1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 #include <linux/btf_ids.h> 52 53 #define DEV_CREATE_FLAG_MASK \ 54 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 55 56 struct xdp_dev_bulk_queue { 57 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 58 struct list_head flush_node; 59 struct net_device *dev; 60 struct net_device *dev_rx; 61 struct bpf_prog *xdp_prog; 62 unsigned int count; 63 }; 64 65 struct bpf_dtab_netdev { 66 struct net_device *dev; /* must be first member, due to tracepoint */ 67 struct hlist_node index_hlist; 68 struct bpf_prog *xdp_prog; 69 struct rcu_head rcu; 70 unsigned int idx; 71 struct bpf_devmap_val val; 72 }; 73 74 struct bpf_dtab { 75 struct bpf_map map; 76 struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */ 77 struct list_head list; 78 79 /* these are only used for DEVMAP_HASH type maps */ 80 struct hlist_head *dev_index_head; 81 spinlock_t index_lock; 82 unsigned int items; 83 u32 n_buckets; 84 }; 85 86 static DEFINE_PER_CPU(struct list_head, dev_flush_list); 87 static DEFINE_SPINLOCK(dev_map_lock); 88 static LIST_HEAD(dev_map_list); 89 90 static struct hlist_head *dev_map_create_hash(unsigned int entries, 91 int numa_node) 92 { 93 int i; 94 struct hlist_head *hash; 95 96 hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node); 97 if (hash != NULL) 98 for (i = 0; i < entries; i++) 99 INIT_HLIST_HEAD(&hash[i]); 100 101 return hash; 102 } 103 104 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 105 int idx) 106 { 107 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 108 } 109 110 static int dev_map_alloc_check(union bpf_attr *attr) 111 { 112 u32 valsize = attr->value_size; 113 114 /* check sanity of attributes. 2 value sizes supported: 115 * 4 bytes: ifindex 116 * 8 bytes: ifindex + prog fd 117 */ 118 if (attr->max_entries == 0 || attr->key_size != 4 || 119 (valsize != offsetofend(struct bpf_devmap_val, ifindex) && 120 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) || 121 attr->map_flags & ~DEV_CREATE_FLAG_MASK) 122 return -EINVAL; 123 124 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 125 /* Hash table size must be power of 2; roundup_pow_of_two() 126 * can overflow into UB on 32-bit arches 127 */ 128 if (attr->max_entries > 1UL << 31) 129 return -EINVAL; 130 } 131 132 return 0; 133 } 134 135 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 136 { 137 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 138 * verifier prevents writes from the BPF side 139 */ 140 attr->map_flags |= BPF_F_RDONLY_PROG; 141 bpf_map_init_from_attr(&dtab->map, attr); 142 143 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 144 /* Hash table size must be power of 2 */ 145 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 146 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets, 147 dtab->map.numa_node); 148 if (!dtab->dev_index_head) 149 return -ENOMEM; 150 151 spin_lock_init(&dtab->index_lock); 152 } else { 153 dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries * 154 sizeof(struct bpf_dtab_netdev *), 155 dtab->map.numa_node); 156 if (!dtab->netdev_map) 157 return -ENOMEM; 158 } 159 160 return 0; 161 } 162 163 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 164 { 165 struct bpf_dtab *dtab; 166 int err; 167 168 dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE); 169 if (!dtab) 170 return ERR_PTR(-ENOMEM); 171 172 err = dev_map_init_map(dtab, attr); 173 if (err) { 174 bpf_map_area_free(dtab); 175 return ERR_PTR(err); 176 } 177 178 spin_lock(&dev_map_lock); 179 list_add_tail_rcu(&dtab->list, &dev_map_list); 180 spin_unlock(&dev_map_lock); 181 182 return &dtab->map; 183 } 184 185 static void dev_map_free(struct bpf_map *map) 186 { 187 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 188 int i; 189 190 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 191 * so the programs (can be more than one that used this map) were 192 * disconnected from events. The following synchronize_rcu() guarantees 193 * both rcu read critical sections complete and waits for 194 * preempt-disable regions (NAPI being the relevant context here) so we 195 * are certain there will be no further reads against the netdev_map and 196 * all flush operations are complete. Flush operations can only be done 197 * from NAPI context for this reason. 