_FLAG_MASK; 8295 8296 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) { 8297 type &= ~MEM_ALLOC; 8298 type &= ~MEM_PERCPU; 8299 } 8300 8301 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8302 expected = compatible->types[i]; 8303 if (expected == NOT_INIT) 8304 break; 8305 8306 if (type == expected) 8307 goto found; 8308 } 8309 8310 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8311 for (j = 0; j + 1 < i; j++) 8312 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8313 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8314 return -EACCES; 8315 8316 found: 8317 if (base_type(reg->type) != PTR_TO_BTF_ID) 8318 return 0; 8319 8320 if (compatible == &mem_types) { 8321 if (!(arg_type & MEM_RDONLY)) { 8322 verbose(env, 8323 "%s() may write into memory pointed by R%d type=%s\n", 8324 func_id_name(meta->func_id), 8325 regno, reg_type_str(env, reg->type)); 8326 return -EACCES; 8327 } 8328 return 0; 8329 } 8330 8331 switch ((int)reg->type) { 8332 case PTR_TO_BTF_ID: 8333 case PTR_TO_BTF_ID | PTR_TRUSTED: 8334 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 8335 case PTR_TO_BTF_ID | MEM_RCU: 8336 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8337 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8338 { 8339 /* For bpf_sk_release, it needs to match against first member 8340 * 'struct sock_common', hence make an exception for it. This 8341 * allows bpf_sk_release to work for multiple socket types. 8342 */ 8343 bool strict_type_match = arg_type_is_release(arg_type) && 8344 meta->func_id != BPF_FUNC_sk_release; 8345 8346 if (type_may_be_null(reg->type) && 8347 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8348 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8349 return -EACCES; 8350 } 8351 8352 if (!arg_btf_id) { 8353 if (!compatible->btf_id) { 8354 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8355 return -EFAULT; 8356 } 8357 arg_btf_id = compatible->btf_id; 8358 } 8359 8360 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8361 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8362 return -EACCES; 8363 } else { 8364 if (arg_btf_id == BPF_PTR_POISON) { 8365 verbose(env, "verifier internal error:"); 8366 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8367 regno); 8368 return -EACCES; 8369 } 8370 8371 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8372 btf_vmlinux, *arg_btf_id, 8373 strict_type_match)) { 8374 verbose(env, "R%d is of type %s but %s is expected\n", 8375 regno, btf_type_name(reg->btf, reg->btf_id), 8376 btf_type_name(btf_vmlinux, *arg_btf_id)); 8377 return -EACCES; 8378 } 8379 } 8380 break; 8381 } 8382 case PTR_TO_BTF_ID | MEM_ALLOC: 8383 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 8384 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8385 meta->func_id != BPF_FUNC_kptr_xchg) { 8386 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8387 return -EFAULT; 8388 } 8389 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8390 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8391 return -EACCES; 8392 } 8393 break; 8394 case PTR_TO_BTF_ID | MEM_PERCPU: 8395 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 8396 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8397 /* Handled by helper specific checks */ 8398 break; 8399 default: 8400 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8401 return -EFAULT; 8402 } 8403 return 0; 8404 } 8405 8406 static struct btf_field * 8407 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8408 { 8409 struct btf_field *field; 8410 struct btf_record *rec; 8411 8412 rec = reg_btf_record(reg); 8413 if (!rec) 8414 return NULL; 8415 8416 field = btf_record_find(rec, off, fields); 8417 if (!field) 8418 return NULL; 8419 8420 return field; 8421 } 8422 8423 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 8424 const struct bpf_reg_state *reg, int regno, 8425 enum bpf_arg_type arg_type) 8426 { 8427 u32 type = reg->type; 8428 8429 /* When referenced register is passed to release function, its fixed 8430 * offset must be 0. 8431 * 8432 * We will check arg_type_is_release reg has ref_obj_id when storing 8433 * meta->release_regno. 8434 */ 8435 if (arg_type_is_release(arg_type)) { 8436 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8437 * may not directly point to the object being released, but to 8438 * dynptr pointing to such object, which might be at some offset 8439 * on the stack. In that case, we simply to fallback to the 8440 * default handling. 8441 */ 8442 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8443 return 0; 8444 8445 /* Doing check_ptr_off_reg check for the offset will catch this 8446 * because fixed_off_ok is false, but checking here allows us 8447 * to give the user a better error message. 8448 */ 8449 if (reg->off) { 8450 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8451 regno); 8452 return -EINVAL; 8453 } 8454 return __check_ptr_off_reg(env, reg, regno, false); 8455 } 8456 8457 switch (type) { 8458 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8459 case PTR_TO_STACK: 8460 case PTR_TO_PACKET: 8461 case PTR_TO_PACKET_META: 8462 case PTR_TO_MAP_KEY: 8463 case PTR_TO_MAP_VALUE: 8464 case PTR_TO_MEM: 8465 case PTR_TO_MEM | MEM_RDONLY: 8466 case PTR_TO_MEM | MEM_RINGBUF: 8467 case PTR_TO_BUF: 8468 case PTR_TO_BUF | MEM_RDONLY: 8469 case PTR_TO_ARENA: 8470 case SCALAR_VALUE: 8471 return 0; 8472 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8473 * fixed offset. 8474 */ 8475 case PTR_TO_BTF_ID: 8476 case PTR_TO_BTF_ID | MEM_ALLOC: 8477 case PTR_TO_BTF_ID | PTR_TRUSTED: 8478 case PTR_TO_BTF_ID | MEM_RCU: 8479 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8480 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8481 /* When referenced PTR_TO_BTF_ID is passed to release function, 8482 * its fixed offset must be 0. In the other cases, fixed offset 8483 * can be non-zero. This was already checked above. So pass 8484 * fixed_off_ok as true to allow fixed offset for all other 8485 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8486 * still need to do checks instead of returning. 8487 */ 8488 return __check_ptr_off_reg(env, reg, regno, true); 8489 default: 8490 return __check_ptr_off_reg(env, reg, regno, false); 8491 } 8492 } 8493 8494 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8495 const struct bpf_func_proto *fn, 8496 struct bpf_reg_state *regs) 8497 { 8498 struct bpf_reg_state *state = NULL; 8499 int i; 8500 8501 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8502 if (arg_type_is_dynptr(fn->arg_type[i])) { 8503 if (state) { 8504 verbose(env, "verifier internal error: multiple dynptr args\n"); 8505 return NULL; 8506 } 8507 state = ®s[BPF_REG_1 + i]; 8508 } 8509 8510 if (!state) 8511 verbose(env, "verifier internal error: no dynptr arg found\n"); 8512 8513 return state; 8514 } 8515 8516 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8517 { 8518 struct bpf_func_state *state = func(env, reg); 8519 int spi; 8520 8521 if (reg->type == CONST_PTR_TO_DYNPTR) 8522 return reg->id; 8523 spi = dynptr_get_spi(env, reg); 8524 if (spi < 0) 8525 return spi; 8526 return state->stack[spi].spilled_ptr.id; 8527 } 8528 8529 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8530 { 8531 struct bpf_func_state *state = func(env, reg); 8532 int spi; 8533 8534 if (reg->type == CONST_PTR_TO_DYNPTR) 8535 return reg->ref_obj_id; 8536 spi = dynptr_get_spi(env, reg); 8537 if (spi < 0) 8538 return spi; 8539 return state->stack[spi].spilled_ptr.ref_obj_id; 8540 } 8541 8542 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8543 struct bpf_reg_state *reg) 8544 { 8545 struct bpf_func_state *state = func(env, reg); 8546 int spi; 8547 8548 if (reg->type == CONST_PTR_TO_DYNPTR) 8549 return reg->dynptr.type; 8550 8551 spi = __get_spi(reg->off); 8552 if (spi < 0) { 8553 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8554 return BPF_DYNPTR_TYPE_INVALID; 8555 } 8556 8557 return state->stack[spi].spilled_ptr.dynptr.type; 8558 } 8559 8560 static int check_reg_const_str(struct bpf_verifier_env *env, 8561 struct bpf_reg_state *reg, u32 regno) 8562 { 8563 struct bpf_map *map = reg->map_ptr; 8564 int err; 8565 int map_off; 8566 u64 map_addr; 8567 char *str_ptr; 8568 8569 if (reg->type != PTR_TO_MAP_VALUE) 8570 return -EINVAL; 8571 8572 if (!bpf_map_is_rdonly(map)) { 8573 verbose(env, "R%d does not point to a readonly map'\n", regno); 8574 return -EACCES; 8575 } 8576 8577 if (!tnum_is_const(reg->var_off)) { 8578 verbose(env, "R%d is not a constant address'\n", regno); 8579 return -EACCES; 8580 } 8581 8582 if (!map->ops->map_direct_value_addr) { 8583 verbose(env, "no direct value access support for this map type\n"); 8584 return -EACCES; 8585 } 8586 8587 err = check_map_access(env, regno, reg->off, 8588 map->value_size - reg->off, false, 8589 ACCESS_HELPER); 8590 if (err) 8591 return err; 8592 8593 map_off = reg->off + reg->var_off.value; 8594 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8595 if (err) { 8596 verbose(env, "direct value access on string failed\n"); 8597 return err; 8598 } 8599 8600 str_ptr = (char *)(long)(map_addr); 8601 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8602 verbose(env, "string is not zero-terminated\n"); 8603 return -EINVAL; 8604 } 8605 return 0; 8606 } 8607 8608 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8609 struct bpf_call_arg_meta *meta, 8610 const struct bpf_func_proto *fn, 8611 int insn_idx) 8612 { 8613 u32 regno = BPF_REG_1 + arg; 8614 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8615 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8616 enum bpf_reg_type type = reg->type; 8617 u32 *arg_btf_id = NULL; 8618 int err = 0; 8619 8620 if (arg_type == ARG_DONTCARE) 8621 return 0; 8622 8623 err = check_reg_arg(env, regno, SRC_OP); 8624 if (err) 8625 return err; 8626 8627 if (arg_type == ARG_ANYTHING) { 8628 if (is_pointer_value(env, regno)) { 8629 verbose(env, "R%d leaks addr into helper function\n", 8630 regno); 8631 return -EACCES; 8632 } 8633 return 0; 8634 } 8635 8636 if (type_is_pkt_pointer(type) && 8637 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8638 verbose(env, "helper access to the packet is not allowed\n"); 8639 return -EACCES; 8640 } 8641 8642 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8643 err = resolve_map_arg_type(env, meta, &arg_type); 8644 if (err) 8645 return err; 8646 } 8647 8648 if (register_is_null(reg) && type_may_be_null(arg_type)) 8649 /* A NULL register has a SCALAR_VALUE type, so skip 8650 * type checking. 8651 */ 8652 goto skip_type_check; 8653 8654 /* arg_btf_id and arg_size are in a union. */ 8655 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8656 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8657 arg_btf_id = fn->arg_btf_id[arg]; 8658 8659 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8660 if (err) 8661 return err; 8662 8663 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8664 if (err) 8665 return err; 8666 8667 skip_type_check: 8668 if (arg_type_is_release(arg_type)) { 8669 if (arg_type_is_dynptr(arg_type)) { 8670 struct bpf_func_state *state = func(env, reg); 8671 int spi; 8672 8673 /* Only dynptr created on stack can be released, thus 8674 * the get_spi and stack state checks for spilled_ptr 8675 * should only be done before process_dynptr_func for 8676 * PTR_TO_STACK. 8677 */ 8678 if (reg->type == PTR_TO_STACK) { 8679 spi = dynptr_get_spi(env, reg); 8680 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8681 verbose(env, "arg %d is an unacquired reference\n", regno); 8682 return -EINVAL; 8683 } 8684 } else { 8685 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8686 return -EINVAL; 8687 } 8688 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8689 verbose(env, "R%d must be referenced when passed to release function\n", 8690 regno); 8691 return -EINVAL; 8692 } 8693 if (meta->release_regno) { 8694 verbose(env, "verifier internal error: more than one release argument\n"); 8695 return -EFAULT; 8696 } 8697 meta->release_regno = regno; 8698 } 8699 8700 if (reg->ref_obj_id) { 8701 if (meta->ref_obj_id) { 8702 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8703 regno, reg->ref_obj_id, 8704 meta->ref_obj_id); 8705 return -EFAULT; 8706 } 8707 meta->ref_obj_id = reg->ref_obj_id; 8708 } 8709 8710 switch (base_type(arg_type)) { 8711 case ARG_CONST_MAP_PTR: 8712 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8713 if (meta->map_ptr) { 8714 /* Use map_uid (which is unique id of inner map) to reject: 8715 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8716 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8717 * if (inner_map1 && inner_map2) { 8718 * timer = bpf_map_lookup_elem(inner_map1); 8719 * if (timer) 8720 * // mismatch would have been allowed 8721 * bpf_timer_init(timer, inner_map2); 8722 * } 8723 * 8724 * Comparing map_ptr is enough to distinguish normal and outer maps. 8725 */ 8726 if (meta->map_ptr != reg->map_ptr || 8727 meta->map_uid != reg->map_uid) { 8728 verbose(env, 8729 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8730 meta->map_uid, reg->map_uid); 8731 return -EINVAL; 8732 } 8733 } 8734 meta->map_ptr = reg->map_ptr; 8735 meta->map_uid = reg->map_uid; 8736 break; 8737 case ARG_PTR_TO_MAP_KEY: 8738 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8739 * check that [key, key + map->key_size) are within 8740 * stack limits and initialized 8741 */ 8742 if (!meta->map_ptr) { 8743 /* in function declaration map_ptr must come before 8744 * map_key, so that it's verified and known before 8745 * we have to check map_key here. Otherwise it means 8746 * that kernel subsystem misconfigured verifier 8747 */ 8748 verbose(env, "invalid map_ptr to access map->key\n"); 8749 return -EACCES; 8750 } 8751 err = check_helper_mem_access(env, regno, 8752 meta->map_ptr->key_size, false, 8753 NULL); 8754 break; 8755 case ARG_PTR_TO_MAP_VALUE: 8756 if (type_may_be_null(arg_type) && register_is_null(reg)) 8757 return 0; 8758 8759 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8760 * check [value, value + map->value_size) validity 8761 */ 8762 if (!meta->map_ptr) { 8763 /* kernel subsystem misconfigured verifier */ 8764 verbose(env, "invalid map_ptr to access map->value\n"); 8765 return -EACCES; 8766 } 8767 meta->raw_mode = arg_type & MEM_UNINIT; 8768 err = check_helper_mem_access(env, regno, 8769 meta->map_ptr->value_size, false, 8770 meta); 8771 break; 8772 case ARG_PTR_TO_PERCPU_BTF_ID: 8773 if (!reg->btf_id) { 8774 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8775 return -EACCES; 8776 } 8777 meta->ret_btf = reg->btf; 8778 meta->ret_btf_id = reg->btf_id; 8779 break; 8780 case ARG_PTR_TO_SPIN_LOCK: 8781 if (in_rbtree_lock_required_cb(env)) { 8782 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8783 return -EACCES; 8784 } 8785 if (meta->func_id == BPF_FUNC_spin_lock) { 8786 err = process_spin_lock(env, regno, true); 8787 if (err) 8788 return err; 8789 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8790 err = process_spin_lock(env, regno, false); 8791 if (err) 8792 return err; 8793 } else { 8794 verbose(env, "verifier internal error\n"); 8795 return -EFAULT; 8796 } 8797 break; 8798 case ARG_PTR_TO_TIMER: 8799 err = process_timer_func(env, regno, meta); 8800 if (err) 8801 return err; 8802 break; 8803 case ARG_PTR_TO_FUNC: 8804 meta->subprogno = reg->subprogno; 8805 break; 8806 case ARG_PTR_TO_MEM: 8807 /* The access to this pointer is only checked when we hit the 8808 * next is_mem_size argument below. 8809 */ 8810 meta->raw_mode = arg_type & MEM_UNINIT; 8811 if (arg_type & MEM_FIXED_SIZE) { 8812 err = check_helper_mem_access(env, regno, 8813 fn->arg_size[arg], false, 8814 meta); 8815 } 8816 break; 8817 case ARG_CONST_SIZE: 8818 err = check_mem_size_reg(env, reg, regno, false, meta); 8819 break; 8820 case ARG_CONST_SIZE_OR_ZERO: 8821 err = check_mem_size_reg(env, reg, regno, true, meta); 8822 break; 8823 case ARG_PTR_TO_DYNPTR: 8824 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8825 if (err) 8826 return err; 8827 break; 8828 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8829 if (!tnum_is_const(reg->var_off)) { 8830 verbose(env, "R%d is not a known constant'\n", 8831 regno); 8832 return -EACCES; 8833 } 8834 meta->mem_size = reg->var_off.value; 8835 err = mark_chain_precision(env, regno); 8836 if (err) 8837 return err; 8838 break; 8839 case ARG_PTR_TO_INT: 8840 case ARG_PTR_TO_LONG: 8841 { 8842 int size = int_ptr_type_to_size(arg_type); 8843 8844 err = check_helper_mem_access(env, regno, size, false, meta); 8845 if (err) 8846 return err; 8847 err = check_ptr_alignment(env, reg, 0, size, true); 8848 break; 8849 } 8850 case ARG_PTR_TO_CONST_STR: 8851 { 8852 err = check_reg_const_str(env, reg, regno); 8853 if (err) 8854 return err; 8855 break; 8856 } 8857 case ARG_PTR_TO_KPTR: 8858 err = process_kptr_func(env, regno, meta); 8859 if (err) 8860 return err; 8861 break; 8862 } 8863 8864 return err; 8865 } 8866 8867 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8868 { 8869 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8870 enum bpf_prog_type type = resolve_prog_type(env->prog); 8871 8872 if (func_id != BPF_FUNC_map_update_elem) 8873 return false; 8874 8875 /* It's not possible to get access to a locked struct sock in these 8876 * contexts, so updating is safe. 8877 */ 8878 switch (type) { 8879 case BPF_PROG_TYPE_TRACING: 8880 if (eatype == BPF_TRACE_ITER) 8881 return true; 8882 break; 8883 case BPF_PROG_TYPE_SOCKET_FILTER: 8884 case BPF_PROG_TYPE_SCHED_CLS: 8885 case BPF_PROG_TYPE_SCHED_ACT: 8886 case BPF_PROG_TYPE_XDP: 8887 case BPF_PROG_TYPE_SK_REUSEPORT: 8888 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8889 case BPF_PROG_TYPE_SK_LOOKUP: 8890 return true; 8891 default: 8892 break; 8893 } 8894 8895 verbose(env, "cannot update sockmap in this context\n"); 8896 return false; 8897 } 8898 8899 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8900 { 8901 return env->prog->jit_requested && 8902 bpf_jit_supports_subprog_tailcalls(); 8903 } 8904 8905 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8906 struct bpf_map *map, int func_id) 8907 { 8908 if (!map) 8909 return 0; 8910 8911 /* We need a two way check, first is from map perspective ... */ 8912 switch (map->map_type) { 8913 case BPF_MAP_TYPE_PROG_ARRAY: 8914 if (func_id != BPF_FUNC_tail_call) 8915 goto error; 8916 break; 8917 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8918 if (func_id != BPF_FUNC_perf_event_read && 8919 func_id != BPF_FUNC_perf_event_output && 8920 func_id != BPF_FUNC_skb_output && 8921 func_id != BPF_FUNC_perf_event_read_value && 8922 func_id != BPF_FUNC_xdp_output) 8923 goto error; 8924 break; 8925 case BPF_MAP_TYPE_RINGBUF: 8926 if (func_id != BPF_FUNC_ringbuf_output && 8927 func_id != BPF_FUNC_ringbuf_reserve && 8928 func_id != BPF_FUNC_ringbuf_query && 8929 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8930 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8931 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8932 goto error; 8933 break; 8934 case BPF_MAP_TYPE_USER_RINGBUF: 8935 if (func_id != BPF_FUNC_user_ringbuf_drain) 8936 goto error; 8937 break; 8938 case BPF_MAP_TYPE_STACK_TRACE: 8939 if (func_id != BPF_FUNC_get_stackid) 8940 goto error; 8941 break; 8942 case BPF_MAP_TYPE_CGROUP_ARRAY: 8943 if (func_id != BPF_FUNC_skb_under_cgroup && 8944 func_id != BPF_FUNC_current_task_under_cgroup) 8945 goto error; 8946 break; 8947 case BPF_MAP_TYPE_CGROUP_STORAGE: 8948 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8949 if (func_id != BPF_FUNC_get_local_storage) 8950 goto error; 8951 break; 8952 case BPF_MAP_TYPE_DEVMAP: 8953 case BPF_MAP_TYPE_DEVMAP_HASH: 8954 if (func_id != BPF_FUNC_redirect_map && 8955 func_id != BPF_FUNC_map_lookup_elem) 8956 goto error; 8957 break; 8958 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8959 * appear. 8960 */ 8961 case BPF_MAP_TYPE_CPUMAP: 8962 if (func_id != BPF_FUNC_redirect_map) 8963 goto error; 8964 break; 8965 case BPF_MAP_TYPE_XSKMAP: 8966 if (func_id != BPF_FUNC_redirect_map && 8967 func_id != BPF_FUNC_map_lookup_elem) 8968 goto error; 8969 break; 8970 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8971 case BPF_MAP_TYPE_HASH_OF_MAPS: 8972 if (func_id != BPF_FUNC_map_lookup_elem) 8973 goto error; 8974 break; 8975 case BPF_MAP_TYPE_SOCKMAP: 8976 if (func_id != BPF_FUNC_sk_redirect_map && 8977 func_id != BPF_FUNC_sock_map_update && 8978 func_id != BPF_FUNC_map_delete_elem && 8979 func_id != BPF_FUNC_msg_redirect_map && 8980 func_id != BPF_FUNC_sk_select_reuseport && 8981 func_id != BPF_FUNC_map_lookup_elem && 8982 !may_update_sockmap(env, func_id)) 8983 goto error; 8984 break; 8985 case BPF_MAP_TYPE_SOCKHASH: 8986 if (func_id != BPF_FUNC_sk_redirect_hash && 8987 func_id != BPF_FUNC_sock_hash_update && 8988 func_id != BPF_FUNC_map_delete_elem && 8989 func_id != BPF_FUNC_msg_redirect_hash && 8990 func_id != BPF_FUNC_sk_select_reuseport && 8991 func_id != BPF_FUNC_map_lookup_elem && 8992 !may_update_sockmap(env, func_id)) 8993 goto error; 8994 break; 8995 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8996 if (func_id != BPF_FUNC_sk_select_reuseport) 8997 goto error; 8998 break; 8999 case BPF_MAP_TYPE_QUEUE: 9000 case BPF_MAP_TYPE_STACK: 9001 if (func_id != BPF_FUNC_map_peek_elem && 9002 func_id != BPF_FUNC_map_pop_elem && 9003 func_id != BPF_FUNC_map_push_elem) 9004 goto error; 9005 break; 9006 case BPF_MAP_TYPE_SK_STORAGE: 9007 if (func_id != BPF_FUNC_sk_storage_get && 9008 func_id != BPF_FUNC_sk_storage_delete && 9009 func_id != BPF_FUNC_kptr_xchg) 9010 goto error; 9011 break; 9012 case BPF_MAP_TYPE_INODE_STORAGE: 9013 if (func_id != BPF_FUNC_inode_storage_get && 9014 func_id != BPF_FUNC_inode_storage_delete && 9015 func_id != BPF_FUNC_kptr_xchg) 9016 goto error; 9017 break; 9018 case BPF_MAP_TYPE_TASK_STORAGE: 9019 if (func_id != BPF_FUNC_task_storage_get && 9020 func_id != BPF_FUNC_task_storage_delete && 9021 func_id != BPF_FUNC_kptr_xchg) 9022 goto error; 9023 break; 9024 case BPF_MAP_TYPE_CGRP_STORAGE: 9025 if (func_id != BPF_FUNC_cgrp_storage_get && 9026 func_id != BPF_FUNC_cgrp_storage_delete && 9027 func_id != BPF_FUNC_kptr_xchg) 9028 goto error; 9029 break; 9030 case BPF_MAP_TYPE_BLOOM_FILTER: 9031 if (func_id != BPF_FUNC_map_peek_elem && 9032 func_id != BPF_FUNC_map_push_elem) 9033 goto error; 9034 break; 9035 default: 9036 break; 9037 } 9038 9039 /* ... and second from the function itself. */ 9040 switch (func_id) { 9041 case BPF_FUNC_tail_call: 9042 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 9043 goto error; 9044 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 9045 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 9046 return -EINVAL; 9047 } 9048 break; 9049 case BPF_FUNC_perf_event_read: 9050 case BPF_FUNC_perf_event_output: 9051 case BPF_FUNC_perf_event_read_value: 9052 case BPF_FUNC_skb_output: 9053 case BPF_FUNC_xdp_output: 9054 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9055 goto error; 9056 break; 9057 case BPF_FUNC_ringbuf_output: 9058 case BPF_FUNC_ringbuf_reserve: 9059 case BPF_FUNC_ringbuf_query: 9060 case BPF_FUNC_ringbuf_reserve_dynptr: 9061 case BPF_FUNC_ringbuf_submit_dynptr: 9062 case BPF_FUNC_ringbuf_discard_dynptr: 9063 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 9064 goto error; 9065 break; 9066 case BPF_FUNC_user_ringbuf_drain: 9067 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 9068 goto error; 9069 break; 9070 case BPF_FUNC_get_stackid: 9071 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 9072 goto error; 9073 break; 9074 case BPF_FUNC_current_task_under_cgroup: 9075 case BPF_FUNC_skb_under_cgroup: 9076 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 9077 goto error; 9078 break; 9079 case BPF_FUNC_redirect_map: 9080 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 9081 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 9082 map->map_type != BPF_MAP_TYPE_CPUMAP && 9083 map->map_type != BPF_MAP_TYPE_XSKMAP) 9084 goto error; 9085 break; 9086 case BPF_FUNC_sk_redirect_map: 9087 case BPF_FUNC_msg_redirect_map: 9088 case BPF_FUNC_sock_map_update: 9089 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 9090 goto error; 9091 break; 9092 case BPF_FUNC_sk_redirect_hash: 9093 case BPF_FUNC_msg_redirect_hash: 9094 case BPF_FUNC_sock_hash_update: 9095 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 9096 goto error; 9097 break; 9098 case BPF_FUNC_get_local_storage: 9099 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 9100 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 9101 goto error; 9102 break; 9103 case BPF_FUNC_sk_select_reuseport: 9104 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 9105 map->map_type != BPF_MAP_TYPE_SOCKMAP && 9106 map->map_type != BPF_MAP_TYPE_SOCKHASH) 9107 goto error; 9108 break; 9109 case BPF_FUNC_map_pop_elem: 9110 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9111 map->map_type != BPF_MAP_TYPE_STACK) 9112 goto error; 9113 break; 9114 case BPF_FUNC_map_peek_elem: 9115 case BPF_FUNC_map_push_elem: 9116 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9117 map->map_type != BPF_MAP_TYPE_STACK && 9118 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 9119 goto error; 9120 break; 9121 case BPF_FUNC_map_lookup_percpu_elem: 9122 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 9123 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9124 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 9125 goto error; 9126 break; 9127 case BPF_FUNC_sk_storage_get: 9128 case BPF_FUNC_sk_storage_delete: 9129 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 9130 goto error; 9131 break; 9132 case BPF_FUNC_inode_storage_get: 9133 case BPF_FUNC_inode_storage_delete: 9134 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 9135 goto error; 9136 break; 9137 case BPF_FUNC_task_storage_get: 9138 case BPF_FUNC_task_storage_delete: 9139 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9140 goto error; 9141 break; 9142 case BPF_FUNC_cgrp_storage_get: 9143 case BPF_FUNC_cgrp_storage_delete: 9144 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9145 goto error; 9146 break; 9147 default: 9148 break; 9149 } 9150 9151 return 0; 9152 error: 9153 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9154 map->map_type, func_id_name(func_id), func_id); 9155 return -EINVAL; 9156 } 9157 9158 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9159 { 9160 int count = 0; 9161 9162 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 9163 count++; 9164 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 9165 count++; 9166 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 9167 count++; 9168 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 9169 count++; 9170 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 9171 count++; 9172 9173 /* We only support one arg being in raw mode at the moment, 9174 * which is sufficient for the helper functions we have 9175 * right now. 9176 */ 9177 return count <= 1; 9178 } 9179 9180 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9181 { 9182 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9183 bool has_size = fn->arg_size[arg] != 0; 9184 bool is_next_size = false; 9185 9186 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9187 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9188 9189 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9190 return is_next_size; 9191 9192 return has_size == is_next_size || is_next_size == is_fixed; 9193 } 9194 9195 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9196 { 9197 /* bpf_xxx(..., buf, len) call will access 'len' 9198 * bytes from memory 'buf'. Both arg types need 9199 * to be paired, so make sure there's no buggy 9200 * helper function specification. 9201 */ 9202 if (arg_type_is_mem_size(fn->arg1_type) || 9203 check_args_pair_invalid(fn, 0) || 9204 check_args_pair_invalid(fn, 1) || 9205 check_args_pair_invalid(fn, 2) || 9206 check_args_pair_invalid(fn, 3) || 9207 check_args_pair_invalid(fn, 4)) 9208 return false; 9209 9210 return true; 9211 } 9212 9213 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9214 { 9215 int i; 9216 9217 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9218 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9219 return !!fn->arg_btf_id[i]; 9220 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9221 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9222 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9223 /* arg_btf_id and arg_size are in a union. */ 9224 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9225 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9226 return false; 9227 } 9228 9229 return true; 9230 } 9231 9232 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9233 { 9234 return check_raw_mode_ok(fn) && 9235 check_arg_pair_ok(fn) && 9236 check_btf_id_ok(fn) ? 0 : -EINVAL; 9237 } 9238 9239 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9240 * are now invalid, so turn them into unknown SCALAR_VALUE. 9241 * 9242 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9243 * since these slices point to packet data. 9244 */ 9245 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9246 { 9247 struct bpf_func_state *state; 9248 struct bpf_reg_state *reg; 9249 9250 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9251 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9252 mark_reg_invalid(env, reg); 9253 })); 9254 } 9255 9256 enum { 9257 AT_PKT_END = -1, 9258 BEYOND_PKT_END = -2, 9259 }; 9260 9261 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9262 { 9263 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9264 struct bpf_reg_state *reg = &state->regs[regn]; 9265 9266 if (reg->type != PTR_TO_PACKET) 9267 /* PTR_TO_PACKET_META is not supported yet */ 9268 return; 9269 9270 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9271 * How far beyond pkt_end it goes is unknown. 9272 * if (!range_open) it's the case of pkt >= pkt_end 9273 * if (range_open) it's the case of pkt > pkt_end 9274 * hence this pointer is at least 1 byte bigger than pkt_end 9275 */ 9276 if (range_open) 9277 reg->range = BEYOND_PKT_END; 9278 else 9279 reg->range = AT_PKT_END; 9280 } 9281 9282 /* The pointer with the specified id has released its reference to kernel 9283 * resources. Identify all copies of the same pointer and clear the reference. 9284 */ 9285 static int release_reference(struct bpf_verifier_env *env, 9286 int ref_obj_id) 9287 { 9288 struct bpf_func_state *state; 9289 struct bpf_reg_state *reg; 9290 int err; 9291 9292 err = release_reference_state(cur_func(env), ref_obj_id); 9293 if (err) 9294 return err; 9295 9296 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9297 if (reg->ref_obj_id == ref_obj_id) 9298 mark_reg_invalid(env, reg); 9299 })); 9300 9301 return 0; 9302 } 9303 9304 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9305 { 9306 struct bpf_func_state *unused; 9307 struct bpf_reg_state *reg; 9308 9309 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9310 if (type_is_non_owning_ref(reg->type)) 9311 mark_reg_invalid(env, reg); 9312 })); 9313 } 9314 9315 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9316 struct bpf_reg_state *regs) 9317 { 9318 int i; 9319 9320 /* after the call registers r0 - r5 were scratched */ 9321 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9322 mark_reg_not_init(env, regs, caller_saved[i]); 9323 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9324 } 9325 } 9326 9327 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9328 struct bpf_func_state *caller, 9329 struct bpf_func_state *callee, 9330 int insn_idx); 9331 9332 static int set_callee_state(struct bpf_verifier_env *env, 9333 struct bpf_func_state *caller, 9334 struct bpf_func_state *callee, int insn_idx); 9335 9336 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9337 set_callee_state_fn set_callee_state_cb, 9338 struct bpf_verifier_state *state) 9339 { 9340 struct bpf_func_state *caller, *callee; 9341 int err; 9342 9343 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9344 verbose(env, "the call stack of %d frames is too deep\n", 9345 state->curframe + 2); 9346 return -E2BIG; 9347 } 9348 9349 if (state->frame[state->curframe + 1]) { 9350 verbose(env, "verifier bug. Frame %d already allocated\n", 9351 state->curframe + 1); 9352 return -EFAULT; 9353 } 9354 9355 caller = state->frame[state->curframe]; 9356 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9357 if (!callee) 9358 return -ENOMEM; 9359 state->frame[state->curframe + 1] = callee; 9360 9361 /* callee cannot access r0, r6 - r9 for reading and has to write 9362 * into its own stack before reading from it. 9363 * callee can read/write into caller's stack 9364 */ 9365 init_func_state(env, callee, 9366 /* remember the callsite, it will be used by bpf_exit */ 9367 callsite, 9368 state->curframe + 1 /* frameno within this callchain */, 9369 subprog /* subprog number within this prog */); 9370 /* Transfer references to the callee */ 9371 err = copy_reference_state(callee, caller); 9372 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9373 if (err) 9374 goto err_out; 9375 9376 /* only increment it after check_reg_arg() finished */ 9377 state->curframe++; 9378 9379 return 0; 9380 9381 err_out: 9382 free_func_state(callee); 9383 state->frame[state->curframe + 1] = NULL; 9384 return err; 9385 } 9386 9387 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 9388 const struct btf *btf, 9389 struct bpf_reg_state *regs) 9390 { 9391 struct bpf_subprog_info *sub = subprog_info(env, subprog); 9392 struct bpf_verifier_log *log = &env->log; 9393 u32 i; 9394 int ret; 9395 9396 ret = btf_prepare_func_args(env, subprog); 9397 if (ret) 9398 return ret; 9399 9400 /* check that BTF function arguments match actual types that the 9401 * verifier sees. 9402 */ 9403 for (i = 0; i < sub->arg_cnt; i++) { 9404 u32 regno = i + 1; 9405 struct bpf_reg_state *reg = ®s[regno]; 9406 struct bpf_subprog_arg_info *arg = &sub->args[i]; 9407 9408 if (arg->arg_type == ARG_ANYTHING) { 9409 if (reg->type != SCALAR_VALUE) { 9410 bpf_log(log, "R%d is not a scalar\n", regno); 9411 return -EINVAL; 9412 } 9413 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 9414 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9415 if (ret < 0) 9416 return ret; 9417 /* If function expects ctx type in BTF check that caller 9418 * is passing PTR_TO_CTX. 9419 */ 9420 if (reg->type != PTR_TO_CTX) { 9421 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 9422 return -EINVAL; 9423 } 9424 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 9425 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9426 if (ret < 0) 9427 return ret; 9428 if (check_mem_reg(env, reg, regno, arg->mem_size)) 9429 return -EINVAL; 9430 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 9431 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 9432 return -EINVAL; 9433 } 9434 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 9435 /* 9436 * Can pass any value and the kernel won't crash, but 9437 * only PTR_TO_ARENA or SCALAR make sense. Everything 9438 * else is a bug in the bpf program. Point it out to 9439 * the user at the verification time instead of 9440 * run-time debug nightmare. 9441 */ 9442 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 9443 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 9444 return -EINVAL; 9445 } 9446 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 9447 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 9448 if (ret) 9449 return ret; 9450 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 9451 struct bpf_call_arg_meta meta; 9452 int err; 9453 9454 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 9455 continue; 9456 9457 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 9458 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 9459 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 9460 if (err) 9461 return err; 9462 } else { 9463 bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n", 9464 i, arg->arg_type); 9465 return -EFAULT; 9466 } 9467 } 9468 9469 return 0; 9470 } 9471 9472 /* Compare BTF of a function call with given bpf_reg_state. 9473 * Returns: 9474 * EFAULT - there is a verifier bug. Abort verification. 9475 * EINVAL - there is a type mismatch or BTF is not available. 9476 * 0 - BTF matches with what bpf_reg_state expects. 9477 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 9478 */ 9479 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 9480 struct bpf_reg_state *regs) 9481 { 9482 struct bpf_prog *prog = env->prog; 9483 struct btf *btf = prog->aux->btf; 9484 u32 btf_id; 9485 int err; 9486 9487 if (!prog->aux->func_info) 9488 return -EINVAL; 9489 9490 btf_id = prog->aux->func_info[subprog].type_id; 9491 if (!btf_id) 9492 return -EFAULT; 9493 9494 if (prog->aux->func_info_aux[subprog].unreliable) 9495 return -EINVAL; 9496 9497 err = btf_check_func_arg_match(env, subprog, btf, regs); 9498 /* Compiler optimizations can remove arguments from static functions 9499 * or mismatched type can be passed into a global function. 9500 * In such cases mark the function as unreliable from BTF point of view. 9501 */ 9502 if (err) 9503 prog->aux->func_info_aux[subprog].unreliable = true; 9504 return err; 9505 } 9506 9507 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9508 int insn_idx, int subprog, 9509 set_callee_state_fn set_callee_state_cb) 9510 { 9511 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9512 struct bpf_func_state *caller, *callee; 9513 int err; 9514 9515 caller = state->frame[state->curframe]; 9516 err = btf_check_subprog_call(env, subprog, caller->regs); 9517 if (err == -EFAULT) 9518 return err; 9519 9520 /* set_callee_state is used for direct subprog calls, but we are 9521 * interested in validating only BPF helpers that can call subprogs as 9522 * callbacks 9523 */ 9524 env->subprog_info[subprog].is_cb = true; 9525 if (bpf_pseudo_kfunc_call(insn) && 9526 !is_callback_calling_kfunc(insn->imm)) { 9527 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9528 func_id_name(insn->imm), insn->imm); 9529 return -EFAULT; 9530 } else if (!bpf_pseudo_kfunc_call(insn) && 9531 !is_callback_calling_function(insn->imm)) { /* helper */ 9532 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9533 func_id_name(insn->imm), insn->imm); 9534 return -EFAULT; 9535 } 9536 9537 if (is_async_callback_calling_insn(insn)) { 9538 struct bpf_verifier_state *async_cb; 9539 9540 /* there is no real recursion here. timer and workqueue callbacks are async */ 9541 env->subprog_info[subprog].is_async_cb = true; 9542 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9543 insn_idx, subprog, 9544 is_bpf_wq_set_callback_impl_kfunc(insn->imm)); 9545 if (!async_cb) 9546 return -EFAULT; 9547 callee = async_cb->frame[0]; 9548 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9549 9550 /* Convert bpf_timer_set_callback() args into timer callback args */ 9551 err = set_callee_state_cb(env, caller, callee, insn_idx); 9552 if (err) 9553 return err; 9554 9555 return 0; 9556 } 9557 9558 /* for callback functions enqueue entry to callback and 9559 * proceed with next instruction within current frame. 9560 */ 9561 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9562 if (!callback_state) 9563 return -ENOMEM; 9564 9565 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9566 callback_state); 9567 if (err) 9568 return err; 9569 9570 callback_state->callback_unroll_depth++; 9571 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9572 caller->callback_depth = 0; 9573 return 0; 9574 } 9575 9576 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9577 int *insn_idx) 9578 { 9579 struct bpf_verifier_state *state = env->cur_state; 9580 struct bpf_func_state *caller; 9581 int err, subprog, target_insn; 9582 9583 target_insn = *insn_idx + insn->imm + 1; 9584 subprog = find_subprog(env, target_insn); 9585 if (subprog < 0) { 9586 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9587 return -EFAULT; 9588 } 9589 9590 caller = state->frame[state->curframe]; 9591 err = btf_check_subprog_call(env, subprog, caller->regs); 9592 if (err == -EFAULT) 9593 return err; 9594 if (subprog_is_global(env, subprog)) { 9595 const char *sub_name = subprog_name(env, subprog); 9596 9597 /* Only global subprogs cannot be called with a lock held. */ 9598 if (env->cur_state->active_lock.ptr) { 9599 verbose(env, "global function calls are not allowed while holding a lock,\n" 9600 "use static function instead\n"); 9601 return -EINVAL; 9602 } 9603 9604 /* Only global subprogs cannot be called with preemption disabled. */ 9605 if (env->cur_state->active_preempt_lock) { 9606 verbose(env, "global function calls are not allowed with preemption disabled,\n" 9607 "use static function instead\n"); 9608 return -EINVAL; 9609 } 9610 9611 if (err) { 9612 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 9613 subprog, sub_name); 9614 return err; 9615 } 9616 9617 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 9618 subprog, sub_name); 9619 /* mark global subprog for verifying after main prog */ 9620 subprog_aux(env, subprog)->called = true; 9621 clear_caller_saved_regs(env, caller->regs); 9622 9623 /* All global functions return a 64-bit SCALAR_VALUE */ 9624 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9625 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9626 9627 /* continue with next insn after call */ 9628 return 0; 9629 } 9630 9631 /* for regular function entry setup new frame and continue 9632 * from that frame. 9633 */ 9634 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9635 if (err) 9636 return err; 9637 9638 clear_caller_saved_regs(env, caller->regs); 9639 9640 /* and go analyze first insn of the callee */ 9641 *insn_idx = env->subprog_info[subprog].start - 1; 9642 9643 if (env->log.level & BPF_LOG_LEVEL) { 9644 verbose(env, "caller:\n"); 9645 print_verifier_state(env, caller, true); 9646 verbose(env, "callee:\n"); 9647 print_verifier_state(env, state->frame[state->curframe], true); 9648 } 9649 9650 return 0; 9651 } 9652 9653 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9654 struct bpf_func_state *caller, 9655 struct bpf_func_state *callee) 9656 { 9657 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9658 * void *callback_ctx, u64 flags); 9659 * callback_fn(struct bpf_map *map, void *key, void *value, 9660 * void *callback_ctx); 9661 */ 9662 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9663 9664 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9665 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9666 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9667 9668 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9669 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9670 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9671 9672 /* pointer to stack or null */ 9673 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9674 9675 /* unused */ 9676 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9677 return 0; 9678 } 9679 9680 static int set_callee_state(struct bpf_verifier_env *env, 9681 struct bpf_func_state *caller, 9682 struct bpf_func_state *callee, int insn_idx) 9683 { 9684 int i; 9685 9686 /* copy r1 - r5 args that callee can access. The copy includes parent 9687 * pointers, which connects us up to the liveness chain 9688 */ 9689 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9690 callee->regs[i] = caller->regs[i]; 9691 return 0; 9692 } 9693 9694 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9695 struct bpf_func_state *caller, 9696 struct bpf_func_state *callee, 9697 int insn_idx) 9698 { 9699 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9700 struct bpf_map *map; 9701 int err; 9702 9703 /* valid map_ptr and poison value does not matter */ 9704 map = insn_aux->map_ptr_state.map_ptr; 9705 if (!map->ops->map_set_for_each_callback_args || 9706 !map->ops->map_for_each_callback) { 9707 verbose(env, "callback function not allowed for map\n"); 9708 return -ENOTSUPP; 9709 } 9710 9711 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9712 if (err) 9713 return err; 9714 9715 callee->in_callback_fn = true; 9716 callee->callback_ret_range = retval_range(0, 1); 9717 return 0; 9718 } 9719 9720 static int set_loop_callback_state(struct bpf_verifier_env *env, 9721 struct bpf_func_state *caller, 9722 struct bpf_func_state *callee, 9723 int insn_idx) 9724 { 9725 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9726 * u64 flags); 9727 * callback_fn(u32 index, void *callback_ctx); 9728 */ 9729 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9730 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9731 9732 /* unused */ 9733 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9734 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9735 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9736 9737 callee->in_callback_fn = true; 9738 callee->callback_ret_range = retval_range(0, 1); 9739 return 0; 9740 } 9741 9742 static int set_timer_callback_state(struct bpf_verifier_env *env, 9743 struct bpf_func_state *caller, 9744 struct bpf_func_state *callee, 9745 int insn_idx) 9746 { 9747 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9748 9749 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9750 * callback_fn(struct bpf_map *map, void *key, void *value); 9751 */ 9752 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9753 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9754 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9755 9756 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9757 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9758 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9759 9760 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9761 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9762 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9763 9764 /* unused */ 9765 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9766 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9767 callee->in_async_callback_fn = true; 9768 callee->callback_ret_range = retval_range(0, 1); 9769 return 0; 9770 } 9771 9772 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9773 struct bpf_func_state *caller, 9774 struct bpf_func_state *callee, 9775 int insn_idx) 9776 { 9777 /* bpf_find_vma(struct task_struct *task, u64 addr, 9778 * void *callback_fn, void *callback_ctx, u64 flags) 9779 * (callback_fn)(struct task_struct *task, 9780 * struct vm_area_struct *vma, void *callback_ctx); 9781 */ 9782 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9783 9784 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9785 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9786 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9787 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 9788 9789 /* pointer to stack or null */ 9790 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9791 9792 /* unused */ 9793 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9794 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9795 callee->in_callback_fn = true; 9796 callee->callback_ret_range = retval_range(0, 1); 9797 return 0; 9798 } 9799 9800 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9801 struct bpf_func_state *caller, 9802 struct bpf_func_state *callee, 9803 int insn_idx) 9804 { 9805 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9806 * callback_ctx, u64 flags); 9807 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9808 */ 9809 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9810 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9811 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9812 9813 /* unused */ 9814 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9815 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9816 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9817 9818 callee->in_callback_fn = true; 9819 callee->callback_ret_range = retval_range(0, 1); 9820 return 0; 9821 } 9822 9823 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9824 struct bpf_func_state *caller, 9825 struct bpf_func_state *callee, 9826 int insn_idx) 9827 { 9828 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9829 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9830 * 9831 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9832 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9833 * by this point, so look at 'root' 9834 */ 9835 struct btf_field *field; 9836 9837 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9838 BPF_RB_ROOT); 9839 if (!field || !field->graph_root.value_btf_id) 9840 return -EFAULT; 9841 9842 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9843 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9844 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9845 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9846 9847 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9848 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9849 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9850 callee->in_callback_fn = true; 9851 callee->callback_ret_range = retval_range(0, 1); 9852 return 0; 9853 } 9854 9855 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9856 9857 /* Are we currently verifying the callback for a rbtree helper that must 9858 * be called with lock held? If so, no need to complain about unreleased 9859 * lock 9860 */ 9861 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9862 { 9863 struct bpf_verifier_state *state = env->cur_state; 9864 struct bpf_insn *insn = env->prog->insnsi; 9865 struct bpf_func_state *callee; 9866 int kfunc_btf_id; 9867 9868 if (!state->curframe) 9869 return false; 9870 9871 callee = state->frame[state->curframe]; 9872 9873 if (!callee->in_callback_fn) 9874 return false; 9875 9876 kfunc_btf_id = insn[callee->callsite].imm; 9877 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9878 } 9879 9880 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg) 9881 { 9882 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 9883 } 9884 9885 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9886 { 9887 struct bpf_verifier_state *state = env->cur_state, *prev_st; 9888 struct bpf_func_state *caller, *callee; 9889 struct bpf_reg_state *r0; 9890 bool in_callback_fn; 9891 int err; 9892 9893 callee = state->frame[state->curframe]; 9894 r0 = &callee->regs[BPF_REG_0]; 9895 if (r0->type == PTR_TO_STACK) { 9896 /* technically it's ok to return caller's stack pointer 9897 * (or caller's caller's pointer) back to the caller, 9898 * since these pointers are valid. Only current stack 9899 * pointer will be invalid as soon as function exits, 9900 * but let's be conservative 9901 */ 9902 verbose(env, "cannot return stack pointer to the caller\n"); 9903 return -EINVAL; 9904 } 9905 9906 caller = state->frame[state->curframe - 1]; 9907 if (callee->in_callback_fn) { 9908 if (r0->type != SCALAR_VALUE) { 9909 verbose(env, "R0 not a scalar value\n"); 9910 return -EACCES; 9911 } 9912 9913 /* we are going to rely on register's precise value */ 9914 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 9915 err = err ?: mark_chain_precision(env, BPF_REG_0); 9916 if (err) 9917 return err; 9918 9919 /* enforce R0 return value range */ 9920 if (!retval_range_within(callee->callback_ret_range, r0)) { 9921 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 9922 "At callback return", "R0"); 9923 return -EINVAL; 9924 } 9925 if (!calls_callback(env, callee->callsite)) { 9926 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 9927 *insn_idx, callee->callsite); 9928 return -EFAULT; 9929 } 9930 } else { 9931 /* return to the caller whatever r0 had in the callee */ 9932 caller->regs[BPF_REG_0] = *r0; 9933 } 9934 9935 /* callback_fn frame should have released its own additions to parent's 9936 * reference state at this point, or check_reference_leak would 9937 * complain, hence it must be the same as the caller. There is no need 9938 * to copy it back. 9939 */ 9940 if (!callee->in_callback_fn) { 9941 /* Transfer references to the caller */ 9942 err = copy_reference_state(caller, callee); 9943 if (err) 9944 return err; 9945 } 9946 9947 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 9948 * there function call logic would reschedule callback visit. If iteration 9949 * converges is_state_visited() would prune that visit eventually. 9950 */ 9951 in_callback_fn = callee->in_callback_fn; 9952 if (in_callback_fn) 9953 *insn_idx = callee->callsite; 9954 else 9955 *insn_idx = callee->callsite + 1; 9956 9957 if (env->log.level & BPF_LOG_LEVEL) { 9958 verbose(env, "returning from callee:\n"); 9959 print_verifier_state(env, callee, true); 9960 verbose(env, "to caller at %d:\n", *insn_idx); 9961 print_verifier_state(env, caller, true); 9962 } 9963 /* clear everything in the callee. In case of exceptional exits using 9964 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 9965 free_func_state(callee); 9966 state->frame[state->curframe--] = NULL; 9967 9968 /* for callbacks widen imprecise scalars to make programs like below verify: 9969 * 9970 * struct ctx { int i; } 9971 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 9972 * ... 9973 * struct ctx = { .i = 0; } 9974 * bpf_loop(100, cb, &ctx, 0); 9975 * 9976 * This is similar to what is done in process_iter_next_call() for open 9977 * coded iterators. 