198 */ 199 200 spin_lock(&dev_map_lock); 201 list_del_rcu(&dtab->list); 202 spin_unlock(&dev_map_lock); 203 204 bpf_clear_redirect_map(map); 205 synchronize_rcu(); 206 207 /* Make sure prior __dev_map_entry_free() have completed. */ 208 rcu_barrier(); 209 210 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 211 for (i = 0; i < dtab->n_buckets; i++) { 212 struct bpf_dtab_netdev *dev; 213 struct hlist_head *head; 214 struct hlist_node *next; 215 216 head = dev_map_index_hash(dtab, i); 217 218 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 219 hlist_del_rcu(&dev->index_hlist); 220 if (dev->xdp_prog) 221 bpf_prog_put(dev->xdp_prog); 222 dev_put(dev->dev); 223 kfree(dev); 224 } 225 } 226 227 bpf_map_area_free(dtab->dev_index_head); 228 } else { 229 for (i = 0; i < dtab->map.max_entries; i++) { 230 struct bpf_dtab_netdev *dev; 231 232 dev = rcu_dereference_raw(dtab->netdev_map[i]); 233 if (!dev) 234 continue; 235 236 if (dev->xdp_prog) 237 bpf_prog_put(dev->xdp_prog); 238 dev_put(dev->dev); 239 kfree(dev); 240 } 241 242 bpf_map_area_free(dtab->netdev_map); 243 } 244 245 bpf_map_area_free(dtab); 246 } 247 248 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 249 { 250 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 251 u32 index = key ? *(u32 *)key : U32_MAX; 252 u32 *next = next_key; 253 254 if (index >= dtab->map.max_entries) { 255 *next = 0; 256 return 0; 257 } 258 259 if (index == dtab->map.max_entries - 1) 260 return -ENOENT; 261 *next = index + 1; 262 return 0; 263 } 264 265 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 266 * by local_bh_disable() (from XDP calls inside NAPI). The 267 * rcu_read_lock_bh_held() below makes lockdep accept both. 268 */ 269 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 270 { 271 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 272 struct hlist_head *head = dev_map_index_hash(dtab, key); 273 struct bpf_dtab_netdev *dev; 274 275 hlist_for_each_entry_rcu(dev, head, index_hlist, 276 lockdep_is_held(&dtab->index_lock)) 277 if (dev->idx == key) 278 return dev; 279 280 return NULL; 281 } 282 283 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 284 void *next_key) 285 { 286 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 287 u32 idx, *next = next_key; 288 struct bpf_dtab_netdev *dev, *next_dev; 289 struct hlist_head *head; 290 int i = 0; 291 292 if (!key) 293 goto find_first; 294 295 idx = *(u32 *)key; 296 297 dev = __dev_map_hash_lookup_elem(map, idx); 298 if (!dev) 299 goto find_first; 300 301 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 302 struct bpf_dtab_netdev, index_hlist); 303 304 if (next_dev) { 305 *next = next_dev->idx; 306 return 0; 307 } 308 309 i = idx & (dtab->n_buckets - 1); 310 i++; 311 312 find_first: 313 for (; i < dtab->n_buckets; i++) { 314 head = dev_map_index_hash(dtab, i); 315 316 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 317 struct bpf_dtab_netdev, 318 index_hlist); 319 if (next_dev) { 320 *next = next_dev->idx; 321 return 0; 322 } 323 } 324 325 return -ENOENT; 326 } 327 328 static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog, 329 struct xdp_frame **frames, int n, 330 struct net_device *dev) 331 { 332 struct xdp_txq_info txq = { .dev = dev }; 333 struct xdp_buff xdp; 334 int i, nframes = 0; 335 336 for (i = 0; i < n; i++) { 337 struct xdp_frame *xdpf = frames[i]; 338 u32 act; 339 int err; 340 341 xdp_convert_frame_to_buff(xdpf, &xdp); 342 xdp.txq = &txq; 343 344 act = bpf_prog_run_xdp(xdp_prog, &xdp); 345 switch (act) { 346 case XDP_PASS: 347 err = xdp_update_frame_from_buff(&xdp, xdpf); 348 if (unlikely(err < 0)) 349 xdp_return_frame_rx_napi(xdpf); 350 else 351 frames[nframes++] = xdpf; 352 break; 353 default: 354 bpf_warn_invalid_xdp_action(NULL, xdp_prog, act); 355 fallthrough; 356 case XDP_ABORTED: 357 trace_xdp_exception(dev, xdp_prog, act); 358 fallthrough; 359 case XDP_DROP: 360 xdp_return_frame_rx_napi(xdpf); 361 break; 362 } 363 } 364 return nframes; /* sent frames count */ 365 } 366 367 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) 368 { 369 struct net_device *dev = bq->dev; 370 unsigned int cnt = bq->count; 371 int sent = 0, err = 0; 372 int to_send = cnt; 373 int i; 374 375 if (unlikely(!cnt)) 376 return; 377 378 for (i = 0; i < cnt; i++) { 379 struct xdp_frame *xdpf = bq->q[i]; 380 381 prefetch(xdpf); 382 } 383 384 if (bq->xdp_prog) { 385 to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev); 386 if (!to_send) 387 goto out; 388 } 389 390 sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags); 391 if (sent < 0) { 392 /* If ndo_xdp_xmit fails with an errno, no frames have 393 * been xmit'ed. 394 */ 395 err = sent; 396 sent = 0; 397 } 398 399 /* If not all frames have been transmitted, it is our 400 * responsibility to free them 401 */ 402 for (i = sent; unlikely(i < to_send); i++) 403 xdp_return_frame_rx_napi(bq->q[i]); 404 405 out: 406 bq->count = 0; 407 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err); 408 } 409 410 /* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the 411 * driver before returning from its napi->poll() routine. See the comment above 412 * xdp_do_flush() in filter.c. 413 */ 414 void __dev_flush(void) 415 { 416 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 417 struct xdp_dev_bulk_queue *bq, *tmp; 418 419 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 420 bq_xmit_all(bq, XDP_XMIT_FLUSH); 421 bq->dev_rx = NULL; 422 bq->xdp_prog = NULL; 423 __list_del_clearprev(&bq->flush_node); 424 } 425 } 426 427 #ifdef CONFIG_DEBUG_NET 428 bool dev_check_flush(void) 429 { 430 if (list_empty(this_cpu_ptr(&dev_flush_list))) 431 return false; 432 __dev_flush(); 433 return true; 434 } 435 #endif 436 437 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 438 * by local_bh_disable() (from XDP calls inside NAPI). The 439 * rcu_read_lock_bh_held() below makes lockdep accept both. 440 */ 441 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 442 { 443 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 444 struct bpf_dtab_netdev *obj; 445 446 if (key >= map->max_entries) 447 return NULL; 448 449 obj = rcu_dereference_check(dtab->netdev_map[key], 450 rcu_read_lock_bh_held()); 451 return obj; 452 } 453 454 /* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu 455 * variable access, and map elements stick around. See comment above 456 * xdp_do_flush() in filter.c. 457 */ 458 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 459 struct net_device *dev_rx, struct bpf_prog *xdp_prog) 460 { 461 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 462 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); 463 464 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 465 bq_xmit_all(bq, 0); 466 467 /* Ingress dev_rx will be the same for all xdp_frame's in 468 * bulk_queue, because bq stored per-CPU and must be flushed 469 * from net_device drivers NAPI func end. 470 * 471 * Do the same with xdp_prog and flush_list since these fields 472 * are only ever modified together. 473 */ 474 if (!bq->dev_rx) { 475 bq->dev_rx = dev_rx; 476 bq->xdp_prog = xdp_prog; 477 list_add(&bq->flush_node, flush_list); 478 } 479 480 bq->q[bq->count++] = xdpf; 481 } 482 483 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 484 struct net_device *dev_rx, 485 struct bpf_prog *xdp_prog) 486 { 487 int err; 488 489 if (!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 490 return -EOPNOTSUPP; 491 492 if (unlikely(!