9978 */ 9979 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 9980 if (prev_st) { 9981 err = widen_imprecise_scalars(env, prev_st, state); 9982 if (err) 9983 return err; 9984 } 9985 return 0; 9986 } 9987 9988 static int do_refine_retval_range(struct bpf_verifier_env *env, 9989 struct bpf_reg_state *regs, int ret_type, 9990 int func_id, 9991 struct bpf_call_arg_meta *meta) 9992 { 9993 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9994 9995 if (ret_type != RET_INTEGER) 9996 return 0; 9997 9998 switch (func_id) { 9999 case BPF_FUNC_get_stack: 10000 case BPF_FUNC_get_task_stack: 10001 case BPF_FUNC_probe_read_str: 10002 case BPF_FUNC_probe_read_kernel_str: 10003 case BPF_FUNC_probe_read_user_str: 10004 ret_reg->smax_value = meta->msize_max_value; 10005 ret_reg->s32_max_value = meta->msize_max_value; 10006 ret_reg->smin_value = -MAX_ERRNO; 10007 ret_reg->s32_min_value = -MAX_ERRNO; 10008 reg_bounds_sync(ret_reg); 10009 break; 10010 case BPF_FUNC_get_smp_processor_id: 10011 ret_reg->umax_value = nr_cpu_ids - 1; 10012 ret_reg->u32_max_value = nr_cpu_ids - 1; 10013 ret_reg->smax_value = nr_cpu_ids - 1; 10014 ret_reg->s32_max_value = nr_cpu_ids - 1; 10015 ret_reg->umin_value = 0; 10016 ret_reg->u32_min_value = 0; 10017 ret_reg->smin_value = 0; 10018 ret_reg->s32_min_value = 0; 10019 reg_bounds_sync(ret_reg); 10020 break; 10021 } 10022 10023 return reg_bounds_sanity_check(env, ret_reg, "retval"); 10024 } 10025 10026 static int 10027 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10028 int func_id, int insn_idx) 10029 { 10030 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10031 struct bpf_map *map = meta->map_ptr; 10032 10033 if (func_id != BPF_FUNC_tail_call && 10034 func_id != BPF_FUNC_map_lookup_elem && 10035 func_id != BPF_FUNC_map_update_elem && 10036 func_id != BPF_FUNC_map_delete_elem && 10037 func_id != BPF_FUNC_map_push_elem && 10038 func_id != BPF_FUNC_map_pop_elem && 10039 func_id != BPF_FUNC_map_peek_elem && 10040 func_id != BPF_FUNC_for_each_map_elem && 10041 func_id != BPF_FUNC_redirect_map && 10042 func_id != BPF_FUNC_map_lookup_percpu_elem) 10043 return 0; 10044 10045 if (map == NULL) { 10046 verbose(env, "kernel subsystem misconfigured verifier\n"); 10047 return -EINVAL; 10048 } 10049 10050 /* In case of read-only, some additional restrictions 10051 * need to be applied in order to prevent altering the 10052 * state of the map from program side. 10053 */ 10054 if ((map->map_flags & BPF_F_RDONLY_PROG) && 10055 (func_id == BPF_FUNC_map_delete_elem || 10056 func_id == BPF_FUNC_map_update_elem || 10057 func_id == BPF_FUNC_map_push_elem || 10058 func_id == BPF_FUNC_map_pop_elem)) { 10059 verbose(env, "write into map forbidden\n"); 10060 return -EACCES; 10061 } 10062 10063 if (!aux->map_ptr_state.map_ptr) 10064 bpf_map_ptr_store(aux, meta->map_ptr, 10065 !meta->map_ptr->bypass_spec_v1, false); 10066 else if (aux->map_ptr_state.map_ptr != meta->map_ptr) 10067 bpf_map_ptr_store(aux, meta->map_ptr, 10068 !meta->map_ptr->bypass_spec_v1, true); 10069 return 0; 10070 } 10071 10072 static int 10073 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10074 int func_id, int insn_idx) 10075 { 10076 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10077 struct bpf_reg_state *regs = cur_regs(env), *reg; 10078 struct bpf_map *map = meta->map_ptr; 10079 u64 val, max; 10080 int err; 10081 10082 if (func_id != BPF_FUNC_tail_call) 10083 return 0; 10084 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 10085 verbose(env, "kernel subsystem misconfigured verifier\n"); 10086 return -EINVAL; 10087 } 10088 10089 reg = ®s[BPF_REG_3]; 10090 val = reg->var_off.value; 10091 max = map->max_entries; 10092 10093 if (!(is_reg_const(reg, false) && val < max)) { 10094 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10095 return 0; 10096 } 10097 10098 err = mark_chain_precision(env, BPF_REG_3); 10099 if (err) 10100 return err; 10101 if (bpf_map_key_unseen(aux)) 10102 bpf_map_key_store(aux, val); 10103 else if (!bpf_map_key_poisoned(aux) && 10104 bpf_map_key_immediate(aux) != val) 10105 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10106 return 0; 10107 } 10108 10109 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 10110 { 10111 struct bpf_func_state *state = cur_func(env); 10112 bool refs_lingering = false; 10113 int i; 10114 10115 if (!exception_exit && state->frameno && !state->in_callback_fn) 10116 return 0; 10117 10118 for (i = 0; i < state->acquired_refs; i++) { 10119 if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 10120 continue; 10121 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 10122 state->refs[i].id, state->refs[i].insn_idx); 10123 refs_lingering = true; 10124 } 10125 return refs_lingering ? -EINVAL : 0; 10126 } 10127 10128 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 10129 struct bpf_reg_state *regs) 10130 { 10131 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 10132 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 10133 struct bpf_map *fmt_map = fmt_reg->map_ptr; 10134 struct bpf_bprintf_data data = {}; 10135 int err, fmt_map_off, num_args; 10136 u64 fmt_addr; 10137 char *fmt; 10138 10139 /* data must be an array of u64 */ 10140 if (data_len_reg->var_off.value % 8) 10141 return -EINVAL; 10142 num_args = data_len_reg->var_off.value / 8; 10143 10144 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 10145 * and map_direct_value_addr is set. 10146 */ 10147 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 10148 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 10149 fmt_map_off); 10150 if (err) { 10151 verbose(env, "verifier bug\n"); 10152 return -EFAULT; 10153 } 10154 fmt = (char *)(long)fmt_addr + fmt_map_off; 10155 10156 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 10157 * can focus on validating the format specifiers. 10158 */ 10159 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 10160 if (err < 0) 10161 verbose(env, "Invalid format string\n"); 10162 10163 return err; 10164 } 10165 10166 static int check_get_func_ip(struct bpf_verifier_env *env) 10167 { 10168 enum bpf_prog_type type = resolve_prog_type(env->prog); 10169 int func_id = BPF_FUNC_get_func_ip; 10170 10171 if (type == BPF_PROG_TYPE_TRACING) { 10172 if (!bpf_prog_has_trampoline(env->prog)) { 10173 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 10174 func_id_name(func_id), func_id); 10175 return -ENOTSUPP; 10176 } 10177 return 0; 10178 } else if (type == BPF_PROG_TYPE_KPROBE) { 10179 return 0; 10180 } 10181 10182 verbose(env, "func %s#%d not supported for program type %d\n", 10183 func_id_name(func_id), func_id, type); 10184 return -ENOTSUPP; 10185 } 10186 10187 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 10188 { 10189 return &env->insn_aux_data[env->insn_idx]; 10190 } 10191 10192 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 10193 { 10194 struct bpf_reg_state *regs = cur_regs(env); 10195 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 10196 bool reg_is_null = register_is_null(reg); 10197 10198 if (reg_is_null) 10199 mark_chain_precision(env, BPF_REG_4); 10200 10201 return reg_is_null; 10202 } 10203 10204 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 10205 { 10206 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 10207 10208 if (!state->initialized) { 10209 state->initialized = 1; 10210 state->fit_for_inline = loop_flag_is_zero(env); 10211 state->callback_subprogno = subprogno; 10212 return; 10213 } 10214 10215 if (!state->fit_for_inline) 10216 return; 10217 10218 state->fit_for_inline = (loop_flag_is_zero(env) && 10219 state->callback_subprogno == subprogno); 10220 } 10221 10222 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10223 int *insn_idx_p) 10224 { 10225 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10226 bool returns_cpu_specific_alloc_ptr = false; 10227 const struct bpf_func_proto *fn = NULL; 10228 enum bpf_return_type ret_type; 10229 enum bpf_type_flag ret_flag; 10230 struct bpf_reg_state *regs; 10231 struct bpf_call_arg_meta meta; 10232 int insn_idx = *insn_idx_p; 10233 bool changes_data; 10234 int i, err, func_id; 10235 10236 /* find function prototype */ 10237 func_id = insn->imm; 10238 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 10239 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 10240 func_id); 10241 return -EINVAL; 10242 } 10243 10244 if (env->ops->get_func_proto) 10245 fn = env->ops->get_func_proto(func_id, env->prog); 10246 if (!fn) { 10247 verbose(env, "program of this type cannot use helper %s#%d\n", 10248 func_id_name(func_id), func_id); 10249 return -EINVAL; 10250 } 10251 10252 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 10253 if (!env->prog->gpl_compatible && fn->gpl_only) { 10254 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 10255 return -EINVAL; 10256 } 10257 10258 if (fn->allowed && !fn->allowed(env->prog)) { 10259 verbose(env, "helper call is not allowed in probe\n"); 10260 return -EINVAL; 10261 } 10262 10263 if (!in_sleepable(env) && fn->might_sleep) { 10264 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 10265 return -EINVAL; 10266 } 10267 10268 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 10269 changes_data = bpf_helper_changes_pkt_data(fn->func); 10270 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 10271 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 10272 func_id_name(func_id), func_id); 10273 return -EINVAL; 10274 } 10275 10276 memset(&meta, 0, sizeof(meta)); 10277 meta.pkt_access = fn->pkt_access; 10278 10279 err = check_func_proto(fn, func_id); 10280 if (err) { 10281 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10282 func_id_name(func_id), func_id); 10283 return err; 10284 } 10285 10286 if (env->cur_state->active_rcu_lock) { 10287 if (fn->might_sleep) { 10288 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10289 func_id_name(func_id), func_id); 10290 return -EINVAL; 10291 } 10292 10293 if (in_sleepable(env) && is_storage_get_function(func_id)) 10294 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10295 } 10296 10297 if (env->cur_state->active_preempt_lock) { 10298 if (fn->might_sleep) { 10299 verbose(env, "sleepable helper %s#%d in non-preemptible region\n", 10300 func_id_name(func_id), func_id); 10301 return -EINVAL; 10302 } 10303 10304 if (in_sleepable(env) && is_storage_get_function(func_id)) 10305 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10306 } 10307 10308 meta.func_id = func_id; 10309 /* check args */ 10310 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10311 err = check_func_arg(env, i, &meta, fn, insn_idx); 10312 if (err) 10313 return err; 10314 } 10315 10316 err = record_func_map(env, &meta, func_id, insn_idx); 10317 if (err) 10318 return err; 10319 10320 err = record_func_key(env, &meta, func_id, insn_idx); 10321 if (err) 10322 return err; 10323 10324 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10325 * is inferred from register state. 10326 */ 10327 for (i = 0; i < meta.access_size; i++) { 10328 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10329 BPF_WRITE, -1, false, false); 10330 if (err) 10331 return err; 10332 } 10333 10334 regs = cur_regs(env); 10335 10336 if (meta.release_regno) { 10337 err = -EINVAL; 10338 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10339 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10340 * is safe to do directly. 10341 */ 10342 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10343 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10344 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10345 return -EFAULT; 10346 } 10347 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10348 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 10349 u32 ref_obj_id = meta.ref_obj_id; 10350 bool in_rcu = in_rcu_cs(env); 10351 struct bpf_func_state *state; 10352 struct bpf_reg_state *reg; 10353 10354 err = release_reference_state(cur_func(env), ref_obj_id); 10355 if (!err) { 10356 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10357 if (reg->ref_obj_id == ref_obj_id) { 10358 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 10359 reg->ref_obj_id = 0; 10360 reg->type &= ~MEM_ALLOC; 10361 reg->type |= MEM_RCU; 10362 } else { 10363 mark_reg_invalid(env, reg); 10364 } 10365 } 10366 })); 10367 } 10368 } else if (meta.ref_obj_id) { 10369 err = release_reference(env, meta.ref_obj_id); 10370 } else if (register_is_null(®s[meta.release_regno])) { 10371 /* meta.ref_obj_id can only be 0 if register that is meant to be 10372 * released is NULL, which must be > R0. 10373 */ 10374 err = 0; 10375 } 10376 if (err) { 10377 verbose(env, "func %s#%d reference has not been acquired before\n", 10378 func_id_name(func_id), func_id); 10379 return err; 10380 } 10381 } 10382 10383 switch (func_id) { 10384 case BPF_FUNC_tail_call: 10385 err = check_reference_leak(env, false); 10386 if (err) { 10387 verbose(env, "tail_call would lead to reference leak\n"); 10388 return err; 10389 } 10390 break; 10391 case BPF_FUNC_get_local_storage: 10392 /* check that flags argument in get_local_storage(map, flags) is 0, 10393 * this is required because get_local_storage() can't return an error. 10394 */ 10395 if (!register_is_null(®s[BPF_REG_2])) { 10396 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10397 return -EINVAL; 10398 } 10399 break; 10400 case BPF_FUNC_for_each_map_elem: 10401 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10402 set_map_elem_callback_state); 10403 break; 10404 case BPF_FUNC_timer_set_callback: 10405 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10406 set_timer_callback_state); 10407 break; 10408 case BPF_FUNC_find_vma: 10409 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10410 set_find_vma_callback_state); 10411 break; 10412 case BPF_FUNC_snprintf: 10413 err = check_bpf_snprintf_call(env, regs); 10414 break; 10415 case BPF_FUNC_loop: 10416 update_loop_inline_state(env, meta.subprogno); 10417 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10418 * is finished, thus mark it precise. 10419 */ 10420 err = mark_chain_precision(env, BPF_REG_1); 10421 if (err) 10422 return err; 10423 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10424 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10425 set_loop_callback_state); 10426 } else { 10427 cur_func(env)->callback_depth = 0; 10428 if (env->log.level & BPF_LOG_LEVEL2) 10429 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10430 env->cur_state->curframe); 10431 } 10432 break; 10433 case BPF_FUNC_dynptr_from_mem: 10434 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10435 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10436 reg_type_str(env, regs[BPF_REG_1].type)); 10437 return -EACCES; 10438 } 10439 break; 10440 case BPF_FUNC_set_retval: 10441 if (prog_type == BPF_PROG_TYPE_LSM && 10442 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10443 if (!env->prog->aux->attach_func_proto->type) { 10444 /* Make sure programs that attach to void 10445 * hooks don't try to modify return value. 10446 */ 10447 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10448 return -EINVAL; 10449 } 10450 } 10451 break; 10452 case BPF_FUNC_dynptr_data: 10453 { 10454 struct bpf_reg_state *reg; 10455 int id, ref_obj_id; 10456 10457 reg = get_dynptr_arg_reg(env, fn, regs); 10458 if (!reg) 10459 return -EFAULT; 10460 10461 10462 if (meta.dynptr_id) { 10463 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10464 return -EFAULT; 10465 } 10466 if (meta.ref_obj_id) { 10467 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10468 return -EFAULT; 10469 } 10470 10471 id = dynptr_id(env, reg); 10472 if (id < 0) { 10473 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10474 return id; 10475 } 10476 10477 ref_obj_id = dynptr_ref_obj_id(env, reg); 10478 if (ref_obj_id < 0) { 10479 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10480 return ref_obj_id; 10481 } 10482 10483 meta.dynptr_id = id; 10484 meta.ref_obj_id = ref_obj_id; 10485 10486 break; 10487 } 10488 case BPF_FUNC_dynptr_write: 10489 { 10490 enum bpf_dynptr_type dynptr_type; 10491 struct bpf_reg_state *reg; 10492 10493 reg = get_dynptr_arg_reg(env, fn, regs); 10494 if (!reg) 10495 return -EFAULT; 10496 10497 dynptr_type = dynptr_get_type(env, reg); 10498 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10499 return -EFAULT; 10500 10501 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10502 /* this will trigger clear_all_pkt_pointers(), which will 10503 * invalidate all dynptr slices associated with the skb 10504 */ 10505 changes_data = true; 10506 10507 break; 10508 } 10509 case BPF_FUNC_per_cpu_ptr: 10510 case BPF_FUNC_this_cpu_ptr: 10511 { 10512 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 10513 const struct btf_type *type; 10514 10515 if (reg->type & MEM_RCU) { 10516 type = btf_type_by_id(reg->btf, reg->btf_id); 10517 if (!type || !btf_type_is_struct(type)) { 10518 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 10519 return -EFAULT; 10520 } 10521 returns_cpu_specific_alloc_ptr = true; 10522 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 10523 } 10524 break; 10525 } 10526 case BPF_FUNC_user_ringbuf_drain: 10527 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10528 set_user_ringbuf_callback_state); 10529 break; 10530 } 10531 10532 if (err) 10533 return err; 10534 10535 /* reset caller saved regs */ 10536 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10537 mark_reg_not_init(env, regs, caller_saved[i]); 10538 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10539 } 10540 10541 /* helper call returns 64-bit value. */ 10542 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10543 10544 /* update return register (already marked as written above) */ 10545 ret_type = fn->ret_type; 10546 ret_flag = type_flag(ret_type); 10547 10548 switch (base_type(ret_type)) { 10549 case RET_INTEGER: 10550 /* sets type to SCALAR_VALUE */ 10551 mark_reg_unknown(env, regs, BPF_REG_0); 10552 break; 10553 case RET_VOID: 10554 regs[BPF_REG_0].type = NOT_INIT; 10555 break; 10556 case RET_PTR_TO_MAP_VALUE: 10557 /* There is no offset yet applied, variable or fixed */ 10558 mark_reg_known_zero(env, regs, BPF_REG_0); 10559 /* remember map_ptr, so that check_map_access() 10560 * can check 'value_size' boundary of memory access 10561 * to map element returned from bpf_map_lookup_elem() 10562 */ 10563 if (meta.map_ptr == NULL) { 10564 verbose(env, 10565 "kernel subsystem misconfigured verifier\n"); 10566 return -EINVAL; 10567 } 10568 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10569 regs[BPF_REG_0].map_uid = meta.map_uid; 10570 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10571 if (!type_may_be_null(ret_type) && 10572 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10573 regs[BPF_REG_0].id = ++env->id_gen; 10574 } 10575 break; 10576 case RET_PTR_TO_SOCKET: 10577 mark_reg_known_zero(env, regs, BPF_REG_0); 10578 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10579 break; 10580 case RET_PTR_TO_SOCK_COMMON: 10581 mark_reg_known_zero(env, regs, BPF_REG_0); 10582 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10583 break; 10584 case RET_PTR_TO_TCP_SOCK: 10585 mark_reg_known_zero(env, regs, BPF_REG_0); 10586 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10587 break; 10588 case RET_PTR_TO_MEM: 10589 mark_reg_known_zero(env, regs, BPF_REG_0); 10590 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10591 regs[BPF_REG_0].mem_size = meta.mem_size; 10592 break; 10593 case RET_PTR_TO_MEM_OR_BTF_ID: 10594 { 10595 const struct btf_type *t; 10596 10597 mark_reg_known_zero(env, regs, BPF_REG_0); 10598 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10599 if (!btf_type_is_struct(t)) { 10600 u32 tsize; 10601 const struct btf_type *ret; 10602 const char *tname; 10603 10604 /* resolve the type size of ksym. */ 10605 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10606 if (IS_ERR(ret)) { 10607 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10608 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10609 tname, PTR_ERR(ret)); 10610 return -EINVAL; 10611 } 10612 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10613 regs[BPF_REG_0].mem_size = tsize; 10614 } else { 10615 if (returns_cpu_specific_alloc_ptr) { 10616 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 10617 } else { 10618 /* MEM_RDONLY may be carried from ret_flag, but it 10619 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10620 * it will confuse the check of PTR_TO_BTF_ID in 10621 * check_mem_access(). 10622 */ 10623 ret_flag &= ~MEM_RDONLY; 10624 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10625 } 10626 10627 regs[BPF_REG_0].btf = meta.ret_btf; 10628 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10629 } 10630 break; 10631 } 10632 case RET_PTR_TO_BTF_ID: 10633 { 10634 struct btf *ret_btf; 10635 int ret_btf_id; 10636 10637 mark_reg_known_zero(env, regs, BPF_REG_0); 10638 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10639 if (func_id == BPF_FUNC_kptr_xchg) { 10640 ret_btf = meta.kptr_field->kptr.btf; 10641 ret_btf_id = meta.kptr_field->kptr.btf_id; 10642 if (!btf_is_kernel(ret_btf)) { 10643 regs[BPF_REG_0].type |= MEM_ALLOC; 10644 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 10645 regs[BPF_REG_0].type |= MEM_PERCPU; 10646 } 10647 } else { 10648 if (fn->ret_btf_id == BPF_PTR_POISON) { 10649 verbose(env, "verifier internal error:"); 10650 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10651 func_id_name(func_id)); 10652 return -EINVAL; 10653 } 10654 ret_btf = btf_vmlinux; 10655 ret_btf_id = *fn->ret_btf_id; 10656 } 10657 if (ret_btf_id == 0) { 10658 verbose(env, "invalid return type %u of func %s#%d\n", 10659 base_type(ret_type), func_id_name(func_id), 10660 func_id); 10661 return -EINVAL; 10662 } 10663 regs[BPF_REG_0].btf = ret_btf; 10664 regs[BPF_REG_0].btf_id = ret_btf_id; 10665 break; 10666 } 10667 default: 10668 verbose(env, "unknown return type %u of func %s#%d\n", 10669 base_type(ret_type), func_id_name(func_id), func_id); 10670 return -EINVAL; 10671 } 10672 10673 if (type_may_be_null(regs[BPF_REG_0].type)) 10674 regs[BPF_REG_0].id = ++env->id_gen; 10675 10676 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10677 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10678 func_id_name(func_id), func_id); 10679 return -EFAULT; 10680 } 10681 10682 if (is_dynptr_ref_function(func_id)) 10683 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10684 10685 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10686 /* For release_reference() */ 10687 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10688 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10689 int id = acquire_reference_state(env, insn_idx); 10690 10691 if (id < 0) 10692 return id; 10693 /* For mark_ptr_or_null_reg() */ 10694 regs[BPF_REG_0].id = id; 10695 /* For release_reference() */ 10696 regs[BPF_REG_0].ref_obj_id = id; 10697 } 10698 10699 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 10700 if (err) 10701 return err; 10702 10703 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10704 if (err) 10705 return err; 10706 10707 if ((func_id == BPF_FUNC_get_stack || 10708 func_id == BPF_FUNC_get_task_stack) && 10709 !env->prog->has_callchain_buf) { 10710 const char *err_str; 10711 10712 #ifdef CONFIG_PERF_EVENTS 10713 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10714 err_str = "cannot get callchain buffer for func %s#%d\n"; 10715 #else 10716 err = -ENOTSUPP; 10717 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10718 #endif 10719 if (err) { 10720 verbose(env, err_str, func_id_name(func_id), func_id); 10721 return err; 10722 } 10723 10724 env->prog->has_callchain_buf = true; 10725 } 10726 10727 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10728 env->prog->call_get_stack = true; 10729 10730 if (func_id == BPF_FUNC_get_func_ip) { 10731 if (check_get_func_ip(env)) 10732 return -ENOTSUPP; 10733 env->prog->call_get_func_ip = true; 10734 } 10735 10736 if (changes_data) 10737 clear_all_pkt_pointers(env); 10738 return 0; 10739 } 10740 10741 /* mark_btf_func_reg_size() is used when the reg size is determined by 10742 * the BTF func_proto's return value size and argument. 10743 */ 10744 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10745 size_t reg_size) 10746 { 10747 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10748 10749 if (regno == BPF_REG_0) { 10750 /* Function return value */ 10751 reg->live |= REG_LIVE_WRITTEN; 10752 reg->subreg_def = reg_size == sizeof(u64) ? 10753 DEF_NOT_SUBREG : env->insn_idx + 1; 10754 } else { 10755 /* Function argument */ 10756 if (reg_size == sizeof(u64)) { 10757 mark_insn_zext(env, reg); 10758 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10759 } else { 10760 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10761 } 10762 } 10763 } 10764 10765 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10766 { 10767 return meta->kfunc_flags & KF_ACQUIRE; 10768 } 10769 10770 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10771 { 10772 return meta->kfunc_flags & KF_RELEASE; 10773 } 10774 10775 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10776 { 10777 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10778 } 10779 10780 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10781 { 10782 return meta->kfunc_flags & KF_SLEEPABLE; 10783 } 10784 10785 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10786 { 10787 return meta->kfunc_flags & KF_DESTRUCTIVE; 10788 } 10789 10790 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10791 { 10792 return meta->kfunc_flags & KF_RCU; 10793 } 10794 10795 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 10796 { 10797 return meta->kfunc_flags & KF_RCU_PROTECTED; 10798 } 10799 10800 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10801 const struct btf_param *arg, 10802 const struct bpf_reg_state *reg) 10803 { 10804 const struct btf_type *t; 10805 10806 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10807 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10808 return false; 10809 10810 return btf_param_match_suffix(btf, arg, "__sz"); 10811 } 10812 10813 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10814 const struct btf_param *arg, 10815 const struct bpf_reg_state *reg) 10816 { 10817 const struct btf_type *t; 10818 10819 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10820 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10821 return false; 10822 10823 return btf_param_match_suffix(btf, arg, "__szk"); 10824 } 10825 10826 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10827 { 10828 return btf_param_match_suffix(btf, arg, "__opt"); 10829 } 10830 10831 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10832 { 10833 return btf_param_match_suffix(btf, arg, "__k"); 10834 } 10835 10836 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10837 { 10838 return btf_param_match_suffix(btf, arg, "__ign"); 10839 } 10840 10841 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 10842 { 10843 return btf_param_match_suffix(btf, arg, "__map"); 10844 } 10845 10846 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10847 { 10848 return btf_param_match_suffix(btf, arg, "__alloc"); 10849 } 10850 10851 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10852 { 10853 return btf_param_match_suffix(btf, arg, "__uninit"); 10854 } 10855 10856 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10857 { 10858 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 10859 } 10860 10861 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 10862 { 10863 return btf_param_match_suffix(btf, arg, "__nullable"); 10864 } 10865 10866 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 10867 { 10868 return btf_param_match_suffix(btf, arg, "__str"); 10869 } 10870 10871 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10872 const struct btf_param *arg, 10873 const char *name) 10874 { 10875 int len, target_len = strlen(name); 10876 const char *param_name; 10877 10878 param_name = btf_name_by_offset(btf, arg->name_off); 10879 if (str_is_empty(param_name)) 10880 return false; 10881 len = strlen(param_name); 10882 if (len != target_len) 10883 return false; 10884 if (strcmp(param_name, name)) 10885 return false; 10886 10887 return true; 10888 } 10889 10890 enum { 10891 KF_ARG_DYNPTR_ID, 10892 KF_ARG_LIST_HEAD_ID, 10893 KF_ARG_LIST_NODE_ID, 10894 KF_ARG_RB_ROOT_ID, 10895 KF_ARG_RB_NODE_ID, 10896 KF_ARG_WORKQUEUE_ID, 10897 }; 10898 10899 BTF_ID_LIST(kf_arg_btf_ids) 10900 BTF_ID(struct, bpf_dynptr_kern) 10901 BTF_ID(struct, bpf_list_head) 10902 BTF_ID(struct, bpf_list_node) 10903 BTF_ID(struct, bpf_rb_root) 10904 BTF_ID(struct, bpf_rb_node) 10905 BTF_ID(struct, bpf_wq) 10906 10907 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10908 const struct btf_param *arg, int type) 10909 { 10910 const struct btf_type *t; 10911 u32 res_id; 10912 10913 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10914 if (!t) 10915 return false; 10916 if (!btf_type_is_ptr(t)) 10917 return false; 10918 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10919 if (!t) 10920 return false; 10921 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10922 } 10923 10924 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10925 { 10926 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10927 } 10928 10929 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10930 { 10931 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10932 } 10933 10934 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10935 { 10936 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10937 } 10938 10939 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10940 { 10941 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10942 } 10943 10944 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10945 { 10946 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10947 } 10948 10949 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) 10950 { 10951 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); 10952 } 10953 10954 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10955 const struct btf_param *arg) 10956 { 10957 const struct btf_type *t; 10958 10959 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10960 if (!t) 10961 return false; 10962 10963 return true; 10964 } 10965 10966 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10967 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10968 const struct btf *btf, 10969 const struct btf_type *t, int rec) 10970 { 10971 const struct btf_type *member_type; 10972 const struct btf_member *member; 10973 u32 i; 10974 10975 if (!btf_type_is_struct(t)) 10976 return false; 10977 10978 for_each_member(i, t, member) { 10979 const struct btf_array *array; 10980 10981 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10982 if (btf_type_is_struct(member_type)) { 10983 if (rec >= 3) { 10984 verbose(env, "max struct nesting depth exceeded\n"); 10985 return false; 10986 } 10987 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10988 return false; 10989 continue; 10990 } 10991 if (btf_type_is_array(member_type)) { 10992 array = btf_array(member_type); 10993 if (!array->nelems) 10994 return false; 10995 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10996 if (!btf_type_is_scalar(member_type)) 10997 return false; 10998 continue; 10999 } 11000 if (!btf_type_is_scalar(member_type)) 11001 return false; 11002 } 11003 return true; 11004 } 11005 11006 enum kfunc_ptr_arg_type { 11007 KF_ARG_PTR_TO_CTX, 11008 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 11009 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 11010 KF_ARG_PTR_TO_DYNPTR, 11011 KF_ARG_PTR_TO_ITER, 11012 KF_ARG_PTR_TO_LIST_HEAD, 11013 KF_ARG_PTR_TO_LIST_NODE, 11014 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 11015 KF_ARG_PTR_TO_MEM, 11016 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 11017 KF_ARG_PTR_TO_CALLBACK, 11018 KF_ARG_PTR_TO_RB_ROOT, 11019 KF_ARG_PTR_TO_RB_NODE, 11020 KF_ARG_PTR_TO_NULL, 11021 KF_ARG_PTR_TO_CONST_STR, 11022 KF_ARG_PTR_TO_MAP, 11023 KF_ARG_PTR_TO_WORKQUEUE, 11024 }; 11025 11026 enum special_kfunc_type { 11027 KF_bpf_obj_new_impl, 11028 KF_bpf_obj_drop_impl, 11029 KF_bpf_refcount_acquire_impl, 11030 KF_bpf_list_push_front_impl, 11031 KF_bpf_list_push_back_impl, 11032 KF_bpf_list_pop_front, 11033 KF_bpf_list_pop_back, 11034 KF_bpf_cast_to_kern_ctx, 11035 KF_bpf_rdonly_cast, 11036 KF_bpf_rcu_read_lock, 11037 KF_bpf_rcu_read_unlock, 11038 KF_bpf_rbtree_remove, 11039 KF_bpf_rbtree_add_impl, 11040 KF_bpf_rbtree_first, 11041 KF_bpf_dynptr_from_skb, 11042 KF_bpf_dynptr_from_xdp, 11043 KF_bpf_dynptr_slice, 11044 KF_bpf_dynptr_slice_rdwr, 11045 KF_bpf_dynptr_clone, 11046 KF_bpf_percpu_obj_new_impl, 11047 KF_bpf_percpu_obj_drop_impl, 11048 KF_bpf_throw, 11049 KF_bpf_wq_set_callback_impl, 11050 KF_bpf_preempt_disable, 11051 KF_bpf_preempt_enable, 11052 KF_bpf_iter_css_task_new, 11053 }; 11054 11055 BTF_SET_START(special_kfunc_set) 11056 BTF_ID(func, bpf_obj_new_impl) 11057 BTF_ID(func, bpf_obj_drop_impl) 11058 BTF_ID(func, bpf_refcount_acquire_impl) 11059 BTF_ID(func, bpf_list_push_front_impl) 11060 BTF_ID(func, bpf_list_push_back_impl) 11061 BTF_ID(func, bpf_list_pop_front) 11062 BTF_ID(func, bpf_list_pop_back) 11063 BTF_ID(func, bpf_cast_to_kern_ctx) 11064 BTF_ID(func, bpf_rdonly_cast) 11065 BTF_ID(func, bpf_rbtree_remove) 11066 BTF_ID(func, bpf_rbtree_add_impl) 11067 BTF_ID(func, bpf_rbtree_first) 11068 BTF_ID(func, bpf_dynptr_from_skb) 11069 BTF_ID(func, bpf_dynptr_from_xdp) 11070 BTF_ID(func, bpf_dynptr_slice) 11071 BTF_ID(func, bpf_dynptr_slice_rdwr) 11072 BTF_ID(func, bpf_dynptr_clone) 11073 BTF_ID(func, bpf_percpu_obj_new_impl) 11074 BTF_ID(func, bpf_percpu_obj_drop_impl) 11075 BTF_ID(func, bpf_throw) 11076 BTF_ID(func, bpf_wq_set_callback_impl) 11077 #ifdef CONFIG_CGROUPS 11078 BTF_ID(func, bpf_iter_css_task_new) 11079 #endif 11080 BTF_SET_END(special_kfunc_set) 11081 11082 BTF_ID_LIST(special_kfunc_list) 11083 BTF_ID(func, bpf_obj_new_impl) 11084 BTF_ID(func, bpf_obj_drop_impl) 11085 BTF_ID(func, bpf_refcount_acquire_impl) 11086 BTF_ID(func, bpf_list_push_front_impl) 11087 BTF_ID(func, bpf_list_push_back_impl) 11088 BTF_ID(func, bpf_list_pop_front) 11089 BTF_ID(func, bpf_list_pop_back) 11090 BTF_ID(func, bpf_cast_to_kern_ctx) 11091 BTF_ID(func, bpf_rdonly_cast) 11092 BTF_ID(func, bpf_rcu_read_lock) 11093 BTF_ID(func, bpf_rcu_read_unlock) 11094 BTF_ID(func, bpf_rbtree_remove) 11095 BTF_ID(func, bpf_rbtree_add_impl) 11096 BTF_ID(func, bpf_rbtree_first) 11097 BTF_ID(func, bpf_dynptr_from_skb) 11098 BTF_ID(func, bpf_dynptr_from_xdp) 11099 BTF_ID(func, bpf_dynptr_slice) 11100 BTF_ID(func, bpf_dynptr_slice_rdwr) 11101 BTF_ID(func, bpf_dynptr_clone) 11102 BTF_ID(func, bpf_percpu_obj_new_impl) 11103 BTF_ID(func, bpf_percpu_obj_drop_impl) 11104 BTF_ID(func, bpf_throw) 11105 BTF_ID(func, bpf_wq_set_callback_impl) 11106 BTF_ID(func, bpf_preempt_disable) 11107 BTF_ID(func, bpf_preempt_enable) 11108 #ifdef CONFIG_CGROUPS 11109 BTF_ID(func, bpf_iter_css_task_new) 11110 #else 11111 BTF_ID_UNUSED 11112 #endif 11113 11114 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 11115 { 11116 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 11117 meta->arg_owning_ref) { 11118 return false; 11119 } 11120 11121 return meta->kfunc_flags & KF_RET_NULL; 11122 } 11123 11124 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 11125 { 11126 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 11127 } 11128 11129 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 11130 { 11131 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 11132 } 11133 11134 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) 11135 { 11136 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; 11137 } 11138 11139 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) 11140 { 11141 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; 11142 } 11143 11144 static enum kfunc_ptr_arg_type 11145 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 11146 struct bpf_kfunc_call_arg_meta *meta, 11147 const struct btf_type *t, const struct btf_type *ref_t, 11148 const char *ref_tname, const struct btf_param *args, 11149 int argno, int nargs) 11150 { 11151 u32 regno = argno + 1; 11152 struct bpf_reg_state *regs = cur_regs(env); 11153 struct bpf_reg_state *reg = ®s[regno]; 11154 bool arg_mem_size = false; 11155 11156 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 11157 return KF_ARG_PTR_TO_CTX; 11158 11159 /* In this function, we verify the kfunc's BTF as per the argument type, 11160 * leaving the rest of the verification with respect to the register 11161 * type to our caller. When a set of conditions hold in the BTF type of 11162 * arguments, we resolve it to a known kfunc_ptr_arg_type. 11163 */ 11164 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 11165 return KF_ARG_PTR_TO_CTX; 11166 11167 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 11168 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 11169 11170 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 11171 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 11172 11173 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 11174 return KF_ARG_PTR_TO_DYNPTR; 11175 11176 if (is_kfunc_arg_iter(meta, argno)) 11177 return KF_ARG_PTR_TO_ITER; 11178 11179 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 11180 return KF_ARG_PTR_TO_LIST_HEAD; 11181 11182 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 11183 return KF_ARG_PTR_TO_LIST_NODE; 11184 11185 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 11186 return KF_ARG_PTR_TO_RB_ROOT; 11187 11188 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 11189 return KF_ARG_PTR_TO_RB_NODE; 11190 11191 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 11192 return KF_ARG_PTR_TO_CONST_STR; 11193 11194 if (is_kfunc_arg_map(meta->btf, &args[argno])) 11195 return KF_ARG_PTR_TO_MAP; 11196 11197 if (is_kfunc_arg_wq(meta->btf, &args[argno])) 11198 return KF_ARG_PTR_TO_WORKQUEUE; 11199 11200 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 11201 if (!btf_type_is_struct(ref_t)) { 11202 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 11203 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 11204 return -EINVAL; 11205 } 11206 return KF_ARG_PTR_TO_BTF_ID; 11207 } 11208 11209 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 11210 return KF_ARG_PTR_TO_CALLBACK; 11211 11212 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 11213 return KF_ARG_PTR_TO_NULL; 11214 11215 if (argno + 1 < nargs && 11216 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 11217 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 11218 arg_mem_size = true; 11219 11220 /* This is the catch all argument type of register types supported by 11221 * check_helper_mem_access. However, we only allow when argument type is 11222 * pointer to scalar, or struct composed (recursively) of scalars. When 11223 * arg_mem_size is true, the pointer can be void *. 11224 */ 11225 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 11226 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 11227 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 11228 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 11229 return -EINVAL; 11230 } 11231 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 11232 } 11233 11234 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 11235 struct bpf_reg_state *reg, 11236 const struct btf_type *ref_t, 11237 const char *ref_tname, u32 ref_id, 11238 struct bpf_kfunc_call_arg_meta *meta, 11239 int argno) 11240 { 11241 const struct btf_type *reg_ref_t; 11242 bool strict_type_match = false; 11243 const struct btf *reg_btf; 11244 const char *reg_ref_tname; 11245 u32 reg_ref_id; 11246 11247 if (base_type(reg->type) == PTR_TO_BTF_ID) { 11248 reg_btf = reg->btf; 11249 reg_ref_id = reg->btf_id; 11250 } else { 11251 reg_btf = btf_vmlinux; 11252 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 11253 } 11254 11255 /* Enforce strict type matching for calls to kfuncs that are acquiring 11256 * or releasing a reference, or are no-cast aliases. We do _not_ 11257 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 11258 * as we want to enable BPF programs to pass types that are bitwise 11259 * equivalent without forcing them to explicitly cast with something 11260 * like bpf_cast_to_kern_ctx(). 11261 * 11262 * For example, say we had a type like the following: 11263 * 11264 * struct bpf_cpumask { 11265 * cpumask_t cpumask; 11266 * refcount_t usage; 11267 * }; 11268 * 11269 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 11270 * to a struct cpumask, so it would be safe to pass a struct 11271 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 11272 * 11273 * The philosophy here is similar to how we allow scalars of different 11274 * types to be passed to kfuncs as long as the size is the same. The 11275 * only difference here is that we're simply allowing 11276 * btf_struct_ids_match() to walk the struct at the 0th offset, and 11277 * resolve types. 11278 */ 11279 if (is_kfunc_acquire(meta) || 11280 (is_kfunc_release(meta) && reg->ref_obj_id) || 11281 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 11282 strict_type_match = true; 11283 11284 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 11285 11286 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 11287 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 11288 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 11289 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 11290 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 11291 btf_type_str(reg_ref_t), reg_ref_tname); 11292 return -EINVAL; 11293 } 11294 return 0; 11295 } 11296 11297 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11298 { 11299 struct bpf_verifier_state *state = env->cur_state; 11300 struct btf_record *rec = reg_btf_record(reg); 11301 11302 if (!state->active_lock.ptr) { 11303 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 11304 return -EFAULT; 11305 } 11306 11307 if (type_flag(reg->type) & NON_OWN_REF) { 11308 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 11309 return -EFAULT; 11310 } 11311 11312 reg->type |= NON_OWN_REF; 11313 if (rec->refcount_off >= 0) 11314 reg->type |= MEM_RCU; 11315 11316 return 0; 11317 } 11318 11319 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 11320 { 11321 struct bpf_func_state *state, *unused; 11322 struct bpf_reg_state *reg; 11323 int i; 11324 11325 state = cur_func(env); 11326 11327 if (!ref_obj_id) { 11328 verbose(env, "verifier internal error: ref_obj_id is zero for " 11329 "owning -> non-owning conversion\n"); 11330 return -EFAULT; 11331 } 11332 11333 for (i = 0; i < state->acquired_refs; i++) { 11334 if (state->refs[i].id != ref_obj_id) 11335 continue; 11336 11337 /* Clear ref_obj_id here so release_reference doesn't clobber 11338 * the whole reg 11339 */ 11340 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 11341 if (reg->ref_obj_id == ref_obj_id) { 11342 reg->ref_obj_id = 0; 11343 ref_set_non_owning(env, reg); 11344 } 11345 })); 11346 return 0; 11347 } 11348 11349 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 11350 return -EFAULT; 11351 } 11352 11353 /* Implementation details: 11354 * 11355 * Each register points to some region of memory, which we define as an 11356 * allocation. Each allocation may embed a bpf_spin_lock which protects any 11357 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 11358 * allocation. The lock and the data it protects are colocated in the same 11359 * memory region. 11360 * 11361 * Hence, everytime a register holds a pointer value pointing to such 11362 * allocation, the verifier preserves a unique reg->id for it. 11363 * 11364 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 11365 * bpf_spin_lock is called. 11366 * 11367 * To enable this, lock state in the verifier captures two values: 11368 * active_lock.ptr = Register's type specific pointer 11369 * active_lock.id = A unique ID for each register pointer value 11370 * 11371 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 11372 * supported register types. 11373 * 11374 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 11375 * allocated objects is the reg->btf pointer. 11376 * 11377 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 11378 * can establish the provenance of the map value statically for each distinct 11379 * lookup into such maps. They always contain a single map value hence unique 11380 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 11381 * 11382 * So, in case of global variables, they use array maps with max_entries = 1, 11383 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 11384 * into the same map value as max_entries is 1, as described above). 11385 * 11386 * In case of inner map lookups, the inner map pointer has same map_ptr as the 11387 * outer map pointer (in verifier context), but each lookup into an inner map 11388 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 11389 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 11390 * will get different reg->id assigned to each lookup, hence different 11391 * active_lock.id. 11392 * 11393 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 11394 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 11395 * returned from bpf_obj_new. Each allocation receives a new reg->id. 11396 */ 11397 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11398 { 11399 void *ptr; 11400 u32 id; 11401 11402 switch ((int)reg->type) { 11403 case PTR_TO_MAP_VALUE: 11404 ptr = reg->map_ptr; 11405 break; 11406 case PTR_TO_BTF_ID | MEM_ALLOC: 11407 ptr = reg->btf; 11408 break; 11409 default: 11410 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11411 return -EFAULT; 11412 } 11413 id = reg->id; 11414 11415 if (!env->cur_state->active_lock.ptr) 11416 return -EINVAL; 11417 if (env->cur_state->active_lock.ptr != ptr || 11418 env->cur_state->active_lock.id != id) { 11419 verbose(env, "held lock and object are not in the same allocation\n"); 11420 return -EINVAL; 11421 } 11422 return 0; 11423 } 11424 11425 static bool is_bpf_list_api_kfunc(u32 btf_id) 11426 { 11427 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11428 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11429 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11430 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11431 } 11432 11433 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11434 { 11435 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11436 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11437 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11438 } 11439 11440 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11441 { 11442 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11443 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11444 } 11445 11446 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11447 { 11448 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11449 } 11450 11451 static bool is_async_callback_calling_kfunc(u32 btf_id) 11452 { 11453 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 11454 } 11455 11456 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 11457 { 11458 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 11459 insn->imm == special_kfunc_list[KF_bpf_throw]; 11460 } 11461 11462 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) 11463 { 11464 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 11465 } 11466 11467 static bool is_callback_calling_kfunc(u32 btf_id) 11468 { 11469 return is_sync_callback_calling_kfunc(btf_id) || 11470 is_async_callback_calling_kfunc(btf_id); 11471 } 11472 11473 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11474 { 11475 return is_bpf_rbtree_api_kfunc(btf_id); 11476 } 11477 11478 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11479 enum btf_field_type head_field_type, 11480 u32 kfunc_btf_id) 11481 { 11482 bool ret; 11483 11484 switch (head_field_type) { 11485 case BPF_LIST_HEAD: 11486 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11487 break; 11488 case BPF_RB_ROOT: 11489 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11490 break; 11491 default: 11492 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11493 btf_field_type_name(head_field_type)); 11494 return false; 11495 } 11496 11497 if (!ret) 11498 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11499 btf_field_type_name(head_field_type)); 11500 return ret; 11501 } 11502 11503 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11504 enum btf_field_type node_field_type, 11505 u32 kfunc_btf_id) 11506 { 11507 bool ret; 11508 11509 switch (node_field_type) { 11510 case BPF_LIST_NODE: 11511 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11512 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11513 break; 11514 case BPF_RB_NODE: 11515 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11516 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11517 break; 11518 default: 11519 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11520 btf_field_type_name(node_field_type)); 11521 return false; 11522 } 11523 11524 if (!ret) 11525 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11526 btf_field_type_name(node_field_type)); 11527 return ret; 11528 } 11529 11530 static int 11531 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11532 struct bpf_reg_state *reg, u32 regno, 11533 struct bpf_kfunc_call_arg_meta *meta, 11534 enum btf_field_type head_field_type, 11535 struct btf_field **head_field) 11536 { 11537 const char *head_type_name; 11538 struct btf_field *field; 11539 struct btf_record *rec; 11540 u32 head_off; 11541 11542 if (meta->btf != btf_vmlinux) { 11543 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11544 return -EFAULT; 11545 } 11546 11547 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11548 return -EFAULT; 11549 11550 head_type_name = btf_field_type_name(head_field_type); 11551 if (!tnum_is_const(reg->var_off)) { 11552 verbose(env, 11553 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11554 regno, head_type_name); 11555 return -EINVAL; 11556 } 11557 11558 rec = reg_btf_record(reg); 11559 head_off = reg->off + reg->var_off.value; 11560 field = btf_record_find(rec, head_off, head_field_type); 11561 if (!field) { 11562 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11563 return -EINVAL; 11564 } 11565 11566 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11567 if (check_reg_allocation_locked(env, reg)) { 11568 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11569 rec->spin_lock_off, head_type_name); 11570 return -EINVAL; 11571 } 11572 11573 if (*head_field) { 11574 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11575 return -EFAULT; 11576 } 11577 *head_field = field; 11578 return 0; 11579 } 11580 11581 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11582 struct bpf_reg_state *reg, u32 regno, 11583 struct bpf_kfunc_call_arg_meta *meta) 11584 { 11585 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11586 &meta->arg_list_head.field); 11587 } 11588 11589 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11590 struct bpf_reg_state *reg, u32 regno, 11591 struct bpf_kfunc_call_arg_meta *meta) 11592 { 11593 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11594 &meta->arg_rbtree_root.field); 11595 } 11596 11597 static int 11598 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11599 struct bpf_reg_state *reg, u32 regno, 11600 struct bpf_kfunc_call_arg_meta *meta, 11601 enum btf_field_type head_field_type, 11602 enum btf_field_type node_field_type, 11603 struct btf_field **node_field) 11604 { 11605 const char *node_type_name; 11606 const struct btf_type *et, *t; 11607 struct btf_field *field; 11608 u32 node_off; 11609 11610 if (meta->btf != btf_vmlinux) { 11611 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11612 return -EFAULT; 11613 } 11614 11615 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11616 return -EFAULT; 11617 11618 node_type_name = btf_field_type_name(node_field_type); 11619 if (!tnum_is_const(reg->var_off)) { 11620 verbose(env, 11621 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11622 regno, node_type_name); 11623 return -EINVAL; 11624 } 11625 11626 node_off = reg->off + reg->var_off.value; 11627 field = reg_find_field_offset(reg, node_off, node_field_type); 11628 if (!field || field->offset != node_off) { 11629 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11630 return -EINVAL; 11631 } 11632 11633 field = *node_field; 11634 11635 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11636 t = btf_type_by_id(reg->btf, reg->btf_id); 11637 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11638 field->graph_root.value_btf_id, true)) { 11639 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11640 "in struct %s, but arg is at offset=%d in struct %s\n", 11641 btf_field_type_name(head_field_type), 11642 btf_field_type_name(node_field_type), 11643 field->graph_root.node_offset, 11644 btf_name_by_offset(field->graph_root.btf, et->name_off), 11645 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11646 return -EINVAL; 11647 } 11648 meta->arg_btf = reg->btf; 11649 meta->arg_btf_id = reg->btf_id; 11650 11651 if (node_off != field->graph_root.node_offset) { 11652 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11653 node_off, btf_field_type_name(node_field_type), 11654 field->graph_root.node_offset, 11655 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11656 return -EINVAL; 11657 } 11658 11659 return 0; 11660 } 11661 11662 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11663 struct bpf_reg_state *reg, u32 regno, 11664 struct bpf_kfunc_call_arg_meta *meta) 11665 { 11666 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11667 BPF_LIST_HEAD, BPF_LIST_NODE, 11668 &meta->arg_list_head.field); 11669 } 11670 11671 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11672 struct bpf_reg_state *reg, u32 regno, 11673 struct bpf_kfunc_call_arg_meta *meta) 11674 { 11675 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11676 BPF_RB_ROOT, BPF_RB_NODE, 11677 &meta->arg_rbtree_root.field); 11678 } 11679 11680 /* 11681 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 11682 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 11683 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 11684 * them can only be attached to some specific hook points. 