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 493 xdp_frame_has_frags(xdpf))) 494 return -EOPNOTSUPP; 495 496 err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf)); 497 if (unlikely(err)) 498 return err; 499 500 bq_enqueue(dev, xdpf, dev_rx, xdp_prog); 501 return 0; 502 } 503 504 static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst) 505 { 506 struct xdp_txq_info txq = { .dev = dst->dev }; 507 struct xdp_buff xdp; 508 u32 act; 509 510 if (!dst->xdp_prog) 511 return XDP_PASS; 512 513 __skb_pull(skb, skb->mac_len); 514 xdp.txq = &txq; 515 516 act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog); 517 switch (act) { 518 case XDP_PASS: 519 __skb_push(skb, skb->mac_len); 520 break; 521 default: 522 bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act); 523 fallthrough; 524 case XDP_ABORTED: 525 trace_xdp_exception(dst->dev, dst->xdp_prog, act); 526 fallthrough; 527 case XDP_DROP: 528 kfree_skb(skb); 529 break; 530 } 531 532 return act; 533 } 534 535 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 536 struct net_device *dev_rx) 537 { 538 return __xdp_enqueue(dev, xdpf, dev_rx, NULL); 539 } 540 541 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 542 struct net_device *dev_rx) 543 { 544 struct net_device *dev = dst->dev; 545 546 return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog); 547 } 548 549 static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf) 550 { 551 if (!obj) 552 return false; 553 554 if (!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 555 return false; 556 557 if (unlikely(!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 558 xdp_frame_has_frags(xdpf))) 559 return false; 560 561 if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf))) 562 return false; 563 564 return true; 565 } 566 567 static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj, 568 struct net_device *dev_rx, 569 struct xdp_frame *xdpf) 570 { 571 struct xdp_frame *nxdpf; 572 573 nxdpf = xdpf_clone(xdpf); 574 if (!nxdpf) 575 return -ENOMEM; 576 577 bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog); 578 579 return 0; 580 } 581 582 static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex) 583 { 584 while (num_excluded--) { 585 if (ifindex == excluded[num_excluded]) 586 return true; 587 } 588 return false; 589 } 590 591 /* Get ifindex of each upper device. 'indexes' must be able to hold at 592 * least MAX_NEST_DEV elements. 593 * Returns the number of ifindexes added. 594 */ 595 static int get_upper_ifindexes(struct net_device *dev, int *indexes) 596 { 597 struct net_device *upper; 598 struct list_head *iter; 599 int n = 0; 600 601 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 602 indexes[n++] = upper->ifindex; 603 } 604 return n; 605 } 606 607 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 608 struct bpf_map *map, bool exclude_ingress) 609 { 610 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 611 struct bpf_dtab_netdev *dst, *last_dst = NULL; 612 int excluded_devices[1+MAX_NEST_DEV]; 613 struct hlist_head *head; 614 int num_excluded = 0; 615 unsigned int i; 616 int err; 617 618 if (exclude_ingress) { 619 num_excluded = get_upper_ifindexes(dev_rx, excluded_devices); 620 excluded_devices[num_excluded++] = dev_rx->ifindex; 621 } 622 623 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 624 for (i = 0; i < map->max_entries; i++) { 625 dst = rcu_dereference_check(dtab->netdev_map[i], 626 rcu_read_lock_bh_held()); 627 if (!is_valid_dst(dst, xdpf)) 628 continue; 629 630 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 631 continue; 632 633 /* we only need n-1 clones; last_dst enqueued below */ 634 if (!last_dst) { 635 last_dst = dst; 636 continue; 637 } 638 639 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 640 if (err) 641 return err; 642 643 last_dst = dst; 644 } 645 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 646 for (i = 0; i < dtab->n_buckets; i++) { 647 head = dev_map_index_hash(dtab, i); 648 hlist_for_each_entry_rcu(dst, head, index_hlist, 649 lockdep_is_held(&dtab->index_lock)) { 650 if (!is_valid_dst(dst, xdpf)) 651 continue; 652 