11685 */ 11686 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 11687 { 11688 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11689 11690 switch (prog_type) { 11691 case BPF_PROG_TYPE_LSM: 11692 return true; 11693 case BPF_PROG_TYPE_TRACING: 11694 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 11695 return true; 11696 fallthrough; 11697 default: 11698 return in_sleepable(env); 11699 } 11700 } 11701 11702 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11703 int insn_idx) 11704 { 11705 const char *func_name = meta->func_name, *ref_tname; 11706 const struct btf *btf = meta->btf; 11707 const struct btf_param *args; 11708 struct btf_record *rec; 11709 u32 i, nargs; 11710 int ret; 11711 11712 args = (const struct btf_param *)(meta->func_proto + 1); 11713 nargs = btf_type_vlen(meta->func_proto); 11714 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11715 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11716 MAX_BPF_FUNC_REG_ARGS); 11717 return -EINVAL; 11718 } 11719 11720 /* Check that BTF function arguments match actual types that the 11721 * verifier sees. 11722 */ 11723 for (i = 0; i < nargs; i++) { 11724 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11725 const struct btf_type *t, *ref_t, *resolve_ret; 11726 enum bpf_arg_type arg_type = ARG_DONTCARE; 11727 u32 regno = i + 1, ref_id, type_size; 11728 bool is_ret_buf_sz = false; 11729 int kf_arg_type; 11730 11731 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11732 11733 if (is_kfunc_arg_ignore(btf, &args[i])) 11734 continue; 11735 11736 if (btf_type_is_scalar(t)) { 11737 if (reg->type != SCALAR_VALUE) { 11738 verbose(env, "R%d is not a scalar\n", regno); 11739 return -EINVAL; 11740 } 11741 11742 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11743 if (meta->arg_constant.found) { 11744 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11745 return -EFAULT; 11746 } 11747 if (!tnum_is_const(reg->var_off)) { 11748 verbose(env, "R%d must be a known constant\n", regno); 11749 return -EINVAL; 11750 } 11751 ret = mark_chain_precision(env, regno); 11752 if (ret < 0) 11753 return ret; 11754 meta->arg_constant.found = true; 11755 meta->arg_constant.value = reg->var_off.value; 11756 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11757 meta->r0_rdonly = true; 11758 is_ret_buf_sz = true; 11759 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11760 is_ret_buf_sz = true; 11761 } 11762 11763 if (is_ret_buf_sz) { 11764 if (meta->r0_size) { 11765 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11766 return -EINVAL; 11767 } 11768 11769 if (!tnum_is_const(reg->var_off)) { 11770 verbose(env, "R%d is not a const\n", regno); 11771 return -EINVAL; 11772 } 11773 11774 meta->r0_size = reg->var_off.value; 11775 ret = mark_chain_precision(env, regno); 11776 if (ret) 11777 return ret; 11778 } 11779 continue; 11780 } 11781 11782 if (!btf_type_is_ptr(t)) { 11783 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 11784 return -EINVAL; 11785 } 11786 11787 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 11788 (register_is_null(reg) || type_may_be_null(reg->type)) && 11789 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 11790 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 11791 return -EACCES; 11792 } 11793 11794 if (reg->ref_obj_id) { 11795 if (is_kfunc_release(meta) && meta->ref_obj_id) { 11796 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 11797 regno, reg->ref_obj_id, 11798 meta->ref_obj_id); 11799 return -EFAULT; 11800 } 11801 meta->ref_obj_id = reg->ref_obj_id; 11802 if (is_kfunc_release(meta)) 11803 meta->release_regno = regno; 11804 } 11805 11806 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 11807 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 11808 11809 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 11810 if (kf_arg_type < 0) 11811 return kf_arg_type; 11812 11813 switch (kf_arg_type) { 11814 case KF_ARG_PTR_TO_NULL: 11815 continue; 11816 case KF_ARG_PTR_TO_MAP: 11817 if (!reg->map_ptr) { 11818 verbose(env, "pointer in R%d isn't map pointer\n", regno); 11819 return -EINVAL; 11820 } 11821 if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) { 11822 /* Use map_uid (which is unique id of inner map) to reject: 11823 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 11824 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 11825 * if (inner_map1 && inner_map2) { 11826 * wq = bpf_map_lookup_elem(inner_map1); 11827 * if (wq) 11828 * // mismatch would have been allowed 11829 * bpf_wq_init(wq, inner_map2); 11830 * } 11831 * 11832 * Comparing map_ptr is enough to distinguish normal and outer maps. 11833 */ 11834 if (meta->map.ptr != reg->map_ptr || 11835 meta->map.uid != reg->map_uid) { 11836 verbose(env, 11837 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 11838 meta->map.uid, reg->map_uid); 11839 return -EINVAL; 11840 } 11841 } 11842 meta->map.ptr = reg->map_ptr; 11843 meta->map.uid = reg->map_uid; 11844 fallthrough; 11845 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11846 case KF_ARG_PTR_TO_BTF_ID: 11847 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 11848 break; 11849 11850 if (!is_trusted_reg(reg)) { 11851 if (!is_kfunc_rcu(meta)) { 11852 verbose(env, "R%d must be referenced or trusted\n", regno); 11853 return -EINVAL; 11854 } 11855 if (!is_rcu_reg(reg)) { 11856 verbose(env, "R%d must be a rcu pointer\n", regno); 11857 return -EINVAL; 11858 } 11859 } 11860 11861 fallthrough; 11862 case KF_ARG_PTR_TO_CTX: 11863 /* Trusted arguments have the same offset checks as release arguments */ 11864 arg_type |= OBJ_RELEASE; 11865 break; 11866 case KF_ARG_PTR_TO_DYNPTR: 11867 case KF_ARG_PTR_TO_ITER: 11868 case KF_ARG_PTR_TO_LIST_HEAD: 11869 case KF_ARG_PTR_TO_LIST_NODE: 11870 case KF_ARG_PTR_TO_RB_ROOT: 11871 case KF_ARG_PTR_TO_RB_NODE: 11872 case KF_ARG_PTR_TO_MEM: 11873 case KF_ARG_PTR_TO_MEM_SIZE: 11874 case KF_ARG_PTR_TO_CALLBACK: 11875 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11876 case KF_ARG_PTR_TO_CONST_STR: 11877 case KF_ARG_PTR_TO_WORKQUEUE: 11878 /* Trusted by default */ 11879 break; 11880 default: 11881 WARN_ON_ONCE(1); 11882 return -EFAULT; 11883 } 11884 11885 if (is_kfunc_release(meta) && reg->ref_obj_id) 11886 arg_type |= OBJ_RELEASE; 11887 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11888 if (ret < 0) 11889 return ret; 11890 11891 switch (kf_arg_type) { 11892 case KF_ARG_PTR_TO_CTX: 11893 if (reg->type != PTR_TO_CTX) { 11894 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11895 return -EINVAL; 11896 } 11897 11898 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11899 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11900 if (ret < 0) 11901 return -EINVAL; 11902 meta->ret_btf_id = ret; 11903 } 11904 break; 11905 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11906 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 11907 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 11908 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 11909 return -EINVAL; 11910 } 11911 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 11912 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 11913 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 11914 return -EINVAL; 11915 } 11916 } else { 11917 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11918 return -EINVAL; 11919 } 11920 if (!reg->ref_obj_id) { 11921 verbose(env, "allocated object must be referenced\n"); 11922 return -EINVAL; 11923 } 11924 if (meta->btf == btf_vmlinux) { 11925 meta->arg_btf = reg->btf; 11926 meta->arg_btf_id = reg->btf_id; 11927 } 11928 break; 11929 case KF_ARG_PTR_TO_DYNPTR: 11930 { 11931 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11932 int clone_ref_obj_id = 0; 11933 11934 if (reg->type != PTR_TO_STACK && 11935 reg->type != CONST_PTR_TO_DYNPTR) { 11936 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11937 return -EINVAL; 11938 } 11939 11940 if (reg->type == CONST_PTR_TO_DYNPTR) 11941 dynptr_arg_type |= MEM_RDONLY; 11942 11943 if (is_kfunc_arg_uninit(btf, &args[i])) 11944 dynptr_arg_type |= MEM_UNINIT; 11945 11946 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11947 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11948 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11949 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11950 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11951 (dynptr_arg_type & MEM_UNINIT)) { 11952 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11953 11954 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11955 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11956 return -EFAULT; 11957 } 11958 11959 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11960 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11961 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11962 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11963 return -EFAULT; 11964 } 11965 } 11966 11967 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11968 if (ret < 0) 11969 return ret; 11970 11971 if (!(dynptr_arg_type & MEM_UNINIT)) { 11972 int id = dynptr_id(env, reg); 11973 11974 if (id < 0) { 11975 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11976 return id; 11977 } 11978 meta->initialized_dynptr.id = id; 11979 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11980 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11981 } 11982 11983 break; 11984 } 11985 case KF_ARG_PTR_TO_ITER: 11986 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 11987 if (!check_css_task_iter_allowlist(env)) { 11988 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 11989 return -EINVAL; 11990 } 11991 } 11992 ret = process_iter_arg(env, regno, insn_idx, meta); 11993 if (ret < 0) 11994 return ret; 11995 break; 11996 case KF_ARG_PTR_TO_LIST_HEAD: 11997 if (reg->type != PTR_TO_MAP_VALUE && 11998 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11999 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12000 return -EINVAL; 12001 } 12002 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12003 verbose(env, "allocated object must be referenced\n"); 12004 return -EINVAL; 12005 } 12006 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 12007 if (ret < 0) 12008 return ret; 12009 break; 12010 case KF_ARG_PTR_TO_RB_ROOT: 12011 if (reg->type != PTR_TO_MAP_VALUE && 12012 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12013 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12014 return -EINVAL; 12015 } 12016 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12017 verbose(env, "allocated object must be referenced\n"); 12018 return -EINVAL; 12019 } 12020 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 12021 if (ret < 0) 12022 return ret; 12023 break; 12024 case KF_ARG_PTR_TO_LIST_NODE: 12025 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12026 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12027 return -EINVAL; 12028 } 12029 if (!reg->ref_obj_id) { 12030 verbose(env, "allocated object must be referenced\n"); 12031 return -EINVAL; 12032 } 12033 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 12034 if (ret < 0) 12035 return ret; 12036 break; 12037 case KF_ARG_PTR_TO_RB_NODE: 12038 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 12039 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 12040 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 12041 return -EINVAL; 12042 } 12043 if (in_rbtree_lock_required_cb(env)) { 12044 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 12045 return -EINVAL; 12046 } 12047 } else { 12048 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12049 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12050 return -EINVAL; 12051 } 12052 if (!reg->ref_obj_id) { 12053 verbose(env, "allocated object must be referenced\n"); 12054 return -EINVAL; 12055 } 12056 } 12057 12058 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 12059 if (ret < 0) 12060 return ret; 12061 break; 12062 case KF_ARG_PTR_TO_MAP: 12063 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 12064 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 12065 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 12066 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12067 fallthrough; 12068 case KF_ARG_PTR_TO_BTF_ID: 12069 /* Only base_type is checked, further checks are done here */ 12070 if ((base_type(reg->type) != PTR_TO_BTF_ID || 12071 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 12072 !reg2btf_ids[base_type(reg->type)]) { 12073 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 12074 verbose(env, "expected %s or socket\n", 12075 reg_type_str(env, base_type(reg->type) | 12076 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 12077 return -EINVAL; 12078 } 12079 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 12080 if (ret < 0) 12081 return ret; 12082 break; 12083 case KF_ARG_PTR_TO_MEM: 12084 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 12085 if (IS_ERR(resolve_ret)) { 12086 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 12087 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 12088 return -EINVAL; 12089 } 12090 ret = check_mem_reg(env, reg, regno, type_size); 12091 if (ret < 0) 12092 return ret; 12093 break; 12094 case KF_ARG_PTR_TO_MEM_SIZE: 12095 { 12096 struct bpf_reg_state *buff_reg = ®s[regno]; 12097 const struct btf_param *buff_arg = &args[i]; 12098 struct bpf_reg_state *size_reg = ®s[regno + 1]; 12099 const struct btf_param *size_arg = &args[i + 1]; 12100 12101 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 12102 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 12103 if (ret < 0) { 12104 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 12105 return ret; 12106 } 12107 } 12108 12109 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 12110 if (meta->arg_constant.found) { 12111 verbose(env, "verifier internal error: only one constant argument permitted\n"); 12112 return -EFAULT; 12113 } 12114 if (!tnum_is_const(size_reg->var_off)) { 12115 verbose(env, "R%d must be a known constant\n", regno + 1); 12116 return -EINVAL; 12117 } 12118 meta->arg_constant.found = true; 12119 meta->arg_constant.value = size_reg->var_off.value; 12120 } 12121 12122 /* Skip next '__sz' or '__szk' argument */ 12123 i++; 12124 break; 12125 } 12126 case KF_ARG_PTR_TO_CALLBACK: 12127 if (reg->type != PTR_TO_FUNC) { 12128 verbose(env, "arg%d expected pointer to func\n", i); 12129 return -EINVAL; 12130 } 12131 meta->subprogno = reg->subprogno; 12132 break; 12133 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 12134 if (!type_is_ptr_alloc_obj(reg->type)) { 12135 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 12136 return -EINVAL; 12137 } 12138 if (!type_is_non_owning_ref(reg->type)) 12139 meta->arg_owning_ref = true; 12140 12141 rec = reg_btf_record(reg); 12142 if (!rec) { 12143 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 12144 return -EFAULT; 12145 } 12146 12147 if (rec->refcount_off < 0) { 12148 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 12149 return -EINVAL; 12150 } 12151 12152 meta->arg_btf = reg->btf; 12153 meta->arg_btf_id = reg->btf_id; 12154 break; 12155 case KF_ARG_PTR_TO_CONST_STR: 12156 if (reg->type != PTR_TO_MAP_VALUE) { 12157 verbose(env, "arg#%d doesn't point to a const string\n", i); 12158 return -EINVAL; 12159 } 12160 ret = check_reg_const_str(env, reg, regno); 12161 if (ret) 12162 return ret; 12163 break; 12164 case KF_ARG_PTR_TO_WORKQUEUE: 12165 if (reg->type != PTR_TO_MAP_VALUE) { 12166 verbose(env, "arg#%d doesn't point to a map value\n", i); 12167 return -EINVAL; 12168 } 12169 ret = process_wq_func(env, regno, meta); 12170 if (ret < 0) 12171 return ret; 12172 break; 12173 } 12174 } 12175 12176 if (is_kfunc_release(meta) && !meta->release_regno) { 12177 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 12178 func_name); 12179 return -EINVAL; 12180 } 12181 12182 return 0; 12183 } 12184 12185 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 12186 struct bpf_insn *insn, 12187 struct bpf_kfunc_call_arg_meta *meta, 12188 const char **kfunc_name) 12189 { 12190 const struct btf_type *func, *func_proto; 12191 u32 func_id, *kfunc_flags; 12192 const char *func_name; 12193 struct btf *desc_btf; 12194 12195 if (kfunc_name) 12196 *kfunc_name = NULL; 12197 12198 if (!insn->imm) 12199 return -EINVAL; 12200 12201 desc_btf = find_kfunc_desc_btf(env, insn->off); 12202 if (IS_ERR(desc_btf)) 12203 return PTR_ERR(desc_btf); 12204 12205 func_id = insn->imm; 12206 func = btf_type_by_id(desc_btf, func_id); 12207 func_name = btf_name_by_offset(desc_btf, func->name_off); 12208 if (kfunc_name) 12209 *kfunc_name = func_name; 12210 func_proto = btf_type_by_id(desc_btf, func->type); 12211 12212 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 12213 if (!kfunc_flags) { 12214 return -EACCES; 12215 } 12216 12217 memset(meta, 0, sizeof(*meta)); 12218 meta->btf = desc_btf; 12219 meta->func_id = func_id; 12220 meta->kfunc_flags = *kfunc_flags; 12221 meta->func_proto = func_proto; 12222 meta->func_name = func_name; 12223 12224 return 0; 12225 } 12226 12227 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 12228 12229 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 12230 int *insn_idx_p) 12231 { 12232 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; 12233 u32 i, nargs, ptr_type_id, release_ref_obj_id; 12234 struct bpf_reg_state *regs = cur_regs(env); 12235 const char *func_name, *ptr_type_name; 12236 const struct btf_type *t, *ptr_type; 12237 struct bpf_kfunc_call_arg_meta meta; 12238 struct bpf_insn_aux_data *insn_aux; 12239 int err, insn_idx = *insn_idx_p; 12240 const struct btf_param *args; 12241 const struct btf_type *ret_t; 12242 struct btf *desc_btf; 12243 12244 /* skip for now, but return error when we find this in fixup_kfunc_call */ 12245 if (!insn->imm) 12246 return 0; 12247 12248 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 12249 if (err == -EACCES && func_name) 12250 verbose(env, "calling kernel function %s is not allowed\n", func_name); 12251 if (err) 12252 return err; 12253 desc_btf = meta.btf; 12254 insn_aux = &env->insn_aux_data[insn_idx]; 12255 12256 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 12257 12258 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 12259 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 12260 return -EACCES; 12261 } 12262 12263 sleepable = is_kfunc_sleepable(&meta); 12264 if (sleepable && !in_sleepable(env)) { 12265 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 12266 return -EACCES; 12267 } 12268 12269 /* Check the arguments */ 12270 err = check_kfunc_args(env, &meta, insn_idx); 12271 if (err < 0) 12272 return err; 12273 12274 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12275 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12276 set_rbtree_add_callback_state); 12277 if (err) { 12278 verbose(env, "kfunc %s#%d failed callback verification\n", 12279 func_name, meta.func_id); 12280 return err; 12281 } 12282 } 12283 12284 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { 12285 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12286 set_timer_callback_state); 12287 if (err) { 12288 verbose(env, "kfunc %s#%d failed callback verification\n", 12289 func_name, meta.func_id); 12290 return err; 12291 } 12292 } 12293 12294 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 12295 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 12296 12297 preempt_disable = is_kfunc_bpf_preempt_disable(&meta); 12298 preempt_enable = is_kfunc_bpf_preempt_enable(&meta); 12299 12300 if (env->cur_state->active_rcu_lock) { 12301 struct bpf_func_state *state; 12302 struct bpf_reg_state *reg; 12303 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 12304 12305 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 12306 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 12307 return -EACCES; 12308 } 12309 12310 if (rcu_lock) { 12311 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 12312 return -EINVAL; 12313 } else if (rcu_unlock) { 12314 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 12315 if (reg->type & MEM_RCU) { 12316 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 12317 reg->type |= PTR_UNTRUSTED; 12318 } 12319 })); 12320 env->cur_state->active_rcu_lock = false; 12321 } else if (sleepable) { 12322 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 12323 return -EACCES; 12324 } 12325 } else if (rcu_lock) { 12326 env->cur_state->active_rcu_lock = true; 12327 } else if (rcu_unlock) { 12328 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 12329 return -EINVAL; 12330 } 12331 12332 if (env->cur_state->active_preempt_lock) { 12333 if (preempt_disable) { 12334 env->cur_state->active_preempt_lock++; 12335 } else if (preempt_enable) { 12336 env->cur_state->active_preempt_lock--; 12337 } else if (sleepable) { 12338 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); 12339 return -EACCES; 12340 } 12341 } else if (preempt_disable) { 12342 env->cur_state->active_preempt_lock++; 12343 } else if (preempt_enable) { 12344 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); 12345 return -EINVAL; 12346 } 12347 12348 /* In case of release function, we get register number of refcounted 12349 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 12350 */ 12351 if (meta.release_regno) { 12352 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 12353 if (err) { 12354 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12355 func_name, meta.func_id); 12356 return err; 12357 } 12358 } 12359 12360 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12361 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12362 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12363 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 12364 insn_aux->insert_off = regs[BPF_REG_2].off; 12365 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 12366 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 12367 if (err) { 12368 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 12369 func_name, meta.func_id); 12370 return err; 12371 } 12372 12373 err = release_reference(env, release_ref_obj_id); 12374 if (err) { 12375 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12376 func_name, meta.func_id); 12377 return err; 12378 } 12379 } 12380 12381 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 12382 if (!bpf_jit_supports_exceptions()) { 12383 verbose(env, "JIT does not support calling kfunc %s#%d\n", 12384 func_name, meta.func_id); 12385 return -ENOTSUPP; 12386 } 12387 env->seen_exception = true; 12388 12389 /* In the case of the default callback, the cookie value passed 12390 * to bpf_throw becomes the return value of the program. 12391 */ 12392 if (!env->exception_callback_subprog) { 12393 err = check_return_code(env, BPF_REG_1, "R1"); 12394 if (err < 0) 12395 return err; 12396 } 12397 } 12398 12399 for (i = 0; i < CALLER_SAVED_REGS; i++) 12400 mark_reg_not_init(env, regs, caller_saved[i]); 12401 12402 /* Check return type */ 12403 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 12404 12405 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 12406 /* Only exception is bpf_obj_new_impl */ 12407 if (meta.btf != btf_vmlinux || 12408 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 12409 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 12410 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 12411 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 12412 return -EINVAL; 12413 } 12414 } 12415 12416 if (btf_type_is_scalar(t)) { 12417 mark_reg_unknown(env, regs, BPF_REG_0); 12418 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 12419 } else if (btf_type_is_ptr(t)) { 12420 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 12421 12422 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12423 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 12424 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12425 struct btf_struct_meta *struct_meta; 12426 struct btf *ret_btf; 12427 u32 ret_btf_id; 12428 12429 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 12430 return -ENOMEM; 12431 12432 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 12433 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 12434 return -EINVAL; 12435 } 12436 12437 ret_btf = env->prog->aux->btf; 12438 ret_btf_id = meta.arg_constant.value; 12439 12440 /* This may be NULL due to user not supplying a BTF */ 12441 if (!ret_btf) { 12442 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 12443 return -EINVAL; 12444 } 12445 12446 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 12447 if (!ret_t || !__btf_type_is_struct(ret_t)) { 12448 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 12449 return -EINVAL; 12450 } 12451 12452 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12453 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 12454 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 12455 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 12456 return -EINVAL; 12457 } 12458 12459 if (!bpf_global_percpu_ma_set) { 12460 mutex_lock(&bpf_percpu_ma_lock); 12461 if (!bpf_global_percpu_ma_set) { 12462 /* Charge memory allocated with bpf_global_percpu_ma to 12463 * root memcg. The obj_cgroup for root memcg is NULL. 12464 */ 12465 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 12466 if (!err) 12467 bpf_global_percpu_ma_set = true; 12468 } 12469 mutex_unlock(&bpf_percpu_ma_lock); 12470 if (err) 12471 return err; 12472 } 12473 12474 mutex_lock(&bpf_percpu_ma_lock); 12475 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 12476 mutex_unlock(&bpf_percpu_ma_lock); 12477 if (err) 12478 return err; 12479 } 12480 12481 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 12482 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12483 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 12484 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 12485 return -EINVAL; 12486 } 12487 12488 if (struct_meta) { 12489 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 12490 return -EINVAL; 12491 } 12492 } 12493 12494 mark_reg_known_zero(env, regs, BPF_REG_0); 12495 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12496 regs[BPF_REG_0].btf = ret_btf; 12497 regs[BPF_REG_0].btf_id = ret_btf_id; 12498 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 12499 regs[BPF_REG_0].type |= MEM_PERCPU; 12500 12501 insn_aux->obj_new_size = ret_t->size; 12502 insn_aux->kptr_struct_meta = struct_meta; 12503 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 12504 mark_reg_known_zero(env, regs, BPF_REG_0); 12505 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12506 regs[BPF_REG_0].btf = meta.arg_btf; 12507 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 12508 12509 insn_aux->kptr_struct_meta = 12510 btf_find_struct_meta(meta.arg_btf, 12511 meta.arg_btf_id); 12512 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 12513 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 12514 struct btf_field *field = meta.arg_list_head.field; 12515 12516 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12517 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12518 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12519 struct btf_field *field = meta.arg_rbtree_root.field; 12520 12521 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12522 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12523 mark_reg_known_zero(env, regs, BPF_REG_0); 12524 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 12525 regs[BPF_REG_0].btf = desc_btf; 12526 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 12527 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 12528 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 12529 if (!ret_t || !btf_type_is_struct(ret_t)) { 12530 verbose(env, 12531 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 12532 return -EINVAL; 12533 } 12534 12535 mark_reg_known_zero(env, regs, BPF_REG_0); 12536 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 12537 regs[BPF_REG_0].btf = desc_btf; 12538 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 12539 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 12540 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 12541 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 12542 12543 mark_reg_known_zero(env, regs, BPF_REG_0); 12544 12545 if (!meta.arg_constant.found) { 12546 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 12547 return -EFAULT; 12548 } 12549 12550 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 12551 12552 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 12553 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 12554 12555 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 12556 regs[BPF_REG_0].type |= MEM_RDONLY; 12557 } else { 12558 /* this will set env->seen_direct_write to true */ 12559 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 12560 verbose(env, "the prog does not allow writes to packet data\n"); 12561 return -EINVAL; 12562 } 12563 } 12564 12565 if (!meta.initialized_dynptr.id) { 12566 verbose(env, "verifier internal error: no dynptr id\n"); 12567 return -EFAULT; 12568 } 12569 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 12570 12571 /* we don't need to set BPF_REG_0's ref obj id 12572 * because packet slices are not refcounted (see 12573 * dynptr_type_refcounted) 12574 */ 12575 } else { 12576 verbose(env, "kernel function %s unhandled dynamic return type\n", 12577 meta.func_name); 12578 return -EFAULT; 12579 } 12580 } else if (btf_type_is_void(ptr_type)) { 12581 /* kfunc returning 'void *' is equivalent to returning scalar */ 12582 mark_reg_unknown(env, regs, BPF_REG_0); 12583 } else if (!__btf_type_is_struct(ptr_type)) { 12584 if (!meta.r0_size) { 12585 __u32 sz; 12586 12587 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 12588 meta.r0_size = sz; 12589 meta.r0_rdonly = true; 12590 } 12591 } 12592 if (!meta.r0_size) { 12593 ptr_type_name = btf_name_by_offset(desc_btf, 12594 ptr_type->name_off); 12595 verbose(env, 12596 "kernel function %s returns pointer type %s %s is not supported\n", 12597 func_name, 12598 btf_type_str(ptr_type), 12599 ptr_type_name); 12600 return -EINVAL; 12601 } 12602 12603 mark_reg_known_zero(env, regs, BPF_REG_0); 12604 regs[BPF_REG_0].type = PTR_TO_MEM; 12605 regs[BPF_REG_0].mem_size = meta.r0_size; 12606 12607 if (meta.r0_rdonly) 12608 regs[BPF_REG_0].type |= MEM_RDONLY; 12609 12610 /* Ensures we don't access the memory after a release_reference() */ 12611 if (meta.ref_obj_id) 12612 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 12613 } else { 12614 mark_reg_known_zero(env, regs, BPF_REG_0); 12615 regs[BPF_REG_0].btf = desc_btf; 12616 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 12617 regs[BPF_REG_0].btf_id = ptr_type_id; 12618 } 12619 12620 if (is_kfunc_ret_null(&meta)) { 12621 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 12622 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12623 regs[BPF_REG_0].id = ++env->id_gen; 12624 } 12625 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12626 if (is_kfunc_acquire(&meta)) { 12627 int id = acquire_reference_state(env, insn_idx); 12628 12629 if (id < 0) 12630 return id; 12631 if (is_kfunc_ret_null(&meta)) 12632 regs[BPF_REG_0].id = id; 12633 regs[BPF_REG_0].ref_obj_id = id; 12634 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12635 ref_set_non_owning(env, ®s[BPF_REG_0]); 12636 } 12637 12638 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12639 regs[BPF_REG_0].id = ++env->id_gen; 12640 } else if (btf_type_is_void(t)) { 12641 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12642 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 12643 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 12644 insn_aux->kptr_struct_meta = 12645 btf_find_struct_meta(meta.arg_btf, 12646 meta.arg_btf_id); 12647 } 12648 } 12649 } 12650 12651 nargs = btf_type_vlen(meta.func_proto); 12652 args = (const struct btf_param *)(meta.func_proto + 1); 12653 for (i = 0; i < nargs; i++) { 12654 u32 regno = i + 1; 12655 12656 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12657 if (btf_type_is_ptr(t)) 12658 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12659 else 12660 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12661 mark_btf_func_reg_size(env, regno, t->size); 12662 } 12663 12664 if (is_iter_next_kfunc(&meta)) { 12665 err = process_iter_next_call(env, insn_idx, &meta); 12666 if (err) 12667 return err; 12668 } 12669 12670 return 0; 12671 } 12672 12673 static bool signed_add_overflows(s64 a, s64 b) 12674 { 12675 /* Do the add in u64, where overflow is well-defined */ 12676 s64 res = (s64)((u64)a + (u64)b); 12677 12678 if (b < 0) 12679 return res > a; 12680 return res < a; 12681 } 12682 12683 static bool signed_add32_overflows(s32 a, s32 b) 12684 { 12685 /* Do the add in u32, where overflow is well-defined */ 12686 s32 res = (s32)((u32)a + (u32)b); 12687 12688 if (b < 0) 12689 return res > a; 12690 return res < a; 12691 } 12692 12693 static bool signed_sub_overflows(s64 a, s64 b) 12694 { 12695 /* Do the sub in u64, where overflow is well-defined */ 12696 s64 res = (s64)((u64)a - (u64)b); 12697 12698 if (b < 0) 12699 return res < a; 12700 return res > a; 12701 } 12702 12703 static bool signed_sub32_overflows(s32 a, s32 b) 12704 { 12705 /* Do the sub in u32, where overflow is well-defined */ 12706 s32 res = (s32)((u32)a - (u32)b); 12707 12708 if (b < 0) 12709 return res < a; 12710 return res > a; 12711 } 12712 12713 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12714 const struct bpf_reg_state *reg, 12715 enum bpf_reg_type type) 12716 { 12717 bool known = tnum_is_const(reg->var_off); 12718 s64 val = reg->var_off.value; 12719 s64 smin = reg->smin_value; 12720 12721 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12722 verbose(env, "math between %s pointer and %lld is not allowed\n", 12723 reg_type_str(env, type), val); 12724 return false; 12725 } 12726 12727 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12728 verbose(env, "%s pointer offset %d is not allowed\n", 12729 reg_type_str(env, type), reg->off); 12730 return false; 12731 } 12732 12733 if (smin == S64_MIN) { 12734 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12735 reg_type_str(env, type)); 12736 return false; 12737 } 12738 12739 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12740 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12741 smin, reg_type_str(env, type)); 12742 return false; 12743 } 12744 12745 return true; 12746 } 12747 12748 enum { 12749 REASON_BOUNDS = -1, 12750 REASON_TYPE = -2, 12751 REASON_PATHS = -3, 12752 REASON_LIMIT = -4, 12753 REASON_STACK = -5, 12754 }; 12755 12756 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12757 u32 *alu_limit, bool mask_to_left) 12758 { 12759 u32 max = 0, ptr_limit = 0; 12760 12761 switch (ptr_reg->type) { 12762 case PTR_TO_STACK: 12763 /* Offset 0 is out-of-bounds, but acceptable start for the 12764 * left direction, see BPF_REG_FP. Also, unknown scalar 12765 * offset where we would need to deal with min/max bounds is 12766 * currently prohibited for unprivileged. 12767 */ 12768 max = MAX_BPF_STACK + mask_to_left; 12769 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12770 break; 12771 case PTR_TO_MAP_VALUE: 12772 max = ptr_reg->map_ptr->value_size; 12773 ptr_limit = (mask_to_left ? 12774 ptr_reg->smin_value : 12775 ptr_reg->umax_value) + ptr_reg->off; 12776 break; 12777 default: 12778 return REASON_TYPE; 12779 } 12780 12781 if (ptr_limit >= max) 12782 return REASON_LIMIT; 12783 *alu_limit = ptr_limit; 12784 return 0; 12785 } 12786 12787 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12788 const struct bpf_insn *insn) 12789 { 12790 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12791 } 12792 12793 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12794 u32 alu_state, u32 alu_limit) 12795 { 12796 /* If we arrived here from different branches with different 12797 * state or limits to sanitize, then this won't work. 12798 */ 12799 if (aux->alu_state && 12800 (aux->alu_state != alu_state || 12801 aux->alu_limit != alu_limit)) 12802 return REASON_PATHS; 12803 12804 /* Corresponding fixup done in do_misc_fixups(). */ 12805 aux->alu_state = alu_state; 12806 aux->alu_limit = alu_limit; 12807 return 0; 12808 } 12809 12810 static int sanitize_val_alu(struct bpf_verifier_env *env, 12811 struct bpf_insn *insn) 12812 { 12813 struct bpf_insn_aux_data *aux = cur_aux(env); 12814 12815 if (can_skip_alu_sanitation(env, insn)) 12816 return 0; 12817 12818 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 12819 } 12820 12821 static bool sanitize_needed(u8 opcode) 12822 { 12823 return opcode == BPF_ADD || opcode == BPF_SUB; 12824 } 12825 12826 struct bpf_sanitize_info { 12827 struct bpf_insn_aux_data aux; 12828 bool mask_to_left; 12829 }; 12830 12831 static struct bpf_verifier_state * 12832 sanitize_speculative_path(struct bpf_verifier_env *env, 12833 const struct bpf_insn *insn, 12834 u32 next_idx, u32 curr_idx) 12835 { 12836 struct bpf_verifier_state *branch; 12837 struct bpf_reg_state *regs; 12838 12839 branch = push_stack(env, next_idx, curr_idx, true); 12840 if (branch && insn) { 12841 regs = branch->frame[branch->curframe]->regs; 12842 if (BPF_SRC(insn->code) == BPF_K) { 12843 mark_reg_unknown(env, regs, insn->dst_reg); 12844 } else if (BPF_SRC(insn->code) == BPF_X) { 12845 mark_reg_unknown(env, regs, insn->dst_reg); 12846 mark_reg_unknown(env, regs, insn->src_reg); 12847 } 12848 } 12849 return branch; 12850 } 12851 12852 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 12853 struct bpf_insn *insn, 12854 const struct bpf_reg_state *ptr_reg, 12855 const struct bpf_reg_state *off_reg, 12856 struct bpf_reg_state *dst_reg, 12857 struct bpf_sanitize_info *info, 12858 const bool commit_window) 12859 { 12860 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 12861 struct bpf_verifier_state *vstate = env->cur_state; 12862 bool off_is_imm = tnum_is_const(off_reg->var_off); 12863 bool off_is_neg = off_reg->smin_value < 0; 12864 bool ptr_is_dst_reg = ptr_reg == dst_reg; 12865 u8 opcode = BPF_OP(insn->code); 12866 u32 alu_state, alu_limit; 12867 struct bpf_reg_state tmp; 12868 bool ret; 12869 int err; 12870 12871 if (can_skip_alu_sanitation(env, insn)) 12872 return 0; 12873 12874 /* We already marked aux for masking from non-speculative 12875 * paths, thus we got here in the first place. We only care 12876 * to explore bad access from here. 12877 */ 12878 if (vstate->speculative) 12879 goto do_sim; 12880 12881 if (!commit_window) { 12882 if (!tnum_is_const(off_reg->var_off) && 12883 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 12884 return REASON_BOUNDS; 12885 12886 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 12887 (opcode == BPF_SUB && !off_is_neg); 12888 } 12889 12890 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 12891 if (err < 0) 12892 return err; 12893 12894 if (commit_window) { 12895 /* In commit phase we narrow the masking window based on 12896 * the observed pointer move after the simulated operation. 12897 */ 12898 alu_state = info->aux.alu_state; 12899 alu_limit = abs(info->aux.alu_limit - alu_limit); 12900 } else { 12901 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 12902 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 12903 alu_state |= ptr_is_dst_reg ? 12904 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 12905 12906 /* Limit pruning on unknown scalars to enable deep search for 12907 * potential masking differences from other program paths. 12908 */ 12909 if (!off_is_imm) 12910 env->explore_alu_limits = true; 12911 } 12912 12913 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 12914 if (err < 0) 12915 return err; 12916 do_sim: 12917 /* If we're in commit phase, we're done here given we already 12918 * pushed the truncated dst_reg into the speculative verification 12919 * stack. 12920 * 12921 * Also, when register is a known constant, we rewrite register-based 12922 * operation to immediate-based, and thus do not need masking (and as 12923 * a consequence, do not need to simulate the zero-truncation either). 12924 */ 12925 if (commit_window || off_is_imm) 12926 return 0; 12927 12928 /* Simulate and find potential out-of-bounds access under 12929 * speculative execution from truncation as a result of 12930 * masking when off was not within expected range. If off 12931 * sits in dst, then we temporarily need to move ptr there 12932 * to simulate dst (== 0) +/-= ptr. Needed, for example, 12933 * for cases where we use K-based arithmetic in one direction 12934 * and truncated reg-based in the other in order to explore 12935 * bad access. 12936 */ 12937 if (!ptr_is_dst_reg) { 12938 tmp = *dst_reg; 12939 copy_register_state(dst_reg, ptr_reg); 12940 } 12941 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 12942 env->insn_idx); 12943 if (!ptr_is_dst_reg && ret) 12944 *dst_reg = tmp; 12945 return !ret ? REASON_STACK : 0; 12946 } 12947 12948 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 12949 { 12950 struct bpf_verifier_state *vstate = env->cur_state; 12951 12952 /* If we simulate paths under speculation, we don't update the 12953 * insn as 'seen' such that when we verify unreachable paths in 12954 * the non-speculative domain, sanitize_dead_code() can still 12955 * rewrite/sanitize them. 12956 */ 12957 if (!vstate->speculative) 12958 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 12959 } 12960 12961 static int sanitize_err(struct bpf_verifier_env *env, 12962 const struct bpf_insn *insn, int reason, 12963 const struct bpf_reg_state *off_reg, 12964 const struct bpf_reg_state *dst_reg) 12965 { 12966 static const char *err = "pointer arithmetic with it prohibited for !root"; 12967 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 12968 u32 dst = insn->dst_reg, src = insn->src_reg; 12969 12970 switch (reason) { 12971 case REASON_BOUNDS: 12972 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 12973 off_reg == dst_reg ? dst : src, err); 12974 break; 12975 case REASON_TYPE: 12976 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 12977 off_reg == dst_reg ? src : dst, err); 12978 break; 12979 case REASON_PATHS: 12980 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 12981 dst, op, err); 12982 break; 12983 case REASON_LIMIT: 12984 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 12985 dst, op, err); 12986 break; 12987 case REASON_STACK: 12988 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 12989 dst, err); 12990 break; 12991 default: 12992 verbose(env, "verifier internal error: unknown reason (%d)\n", 12993 reason); 12994 break; 12995 } 12996 12997 return -EACCES; 12998 } 12999 13000 /* check that stack access falls within stack limits and that 'reg' doesn't 13001 * have a variable offset. 13002 * 13003 * Variable offset is prohibited for unprivileged mode for simplicity since it 13004 * requires corresponding support in Spectre masking for stack ALU. See also 13005 * retrieve_ptr_limit(). 13006 * 13007 * 13008 * 'off' includes 'reg->off'. 13009 */ 13010 static int check_stack_access_for_ptr_arithmetic( 13011 struct bpf_verifier_env *env, 13012 int regno, 13013 const struct bpf_reg_state *reg, 13014 int off) 13015 { 13016 if (!tnum_is_const(reg->var_off)) { 13017 char tn_buf[48]; 13018 13019 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 13020 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 13021 regno, tn_buf, off); 13022 return -EACCES; 13023 } 13024 13025 if (off >= 0 || off < -MAX_BPF_STACK) { 13026 verbose(env, "R%d stack pointer arithmetic goes out of range, " 13027 "prohibited for !root; off=%d\n", regno, off); 13028 return -EACCES; 13029 } 13030 13031 return 0; 13032 } 13033 13034 static int sanitize_check_bounds(struct bpf_verifier_env *env, 13035 const struct bpf_insn *insn, 13036 const struct bpf_reg_state *dst_reg) 13037 { 13038 u32 dst = insn->dst_reg; 13039 13040 /* For unprivileged we require that resulting offset must be in bounds 13041 * in order to be able to sanitize access later on. 13042 */ 13043 if (env->bypass_spec_v1) 13044 return 0; 13045 13046 switch (dst_reg->type) { 13047 case PTR_TO_STACK: 13048 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 13049 dst_reg->off + dst_reg->var_off.value)) 13050 return -EACCES; 13051 break; 13052 case PTR_TO_MAP_VALUE: 13053 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 13054 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 13055 "prohibited for !root\n", dst); 13056 return -EACCES; 13057 } 13058 break; 13059 default: 13060 break; 13061 } 13062 13063 return 0; 13064 } 13065 13066 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 13067 * Caller should also handle BPF_MOV case separately. 13068 * If we return -EACCES, caller may want to try again treating pointer as a 13069 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 13070 */ 13071 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 13072 struct bpf_insn *insn, 13073 const struct bpf_reg_state *ptr_reg, 13074 const struct bpf_reg_state *off_reg) 13075 { 13076 struct bpf_verifier_state *vstate = env->cur_state; 13077 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13078 struct bpf_reg_state *regs = state->regs, *dst_reg; 13079 bool known = tnum_is_const(off_reg->var_off); 13080 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 13081 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 13082 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 13083 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 13084 struct bpf_sanitize_info info = {}; 13085 u8 opcode = BPF_OP(insn->code); 13086 u32 dst = insn->dst_reg; 13087 int ret; 13088 13089 dst_reg = ®s[dst]; 13090 13091 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 13092 smin_val > smax_val || umin_val > umax_val) { 13093 /* Taint dst register if offset had invalid bounds derived from 13094 * e.g. dead branches. 13095 */ 13096 __mark_reg_unknown(env, dst_reg); 13097 return 0; 13098 } 13099 13100 if (BPF_CLASS(insn->code) != BPF_ALU64) { 13101 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 13102 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13103 __mark_reg_unknown(env, dst_reg); 13104 return 0; 13105 } 13106 13107 verbose(env, 13108 "R%d 32-bit pointer arithmetic prohibited\n", 13109 dst); 13110 return -EACCES; 13111 } 13112 13113 if (ptr_reg->type & PTR_MAYBE_NULL) { 13114 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 13115 dst, reg_type_str(env, ptr_reg->type)); 13116 return -EACCES; 13117 } 13118 13119 switch (base_type(ptr_reg->type)) { 13120 case PTR_TO_CTX: 13121 case PTR_TO_MAP_VALUE: 13122 case PTR_TO_MAP_KEY: 13123 case PTR_TO_STACK: 13124 case PTR_TO_PACKET_META: 13125 case PTR_TO_PACKET: 13126 case PTR_TO_TP_BUFFER: 13127 case PTR_TO_BTF_ID: 13128 case PTR_TO_MEM: 13129 case PTR_TO_BUF: 13130 case PTR_TO_FUNC: 13131 case CONST_PTR_TO_DYNPTR: 13132 break; 13133 case PTR_TO_FLOW_KEYS: 13134 if (known) 13135 break; 13136 fallthrough; 13137 case CONST_PTR_TO_MAP: 13138 /* smin_val represents the known value */ 13139 if (known && smin_val == 0 && opcode == BPF_ADD) 13140 break; 13141 fallthrough; 13142 default: 13143 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 13144 dst, reg_type_str(env, ptr_reg->type)); 13145 return -EACCES; 13146 } 13147 13148 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 13149 * The id may be overwritten later if we create a new variable offset. 13150 */ 13151 dst_reg->type = ptr_reg->type; 13152 dst_reg->id = ptr_reg->id; 13153 13154 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 13155 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 13156 return -EINVAL; 13157 13158 /* pointer types do not carry 32-bit bounds at the moment. */ 13159 __mark_reg32_unbounded(dst_reg); 13160 13161 if (sanitize_needed(opcode)) { 13162 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 13163 &info, false); 13164 if (ret < 0) 13165 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13166 } 13167 13168 switch (opcode) { 13169 case BPF_ADD: 13170 /* We can take a fixed offset as long as it doesn't overflow 13171 * the s32 'off' field 13172 */ 13173 if (known && (ptr_reg->off + smin_val == 13174 (s64)(s32)(ptr_reg->off + smin_val))) { 13175 /* pointer += K. Accumulate it into fixed offset */ 13176 dst_reg->smin_value = smin_ptr; 13177 dst_reg->smax_value = smax_ptr; 13178 dst_reg->umin_value = umin_ptr; 13179 dst_reg->umax_value = umax_ptr; 13180 dst_reg->var_off = ptr_reg->var_off; 13181 dst_reg->off = ptr_reg->off + smin_val; 13182 dst_reg->raw = ptr_reg->raw; 13183 break; 13184 } 13185 /* A new variable offset is created. Note that off_reg->off 13186 * == 0, since it's a scalar. 13187 * dst_reg gets the pointer type and since some positive 13188 * integer value was added to the pointer, give it a new 'id' 13189 * if it's a PTR_TO_PACKET. 13190 * this creates a new 'base' pointer, off_reg (variable) gets 13191 * added into the variable offset, and we copy the fixed offset 13192 * from ptr_reg. 13193 */ 13194 if (signed_add_overflows(smin_ptr, smin_val) || 13195 signed_add_overflows(smax_ptr, smax_val)) { 13196 dst_reg->smin_value = S64_MIN; 13197 dst_reg->smax_value = S64_MAX; 13198 } else { 13199 dst_reg->smin_value = smin_ptr + smin_val; 13200 dst_reg->smax_value = smax_ptr + smax_val; 13201 } 13202 if (umin_ptr + umin_val < umin_ptr || 13203 umax_ptr + umax_val < umax_ptr) { 13204 dst_reg->umin_value = 0; 13205 dst_reg->umax_value = U64_MAX; 13206 } else { 13207 dst_reg->umin_value = umin_ptr + umin_val; 13208 dst_reg->umax_value = umax_ptr + umax_val; 13209 } 13210 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 13211 dst_reg->off = ptr_reg->off; 13212 dst_reg->raw = ptr_reg->raw; 13213 if (reg_is_pkt_pointer(ptr_reg)) { 13214 dst_reg->id = ++env->id_gen; 13215 /* something was added to pkt_ptr, set range to zero */ 13216 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13217 } 13218 break; 13219 case BPF_SUB: 13220 if (dst_reg == off_reg) { 13221 /* scalar -= pointer. Creates an unknown scalar */ 13222 verbose(env, "R%d tried to subtract pointer from scalar\n", 13223 dst); 13224 return -EACCES; 13225 } 13226 /* We don't allow subtraction from FP, because (according to 13227 * test_verifier.c test "invalid fp arithmetic", JITs might not 13228 * be able to deal with it. 13229 */ 13230 if (ptr_reg->type == PTR_TO_STACK) { 13231 verbose(env, "R%d subtraction from stack pointer prohibited\n", 13232 dst); 13233 return -EACCES; 13234 } 13235 if (known && (ptr_reg->off - smin_val == 13236 (s64)(s32)(ptr_reg->off - smin_val))) { 13237 /* pointer -= K. Subtract it from fixed offset */ 13238 dst_reg->smin_value = smin_ptr; 13239 dst_reg->smax_value = smax_ptr; 13240 dst_reg->umin_value = umin_ptr; 13241 dst_reg->umax_value = umax_ptr; 13242 dst_reg->var_off = ptr_reg->var_off; 13243 dst_reg->id = ptr_reg->id; 13244 dst_reg->off = ptr_reg->off - smin_val; 13245 dst_reg->raw = ptr_reg->raw; 13246 break; 13247 } 13248 /* A new variable offset is created. If the subtrahend is known 13249 * nonnegative, then any reg->range we had before is still good. 13250 */ 13251 if (signed_sub_overflows(smin_ptr, smax_val) || 13252 signed_sub_overflows(smax_ptr, smin_val)) { 13253 /* Overflow possible, we know nothing */ 13254 dst_reg->smin_value = S64_MIN; 13255 dst_reg->smax_value = S64_MAX; 13256 } else { 13257 dst_reg->smin_value = smin_ptr - smax_val; 13258 dst_reg->smax_value = smax_ptr - smin_val; 13259 } 13260 if (umin_ptr < umax_val) { 13261 /* Overflow possible, we know nothing */ 13262 dst_reg->umin_value = 0; 13263 dst_reg->umax_value = U64_MAX; 13264 } else { 13265 /* Cannot overflow (as long as bounds are consistent) */ 13266 dst_reg->umin_value = umin_ptr - umax_val; 13267 dst_reg->umax_value = umax_ptr - umin_val; 13268 } 13269 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 13270 dst_reg->off = ptr_reg->off; 13271 dst_reg->raw = ptr_reg->raw; 13272 if (reg_is_pkt_pointer(ptr_reg)) { 13273 dst_reg->id = ++env->id_gen; 13274 /* something was added to pkt_ptr, set range to zero */ 13275 if (smin_val < 0) 13276 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13277 } 13278 break; 13279 case BPF_AND: 13280 case BPF_OR: 13281 case BPF_XOR: 13282 /* bitwise ops on pointers are troublesome, prohibit. */ 13283 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 13284 dst, bpf_alu_string[opcode >> 4]); 13285 return -EACCES; 13286 default: 13287 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 13288 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 13289 dst, bpf_alu_string[opcode >> 4]); 13290 return -EACCES; 13291 } 13292 13293 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 13294 return -EINVAL; 13295 reg_bounds_sync(dst_reg); 13296 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 13297 return -EACCES; 13298 if (sanitize_needed(opcode)) { 13299 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 13300 &info, true); 13301 if (ret < 0) 13302 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13303 } 13304 13305 return 0; 13306 } 13307 13308 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 13309 struct bpf_reg_state *src_reg) 13310 { 13311 s32 smin_val = src_reg->s32_min_value; 13312 s32 smax_val = src_reg->s32_max_value; 13313 u32 umin_val = src_reg->u32_min_value; 13314 u32 umax_val = src_reg->u32_max_value; 13315 13316 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 13317 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 13318 dst_reg->s32_min_value = S32_MIN; 13319 dst_reg->s32_max_value = S32_MAX; 13320 } else { 13321 dst_reg->s32_min_value += smin_val; 13322 dst_reg->s32_max_value += smax_val; 13323 } 13324 if (dst_reg->u32_min_value + umin_val < umin_val || 13325 dst_reg->u32_max_value + umax_val < umax_val) { 13326 dst_reg->u32_min_value = 0; 13327 dst_reg->u32_max_value = U32_MAX; 13328 } else { 13329 dst_reg->u32_min_value += umin_val; 13330 dst_reg->u32_max_value += umax_val; 13331 } 13332 } 13333 13334 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 13335 struct bpf_reg_state *src_reg) 13336 { 13337 s64 smin_val = src_reg->smin_value; 13338 s64 smax_val = src_reg->smax_value; 13339 u64 umin_val = src_reg->umin_value; 13340 u64 umax_val = src_reg->umax_value; 13341 13342 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 13343 signed_add_overflows(dst_reg->smax_value, smax_val)) { 13344 dst_reg->smin_value = S64_MIN; 13345 dst_reg->smax_value = S64_MAX; 13346 } else { 13347 dst_reg->smin_value += smin_val; 13348 dst_reg->smax_value += smax_val; 13349 } 13350 if (dst_reg->umin_value + umin_val < umin_val || 13351 dst_reg->umax_value + umax_val < umax_val) { 13352 dst_reg->umin_value = 0; 13353 dst_reg->umax_value = U64_MAX; 13354 } else { 13355 dst_reg->umin_value += umin_val; 13356 dst_reg->umax_value += umax_val; 13357 } 13358 } 13359 13360 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 13361 struct bpf_reg_state *src_reg) 13362 { 13363 s32 smin_val = src_reg->s32_min_value; 13364 s32 smax_val = src_reg->s32_max_value; 13365 u32 umin_val = src_reg->u32_min_value; 13366 u32 umax_val = src_reg->u32_max_value; 13367 13368 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 13369 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 13370 /* Overflow possible, we know nothing */ 13371 dst_reg->s32_min_value = S32_MIN; 13372 dst_reg->s32_max_value = S32_MAX; 13373 } else { 13374 dst_reg->s32_min_value -= smax_val; 13375 dst_reg->s32_max_value -= smin_val; 13376 } 13377 if (dst_reg->u32_min_value < umax_val) { 13378 /* Overflow possible, we know nothing */ 13379 dst_reg->u32_min_value = 0; 13380 dst_reg->u32_max_value = U32_MAX; 13381 } else { 13382 /* Cannot overflow (as long as bounds are consistent) */ 13383 dst_reg->u32_min_value -= umax_val; 13384 dst_reg->u32_max_value -= umin_val; 13385 } 13386 } 13387 13388 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 13389 struct bpf_reg_state *src_reg) 13390 { 13391 s64 smin_val = src_reg->smin_value; 13392 s64 smax_val = src_reg->smax_value; 13393 u64 umin_val = src_reg->umin_value; 13394 u64 umax_val = src_reg->umax_value; 13395 13396 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 13397 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 13398 /* Overflow possible, we know nothing */ 13399 dst_reg->smin_value = S64_MIN; 13400 dst_reg->smax_value = S64_MAX; 13401 } else { 13402 dst_reg->smin_value -= smax_val; 13403 dst_reg->smax_value -= smin_val; 13404 } 13405 if (dst_reg->umin_value < umax_val) { 13406 /* Overflow possible, we know nothing */ 13407 dst_reg->umin_value = 0; 13408 dst_reg->umax_value = U64_MAX; 13409 } else { 13410 /* Cannot overflow (as long as bounds are consistent) */ 13411 dst_reg->umin_value -= umax_val; 13412 dst_reg->umax_value -= umin_val; 13413 } 13414 } 13415 13416 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 13417 struct bpf_reg_state *src_reg) 13418 { 13419 s32 smin_val = src_reg->s32_min_value; 13420 u32 umin_val = src_reg->u32_min_value; 13421 u32 umax_val = src_reg->u32_max_value; 13422 13423 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 13424 /* Ain't nobody got time to multiply that sign */ 13425 __mark_reg32_unbounded(dst_reg); 13426 return; 13427 } 13428 /* Both values are positive, so we can work with unsigned and 13429 * copy the result to signed (unless it exceeds S32_MAX). 13430 */ 13431 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 13432 /* Potential overflow, we know nothing */ 13433 __mark_reg32_unbounded(dst_reg); 13434 return; 13435 } 13436 dst_reg->u32_min_value *= umin_val; 13437 dst_reg->u32_max_value *= umax_val; 13438 if (dst_reg->u32_max_value > S32_MAX) { 13439 /* Overflow possible, we know nothing */ 13440 dst_reg->s32_min_value = S32_MIN; 13441 dst_reg->s32_max_value = S32_MAX; 13442 } else { 13443 dst_reg->s32_min_value = dst_reg->u32_min_value; 13444 dst_reg->s32_max_value = dst_reg->u32_max_value; 13445 } 13446 } 13447 13448 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 13449 struct bpf_reg_state *src_reg) 13450 { 13451 s64 smin_val = src_reg->smin_value; 13452 u64 umin_val = src_reg->umin_value; 13453 u64 umax_val = src_reg->umax_value; 13454 13455 if (smin_val < 0 || dst_reg->smin_value < 0) { 13456 /* Ain't nobody got time to multiply that sign */ 13457 __mark_reg64_unbounded(dst_reg); 13458 return; 13459 } 13460 /* Both values are positive, so we can work with unsigned and 13461 * copy the result to signed (unless it exceeds S64_MAX). 13462 */ 13463 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 13464 /* Potential overflow, we know nothing */ 13465 __mark_reg64_unbounded(dst_reg); 13466 return; 13467 } 13468 dst_reg->umin_value *= umin_val; 13469 dst_reg->umax_value *= umax_val; 13470 if (dst_reg->umax_value > S64_MAX) { 13471 /* Overflow possible, we know nothing */ 13472 dst_reg->smin_value = S64_MIN; 13473 dst_reg->smax_value = S64_MAX; 13474 } else { 13475 dst_reg->smin_value = dst_reg->umin_value; 13476 dst_reg->smax_value = dst_reg->umax_value; 13477 } 13478 } 13479 13480 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 13481 struct bpf_reg_state *src_reg) 13482 { 13483 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13484 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13485 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13486 u32 umax_val = src_reg->u32_max_value; 13487 13488 if (src_known && dst_known) { 13489 __mark_reg32_known(dst_reg, var32_off.value); 13490 return; 13491 } 13492 13493 /* We get our minimum from the var_off, since that's inherently 13494 * bitwise. Our maximum is the minimum of the operands' maxima. 13495 */ 13496 dst_reg->u32_min_value = var32_off.value; 13497 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 13498 13499 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13500 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13501 */ 13502 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13503 dst_reg->s32_min_value = dst_reg->u32_min_value; 13504 dst_reg->s32_max_value = dst_reg->u32_max_value; 13505 } else { 13506 dst_reg->s32_min_value = S32_MIN; 13507 dst_reg->s32_max_value = S32_MAX; 13508 } 13509 } 13510 13511 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 13512 struct bpf_reg_state *src_reg) 13513 { 13514 bool src_known = tnum_is_const(src_reg->var_off); 13515 bool dst_known = tnum_is_const(dst_reg->var_off); 13516 u64 umax_val = src_reg->umax_value; 13517 13518 if (src_known && dst_known) { 13519 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13520 return; 13521 } 13522 13523 /* We get our minimum from the var_off, since that's inherently 13524 * bitwise. Our maximum is the minimum of the operands' maxima. 13525 */ 13526 dst_reg->umin_value = dst_reg->var_off.value; 13527 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 13528 13529 /* Safe to set s64 bounds by casting u64 result into s64 when u64 13530 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 13531 */ 13532 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 13533 dst_reg->smin_value = dst_reg->umin_value; 13534 dst_reg->smax_value = dst_reg->umax_value; 13535 } else { 13536 dst_reg->smin_value = S64_MIN; 13537 dst_reg->smax_value = S64_MAX; 13538 } 13539 /* We may learn something more from the var_off */ 13540 __update_reg_bounds(dst_reg); 13541 } 13542 13543 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 13544 struct bpf_reg_state *src_reg) 13545 { 13546 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13547 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13548 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13549 u32 umin_val = src_reg->u32_min_value; 13550 13551 if (src_known && dst_known) { 13552 __mark_reg32_known(dst_reg, var32_off.value); 13553 return; 13554 } 13555 13556 /* We get our maximum from the var_off, and our minimum is the 13557 * maximum of the operands' minima 13558 */ 13559 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 13560 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13561 13562 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13563 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13564 */ 13565 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13566 dst_reg->s32_min_value = dst_reg->u32_min_value; 13567 dst_reg->s32_max_value = dst_reg->u32_max_value; 13568 } else { 13569 dst_reg->s32_min_value = S32_MIN; 13570 dst_reg->s32_max_value = S32_MAX; 13571 } 13572 } 13573 13574 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 13575 struct bpf_reg_state *src_reg) 13576 { 13577 bool src_known = tnum_is_const(src_reg->var_off); 13578 bool dst_known = tnum_is_const(dst_reg->var_off); 13579 u64 umin_val = src_reg->umin_value; 13580 13581 if (src_known && dst_known) { 13582 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13583 return; 13584 } 13585 13586 /* We get our maximum from the var_off, and our minimum is the 13587 * maximum of the operands' minima 13588 */ 13589 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 13590 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13591 13592 /* Safe to set s64 bounds by casting u64 result into s64 when u64 13593 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 13594 */ 13595 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 13596 dst_reg->smin_value = dst_reg->umin_value; 13597 dst_reg->smax_value = dst_reg->umax_value; 13598 } else { 13599 dst_reg->smin_value = S64_MIN; 13600 dst_reg->smax_value = S64_MAX; 13601 } 13602 /* We may learn something more from the var_off */ 13603 __update_reg_bounds(dst_reg); 13604 } 13605 13606 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 13607 struct bpf_reg_state *src_reg) 13608 { 13609 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13610 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13611 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13612 13613 if (src_known && dst_known) { 13614 __mark_reg32_known(dst_reg, var32_off.value); 13615 return; 13616 } 13617 13618 /* We get both minimum and maximum from the var32_off. */ 13619 dst_reg->u32_min_value = var32_off.value; 13620 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13621 13622 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13623 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13624 */ 13625 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13626 dst_reg->s32_min_value = dst_reg->u32_min_value; 13627 dst_reg->s32_max_value = dst_reg->u32_max_value; 13628 } else { 13629 dst_reg->s32_min_value = S32_MIN; 13630 dst_reg->s32_max_value = S32_MAX; 13631 } 13632 } 13633 13634 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13635 struct bpf_reg_state *src_reg) 13636 { 13637 bool src_known = tnum_is_const(src_reg->var_off); 13638 bool dst_known = tnum_is_const(dst_reg->var_off); 13639 13640 if (src_known && dst_known) { 13641 /* dst_reg->var_off.value has been updated earlier */ 13642 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13643 return; 13644 } 13645 13646 /* We get both minimum and maximum from the var_off. */ 13647 dst_reg->umin_value = dst_reg->var_off.value; 13648 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13649 13650 /* Safe to set s64 bounds by casting u64 result into s64 when u64 13651 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 13652 */ 13653 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 13654 dst_reg->smin_value = dst_reg->umin_value; 13655 dst_reg->smax_value = dst_reg->umax_value; 13656 } else { 13657 dst_reg->smin_value = S64_MIN; 13658 dst_reg->smax_value = S64_MAX; 13659 } 13660 13661 __update_reg_bounds(dst_reg); 13662 } 13663 13664 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13665 u64 umin_val, u64 umax_val) 13666 { 13667 /* We lose all sign bit information (except what we can pick 13668 * up from var_off) 13669 */ 13670 dst_reg->s32_min_value = S32_MIN; 13671 dst_reg->s32_max_value = S32_MAX; 13672 /* If we might shift our top bit out, then we know nothing */ 13673 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13674 dst_reg->u32_min_value = 0; 13675 dst_reg->u32_max_value = U32_MAX; 13676 } else { 13677 dst_reg->u32_min_value <<= umin_val; 13678 dst_reg->u32_max_value <<= umax_val; 13679 } 13680 } 13681 13682 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13683 struct bpf_reg_state *src_reg) 13684 { 13685 u32 umax_val = src_reg->u32_max_value; 13686 u32 umin_val = src_reg->u32_min_value; 13687 /* u32 alu operation will zext upper bits */ 13688 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13689 13690 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13691 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13692 /* Not required but being careful mark reg64 bounds as unknown so 13693 * that we are forced to pick them up from tnum and zext later and 13694 * if some path skips this step we are still safe. 13695 */ 13696 __mark_reg64_unbounded(dst_reg); 13697 __update_reg32_bounds(dst_reg); 13698 } 13699 13700 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13701 u64 umin_val, u64 umax_val) 13702 { 13703 /* Special case <<32 because it is a common compiler pattern to sign 13704 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13705 * positive we know this shift will also be positive so we can track 13706 * bounds correctly. Otherwise we lose all sign bit information except 13707 * what we can pick up from var_off. Perhaps we can generalize this 13708 * later to shifts of any length. 13709 */ 13710 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13711 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13712 else 13713 dst_reg->smax_value = S64_MAX; 13714 13715 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13716 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13717 else 13718 dst_reg->smin_value = S64_MIN; 13719 13720 /* If we might shift our top bit out, then we know nothing */ 13721 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13722 dst_reg->umin_value = 0; 13723 dst_reg->umax_value = U64_MAX; 13724 } else { 13725 dst_reg->umin_value <<= umin_val; 13726 dst_reg->umax_value <<= umax_val; 13727 } 13728 } 13729 13730 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13731 struct bpf_reg_state *src_reg) 13732 { 13733 u64 umax_val = src_reg->umax_value; 13734 u64 umin_val = src_reg->umin_value; 13735 13736 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13737 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13738 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13739 13740 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13741 /* We may learn something more from the var_off */ 13742 __update_reg_bounds(dst_reg); 13743 } 13744 13745 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13746 struct bpf_reg_state *src_reg) 13747 { 13748 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13749 u32 umax_val = src_reg->u32_max_value; 13750 u32 umin_val = src_reg->u32_min_value; 13751 13752 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13753 * be negative, then either: 13754 * 1) src_reg might be zero, so the sign bit of the result is 13755 * unknown, so we lose our signed bounds 13756 * 2) it's known negative, thus the unsigned bounds capture the 13757 * signed bounds 13758 * 3) the signed bounds cross zero, so they tell us nothing 13759 * about the result 13760 * If the value in dst_reg is known nonnegative, then again the 13761 * unsigned bounds capture the signed bounds. 13762 * Thus, in all cases it suffices to blow away our signed bounds 13763 * and rely on inferring new ones from the unsigned bounds and 13764 * var_off of the result. 13765 */ 13766 dst_reg->s32_min_value = S32_MIN; 13767 dst_reg->s32_max_value = S32_MAX; 13768 13769 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13770 dst_reg->u32_min_value >>= umax_val; 13771 dst_reg->u32_max_value >>= umin_val; 13772 13773 __mark_reg64_unbounded(dst_reg); 13774 __update_reg32_bounds(dst_reg); 13775 } 13776 13777 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13778 struct bpf_reg_state *src_reg) 13779 { 13780 u64 umax_val = src_reg->umax_value; 13781 u64 umin_val = src_reg->umin_value; 13782 13783 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13784 * be negative, then either: 13785 * 1) src_reg might be zero, so the sign bit of the result is 13786 * unknown, so we lose our signed bounds 13787 * 2) it's known negative, thus the unsigned bounds capture the 13788 * signed bounds 13789 * 3) the signed bounds cross zero, so they tell us nothing 13790 * about the result 13791 * If the value in dst_reg is known nonnegative, then again the 13792 * unsigned bounds capture the signed bounds. 13793 * Thus, in all cases it suffices to blow away our signed bounds 13794 * and rely on inferring new ones from the unsigned bounds and 13795 * var_off of the result. 13796 */ 13797 dst_reg->smin_value = S64_MIN; 13798 dst_reg->smax_value = S64_MAX; 13799 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13800 dst_reg->umin_value >>= umax_val; 13801 dst_reg->umax_value >>= umin_val; 13802 13803 /* Its not easy to operate on alu32 bounds here because it depends 13804 * on bits being shifted in. Take easy way out and mark unbounded 13805 * so we can recalculate later from tnum. 13806 */ 13807 __mark_reg32_unbounded(dst_reg); 13808 __update_reg_bounds(dst_reg); 13809 } 13810 13811 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13812 struct bpf_reg_state *src_reg) 13813 { 13814 u64 umin_val = src_reg->u32_min_value; 13815 13816 /* Upon reaching here, src_known is true and 13817 * umax_val is equal to umin_val. 13818 */ 13819 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13820 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13821 13822 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13823 13824 /* blow away the dst_reg umin_value/umax_value and rely on 13825 * dst_reg var_off to refine the result. 13826 */ 13827 dst_reg->u32_min_value = 0; 13828 dst_reg->u32_max_value = U32_MAX; 13829 13830 __mark_reg64_unbounded(dst_reg); 13831 __update_reg32_bounds(dst_reg); 13832 } 13833 13834 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 13835 struct bpf_reg_state *src_reg) 13836 { 13837 u64 umin_val = src_reg->umin_value; 13838 13839 /* Upon reaching here, src_known is true and umax_val is equal 13840 * to umin_val. 13841 */ 13842 dst_reg->smin_value >>= umin_val; 13843 dst_reg->smax_value >>= umin_val; 13844 13845 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 13846 13847 /* blow away the dst_reg umin_value/umax_value and rely on 13848 * dst_reg var_off to refine the result. 13849 */ 13850 dst_reg->umin_value = 0; 13851 dst_reg->umax_value = U64_MAX; 13852 13853 /* Its not easy to operate on alu32 bounds here because it depends 13854 * on bits being shifted in from upper 32-bits. Take easy way out 13855 * and mark unbounded so we can recalculate later from tnum. 13856 */ 13857 __mark_reg32_unbounded(dst_reg); 13858 __update_reg_bounds(dst_reg); 13859 } 13860 13861 /* WARNING: This function does calculations on 64-bit values, but the actual 13862 * execution may occur on 32-bit values. Therefore, things like bitshifts 13863 * need extra checks in the 32-bit case. 13864 */ 13865 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 13866 struct bpf_insn *insn, 13867 struct bpf_reg_state *dst_reg, 13868 struct bpf_reg_state src_reg) 13869 { 13870 struct bpf_reg_state *regs = cur_regs(env); 13871 u8 opcode = BPF_OP(insn->code); 13872 bool src_known; 13873 s64 smin_val, smax_val; 13874 u64 umin_val, umax_val; 13875 s32 s32_min_val, s32_max_val; 13876 u32 u32_min_val, u32_max_val; 13877 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 13878 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 13879 int ret; 13880 13881 smin_val = src_reg.smin_value; 13882 smax_val = src_reg.smax_value; 13883 umin_val = src_reg.umin_value; 13884 umax_val = src_reg.umax_value; 13885 13886 s32_min_val = src_reg.s32_min_value; 13887 s32_max_val = src_reg.s32_max_value; 13888 u32_min_val = src_reg.u32_min_value; 13889 u32_max_val = src_reg.u32_max_value; 13890 13891 if (alu32) { 13892 src_known = tnum_subreg_is_const(src_reg.var_off); 13893 if ((src_known && 13894 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 13895 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 13896 /* Taint dst register if offset had invalid bounds 13897 * derived from e.g. dead branches. 13898 */ 13899 __mark_reg_unknown(env, dst_reg); 13900 return 0; 13901 } 13902 } else { 13903 src_known = tnum_is_const(src_reg.var_off); 13904 if ((src_known && 13905 (smin_val != smax_val || umin_val != umax_val)) || 13906 smin_val > smax_val || umin_val > umax_val) { 13907 /* Taint dst register if offset had invalid bounds 13908 * derived from e.g. dead branches. 13909 */ 13910 __mark_reg_unknown(env, dst_reg); 13911 return 0; 13912 } 13913 } 13914 13915 if (!src_known && 13916 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 13917 __mark_reg_unknown(env, dst_reg); 13918 return 0; 13919 } 13920 13921 if (sanitize_needed(opcode)) { 13922 ret = sanitize_val_alu(env, insn); 13923 if (ret < 0) 13924 return sanitize_err(env, insn, ret, NULL, NULL); 13925 } 13926 13927 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 13928 * There are two classes of instructions: The first class we track both 13929 * alu32 and alu64 sign/unsigned bounds independently this provides the 13930 * greatest amount of precision when alu operations are mixed with jmp32 13931 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 13932 * and BPF_OR. This is possible because these ops have fairly easy to 13933 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 13934 * See alu32 verifier tests for examples. The second class of 13935 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 13936 * with regards to tracking sign/unsigned bounds because the bits may 13937 * cross subreg boundaries in the alu64 case. When this happens we mark 13938 * the reg unbounded in the subreg bound space and use the resulting 13939 * tnum to calculate an approximation of the sign/unsigned bounds. 13940 */ 13941 switch (opcode) { 13942 case BPF_ADD: 13943 scalar32_min_max_add(dst_reg, &src_reg); 13944 scalar_min_max_add(dst_reg, &src_reg); 13945 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 13946 break; 13947 case BPF_SUB: 13948 scalar32_min_max_sub(dst_reg, &src_reg); 13949 scalar_min_max_sub(dst_reg, &src_reg); 13950 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 13951 break; 13952 case BPF_MUL: 13953 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 13954 scalar32_min_max_mul(dst_reg, &src_reg); 13955 scalar_min_max_mul(dst_reg, &src_reg); 13956 break; 13957 case BPF_AND: 13958 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 13959 scalar32_min_max_and(dst_reg, &src_reg); 13960 scalar_min_max_and(dst_reg, &src_reg); 13961 break; 13962 case BPF_OR: 13963 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 13964 scalar32_min_max_or(dst_reg, &src_reg); 13965 scalar_min_max_or(dst_reg, &src_reg); 13966 break; 13967 case BPF_XOR: 13968 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 13969 scalar32_min_max_xor(dst_reg, &src_reg); 13970 scalar_min_max_xor(dst_reg, &src_reg); 13971 break; 13972 case BPF_LSH: 13973 if (umax_val >= insn_bitness) { 13974 /* Shifts greater than 31 or 63 are undefined. 13975 * This includes shifts by a negative number. 13976 */ 13977 mark_reg_unknown(env, regs, insn->dst_reg); 13978 break; 13979 } 13980 if (alu32) 13981 scalar32_min_max_lsh(dst_reg, &src_reg); 13982 else 13983 scalar_min_max_lsh(dst_reg, &src_reg); 13984 break; 13985 case BPF_RSH: 13986 if (umax_val >= insn_bitness) { 13987 /* Shifts greater than 31 or 63 are undefined. 13988 * This includes shifts by a negative number. 13989 */ 13990 mark_reg_unknown(env, regs, insn->dst_reg); 13991 break; 13992 } 13993 if (alu32) 13994 scalar32_min_max_rsh(dst_reg, &src_reg); 13995 else 13996 scalar_min_max_rsh(dst_reg, &src_reg); 13997 break; 13998 case BPF_ARSH: 13999 if (umax_val >= insn_bitness) { 14000 /* Shifts greater than 31 or 63 are undefined. 14001 * This includes shifts by a negative number. 14002 */ 14003 mark_reg_unknown(env, regs, insn->dst_reg); 14004 break; 14005 } 14006 if (alu32) 14007 scalar32_min_max_arsh(dst_reg, &src_reg); 14008 else 14009 scalar_min_max_arsh(dst_reg, &src_reg); 14010 break; 14011 default: 14012 mark_reg_unknown(env, regs, insn->dst_reg); 14013 break; 14014 } 14015 14016 /* ALU32 ops are zero extended into 64bit register */ 14017 if (alu32) 14018 zext_32_to_64(dst_reg); 14019 reg_bounds_sync(dst_reg); 14020 return 0; 14021 } 14022 14023 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 14024 * and var_off. 14025 */ 14026 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 14027 struct bpf_insn *insn) 14028 { 14029 struct bpf_verifier_state *vstate = env->cur_state; 14030 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14031 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 14032 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 14033 u8 opcode = BPF_OP(insn->code); 14034 int err; 14035 14036 dst_reg = ®s[insn->dst_reg]; 14037 src_reg = NULL; 14038 14039 if (dst_reg->type == PTR_TO_ARENA) { 14040 struct bpf_insn_aux_data *aux = cur_aux(env); 14041 14042 if (BPF_CLASS(insn->code) == BPF_ALU64) 14043 /* 14044 * 32-bit operations zero upper bits automatically. 14045 * 64-bit operations need to be converted to 32. 14046 */ 14047 aux->needs_zext = true; 14048 14049 /* Any arithmetic operations are allowed on arena pointers */ 14050 return 0; 14051 } 14052 14053 if (dst_reg->type != SCALAR_VALUE) 14054 ptr_reg = dst_reg; 14055 else 14056 /* Make sure ID is cleared otherwise dst_reg min/max could be 14057 * incorrectly propagated into other registers by find_equal_scalars() 14058 */ 14059 dst_reg->id = 0; 14060 if (BPF_SRC(insn->code) == BPF_X) { 14061 src_reg = ®s[insn->src_reg]; 14062 if (src_reg->type != SCALAR_VALUE) { 14063 if (dst_reg->type != SCALAR_VALUE) { 14064 /* Combining two pointers by any ALU op yields 14065 * an arbitrary scalar. Disallow all math except 14066 * pointer subtraction 14067 */ 14068 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 14069 mark_reg_unknown(env, regs, insn->dst_reg); 14070 return 0; 14071 } 14072 verbose(env, "R%d pointer %s pointer prohibited\n", 14073 insn->dst_reg, 14074 bpf_alu_string[opcode >> 4]); 14075 return -EACCES; 14076 } else { 14077 /* scalar += pointer 14078 * This is legal, but we have to reverse our 14079 * src/dest handling in computing the range 14080 */ 14081 err = mark_chain_precision(env, insn->dst_reg); 14082 if (err) 14083 return err; 14084 return adjust_ptr_min_max_vals(env, insn, 14085 src_reg, dst_reg); 14086 } 14087 } else if (ptr_reg) { 14088 /* pointer += scalar */ 14089 err = mark_chain_precision(env, insn->src_reg); 14090 if (err) 14091 return err; 14092 return adjust_ptr_min_max_vals(env, insn, 14093 dst_reg, src_reg); 14094 } else if (dst_reg->precise) { 14095 /* if dst_reg is precise, src_reg should be precise as well */ 14096 err = mark_chain_precision(env, insn->src_reg); 14097 if (err) 14098 return err; 14099 } 14100 } else { 14101 /* Pretend the src is a reg with a known value, since we only 14102 * need to be able to read from this state. 14103 */ 14104 off_reg.type = SCALAR_VALUE; 14105 __mark_reg_known(&off_reg, insn->imm); 14106 src_reg = &off_reg; 14107 if (ptr_reg) /* pointer += K */ 14108 return adjust_ptr_min_max_vals(env, insn, 14109 ptr_reg, src_reg); 14110 } 14111 14112 /* Got here implies adding two SCALAR_VALUEs */ 14113 if (WARN_ON_ONCE(ptr_reg)) { 14114 print_verifier_state(env, state, true); 14115 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 14116 return -EINVAL; 14117 } 14118 if (WARN_ON(!src_reg)) { 14119 print_verifier_state(env, state, true); 14120 verbose(env, "verifier internal error: no src_reg\n"); 14121 return -EINVAL; 14122 } 14123 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 14124 } 14125 14126 /* check validity of 32-bit and 64-bit arithmetic operations */ 14127 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 14128 { 14129 struct bpf_reg_state *regs = cur_regs(env); 14130 u8 opcode = BPF_OP(insn->code); 14131 int err; 14132 14133 if (opcode == BPF_END || opcode == BPF_NEG) { 14134 if (opcode == BPF_NEG) { 14135 if (BPF_SRC(insn->code) != BPF_K || 14136 insn->src_reg != BPF_REG_0 || 14137 insn->off != 0 || insn->imm != 0) { 14138 verbose(env, "BPF_NEG uses reserved fields\n"); 14139 return -EINVAL; 14140 } 14141 } else { 14142 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 14143 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 14144 (BPF_CLASS(insn->code) == BPF_ALU64 && 14145 BPF_SRC(insn->code) != BPF_TO_LE)) { 14146 verbose(env, "BPF_END uses reserved fields\n"); 14147 return -EINVAL; 14148 } 14149 } 14150 14151 /* check src operand */ 14152 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14153 if (err) 14154 return err; 14155 14156 if (is_pointer_value(env, insn->dst_reg)) { 14157 verbose(env, "R%d pointer arithmetic prohibited\n", 14158 insn->dst_reg); 14159 return -EACCES; 14160 } 14161 14162 /* check dest operand */ 14163 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14164 if (err) 14165 return err; 14166 14167 } else if (opcode == BPF_MOV) { 14168 14169 if (BPF_SRC(insn->code) == BPF_X) { 14170 if (BPF_CLASS(insn->code) == BPF_ALU) { 14171 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 14172 insn->imm) { 14173 verbose(env, "BPF_MOV uses reserved fields\n"); 14174 return -EINVAL; 14175 } 14176 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 14177 if (insn->imm != 1 && insn->imm != 1u << 16) { 14178 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 14179 return -EINVAL; 14180 } 14181 if (!env->prog->aux->arena) { 14182 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); 14183 return -EINVAL; 14184 } 14185 } else { 14186 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 14187 insn->off != 32) || insn->imm) { 14188 verbose(env, "BPF_MOV uses reserved fields\n"); 14189 return -EINVAL; 14190 } 14191 } 14192 14193 /* check src operand */ 14194 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14195 if (err) 14196 return err; 14197 } else { 14198 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 14199 verbose(env, "BPF_MOV uses reserved fields\n"); 14200 return -EINVAL; 14201 } 14202 } 14203 14204 /* check dest operand, mark as required later */ 14205 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14206 if (err) 14207 return err; 14208 14209 if (BPF_SRC(insn->code) == BPF_X) { 14210 struct bpf_reg_state *src_reg = regs + insn->src_reg; 14211 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 14212 14213 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14214 if (insn->imm) { 14215 /* off == BPF_ADDR_SPACE_CAST */ 14216 mark_reg_unknown(env, regs, insn->dst_reg); 14217 if (insn->imm == 1) { /* cast from as(1) to as(0) */ 14218 dst_reg->type = PTR_TO_ARENA; 14219 /* PTR_TO_ARENA is 32-bit */ 14220 dst_reg->subreg_def = env->insn_idx + 1; 14221 } 14222 } else if (insn->off == 0) { 14223 /* case: R1 = R2 14224 * copy register state to dest reg 14225 */ 14226 assign_scalar_id_before_mov(env, src_reg); 14227 copy_register_state(dst_reg, src_reg); 14228 dst_reg->live |= REG_LIVE_WRITTEN; 14229 dst_reg->subreg_def = DEF_NOT_SUBREG; 14230 } else { 14231 /* case: R1 = (s8, s16 s32)R2 */ 14232 if (is_pointer_value(env, insn->src_reg)) { 14233 verbose(env, 14234 "R%d sign-extension part of pointer\n", 14235 insn->src_reg); 14236 return -EACCES; 14237 } else if (src_reg->type == SCALAR_VALUE) { 14238 bool no_sext; 14239 14240 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14241 if (no_sext) 14242 assign_scalar_id_before_mov(env, src_reg); 14243 copy_register_state(dst_reg, src_reg); 14244 if (!no_sext) 14245 dst_reg->id = 0; 14246 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 14247 dst_reg->live |= REG_LIVE_WRITTEN; 14248 dst_reg->subreg_def = DEF_NOT_SUBREG; 14249 } else { 14250 mark_reg_unknown(env, regs, insn->dst_reg); 14251 } 14252 } 14253 } else { 14254 /* R1 = (u32) R2 */ 14255 if (is_pointer_value(env, insn->src_reg)) { 14256 verbose(env, 14257 "R%d partial copy of pointer\n", 14258 insn->src_reg); 14259 return -EACCES; 14260 } else if (src_reg->type == SCALAR_VALUE) { 14261 if (insn->off == 0) { 14262 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 14263 14264 if (is_src_reg_u32) 14265 assign_scalar_id_before_mov(env, src_reg); 14266 copy_register_state(dst_reg, src_reg); 14267 /* Make sure ID is cleared if src_reg is not in u32 14268 * range otherwise dst_reg min/max could be incorrectly 14269 * propagated into src_reg by find_equal_scalars() 14270 */ 14271 if (!is_src_reg_u32) 14272 dst_reg->id = 0; 14273 dst_reg->live |= REG_LIVE_WRITTEN; 14274 dst_reg->subreg_def = env->insn_idx + 1; 14275 } else { 14276 /* case: W1 = (s8, s16)W2 */ 14277 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14278 14279 if (no_sext) 14280 assign_scalar_id_before_mov(env, src_reg); 14281 copy_register_state(dst_reg, src_reg); 14282 if (!no_sext) 14283 dst_reg->id = 0; 14284 dst_reg->live |= REG_LIVE_WRITTEN; 14285 dst_reg->subreg_def = env->insn_idx + 1; 14286 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 14287 } 14288 } else { 14289 mark_reg_unknown(env, regs, 14290 insn->dst_reg); 14291 } 14292 zext_32_to_64(dst_reg); 14293 reg_bounds_sync(dst_reg); 14294 } 14295 } else { 14296 /* case: R = imm 14297 * remember the value we stored into this reg 14298 */ 14299 /* clear any state __mark_reg_known doesn't set */ 14300 mark_reg_unknown(env, regs, insn->dst_reg); 14301 regs[insn->dst_reg].type = SCALAR_VALUE; 14302 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14303 __mark_reg_known(regs + insn->dst_reg, 14304 insn->imm); 14305 } else { 14306 __mark_reg_known(regs + insn->dst_reg, 14307 (u32)insn->imm); 14308 } 14309 } 14310 14311 } else if (opcode > BPF_END) { 14312 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 14313 return -EINVAL; 14314 14315 } else { /* all other ALU ops: and, sub, xor, add, ... */ 14316 14317 if (BPF_SRC(insn->code) == BPF_X) { 14318 if (insn->imm != 0 || insn->off > 1 || 14319 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14320 verbose(env, "BPF_ALU uses reserved fields\n"); 14321 return -EINVAL; 14322 } 14323 /* check src1 operand */ 14324 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14325 if (err) 14326 return err; 14327 } else { 14328 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 14329 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14330 verbose(env, "BPF_ALU uses reserved fields\n"); 14331 return -EINVAL; 14332 } 14333 } 14334 14335 /* check src2 operand */ 14336 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14337 if (err) 14338 return err; 14339 14340 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 14341 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 14342 verbose(env, "div by zero\n"); 14343 return -EINVAL; 14344 } 14345 14346 if ((opcode == BPF_LSH || opcode == BPF_RSH || 14347 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 14348 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 14349 14350 if (insn->imm < 0 || insn->imm >= size) { 14351 verbose(env, "invalid shift %d\n", insn->imm); 14352 return -EINVAL; 14353 } 14354 } 14355 14356 /* check dest operand */ 14357 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14358 err = err ?: adjust_reg_min_max_vals(env, insn); 14359 if (err) 14360 return err; 14361 } 14362 14363 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 14364 } 14365 14366 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 14367 struct bpf_reg_state *dst_reg, 14368 enum bpf_reg_type type, 14369 bool range_right_open) 14370 { 14371 struct bpf_func_state *state; 14372 struct bpf_reg_state *reg; 14373 int new_range; 14374 14375 if (dst_reg->off < 0 || 14376 (dst_reg->off == 0 && range_right_open)) 14377 /* This doesn't give us any range */ 14378 return; 14379 14380 if (dst_reg->umax_value > MAX_PACKET_OFF || 14381 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 14382 /* Risk of overflow. For instance, ptr + (1<<63) may be less 14383 * than pkt_end, but that's because it's also less than pkt. 14384 */ 14385 return; 14386 14387 new_range = dst_reg->off; 14388 if (range_right_open) 14389 new_range++; 14390 14391 /* Examples for register markings: 14392 * 14393 * pkt_data in dst register: 14394 * 14395 * r2 = r3; 14396 * r2 += 8; 14397 * if (r2 > pkt_end) goto <handle exception> 14398 * <access okay> 14399 * 14400 * r2 = r3; 14401 * r2 += 8; 14402 * if (r2 < pkt_end) goto <access okay> 14403 * <handle exception> 14404 * 14405 * Where: 14406 * r2 == dst_reg, pkt_end == src_reg 14407 * r2=pkt(id=n,off=8,r=0) 14408 * r3=pkt(id=n,off=0,r=0) 14409 * 14410 * pkt_data in src register: 14411 * 14412 * r2 = r3; 14413 * r2 += 8; 14414 * if (pkt_end >= r2) goto <access okay> 14415 * <handle exception> 14416 * 14417 * r2 = r3; 14418 * r2 += 8; 14419 * if (pkt_end <= r2) goto <handle exception> 14420 * <access okay> 14421 * 14422 * Where: 14423 * pkt_end == dst_reg, r2 == src_reg 14424 * r2=pkt(id=n,off=8,r=0) 14425 * r3=pkt(id=n,off=0,r=0) 14426 * 14427 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 14428 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 14429 * and [r3, r3 + 8-1) respectively is safe to access depending on 14430 * the check. 14431 */ 14432 14433 /* If our ids match, then we must have the same max_value. And we 14434 * don't care about the other reg's fixed offset, since if it's too big 14435 * the range won't allow anything. 14436 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 14437 */ 14438 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14439 if (reg->type == type && reg->id == dst_reg->id) 14440 /* keep the maximum range already checked */ 14441 reg->range = max(reg->range, new_range); 14442 })); 14443 } 14444 14445 /* 14446 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 14447 */ 14448 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14449 u8 opcode, bool is_jmp32) 14450 { 14451 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 14452 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 14453 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 14454 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 14455 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 14456 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 14457 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 14458 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 14459 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 14460 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 14461 14462 switch (opcode) { 14463 case BPF_JEQ: 14464 /* constants, umin/umax and smin/smax checks would be 14465 * redundant in this case because they all should match 14466 */ 14467 if (tnum_is_const(t1) && tnum_is_const(t2)) 14468 return t1.value == t2.value; 14469 /* non-overlapping ranges */ 14470 if (umin1 > umax2 || umax1 < umin2) 14471 return 0; 14472 if (smin1 > smax2 || smax1 < smin2) 14473 return 0; 14474 if (!is_jmp32) { 14475 /* if 64-bit ranges are inconclusive, see if we can 14476 * utilize 32-bit subrange knowledge to eliminate 14477 * branches that can't be taken a priori 14478 */ 14479 if (reg1->u32_min_value > reg2->u32_max_value || 14480 reg1->u32_max_value < reg2->u32_min_value) 14481 return 0; 14482 if (reg1->s32_min_value > reg2->s32_max_value || 14483 reg1->s32_max_value < reg2->s32_min_value) 14484 return 0; 14485 } 14486 break; 14487 case BPF_JNE: 14488 /* constants, umin/umax and smin/smax checks would be 14489 * redundant in this case because they all should match 14490 */ 14491 if (tnum_is_const(t1) && tnum_is_const(t2)) 14492 return t1.value != t2.value; 14493 /* non-overlapping ranges */ 14494 if (umin1 > umax2 || umax1 < umin2) 14495 return 1; 14496 if (smin1 > smax2 || smax1 < smin2) 14497 return 1; 14498 if (!is_jmp32) { 14499 /* if 64-bit ranges are inconclusive, see if we can 14500 * utilize 32-bit subrange knowledge to eliminate 14501 * branches that can't be taken a priori 14502 */ 14503 if (reg1->u32_min_value > reg2->u32_max_value || 14504 reg1->u32_max_value < reg2->u32_min_value) 14505 return 1; 14506 if (reg1->s32_min_value > reg2->s32_max_value || 14507 reg1->s32_max_value < reg2->s32_min_value) 14508 return 1; 14509 } 14510 break; 14511 case BPF_JSET: 14512 if (!is_reg_const(reg2, is_jmp32)) { 14513 swap(reg1, reg2); 14514 swap(t1, t2); 14515 } 14516 if (!is_reg_const(reg2, is_jmp32)) 14517 return -1; 14518 if ((~t1.mask & t1.value) & t2.value) 14519 return 1; 14520 if (!((t1.mask | t1.value) & t2.value)) 14521 return 0; 14522 break; 14523 case BPF_JGT: 14524 if (umin1 > umax2) 14525 return 1; 14526 else if (umax1 <= umin2) 14527 return 0; 14528 break; 14529 case BPF_JSGT: 14530 if (smin1 > smax2) 14531 return 1; 14532 else if (smax1 <= smin2) 14533 return 0; 14534 break; 14535 case BPF_JLT: 14536 if (umax1 < umin2) 14537 return 1; 14538 else if (umin1 >= umax2) 14539 return 0; 14540 break; 14541 case BPF_JSLT: 14542 if (smax1 < smin2) 14543 return 1; 14544 else if (smin1 >= smax2) 14545 return 0; 14546 break; 14547 case BPF_JGE: 14548 if (umin1 >= umax2) 14549 return 1; 14550 else if (umax1 < umin2) 14551 return 0; 14552 break; 14553 case BPF_JSGE: 14554 if (smin1 >= smax2) 14555 return 1; 14556 else if (smax1 < smin2) 14557 return 0; 14558 break; 14559 case BPF_JLE: 14560 if (umax1 <= umin2) 14561 return 1; 14562 else if (umin1 > umax2) 14563 return 0; 14564 break; 14565 case BPF_JSLE: 14566 if (smax1 <= smin2) 14567 return 1; 14568 else if (smin1 > smax2) 14569 return 0; 14570 break; 14571 } 14572 14573 return -1; 14574 } 14575 14576 static int flip_opcode(u32 opcode) 14577 { 14578 /* How can we transform "a <op> b" into "b <op> a"? */ 14579 static const u8 opcode_flip[16] = { 14580 /* these stay the same */ 14581 [BPF_JEQ >> 4] = BPF_JEQ, 14582 [BPF_JNE >> 4] = BPF_JNE, 14583 [BPF_JSET >> 4] = BPF_JSET, 14584 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14585 [BPF_JGE >> 4] = BPF_JLE, 14586 [BPF_JGT >> 4] = BPF_JLT, 14587 [BPF_JLE >> 4] = BPF_JGE, 14588 [BPF_JLT >> 4] = BPF_JGT, 14589 [BPF_JSGE >> 4] = BPF_JSLE, 14590 [BPF_JSGT >> 4] = BPF_JSLT, 14591 [BPF_JSLE >> 4] = BPF_JSGE, 14592 [BPF_JSLT >> 4] = BPF_JSGT 14593 }; 14594 return opcode_flip[opcode >> 4]; 14595 } 14596 14597 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14598 struct bpf_reg_state *src_reg, 14599 u8 opcode) 14600 { 14601 struct bpf_reg_state *pkt; 14602 14603 if (src_reg->type == PTR_TO_PACKET_END) { 14604 pkt = dst_reg; 14605 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14606 pkt = src_reg; 14607 opcode = flip_opcode(opcode); 14608 } else { 14609 return -1; 14610 } 14611 14612 if (pkt->range >= 0) 14613 return -1; 14614 14615 switch (opcode) { 14616 case BPF_JLE: 14617 /* pkt <= pkt_end */ 14618 fallthrough; 14619 case BPF_JGT: 14620 /* pkt > pkt_end */ 14621 if (pkt->range == BEYOND_PKT_END) 14622 /* pkt has at last one extra byte beyond pkt_end */ 14623 return opcode == BPF_JGT; 14624 break; 14625 case BPF_JLT: 14626 /* pkt < pkt_end */ 14627 fallthrough; 14628 case BPF_JGE: 14629 /* pkt >= pkt_end */ 14630 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14631 return opcode == BPF_JGE; 14632 break; 14633 } 14634 return -1; 14635 } 14636 14637 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 14638 * and return: 14639 * 1 - branch will be taken and "goto target" will be executed 14640 * 0 - branch will not be taken and fall-through to next insn 14641 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 14642 * range [0,10] 14643 */ 14644 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14645 u8 opcode, bool is_jmp32) 14646 { 14647 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 14648 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 14649 14650 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 14651 u64 val; 14652 14653 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 14654 if (!is_reg_const(reg2, is_jmp32)) { 14655 opcode = flip_opcode(opcode); 14656 swap(reg1, reg2); 14657 } 14658 /* and ensure that reg2 is a constant */ 14659 if (!is_reg_const(reg2, is_jmp32)) 14660 return -1; 14661 14662 if (!reg_not_null(reg1)) 14663 return -1; 14664 14665 /* If pointer is valid tests against zero will fail so we can 14666 * use this to direct branch taken. 14667 */ 14668 val = reg_const_value(reg2, is_jmp32); 14669 if (val != 0) 14670 return -1; 14671 14672 switch (opcode) { 14673 case BPF_JEQ: 14674 return 0; 14675 case BPF_JNE: 14676 return 1; 14677 default: 14678 return -1; 14679 } 14680 } 14681 14682 /* now deal with two scalars, but not necessarily constants */ 14683 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 14684 } 14685 14686 /* Opcode that corresponds to a *false* branch condition. 14687 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 14688 */ 14689 static u8 rev_opcode(u8 opcode) 14690 { 14691 switch (opcode) { 14692 case BPF_JEQ: return BPF_JNE; 14693 case BPF_JNE: return BPF_JEQ; 14694 /* JSET doesn't have it's reverse opcode in BPF, so add 14695 * BPF_X flag to denote the reverse of that operation 14696 */ 14697 case BPF_JSET: return BPF_JSET | BPF_X; 14698 case BPF_JSET | BPF_X: return BPF_JSET; 14699 case BPF_JGE: return BPF_JLT; 14700 case BPF_JGT: return BPF_JLE; 14701 case BPF_JLE: return BPF_JGT; 14702 case BPF_JLT: return BPF_JGE; 14703 case BPF_JSGE: return BPF_JSLT; 14704 case BPF_JSGT: return BPF_JSLE; 14705 case BPF_JSLE: return BPF_JSGT; 14706 case BPF_JSLT: return BPF_JSGE; 14707 default: return 0; 14708 } 14709 } 14710 14711 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 14712 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14713 u8 opcode, bool is_jmp32) 14714 { 14715 struct tnum t; 14716 u64 val; 14717 14718 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ 14719 switch (opcode) { 14720 case BPF_JGE: 14721 case BPF_JGT: 14722 case BPF_JSGE: 14723 case BPF_JSGT: 14724 opcode = flip_opcode(opcode); 14725 swap(reg1, reg2); 14726 break; 14727 default: 14728 break; 14729 } 14730 14731 switch (opcode) { 14732 case BPF_JEQ: 14733 if (is_jmp32) { 14734 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 14735 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 14736 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 14737 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 14738 reg2->u32_min_value = reg1->u32_min_value; 14739 reg2->u32_max_value = reg1->u32_max_value; 14740 reg2->s32_min_value = reg1->s32_min_value; 14741 reg2->s32_max_value = reg1->s32_max_value; 14742 14743 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 14744 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14745 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 14746 } else { 14747 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 14748 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 14749 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 14750 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 14751 reg2->umin_value = reg1->umin_value; 14752 reg2->umax_value = reg1->umax_value; 14753 reg2->smin_value = reg1->smin_value; 14754 reg2->smax_value = reg1->smax_value; 14755 14756 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 14757 reg2->var_off = reg1->var_off; 14758 } 14759 break; 14760 case BPF_JNE: 14761 if (!is_reg_const(reg2, is_jmp32)) 14762 swap(reg1, reg2); 14763 if (!is_reg_const(reg2, is_jmp32)) 14764 break; 14765 14766 /* try to recompute the bound of reg1 if reg2 is a const and 14767 * is exactly the edge of reg1. 14768 */ 14769 val = reg_const_value(reg2, is_jmp32); 14770 if (is_jmp32) { 14771 /* u32_min_value is not equal to 0xffffffff at this point, 14772 * because otherwise u32_max_value is 0xffffffff as well, 14773 * in such a case both reg1 and reg2 would be constants, 14774 * jump would be predicted and reg_set_min_max() won't 14775 * be called. 14776 * 14777 * Same reasoning works for all {u,s}{min,max}{32,64} cases 14778 * below. 14779 */ 14780 if (reg1->u32_min_value == (u32)val) 14781 reg1->u32_min_value++; 14782 if (reg1->u32_max_value == (u32)val) 14783 reg1->u32_max_value--; 14784 if (reg1->s32_min_value == (s32)val) 14785 reg1->s32_min_value++; 14786 if (reg1->s32_max_value == (s32)val) 14787 reg1->s32_max_value--; 14788 } else { 14789 if (reg1->umin_value == (u64)val) 14790 reg1->umin_value++; 14791 if (reg1->umax_value == (u64)val) 14792 reg1->umax_value--; 14793 if (reg1->smin_value == (s64)val) 14794 reg1->smin_value++; 14795 if (reg1->smax_value == (s64)val) 14796 reg1->smax_value--; 14797 } 14798 break; 14799 case BPF_JSET: 14800 if (!is_reg_const(reg2, is_jmp32)) 14801 swap(reg1, reg2); 14802 if (!is_reg_const(reg2, is_jmp32)) 14803 break; 14804 val = reg_const_value(reg2, is_jmp32); 14805 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 14806 * requires single bit to learn something useful. E.g., if we 14807 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 14808 * are actually set? We can learn something definite only if 14809 * it's a single-bit value to begin with. 14810 * 14811 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 14812 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 14813 * bit 1 is set, which we can readily use in adjustments. 14814 */ 14815 if (!is_power_of_2(val)) 14816 break; 14817 if (is_jmp32) { 14818 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 14819 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14820 } else { 14821 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 14822 } 14823 break; 14824 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 14825 if (!is_reg_const(reg2, is_jmp32)) 14826 swap(reg1, reg2); 14827 if (!is_reg_const(reg2, is_jmp32)) 14828 break; 14829 val = reg_const_value(reg2, is_jmp32); 14830 if (is_jmp32) { 14831 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 14832 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14833 } else { 14834 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 14835 } 14836 break; 14837 case BPF_JLE: 14838 if (is_jmp32) { 14839 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 14840 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 14841 } else { 14842 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 14843 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 14844 } 14845 break; 14846 case BPF_JLT: 14847 if (is_jmp32) { 14848 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 14849 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 14850 } else { 14851 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 14852 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 14853 } 14854 break; 14855 case BPF_JSLE: 14856 if (is_jmp32) { 14857 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 14858 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 14859 } else { 14860 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 14861 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 14862 } 14863 break; 14864 case BPF_JSLT: 14865 if (is_jmp32) { 14866 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 14867 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 14868 } else { 14869 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 14870 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 14871 } 14872 break; 14873 default: 14874 return; 14875 } 14876 } 14877 14878 /* Adjusts the register min/max values in the case that the dst_reg and 14879 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 14880 * check, in which case we have a fake SCALAR_VALUE representing insn->imm). 14881 * Technically we can do similar adjustments for pointers to the same object, 14882 * but we don't support that right now. 14883 */ 14884 static int reg_set_min_max(struct bpf_verifier_env *env, 14885 struct bpf_reg_state *true_reg1, 14886 struct bpf_reg_state *true_reg2, 14887 struct bpf_reg_state *false_reg1, 14888 struct bpf_reg_state *false_reg2, 14889 u8 opcode, bool is_jmp32) 14890 { 14891 int err; 14892 14893 /* If either register is a pointer, we can't learn anything about its 14894 * variable offset from the compare (unless they were a pointer into 14895 * the same object, but we don't bother with that). 14896 */ 14897 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 14898 return 0; 14899 14900 /* fallthrough (FALSE) branch */ 14901 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 14902 reg_bounds_sync(false_reg1); 14903 reg_bounds_sync(false_reg2); 14904 14905 /* jump (TRUE) branch */ 14906 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 14907 reg_bounds_sync(true_reg1); 14908 reg_bounds_sync(true_reg2); 14909 14910 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 14911 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 14912 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 14913 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 14914 return err; 14915 } 14916 14917 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 14918 struct bpf_reg_state *reg, u32 id, 14919 bool is_null) 14920 { 14921 if (type_may_be_null(reg->type) && reg->id == id && 14922 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 14923 /* Old offset (both fixed and variable parts) should have been 14924 * known-zero, because we don't allow pointer arithmetic on 14925 * pointers that might be NULL. If we see this happening, don't 14926 * convert the register. 14927 * 14928 * But in some cases, some helpers that return local kptrs 14929 * advance offset for the returned pointer. In those cases, it 14930 * is fine to expect to see reg->off. 14931 */ 14932 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 14933 return; 14934 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 14935 WARN_ON_ONCE(reg->off)) 14936 return; 14937 14938 if (is_null) { 14939 reg->type = SCALAR_VALUE; 14940 /* We don't need id and ref_obj_id from this point 14941 * onwards anymore, thus we should better reset it, 14942 * so that state pruning has chances to take effect. 14943 */ 14944 reg->id = 0; 14945 reg->ref_obj_id = 0; 14946 14947 return; 14948 } 14949 14950 mark_ptr_not_null_reg(reg); 14951 14952 if (!reg_may_point_to_spin_lock(reg)) { 14953 /* For not-NULL ptr, reg->ref_obj_id will be reset 14954 * in release_reference(). 14955 * 14956 * reg->id is still used by spin_lock ptr. Other 14957 * than spin_lock ptr type, reg->id can be reset. 14958 */ 14959 reg->id = 0; 14960 } 14961 } 14962 } 14963 14964 /* The logic is similar to find_good_pkt_pointers(), both could eventually 14965 * be folded together at some point. 14966 */ 14967 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 14968 bool is_null) 14969 { 14970 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14971 struct bpf_reg_state *regs = state->regs, *reg; 14972 u32 ref_obj_id = regs[regno].ref_obj_id; 14973 u32 id = regs[regno].id; 14974 14975 if (ref_obj_id && ref_obj_id == id && is_null) 14976 /* regs[regno] is in the " == NULL" branch. 14977 * No one could have freed the reference state before 14978 * doing the NULL check. 