653 if (is_ifindex_excluded(excluded_devices, num_excluded, 654 dst->dev->ifindex)) 655 continue; 656 657 /* we only need n-1 clones; last_dst enqueued below */ 658 if (!last_dst) { 659 last_dst = dst; 660 continue; 661 } 662 663 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 664 if (err) 665 return err; 666 667 last_dst = dst; 668 } 669 } 670 } 671 672 /* consume the last copy of the frame */ 673 if (last_dst) 674 bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog); 675 else 676 xdp_return_frame_rx_napi(xdpf); /* dtab is empty */ 677 678 return 0; 679 } 680 681 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 682 struct bpf_prog *xdp_prog) 683 { 684 int err; 685 686 err = xdp_ok_fwd_dev(dst->dev, skb->len); 687 if (unlikely(err)) 688 return err; 689 690 /* Redirect has already succeeded semantically at this point, so we just 691 * return 0 even if packet is dropped. Helper below takes care of 692 * freeing skb. 693 */ 694 if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS) 695 return 0; 696 697 skb->dev = dst->dev; 698 generic_xdp_tx(skb, xdp_prog); 699 700 return 0; 701 } 702 703 static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst, 704 struct sk_buff *skb, 705 struct bpf_prog *xdp_prog) 706 { 707 struct sk_buff *nskb; 708 int err; 709 710 nskb = skb_clone(skb, GFP_ATOMIC); 711 if (!nskb) 712 return -ENOMEM; 713 714 err = dev_map_generic_redirect(dst, nskb, xdp_prog); 715 if (unlikely(err)) { 716 consume_skb(nskb); 717 return err; 718 } 719 720 return 0; 721 } 722 723 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 724 struct bpf_prog *xdp_prog, struct bpf_map *map, 725 bool exclude_ingress) 726 { 727 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 728 struct bpf_dtab_netdev *dst, *last_dst = NULL; 729 int excluded_devices[1+MAX_NEST_DEV]; 730 struct hlist_head *head; 731 struct hlist_node *next; 732 int num_excluded = 0; 733 unsigned int i; 734 int err; 735 736 if (exclude_ingress) { 737 num_excluded = get_upper_ifindexes(dev, excluded_devices); 738 excluded_devices[num_excluded++] = dev->ifindex; 739 } 740 741 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 742 for (i = 0; i < map->max_entries; i++) { 743 dst = rcu_dereference_check(dtab->netdev_map[i], 744 rcu_read_lock_bh_held()); 745 if (!dst) 746 continue; 747 748 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 749 continue; 750 751 /* we only need n-1 clones; last_dst enqueued below */ 752 if (!last_dst) { 753 last_dst = dst; 754 continue; 755 } 756 757 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 758 if (err) 759 return err; 760 761 last_dst = dst; 762 763 } 764 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 765 for (i = 0; i < dtab->n_buckets; i++) { 766 head = dev_map_index_hash(dtab, i); 767 hlist_for_each_entry_safe(dst, next, head, index_hlist) { 768 if (is_ifindex_excluded(excluded_devices, num_excluded, 769 dst->dev->ifindex)) 770 continue; 771 772 /* we only need n-1 clones; last_dst enqueued below */ 773 if (!last_dst) { 774 last_dst = dst; 775 continue; 776 } 777 778 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 779 if (err) 780 return err; 781 782 last_dst = dst; 783 } 784 } 785 } 786 787 /* consume the first skb and return */ 788 if (last_dst) 789 return dev_map_generic_redirect(last_dst, skb, xdp_prog); 790 791 /* dtab is empty */ 792 consume_skb(skb); 793 return 0; 794 } 795 796 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 797 { 798 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 799 800 return obj ? &obj->val : NULL; 801 } 802 803 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 804 { 805 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 806 *(u32 *)key); 807 return obj ? &obj->val : NULL; 808 } 809 810 static void __dev_map_entry_free(struct rcu_head *rcu) 811 { 812 struct bpf_dtab_netdev *dev; 813 814 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 815 if (dev->xdp_prog) 816 bpf_prog_put(dev->xdp_prog); 