14979 */ 14980 WARN_ON_ONCE(release_reference_state(state, id)); 14981 14982 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14983 mark_ptr_or_null_reg(state, reg, id, is_null); 14984 })); 14985 } 14986 14987 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 14988 struct bpf_reg_state *dst_reg, 14989 struct bpf_reg_state *src_reg, 14990 struct bpf_verifier_state *this_branch, 14991 struct bpf_verifier_state *other_branch) 14992 { 14993 if (BPF_SRC(insn->code) != BPF_X) 14994 return false; 14995 14996 /* Pointers are always 64-bit. */ 14997 if (BPF_CLASS(insn->code) == BPF_JMP32) 14998 return false; 14999 15000 switch (BPF_OP(insn->code)) { 15001 case BPF_JGT: 15002 if ((dst_reg->type == PTR_TO_PACKET && 15003 src_reg->type == PTR_TO_PACKET_END) || 15004 (dst_reg->type == PTR_TO_PACKET_META && 15005 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15006 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 15007 find_good_pkt_pointers(this_branch, dst_reg, 15008 dst_reg->type, false); 15009 mark_pkt_end(other_branch, insn->dst_reg, true); 15010 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15011 src_reg->type == PTR_TO_PACKET) || 15012 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15013 src_reg->type == PTR_TO_PACKET_META)) { 15014 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 15015 find_good_pkt_pointers(other_branch, src_reg, 15016 src_reg->type, true); 15017 mark_pkt_end(this_branch, insn->src_reg, false); 15018 } else { 15019 return false; 15020 } 15021 break; 15022 case BPF_JLT: 15023 if ((dst_reg->type == PTR_TO_PACKET && 15024 src_reg->type == PTR_TO_PACKET_END) || 15025 (dst_reg->type == PTR_TO_PACKET_META && 15026 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15027 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 15028 find_good_pkt_pointers(other_branch, dst_reg, 15029 dst_reg->type, true); 15030 mark_pkt_end(this_branch, insn->dst_reg, false); 15031 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15032 src_reg->type == PTR_TO_PACKET) || 15033 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15034 src_reg->type == PTR_TO_PACKET_META)) { 15035 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 15036 find_good_pkt_pointers(this_branch, src_reg, 15037 src_reg->type, false); 15038 mark_pkt_end(other_branch, insn->src_reg, true); 15039 } else { 15040 return false; 15041 } 15042 break; 15043 case BPF_JGE: 15044 if ((dst_reg->type == PTR_TO_PACKET && 15045 src_reg->type == PTR_TO_PACKET_END) || 15046 (dst_reg->type == PTR_TO_PACKET_META && 15047 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15048 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 15049 find_good_pkt_pointers(this_branch, dst_reg, 15050 dst_reg->type, true); 15051 mark_pkt_end(other_branch, insn->dst_reg, false); 15052 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15053 src_reg->type == PTR_TO_PACKET) || 15054 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15055 src_reg->type == PTR_TO_PACKET_META)) { 15056 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 15057 find_good_pkt_pointers(other_branch, src_reg, 15058 src_reg->type, false); 15059 mark_pkt_end(this_branch, insn->src_reg, true); 15060 } else { 15061 return false; 15062 } 15063 break; 15064 case BPF_JLE: 15065 if ((dst_reg->type == PTR_TO_PACKET && 15066 src_reg->type == PTR_TO_PACKET_END) || 15067 (dst_reg->type == PTR_TO_PACKET_META && 15068 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15069 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 15070 find_good_pkt_pointers(other_branch, dst_reg, 15071 dst_reg->type, false); 15072 mark_pkt_end(this_branch, insn->dst_reg, true); 15073 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15074 src_reg->type == PTR_TO_PACKET) || 15075 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15076 src_reg->type == PTR_TO_PACKET_META)) { 15077 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 15078 find_good_pkt_pointers(this_branch, src_reg, 15079 src_reg->type, true); 15080 mark_pkt_end(other_branch, insn->src_reg, false); 15081 } else { 15082 return false; 15083 } 15084 break; 15085 default: 15086 return false; 15087 } 15088 15089 return true; 15090 } 15091 15092 static void find_equal_scalars(struct bpf_verifier_state *vstate, 15093 struct bpf_reg_state *known_reg) 15094 { 15095 struct bpf_func_state *state; 15096 struct bpf_reg_state *reg; 15097 15098 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 15099 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 15100 copy_register_state(reg, known_reg); 15101 })); 15102 } 15103 15104 static int check_cond_jmp_op(struct bpf_verifier_env *env, 15105 struct bpf_insn *insn, int *insn_idx) 15106 { 15107 struct bpf_verifier_state *this_branch = env->cur_state; 15108 struct bpf_verifier_state *other_branch; 15109 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 15110 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 15111 struct bpf_reg_state *eq_branch_regs; 15112 struct bpf_reg_state fake_reg = {}; 15113 u8 opcode = BPF_OP(insn->code); 15114 bool is_jmp32; 15115 int pred = -1; 15116 int err; 15117 15118 /* Only conditional jumps are expected to reach here. */ 15119 if (opcode == BPF_JA || opcode > BPF_JCOND) { 15120 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 15121 return -EINVAL; 15122 } 15123 15124 if (opcode == BPF_JCOND) { 15125 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 15126 int idx = *insn_idx; 15127 15128 if (insn->code != (BPF_JMP | BPF_JCOND) || 15129 insn->src_reg != BPF_MAY_GOTO || 15130 insn->dst_reg || insn->imm || insn->off == 0) { 15131 verbose(env, "invalid may_goto off %d imm %d\n", 15132 insn->off, insn->imm); 15133 return -EINVAL; 15134 } 15135 prev_st = find_prev_entry(env, cur_st->parent, idx); 15136 15137 /* branch out 'fallthrough' insn as a new state to explore */ 15138 queued_st = push_stack(env, idx + 1, idx, false); 15139 if (!queued_st) 15140 return -ENOMEM; 15141 15142 queued_st->may_goto_depth++; 15143 if (prev_st) 15144 widen_imprecise_scalars(env, prev_st, queued_st); 15145 *insn_idx += insn->off; 15146 return 0; 15147 } 15148 15149 /* check src2 operand */ 15150 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15151 if (err) 15152 return err; 15153 15154 dst_reg = ®s[insn->dst_reg]; 15155 if (BPF_SRC(insn->code) == BPF_X) { 15156 if (insn->imm != 0) { 15157 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 15158 return -EINVAL; 15159 } 15160 15161 /* check src1 operand */ 15162 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15163 if (err) 15164 return err; 15165 15166 src_reg = ®s[insn->src_reg]; 15167 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 15168 is_pointer_value(env, insn->src_reg)) { 15169 verbose(env, "R%d pointer comparison prohibited\n", 15170 insn->src_reg); 15171 return -EACCES; 15172 } 15173 } else { 15174 if (insn->src_reg != BPF_REG_0) { 15175 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 15176 return -EINVAL; 15177 } 15178 src_reg = &fake_reg; 15179 src_reg->type = SCALAR_VALUE; 15180 __mark_reg_known(src_reg, insn->imm); 15181 } 15182 15183 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 15184 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 15185 if (pred >= 0) { 15186 /* If we get here with a dst_reg pointer type it is because 15187 * above is_branch_taken() special cased the 0 comparison. 15188 */ 15189 if (!__is_pointer_value(false, dst_reg)) 15190 err = mark_chain_precision(env, insn->dst_reg); 15191 if (BPF_SRC(insn->code) == BPF_X && !err && 15192 !__is_pointer_value(false, src_reg)) 15193 err = mark_chain_precision(env, insn->src_reg); 15194 if (err) 15195 return err; 15196 } 15197 15198 if (pred == 1) { 15199 /* Only follow the goto, ignore fall-through. If needed, push 15200 * the fall-through branch for simulation under speculative 15201 * execution. 15202 */ 15203 if (!env->bypass_spec_v1 && 15204 !sanitize_speculative_path(env, insn, *insn_idx + 1, 15205 *insn_idx)) 15206 return -EFAULT; 15207 if (env->log.level & BPF_LOG_LEVEL) 15208 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15209 *insn_idx += insn->off; 15210 return 0; 15211 } else if (pred == 0) { 15212 /* Only follow the fall-through branch, since that's where the 15213 * program will go. If needed, push the goto branch for 15214 * simulation under speculative execution. 15215 */ 15216 if (!env->bypass_spec_v1 && 15217 !sanitize_speculative_path(env, insn, 15218 *insn_idx + insn->off + 1, 15219 *insn_idx)) 15220 return -EFAULT; 15221 if (env->log.level & BPF_LOG_LEVEL) 15222 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15223 return 0; 15224 } 15225 15226 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 15227 false); 15228 if (!other_branch) 15229 return -EFAULT; 15230 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 15231 15232 if (BPF_SRC(insn->code) == BPF_X) { 15233 err = reg_set_min_max(env, 15234 &other_branch_regs[insn->dst_reg], 15235 &other_branch_regs[insn->src_reg], 15236 dst_reg, src_reg, opcode, is_jmp32); 15237 } else /* BPF_SRC(insn->code) == BPF_K */ { 15238 err = reg_set_min_max(env, 15239 &other_branch_regs[insn->dst_reg], 15240 src_reg /* fake one */, 15241 dst_reg, src_reg /* same fake one */, 15242 opcode, is_jmp32); 15243 } 15244 if (err) 15245 return err; 15246 15247 if (BPF_SRC(insn->code) == BPF_X && 15248 src_reg->type == SCALAR_VALUE && src_reg->id && 15249 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 15250 find_equal_scalars(this_branch, src_reg); 15251 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 15252 } 15253 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 15254 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 15255 find_equal_scalars(this_branch, dst_reg); 15256 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 15257 } 15258 15259 /* if one pointer register is compared to another pointer 15260 * register check if PTR_MAYBE_NULL could be lifted. 15261 * E.g. register A - maybe null 15262 * register B - not null 15263 * for JNE A, B, ... - A is not null in the false branch; 15264 * for JEQ A, B, ... - A is not null in the true branch. 15265 * 15266 * Since PTR_TO_BTF_ID points to a kernel struct that does 15267 * not need to be null checked by the BPF program, i.e., 15268 * could be null even without PTR_MAYBE_NULL marking, so 15269 * only propagate nullness when neither reg is that type. 15270 */ 15271 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 15272 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 15273 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 15274 base_type(src_reg->type) != PTR_TO_BTF_ID && 15275 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 15276 eq_branch_regs = NULL; 15277 switch (opcode) { 15278 case BPF_JEQ: 15279 eq_branch_regs = other_branch_regs; 15280 break; 15281 case BPF_JNE: 15282 eq_branch_regs = regs; 15283 break; 15284 default: 15285 /* do nothing */ 15286 break; 15287 } 15288 if (eq_branch_regs) { 15289 if (type_may_be_null(src_reg->type)) 15290 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 15291 else 15292 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 15293 } 15294 } 15295 15296 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 15297 * NOTE: these optimizations below are related with pointer comparison 15298 * which will never be JMP32. 15299 */ 15300 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 15301 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 15302 type_may_be_null(dst_reg->type)) { 15303 /* Mark all identical registers in each branch as either 15304 * safe or unknown depending R == 0 or R != 0 conditional. 15305 */ 15306 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 15307 opcode == BPF_JNE); 15308 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 15309 opcode == BPF_JEQ); 15310 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 15311 this_branch, other_branch) && 15312 is_pointer_value(env, insn->dst_reg)) { 15313 verbose(env, "R%d pointer comparison prohibited\n", 15314 insn->dst_reg); 15315 return -EACCES; 15316 } 15317 if (env->log.level & BPF_LOG_LEVEL) 15318 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15319 return 0; 15320 } 15321 15322 /* verify BPF_LD_IMM64 instruction */ 15323 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 15324 { 15325 struct bpf_insn_aux_data *aux = cur_aux(env); 15326 struct bpf_reg_state *regs = cur_regs(env); 15327 struct bpf_reg_state *dst_reg; 15328 struct bpf_map *map; 15329 int err; 15330 15331 if (BPF_SIZE(insn->code) != BPF_DW) { 15332 verbose(env, "invalid BPF_LD_IMM insn\n"); 15333 return -EINVAL; 15334 } 15335 if (insn->off != 0) { 15336 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 15337 return -EINVAL; 15338 } 15339 15340 err = check_reg_arg(env, insn->dst_reg, DST_OP); 15341 if (err) 15342 return err; 15343 15344 dst_reg = ®s[insn->dst_reg]; 15345 if (insn->src_reg == 0) { 15346 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 15347 15348 dst_reg->type = SCALAR_VALUE; 15349 __mark_reg_known(®s[insn->dst_reg], imm); 15350 return 0; 15351 } 15352 15353 /* All special src_reg cases are listed below. From this point onwards 15354 * we either succeed and assign a corresponding dst_reg->type after 15355 * zeroing the offset, or fail and reject the program. 15356 */ 15357 mark_reg_known_zero(env, regs, insn->dst_reg); 15358 15359 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 15360 dst_reg->type = aux->btf_var.reg_type; 15361 switch (base_type(dst_reg->type)) { 15362 case PTR_TO_MEM: 15363 dst_reg->mem_size = aux->btf_var.mem_size; 15364 break; 15365 case PTR_TO_BTF_ID: 15366 dst_reg->btf = aux->btf_var.btf; 15367 dst_reg->btf_id = aux->btf_var.btf_id; 15368 break; 15369 default: 15370 verbose(env, "bpf verifier is misconfigured\n"); 15371 return -EFAULT; 15372 } 15373 return 0; 15374 } 15375 15376 if (insn->src_reg == BPF_PSEUDO_FUNC) { 15377 struct bpf_prog_aux *aux = env->prog->aux; 15378 u32 subprogno = find_subprog(env, 15379 env->insn_idx + insn->imm + 1); 15380 15381 if (!aux->func_info) { 15382 verbose(env, "missing btf func_info\n"); 15383 return -EINVAL; 15384 } 15385 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 15386 verbose(env, "callback function not static\n"); 15387 return -EINVAL; 15388 } 15389 15390 dst_reg->type = PTR_TO_FUNC; 15391 dst_reg->subprogno = subprogno; 15392 return 0; 15393 } 15394 15395 map = env->used_maps[aux->map_index]; 15396 dst_reg->map_ptr = map; 15397 15398 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 15399 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 15400 if (map->map_type == BPF_MAP_TYPE_ARENA) { 15401 __mark_reg_unknown(env, dst_reg); 15402 return 0; 15403 } 15404 dst_reg->type = PTR_TO_MAP_VALUE; 15405 dst_reg->off = aux->map_off; 15406 WARN_ON_ONCE(map->max_entries != 1); 15407 /* We want reg->id to be same (0) as map_value is not distinct */ 15408 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 15409 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 15410 dst_reg->type = CONST_PTR_TO_MAP; 15411 } else { 15412 verbose(env, "bpf verifier is misconfigured\n"); 15413 return -EINVAL; 15414 } 15415 15416 return 0; 15417 } 15418 15419 static bool may_access_skb(enum bpf_prog_type type) 15420 { 15421 switch (type) { 15422 case BPF_PROG_TYPE_SOCKET_FILTER: 15423 case BPF_PROG_TYPE_SCHED_CLS: 15424 case BPF_PROG_TYPE_SCHED_ACT: 15425 return true; 15426 default: 15427 return false; 15428 } 15429 } 15430 15431 /* verify safety of LD_ABS|LD_IND instructions: 15432 * - they can only appear in the programs where ctx == skb 15433 * - since they are wrappers of function calls, they scratch R1-R5 registers, 15434 * preserve R6-R9, and store return value into R0 15435 * 15436 * Implicit input: 15437 * ctx == skb == R6 == CTX 15438 * 15439 * Explicit input: 15440 * SRC == any register 15441 * IMM == 32-bit immediate 15442 * 15443 * Output: 15444 * R0 - 8/16/32-bit skb data converted to cpu endianness 15445 */ 15446 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 15447 { 15448 struct bpf_reg_state *regs = cur_regs(env); 15449 static const int ctx_reg = BPF_REG_6; 15450 u8 mode = BPF_MODE(insn->code); 15451 int i, err; 15452 15453 if (!may_access_skb(resolve_prog_type(env->prog))) { 15454 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 15455 return -EINVAL; 15456 } 15457 15458 if (!env->ops->gen_ld_abs) { 15459 verbose(env, "bpf verifier is misconfigured\n"); 15460 return -EINVAL; 15461 } 15462 15463 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 15464 BPF_SIZE(insn->code) == BPF_DW || 15465 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 15466 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 15467 return -EINVAL; 15468 } 15469 15470 /* check whether implicit source operand (register R6) is readable */ 15471 err = check_reg_arg(env, ctx_reg, SRC_OP); 15472 if (err) 15473 return err; 15474 15475 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 15476 * gen_ld_abs() may terminate the program at runtime, leading to 15477 * reference leak. 15478 */ 15479 err = check_reference_leak(env, false); 15480 if (err) { 15481 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 15482 return err; 15483 } 15484 15485 if (env->cur_state->active_lock.ptr) { 15486 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 15487 return -EINVAL; 15488 } 15489 15490 if (env->cur_state->active_rcu_lock) { 15491 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 15492 return -EINVAL; 15493 } 15494 15495 if (env->cur_state->active_preempt_lock) { 15496 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_preempt_disable-ed region\n"); 15497 return -EINVAL; 15498 } 15499 15500 if (regs[ctx_reg].type != PTR_TO_CTX) { 15501 verbose(env, 15502 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 15503 return -EINVAL; 15504 } 15505 15506 if (mode == BPF_IND) { 15507 /* check explicit source operand */ 15508 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15509 if (err) 15510 return err; 15511 } 15512 15513 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 15514 if (err < 0) 15515 return err; 15516 15517 /* reset caller saved regs to unreadable */ 15518 for (i = 0; i < CALLER_SAVED_REGS; i++) { 15519 mark_reg_not_init(env, regs, caller_saved[i]); 15520 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 15521 } 15522 15523 /* mark destination R0 register as readable, since it contains 15524 * the value fetched from the packet. 15525 * Already marked as written above. 15526 */ 15527 mark_reg_unknown(env, regs, BPF_REG_0); 15528 /* ld_abs load up to 32-bit skb data. */ 15529 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 15530 return 0; 15531 } 15532 15533 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 15534 { 15535 const char *exit_ctx = "At program exit"; 15536 struct tnum enforce_attach_type_range = tnum_unknown; 15537 const struct bpf_prog *prog = env->prog; 15538 struct bpf_reg_state *reg; 15539 struct bpf_retval_range range = retval_range(0, 1); 15540 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 15541 int err; 15542 struct bpf_func_state *frame = env->cur_state->frame[0]; 15543 const bool is_subprog = frame->subprogno; 15544 15545 /* LSM and struct_ops func-ptr's return type could be "void" */ 15546 if (!is_subprog || frame->in_exception_callback_fn) { 15547 switch (prog_type) { 15548 case BPF_PROG_TYPE_LSM: 15549 if (prog->expected_attach_type == BPF_LSM_CGROUP) 15550 /* See below, can be 0 or 0-1 depending on hook. */ 15551 break; 15552 fallthrough; 15553 case BPF_PROG_TYPE_STRUCT_OPS: 15554 if (!prog->aux->attach_func_proto->type) 15555 return 0; 15556 break; 15557 default: 15558 break; 15559 } 15560 } 15561 15562 /* eBPF calling convention is such that R0 is used 15563 * to return the value from eBPF program. 15564 * Make sure that it's readable at this time 15565 * of bpf_exit, which means that program wrote 15566 * something into it earlier 15567 */ 15568 err = check_reg_arg(env, regno, SRC_OP); 15569 if (err) 15570 return err; 15571 15572 if (is_pointer_value(env, regno)) { 15573 verbose(env, "R%d leaks addr as return value\n", regno); 15574 return -EACCES; 15575 } 15576 15577 reg = cur_regs(env) + regno; 15578 15579 if (frame->in_async_callback_fn) { 15580 /* enforce return zero from async callbacks like timer */ 15581 exit_ctx = "At async callback return"; 15582 range = retval_range(0, 0); 15583 goto enforce_retval; 15584 } 15585 15586 if (is_subprog && !frame->in_exception_callback_fn) { 15587 if (reg->type != SCALAR_VALUE) { 15588 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 15589 regno, reg_type_str(env, reg->type)); 15590 return -EINVAL; 15591 } 15592 return 0; 15593 } 15594 15595 switch (prog_type) { 15596 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 15597 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 15598 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 15599 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 15600 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 15601 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 15602 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 15603 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 15604 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 15605 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 15606 range = retval_range(1, 1); 15607 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 15608 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 15609 range = retval_range(0, 3); 15610 break; 15611 case BPF_PROG_TYPE_CGROUP_SKB: 15612 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 15613 range = retval_range(0, 3); 15614 enforce_attach_type_range = tnum_range(2, 3); 15615 } 15616 break; 15617 case BPF_PROG_TYPE_CGROUP_SOCK: 15618 case BPF_PROG_TYPE_SOCK_OPS: 15619 case BPF_PROG_TYPE_CGROUP_DEVICE: 15620 case BPF_PROG_TYPE_CGROUP_SYSCTL: 15621 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 15622 break; 15623 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15624 if (!env->prog->aux->attach_btf_id) 15625 return 0; 15626 range = retval_range(0, 0); 15627 break; 15628 case BPF_PROG_TYPE_TRACING: 15629 switch (env->prog->expected_attach_type) { 15630 case BPF_TRACE_FENTRY: 15631 case BPF_TRACE_FEXIT: 15632 range = retval_range(0, 0); 15633 break; 15634 case BPF_TRACE_RAW_TP: 15635 case BPF_MODIFY_RETURN: 15636 return 0; 15637 case BPF_TRACE_ITER: 15638 break; 15639 default: 15640 return -ENOTSUPP; 15641 } 15642 break; 15643 case BPF_PROG_TYPE_SK_LOOKUP: 15644 range = retval_range(SK_DROP, SK_PASS); 15645 break; 15646 15647 case BPF_PROG_TYPE_LSM: 15648 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15649 /* Regular BPF_PROG_TYPE_LSM programs can return 15650 * any value. 15651 */ 15652 return 0; 15653 } 15654 if (!env->prog->aux->attach_func_proto->type) { 15655 /* Make sure programs that attach to void 15656 * hooks don't try to modify return value. 15657 */ 15658 range = retval_range(1, 1); 15659 } 15660 break; 15661 15662 case BPF_PROG_TYPE_NETFILTER: 15663 range = retval_range(NF_DROP, NF_ACCEPT); 15664 break; 15665 case BPF_PROG_TYPE_EXT: 15666 /* freplace program can return anything as its return value 15667 * depends on the to-be-replaced kernel func or bpf program. 15668 */ 15669 default: 15670 return 0; 15671 } 15672 15673 enforce_retval: 15674 if (reg->type != SCALAR_VALUE) { 15675 verbose(env, "%s the register R%d is not a known value (%s)\n", 15676 exit_ctx, regno, reg_type_str(env, reg->type)); 15677 return -EINVAL; 15678 } 15679 15680 err = mark_chain_precision(env, regno); 15681 if (err) 15682 return err; 15683 15684 if (!retval_range_within(range, reg)) { 15685 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 15686 if (!is_subprog && 15687 prog->expected_attach_type == BPF_LSM_CGROUP && 15688 prog_type == BPF_PROG_TYPE_LSM && 15689 !prog->aux->attach_func_proto->type) 15690 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15691 return -EINVAL; 15692 } 15693 15694 if (!tnum_is_unknown(enforce_attach_type_range) && 15695 tnum_in(enforce_attach_type_range, reg->var_off)) 15696 env->prog->enforce_expected_attach_type = 1; 15697 return 0; 15698 } 15699 15700 /* non-recursive DFS pseudo code 15701 * 1 procedure DFS-iterative(G,v): 15702 * 2 label v as discovered 15703 * 3 let S be a stack 15704 * 4 S.push(v) 15705 * 5 while S is not empty 15706 * 6 t <- S.peek() 15707 * 7 if t is what we're looking for: 15708 * 8 return t 15709 * 9 for all edges e in G.adjacentEdges(t) do 15710 * 10 if edge e is already labelled 15711 * 11 continue with the next edge 15712 * 12 w <- G.adjacentVertex(t,e) 15713 * 13 if vertex w is not discovered and not explored 15714 * 14 label e as tree-edge 15715 * 15 label w as discovered 15716 * 16 S.push(w) 15717 * 17 continue at 5 15718 * 18 else if vertex w is discovered 15719 * 19 label e as back-edge 15720 * 20 else 15721 * 21 // vertex w is explored 15722 * 22 label e as forward- or cross-edge 15723 * 23 label t as explored 15724 * 24 S.pop() 15725 * 15726 * convention: 15727 * 0x10 - discovered 15728 * 0x11 - discovered and fall-through edge labelled 15729 * 0x12 - discovered and fall-through and branch edges labelled 15730 * 0x20 - explored 15731 */ 15732 15733 enum { 15734 DISCOVERED = 0x10, 15735 EXPLORED = 0x20, 15736 FALLTHROUGH = 1, 15737 BRANCH = 2, 15738 }; 15739 15740 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 15741 { 15742 env->insn_aux_data[idx].prune_point = true; 15743 } 15744 15745 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 15746 { 15747 return env->insn_aux_data[insn_idx].prune_point; 15748 } 15749 15750 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 15751 { 15752 env->insn_aux_data[idx].force_checkpoint = true; 15753 } 15754 15755 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 15756 { 15757 return env->insn_aux_data[insn_idx].force_checkpoint; 15758 } 15759 15760 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 15761 { 15762 env->insn_aux_data[idx].calls_callback = true; 15763 } 15764 15765 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 15766 { 15767 return env->insn_aux_data[insn_idx].calls_callback; 15768 } 15769 15770 enum { 15771 DONE_EXPLORING = 0, 15772 KEEP_EXPLORING = 1, 15773 }; 15774 15775 /* t, w, e - match pseudo-code above: 15776 * t - index of current instruction 15777 * w - next instruction 15778 * e - edge 15779 */ 15780 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 15781 { 15782 int *insn_stack = env->cfg.insn_stack; 15783 int *insn_state = env->cfg.insn_state; 15784 15785 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 15786 return DONE_EXPLORING; 15787 15788 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 15789 return DONE_EXPLORING; 15790 15791 if (w < 0 || w >= env->prog->len) { 15792 verbose_linfo(env, t, "%d: ", t); 15793 verbose(env, "jump out of range from insn %d to %d\n", t, w); 15794 return -EINVAL; 15795 } 15796 15797 if (e == BRANCH) { 15798 /* mark branch target for state pruning */ 15799 mark_prune_point(env, w); 15800 mark_jmp_point(env, w); 15801 } 15802 15803 if (insn_state[w] == 0) { 15804 /* tree-edge */ 15805 insn_state[t] = DISCOVERED | e; 15806 insn_state[w] = DISCOVERED; 15807 if (env->cfg.cur_stack >= env->prog->len) 15808 return -E2BIG; 15809 insn_stack[env->cfg.cur_stack++] = w; 15810 return KEEP_EXPLORING; 15811 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 15812 if (env->bpf_capable) 15813 return DONE_EXPLORING; 15814 verbose_linfo(env, t, "%d: ", t); 15815 verbose_linfo(env, w, "%d: ", w); 15816 verbose(env, "back-edge from insn %d to %d\n", t, w); 15817 return -EINVAL; 15818 } else if (insn_state[w] == EXPLORED) { 15819 /* forward- or cross-edge */ 15820 insn_state[t] = DISCOVERED | e; 15821 } else { 15822 verbose(env, "insn state internal bug\n"); 15823 return -EFAULT; 15824 } 15825 return DONE_EXPLORING; 15826 } 15827 15828 static int visit_func_call_insn(int t, struct bpf_insn *insns, 15829 struct bpf_verifier_env *env, 15830 bool visit_callee) 15831 { 15832 int ret, insn_sz; 15833 15834 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 15835 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 15836 if (ret) 15837 return ret; 15838 15839 mark_prune_point(env, t + insn_sz); 15840 /* when we exit from subprog, we need to record non-linear history */ 15841 mark_jmp_point(env, t + insn_sz); 15842 15843 if (visit_callee) { 15844 mark_prune_point(env, t); 15845 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 15846 } 15847 return ret; 15848 } 15849 15850 /* Visits the instruction at index t and returns one of the following: 15851 * < 0 - an error occurred 15852 * DONE_EXPLORING - the instruction was fully explored 15853 * KEEP_EXPLORING - there is still work to be done before it is fully explored 15854 */ 15855 static int visit_insn(int t, struct bpf_verifier_env *env) 15856 { 15857 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 15858 int ret, off, insn_sz; 15859 15860 if (bpf_pseudo_func(insn)) 15861 return visit_func_call_insn(t, insns, env, true); 15862 15863 /* All non-branch instructions have a single fall-through edge. */ 15864 if (BPF_CLASS(insn->code) != BPF_JMP && 15865 BPF_CLASS(insn->code) != BPF_JMP32) { 15866 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 15867 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 15868 } 15869 15870 switch (BPF_OP(insn->code)) { 15871 case BPF_EXIT: 15872 return DONE_EXPLORING; 15873 15874 case BPF_CALL: 15875 if (is_async_callback_calling_insn(insn)) 15876 /* Mark this call insn as a prune point to trigger 15877 * is_state_visited() check before call itself is 15878 * processed by __check_func_call(). Otherwise new 15879 * async state will be pushed for further exploration. 15880 */ 15881 mark_prune_point(env, t); 15882 /* For functions that invoke callbacks it is not known how many times 15883 * callback would be called. Verifier models callback calling functions 15884 * by repeatedly visiting callback bodies and returning to origin call 15885 * instruction. 15886 * In order to stop such iteration verifier needs to identify when a 15887 * state identical some state from a previous iteration is reached. 15888 * Check below forces creation of checkpoint before callback calling 15889 * instruction to allow search for such identical states. 15890 */ 15891 if (is_sync_callback_calling_insn(insn)) { 15892 mark_calls_callback(env, t); 15893 mark_force_checkpoint(env, t); 15894 mark_prune_point(env, t); 15895 mark_jmp_point(env, t); 15896 } 15897 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15898 struct bpf_kfunc_call_arg_meta meta; 15899 15900 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 15901 if (ret == 0 && is_iter_next_kfunc(&meta)) { 15902 mark_prune_point(env, t); 15903 /* Checking and saving state checkpoints at iter_next() call 15904 * is crucial for fast convergence of open-coded iterator loop 15905 * logic, so we need to force it. If we don't do that, 15906 * is_state_visited() might skip saving a checkpoint, causing 15907 * unnecessarily long sequence of not checkpointed 15908 * instructions and jumps, leading to exhaustion of jump 15909 * history buffer, and potentially other undesired outcomes. 15910 * It is expected that with correct open-coded iterators 15911 * convergence will happen quickly, so we don't run a risk of 15912 * exhausting memory. 15913 */ 15914 mark_force_checkpoint(env, t); 15915 } 15916 } 15917 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 15918 15919 case BPF_JA: 15920 if (BPF_SRC(insn->code) != BPF_K) 15921 return -EINVAL; 15922 15923 if (BPF_CLASS(insn->code) == BPF_JMP) 15924 off = insn->off; 15925 else 15926 off = insn->imm; 15927 15928 /* unconditional jump with single edge */ 15929 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 15930 if (ret) 15931 return ret; 15932 15933 mark_prune_point(env, t + off + 1); 15934 mark_jmp_point(env, t + off + 1); 15935 15936 return ret; 15937 15938 default: 15939 /* conditional jump with two edges */ 15940 mark_prune_point(env, t); 15941 if (is_may_goto_insn(insn)) 15942 mark_force_checkpoint(env, t); 15943 15944 ret = push_insn(t, t + 1, FALLTHROUGH, env); 15945 if (ret) 15946 return ret; 15947 15948 return push_insn(t, t + insn->off + 1, BRANCH, env); 15949 } 15950 } 15951 15952 /* non-recursive depth-first-search to detect loops in BPF program 15953 * loop == back-edge in directed graph 15954 */ 15955 static int check_cfg(struct bpf_verifier_env *env) 15956 { 15957 int insn_cnt = env->prog->len; 15958 int *insn_stack, *insn_state; 15959 int ex_insn_beg, i, ret = 0; 15960 bool ex_done = false; 15961 15962 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15963 if (!insn_state) 15964 return -ENOMEM; 15965 15966 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15967 if (!insn_stack) { 15968 kvfree(insn_state); 15969 return -ENOMEM; 15970 } 15971 15972 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 15973 insn_stack[0] = 0; /* 0 is the first instruction */ 15974 env->cfg.cur_stack = 1; 15975 15976 walk_cfg: 15977 while (env->cfg.cur_stack > 0) { 15978 int t = insn_stack[env->cfg.cur_stack - 1]; 15979 15980 ret = visit_insn(t, env); 15981 switch (ret) { 15982 case DONE_EXPLORING: 15983 insn_state[t] = EXPLORED; 15984 env->cfg.cur_stack--; 15985 break; 15986 case KEEP_EXPLORING: 15987 break; 15988 default: 15989 if (ret > 0) { 15990 verbose(env, "visit_insn internal bug\n"); 15991 ret = -EFAULT; 15992 } 15993 goto err_free; 15994 } 15995 } 15996 15997 if (env->cfg.cur_stack < 0) { 15998 verbose(env, "pop stack internal bug\n"); 15999 ret = -EFAULT; 16000 goto err_free; 16001 } 16002 16003 if (env->exception_callback_subprog && !ex_done) { 16004 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; 16005 16006 insn_state[ex_insn_beg] = DISCOVERED; 16007 insn_stack[0] = ex_insn_beg; 16008 env->cfg.cur_stack = 1; 16009 ex_done = true; 16010 goto walk_cfg; 16011 } 16012 16013 for (i = 0; i < insn_cnt; i++) { 16014 struct bpf_insn *insn = &env->prog->insnsi[i]; 16015 16016 if (insn_state[i] != EXPLORED) { 16017 verbose(env, "unreachable insn %d\n", i); 16018 ret = -EINVAL; 16019 goto err_free; 16020 } 16021 if (bpf_is_ldimm64(insn)) { 16022 if (insn_state[i + 1] != 0) { 16023 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 16024 ret = -EINVAL; 16025 goto err_free; 16026 } 16027 i++; /* skip second half of ldimm64 */ 16028 } 16029 } 16030 ret = 0; /* cfg looks good */ 16031 16032 err_free: 16033 kvfree(insn_state); 16034 kvfree(insn_stack); 16035 env->cfg.insn_state = env->cfg.insn_stack = NULL; 16036 return ret; 16037 } 16038 16039 static int check_abnormal_return(struct bpf_verifier_env *env) 16040 { 16041 int i; 16042 16043 for (i = 1; i < env->subprog_cnt; i++) { 16044 if (env->subprog_info[i].has_ld_abs) { 16045 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 16046 return -EINVAL; 16047 } 16048 if (env->subprog_info[i].has_tail_call) { 16049 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 16050 return -EINVAL; 16051 } 16052 } 16053 return 0; 16054 } 16055 16056 /* The minimum supported BTF func info size */ 16057 #define MIN_BPF_FUNCINFO_SIZE 8 16058 #define MAX_FUNCINFO_REC_SIZE 252 16059 16060 static int check_btf_func_early(struct bpf_verifier_env *env, 16061 const union bpf_attr *attr, 16062 bpfptr_t uattr) 16063 { 16064 u32 krec_size = sizeof(struct bpf_func_info); 16065 const struct btf_type *type, *func_proto; 16066 u32 i, nfuncs, urec_size, min_size; 16067 struct bpf_func_info *krecord; 16068 struct bpf_prog *prog; 16069 const struct btf *btf; 16070 u32 prev_offset = 0; 16071 bpfptr_t urecord; 16072 int ret = -ENOMEM; 16073 16074 nfuncs = attr->func_info_cnt; 16075 if (!nfuncs) { 16076 if (check_abnormal_return(env)) 16077 return -EINVAL; 16078 return 0; 16079 } 16080 16081 urec_size = attr->func_info_rec_size; 16082 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 16083 urec_size > MAX_FUNCINFO_REC_SIZE || 16084 urec_size % sizeof(u32)) { 16085 verbose(env, "invalid func info rec size %u\n", urec_size); 16086 return -EINVAL; 16087 } 16088 16089 prog = env->prog; 16090 btf = prog->aux->btf; 16091 16092 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 16093 min_size = min_t(u32, krec_size, urec_size); 16094 16095 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 16096 if (!krecord) 16097 return -ENOMEM; 16098 16099 for (i = 0; i < nfuncs; i++) { 16100 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 16101 if (ret) { 16102 if (ret == -E2BIG) { 16103 verbose(env, "nonzero tailing record in func info"); 16104 /* set the size kernel expects so loader can zero 16105 * out the rest of the record. 16106 */ 16107 if (copy_to_bpfptr_offset(uattr, 16108 offsetof(union bpf_attr, func_info_rec_size), 16109 &min_size, sizeof(min_size))) 16110 ret = -EFAULT; 16111 } 16112 goto err_free; 16113 } 16114 16115 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 16116 ret = -EFAULT; 16117 goto err_free; 16118 } 16119 16120 /* check insn_off */ 16121 ret = -EINVAL; 16122 if (i == 0) { 16123 if (krecord[i].insn_off) { 16124 verbose(env, 16125 "nonzero insn_off %u for the first func info record", 16126 krecord[i].insn_off); 16127 goto err_free; 16128 } 16129 } else if (krecord[i].insn_off <= prev_offset) { 16130 verbose(env, 16131 "same or smaller insn offset (%u) than previous func info record (%u)", 16132 krecord[i].insn_off, prev_offset); 16133 goto err_free; 16134 } 16135 16136 /* check type_id */ 16137 type = btf_type_by_id(btf, krecord[i].type_id); 16138 if (!type || !btf_type_is_func(type)) { 16139 verbose(env, "invalid type id %d in func info", 16140 krecord[i].type_id); 16141 goto err_free; 16142 } 16143 16144 func_proto = btf_type_by_id(btf, type->type); 16145 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 16146 /* btf_func_check() already verified it during BTF load */ 16147 goto err_free; 16148 16149 prev_offset = krecord[i].insn_off; 16150 bpfptr_add(&urecord, urec_size); 16151 } 16152 16153 prog->aux->func_info = krecord; 16154 prog->aux->func_info_cnt = nfuncs; 16155 return 0; 16156 16157 err_free: 16158 kvfree(krecord); 16159 return ret; 16160 } 16161 16162 static int check_btf_func(struct bpf_verifier_env *env, 16163 const union bpf_attr *attr, 16164 bpfptr_t uattr) 16165 { 16166 const struct btf_type *type, *func_proto, *ret_type; 16167 u32 i, nfuncs, urec_size; 16168 struct bpf_func_info *krecord; 16169 struct bpf_func_info_aux *info_aux = NULL; 16170 struct bpf_prog *prog; 16171 const struct btf *btf; 16172 bpfptr_t urecord; 16173 bool scalar_return; 16174 int ret = -ENOMEM; 16175 16176 nfuncs = attr->func_info_cnt; 16177 if (!nfuncs) { 16178 if (check_abnormal_return(env)) 16179 return -EINVAL; 16180 return 0; 16181 } 16182 if (nfuncs != env->subprog_cnt) { 16183 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 16184 return -EINVAL; 16185 } 16186 16187 urec_size = attr->func_info_rec_size; 16188 16189 prog = env->prog; 16190 btf = prog->aux->btf; 16191 16192 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 16193 16194 krecord = prog->aux->func_info; 16195 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 16196 if (!info_aux) 16197 return -ENOMEM; 16198 16199 for (i = 0; i < nfuncs; i++) { 16200 /* check insn_off */ 16201 ret = -EINVAL; 16202 16203 if (env->subprog_info[i].start != krecord[i].insn_off) { 16204 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 16205 goto err_free; 16206 } 16207 16208 /* Already checked type_id */ 16209 type = btf_type_by_id(btf, krecord[i].type_id); 16210 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 16211 /* Already checked func_proto */ 16212 func_proto = btf_type_by_id(btf, type->type); 16213 16214 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 16215 scalar_return = 16216 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 16217 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 16218 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 16219 goto err_free; 16220 } 16221 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 16222 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 16223 goto err_free; 16224 } 16225 16226 bpfptr_add(&urecord, urec_size); 16227 } 16228 16229 prog->aux->func_info_aux = info_aux; 16230 return 0; 16231 16232 err_free: 16233 kfree(info_aux); 16234 return ret; 16235 } 16236 16237 static void adjust_btf_func(struct bpf_verifier_env *env) 16238 { 16239 struct bpf_prog_aux *aux = env->prog->aux; 16240 int i; 16241 16242 if (!aux->func_info) 16243 return; 16244 16245 /* func_info is not available for hidden subprogs */ 16246 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 16247 aux->func_info[i].insn_off = env->subprog_info[i].start; 16248 } 16249 16250 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 16251 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 16252 16253 static int check_btf_line(struct bpf_verifier_env *env, 16254 const union bpf_attr *attr, 16255 bpfptr_t uattr) 16256 { 16257 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 16258 struct bpf_subprog_info *sub; 16259 struct bpf_line_info *linfo; 16260 struct bpf_prog *prog; 16261 const struct btf *btf; 16262 bpfptr_t ulinfo; 16263 int err; 16264 16265 nr_linfo = attr->line_info_cnt; 16266 if (!nr_linfo) 16267 return 0; 16268 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 16269 return -EINVAL; 16270 16271 rec_size = attr->line_info_rec_size; 16272 if (rec_size < MIN_BPF_LINEINFO_SIZE || 16273 rec_size > MAX_LINEINFO_REC_SIZE || 16274 rec_size & (sizeof(u32) - 1)) 16275 return -EINVAL; 16276 16277 /* Need to zero it in case the userspace may 16278 * pass in a smaller bpf_line_info object. 16279 */ 16280 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 16281 GFP_KERNEL | __GFP_NOWARN); 16282 if (!linfo) 16283 return -ENOMEM; 16284 16285 prog = env->prog; 16286 btf = prog->aux->btf; 16287 16288 s = 0; 16289 sub = env->subprog_info; 16290 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 16291 expected_size = sizeof(struct bpf_line_info); 16292 ncopy = min_t(u32, expected_size, rec_size); 16293 for (i = 0; i < nr_linfo; i++) { 16294 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 16295 if (err) { 16296 if (err == -E2BIG) { 16297 verbose(env, "nonzero tailing record in line_info"); 16298 if (copy_to_bpfptr_offset(uattr, 16299 offsetof(union bpf_attr, line_info_rec_size), 16300 &expected_size, sizeof(expected_size))) 16301 err = -EFAULT; 16302 } 16303 goto err_free; 16304 } 16305 16306 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 16307 err = -EFAULT; 16308 goto err_free; 16309 } 16310 16311 /* 16312 * Check insn_off to ensure 16313 * 1) strictly increasing AND 16314 * 2) bounded by prog->len 16315 * 16316 * The linfo[0].insn_off == 0 check logically falls into 16317 * the later "missing bpf_line_info for func..." case 16318 * because the first linfo[0].insn_off must be the 16319 * first sub also and the first sub must have 16320 * subprog_info[0].start == 0. 16321 */ 16322 if ((i && linfo[i].insn_off <= prev_offset) || 16323 linfo[i].insn_off >= prog->len) { 16324 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 16325 i, linfo[i].insn_off, prev_offset, 16326 prog->len); 16327 err = -EINVAL; 16328 goto err_free; 16329 } 16330 16331 if (!prog->insnsi[linfo[i].insn_off].code) { 16332 verbose(env, 16333 "Invalid insn code at line_info[%u].insn_off\n", 16334 i); 16335 err = -EINVAL; 16336 goto err_free; 16337 } 16338 16339 if (!btf_name_by_offset(btf, linfo[i].line_off) || 16340 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 16341 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 16342 err = -EINVAL; 16343 goto err_free; 16344 } 16345 16346 if (s != env->subprog_cnt) { 16347 if (linfo[i].insn_off == sub[s].start) { 16348 sub[s].linfo_idx = i; 16349 s++; 16350 } else if (sub[s].start < linfo[i].insn_off) { 16351 verbose(env, "missing bpf_line_info for func#%u\n", s); 16352 err = -EINVAL; 16353 goto err_free; 16354 } 16355 } 16356 16357 prev_offset = linfo[i].insn_off; 16358 bpfptr_add(&ulinfo, rec_size); 16359 } 16360 16361 if (s != env->subprog_cnt) { 16362 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 16363 env->subprog_cnt - s, s); 16364 err = -EINVAL; 16365 goto err_free; 16366 } 16367 16368 prog->aux->linfo = linfo; 16369 prog->aux->nr_linfo = nr_linfo; 16370 16371 return 0; 16372 16373 err_free: 16374 kvfree(linfo); 16375 return err; 16376 } 16377 16378 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 16379 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 16380 16381 static int check_core_relo(struct bpf_verifier_env *env, 16382 const union bpf_attr *attr, 16383 bpfptr_t uattr) 16384 { 16385 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 16386 struct bpf_core_relo core_relo = {}; 16387 struct bpf_prog *prog = env->prog; 16388 const struct btf *btf = prog->aux->btf; 16389 struct bpf_core_ctx ctx = { 16390 .log = &env->log, 16391 .btf = btf, 16392 }; 16393 bpfptr_t u_core_relo; 16394 int err; 16395 16396 nr_core_relo = attr->core_relo_cnt; 16397 if (!nr_core_relo) 16398 return 0; 16399 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 16400 return -EINVAL; 16401 16402 rec_size = attr->core_relo_rec_size; 16403 if (rec_size < MIN_CORE_RELO_SIZE || 16404 rec_size > MAX_CORE_RELO_SIZE || 16405 rec_size % sizeof(u32)) 16406 return -EINVAL; 16407 16408 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 16409 expected_size = sizeof(struct bpf_core_relo); 16410 ncopy = min_t(u32, expected_size, rec_size); 16411 16412 /* Unlike func_info and line_info, copy and apply each CO-RE 16413 * relocation record one at a time. 16414 */ 16415 for (i = 0; i < nr_core_relo; i++) { 16416 /* future proofing when sizeof(bpf_core_relo) changes */ 16417 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 16418 if (err) { 16419 if (err == -E2BIG) { 16420 verbose(env, "nonzero tailing record in core_relo"); 16421 if (copy_to_bpfptr_offset(uattr, 16422 offsetof(union bpf_attr, core_relo_rec_size), 16423 &expected_size, sizeof(expected_size))) 16424 err = -EFAULT; 16425 } 16426 break; 16427 } 16428 16429 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 16430 err = -EFAULT; 16431 break; 16432 } 16433 16434 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 16435 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 16436 i, core_relo.insn_off, prog->len); 16437 err = -EINVAL; 16438 break; 16439 } 16440 16441 err = bpf_core_apply(&ctx, &core_relo, i, 16442 &prog->insnsi[core_relo.insn_off / 8]); 16443 if (err) 16444 break; 16445 bpfptr_add(&u_core_relo, rec_size); 16446 } 16447 return err; 16448 } 16449 16450 static int check_btf_info_early(struct bpf_verifier_env *env, 16451 const union bpf_attr *attr, 16452 bpfptr_t uattr) 16453 { 16454 struct btf *btf; 16455 int err; 16456 16457 if (!attr->func_info_cnt && !attr->line_info_cnt) { 16458 if (check_abnormal_return(env)) 16459 return -EINVAL; 16460 return 0; 16461 } 16462 16463 btf = btf_get_by_fd(attr->prog_btf_fd); 16464 if (IS_ERR(btf)) 16465 return PTR_ERR(btf); 16466 if (btf_is_kernel(btf)) { 16467 btf_put(btf); 16468 return -EACCES; 16469 } 16470 env->prog->aux->btf = btf; 16471 16472 err = check_btf_func_early(env, attr, uattr); 16473 if (err) 16474 return err; 16475 return 0; 16476 } 16477 16478 static int check_btf_info(struct bpf_verifier_env *env, 16479 const union bpf_attr *attr, 16480 bpfptr_t uattr) 16481 { 16482 int err; 16483 16484 if (!attr->func_info_cnt && !attr->line_info_cnt) { 16485 if (check_abnormal_return(env)) 16486 return -EINVAL; 16487 return 0; 16488 } 16489 16490 err = check_btf_func(env, attr, uattr); 16491 if (err) 16492 return err; 16493 16494 err = check_btf_line(env, attr, uattr); 16495 if (err) 16496 return err; 16497 16498 err = check_core_relo(env, attr, uattr); 16499 if (err) 16500 return err; 16501 16502 return 0; 16503 } 16504 16505 /* check %cur's range satisfies %old's */ 16506 static bool range_within(const struct bpf_reg_state *old, 16507 const struct bpf_reg_state *cur) 16508 { 16509 return old->umin_value <= cur->umin_value && 16510 old->umax_value >= cur->umax_value && 16511 old->smin_value <= cur->smin_value && 16512 old->smax_value >= cur->smax_value && 16513 old->u32_min_value <= cur->u32_min_value && 16514 old->u32_max_value >= cur->u32_max_value && 16515 old->s32_min_value <= cur->s32_min_value && 16516 old->s32_max_value >= cur->s32_max_value; 16517 } 16518 16519 /* If in the old state two registers had the same id, then they need to have 16520 * the same id in the new state as well. But that id could be different from 16521 * the old state, so we need to track the mapping from old to new ids. 16522 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 16523 * regs with old id 5 must also have new id 9 for the new state to be safe. But 16524 * regs with a different old id could still have new id 9, we don't care about 16525 * that. 16526 * So we look through our idmap to see if this old id has been seen before. If 16527 * so, we require the new id to match; otherwise, we add the id pair to the map. 16528 */ 16529 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 16530 { 16531 struct bpf_id_pair *map = idmap->map; 16532 unsigned int i; 16533 16534 /* either both IDs should be set or both should be zero */ 16535 if (!!old_id != !!cur_id) 16536 return false; 16537 16538 if (old_id == 0) /* cur_id == 0 as well */ 16539 return true; 16540 16541 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 16542 if (!map[i].old) { 16543 /* Reached an empty slot; haven't seen this id before */ 16544 map[i].old = old_id; 16545 map[i].cur = cur_id; 16546 return true; 16547 } 16548 if (map[i].old == old_id) 16549 return map[i].cur == cur_id; 16550 if (map[i].cur == cur_id) 16551 return false; 16552 } 16553 /* We ran out of idmap slots, which should be impossible */ 16554 WARN_ON_ONCE(1); 16555 return false; 16556 } 16557 16558 /* Similar to check_ids(), but allocate a unique temporary ID 16559 * for 'old_id' or 'cur_id' of zero. 16560 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 16561 */ 16562 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 16563 { 16564 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 16565 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 16566 16567 return check_ids(old_id, cur_id, idmap); 16568 } 16569 16570 static void clean_func_state(struct bpf_verifier_env *env, 16571 struct bpf_func_state *st) 16572 { 16573 enum bpf_reg_liveness live; 16574 int i, j; 16575 16576 for (i = 0; i < BPF_REG_FP; i++) { 16577 live = st->regs[i].live; 16578 /* liveness must not touch this register anymore */ 16579 st->regs[i].live |= REG_LIVE_DONE; 16580 if (!(live & REG_LIVE_READ)) 16581 /* since the register is unused, clear its state 16582 * to make further comparison simpler 16583 */ 16584 __mark_reg_not_init(env, &st->regs[i]); 16585 } 16586 16587 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 16588 live = st->stack[i].spilled_ptr.live; 16589 /* liveness must not touch this stack slot anymore */ 16590 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 16591 if (!(live & REG_LIVE_READ)) { 16592 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 16593 for (j = 0; j < BPF_REG_SIZE; j++) 16594 st->stack[i].slot_type[j] = STACK_INVALID; 16595 } 16596 } 16597 } 16598 16599 static void clean_verifier_state(struct bpf_verifier_env *env, 16600 struct bpf_verifier_state *st) 16601 { 16602 int i; 16603 16604 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 16605 /* all regs in this state in all frames were already marked */ 16606 return; 16607 16608 for (i = 0; i <= st->curframe; i++) 16609 clean_func_state(env, st->frame[i]); 16610 } 16611 16612 /* the parentage chains form a tree. 16613 * the verifier states are added to state lists at given insn and 16614 * pushed into state stack for future exploration. 16615 * when the verifier reaches bpf_exit insn some of the verifer states 16616 * stored in the state lists have their final liveness state already, 16617 * but a lot of states will get revised from liveness point of view when 16618 * the verifier explores other branches. 16619 * Example: 16620 * 1: r0 = 1 16621 * 2: if r1 == 100 goto pc+1 16622 * 3: r0 = 2 16623 * 4: exit 16624 * when the verifier reaches exit insn the register r0 in the state list of 16625 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 16626 * of insn 2 and goes exploring further. At the insn 4 it will walk the 16627 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 16628 * 16629 * Since the verifier pushes the branch states as it sees them while exploring 16630 * the program the condition of walking the branch instruction for the second 16631 * time means that all states below this branch were already explored and 16632 * their final liveness marks are already propagated. 16633 * Hence when the verifier completes the search of state list in is_state_visited() 16634 * we can call this clean_live_states() function to mark all liveness states 16635 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 16636 * will not be used. 16637 * This function also clears the registers and stack for states that !READ 16638 * to simplify state merging. 16639 * 16640 * Important note here that walking the same branch instruction in the callee 16641 * doesn't meant that the states are DONE. The verifier has to compare 16642 * the callsites 16643 */ 16644 static void clean_live_states(struct bpf_verifier_env *env, int insn, 16645 struct bpf_verifier_state *cur) 16646 { 16647 struct bpf_verifier_state_list *sl; 16648 16649 sl = *explored_state(env, insn); 16650 while (sl) { 16651 if (sl->state.branches) 16652 goto next; 16653 if (sl->state.insn_idx != insn || 16654 !same_callsites(&sl->state, cur)) 16655 goto next; 16656 clean_verifier_state(env, &sl->state); 16657 next: 16658 sl = sl->next; 16659 } 16660 } 16661 16662 static bool regs_exact(const struct bpf_reg_state *rold, 16663 const struct bpf_reg_state *rcur, 16664 struct bpf_idmap *idmap) 16665 { 16666 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16667 check_ids(rold->id, rcur->id, idmap) && 16668 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16669 } 16670 16671 enum exact_level { 16672 NOT_EXACT, 16673 EXACT, 16674 RANGE_WITHIN 16675 }; 16676 16677 /* Returns true if (rold safe implies rcur safe) */ 16678 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 16679 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 16680 enum exact_level exact) 16681 { 16682 if (exact == EXACT) 16683 return regs_exact(rold, rcur, idmap); 16684 16685 if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT) 16686 /* explored state didn't use this */ 16687 return true; 16688 if (rold->type == NOT_INIT) { 16689 if (exact == NOT_EXACT || rcur->type == NOT_INIT) 16690 /* explored state can't have used this */ 16691 return true; 16692 } 16693 16694 /* Enforce that register types have to match exactly, including their 16695 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 16696 * rule. 16697 * 16698 * One can make a point that using a pointer register as unbounded 16699 * SCALAR would be technically acceptable, but this could lead to 16700 * pointer leaks because scalars are allowed to leak while pointers 16701 * are not. We could make this safe in special cases if root is 16702 * calling us, but it's probably not worth the hassle. 16703 * 16704 * Also, register types that are *not* MAYBE_NULL could technically be 16705 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 16706 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 16707 * to the same map). 16708 * However, if the old MAYBE_NULL register then got NULL checked, 16709 * doing so could have affected others with the same id, and we can't 16710 * check for that because we lost the id when we converted to 16711 * a non-MAYBE_NULL variant. 16712 * So, as a general rule we don't allow mixing MAYBE_NULL and 16713 * non-MAYBE_NULL registers as well. 16714 */ 16715 if (rold->type != rcur->type) 16716 return false; 16717 16718 switch (base_type(rold->type)) { 16719 case SCALAR_VALUE: 16720 if (env->explore_alu_limits) { 16721 /* explore_alu_limits disables tnum_in() and range_within() 16722 * logic and requires everything to be strict 16723 */ 16724 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16725 check_scalar_ids(rold->id, rcur->id, idmap); 16726 } 16727 if (!rold->precise && exact == NOT_EXACT) 16728 return true; 16729 /* Why check_ids() for scalar registers? 16730 * 16731 * Consider the following BPF code: 16732 * 1: r6 = ... unbound scalar, ID=a ... 16733 * 2: r7 = ... unbound scalar, ID=b ... 16734 * 3: if (r6 > r7) goto +1 16735 * 4: r6 = r7 16736 * 5: if (r6 > X) goto ... 16737 * 6: ... memory operation using r7 ... 16738 * 16739 * First verification path is [1-6]: 16740 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 16741 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 16742 * r7 <= X, because r6 and r7 share same id. 16743 * Next verification path is [1-4, 6]. 16744 * 16745 * Instruction (6) would be reached in two states: 16746 * I. r6{.id=b}, r7{.id=b} via path 1-6; 16747 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 16748 * 16749 * Use check_ids() to distinguish these states. 16750 * --- 16751 * Also verify that new value satisfies old value range knowledge. 16752 */ 16753 return range_within(rold, rcur) && 16754 tnum_in(rold->var_off, rcur->var_off) && 16755 check_scalar_ids(rold->id, rcur->id, idmap); 16756 case PTR_TO_MAP_KEY: 16757 case PTR_TO_MAP_VALUE: 16758 case PTR_TO_MEM: 16759 case PTR_TO_BUF: 16760 case PTR_TO_TP_BUFFER: 16761 /* If the new min/max/var_off satisfy the old ones and 16762 * everything else matches, we are OK. 16763 */ 16764 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 16765 range_within(rold, rcur) && 16766 tnum_in(rold->var_off, rcur->var_off) && 16767 check_ids(rold->id, rcur->id, idmap) && 16768 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16769 case PTR_TO_PACKET_META: 16770 case PTR_TO_PACKET: 16771 /* We must have at least as much range as the old ptr 16772 * did, so that any accesses which were safe before are 16773 * still safe. This is true even if old range < old off, 16774 * since someone could have accessed through (ptr - k), or 16775 * even done ptr -= k in a register, to get a safe access. 16776 */ 16777 if (rold->range > rcur->range) 16778 return false; 16779 /* If the offsets don't match, we can't trust our alignment; 16780 * nor can we be sure that we won't fall out of range. 16781 */ 16782 if (rold->off != rcur->off) 16783 return false; 16784 /* id relations must be preserved */ 16785 if (!check_ids(rold->id, rcur->id, idmap)) 16786 return false; 16787 /* new val must satisfy old val knowledge */ 16788 return range_within(rold, rcur) && 16789 tnum_in(rold->var_off, rcur->var_off); 16790 case PTR_TO_STACK: 16791 /* two stack pointers are equal only if they're pointing to 16792 * the same stack frame, since fp-8 in foo != fp-8 in bar 16793 */ 16794 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 16795 case PTR_TO_ARENA: 16796 return true; 16797 default: 16798 return regs_exact(rold, rcur, idmap); 16799 } 16800 } 16801 16802 static struct bpf_reg_state unbound_reg; 16803 16804 static __init int unbound_reg_init(void) 16805 { 16806 __mark_reg_unknown_imprecise(&unbound_reg); 16807 unbound_reg.live |= REG_LIVE_READ; 16808 return 0; 16809 } 16810 late_initcall(unbound_reg_init); 16811 16812 static bool is_stack_all_misc(struct bpf_verifier_env *env, 16813 struct bpf_stack_state *stack) 16814 { 16815 u32 i; 16816 16817 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 16818 if ((stack->slot_type[i] == STACK_MISC) || 16819 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 16820 continue; 16821 return false; 16822 } 16823 16824 return true; 16825 } 16826 16827 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 16828 struct bpf_stack_state *stack) 16829 { 16830 if (is_spilled_scalar_reg64(stack)) 16831 return &stack->spilled_ptr; 16832 16833 if (is_stack_all_misc(env, stack)) 16834 return &unbound_reg; 16835 16836 return NULL; 16837 } 16838 16839 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 16840 struct bpf_func_state *cur, struct bpf_idmap *idmap, 16841 enum exact_level exact) 16842 { 16843 int i, spi; 16844 16845 /* walk slots of the explored stack and ignore any additional 16846 * slots in the current stack, since explored(safe) state 16847 * didn't use them 16848 */ 16849 for (i = 0; i < old->allocated_stack; i++) { 16850 struct bpf_reg_state *old_reg, *cur_reg; 16851 16852 spi = i / BPF_REG_SIZE; 16853 16854 if (exact != NOT_EXACT && 16855 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16856 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16857 return false; 16858 16859 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) 16860 && exact == NOT_EXACT) { 16861 i += BPF_REG_SIZE - 1; 16862 /* explored state didn't use this */ 16863 continue; 16864 } 16865 16866 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 16867 continue; 16868 16869 if (env->allow_uninit_stack && 16870 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 16871 continue; 16872 16873 /* explored stack has more populated slots than current stack 16874 * and these slots were used 16875 */ 16876 if (i >= cur->allocated_stack) 16877 return false; 16878 16879 /* 64-bit scalar spill vs all slots MISC and vice versa. 16880 * Load from all slots MISC produces unbound scalar. 16881 * Construct a fake register for such stack and call 16882 * regsafe() to ensure scalar ids are compared. 16883 */ 16884 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 16885 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 16886 if (old_reg && cur_reg) { 16887 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 16888 return false; 16889 i += BPF_REG_SIZE - 1; 16890 continue; 16891 } 16892 16893 /* if old state was safe with misc data in the stack 16894 * it will be safe with zero-initialized stack. 16895 * The opposite is not true 16896 */ 16897 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 16898 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 16899 continue; 16900 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16901 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16902 /* Ex: old explored (safe) state has STACK_SPILL in 16903 * this stack slot, but current has STACK_MISC -> 16904 * this verifier states are not equivalent, 16905 * return false to continue verification of this path 16906 */ 16907 return false; 16908 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 16909 continue; 16910 /* Both old and cur are having same slot_type */ 16911 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 16912 case STACK_SPILL: 16913 /* when explored and current stack slot are both storing 16914 * spilled registers, check that stored pointers types 16915 * are the same as well. 16916 * Ex: explored safe path could have stored 16917 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 16918 * but current path has stored: 16919 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 16920 * such verifier states are not equivalent. 16921 * return false to continue verification of this path 16922 */ 16923 if (!regsafe(env, &old->stack[spi].spilled_ptr, 16924 &cur->stack[spi].spilled_ptr, idmap, exact)) 16925 return false; 16926 break; 16927 case STACK_DYNPTR: 16928 old_reg = &old->stack[spi].spilled_ptr; 16929 cur_reg = &cur->stack[spi].spilled_ptr; 16930 if (old_reg->dynptr.type != cur_reg->dynptr.type || 16931 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 16932 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16933 return false; 16934 break; 16935 case STACK_ITER: 16936 old_reg = &old->stack[spi].spilled_ptr; 16937 cur_reg = &cur->stack[spi].spilled_ptr; 16938 /* iter.depth is not compared between states as it 16939 * doesn't matter for correctness and would otherwise 16940 * prevent convergence; we maintain it only to prevent 16941 * infinite loop check triggering, see 16942 * iter_active_depths_differ() 16943 */ 16944 if (old_reg->iter.btf != cur_reg->iter.btf || 16945 old_reg->iter.btf_id != cur_reg->iter.btf_id || 16946 old_reg->iter.state != cur_reg->iter.state || 16947 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 16948 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16949 return false; 16950 break; 16951 case STACK_MISC: 16952 case STACK_ZERO: 16953 case STACK_INVALID: 16954 continue; 16955 /* Ensure that new unhandled slot types return false by default */ 16956 default: 16957 return false; 16958 } 16959 } 16960 return true; 16961 } 16962 16963 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 16964 struct bpf_idmap *idmap) 16965 { 16966 int i; 16967 16968 if (old->acquired_refs != cur->acquired_refs) 16969 return false; 16970 16971 for (i = 0; i < old->acquired_refs; i++) { 16972 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 16973 return false; 16974 } 16975 16976 return true; 16977 } 16978 16979 /* compare two verifier states 16980 * 16981 * all states stored in state_list are known to be valid, since 16982 * verifier reached 'bpf_exit' instruction through them 16983 * 16984 * this function is called when verifier exploring different branches of 16985 * execution popped from the state stack. If it sees an old state that has 16986 * more strict register state and more strict stack state then this execution 16987 * branch doesn't need to be explored further, since verifier already 16988 * concluded that more strict state leads to valid finish. 16989 * 16990 * Therefore two states are equivalent if register state is more conservative 16991 * and explored stack state is more conservative than the current one. 16992 * Example: 16993 * explored current 16994 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 16995 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 16996 * 16997 * In other words if current stack state (one being explored) has more 16998 * valid slots than old one that already passed validation, it means 16999 * the verifier can stop exploring and conclude that current state is valid too 17000 * 17001 * Similarly with registers. If explored state has register type as invalid 17002 * whereas register type in current state is meaningful, it means that 17003 * the current state will reach 'bpf_exit' instruction safely 17004 */ 17005 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 17006 struct bpf_func_state *cur, enum exact_level exact) 17007 { 17008 int i; 17009 17010 if (old->callback_depth > cur->callback_depth) 17011 return false; 17012 17013 for (i = 0; i < MAX_BPF_REG; i++) 17014 if (!regsafe(env, &old->regs[i], &cur->regs[i], 17015 &env->idmap_scratch, exact)) 17016 return false; 17017 17018 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 17019 return false; 17020 17021 if (!refsafe(old, cur, &env->idmap_scratch)) 17022 return false; 17023 17024 return true; 17025 } 17026 17027 static void reset_idmap_scratch(struct bpf_verifier_env *env) 17028 { 17029 env->idmap_scratch.tmp_id_gen = env->id_gen; 17030 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 17031 } 17032 17033 static bool states_equal(struct bpf_verifier_env *env, 17034 struct bpf_verifier_state *old, 17035 struct bpf_verifier_state *cur, 17036 enum exact_level exact) 17037 { 17038 int i; 17039 17040 if (old->curframe != cur->curframe) 17041 return false; 17042 17043 reset_idmap_scratch(env); 17044 17045 /* Verification state from speculative execution simulation 17046 * must never prune a non-speculative execution one. 17047 */ 17048 if (old->speculative && !cur->speculative) 17049 return false; 17050 17051 if (old->active_lock.ptr != cur->active_lock.ptr) 17052 return false; 17053 17054 /* Old and cur active_lock's have to be either both present 17055 * or both absent. 17056 */ 17057 if (!!old->active_lock.id != !!cur->active_lock.id) 17058 return false; 17059 17060 if (old->active_lock.id && 17061 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 17062 return false; 17063 17064 if (old->active_rcu_lock != cur->active_rcu_lock) 17065 return false; 17066 17067 if (old->active_preempt_lock != cur->active_preempt_lock) 17068 return false; 17069 17070 if (old->in_sleepable != cur->in_sleepable) 17071 return false; 17072 17073 /* for states to be equal callsites have to be the same 17074 * and all frame states need to be equivalent 17075 */ 17076 for (i = 0; i <= old->curframe; i++) { 17077 if (old->frame[i]->callsite != cur->frame[i]->callsite) 17078 return false; 17079 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 17080 return false; 17081 } 17082 return true; 17083 } 17084 17085 /* Return 0 if no propagation happened. Return negative error code if error 17086 * happened. Otherwise, return the propagated bit. 17087 */ 17088 static int propagate_liveness_reg(struct bpf_verifier_env *env, 17089 struct bpf_reg_state *reg, 17090 struct bpf_reg_state *parent_reg) 17091 { 17092 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 17093 u8 flag = reg->live & REG_LIVE_READ; 17094 int err; 17095 17096 /* When comes here, read flags of PARENT_REG or REG could be any of 17097 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 17098 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 17099 */ 17100 if (parent_flag == REG_LIVE_READ64 || 17101 /* Or if there is no read flag from REG. */ 17102 !flag || 17103 /* Or if the read flag from REG is the same as PARENT_REG. */ 17104 parent_flag == flag) 17105 return 0; 17106 17107 err = mark_reg_read(env, reg, parent_reg, flag); 17108 if (err) 17109 return err; 17110 17111 return flag; 17112 } 17113 17114 /* A write screens off any subsequent reads; but write marks come from the 17115 * straight-line code between a state and its parent. When we arrive at an 17116 * equivalent state (jump target or such) we didn't arrive by the straight-line 17117 * code, so read marks in the state must propagate to the parent regardless 17118 * of the state's write marks. That's what 'parent == state->parent' comparison 17119 * in mark_reg_read() is for. 17120 */ 17121 static int propagate_liveness(struct bpf_verifier_env *env, 17122 const struct bpf_verifier_state *vstate, 17123 struct bpf_verifier_state *vparent) 17124 { 17125 struct bpf_reg_state *state_reg, *parent_reg; 17126 struct bpf_func_state *state, *parent; 17127 int i, frame, err = 0; 17128 17129 if (vparent->curframe != vstate->curframe) { 17130 WARN(1, "propagate_live: parent frame %d current frame %d\n", 17131 vparent->curframe, vstate->curframe); 17132 return -EFAULT; 17133 } 17134 /* Propagate read liveness of registers... */ 17135 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 17136 for (frame = 0; frame <= vstate->curframe; frame++) { 17137 parent = vparent->frame[frame]; 17138 state = vstate->frame[frame]; 17139 parent_reg = parent->regs; 17140 state_reg = state->regs; 17141 /* We don't need to worry about FP liveness, it's read-only */ 17142 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 17143 err = propagate_liveness_reg(env, &state_reg[i], 17144 &parent_reg[i]); 17145 if (err < 0) 17146 return err; 17147 if (err == REG_LIVE_READ64) 17148 mark_insn_zext(env, &parent_reg[i]); 17149 } 17150 17151 /* Propagate stack slots. */ 17152 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 17153 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 17154 parent_reg = &parent->stack[i].spilled_ptr; 17155 state_reg = &state->stack[i].spilled_ptr; 17156 err = propagate_liveness_reg(env, state_reg, 17157 parent_reg); 17158 if (err < 0) 17159 return err; 17160 } 17161 } 17162 return 0; 17163 } 17164 17165 /* find precise scalars in the previous equivalent state and 17166 * propagate them into the current state 17167 */ 17168 static int propagate_precision(struct bpf_verifier_env *env, 17169 const struct bpf_verifier_state *old) 17170 { 17171 struct bpf_reg_state *state_reg; 17172 struct bpf_func_state *state; 17173 int i, err = 0, fr; 17174 bool first; 17175 17176 for (fr = old->curframe; fr >= 0; fr--) { 17177 state = old->frame[fr]; 17178 state_reg = state->regs; 17179 first = true; 17180 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 17181 if (state_reg->type != SCALAR_VALUE || 17182 !state_reg->precise || 17183 !(state_reg->live & REG_LIVE_READ)) 17184 continue; 17185 if (env->log.level & BPF_LOG_LEVEL2) { 17186 if (first) 17187 verbose(env, "frame %d: propagating r%d", fr, i); 17188 else 17189 verbose(env, ",r%d", i); 17190 } 17191 bt_set_frame_reg(&env->bt, fr, i); 17192 first = false; 17193 } 17194 17195 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 17196 if (!is_spilled_reg(&state->stack[i])) 17197 continue; 17198 state_reg = &state->stack[i].spilled_ptr; 17199 if (state_reg->type != SCALAR_VALUE || 17200 !state_reg->precise || 17201 !(state_reg->live & REG_LIVE_READ)) 17202 continue; 17203 if (env->log.level & BPF_LOG_LEVEL2) { 17204 if (first) 17205 verbose(env, "frame %d: propagating fp%d", 17206 fr, (-i - 1) * BPF_REG_SIZE); 17207 else 17208 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 17209 } 17210 bt_set_frame_slot(&env->bt, fr, i); 17211 first = false; 17212 } 17213 if (!first) 17214 verbose(env, "\n"); 17215 } 17216 17217 err = mark_chain_precision_batch(env); 17218 if (err < 0) 17219 return err; 17220 17221 return 0; 17222 } 17223 17224 static bool states_maybe_looping(struct bpf_verifier_state *old, 17225 struct bpf_verifier_state *cur) 17226 { 17227 struct bpf_func_state *fold, *fcur; 17228 int i, fr = cur->curframe; 17229 17230 if (old->curframe != fr) 17231 return false; 17232 17233 fold = old->frame[fr]; 17234 fcur = cur->frame[fr]; 17235 for (i = 0; i < MAX_BPF_REG; i++) 17236 if (memcmp(&fold->regs[i], &fcur->regs[i], 17237 offsetof(struct bpf_reg_state, parent))) 17238 return false; 17239 return true; 17240 } 17241 17242 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 17243 { 17244 return env->insn_aux_data[insn_idx].is_iter_next; 17245 } 17246 17247 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 17248 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 17249 * states to match, which otherwise would look like an infinite loop. So while 17250 * iter_next() calls are taken care of, we still need to be careful and 17251 * prevent erroneous and too eager declaration of "ininite loop", when 17252 * iterators are involved. 17253 * 17254 * Here's a situation in pseudo-BPF assembly form: 17255 * 17256 * 0: again: ; set up iter_next() call args 17257 * 1: r1 = &it ; <CHECKPOINT HERE> 17258 * 2: call bpf_iter_num_next ; this is iter_next() call 17259 * 3: if r0 == 0 goto done 17260 * 4: ... something useful here ... 17261 * 5: goto again ; another iteration 17262 * 6: done: 17263 * 7: r1 = &it 17264 * 8: call bpf_iter_num_destroy ; clean up iter state 17265 * 9: exit 17266 * 17267 * This is a typical loop. Let's assume that we have a prune point at 1:, 17268 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 17269 * again`, assuming other heuristics don't get in a way). 17270 * 17271 * When we first time come to 1:, let's say we have some state X. We proceed 17272 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 17273 * Now we come back to validate that forked ACTIVE state. We proceed through 17274 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 17275 * are converging. But the problem is that we don't know that yet, as this 17276 * convergence has to happen at iter_next() call site only. So if nothing is 17277 * done, at 1: verifier will use bounded loop logic and declare infinite 17278 * looping (and would be *technically* correct, if not for iterator's 17279 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 17280 * don't want that. So what we do in process_iter_next_call() when we go on 17281 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 17282 * a different iteration. So when we suspect an infinite loop, we additionally 17283 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 17284 * pretend we are not looping and wait for next iter_next() call. 17285 * 17286 * This only applies to ACTIVE state. In DRAINED state we don't expect to 17287 * loop, because that would actually mean infinite loop, as DRAINED state is 17288 * "sticky", and so we'll keep returning into the same instruction with the 17289 * same state (at least in one of possible code paths). 17290 * 17291 * This approach allows to keep infinite loop heuristic even in the face of 17292 * active iterator. E.g., C snippet below is and will be detected as 17293 * inifintely looping: 17294 * 17295 * struct bpf_iter_num it; 17296 * int *p, x; 17297 * 17298 * bpf_iter_num_new(&it, 0, 10); 17299 * while ((p = bpf_iter_num_next(&t))) { 17300 * x = p; 17301 * while (x--) {} // <<-- infinite loop here 17302 * } 17303 * 17304 */ 17305 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 17306 { 17307 struct bpf_reg_state *slot, *cur_slot; 17308 struct bpf_func_state *state; 17309 int i, fr; 17310 17311 for (fr = old->curframe; fr >= 0; fr--) { 17312 state = old->frame[fr]; 17313 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 17314 if (state->stack[i].slot_type[0] != STACK_ITER) 17315 continue; 17316 17317 slot = &state->stack[i].spilled_ptr; 17318 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 17319 continue; 17320 17321 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 17322 if (cur_slot->iter.depth != slot->iter.depth) 17323 return true; 17324 } 17325 } 17326 return false; 17327 } 17328 17329 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 17330 { 17331 struct bpf_verifier_state_list *new_sl; 17332 struct bpf_verifier_state_list *sl, **pprev; 17333 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 17334 int i, j, n, err, states_cnt = 0; 17335 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 17336 bool add_new_state = force_new_state; 17337 bool force_exact; 17338 17339 /* bpf progs typically have pruning point every 4 instructions 17340 * http://vger.kernel.org/bpfconf2019.html#session-1 17341 * Do not add new state for future pruning if the verifier hasn't seen 17342 * at least 2 jumps and at least 8 instructions. 17343 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 17344 * In tests that amounts to up to 50% reduction into total verifier 17345 * memory consumption and 20% verifier time speedup. 17346 */ 17347 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 17348 env->insn_processed - env->prev_insn_processed >= 8) 17349 add_new_state = true; 17350 17351 pprev = explored_state(env, insn_idx); 17352 sl = *pprev; 17353 17354 clean_live_states(env, insn_idx, cur); 17355 17356 while (sl) { 17357 states_cnt++; 17358 if (sl->state.insn_idx != insn_idx) 17359 goto next; 17360 17361 if (sl->state.branches) { 17362 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 17363 17364 if (frame->in_async_callback_fn && 17365 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 17366 /* Different async_entry_cnt means that the verifier is 17367 * processing another entry into async callback. 17368 * Seeing the same state is not an indication of infinite 17369 * loop or infinite recursion. 17370 * But finding the same state doesn't mean that it's safe 17371 * to stop processing the current state. The previous state 17372 * hasn't yet reached bpf_exit, since state.branches > 0. 17373 * Checking in_async_callback_fn alone is not enough either. 17374 * Since the verifier still needs to catch infinite loops 17375 * inside async callbacks. 17376 */ 17377 goto skip_inf_loop_check; 17378 } 17379 /* BPF open-coded iterators loop detection is special. 17380 * states_maybe_looping() logic is too simplistic in detecting 17381 * states that *might* be equivalent, because it doesn't know 17382 * about ID remapping, so don't even perform it. 17383 * See process_iter_next_call() and iter_active_depths_differ() 17384 * for overview of the logic. When current and one of parent 17385 * states are detected as equivalent, it's a good thing: we prove 17386 * convergence and can stop simulating further iterations. 17387 * It's safe to assume that iterator loop will finish, taking into 17388 * account iter_next() contract of eventually returning 17389 * sticky NULL result. 17390 * 17391 * Note, that states have to be compared exactly in this case because 17392 * read and precision marks might not be finalized inside the loop. 17393 * E.g. as in the program below: 17394 * 17395 * 1. r7 = -16 17396 * 2. r6 = bpf_get_prandom_u32() 17397 * 3. while (bpf_iter_num_next(&fp[-8])) { 17398 * 4. if (r6 != 42) { 17399 * 5. r7 = -32 17400 * 6. r6 = bpf_get_prandom_u32() 17401 * 7. continue 17402 * 8. } 17403 * 9. r0 = r10 17404 * 10. r0 += r7 17405 * 11. r8 = *(u64 *)(r0 + 0) 17406 * 12. r6 = bpf_get_prandom_u32() 17407 * 13. } 17408 * 17409 * Here verifier would first visit path 1-3, create a checkpoint at 3 17410 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 17411 * not have read or precision mark for r7 yet, thus inexact states 17412 * comparison would discard current state with r7=-32 17413 * => unsafe memory access at 11 would not be caught. 17414 */ 17415 if (is_iter_next_insn(env, insn_idx)) { 17416 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 17417 struct bpf_func_state *cur_frame; 17418 struct bpf_reg_state *iter_state, *iter_reg; 17419 int spi; 17420 17421 cur_frame = cur->frame[cur->curframe]; 17422 /* btf_check_iter_kfuncs() enforces that 17423 * iter state pointer is always the first arg 17424 */ 17425 iter_reg = &cur_frame->regs[BPF_REG_1]; 17426 /* current state is valid due to states_equal(), 17427 * so we can assume valid iter and reg state, 17428 * no need for extra (re-)validations 17429 */ 17430 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 17431 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 17432 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 17433 update_loop_entry(cur, &sl->state); 17434 goto hit; 17435 } 17436 } 17437 goto skip_inf_loop_check; 17438 } 17439 if (is_may_goto_insn_at(env, insn_idx)) { 17440 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 17441 update_loop_entry(cur, &sl->state); 17442 goto hit; 17443 } 17444 goto skip_inf_loop_check; 17445 } 17446 if (calls_callback(env, insn_idx)) { 17447 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) 17448 goto hit; 17449 goto skip_inf_loop_check; 17450 } 17451 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 17452 if (states_maybe_looping(&sl->state, cur) && 17453 states_equal(env, &sl->state, cur, EXACT) && 17454 !iter_active_depths_differ(&sl->state, cur) && 17455 sl->state.may_goto_depth == cur->may_goto_depth && 17456 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 17457 verbose_linfo(env, insn_idx, "; "); 17458 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 17459 verbose(env, "cur state:"); 17460 print_verifier_state(env, cur->frame[cur->curframe], true); 17461 verbose(env, "old state:"); 17462 print_verifier_state(env, sl->state.frame[cur->curframe], true); 17463 return -EINVAL; 17464 } 17465 /* if the verifier is processing a loop, avoid adding new state 17466 * too often, since different loop iterations have distinct 17467 * states and may not help future pruning. 17468 * This threshold shouldn't be too low to make sure that 17469 * a loop with large bound will be rejected quickly. 17470 * The most abusive loop will be: 17471 * r1 += 1 17472 * if r1 < 1000000 goto pc-2 17473 * 1M insn_procssed limit / 100 == 10k peak states. 17474 * This threshold shouldn't be too high either, since states 17475 * at the end of the loop are likely to be useful in pruning. 17476 */ 17477 skip_inf_loop_check: 17478 if (!force_new_state && 17479 env->jmps_processed - env->prev_jmps_processed < 20 && 17480 env->insn_processed - env->prev_insn_processed < 100) 17481 add_new_state = false; 17482 goto miss; 17483 } 17484 /* If sl->state is a part of a loop and this loop's entry is a part of 17485 * current verification path then states have to be compared exactly. 17486 * 'force_exact' is needed to catch the following case: 17487 * 17488 * initial Here state 'succ' was processed first, 17489 * | it was eventually tracked to produce a 17490 * V state identical to 'hdr'. 17491 * .---------> hdr All branches from 'succ' had been explored 17492 * | | and thus 'succ' has its .branches == 0. 17493 * | V 17494 * | .------... Suppose states 'cur' and 'succ' correspond 17495 * | | | to the same instruction + callsites. 17496 * | V V In such case it is necessary to check 17497 * | ... ... if 'succ' and 'cur' are states_equal(). 17498 * | | | If 'succ' and 'cur' are a part of the 17499 * | V V same loop exact flag has to be set. 17500 * | succ <- cur To check if that is the case, verify 17501 * | | if loop entry of 'succ' is in current 17502 * | V DFS path. 17503 * | ... 17504 * | | 17505 * '----' 17506 * 17507 * Additional details are in the comment before get_loop_entry(). 17508 */ 17509 loop_entry = get_loop_entry(&sl->state); 17510 force_exact = loop_entry && loop_entry->branches > 0; 17511 if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) { 17512 if (force_exact) 17513 update_loop_entry(cur, loop_entry); 17514 hit: 17515 sl->hit_cnt++; 17516 /* reached equivalent register/stack state, 17517 * prune the search. 17518 * Registers read by the continuation are read by us. 17519 * If we have any write marks in env->cur_state, they 17520 * will prevent corresponding reads in the continuation 17521 * from reaching our parent (an explored_state). Our 17522 * own state will get the read marks recorded, but 17523 * they'll be immediately forgotten as we're pruning 17524 * this state and will pop a new one. 17525 */ 17526 err = propagate_liveness(env, &sl->state, cur); 17527 17528 /* if previous state reached the exit with precision and 17529 * current state is equivalent to it (except precision marks) 17530 * the precision needs to be propagated back in 17531 * the current state. 17532 */ 17533 if (is_jmp_point(env, env->insn_idx)) 17534 err = err ? : push_jmp_history(env, cur, 0); 17535 err = err ? : propagate_precision(env, &sl->state); 17536 if (err) 17537 return err; 17538 return 1; 17539 } 17540 miss: 17541 /* when new state is not going to be added do not increase miss count. 17542 * Otherwise several loop iterations will remove the state 17543 * recorded earlier. The goal of these heuristics is to have 17544 * states from some iterations of the loop (some in the beginning 17545 * and some at the end) to help pruning. 17546 */ 17547 if (add_new_state) 17548 sl->miss_cnt++; 17549 /* heuristic to determine whether this state is beneficial 17550 * to keep checking from state equivalence point of view. 17551 * Higher numbers increase max_states_per_insn and verification time, 17552 * but do not meaningfully decrease insn_processed. 17553 * 'n' controls how many times state could miss before eviction. 17554 * Use bigger 'n' for checkpoints because evicting checkpoint states 17555 * too early would hinder iterator convergence. 17556 */ 17557 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 17558 if (sl->miss_cnt > sl->hit_cnt * n + n) { 17559 /* the state is unlikely to be useful. Remove it to 17560 * speed up verification 17561 */ 17562 *pprev = sl->next; 17563 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 17564 !sl->state.used_as_loop_entry) { 17565 u32 br = sl->state.branches; 17566 17567 WARN_ONCE(br, 17568 "BUG live_done but branches_to_explore %d\n", 17569 br); 17570 free_verifier_state(&sl->state, false); 17571 kfree(sl); 17572 env->peak_states--; 17573 } else { 17574 /* cannot free this state, since parentage chain may 17575 * walk it later. Add it for free_list instead to 17576 * be freed at the end of verification 17577 */ 17578 sl->next = env->free_list; 17579 env->free_list = sl; 17580 } 17581 sl = *pprev; 17582 continue; 17583 } 17584 next: 17585 pprev = &sl->next; 17586 sl = *pprev; 17587 } 17588 17589 if (env->max_states_per_insn < states_cnt) 17590 env->max_states_per_insn = states_cnt; 17591 17592 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 17593 return 0; 17594 17595 if (!add_new_state) 17596 return 0; 17597 17598 /* There were no equivalent states, remember the current one. 17599 * Technically the current state is not proven to be safe yet, 17600 * but it will either reach outer most bpf_exit (which means it's safe) 17601 * or it will be rejected. When there are no loops the verifier won't be 17602 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 17603 * again on the way to bpf_exit. 17604 * When looping the sl->state.branches will be > 0 and this state 17605 * will not be considered for equivalence until branches == 0. 17606 */ 17607 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 17608 if (!new_sl) 17609 return -ENOMEM; 17610 env->total_states++; 17611 env->peak_states++; 17612 env->prev_jmps_processed = env->jmps_processed; 17613 env->prev_insn_processed = env->insn_processed; 17614 17615 /* forget precise markings we inherited, see __mark_chain_precision */ 17616 if (env->bpf_capable) 17617 mark_all_scalars_imprecise(env, cur); 17618 17619 /* add new state to the head of linked list */ 17620 new = &new_sl->state; 17621 err = copy_verifier_state(new, cur); 17622 if (err) { 17623 free_verifier_state(new, false); 17624 kfree(new_sl); 17625 return err; 17626 } 17627 new->insn_idx = insn_idx; 17628 WARN_ONCE(new->branches != 1, 17629 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 17630 17631 cur->parent = new; 17632 cur->first_insn_idx = insn_idx; 17633 cur->dfs_depth = new->dfs_depth + 1; 17634 clear_jmp_history(cur); 17635 new_sl->next = *explored_state(env, insn_idx); 17636 *explored_state(env, insn_idx) = new_sl; 17637 /* connect new state to parentage chain. Current frame needs all 17638 * registers connected. Only r6 - r9 of the callers are alive (pushed 17639 * to the stack implicitly by JITs) so in callers' frames connect just 17640 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 17641 * the state of the call instruction (with WRITTEN set), and r0 comes 17642 * from callee with its full parentage chain, anyway. 17643 */ 17644 /* clear write marks in current state: the writes we did are not writes 17645 * our child did, so they don't screen off its reads from us. 17646 * (There are no read marks in current state, because reads always mark 17647 * their parent and current state never has children yet. Only 17648 * explored_states can get read marks.) 17649 */ 17650 for (j = 0; j <= cur->curframe; j++) { 17651 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 17652 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 17653 for (i = 0; i < BPF_REG_FP; i++) 17654 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 17655 } 17656 17657 /* all stack frames are accessible from callee, clear them all */ 17658 for (j = 0; j <= cur->curframe; j++) { 17659 struct bpf_func_state *frame = cur->frame[j]; 17660 struct bpf_func_state *newframe = new->frame[j]; 17661 17662 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 17663 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 17664 frame->stack[i].spilled_ptr.parent = 17665 &newframe->stack[i].spilled_ptr; 17666 } 17667 } 17668 return 0; 17669 } 17670 17671 /* Return true if it's OK to have the same insn return a different type. */ 17672 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 17673 { 17674 switch (base_type(type)) { 17675 case PTR_TO_CTX: 17676 case PTR_TO_SOCKET: 17677 case PTR_TO_SOCK_COMMON: 17678 case PTR_TO_TCP_SOCK: 17679 case PTR_TO_XDP_SOCK: 17680 case PTR_TO_BTF_ID: 17681 case PTR_TO_ARENA: 17682 return false; 17683 default: 17684 return true; 17685 } 17686 } 17687 17688 /* If an instruction was previously used with particular pointer types, then we 17689 * need to be careful to avoid cases such as the below, where it may be ok 17690 * for one branch accessing the pointer, but not ok for the other branch: 17691 * 17692 * R1 = sock_ptr 17693 * goto X; 17694 * ... 17695 * R1 = some_other_valid_ptr; 17696 * goto X; 17697 * ... 17698 * R2 = *(u32 *)(R1 + 0); 17699 */ 17700 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 17701 { 17702 return src != prev && (!reg_type_mismatch_ok(src) || 17703 !reg_type_mismatch_ok(prev)); 17704 } 17705 17706 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 17707 bool allow_trust_mismatch) 17708 { 17709 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 17710 17711 if (*prev_type == NOT_INIT) { 17712 /* Saw a valid insn 17713 * dst_reg = *(u32 *)(src_reg + off) 17714 * save type to validate intersecting paths 17715 */ 17716 *prev_type = type; 17717 } else if (reg_type_mismatch(type, *prev_type)) { 17718 /* Abuser program is trying to use the same insn 17719 * dst_reg = *(u32*) (src_reg + off) 17720 * with different pointer types: 17721 * src_reg == ctx in one branch and 17722 * src_reg == stack|map in some other branch. 17723 * Reject it. 17724 */ 17725 if (allow_trust_mismatch && 17726 base_type(type) == PTR_TO_BTF_ID && 17727 base_type(*prev_type) == PTR_TO_BTF_ID) { 17728 /* 17729 * Have to support a use case when one path through 17730 * the program yields TRUSTED pointer while another 17731 * is UNTRUSTED. Fallback to UNTRUSTED to generate 17732 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 17733 */ 17734 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 17735 } else { 17736 verbose(env, "same insn cannot be used with different pointers\n"); 17737 return -EINVAL; 17738 } 17739 } 17740 17741 return 0; 17742 } 17743 17744 static int do_check(struct bpf_verifier_env *env) 17745 { 17746 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 17747 struct bpf_verifier_state *state = env->cur_state; 17748 struct bpf_insn *insns = env->prog->insnsi; 17749 struct bpf_reg_state *regs; 17750 int insn_cnt = env->prog->len; 17751 bool do_print_state = false; 17752 int prev_insn_idx = -1; 17753 17754 for (;;) { 17755 bool exception_exit = false; 17756 struct bpf_insn *insn; 17757 u8 class; 17758 int err; 17759 17760 /* reset current history entry on each new instruction */ 17761 env->cur_hist_ent = NULL; 17762 17763 env->prev_insn_idx = prev_insn_idx; 17764 if (env->insn_idx >= insn_cnt) { 17765 verbose(env, "invalid insn idx %d insn_cnt %d\n", 17766 env->insn_idx, insn_cnt); 17767 return -EFAULT; 17768 } 17769 17770 insn = &insns[env->insn_idx]; 17771 class = BPF_CLASS(insn->code); 17772 17773 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 17774 verbose(env, 17775 "BPF program is too large. Processed %d insn\n", 17776 env->insn_processed); 17777 return -E2BIG; 17778 } 17779 17780 state->last_insn_idx = env->prev_insn_idx; 17781 17782 if (is_prune_point(env, env->insn_idx)) { 17783 err = is_state_visited(env, env->insn_idx); 17784 if (err < 0) 17785 return err; 17786 if (err == 1) { 17787 /* found equivalent state, can prune the search */ 17788 if (env->log.level & BPF_LOG_LEVEL) { 17789 if (do_print_state) 17790 verbose(env, "\nfrom %d to %d%s: safe\n", 17791 env->prev_insn_idx, env->insn_idx, 17792 env->cur_state->speculative ? 17793 " (speculative execution)" : ""); 17794 else 17795 verbose(env, "%d: safe\n", env->insn_idx); 17796 } 17797 goto process_bpf_exit; 17798 } 17799 } 17800 17801 if (is_jmp_point(env, env->insn_idx)) { 17802 err = push_jmp_history(env, state, 0); 17803 if (err) 17804 return err; 17805 } 17806 17807 if (signal_pending(current)) 17808 return -EAGAIN; 17809 17810 if (need_resched()) 17811 cond_resched(); 17812 17813 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 17814 verbose(env, "\nfrom %d to %d%s:", 17815 env->prev_insn_idx, env->insn_idx, 17816 env->cur_state->speculative ? 17817 " (speculative execution)" : ""); 17818 print_verifier_state(env, state->frame[state->curframe], true); 17819 do_print_state = false; 17820 } 17821 17822 if (env->log.level & BPF_LOG_LEVEL) { 17823 const struct bpf_insn_cbs cbs = { 17824 .cb_call = disasm_kfunc_name, 17825 .cb_print = verbose, 17826 .private_data = env, 17827 }; 17828 17829 if (verifier_state_scratched(env)) 17830 print_insn_state(env, state->frame[state->curframe]); 17831 17832 verbose_linfo(env, env->insn_idx, "; "); 17833 env->prev_log_pos = env->log.end_pos; 17834 verbose(env, "%d: ", env->insn_idx); 17835 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 17836 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 17837 env->prev_log_pos = env->log.end_pos; 17838 } 17839 17840 if (bpf_prog_is_offloaded(env->prog->aux)) { 17841 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 17842 env->prev_insn_idx); 17843 if (err) 17844 return err; 17845 } 17846 17847 regs = cur_regs(env); 17848 sanitize_mark_insn_seen(env); 17849 prev_insn_idx = env->insn_idx; 17850 17851 if (class == BPF_ALU || class == BPF_ALU64) { 17852 err = check_alu_op(env, insn); 17853 if (err) 17854 return err; 17855 17856 } else if (class == BPF_LDX) { 17857 enum bpf_reg_type src_reg_type; 17858 17859 /* check for reserved fields is already done */ 17860 17861 /* check src operand */ 17862 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17863 if (err) 17864 return err; 17865 17866 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 17867 if (err) 17868 return err; 17869 17870 src_reg_type = regs[insn->src_reg].type; 17871 17872 /* check that memory (src_reg + off) is readable, 17873 * the state of dst_reg will be updated by this func 17874 */ 17875 err = check_mem_access(env, env->insn_idx, insn->src_reg, 17876 insn->off, BPF_SIZE(insn->code), 17877 BPF_READ, insn->dst_reg, false, 17878 BPF_MODE(insn->code) == BPF_MEMSX); 17879 err = err ?: save_aux_ptr_type(env, src_reg_type, true); 17880 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx"); 17881 if (err) 17882 return err; 17883 } else if (class == BPF_STX) { 17884 enum bpf_reg_type dst_reg_type; 17885 17886 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 17887 err = check_atomic(env, env->insn_idx, insn); 17888 if (err) 17889 return err; 17890 env->insn_idx++; 17891 continue; 17892 } 17893 17894 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 17895 verbose(env, "BPF_STX uses reserved fields\n"); 17896 return -EINVAL; 17897 } 17898 17899 /* check src1 operand */ 17900 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17901 if (err) 17902 return err; 17903 /* check src2 operand */ 17904 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17905 if (err) 17906 return err; 17907 17908 dst_reg_type = regs[insn->dst_reg].type; 17909 17910 /* check that memory (dst_reg + off) is writeable */ 17911 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17912 insn->off, BPF_SIZE(insn->code), 17913 BPF_WRITE, insn->src_reg, false, false); 17914 if (err) 17915 return err; 17916 17917 err = save_aux_ptr_type(env, dst_reg_type, false); 17918 if (err) 17919 return err; 17920 } else if (class == BPF_ST) { 17921 enum bpf_reg_type dst_reg_type; 17922 17923 if (BPF_MODE(insn->code) != BPF_MEM || 17924 insn->src_reg != BPF_REG_0) { 17925 verbose(env, "BPF_ST uses reserved fields\n"); 17926 return -EINVAL; 17927 } 17928 /* check src operand */ 17929 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17930 if (err) 17931 return err; 17932 17933 dst_reg_type = regs[insn->dst_reg].type; 17934 17935 /* check that memory (dst_reg + off) is writeable */ 17936 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17937 insn->off, BPF_SIZE(insn->code), 17938 BPF_WRITE, -1, false, false); 17939 if (err) 17940 return err; 17941 17942 err = save_aux_ptr_type(env, dst_reg_type, false); 17943 if (err) 17944 return err; 17945 } else if (class == BPF_JMP || class == BPF_JMP32) { 17946 u8 opcode = BPF_OP(insn->code); 17947 17948 env->jmps_processed++; 17949 if (opcode == BPF_CALL) { 17950 if (BPF_SRC(insn->code) != BPF_K || 17951 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 17952 && insn->off != 0) || 17953 (insn->src_reg != BPF_REG_0 && 17954 insn->src_reg != BPF_PSEUDO_CALL && 17955 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 17956 insn->dst_reg != BPF_REG_0 || 17957 class == BPF_JMP32) { 17958 verbose(env, "BPF_CALL uses reserved fields\n"); 17959 return -EINVAL; 17960 } 17961 17962 if (env->cur_state->active_lock.ptr) { 17963 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 17964 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 17965 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 17966 verbose(env, "function calls are not allowed while holding a lock\n"); 17967 return -EINVAL; 17968 } 17969 } 17970 if (insn->src_reg == BPF_PSEUDO_CALL) { 17971 err = check_func_call(env, insn, &env->insn_idx); 17972 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17973 err = check_kfunc_call(env, insn, &env->insn_idx); 17974 if (!err && is_bpf_throw_kfunc(insn)) { 17975 exception_exit = true; 17976 goto process_bpf_exit_full; 17977 } 17978 } else { 17979 err = check_helper_call(env, insn, &env->insn_idx); 17980 } 17981 if (err) 17982 return err; 17983 17984 mark_reg_scratched(env, BPF_REG_0); 17985 } else if (opcode == BPF_JA) { 17986 if (BPF_SRC(insn->code) != BPF_K || 17987 insn->src_reg != BPF_REG_0 || 17988 insn->dst_reg != BPF_REG_0 || 17989 (class == BPF_JMP && insn->imm != 0) || 17990 (class == BPF_JMP32 && insn->off != 0)) { 17991 verbose(env, "BPF_JA uses reserved fields\n"); 17992 return -EINVAL; 17993 } 17994 17995 if (class == BPF_JMP) 17996 env->insn_idx += insn->off + 1; 17997 else 17998 env->insn_idx += insn->imm + 1; 17999 continue; 18000 18001 } else if (opcode == BPF_EXIT) { 18002 if (BPF_SRC(insn->code) != BPF_K || 18003 insn->imm != 0 || 18004 insn->src_reg != BPF_REG_0 || 18005 insn->dst_reg != BPF_REG_0 || 18006 class == BPF_JMP32) { 18007 verbose(env, "BPF_EXIT uses reserved fields\n"); 18008 return -EINVAL; 18009 } 18010 process_bpf_exit_full: 18011 if (env->cur_state->active_lock.ptr && !env->cur_state->curframe) { 18012 verbose(env, "bpf_spin_unlock is missing\n"); 18013 return -EINVAL; 18014 } 18015 18016 if (env->cur_state->active_rcu_lock && !env->cur_state->curframe) { 18017 verbose(env, "bpf_rcu_read_unlock is missing\n"); 18018 return -EINVAL; 18019 } 18020 18021 if (env->cur_state->active_preempt_lock && !env->cur_state->curframe) { 18022 verbose(env, "%d bpf_preempt_enable%s missing\n", 18023 env->cur_state->active_preempt_lock, 18024 env->cur_state->active_preempt_lock == 1 ? " is" : "(s) are"); 18025 return -EINVAL; 18026 } 18027 18028 /* We must do check_reference_leak here before 18029 * prepare_func_exit to handle the case when 18030 * state->curframe > 0, it may be a callback 18031 * function, for which reference_state must 18032 * match caller reference state when it exits. 18033 */ 18034 err = check_reference_leak(env, exception_exit); 18035 if (err) 18036 return err; 18037 18038 /* The side effect of the prepare_func_exit 18039 * which is being skipped is that it frees 18040 * bpf_func_state. Typically, process_bpf_exit 18041 * will only be hit with outermost exit. 18042 * copy_verifier_state in pop_stack will handle 18043 * freeing of any extra bpf_func_state left over 18044 * from not processing all nested function 18045 * exits. We also skip return code checks as 18046 * they are not needed for exceptional exits. 18047 */ 18048 if (exception_exit) 18049 goto process_bpf_exit; 18050 18051 if (state->curframe) { 18052 /* exit from nested function */ 18053 err = prepare_func_exit(env, &env->insn_idx); 18054 if (err) 18055 return err; 18056 do_print_state = true; 18057 continue; 18058 } 18059 18060 err = check_return_code(env, BPF_REG_0, "R0"); 18061 if (err) 18062 return err; 18063 process_bpf_exit: 18064 mark_verifier_state_scratched(env); 18065 update_branch_counts(env, env->cur_state); 18066 err = pop_stack(env, &prev_insn_idx, 18067 &env->insn_idx, pop_log); 18068 if (err < 0) { 18069 if (err != -ENOENT) 18070 return err; 18071 break; 18072 } else { 18073 do_print_state = true; 18074 continue; 18075 } 18076 } else { 18077 err = check_cond_jmp_op(env, insn, &env->insn_idx); 18078 if (err) 18079 return err; 18080 } 18081 } else if (class == BPF_LD) { 18082 u8 mode = BPF_MODE(insn->code); 18083 18084 if (mode == BPF_ABS || mode == BPF_IND) { 18085 err = check_ld_abs(env, insn); 18086 if (err) 18087 return err; 18088 18089 } else if (mode == BPF_IMM) { 18090 err = check_ld_imm(env, insn); 18091 if (err) 18092 return err; 18093 18094 env->insn_idx++; 18095 sanitize_mark_insn_seen(env); 18096 } else { 18097 verbose(env, "invalid BPF_LD mode\n"); 18098 return -EINVAL; 18099 } 18100 } else { 18101 verbose(env, "unknown insn class %d\n", class); 18102 return -EINVAL; 18103 } 18104 18105 env->insn_idx++; 18106 } 18107 18108 return 0; 18109 } 18110 18111 static int find_btf_percpu_datasec(struct btf *btf) 18112 { 18113 const struct btf_type *t; 18114 const char *tname; 18115 int i, n; 18116 18117 /* 18118 * Both vmlinux and module each have their own ".data..percpu" 18119 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 18120 * types to look at only module's own BTF types. 18121 */ 18122 n = btf_nr_types(btf); 18123 if (btf_is_module(btf)) 18124 i = btf_nr_types(btf_vmlinux); 18125 else 18126 i = 1; 18127 18128 for(; i < n; i++) { 18129 t = btf_type_by_id(btf, i); 18130 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 18131 continue; 18132 18133 tname = btf_name_by_offset(btf, t->name_off); 18134 if (!strcmp(tname, ".data..percpu")) 18135 return i; 18136 } 18137 18138 return -ENOENT; 18139 } 18140 18141 /* replace pseudo btf_id with kernel symbol address */ 18142 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 18143 struct bpf_insn *insn, 18144 struct bpf_insn_aux_data *aux) 18145 { 18146 const struct btf_var_secinfo *vsi; 18147 const struct btf_type *datasec; 18148 struct btf_mod_pair *btf_mod; 18149 const struct btf_type *t; 18150 const char *sym_name; 18151 bool percpu = false; 18152 u32 type, id = insn->imm; 18153 struct btf *btf; 18154 s32 datasec_id; 18155 u64 addr; 18156 int i, btf_fd, err; 18157 18158 btf_fd = insn[1].imm; 18159 if (btf_fd) { 18160 btf = btf_get_by_fd(btf_fd); 18161 if (IS_ERR(btf)) { 18162 verbose(env, "invalid module BTF object FD specified.\n"); 18163 return -EINVAL; 18164 } 18165 } else { 18166 if (!btf_vmlinux) { 18167 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 18168 return -EINVAL; 18169 } 18170 btf = btf_vmlinux; 18171 btf_get(btf); 18172 } 18173 18174 t = btf_type_by_id(btf, id); 18175 if (!t) { 18176 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 18177 err = -ENOENT; 18178 goto err_put; 18179 } 18180 18181 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 18182 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 18183 err = -EINVAL; 18184 goto err_put; 18185 } 18186 18187 sym_name = btf_name_by_offset(btf, t->name_off); 18188 addr = kallsyms_lookup_name(sym_name); 18189 if (!addr) { 18190 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 18191 sym_name); 18192 err = -ENOENT; 18193 goto err_put; 18194 } 18195 insn[0].imm = (u32)addr; 18196 insn[1].imm = addr >> 32; 18197 18198 if (btf_type_is_func(t)) { 18199 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 18200 aux->btf_var.mem_size = 0; 18201 goto check_btf; 18202 } 18203 18204 datasec_id = find_btf_percpu_datasec(btf); 18205 if (datasec_id > 0) { 18206 datasec = btf_type_by_id(btf, datasec_id); 18207 for_each_vsi(i, datasec, vsi) { 18208 if (vsi->type == id) { 18209 percpu = true; 18210 break; 18211 } 18212 } 18213 } 18214 18215 type = t->type; 18216 t = btf_type_skip_modifiers(btf, type, NULL); 18217 if (percpu) { 18218 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 18219 aux->btf_var.btf = btf; 18220 aux->btf_var.btf_id = type; 18221 } else if (!btf_type_is_struct(t)) { 18222 const struct btf_type *ret; 18223 const char *tname; 18224 u32 tsize; 18225 18226 /* resolve the type size of ksym. */ 18227 ret = btf_resolve_size(btf, t, &tsize); 18228 if (IS_ERR(ret)) { 18229 tname = btf_name_by_offset(btf, t->name_off); 18230 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 18231 tname, PTR_ERR(ret)); 18232 err = -EINVAL; 18233 goto err_put; 18234 } 18235 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 18236 aux->btf_var.mem_size = tsize; 18237 } else { 18238 aux->btf_var.reg_type = PTR_TO_BTF_ID; 18239 aux->btf_var.btf = btf; 18240 aux->btf_var.btf_id = type; 18241 } 18242 check_btf: 18243 /* check whether we recorded this BTF (and maybe module) already */ 18244 for (i = 0; i < env->used_btf_cnt; i++) { 18245 if (env->used_btfs[i].btf == btf) { 18246 btf_put(btf); 18247 return 0; 18248 } 18249 } 18250 18251 if (env->used_btf_cnt >= MAX_USED_BTFS) { 18252 err = -E2BIG; 18253 goto err_put; 18254 } 18255 18256 btf_mod = &env->used_btfs[env->used_btf_cnt]; 18257 btf_mod->btf = btf; 18258 btf_mod->module = NULL; 18259 18260 /* if we reference variables from kernel module, bump its refcount */ 18261 if (btf_is_module(btf)) { 18262 btf_mod->module = btf_try_get_module(btf); 18263 if (!btf_mod->module) { 18264 err = -ENXIO; 18265 goto err_put; 18266 } 18267 } 18268 18269 env->used_btf_cnt++; 18270 18271 return 0; 18272 err_put: 18273 btf_put(btf); 18274 return err; 18275 } 18276 18277 static bool is_tracing_prog_type(enum bpf_prog_type type) 18278 { 18279 switch (type) { 18280 case BPF_PROG_TYPE_KPROBE: 18281 case BPF_PROG_TYPE_TRACEPOINT: 18282 case BPF_PROG_TYPE_PERF_EVENT: 18283 case BPF_PROG_TYPE_RAW_TRACEPOINT: 18284 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 18285 return true; 18286 default: 18287 return false; 18288 } 18289 } 18290 18291 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 18292 struct bpf_map *map, 18293 struct bpf_prog *prog) 18294 18295 { 18296 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18297 18298 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 18299 btf_record_has_field(map->record, BPF_RB_ROOT)) { 18300 if (is_tracing_prog_type(prog_type)) { 18301 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 18302 return -EINVAL; 18303 } 18304 } 18305 18306 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 18307 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 18308 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 18309 return -EINVAL; 18310 } 18311 18312 if (is_tracing_prog_type(prog_type)) { 18313 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 18314 return -EINVAL; 18315 } 18316 } 18317 18318 if (btf_record_has_field(map->record, BPF_TIMER)) { 18319 if (is_tracing_prog_type(prog_type)) { 18320 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 18321 return -EINVAL; 18322 } 18323 } 18324 18325 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { 18326 if (is_tracing_prog_type(prog_type)) { 18327 verbose(env, "tracing progs cannot use bpf_wq yet\n"); 18328 return -EINVAL; 18329 } 18330 } 18331 18332 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 18333 !bpf_offload_prog_map_match(prog, map)) { 18334 verbose(env, "offload device mismatch between prog and map\n"); 18335 return -EINVAL; 18336 } 18337 18338 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 18339 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 18340 return -EINVAL; 18341 } 18342 18343 if (prog->sleepable) 18344 switch (map->map_type) { 18345 case BPF_MAP_TYPE_HASH: 18346 case BPF_MAP_TYPE_LRU_HASH: 18347 case BPF_MAP_TYPE_ARRAY: 18348 case BPF_MAP_TYPE_PERCPU_HASH: 18349 case BPF_MAP_TYPE_PERCPU_ARRAY: 18350 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 18351 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 18352 case BPF_MAP_TYPE_HASH_OF_MAPS: 18353 case BPF_MAP_TYPE_RINGBUF: 18354 case BPF_MAP_TYPE_USER_RINGBUF: 18355 case BPF_MAP_TYPE_INODE_STORAGE: 18356 case BPF_MAP_TYPE_SK_STORAGE: 18357 case BPF_MAP_TYPE_TASK_STORAGE: 18358 case BPF_MAP_TYPE_CGRP_STORAGE: 18359 case BPF_MAP_TYPE_QUEUE: 18360 case BPF_MAP_TYPE_STACK: 18361 case BPF_MAP_TYPE_ARENA: 18362 break; 18363 default: 18364 verbose(env, 18365 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 18366 return -EINVAL; 18367 } 18368 18369 return 0; 18370 } 18371 18372 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 18373 { 18374 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 18375 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 18376 } 18377 18378 /* find and rewrite pseudo imm in ld_imm64 instructions: 18379 * 18380 * 1. if it accesses map FD, replace it with actual map pointer. 18381 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 18382 * 18383 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 18384 */ 18385 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 18386 { 18387 struct bpf_insn *insn = env->prog->insnsi; 18388 int insn_cnt = env->prog->len; 18389 int i, j, err; 18390 18391 err = bpf_prog_calc_tag(env->prog); 18392 if (err) 18393 return err; 18394 18395 for (i = 0; i < insn_cnt; i++, insn++) { 18396 if (BPF_CLASS(insn->code) == BPF_LDX && 18397 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 18398 insn->imm != 0)) { 18399 verbose(env, "BPF_LDX uses reserved fields\n"); 18400 return -EINVAL; 18401 } 18402 18403 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 18404 struct bpf_insn_aux_data *aux; 18405 struct bpf_map *map; 18406 struct fd f; 18407 u64 addr; 18408 u32 fd; 18409 18410 if (i == insn_cnt - 1 || insn[1].code != 0 || 18411 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 18412 insn[1].off != 0) { 18413 verbose(env, "invalid bpf_ld_imm64 insn\n"); 18414 return -EINVAL; 18415 } 18416 18417 if (insn[0].src_reg == 0) 18418 /* valid generic load 64-bit imm */ 18419 goto next_insn; 18420 18421 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 18422 aux = &env->insn_aux_data[i]; 18423 err = check_pseudo_btf_id(env, insn, aux); 18424 if (err) 18425 return err; 18426 goto next_insn; 18427 } 18428 18429 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 18430 aux = &env->insn_aux_data[i]; 18431 aux->ptr_type = PTR_TO_FUNC; 18432 goto next_insn; 18433 } 18434 18435 /* In final convert_pseudo_ld_imm64() step, this is 18436 * converted into regular 64-bit imm load insn. 18437 */ 18438 switch (insn[0].src_reg) { 18439 case BPF_PSEUDO_MAP_VALUE: 18440 case BPF_PSEUDO_MAP_IDX_VALUE: 18441 break; 18442 case BPF_PSEUDO_MAP_FD: 18443 case BPF_PSEUDO_MAP_IDX: 18444 if (insn[1].imm == 0) 18445 break; 18446 fallthrough; 18447 default: 18448 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 18449 return -EINVAL; 18450 } 18451 18452 switch (insn[0].src_reg) { 18453 case BPF_PSEUDO_MAP_IDX_VALUE: 18454 case BPF_PSEUDO_MAP_IDX: 18455 if (bpfptr_is_null(env->fd_array)) { 18456 verbose(env, "fd_idx without fd_array is invalid\n"); 18457 return -EPROTO; 18458 } 18459 if (copy_from_bpfptr_offset(&fd, env->fd_array, 18460 insn[0].imm * sizeof(fd), 18461 sizeof(fd))) 18462 return -EFAULT; 18463 break; 18464 default: 18465 fd = insn[0].imm; 18466 break; 18467 } 18468 18469 f = fdget(fd); 18470 map = __bpf_map_get(f); 18471 if (IS_ERR(map)) { 18472 verbose(env, "fd %d is not pointing to valid bpf_map\n", 18473 insn[0].imm); 18474 return PTR_ERR(map); 18475 } 18476 18477 err = check_map_prog_compatibility(env, map, env->prog); 18478 if (err) { 18479 fdput(f); 18480 return err; 18481 } 18482 18483 aux = &env->insn_aux_data[i]; 18484 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 18485 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 18486 addr = (unsigned long)map; 18487 } else { 18488 u32 off = insn[1].imm; 18489 18490 if (off >= BPF_MAX_VAR_OFF) { 18491 verbose(env, "direct value offset of %u is not allowed\n", off); 18492 fdput(f); 18493 return -EINVAL; 18494 } 18495 18496 if (!map->ops->map_direct_value_addr) { 18497 verbose(env, "no direct value access support for this map type\n"); 18498 fdput(f); 18499 return -EINVAL; 18500 } 18501 18502 err = map->ops->map_direct_value_addr(map, &addr, off); 18503 if (err) { 18504 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 18505 map->value_size, off); 18506 fdput(f); 18507 return err; 18508 } 18509 18510 aux->map_off = off; 18511 addr += off; 18512 } 18513 18514 insn[0].imm = (u32)addr; 18515 insn[1].imm = addr >> 32; 18516 18517 /* check whether we recorded this map already */ 18518 for (j = 0; j < env->used_map_cnt; j++) { 18519 if (env->used_maps[j] == map) { 18520 aux->map_index = j; 18521 fdput(f); 18522 goto next_insn; 18523 } 18524 } 18525 18526 if (env->used_map_cnt >= MAX_USED_MAPS) { 18527 verbose(env, "The total number of maps per program has reached the limit of %u\n", 18528 MAX_USED_MAPS); 18529 fdput(f); 18530 return -E2BIG; 18531 } 18532 18533 if (env->prog->sleepable) 18534 atomic64_inc(&map->sleepable_refcnt); 18535 /* hold the map. If the program is rejected by verifier, 18536 * the map will be released by release_maps() or it 18537 * will be used by the valid program until it's unloaded 18538 * and all maps are released in bpf_free_used_maps() 18539 */ 18540 bpf_map_inc(map); 18541 18542 aux->map_index = env->used_map_cnt; 18543 env->used_maps[env->used_map_cnt++] = map; 18544 18545 if (bpf_map_is_cgroup_storage(map) && 18546 bpf_cgroup_storage_assign(env->prog->aux, map)) { 18547 verbose(env, "only one cgroup storage of each type is allowed\n"); 18548 fdput(f); 18549 return -EBUSY; 18550 } 18551 if (map->map_type == BPF_MAP_TYPE_ARENA) { 18552 if (env->prog->aux->arena) { 18553 verbose(env, "Only one arena per program\n"); 18554 fdput(f); 18555 return -EBUSY; 18556 } 18557 if (!env->allow_ptr_leaks || !env->bpf_capable) { 18558 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 18559 fdput(f); 18560 return -EPERM; 18561 } 18562 if (!env->prog->jit_requested) { 18563 verbose(env, "JIT is required to use arena\n"); 18564 fdput(f); 18565 return -EOPNOTSUPP; 18566 } 18567 if (!bpf_jit_supports_arena()) { 18568 verbose(env, "JIT doesn't support arena\n"); 18569 fdput(f); 18570 return -EOPNOTSUPP; 18571 } 18572 env->prog->aux->arena = (void *)map; 18573 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 18574 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 18575 fdput(f); 18576 return -EINVAL; 18577 } 18578 } 18579 18580 fdput(f); 18581 next_insn: 18582 insn++; 18583 i++; 18584 continue; 18585 } 18586 18587 /* Basic sanity check before we invest more work here. */ 18588 if (!bpf_opcode_in_insntable(insn->code)) { 18589 verbose(env, "unknown opcode %02x\n", insn->code); 18590 return -EINVAL; 18591 } 18592 } 18593 18594 /* now all pseudo BPF_LD_IMM64 instructions load valid 18595 * 'struct bpf_map *' into a register instead of user map_fd. 18596 * These pointers will be used later by verifier to validate map access. 18597 */ 18598 return 0; 18599 } 18600 18601 /* drop refcnt of maps used by the rejected program */ 18602 static void release_maps(struct bpf_verifier_env *env) 18603 { 18604 __bpf_free_used_maps(env->prog->aux, env->used_maps, 18605 env->used_map_cnt); 18606 } 18607 18608 /* drop refcnt of maps used by the rejected program */ 18609 static void release_btfs(struct bpf_verifier_env *env) 18610 { 18611 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 18612 env->used_btf_cnt); 18613 } 18614 18615 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 18616 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 18617 { 18618 struct bpf_insn *insn = env->prog->insnsi; 18619 int insn_cnt = env->prog->len; 18620 int i; 18621 18622 for (i = 0; i < insn_cnt; i++, insn++) { 18623 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 18624 continue; 18625 if (insn->src_reg == BPF_PSEUDO_FUNC) 18626 continue; 18627 insn->src_reg = 0; 18628 } 18629 } 18630 18631 /* single env->prog->insni[off] instruction was replaced with the range 18632 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 18633 * [0, off) and [off, end) to new locations, so the patched range stays zero 18634 */ 18635 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 18636 struct bpf_insn_aux_data *new_data, 18637 struct bpf_prog *new_prog, u32 off, u32 cnt) 18638 { 18639 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 18640 struct bpf_insn *insn = new_prog->insnsi; 18641 u32 old_seen = old_data[off].seen; 18642 u32 prog_len; 18643 int i; 18644 18645 /* aux info at OFF always needs adjustment, no matter fast path 18646 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 18647 * original insn at old prog. 18648 */ 18649 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 18650 18651 if (cnt == 1) 18652 return; 18653 prog_len = new_prog->len; 18654 18655 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 18656 memcpy(new_data + off + cnt - 1, old_data + off, 18657 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 18658 for (i = off; i < off + cnt - 1; i++) { 18659 /* Expand insni[off]'s seen count to the patched range. */ 18660 new_data[i].seen = old_seen; 18661 new_data[i].zext_dst = insn_has_def32(env, insn + i); 18662 } 18663 env->insn_aux_data = new_data; 18664 vfree(old_data); 18665 } 18666 18667 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 18668 { 18669 int i; 18670 18671 if (len == 1) 18672 return; 18673 /* NOTE: fake 'exit' subprog should be updated as well. */ 18674 for (i = 0; i <= env->subprog_cnt; i++) { 18675 if (env->subprog_info[i].start <= off) 18676 continue; 18677 env->subprog_info[i].start += len - 1; 18678 } 18679 } 18680 18681 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 18682 { 18683 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 18684 int i, sz = prog->aux->size_poke_tab; 18685 struct bpf_jit_poke_descriptor *desc; 18686 18687 for (i = 0; i < sz; i++) { 18688 desc = &tab[i]; 18689 if (desc->insn_idx <= off) 18690 continue; 18691 desc->insn_idx += len - 1; 18692 } 18693 } 18694 18695 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 18696 const struct bpf_insn *patch, u32 len) 18697 { 18698 struct bpf_prog *new_prog; 18699 struct bpf_insn_aux_data *new_data = NULL; 18700 18701 if (len > 1) { 18702 new_data = vzalloc(array_size(env->prog->len + len - 1, 18703 sizeof(struct bpf_insn_aux_data))); 18704 if (!new_data) 18705 return NULL; 18706 } 18707 18708 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 18709 if (IS_ERR(new_prog)) { 18710 if (PTR_ERR(new_prog) == -ERANGE) 18711 verbose(env, 18712 "insn %d cannot be patched due to 16-bit range\n", 18713 env->insn_aux_data[off].orig_idx); 18714 vfree(new_data); 18715 return NULL; 18716 } 18717 adjust_insn_aux_data(env, new_data, new_prog, off, len); 18718 adjust_subprog_starts(env, off, len); 18719 adjust_poke_descs(new_prog, off, len); 18720 return new_prog; 18721 } 18722 18723 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 18724 u32 off, u32 cnt) 18725 { 18726 int i, j; 18727 18728 /* find first prog starting at or after off (first to remove) */ 18729 for (i = 0; i < env->subprog_cnt; i++) 18730 if (env->subprog_info[i].start >= off) 18731 break; 18732 /* find first prog starting at or after off + cnt (first to stay) */ 18733 for (j = i; j < env->subprog_cnt; j++) 18734 if (env->subprog_info[j].start >= off + cnt) 18735 break; 18736 /* if j doesn't start exactly at off + cnt, we are just removing 18737 * the front of previous prog 18738 */ 18739 if (env->subprog_info[j].start != off + cnt) 18740 j--; 18741 18742 if (j > i) { 18743 struct bpf_prog_aux *aux = env->prog->aux; 18744 int move; 18745 18746 /* move fake 'exit' subprog as well */ 18747 move = env->subprog_cnt + 1 - j; 18748 18749 memmove(env->subprog_info + i, 18750 env->subprog_info + j, 18751 sizeof(*env->subprog_info) * move); 18752 env->subprog_cnt -= j - i; 18753 18754 /* remove func_info */ 18755 if (aux->func_info) { 18756 move = aux->func_info_cnt - j; 18757 18758 memmove(aux->func_info + i, 18759 aux->func_info + j, 18760 sizeof(*aux->func_info) * move); 18761 aux->func_info_cnt -= j - i; 18762 /* func_info->insn_off is set after all code rewrites, 18763 * in adjust_btf_func() - no need to adjust 18764 */ 18765 } 18766 } else { 18767 /* convert i from "first prog to remove" to "first to adjust" */ 18768 if (env->subprog_info[i].start == off) 18769 i++; 18770 } 18771 18772 /* update fake 'exit' subprog as well */ 18773 for (; i <= env->subprog_cnt; i++) 18774 env->subprog_info[i].start -= cnt; 18775 18776 return 0; 18777 } 18778 18779 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 18780 u32 cnt) 18781 { 18782 struct bpf_prog *prog = env->prog; 18783 u32 i, l_off, l_cnt, nr_linfo; 18784 struct bpf_line_info *linfo; 18785 18786 nr_linfo = prog->aux->nr_linfo; 18787 if (!nr_linfo) 18788 return 0; 18789 18790 linfo = prog->aux->linfo; 18791 18792 /* find first line info to remove, count lines to be removed */ 18793 for (i = 0; i < nr_linfo; i++) 18794 if (linfo[i].insn_off >= off) 18795 break; 18796 18797 l_off = i; 18798 l_cnt = 0; 18799 for (; i < nr_linfo; i++) 18800 if (linfo[i].insn_off < off + cnt) 18801 l_cnt++; 18802 else 18803 break; 18804 18805 /* First live insn doesn't match first live linfo, it needs to "inherit" 18806 * last removed linfo. prog is already modified, so prog->len == off 18807 * means no live instructions after (tail of the program was removed). 18808 */ 18809 if (prog->len != off && l_cnt && 18810 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 18811 l_cnt--; 18812 linfo[--i].insn_off = off + cnt; 18813 } 18814 18815 /* remove the line info which refer to the removed instructions */ 18816 if (l_cnt) { 18817 memmove(linfo + l_off, linfo + i, 18818 sizeof(*linfo) * (nr_linfo - i)); 18819 18820 prog->aux->nr_linfo -= l_cnt; 18821 nr_linfo = prog->aux->nr_linfo; 18822 } 18823 18824 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 18825 for (i = l_off; i < nr_linfo; i++) 18826 linfo[i].insn_off -= cnt; 18827 18828 /* fix up all subprogs (incl. 'exit') which start >= off */ 18829 for (i = 0; i <= env->subprog_cnt; i++) 18830 if (env->subprog_info[i].linfo_idx > l_off) { 18831 /* program may have started in the removed region but 18832 * may not be fully removed 18833 */ 18834 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 18835 env->subprog_info[i].linfo_idx -= l_cnt; 18836 else 18837 env->subprog_info[i].linfo_idx = l_off; 18838 } 18839 18840 return 0; 18841 } 18842 18843 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 18844 { 18845 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18846 unsigned int orig_prog_len = env->prog->len; 18847 int err; 18848 18849 if (bpf_prog_is_offloaded(env->prog->aux)) 18850 bpf_prog_offload_remove_insns(env, off, cnt); 18851 18852 err = bpf_remove_insns(env->prog, off, cnt); 18853 if (err) 18854 return err; 18855 18856 err = adjust_subprog_starts_after_remove(env, off, cnt); 18857 if (err) 18858 return err; 18859 18860 err = bpf_adj_linfo_after_remove(env, off, cnt); 18861 if (err) 18862 return err; 18863 18864 memmove(aux_data + off, aux_data + off + cnt, 18865 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 18866 18867 return 0; 18868 } 18869 18870 /* The verifier does more data flow analysis than llvm and will not 18871 * explore branches that are dead at run time. Malicious programs can 18872 * have dead code too. Therefore replace all dead at-run-time code 18873 * with 'ja -1'. 18874 * 18875 * Just nops are not optimal, e.g. if they would sit at the end of the 18876 * program and through another bug we would manage to jump there, then 18877 * we'd execute beyond program memory otherwise. Returning exception 18878 * code also wouldn't work since we can have subprogs where the dead 18879 * code could be located. 18880 */ 18881 static void sanitize_dead_code(struct bpf_verifier_env *env) 18882 { 18883 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18884 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 18885 struct bpf_insn *insn = env->prog->insnsi; 18886 const int insn_cnt = env->prog->len; 18887 int i; 18888 18889 for (i = 0; i < insn_cnt; i++) { 18890 if (aux_data[i].seen) 18891 continue; 18892 memcpy(insn + i, &trap, sizeof(trap)); 18893 aux_data[i].zext_dst = false; 18894 } 18895 } 18896 18897 static bool insn_is_cond_jump(u8 code) 18898 { 18899 u8 op; 18900 18901 op = BPF_OP(code); 18902 if (BPF_CLASS(code) == BPF_JMP32) 18903 return op != BPF_JA; 18904 18905 if (BPF_CLASS(code) != BPF_JMP) 18906 return false; 18907 18908 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 18909 } 18910 18911 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 18912 { 18913 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18914 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18915 struct bpf_insn *insn = env->prog->insnsi; 18916 const int insn_cnt = env->prog->len; 18917 int i; 18918 18919 for (i = 0; i < insn_cnt; i++, insn++) { 18920 if (!insn_is_cond_jump(insn->code)) 18921 continue; 18922 18923 if (!aux_data[i + 1].seen) 18924 ja.off = insn->off; 18925 else if (!aux_data[i + 1 + insn->off].seen) 18926 ja.off = 0; 18927 else 18928 continue; 18929 18930 if (bpf_prog_is_offloaded(env->prog->aux)) 18931 bpf_prog_offload_replace_insn(env, i, &ja); 18932 18933 memcpy(insn, &ja, sizeof(ja)); 18934 } 18935 } 18936 18937 static int opt_remove_dead_code(struct bpf_verifier_env *env) 18938 { 18939 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18940 int insn_cnt = env->prog->len; 18941 int i, err; 18942 18943 for (i = 0; i < insn_cnt; i++) { 18944 int j; 18945 18946 j = 0; 18947 while (i + j < insn_cnt && !aux_data[i + j].seen) 18948 j++; 18949 if (!j) 18950 continue; 18951 18952 err = verifier_remove_insns(env, i, j); 18953 if (err) 18954 return err; 18955 insn_cnt = env->prog->len; 18956 } 18957 18958 return 0; 18959 } 18960 18961 static int opt_remove_nops(struct bpf_verifier_env *env) 18962 { 18963 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18964 struct bpf_insn *insn = env->prog->insnsi; 18965 int insn_cnt = env->prog->len; 18966 int i, err; 18967 18968 for (i = 0; i < insn_cnt; i++) { 18969 if (memcmp(&insn[i], &ja, sizeof(ja))) 18970 continue; 18971 18972 err = verifier_remove_insns(env, i, 1); 18973 if (err) 18974 return err; 18975 insn_cnt--; 18976 i--; 18977 } 18978 18979 return 0; 18980 } 18981 18982 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 18983 const union bpf_attr *attr) 18984 { 18985 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 18986 struct bpf_insn_aux_data *aux = env->insn_aux_data; 18987 int i, patch_len, delta = 0, len = env->prog->len; 18988 struct bpf_insn *insns = env->prog->insnsi; 18989 struct bpf_prog *new_prog; 18990 bool rnd_hi32; 18991 18992 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 18993 zext_patch[1] = BPF_ZEXT_REG(0); 18994 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 18995 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 18996 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 18997 for (i = 0; i < len; i++) { 18998 int adj_idx = i + delta; 18999 struct bpf_insn insn; 19000 int load_reg; 19001 19002 insn = insns[adj_idx]; 19003 load_reg = insn_def_regno(&insn); 19004 if (!aux[adj_idx].zext_dst) { 19005 u8 code, class; 19006 u32 imm_rnd; 19007 19008 if (!rnd_hi32) 19009 continue; 19010 19011 code = insn.code; 19012 class = BPF_CLASS(code); 19013 if (load_reg == -1) 19014 continue; 19015 19016 /* NOTE: arg "reg" (the fourth one) is only used for 19017 * BPF_STX + SRC_OP, so it is safe to pass NULL 19018 * here. 19019 */ 19020 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 19021 if (class == BPF_LD && 19022 BPF_MODE(code) == BPF_IMM) 19023 i++; 19024 continue; 19025 } 19026 19027 /* ctx load could be transformed into wider load. */ 19028 if (class == BPF_LDX && 19029 aux[adj_idx].ptr_type == PTR_TO_CTX) 19030 continue; 19031 19032 imm_rnd = get_random_u32(); 19033 rnd_hi32_patch[0] = insn; 19034 rnd_hi32_patch[1].imm = imm_rnd; 19035 rnd_hi32_patch[3].dst_reg = load_reg; 19036 patch = rnd_hi32_patch; 19037 patch_len = 4; 19038 goto apply_patch_buffer; 19039 } 19040 19041 /* Add in an zero-extend instruction if a) the JIT has requested 19042 * it or b) it's a CMPXCHG. 19043 * 19044 * The latter is because: BPF_CMPXCHG always loads a value into 19045 * R0, therefore always zero-extends. However some archs' 19046 * equivalent instruction only does this load when the 19047 * comparison is successful. This detail of CMPXCHG is 19048 * orthogonal to the general zero-extension behaviour of the 19049 * CPU, so it's treated independently of bpf_jit_needs_zext. 19050 */ 19051 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 19052 continue; 19053 19054 /* Zero-extension is done by the caller. */ 19055 if (bpf_pseudo_kfunc_call(&insn)) 19056 continue; 19057 19058 if (WARN_ON(load_reg == -1)) { 19059 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 19060 return -EFAULT; 19061 } 19062 19063 zext_patch[0] = insn; 19064 zext_patch[1].dst_reg = load_reg; 19065 zext_patch[1].src_reg = load_reg; 19066 patch = zext_patch; 19067 patch_len = 2; 19068 apply_patch_buffer: 19069 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 19070 if (!new_prog) 19071 return -ENOMEM; 19072 env->prog = new_prog; 19073 insns = new_prog->insnsi; 19074 aux = env->insn_aux_data; 19075 delta += patch_len - 1; 19076 } 19077 19078 return 0; 19079 } 19080 19081 /* convert load instructions that access fields of a context type into a 19082 * sequence of instructions that access fields of the underlying structure: 19083 * struct __sk_buff -> struct sk_buff 19084 * struct bpf_sock_ops -> struct sock 19085 */ 19086 static int convert_ctx_accesses(struct bpf_verifier_env *env) 19087 { 19088 const struct bpf_verifier_ops *ops = env->ops; 19089 int i, cnt, size, ctx_field_size, delta = 0; 19090 const int insn_cnt = env->prog->len; 19091 struct bpf_insn insn_buf[16], *insn; 19092 u32 target_size, size_default, off; 19093 struct bpf_prog *new_prog; 19094 enum bpf_access_type type; 19095 bool is_narrower_load; 19096 19097 if (ops->gen_prologue || env->seen_direct_write) { 19098 if (!ops->gen_prologue) { 19099 verbose(env, "bpf verifier is misconfigured\n"); 19100 return -EINVAL; 19101 } 19102 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 19103 env->prog); 19104 if (cnt >= ARRAY_SIZE(insn_buf)) { 19105 verbose(env, "bpf verifier is misconfigured\n"); 19106 return -EINVAL; 19107 } else if (cnt) { 19108 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 19109 if (!new_prog) 19110 return -ENOMEM; 19111 19112 env->prog = new_prog; 19113 delta += cnt - 1; 19114 } 19115 } 19116 19117 if (bpf_prog_is_offloaded(env->prog->aux)) 19118 return 0; 19119 19120 insn = env->prog->insnsi + delta; 19121 19122 for (i = 0; i < insn_cnt; i++, insn++) { 19123 bpf_convert_ctx_access_t convert_ctx_access; 19124 u8 mode; 19125 19126 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 19127 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 19128 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 19129 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 19130 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 19131 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 19132 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 19133 type = BPF_READ; 19134 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 19135 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 19136 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 19137 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 19138 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 19139 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 19140 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 19141 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 19142 type = BPF_WRITE; 19143 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || 19144 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && 19145 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { 19146 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); 19147 env->prog->aux->num_exentries++; 19148 continue; 19149 } else { 19150 continue; 19151 } 19152 19153 if (type == BPF_WRITE && 19154 env->insn_aux_data[i + delta].sanitize_stack_spill) { 19155 struct bpf_insn patch[] = { 19156 *insn, 19157 BPF_ST_NOSPEC(), 19158 }; 19159 19160 cnt = ARRAY_SIZE(patch); 19161 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 19162 if (!new_prog) 19163 return -ENOMEM; 19164 19165 delta += cnt - 1; 19166 env->prog = new_prog; 19167 insn = new_prog->insnsi + i + delta; 19168 continue; 19169 } 19170 19171 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 19172 case PTR_TO_CTX: 19173 if (!ops->convert_ctx_access) 19174 continue; 19175 convert_ctx_access = ops->convert_ctx_access; 19176 break; 19177 case PTR_TO_SOCKET: 19178 case PTR_TO_SOCK_COMMON: 19179 convert_ctx_access = bpf_sock_convert_ctx_access; 19180 break; 19181 case PTR_TO_TCP_SOCK: 19182 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 19183 break; 19184 case PTR_TO_XDP_SOCK: 19185 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 19186 break; 19187 case PTR_TO_BTF_ID: 19188 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 19189 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 19190 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 19191 * be said once it is marked PTR_UNTRUSTED, hence we must handle 19192 * any faults for loads into such types. BPF_WRITE is disallowed 19193 * for this case. 19194 */ 19195 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 19196 if (type == BPF_READ) { 19197 if (BPF_MODE(insn->code) == BPF_MEM) 19198 insn->code = BPF_LDX | BPF_PROBE_MEM | 19199 BPF_SIZE((insn)->code); 19200 else 19201 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 19202 BPF_SIZE((insn)->code); 19203 env->prog->aux->num_exentries++; 19204 } 19205 continue; 19206 case PTR_TO_ARENA: 19207 if (BPF_MODE(insn->code) == BPF_MEMSX) { 19208 verbose(env, "sign extending loads from arena are not supported yet\n"); 19209 return -EOPNOTSUPP; 19210 } 19211 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 19212 env->prog->aux->num_exentries++; 19213 continue; 19214 default: 19215 continue; 19216 } 19217 19218 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 19219 size = BPF_LDST_BYTES(insn); 19220 mode = BPF_MODE(insn->code); 19221 19222 /* If the read access is a narrower load of the field, 19223 * convert to a 4/8-byte load, to minimum program type specific 19224 * convert_ctx_access changes. If conversion is successful, 19225 * we will apply proper mask to the result. 19226 */ 19227 is_narrower_load = size < ctx_field_size; 19228 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 19229 off = insn->off; 19230 if (is_narrower_load) { 19231 u8 size_code; 19232 19233 if (type == BPF_WRITE) { 19234 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 19235 return -EINVAL; 19236 } 19237 19238 size_code = BPF_H; 19239 if (ctx_field_size == 4) 19240 size_code = BPF_W; 19241 else if (ctx_field_size == 8) 19242 size_code = BPF_DW; 19243 19244 insn->off = off & ~(size_default - 1); 19245 insn->code = BPF_LDX | BPF_MEM | size_code; 19246 } 19247 19248 target_size = 0; 19249 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 19250 &target_size); 19251 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 19252 (ctx_field_size && !target_size)) { 19253 verbose(env, "bpf verifier is misconfigured\n"); 19254 return -EINVAL; 19255 } 19256 19257 if (is_narrower_load && size < target_size) { 19258 u8 shift = bpf_ctx_narrow_access_offset( 19259 off, size, size_default) * 8; 19260 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 19261 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 19262 return -EINVAL; 19263 } 19264 if (ctx_field_size <= 4) { 19265 if (shift) 19266 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 19267 insn->dst_reg, 19268 shift); 19269 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 19270 (1 << size * 8) - 1); 19271 } else { 19272 if (shift) 19273 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 19274 insn->dst_reg, 19275 shift); 19276 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 19277 (1ULL << size * 8) - 1); 19278 } 19279 } 19280 if (mode == BPF_MEMSX) 19281 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 19282 insn->dst_reg, insn->dst_reg, 19283 size * 8, 0); 19284 19285 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19286 if (!new_prog) 19287 return -ENOMEM; 19288 19289 delta += cnt - 1; 19290 19291 /* keep walking new program and skip insns we just inserted */ 19292 env->prog = new_prog; 19293 insn = new_prog->insnsi + i + delta; 19294 } 19295 19296 return 0; 19297 } 19298 19299 static int jit_subprogs(struct bpf_verifier_env *env) 19300 { 19301 struct bpf_prog *prog = env->prog, **func, *tmp; 19302 int i, j, subprog_start, subprog_end = 0, len, subprog; 19303 struct bpf_map *map_ptr; 19304 struct bpf_insn *insn; 19305 void *old_bpf_func; 19306 int err, num_exentries; 19307 19308 if (env->subprog_cnt <= 1) 19309 return 0; 19310 19311 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19312 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 19313 continue; 19314 19315 /* Upon error here we cannot fall back to interpreter but 19316 * need a hard reject of the program. Thus -EFAULT is 19317 * propagated in any case. 19318 */ 19319 subprog = find_subprog(env, i + insn->imm + 1); 19320 if (subprog < 0) { 19321 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 19322 i + insn->imm + 1); 19323 return -EFAULT; 19324 } 19325 /* temporarily remember subprog id inside insn instead of 19326 * aux_data, since next loop will split up all insns into funcs 19327 */ 19328 insn->off = subprog; 19329 /* remember original imm in case JIT fails and fallback 19330 * to interpreter will be needed 19331 */ 19332 env->insn_aux_data[i].call_imm = insn->imm; 19333 /* point imm to __bpf_call_base+1 from JITs point of view */ 19334 insn->imm = 1; 19335 if (bpf_pseudo_func(insn)) { 19336 #if defined(MODULES_VADDR) 19337 u64 addr = MODULES_VADDR; 19338 #else 19339 u64 addr = VMALLOC_START; 19340 #endif 19341 /* jit (e.g. x86_64) may emit fewer instructions 19342 * if it learns a u32 imm is the same as a u64 imm. 19343 * Set close enough to possible prog address. 19344 */ 19345 insn[0].imm = (u32)addr; 19346 insn[1].imm = addr >> 32; 19347 } 19348 } 19349 19350 err = bpf_prog_alloc_jited_linfo(prog); 19351 if (err) 19352 goto out_undo_insn; 19353 19354 err = -ENOMEM; 19355 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 19356 if (!func) 19357 goto out_undo_insn; 19358 19359 for (i = 0; i < env->subprog_cnt; i++) { 19360 subprog_start = subprog_end; 19361 subprog_end = env->subprog_info[i + 1].start; 19362 19363 len = subprog_end - subprog_start; 19364 /* bpf_prog_run() doesn't call subprogs directly, 19365 * hence main prog stats include the runtime of subprogs. 19366 * subprogs don't have IDs and not reachable via prog_get_next_id 19367 * func[i]->stats will never be accessed and stays NULL 19368 */ 19369 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 19370 if (!func[i]) 19371 goto out_free; 19372 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 19373 len * sizeof(struct bpf_insn)); 19374 func[i]->type = prog->type; 19375 func[i]->len = len; 19376 if (bpf_prog_calc_tag(func[i])) 19377 goto out_free; 19378 func[i]->is_func = 1; 19379 func[i]->sleepable = prog->sleepable; 19380 func[i]->aux->func_idx = i; 19381 /* Below members will be freed only at prog->aux */ 19382 func[i]->aux->btf = prog->aux->btf; 19383 func[i]->aux->func_info = prog->aux->func_info; 19384 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 19385 func[i]->aux->poke_tab = prog->aux->poke_tab; 19386 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 19387 19388 for (j = 0; j < prog->aux->size_poke_tab; j++) { 19389 struct bpf_jit_poke_descriptor *poke; 19390 19391 poke = &prog->aux->poke_tab[j]; 19392 if (poke->insn_idx < subprog_end && 19393 poke->insn_idx >= subprog_start) 19394 poke->aux = func[i]->aux; 19395 } 19396 19397 func[i]->aux->name[0] = 'F'; 19398 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 19399 func[i]->jit_requested = 1; 19400 func[i]->blinding_requested = prog->blinding_requested; 19401 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 19402 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 19403 func[i]->aux->linfo = prog->aux->linfo; 19404 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 19405 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 19406 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 19407 func[i]->aux->arena = prog->aux->arena; 19408 num_exentries = 0; 19409 insn = func[i]->insnsi; 19410 for (j = 0; j < func[i]->len; j++, insn++) { 19411 if (BPF_CLASS(insn->code) == BPF_LDX && 19412 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 19413 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 19414 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 19415 num_exentries++; 19416 if ((BPF_CLASS(insn->code) == BPF_STX || 19417 BPF_CLASS(insn->code) == BPF_ST) && 19418 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 19419 num_exentries++; 19420 if (BPF_CLASS(insn->code) == BPF_STX && 19421 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) 19422 num_exentries++; 19423 } 19424 func[i]->aux->num_exentries = num_exentries; 19425 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 19426 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 19427 if (!i) 19428 func[i]->aux->exception_boundary = env->seen_exception; 19429 func[i] = bpf_int_jit_compile(func[i]); 19430 if (!func[i]->jited) { 19431 err = -ENOTSUPP; 19432 goto out_free; 19433 } 19434 cond_resched(); 19435 } 19436 19437 /* at this point all bpf functions were successfully JITed 19438 * now populate all bpf_calls with correct addresses and 19439 * run last pass of JIT 19440 */ 19441 for (i = 0; i < env->subprog_cnt; i++) { 19442 insn = func[i]->insnsi; 19443 for (j = 0; j < func[i]->len; j++, insn++) { 19444 if (bpf_pseudo_func(insn)) { 19445 subprog = insn->off; 19446 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 19447 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 19448 continue; 19449 } 19450 if (!bpf_pseudo_call(insn)) 19451 continue; 19452 subprog = insn->off; 19453 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 19454 } 19455 19456 /* we use the aux data to keep a list of the start addresses 19457 * of the JITed images for each function in the program 19458 * 19459 * for some architectures, such as powerpc64, the imm field 19460 * might not be large enough to hold the offset of the start 19461 * address of the callee's JITed image from __bpf_call_base 19462 * 19463 * in such cases, we can lookup the start address of a callee 19464 * by using its subprog id, available from the off field of 19465 * the call instruction, as an index for this list 19466 */ 19467 func[i]->aux->func = func; 19468 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 19469 func[i]->aux->real_func_cnt = env->subprog_cnt; 19470 } 19471 for (i = 0; i < env->subprog_cnt; i++) { 19472 old_bpf_func = func[i]->bpf_func; 19473 tmp = bpf_int_jit_compile(func[i]); 19474 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 19475 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 19476 err = -ENOTSUPP; 19477 goto out_free; 19478 } 19479 cond_resched(); 19480 } 19481 19482 /* finally lock prog and jit images for all functions and 19483 * populate kallsysm. Begin at the first subprogram, since 19484 * bpf_prog_load will add the kallsyms for the main program. 19485 */ 19486 for (i = 1; i < env->subprog_cnt; i++) { 19487 err = bpf_prog_lock_ro(func[i]); 19488 if (err) 19489 goto out_free; 19490 } 19491 19492 for (i = 1; i < env->subprog_cnt; i++) 19493 bpf_prog_kallsyms_add(func[i]); 19494 19495 /* Last step: make now unused interpreter insns from main 19496 * prog consistent for later dump requests, so they can 19497 * later look the same as if they were interpreted only. 19498 */ 19499 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19500 if (bpf_pseudo_func(insn)) { 19501 insn[0].imm = env->insn_aux_data[i].call_imm; 19502 insn[1].imm = insn->off; 19503 insn->off = 0; 19504 continue; 19505 } 19506 if (!bpf_pseudo_call(insn)) 19507 continue; 19508 insn->off = env->insn_aux_data[i].call_imm; 19509 subprog = find_subprog(env, i + insn->off + 1); 19510 insn->imm = subprog; 19511 } 19512 19513 prog->jited = 1; 19514 prog->bpf_func = func[0]->bpf_func; 19515 prog->jited_len = func[0]->jited_len; 19516 prog->aux->extable = func[0]->aux->extable; 19517 prog->aux->num_exentries = func[0]->aux->num_exentries; 19518 prog->aux->func = func; 19519 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 19520 prog->aux->real_func_cnt = env->subprog_cnt; 19521 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 19522 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 19523 bpf_prog_jit_attempt_done(prog); 19524 return 0; 19525 out_free: 19526 /* We failed JIT'ing, so at this point we need to unregister poke 19527 * descriptors from subprogs, so that kernel is not attempting to 19528 * patch it anymore as we're freeing the subprog JIT memory. 19529 */ 19530 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19531 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19532 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 19533 } 19534 /* At this point we're guaranteed that poke descriptors are not 19535 * live anymore. We can just unlink its descriptor table as it's 19536 * released with the main prog. 19537 */ 19538 for (i = 0; i < env->subprog_cnt; i++) { 19539 if (!func[i]) 19540 continue; 19541 func[i]->aux->poke_tab = NULL; 19542 bpf_jit_free(func[i]); 19543 } 19544 kfree(func); 19545 out_undo_insn: 19546 /* cleanup main prog to be interpreted */ 19547 prog->jit_requested = 0; 19548 prog->blinding_requested = 0; 19549 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19550 if (!bpf_pseudo_call(insn)) 19551 continue; 19552 insn->off = 0; 19553 insn->imm = env->insn_aux_data[i].call_imm; 19554 } 19555 bpf_prog_jit_attempt_done(prog); 19556 return err; 19557 } 19558 19559 static int fixup_call_args(struct bpf_verifier_env *env) 19560 { 19561 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 19562 struct bpf_prog *prog = env->prog; 19563 struct bpf_insn *insn = prog->insnsi; 19564 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 19565 int i, depth; 19566 #endif 19567 int err = 0; 19568 19569 if (env->prog->jit_requested && 19570 !bpf_prog_is_offloaded(env->prog->aux)) { 19571 err = jit_subprogs(env); 19572 if (err == 0) 19573 return 0; 19574 if (err == -EFAULT) 19575 return err; 19576 } 19577 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 19578 if (has_kfunc_call) { 19579 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 19580 return -EINVAL; 19581 } 19582 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 19583 /* When JIT fails the progs with bpf2bpf calls and tail_calls 19584 * have to be rejected, since interpreter doesn't support them yet. 19585 */ 19586 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 19587 return -EINVAL; 19588 } 19589 for (i = 0; i < prog->len; i++, insn++) { 19590 if (bpf_pseudo_func(insn)) { 19591 /* When JIT fails the progs with callback calls 19592 * have to be rejected, since interpreter doesn't support them yet. 19593 */ 19594 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 19595 return -EINVAL; 19596 } 19597 19598 if (!bpf_pseudo_call(insn)) 19599 continue; 19600 depth = get_callee_stack_depth(env, insn, i); 19601 if (depth < 0) 19602 return depth; 19603 bpf_patch_call_args(insn, depth); 19604 } 19605 err = 0; 19606 #endif 19607 return err; 19608 } 19609 19610 /* replace a generic kfunc with a specialized version if necessary */ 19611 static void specialize_kfunc(struct bpf_verifier_env *env, 19612 u32 func_id, u16 offset, unsigned long *addr) 19613 { 19614 struct bpf_prog *prog = env->prog; 19615 bool seen_direct_write; 19616 void *xdp_kfunc; 19617 bool is_rdonly; 19618 19619 if (bpf_dev_bound_kfunc_id(func_id)) { 19620 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 19621 if (xdp_kfunc) { 19622 *addr = (unsigned long)xdp_kfunc; 19623 return; 19624 } 19625 /* fallback to default kfunc when not supported by netdev */ 19626 } 19627 19628 if (offset) 19629 return; 19630 19631 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 19632 seen_direct_write = env->seen_direct_write; 19633 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 19634 19635 if (is_rdonly) 19636 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 19637 19638 /* restore env->seen_direct_write to its original value, since 19639 * may_access_direct_pkt_data mutates it 19640 */ 19641 env->seen_direct_write = seen_direct_write; 19642 } 19643 } 19644 19645 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 19646 u16 struct_meta_reg, 19647 u16 node_offset_reg, 19648 struct bpf_insn *insn, 19649 struct bpf_insn *insn_buf, 19650 int *cnt) 19651 { 19652 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 19653 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 19654 19655 insn_buf[0] = addr[0]; 19656 insn_buf[1] = addr[1]; 19657 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 19658 insn_buf[3] = *insn; 19659 *cnt = 4; 19660 } 19661 19662 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 19663 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 19664 { 19665 const struct bpf_kfunc_desc *desc; 19666 19667 if (!insn->imm) { 19668 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 19669 return -EINVAL; 19670 } 19671 19672 *cnt = 0; 19673 19674 /* insn->imm has the btf func_id. Replace it with an offset relative to 19675 * __bpf_call_base, unless the JIT needs to call functions that are 19676 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 19677 */ 19678 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 19679 if (!desc) { 19680 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 19681 insn->imm); 19682 return -EFAULT; 19683 } 19684 19685 if (!bpf_jit_supports_far_kfunc_call()) 19686 insn->imm = BPF_CALL_IMM(desc->addr); 19687 if (insn->off) 19688 return 0; 19689 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 19690 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 19691 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19692 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 19693 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 19694 19695 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 19696 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 19697 insn_idx); 19698 return -EFAULT; 19699 } 19700 19701 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 19702 insn_buf[1] = addr[0]; 19703 insn_buf[2] = addr[1]; 19704 insn_buf[3] = *insn; 19705 *cnt = 4; 19706 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 19707 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 19708 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 19709 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19710 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 19711 19712 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 19713 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 19714 insn_idx); 19715 return -EFAULT; 19716 } 19717 19718 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 19719 !kptr_struct_meta) { 19720 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 19721 insn_idx); 19722 return -EFAULT; 19723 } 19724 19725 insn_buf[0] = addr[0]; 19726 insn_buf[1] = addr[1]; 19727 insn_buf[2] = *insn; 19728 *cnt = 3; 19729 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 19730 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 19731 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 19732 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19733 int struct_meta_reg = BPF_REG_3; 19734 int node_offset_reg = BPF_REG_4; 19735 19736 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 19737 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 19738 struct_meta_reg = BPF_REG_4; 19739 node_offset_reg = BPF_REG_5; 19740 } 19741 19742 if (!kptr_struct_meta) { 19743 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 19744 insn_idx); 19745 return -EFAULT; 19746 } 19747 19748 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 19749 node_offset_reg, insn, insn_buf, cnt); 19750 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 19751 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 19752 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 19753 *cnt = 1; 19754 } else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) { 19755 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) }; 19756 19757 insn_buf[0] = ld_addrs[0]; 19758 insn_buf[1] = ld_addrs[1]; 19759 insn_buf[2] = *insn; 19760 *cnt = 3; 19761 } 19762 return 0; 19763 } 19764 19765 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 19766 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 19767 { 19768 struct bpf_subprog_info *info = env->subprog_info; 19769 int cnt = env->subprog_cnt; 19770 struct bpf_prog *prog; 19771 19772 /* We only reserve one slot for hidden subprogs in subprog_info. */ 19773 if (env->hidden_subprog_cnt) { 19774 verbose(env, "verifier internal error: only one hidden subprog supported\n"); 19775 return -EFAULT; 19776 } 19777 /* We're not patching any existing instruction, just appending the new 19778 * ones for the hidden subprog. Hence all of the adjustment operations 19779 * in bpf_patch_insn_data are no-ops. 19780 */ 19781 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 19782 if (!prog) 19783 return -ENOMEM; 19784 env->prog = prog; 19785 info[cnt + 1].start = info[cnt].start; 19786 info[cnt].start = prog->len - len + 1; 19787 env->subprog_cnt++; 19788 env->hidden_subprog_cnt++; 19789 return 0; 19790 } 19791 19792 /* Do various post-verification rewrites in a single program pass. 19793 * These rewrites simplify JIT and interpreter implementations. 19794 */ 19795 static int do_misc_fixups(struct bpf_verifier_env *env) 19796 { 19797 struct bpf_prog *prog = env->prog; 19798 enum bpf_attach_type eatype = prog->expected_attach_type; 19799 enum bpf_prog_type prog_type = resolve_prog_type(prog); 19800 struct bpf_insn *insn = prog->insnsi; 19801 const struct bpf_func_proto *fn; 19802 const int insn_cnt = prog->len; 19803 const struct bpf_map_ops *ops; 19804 struct bpf_insn_aux_data *aux; 19805 struct bpf_insn insn_buf[16]; 19806 struct bpf_prog *new_prog; 19807 struct bpf_map *map_ptr; 19808 int i, ret, cnt, delta = 0, cur_subprog = 0; 19809 struct bpf_subprog_info *subprogs = env->subprog_info; 19810 u16 stack_depth = subprogs[cur_subprog].stack_depth; 19811 u16 stack_depth_extra = 0; 19812 19813 if (env->seen_exception && !env->exception_callback_subprog) { 19814 struct bpf_insn patch[] = { 19815 env->prog->insnsi[insn_cnt - 1], 19816 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), 19817 BPF_EXIT_INSN(), 19818 }; 19819 19820 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); 19821 if (ret < 0) 19822 return ret; 19823 prog = env->prog; 19824 insn = prog->insnsi; 19825 19826 env->exception_callback_subprog = env->subprog_cnt - 1; 19827 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 19828 mark_subprog_exc_cb(env, env->exception_callback_subprog); 19829 } 19830 19831 for (i = 0; i < insn_cnt;) { 19832 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 19833 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 19834 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 19835 /* convert to 32-bit mov that clears upper 32-bit */ 19836 insn->code = BPF_ALU | BPF_MOV | BPF_X; 19837 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ 19838 insn->off = 0; 19839 insn->imm = 0; 19840 } /* cast from as(0) to as(1) should be handled by JIT */ 19841 goto next_insn; 19842 } 19843 19844 if (env->insn_aux_data[i + delta].needs_zext) 19845 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 19846 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 19847 19848 /* Make divide-by-zero exceptions impossible. */ 19849 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 19850 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 19851 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 19852 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 19853 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 19854 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 19855 struct bpf_insn *patchlet; 19856 struct bpf_insn chk_and_div[] = { 19857 /* [R,W]x div 0 -> 0 */ 19858 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 19859 BPF_JNE | BPF_K, insn->src_reg, 19860 0, 2, 0), 19861 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 19862 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 19863 *insn, 19864 }; 19865 struct bpf_insn chk_and_mod[] = { 19866 /* [R,W]x mod 0 -> [R,W]x */ 19867 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 19868 BPF_JEQ | BPF_K, insn->src_reg, 19869 0, 1 + (is64 ? 0 : 1), 0), 19870 *insn, 19871 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 19872 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 19873 }; 19874 19875 patchlet = isdiv ? chk_and_div : chk_and_mod; 19876 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 19877 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 19878 19879 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 19880 if (!new_prog) 19881 return -ENOMEM; 19882 19883 delta += cnt - 1; 19884 env->prog = prog = new_prog; 19885 insn = new_prog->insnsi + i + delta; 19886 goto next_insn; 19887 } 19888 19889 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 19890 if (BPF_CLASS(insn->code) == BPF_LD && 19891 (BPF_MODE(insn->code) == BPF_ABS || 19892 BPF_MODE(insn->code) == BPF_IND)) { 19893 cnt = env->ops->gen_ld_abs(insn, insn_buf); 19894 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19895 verbose(env, "bpf verifier is misconfigured\n"); 19896 return -EINVAL; 19897 } 19898 19899 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19900 if (!new_prog) 19901 return -ENOMEM; 19902 19903 delta += cnt - 1; 19904 env->prog = prog = new_prog; 19905 insn = new_prog->insnsi + i + delta; 19906 goto next_insn; 19907 } 19908 19909 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 19910 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 19911 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 19912 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 19913 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 19914 struct bpf_insn *patch = &insn_buf[0]; 19915 bool issrc, isneg, isimm; 19916 u32 off_reg; 19917 19918 aux = &env->insn_aux_data[i + delta]; 19919 if (!aux->alu_state || 19920 aux->alu_state == BPF_ALU_NON_POINTER) 19921 goto next_insn; 19922 19923 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 19924 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 19925 BPF_ALU_SANITIZE_SRC; 19926 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 19927 19928 off_reg = issrc ? insn->src_reg : insn->dst_reg; 19929 if (isimm) { 19930 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 19931 } else { 19932 if (isneg) 19933 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 19934 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 19935 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 19936 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 19937 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 19938 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 19939 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 19940 } 19941 if (!issrc) 19942 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 19943 insn->src_reg = BPF_REG_AX; 19944 if (isneg) 19945 insn->code = insn->code == code_add ? 19946 code_sub : code_add; 19947 *patch++ = *insn; 19948 if (issrc && isneg && !isimm) 19949 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 19950 cnt = patch - insn_buf; 19951 19952 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19953 if (!new_prog) 19954 return -ENOMEM; 19955 19956 delta += cnt - 1; 19957 env->prog = prog = new_prog; 19958 insn = new_prog->insnsi + i + delta; 19959 goto next_insn; 19960 } 19961 19962 if (is_may_goto_insn(insn)) { 19963 int stack_off = -stack_depth - 8; 19964 19965 stack_depth_extra = 8; 19966 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 19967 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 19968 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 19969 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 19970 cnt = 4; 19971 19972 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19973 if (!new_prog) 19974 return -ENOMEM; 19975 19976 delta += cnt - 1; 19977 env->prog = prog = new_prog; 19978 insn = new_prog->insnsi + i + delta; 19979 goto next_insn; 19980 } 19981 19982 if (insn->code != (BPF_JMP | BPF_CALL)) 19983 goto next_insn; 19984 if (insn->src_reg == BPF_PSEUDO_CALL) 19985 goto next_insn; 19986 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19987 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 19988 if (ret) 19989 return ret; 19990 if (cnt == 0) 19991 goto next_insn; 19992 19993 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19994 if (!new_prog) 19995 return -ENOMEM; 19996 19997 delta += cnt - 1; 19998 env->prog = prog = new_prog; 19999 insn = new_prog->insnsi + i + delta; 20000 goto next_insn; 20001 } 20002 20003 if (insn->imm == BPF_FUNC_get_route_realm) 20004 prog->dst_needed = 1; 20005 if (insn->imm == BPF_FUNC_get_prandom_u32) 20006 bpf_user_rnd_init_once(); 20007 if (insn->imm == BPF_FUNC_override_return) 20008 prog->kprobe_override = 1; 20009 if (insn->imm == BPF_FUNC_tail_call) { 20010 /* If we tail call into other programs, we 20011 * cannot make any assumptions since they can 20012 * be replaced dynamically during runtime in 20013 * the program array. 20014 */ 20015 prog->cb_access = 1; 20016 if (!allow_tail_call_in_subprogs(env)) 20017 prog->aux->stack_depth = MAX_BPF_STACK; 20018 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 20019 20020 /* mark bpf_tail_call as different opcode to avoid 20021 * conditional branch in the interpreter for every normal 20022 * call and to prevent accidental JITing by JIT compiler 20023 * that doesn't support bpf_tail_call yet 20024 */ 20025 insn->imm = 0; 20026 insn->code = BPF_JMP | BPF_TAIL_CALL; 20027 20028 aux = &env->insn_aux_data[i + delta]; 20029 if (env->bpf_capable && !prog->blinding_requested && 20030 prog->jit_requested && 20031 !bpf_map_key_poisoned(aux) && 20032 !bpf_map_ptr_poisoned(aux) && 20033 !bpf_map_ptr_unpriv(aux)) { 20034 struct bpf_jit_poke_descriptor desc = { 20035 .reason = BPF_POKE_REASON_TAIL_CALL, 20036 .tail_call.map = aux->map_ptr_state.map_ptr, 20037 .tail_call.key = bpf_map_key_immediate(aux), 20038 .insn_idx = i + delta, 20039 }; 20040 20041 ret = bpf_jit_add_poke_descriptor(prog, &desc); 20042 if (ret < 0) { 20043 verbose(env, "adding tail call poke descriptor failed\n"); 20044 return ret; 20045 } 20046 20047 insn->imm = ret + 1; 20048 goto next_insn; 20049 } 20050 20051 if (!bpf_map_ptr_unpriv(aux)) 20052 goto next_insn; 20053 20054 /* instead of changing every JIT dealing with tail_call 20055 * emit two extra insns: 20056 * if (index >= max_entries) goto out; 20057 * index &= array->index_mask; 20058 * to avoid out-of-bounds cpu speculation 20059 */ 20060 if (bpf_map_ptr_poisoned(aux)) { 20061 verbose(env, "tail_call abusing map_ptr\n"); 20062 return -EINVAL; 20063 } 20064 20065 map_ptr = aux->map_ptr_state.map_ptr; 20066 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 20067 map_ptr->max_entries, 2); 20068 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 20069 container_of(map_ptr, 20070 struct bpf_array, 20071 map)->index_mask); 20072 insn_buf[2] = *insn; 20073 cnt = 3; 20074 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20075 if (!new_prog) 20076 return -ENOMEM; 20077 20078 delta += cnt - 1; 20079 env->prog = prog = new_prog; 20080 insn = new_prog->insnsi + i + delta; 20081 goto next_insn; 20082 } 20083 20084 if (insn->imm == BPF_FUNC_timer_set_callback) { 20085 /* The verifier will process callback_fn as many times as necessary 20086 * with different maps and the register states prepared by 20087 * set_timer_callback_state will be accurate. 20088 * 20089 * The following use case is valid: 20090 * map1 is shared by prog1, prog2, prog3. 20091 * prog1 calls bpf_timer_init for some map1 elements 20092 * prog2 calls bpf_timer_set_callback for some map1 elements. 20093 * Those that were not bpf_timer_init-ed will return -EINVAL. 20094 * prog3 calls bpf_timer_start for some map1 elements. 20095 * Those that were not both bpf_timer_init-ed and 20096 * bpf_timer_set_callback-ed will return -EINVAL. 20097 */ 20098 struct bpf_insn ld_addrs[2] = { 20099 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 20100 }; 20101 20102 insn_buf[0] = ld_addrs[0]; 20103 insn_buf[1] = ld_addrs[1]; 20104 insn_buf[2] = *insn; 20105 cnt = 3; 20106 20107 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20108 if (!new_prog) 20109 return -ENOMEM; 20110 20111 delta += cnt - 1; 20112 env->prog = prog = new_prog; 20113 insn = new_prog->insnsi + i + delta; 20114 goto patch_call_imm; 20115 } 20116 20117 if (is_storage_get_function(insn->imm)) { 20118 if (!in_sleepable(env) || 20119 env->insn_aux_data[i + delta].storage_get_func_atomic) 20120 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 20121 else 20122 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 20123 insn_buf[1] = *insn; 20124 cnt = 2; 20125 20126 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20127 if (!new_prog) 20128 return -ENOMEM; 20129 20130 delta += cnt - 1; 20131 env->prog = prog = new_prog; 20132 insn = new_prog->insnsi + i + delta; 20133 goto patch_call_imm; 20134 } 20135 20136 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 20137 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 20138 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 20139 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 20140 */ 20141 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 20142 insn_buf[1] = *insn; 20143 cnt = 2; 20144 20145 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20146 if (!new_prog) 20147 return -ENOMEM; 20148 20149 delta += cnt - 1; 20150 env->prog = prog = new_prog; 20151 insn = new_prog->insnsi + i + delta; 20152 goto patch_call_imm; 20153 } 20154 20155 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 20156 * and other inlining handlers are currently limited to 64 bit 20157 * only. 20158 */ 20159 if (prog->jit_requested && BITS_PER_LONG == 64 && 20160 (insn->imm == BPF_FUNC_map_lookup_elem || 20161 insn->imm == BPF_FUNC_map_update_elem || 20162 insn->imm == BPF_FUNC_map_delete_elem || 20163 insn->imm == BPF_FUNC_map_push_elem || 20164 insn->imm == BPF_FUNC_map_pop_elem || 20165 insn->imm == BPF_FUNC_map_peek_elem || 20166 insn->imm == BPF_FUNC_redirect_map || 20167 insn->imm == BPF_FUNC_for_each_map_elem || 20168 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 20169 aux = &env->insn_aux_data[i + delta]; 20170 if (bpf_map_ptr_poisoned(aux)) 20171 goto patch_call_imm; 20172 20173 map_ptr = aux->map_ptr_state.map_ptr; 20174 ops = map_ptr->ops; 20175 if (insn->imm == BPF_FUNC_map_lookup_elem && 20176 ops->map_gen_lookup) { 20177 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 20178 if (cnt == -EOPNOTSUPP) 20179 goto patch_map_ops_generic; 20180 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 20181 verbose(env, "bpf verifier is misconfigured\n"); 20182 return -EINVAL; 20183 } 20184 20185 new_prog = bpf_patch_insn_data(env, i + delta, 20186 insn_buf, cnt); 20187 if (!new_prog) 20188 return -ENOMEM; 20189 20190 delta += cnt - 1; 20191 env->prog = prog = new_prog; 20192 insn = new_prog->insnsi + i + delta; 20193 goto next_insn; 20194 } 20195 20196 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 20197 (void *(*)(struct bpf_map *map, void *key))NULL)); 20198 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 20199 (long (*)(struct bpf_map *map, void *key))NULL)); 20200 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 20201 (long (*)(struct bpf_map *map, void *key, void *value, 20202 u64 flags))NULL)); 20203 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 20204 (long (*)(struct bpf_map *map, void *value, 20205 u64 flags))NULL)); 20206 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 20207 (long (*)(struct bpf_map *map, void *value))NULL)); 20208 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 20209 (long (*)(struct bpf_map *map, void *value))NULL)); 20210 BUILD_BUG_ON(!__same_type(ops->map_redirect, 20211 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 20212 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 20213 (long (*)(struct bpf_map *map, 20214 bpf_callback_t callback_fn, 20215 void *callback_ctx, 20216 u64 flags))NULL)); 20217 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 20218 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 20219 20220 patch_map_ops_generic: 20221 switch (insn->imm) { 20222 case BPF_FUNC_map_lookup_elem: 20223 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 20224 goto next_insn; 20225 case BPF_FUNC_map_update_elem: 20226 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 20227 goto next_insn; 20228 case BPF_FUNC_map_delete_elem: 20229 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 20230 goto next_insn; 20231 case BPF_FUNC_map_push_elem: 20232 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 20233 goto next_insn; 20234 case BPF_FUNC_map_pop_elem: 20235 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 20236 goto next_insn; 20237 case BPF_FUNC_map_peek_elem: 20238 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 20239 goto next_insn; 20240 case BPF_FUNC_redirect_map: 20241 insn->imm = BPF_CALL_IMM(ops->map_redirect); 20242 goto next_insn; 20243 case BPF_FUNC_for_each_map_elem: 20244 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 20245 goto next_insn; 20246 case BPF_FUNC_map_lookup_percpu_elem: 20247 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 20248 goto next_insn; 20249 } 20250 20251 goto patch_call_imm; 20252 } 20253 20254 /* Implement bpf_jiffies64 inline. */ 20255 if (prog->jit_requested && BITS_PER_LONG == 64 && 20256 insn->imm == BPF_FUNC_jiffies64) { 20257 struct bpf_insn ld_jiffies_addr[2] = { 20258 BPF_LD_IMM64(BPF_REG_0, 20259 (unsigned long)&jiffies), 20260 }; 20261 20262 insn_buf[0] = ld_jiffies_addr[0]; 20263 insn_buf[1] = ld_jiffies_addr[1]; 20264 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 20265 BPF_REG_0, 0); 20266 cnt = 3; 20267 20268 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 20269 cnt); 20270 if (!new_prog) 20271 return -ENOMEM; 20272 20273 delta += cnt - 1; 20274 env->prog = prog = new_prog; 20275 insn = new_prog->insnsi + i + delta; 20276 goto next_insn; 20277 } 20278 20279 #ifdef CONFIG_X86_64 20280 /* Implement bpf_get_smp_processor_id() inline. */ 20281 if (insn->imm == BPF_FUNC_get_smp_processor_id && 20282 prog->jit_requested && bpf_jit_supports_percpu_insn()) { 20283 /* BPF_FUNC_get_smp_processor_id inlining is an 20284 * optimization, so if pcpu_hot.cpu_number is ever 20285 * changed in some incompatible and hard to support 20286 * way, it's fine to back out this inlining logic 20287 */ 20288 insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number); 20289 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 20290 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); 20291 cnt = 3; 20292 20293 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20294 if (!new_prog) 20295 return -ENOMEM; 20296 20297 delta += cnt - 1; 20298 env->prog = prog = new_prog; 20299 insn = new_prog->insnsi + i + delta; 20300 goto next_insn; 20301 } 20302 #endif 20303 /* Implement bpf_get_func_arg inline. */ 20304 if (prog_type == BPF_PROG_TYPE_TRACING && 20305 insn->imm == BPF_FUNC_get_func_arg) { 20306 /* Load nr_args from ctx - 8 */ 20307 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 20308 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 20309 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 20310 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 20311 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 20312 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 20313 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 20314 insn_buf[7] = BPF_JMP_A(1); 20315 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 20316 cnt = 9; 20317 20318 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20319 if (!new_prog) 20320 return -ENOMEM; 20321 20322 delta += cnt - 1; 20323 env->prog = prog = new_prog; 20324 insn = new_prog->insnsi + i + delta; 20325 goto next_insn; 20326 } 20327 20328 /* Implement bpf_get_func_ret inline. */ 20329 if (prog_type == BPF_PROG_TYPE_TRACING && 20330 insn->imm == BPF_FUNC_get_func_ret) { 20331 if (eatype == BPF_TRACE_FEXIT || 20332 eatype == BPF_MODIFY_RETURN) { 20333 /* Load nr_args from ctx - 8 */ 20334 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 20335 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 20336 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 20337 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 20338 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 20339 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 20340 cnt = 6; 20341 } else { 20342 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 20343 cnt = 1; 20344 } 20345 20346 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20347 if (!new_prog) 20348 return -ENOMEM; 20349 20350 delta += cnt - 1; 20351 env->prog = prog = new_prog; 20352 insn = new_prog->insnsi + i + delta; 20353 goto next_insn; 20354 } 20355 20356 /* Implement get_func_arg_cnt inline. */ 20357 if (prog_type == BPF_PROG_TYPE_TRACING && 20358 insn->imm == BPF_FUNC_get_func_arg_cnt) { 20359 /* Load nr_args from ctx - 8 */ 20360 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 20361 20362 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 20363 if (!new_prog) 20364 return -ENOMEM; 20365 20366 env->prog = prog = new_prog; 20367 insn = new_prog->insnsi + i + delta; 20368 goto next_insn; 20369 } 20370 20371 /* Implement bpf_get_func_ip inline. */ 20372 if (prog_type == BPF_PROG_TYPE_TRACING && 20373 insn->imm == BPF_FUNC_get_func_ip) { 20374 /* Load IP address from ctx - 16 */ 20375 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 20376 20377 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 20378 if (!new_prog) 20379 return -ENOMEM; 20380 20381 env->prog = prog = new_prog; 20382 insn = new_prog->insnsi + i + delta; 20383 goto next_insn; 20384 } 20385 20386 /* Implement bpf_get_branch_snapshot inline. */ 20387 if (IS_ENABLED(CONFIG_PERF_EVENTS) && 20388 prog->jit_requested && BITS_PER_LONG == 64 && 20389 insn->imm == BPF_FUNC_get_branch_snapshot) { 20390 /* We are dealing with the following func protos: 20391 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); 20392 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); 20393 */ 20394 const u32 br_entry_size = sizeof(struct perf_branch_entry); 20395 20396 /* struct perf_branch_entry is part of UAPI and is 20397 * used as an array element, so extremely unlikely to 20398 * ever grow or shrink 20399 */ 20400 BUILD_BUG_ON(br_entry_size != 24); 20401 20402 /* if (unlikely(flags)) return -EINVAL */ 20403 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); 20404 20405 /* Transform size (bytes) into number of entries (cnt = size / 24). 20406 * But to avoid expensive division instruction, we implement 20407 * divide-by-3 through multiplication, followed by further 20408 * division by 8 through 3-bit right shift. 20409 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., 20410 * p. 227, chapter "Unsigned Division by 3" for details and proofs. 20411 * 20412 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. 20413 */ 20414 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); 20415 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); 20416 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); 20417 20418 /* call perf_snapshot_branch_stack implementation */ 20419 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); 20420 /* if (entry_cnt == 0) return -ENOENT */ 20421 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); 20422 /* return entry_cnt * sizeof(struct perf_branch_entry) */ 20423 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); 20424 insn_buf[7] = BPF_JMP_A(3); 20425 /* return -EINVAL; */ 20426 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 20427 insn_buf[9] = BPF_JMP_A(1); 20428 /* return -ENOENT; */ 20429 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); 20430 cnt = 11; 20431 20432 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20433 if (!new_prog) 20434 return -ENOMEM; 20435 20436 delta += cnt - 1; 20437 env->prog = prog = new_prog; 20438 insn = new_prog->insnsi + i + delta; 20439 continue; 20440 } 20441 20442 /* Implement bpf_kptr_xchg inline */ 20443 if (prog->jit_requested && BITS_PER_LONG == 64 && 20444 insn->imm == BPF_FUNC_kptr_xchg && 20445 bpf_jit_supports_ptr_xchg()) { 20446 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 20447 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 20448 cnt = 2; 20449 20450 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20451 if (!new_prog) 20452 return -ENOMEM; 20453 20454 delta += cnt - 1; 20455 env->prog = prog = new_prog; 20456 insn = new_prog->insnsi + i + delta; 20457 goto next_insn; 20458 } 20459 patch_call_imm: 20460 fn = env->ops->get_func_proto(insn->imm, env->prog); 20461 /* all functions that have prototype and verifier allowed 20462 * programs to call them, must be real in-kernel functions 20463 */ 20464 if (!fn->func) { 20465 verbose(env, 20466 "kernel subsystem misconfigured func %s#%d\n", 20467 func_id_name(insn->imm), insn->imm); 20468 return -EFAULT; 20469 } 20470 insn->imm = fn->func - __bpf_call_base; 20471 next_insn: 20472 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 20473 subprogs[cur_subprog].stack_depth += stack_depth_extra; 20474 subprogs[cur_subprog].stack_extra = stack_depth_extra; 20475 cur_subprog++; 20476 stack_depth = subprogs[cur_subprog].stack_depth; 20477 stack_depth_extra = 0; 20478 } 20479 i++; 20480 insn++; 20481 } 20482 20483 env->prog->aux->stack_depth = subprogs[0].stack_depth; 20484 for (i = 0; i < env->subprog_cnt; i++) { 20485 int subprog_start = subprogs[i].start; 20486 int stack_slots = subprogs[i].stack_extra / 8; 20487 20488 if (!stack_slots) 20489 continue; 20490 if (stack_slots > 1) { 20491 verbose(env, "verifier bug: stack_slots supports may_goto only\n"); 20492 return -EFAULT; 20493 } 20494 20495 /* Add ST insn to subprog prologue to init extra stack */ 20496 insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, 20497 -subprogs[i].stack_depth, BPF_MAX_LOOPS); 20498 /* Copy first actual insn to preserve it */ 20499 insn_buf[1] = env->prog->insnsi[subprog_start]; 20500 20501 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2); 20502 if (!new_prog) 20503 return -ENOMEM; 20504 env->prog = prog = new_prog; 20505 } 20506 20507 /* Since poke tab is now finalized, publish aux to tracker. */ 20508 for (i = 0; i < prog->aux->size_poke_tab; i++) { 20509 map_ptr = prog->aux->poke_tab[i].tail_call.map; 20510 if (!map_ptr->ops->map_poke_track || 20511 !map_ptr->ops->map_poke_untrack || 20512 !map_ptr->ops->map_poke_run) { 20513 verbose(env, "bpf verifier is misconfigured\n"); 20514 return -EINVAL; 20515 } 20516 20517 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 20518 if (ret < 0) { 20519 verbose(env, "tracking tail call prog failed\n"); 20520 return ret; 20521 } 20522 } 20523 20524 sort_kfunc_descs_by_imm_off(env->prog); 20525 20526 return 0; 20527 } 20528 20529 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 20530 int position, 20531 s32 stack_base, 20532 u32 callback_subprogno, 20533 u32 *cnt) 20534 { 20535 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 20536 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 20537 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 20538 int reg_loop_max = BPF_REG_6; 20539 int reg_loop_cnt = BPF_REG_7; 20540 int reg_loop_ctx = BPF_REG_8; 20541 20542 struct bpf_prog *new_prog; 20543 u32 callback_start; 20544 u32 call_insn_offset; 20545 s32 callback_offset; 20546 20547 /* This represents an inlined version of bpf_iter.c:bpf_loop, 20548 * be careful to modify this code in sync. 20549 */ 20550 struct bpf_insn insn_buf[] = { 20551 /* Return error and jump to the end of the patch if 20552 * expected number of iterations is too big. 20553 */ 20554 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 20555 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 20556 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 20557 /* spill R6, R7, R8 to use these as loop vars */ 20558 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 20559 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 20560 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 20561 /* initialize loop vars */ 20562 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 20563 BPF_MOV32_IMM(reg_loop_cnt, 0), 20564 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 20565 /* loop header, 20566 * if reg_loop_cnt >= reg_loop_max skip the loop body 20567 */ 20568 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 20569 /* callback call, 20570 * correct callback offset would be set after patching 20571 */ 20572 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 20573 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 20574 BPF_CALL_REL(0), 20575 /* increment loop counter */ 20576 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 20577 /* jump to loop header if callback returned 0 */ 20578 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 20579 /* return value of bpf_loop, 20580 * set R0 to the number of iterations 20581 */ 20582 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 20583 /* restore original values of R6, R7, R8 */ 20584 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 20585 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 20586 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 20587 }; 20588 20589 *cnt = ARRAY_SIZE(insn_buf); 20590 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 20591 if (!new_prog) 20592 return new_prog; 20593 20594 /* callback start is known only after patching */ 20595 callback_start = env->subprog_info[callback_subprogno].start; 20596 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 20597 call_insn_offset = position + 12; 20598 callback_offset = callback_start - call_insn_offset - 1; 20599 new_prog->insnsi[call_insn_offset].imm = callback_offset; 20600 20601 return new_prog; 20602 } 20603 20604 static bool is_bpf_loop_call(struct bpf_insn *insn) 20605 { 20606 return insn->code == (BPF_JMP | BPF_CALL) && 20607 insn->src_reg == 0 && 20608 insn->imm == BPF_FUNC_loop; 20609 } 20610 20611 /* For all sub-programs in the program (including main) check 20612 * insn_aux_data to see if there are bpf_loop calls that require 20613 * inlining. If such calls are found the calls are replaced with a 20614 * sequence of instructions produced by `inline_bpf_loop` function and 20615 * subprog stack_depth is increased by the size of 3 registers. 20616 * This stack space is used to spill values of the R6, R7, R8. These 20617 * registers are used to store the loop bound, counter and context 20618 * variables. 20619 */ 20620 static int optimize_bpf_loop(struct bpf_verifier_env *env) 20621 { 20622 struct bpf_subprog_info *subprogs = env->subprog_info; 20623 int i, cur_subprog = 0, cnt, delta = 0; 20624 struct bpf_insn *insn = env->prog->insnsi; 20625 int insn_cnt = env->prog->len; 20626 u16 stack_depth = subprogs[cur_subprog].stack_depth; 20627 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 20628 u16 stack_depth_extra = 0; 20629 20630 for (i = 0; i < insn_cnt; i++, insn++) { 20631 struct bpf_loop_inline_state *inline_state = 20632 &env->insn_aux_data[i + delta].loop_inline_state; 20633 20634 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 20635 struct bpf_prog *new_prog; 20636 20637 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 20638 new_prog = inline_bpf_loop(env, 20639 i + delta, 20640 -(stack_depth + stack_depth_extra), 20641 inline_state->callback_subprogno, 20642 &cnt); 20643 if (!new_prog) 20644 return -ENOMEM; 20645 20646 delta += cnt - 1; 20647 env->prog = new_prog; 20648 insn = new_prog->insnsi + i + delta; 20649 } 20650 20651 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 20652 subprogs[cur_subprog].stack_depth += stack_depth_extra; 20653 cur_subprog++; 20654 stack_depth = subprogs[cur_subprog].stack_depth; 20655 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 20656 stack_depth_extra = 0; 20657 } 20658 } 20659 20660 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 20661 20662 return 0; 20663 } 20664 20665 static void free_states(struct bpf_verifier_env *env) 20666 { 20667 struct bpf_verifier_state_list *sl, *sln; 20668 int i; 20669 20670 sl = env->free_list; 20671 while (sl) { 20672 sln = sl->next; 20673 free_verifier_state(&sl->state, false); 20674 kfree(sl); 20675 sl = sln; 20676 } 20677 env->free_list = NULL; 20678 20679 if (!env->explored_states) 20680 return; 20681 20682 for (i = 0; i < state_htab_size(env); i++) { 20683 sl = env->explored_states[i]; 20684 20685 while (sl) { 20686 sln = sl->next; 20687 free_verifier_state(&sl->state, false); 20688 kfree(sl); 20689 sl = sln; 20690 } 20691 env->explored_states[i] = NULL; 20692 } 20693 } 20694 20695 static int do_check_common(struct bpf_verifier_env *env, int subprog) 20696 { 20697 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 20698 struct bpf_subprog_info *sub = subprog_info(env, subprog); 20699 struct bpf_verifier_state *state; 20700 struct bpf_reg_state *regs; 20701 int ret, i; 20702 20703 env->prev_linfo = NULL; 20704 env->pass_cnt++; 20705 20706 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 20707 if (!state) 20708 return -ENOMEM; 20709 state->curframe = 0; 20710 state->speculative = false; 20711 state->branches = 1; 20712 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 20713 if (!state->frame[0]) { 20714 kfree(state); 20715 return -ENOMEM; 20716 } 20717 env->cur_state = state; 20718 init_func_state(env, state->frame[0], 20719 BPF_MAIN_FUNC /* callsite */, 20720 0 /* frameno */, 20721 subprog); 20722 state->first_insn_idx = env->subprog_info[subprog].start; 20723 state->last_insn_idx = -1; 20724 20725 regs = state->frame[state->curframe]->regs; 20726 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 20727 const char *sub_name = subprog_name(env, subprog); 20728 struct bpf_subprog_arg_info *arg; 20729 struct bpf_reg_state *reg; 20730 20731 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 20732 ret = btf_prepare_func_args(env, subprog); 20733 if (ret) 20734 goto out; 20735 20736 if (subprog_is_exc_cb(env, subprog)) { 20737 state->frame[0]->in_exception_callback_fn = true; 20738 /* We have already ensured that the callback returns an integer, just 20739 * like all global subprogs. We need to determine it only has a single 20740 * scalar argument. 20741 */ 20742 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 20743 verbose(env, "exception cb only supports single integer argument\n"); 20744 ret = -EINVAL; 20745 goto out; 20746 } 20747 } 20748 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 20749 arg = &sub->args[i - BPF_REG_1]; 20750 reg = ®s[i]; 20751 20752 if (arg->arg_type == ARG_PTR_TO_CTX) { 20753 reg->type = PTR_TO_CTX; 20754 mark_reg_known_zero(env, regs, i); 20755 } else if (arg->arg_type == ARG_ANYTHING) { 20756 reg->type = SCALAR_VALUE; 20757 mark_reg_unknown(env, regs, i); 20758 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 20759 /* assume unspecial LOCAL dynptr type */ 20760 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 20761 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 20762 reg->type = PTR_TO_MEM; 20763 if (arg->arg_type & PTR_MAYBE_NULL) 20764 reg->type |= PTR_MAYBE_NULL; 20765 mark_reg_known_zero(env, regs, i); 20766 reg->mem_size = arg->mem_size; 20767 reg->id = ++env->id_gen; 20768 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 20769 reg->type = PTR_TO_BTF_ID; 20770 if (arg->arg_type & PTR_MAYBE_NULL) 20771 reg->type |= PTR_MAYBE_NULL; 20772 if (arg->arg_type & PTR_UNTRUSTED) 20773 reg->type |= PTR_UNTRUSTED; 20774 if (arg->arg_type & PTR_TRUSTED) 20775 reg->type |= PTR_TRUSTED; 20776 mark_reg_known_zero(env, regs, i); 20777 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 20778 reg->btf_id = arg->btf_id; 20779 reg->id = ++env->id_gen; 20780 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 20781 /* caller can pass either PTR_TO_ARENA or SCALAR */ 20782 mark_reg_unknown(env, regs, i); 20783 } else { 20784 WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", 20785 i - BPF_REG_1, arg->arg_type); 20786 ret = -EFAULT; 20787 goto out; 20788 } 20789 } 20790 } else { 20791 /* if main BPF program has associated BTF info, validate that 20792 * it's matching expected signature, and otherwise mark BTF 20793 * info for main program as unreliable 20794 */ 20795 if (env->prog->aux->func_info_aux) { 20796 ret = btf_prepare_func_args(env, 0); 20797 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 20798 env->prog->aux->func_info_aux[0].unreliable = true; 20799 } 20800 20801 /* 1st arg to a function */ 20802 regs[BPF_REG_1].type = PTR_TO_CTX; 20803 mark_reg_known_zero(env, regs, BPF_REG_1); 20804 } 20805 20806 ret = do_check(env); 20807 out: 20808 /* check for NULL is necessary, since cur_state can be freed inside 20809 * do_check() under memory pressure. 20810 */ 20811 if (env->cur_state) { 20812 free_verifier_state(env->cur_state, true); 20813 env->cur_state = NULL; 20814 } 20815 while (!pop_stack(env, NULL, NULL, false)); 20816 if (!ret && pop_log) 20817 bpf_vlog_reset(&env->log, 0); 20818 free_states(env); 20819 return ret; 20820 } 20821 20822 /* Lazily verify all global functions based on their BTF, if they are called 20823 * from main BPF program or any of subprograms transitively. 20824 * BPF global subprogs called from dead code are not validated. 20825 * All callable global functions must pass verification. 20826 * Otherwise the whole program is rejected. 20827 * Consider: 20828 * int bar(int); 20829 * int foo(int f) 20830 * { 20831 * return bar(f); 20832 * } 20833 * int bar(int b) 20834 * { 20835 * ... 20836 * } 20837 * foo() will be verified first for R1=any_scalar_value. During verification it 20838 * will be assumed that bar() already verified successfully and call to bar() 20839 * from foo() will be checked for type match only. Later bar() will be verified 20840 * independently to check that it's safe for R1=any_scalar_value. 20841 */ 20842 static int do_check_subprogs(struct bpf_verifier_env *env) 20843 { 20844 struct bpf_prog_aux *aux = env->prog->aux; 20845 struct bpf_func_info_aux *sub_aux; 20846 int i, ret, new_cnt; 20847 20848 if (!aux->func_info) 20849 return 0; 20850 20851 /* exception callback is presumed to be always called */ 20852 if (env->exception_callback_subprog) 20853 subprog_aux(env, env->exception_callback_subprog)->called = true; 20854 20855 again: 20856 new_cnt = 0; 20857 for (i = 1; i < env->subprog_cnt; i++) { 20858 if (!subprog_is_global(env, i)) 20859 continue; 20860 20861 sub_aux = subprog_aux(env, i); 20862 if (!sub_aux->called || sub_aux->verified) 20863 continue; 20864 20865 env->insn_idx = env->subprog_info[i].start; 20866 WARN_ON_ONCE(env->insn_idx == 0); 20867 ret = do_check_common(env, i); 20868 if (ret) { 20869 return ret; 20870 } else if (env->log.level & BPF_LOG_LEVEL) { 20871 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 20872 i, subprog_name(env, i)); 20873 } 20874 20875 /* We verified new global subprog, it might have called some 20876 * more global subprogs that we haven't verified yet, so we 20877 * need to do another pass over subprogs to verify those. 20878 */ 20879 sub_aux->verified = true; 20880 new_cnt++; 20881 } 20882 20883 /* We can't loop forever as we verify at least one global subprog on 20884 * each pass. 20885 */ 20886 if (new_cnt) 20887 goto again; 20888 20889 return 0; 20890 } 20891 20892 static int do_check_main(struct bpf_verifier_env *env) 20893 { 20894 int ret; 20895 20896 env->insn_idx = 0; 20897 ret = do_check_common(env, 0); 20898 if (!ret) 20899 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 20900 return ret; 20901 } 20902 20903 20904 static void print_verification_stats(struct bpf_verifier_env *env) 20905 { 20906 int i; 20907 20908 if (env->log.level & BPF_LOG_STATS) { 20909 verbose(env, "verification time %lld usec\n", 20910 div_u64(env->verification_time, 1000)); 20911 verbose(env, "stack depth "); 20912 for (i = 0; i < env->subprog_cnt; i++) { 20913 u32 depth = env->subprog_info[i].stack_depth; 20914 20915 verbose(env, "%d", depth); 20916 if (i + 1 < env->subprog_cnt) 20917 verbose(env, "+"); 20918 } 20919 verbose(env, "\n"); 20920 } 20921 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 20922 "total_states %d peak_states %d mark_read %d\n", 20923 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 20924 env->max_states_per_insn, env->total_states, 20925 env->peak_states, env->longest_mark_read_walk); 20926 } 20927 20928 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 20929 { 20930 const struct btf_type *t, *func_proto; 20931 const struct bpf_struct_ops_desc *st_ops_desc; 20932 const struct bpf_struct_ops *st_ops; 20933 const struct btf_member *member; 20934 struct bpf_prog *prog = env->prog; 20935 u32 btf_id, member_idx; 20936 struct btf *btf; 20937 const char *mname; 20938 20939 if (!prog->gpl_compatible) { 20940 verbose(env, "struct ops programs must have a GPL compatible license\n"); 20941 return -EINVAL; 20942 } 20943 20944 if (!prog->aux->attach_btf_id) 20945 return -ENOTSUPP; 20946 20947 btf = prog->aux->attach_btf; 20948 if (btf_is_module(btf)) { 20949 /* Make sure st_ops is valid through the lifetime of env */ 20950 env->attach_btf_mod = btf_try_get_module(btf); 20951 if (!env->attach_btf_mod) { 20952 verbose(env, "struct_ops module %s is not found\n", 20953 btf_get_name(btf)); 20954 return -ENOTSUPP; 20955 } 20956 } 20957 20958 btf_id = prog->aux->attach_btf_id; 20959 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 20960 if (!st_ops_desc) { 20961 verbose(env, "attach_btf_id %u is not a supported struct\n", 20962 btf_id); 20963 return -ENOTSUPP; 20964 } 20965 st_ops = st_ops_desc->st_ops; 20966 20967 t = st_ops_desc->type; 20968 member_idx = prog->expected_attach_type; 20969 if (member_idx >= btf_type_vlen(t)) { 20970 verbose(env, "attach to invalid member idx %u of struct %s\n", 20971 member_idx, st_ops->name); 20972 return -EINVAL; 20973 } 20974 20975 member = &btf_type_member(t)[member_idx]; 20976 mname = btf_name_by_offset(btf, member->name_off); 20977 func_proto = btf_type_resolve_func_ptr(btf, member->type, 20978 NULL); 20979 if (!func_proto) { 20980 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 20981 mname, member_idx, st_ops->name); 20982 return -EINVAL; 20983 } 20984 20985 if (st_ops->check_member) { 20986 int err = st_ops->check_member(t, member, prog); 20987 20988 if (err) { 20989 verbose(env, "attach to unsupported member %s of struct %s\n", 20990 mname, st_ops->name); 20991 return err; 20992 } 20993 } 20994 20995 /* btf_ctx_access() used this to provide argument type info */ 20996 prog->aux->ctx_arg_info = 20997 st_ops_desc->arg_info[member_idx].info; 20998 prog->aux->ctx_arg_info_size = 20999 st_ops_desc->arg_info[member_idx].cnt; 21000 21001 prog->aux->attach_func_proto = func_proto; 21002 prog->aux->attach_func_name = mname; 21003 env->ops = st_ops->verifier_ops; 21004 21005 return 0; 21006 } 21007 #define SECURITY_PREFIX "security_" 21008 21009 static int check_attach_modify_return(unsigned long addr, const char *func_name) 21010 { 21011 if (within_error_injection_list(addr) || 21012 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 21013 return 0; 21014 21015 return -EINVAL; 21016 } 21017 21018 /* list of non-sleepable functions that are otherwise on 21019 * ALLOW_ERROR_INJECTION list 21020 */ 21021 BTF_SET_START(btf_non_sleepable_error_inject) 21022 /* Three functions below can be called from sleepable and non-sleepable context. 21023 * Assume non-sleepable from bpf safety point of view. 21024 */ 21025 BTF_ID(func, __filemap_add_folio) 21026 BTF_ID(func, should_fail_alloc_page) 21027 BTF_ID(func, should_failslab) 21028 BTF_SET_END(btf_non_sleepable_error_inject) 21029 21030 static int check_non_sleepable_error_inject(u32 btf_id) 21031 { 21032 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 21033 } 21034 21035 int bpf_check_attach_target(struct bpf_verifier_log *log, 21036 const struct bpf_prog *prog, 21037 const struct bpf_prog *tgt_prog, 21038 u32 btf_id, 21039 struct bpf_attach_target_info *tgt_info) 21040 { 21041 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 21042 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 21043 const char prefix[] = "btf_trace_"; 21044 int ret = 0, subprog = -1, i; 21045 const struct btf_type *t; 21046 bool conservative = true; 21047 const char *tname; 21048 struct btf *btf; 21049 long addr = 0; 21050 struct module *mod = NULL; 21051 21052 if (!btf_id) { 21053 bpf_log(log, "Tracing programs must provide btf_id\n"); 21054 return -EINVAL; 21055 } 21056 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 21057 if (!btf) { 21058 bpf_log(log, 21059 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 21060 return -EINVAL; 21061 } 21062 t = btf_type_by_id(btf, btf_id); 21063 if (!t) { 21064 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 21065 return -EINVAL; 21066 } 21067 tname = btf_name_by_offset(btf, t->name_off); 21068 if (!tname) { 21069 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 21070 return -EINVAL; 21071 } 21072 if (tgt_prog) { 21073 struct bpf_prog_aux *aux = tgt_prog->aux; 21074 21075 if (bpf_prog_is_dev_bound(prog->aux) && 21076 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 21077 bpf_log(log, "Target program bound device mismatch"); 21078 return -EINVAL; 21079 } 21080 21081 for (i = 0; i < aux->func_info_cnt; i++) 21082 if (aux->func_info[i].type_id == btf_id) { 21083 subprog = i; 21084 break; 21085 } 21086 if (subprog == -1) { 21087 bpf_log(log, "Subprog %s doesn't exist\n", tname); 21088 return -EINVAL; 21089 } 21090 if (aux->func && aux->func[subprog]->aux->exception_cb) { 21091 bpf_log(log, 21092 "%s programs cannot attach to exception callback\n", 21093 prog_extension ? "Extension" : "FENTRY/FEXIT"); 21094 return -EINVAL; 21095 } 21096 conservative = aux->func_info_aux[subprog].unreliable; 21097 if (prog_extension) { 21098 if (conservative) { 21099 bpf_log(log, 21100 "Cannot replace static functions\n"); 21101 return -EINVAL; 21102 } 21103 if (!prog->jit_requested) { 21104 bpf_log(log, 21105 "Extension programs should be JITed\n"); 21106 return -EINVAL; 21107 } 21108 } 21109 if (!tgt_prog->jited) { 21110 bpf_log(log, "Can attach to only JITed progs\n"); 21111 return -EINVAL; 21112 } 21113 if (prog_tracing) { 21114 if (aux->attach_tracing_prog) { 21115 /* 21116 * Target program is an fentry/fexit which is already attached 21117 * to another tracing program. More levels of nesting 21118 * attachment are not allowed. 21119 */ 21120 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 21121 return -EINVAL; 21122 } 21123 } else if (tgt_prog->type == prog->type) { 21124 /* 21125 * To avoid potential call chain cycles, prevent attaching of a 21126 * program extension to another extension. It's ok to attach 21127 * fentry/fexit to extension program. 21128 */ 21129 bpf_log(log, "Cannot recursively attach\n"); 21130 return -EINVAL; 21131 } 21132 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 21133 prog_extension && 21134 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 21135 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 21136 /* Program extensions can extend all program types 21137 * except fentry/fexit. The reason is the following. 21138 * The fentry/fexit programs are used for performance 21139 * analysis, stats and can be attached to any program 21140 * type. When extension program is replacing XDP function 21141 * it is necessary to allow performance analysis of all 21142 * functions. Both original XDP program and its program 21143 * extension. Hence attaching fentry/fexit to 21144 * BPF_PROG_TYPE_EXT is allowed. If extending of 21145 * fentry/fexit was allowed it would be possible to create 21146 * long call chain fentry->extension->fentry->extension 21147 * beyond reasonable stack size. Hence extending fentry 21148 * is not allowed. 21149 */ 21150 bpf_log(log, "Cannot extend fentry/fexit\n"); 21151 return -EINVAL; 21152 } 21153 } else { 21154 if (prog_extension) { 21155 bpf_log(log, "Cannot replace kernel functions\n"); 21156 return -EINVAL; 21157 } 21158 } 21159 21160 switch (prog->expected_attach_type) { 21161 case BPF_TRACE_RAW_TP: 21162 if (tgt_prog) { 21163 bpf_log(log, 21164 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 21165 return -EINVAL; 21166 } 21167 if (!btf_type_is_typedef(t)) { 21168 bpf_log(log, "attach_btf_id %u is not a typedef\n", 21169 btf_id); 21170 return -EINVAL; 21171 } 21172 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 21173 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 21174 btf_id, tname); 21175 return -EINVAL; 21176 } 21177 tname += sizeof(prefix) - 1; 21178 t = btf_type_by_id(btf, t->type); 21179 if (!btf_type_is_ptr(t)) 21180 /* should never happen in valid vmlinux build */ 21181 return -EINVAL; 21182 t = btf_type_by_id(btf, t->type); 21183 if (!btf_type_is_func_proto(t)) 21184 /* should never happen in valid vmlinux build */ 21185 return -EINVAL; 21186 21187 break; 21188 case BPF_TRACE_ITER: 21189 if (!btf_type_is_func(t)) { 21190 bpf_log(log, "attach_btf_id %u is not a function\n", 21191 btf_id); 21192 return -EINVAL; 21193 } 21194 t = btf_type_by_id(btf, t->type); 21195 if (!btf_type_is_func_proto(t)) 21196 return -EINVAL; 21197 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 21198 if (ret) 21199 return ret; 21200 break; 21201 default: 21202 if (!prog_extension) 21203 return -EINVAL; 21204 fallthrough; 21205 case BPF_MODIFY_RETURN: 21206 case BPF_LSM_MAC: 21207 case BPF_LSM_CGROUP: 21208 case BPF_TRACE_FENTRY: 21209 case BPF_TRACE_FEXIT: 21210 if (!btf_type_is_func(t)) { 21211 bpf_log(log, "attach_btf_id %u is not a function\n", 21212 btf_id); 21213 return -EINVAL; 21214 } 21215 if (prog_extension && 21216 btf_check_type_match(log, prog, btf, t)) 21217 return -EINVAL; 21218 t = btf_type_by_id(btf, t->type); 21219 if (!btf_type_is_func_proto(t)) 21220 return -EINVAL; 21221 21222 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 21223 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 21224 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 21225 return -EINVAL; 21226 21227 if (tgt_prog && conservative) 21228 t = NULL; 21229 21230 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 21231 if (ret < 0) 21232 return ret; 21233 21234 if (tgt_prog) { 21235 if (subprog == 0) 21236 addr = (long) tgt_prog->bpf_func; 21237 else 21238 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 21239 } else { 21240 if (btf_is_module(btf)) { 21241 mod = btf_try_get_module(btf); 21242 if (mod) 21243 addr = find_kallsyms_symbol_value(mod, tname); 21244 else 21245 addr = 0; 21246 } else { 21247 addr = kallsyms_lookup_name(tname); 21248 } 21249 if (!addr) { 21250 module_put(mod); 21251 bpf_log(log, 21252 "The address of function %s cannot be found\n", 21253 tname); 21254 return -ENOENT; 21255 } 21256 } 21257 21258 if (prog->sleepable) { 21259 ret = -EINVAL; 21260 switch (prog->type) { 21261 case BPF_PROG_TYPE_TRACING: 21262 21263 /* fentry/fexit/fmod_ret progs can be sleepable if they are 21264 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 21265 */ 21266 if (!check_non_sleepable_error_inject(btf_id) && 21267 within_error_injection_list(addr)) 21268 ret = 0; 21269 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 21270 * in the fmodret id set with the KF_SLEEPABLE flag. 21271 */ 21272 else { 21273 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 21274 prog); 21275 21276 if (flags && (*flags & KF_SLEEPABLE)) 21277 ret = 0; 21278 } 21279 break; 21280 case BPF_PROG_TYPE_LSM: 21281 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 21282 * Only some of them are sleepable. 21283 */ 21284 if (bpf_lsm_is_sleepable_hook(btf_id)) 21285 ret = 0; 21286 break; 21287 default: 21288 break; 21289 } 21290 if (ret) { 21291 module_put(mod); 21292 bpf_log(log, "%s is not sleepable\n", tname); 21293 return ret; 21294 } 21295 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 21296 if (tgt_prog) { 21297 module_put(mod); 21298 bpf_log(log, "can't modify return codes of BPF programs\n"); 21299 return -EINVAL; 21300 } 21301 ret = -EINVAL; 21302 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 21303 !check_attach_modify_return(addr, tname)) 21304 ret = 0; 21305 if (ret) { 21306 module_put(mod); 21307 bpf_log(log, "%s() is not modifiable\n", tname); 21308 return ret; 21309 } 21310 } 21311 21312 break; 21313 } 21314 tgt_info->tgt_addr = addr; 21315 tgt_info->tgt_name = tname; 21316 tgt_info->tgt_type = t; 21317 tgt_info->tgt_mod = mod; 21318 return 0; 21319 } 21320 21321 BTF_SET_START(btf_id_deny) 21322 BTF_ID_UNUSED 21323 #ifdef CONFIG_SMP 21324 BTF_ID(func, migrate_disable) 21325 BTF_ID(func, migrate_enable) 21326 #endif 21327 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 21328 BTF_ID(func, rcu_read_unlock_strict) 21329 #endif 21330 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 21331 BTF_ID(func, preempt_count_add) 21332 BTF_ID(func, preempt_count_sub) 21333 #endif 21334 #ifdef CONFIG_PREEMPT_RCU 21335 BTF_ID(func, __rcu_read_lock) 21336 BTF_ID(func, __rcu_read_unlock) 21337 #endif 21338 BTF_SET_END(btf_id_deny) 21339 21340 static bool can_be_sleepable(struct bpf_prog *prog) 21341 { 21342 if (prog->type == BPF_PROG_TYPE_TRACING) { 21343 switch (prog->expected_attach_type) { 21344 case BPF_TRACE_FENTRY: 21345 case BPF_TRACE_FEXIT: 21346 case BPF_MODIFY_RETURN: 21347 case BPF_TRACE_ITER: 21348 return true; 21349 default: 21350 return false; 21351 } 21352 } 21353 return prog->type == BPF_PROG_TYPE_LSM || 21354 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 21355 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 21356 } 21357 21358 static int check_attach_btf_id(struct bpf_verifier_env *env) 21359 { 21360 struct bpf_prog *prog = env->prog; 21361 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 21362 struct bpf_attach_target_info tgt_info = {}; 21363 u32 btf_id = prog->aux->attach_btf_id; 21364 struct bpf_trampoline *tr; 21365 int ret; 21366 u64 key; 21367 21368 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 21369 if (prog->sleepable) 21370 /* attach_btf_id checked to be zero already */ 21371 return 0; 21372 verbose(env, "Syscall programs can only be sleepable\n"); 21373 return -EINVAL; 21374 } 21375 21376 if (prog->sleepable && !can_be_sleepable(prog)) { 21377 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 21378 return -EINVAL; 21379 } 21380 21381 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 21382 return check_struct_ops_btf_id(env); 21383 21384 if (prog->type != BPF_PROG_TYPE_TRACING && 21385 prog->type != BPF_PROG_TYPE_LSM && 21386 prog->type != BPF_PROG_TYPE_EXT) 21387 return 0; 21388 21389 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 21390 if (ret) 21391 return ret; 21392 21393 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 21394 /* to make freplace equivalent to their targets, they need to 21395 * inherit env->ops and expected_attach_type for the rest of the 21396 * verification 21397 */ 21398 env->ops = bpf_verifier_ops[tgt_prog->type]; 21399 prog->expected_attach_type = tgt_prog->expected_attach_type; 21400 } 21401 21402 /* store info about the attachment target that will be used later */ 21403 prog->aux->attach_func_proto = tgt_info.tgt_type; 21404 prog->aux->attach_func_name = tgt_info.tgt_name; 21405 prog->aux->mod = tgt_info.tgt_mod; 21406 21407 if (tgt_prog) { 21408 prog->aux->saved_dst_prog_type = tgt_prog->type; 21409 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 21410 } 21411 21412 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 21413 prog->aux->attach_btf_trace = true; 21414 return 0; 21415 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 21416 if (!bpf_iter_prog_supported(prog)) 21417 return -EINVAL; 21418 return 0; 21419 } 21420 21421 if (prog->type == BPF_PROG_TYPE_LSM) { 21422 ret = bpf_lsm_verify_prog(&env->log, prog); 21423 if (ret < 0) 21424 return ret; 21425 } else if (prog->type == BPF_PROG_TYPE_TRACING && 21426 btf_id_set_contains(&btf_id_deny, btf_id)) { 21427 return -EINVAL; 21428 } 21429 21430 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 21431 tr = bpf_trampoline_get(key, &tgt_info); 21432 if (!tr) 21433 return -ENOMEM; 21434 21435 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 21436 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 21437 21438 prog->aux->dst_trampoline = tr; 21439 return 0; 21440 } 21441 21442 struct btf *bpf_get_btf_vmlinux(void) 21443 { 21444 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 21445 mutex_lock(&bpf_verifier_lock); 21446 if (!btf_vmlinux) 21447 btf_vmlinux = btf_parse_vmlinux(); 21448 mutex_unlock(&bpf_verifier_lock); 21449 } 21450 return btf_vmlinux; 21451 } 21452 21453 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 21454 { 21455 u64 start_time = ktime_get_ns(); 21456 struct bpf_verifier_env *env; 21457 int i, len, ret = -EINVAL, err; 21458 u32 log_true_size; 21459 bool is_priv; 21460 21461 /* no program is valid */ 21462 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 21463 return -EINVAL; 21464 21465 /* 'struct bpf_verifier_env' can be global, but since it's not small, 21466 * allocate/free it every time bpf_check() is called 21467 */ 21468 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 21469 if (!env) 21470 return -ENOMEM; 21471 21472 env->bt.env = env; 21473 21474 len = (*prog)->len; 21475 env->insn_aux_data = 21476 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 21477 ret = -ENOMEM; 21478 if (!env->insn_aux_data) 21479 goto err_free_env; 21480 for (i = 0; i < len; i++) 21481 env->insn_aux_data[i].orig_idx = i; 21482 env->prog = *prog; 21483 env->ops = bpf_verifier_ops[env->prog->type]; 21484 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 21485 21486 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 21487 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 21488 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 21489 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 21490 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 21491 21492 bpf_get_btf_vmlinux(); 21493 21494 /* grab the mutex to protect few globals used by verifier */ 21495 if (!is_priv) 21496 mutex_lock(&bpf_verifier_lock); 21497 21498 /* user could have requested verbose verifier output 21499 * and supplied buffer to store the verification trace 21500 */ 21501 ret = bpf_vlog_init(&env->log, attr->log_level, 21502 (char __user *) (unsigned long) attr->log_buf, 21503 attr->log_size); 21504 if (ret) 21505 goto err_unlock; 21506 21507 mark_verifier_state_clean(env); 21508 21509 if (IS_ERR(btf_vmlinux)) { 21510 /* Either gcc or pahole or kernel are broken. */ 21511 verbose(env, "in-kernel BTF is malformed\n"); 21512 ret = PTR_ERR(btf_vmlinux); 21513 goto skip_full_check; 21514 } 21515 21516 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 21517 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 21518 env->strict_alignment = true; 21519 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 21520 env->strict_alignment = false; 21521 21522 if (is_priv) 21523 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 21524 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 21525 21526 env->explored_states = kvcalloc(state_htab_size(env), 21527 sizeof(struct bpf_verifier_state_list *), 21528 GFP_USER); 21529 ret = -ENOMEM; 21530 if (!env->explored_states) 21531 goto skip_full_check; 21532 21533 ret = check_btf_info_early(env, attr, uattr); 21534 if (ret < 0) 21535 goto skip_full_check; 21536 21537 ret = add_subprog_and_kfunc(env); 21538 if (ret < 0) 21539 goto skip_full_check; 21540 21541 ret = check_subprogs(env); 21542 if (ret < 0) 21543 goto skip_full_check; 21544 21545 ret = check_btf_info(env, attr, uattr); 21546 if (ret < 0) 21547 goto skip_full_check; 21548 21549 ret = check_attach_btf_id(env); 21550 if (ret) 21551 goto skip_full_check; 21552 21553 ret = resolve_pseudo_ldimm64(env); 21554 if (ret < 0) 21555 goto skip_full_check; 21556 21557 if (bpf_prog_is_offloaded(env->prog->aux)) { 21558 ret = bpf_prog_offload_verifier_prep(env->prog); 21559 if (ret) 21560 goto skip_full_check; 21561 } 21562 21563 ret = check_cfg(env); 21564 if (ret < 0) 21565 goto skip_full_check; 21566 21567 ret = do_check_main(env); 21568 ret = ret ?: do_check_subprogs(env); 21569 21570 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 21571 ret = bpf_prog_offload_finalize(env); 21572 21573 skip_full_check: 21574 kvfree(env->explored_states); 21575 21576 if (ret == 0) 21577 ret = check_max_stack_depth(env); 21578 21579 /* instruction rewrites happen after this point */ 21580 if (ret == 0) 21581 ret = optimize_bpf_loop(env); 21582 21583 if (is_priv) { 21584 if (ret == 0) 21585 opt_hard_wire_dead_code_branches(env); 21586 if (ret == 0) 21587 ret = opt_remove_dead_code(env); 21588 if (ret == 0) 21589 ret = opt_remove_nops(env); 21590 } else { 21591 if (ret == 0) 21592 sanitize_dead_code(env); 21593 } 21594 21595 if (ret == 0) 21596 /* program is valid, convert *(u32*)(ctx + off) accesses */ 21597 ret = convert_ctx_accesses(env); 21598 21599 if (ret == 0) 21600 ret = do_misc_fixups(env); 21601 21602 /* do 32-bit optimization after insn patching has done so those patched 21603 * insns could be handled correctly. 21604 */ 21605 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 21606 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 21607 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 21608 : false; 21609 } 21610 21611 if (ret == 0) 21612 ret = fixup_call_args(env); 21613 21614 env->verification_time = ktime_get_ns() - start_time; 21615 print_verification_stats(env); 21616 env->prog->aux->verified_insns = env->insn_processed; 21617 21618 /* preserve original error even if log finalization is successful */ 21619 err = bpf_vlog_finalize(&env->log, &log_true_size); 21620 if (err) 21621 ret = err; 21622 21623 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 21624 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 21625 &log_true_size, sizeof(log_true_size))) { 21626 ret = -EFAULT; 21627 goto err_release_maps; 21628 } 21629 21630 if (ret) 21631 goto err_release_maps; 21632 21633 if (env->used_map_cnt) { 21634 /* if program passed verifier, update used_maps in bpf_prog_info */ 21635 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 21636 sizeof(env->used_maps[0]), 21637 GFP_KERNEL); 21638 21639 if (!env->prog->aux->used_maps) { 21640 ret = -ENOMEM; 21641 goto err_release_maps; 21642 } 21643 21644 memcpy(env->prog->aux->used_maps, env->used_maps, 21645 sizeof(env->used_maps[0]) * env->used_map_cnt); 21646 env->prog->aux->used_map_cnt = env->used_map_cnt; 21647 } 21648 if (env->used_btf_cnt) { 21649 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 21650 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 21651 sizeof(env->used_btfs[0]), 21652 GFP_KERNEL); 21653 if (!env->prog->aux->used_btfs) { 21654 ret = -ENOMEM; 21655 goto err_release_maps; 21656 } 21657 21658 memcpy(env->prog->aux->used_btfs, env->used_btfs, 21659 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 21660 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 21661 } 21662 if (env->used_map_cnt || env->used_btf_cnt) { 21663 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 21664 * bpf_ld_imm64 instructions 21665 */ 21666 convert_pseudo_ld_imm64(env); 21667 } 21668 21669 adjust_btf_func(env); 21670 21671 err_release_maps: 21672 if (!env->prog->aux->used_maps) 21673 /* if we didn't copy map pointers into bpf_prog_info, release 21674 * them now. Otherwise free_used_maps() will release them. 21675 */ 21676 release_maps(env); 21677 if (!env->prog->aux->used_btfs) 21678 release_btfs(env); 21679 21680 /* extension progs temporarily inherit the attach_type of their targets 21681 for verification purposes, so set it back to zero before returning 21682 */ 21683 if (env->prog->type == BPF_PROG_TYPE_EXT) 21684 env->prog->expected_attach_type = 0; 21685 21686 *prog = env->prog; 21687 21688 module_put(env->attach_btf_mod); 21689 err_unlock: 21690 if (!is_priv) 21691 mutex_unlock(&bpf_verifier_lock); 21692 vfree(env->insn_aux_data); 21693 err_free_env: 21694 kfree(env); 21695 return ret; 21696 } 21697