817 dev_put(dev->dev); 818 kfree(dev); 819 } 820 821 static long dev_map_delete_elem(struct bpf_map *map, void *key) 822 { 823 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 824 struct bpf_dtab_netdev *old_dev; 825 int k = *(u32 *)key; 826 827 if (k >= map->max_entries) 828 return -EINVAL; 829 830 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL)); 831 if (old_dev) { 832 call_rcu(&old_dev->rcu, __dev_map_entry_free); 833 atomic_dec((atomic_t *)&dtab->items); 834 } 835 return 0; 836 } 837 838 static long dev_map_hash_delete_elem(struct bpf_map *map, void *key) 839 { 840 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 841 struct bpf_dtab_netdev *old_dev; 842 int k = *(u32 *)key; 843 unsigned long flags; 844 int ret = -ENOENT; 845 846 spin_lock_irqsave(&dtab->index_lock, flags); 847 848 old_dev = __dev_map_hash_lookup_elem(map, k); 849 if (old_dev) { 850 dtab->items--; 851 hlist_del_init_rcu(&old_dev->index_hlist); 852 call_rcu(&old_dev->rcu, __dev_map_entry_free); 853 ret = 0; 854 } 855 spin_unlock_irqrestore(&dtab->index_lock, flags); 856 857 return ret; 858 } 859 860 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 861 struct bpf_dtab *dtab, 862 struct bpf_devmap_val *val, 863 unsigned int idx) 864 { 865 struct bpf_prog *prog = NULL; 866 struct bpf_dtab_netdev *dev; 867 868 dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev), 869 GFP_NOWAIT | __GFP_NOWARN, 870 dtab->map.numa_node); 871 if (!dev) 872 return ERR_PTR(-ENOMEM); 873 874 dev->dev = dev_get_by_index(net, val->ifindex); 875 if (!dev->dev) 876 goto err_out; 877 878 if (val->bpf_prog.fd > 0) { 879 prog = bpf_prog_get_type_dev(val->bpf_prog.fd, 880 BPF_PROG_TYPE_XDP, false); 881 if (IS_ERR(prog)) 882 goto err_put_dev; 883 if (prog->expected_attach_type != BPF_XDP_DEVMAP || 884 !bpf_prog_map_compatible(&dtab->map, prog)) 885 goto err_put_prog; 886 } 887 888 dev->idx = idx; 889 if (prog) { 890 dev->xdp_prog = prog; 891 dev->val.bpf_prog.id = prog->aux->id; 892 } else { 893 dev->xdp_prog = NULL; 894 dev->val.bpf_prog.id = 0; 895 } 896 dev->val.ifindex = val->ifindex; 897 898 return dev; 899 err_put_prog: 900 bpf_prog_put(prog); 901 err_put_dev: 902 dev_put(dev->dev); 903 err_out: 904 kfree(dev); 905 return ERR_PTR(-EINVAL); 906 } 907 908 static long __dev_map_update_elem(struct net *net, struct bpf_map *map, 909 void *key, void *value, u64 map_flags) 910 { 911 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 912 struct bpf_dtab_netdev *dev, *old_dev; 913 struct bpf_devmap_val val = {}; 914 u32 i = *(u32 *)key; 915 916 if (unlikely(map_flags > BPF_EXIST)) 917 return -EINVAL; 918 if (unlikely(i >= dtab->map.max_entries)) 919 return -E2BIG; 920 if (unlikely(map_flags == BPF_NOEXIST)) 921 return -EEXIST; 922 923 /* already verified value_size <= sizeof val */ 924 memcpy(&val, value, map->value_size); 925 926 if (!val.ifindex) { 927 dev = NULL; 928 /* can not specify fd if ifindex is 0 */ 929 if (val.bpf_prog.fd > 0) 930 return -EINVAL; 931 } else { 932 dev = __dev_map_alloc_node(net, dtab, &val, i); 933 if (IS_ERR(dev)) 934 return PTR_ERR(dev); 935 } 936 937 /* Use call_rcu() here to ensure rcu critical sections have completed 938 * Remembering the driver side flush operation will happen before the 939 * net device is removed. 940 */ 941 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev))); 942 if (old_dev) 943 call_rcu(&old_dev->rcu, __dev_map_entry_free); 944 else 945 atomic_inc((atomic_t *)&dtab->items); 946 947 return 0; 948 } 949 950 static long dev_map_update_elem(struct bpf_map *map, void *key, void *value, 951 u64 map_flags) 952 { 953 return __dev_map_update_elem(current->nsproxy->net_ns, 954 map, key, value, map_flags); 955 } 956 957 static long __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 958 void *key, void *value, u64 map_flags) 959 { 960 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 961 struct bpf_dtab_netdev *dev, *old_dev; 962 struct bpf_devmap_val val = {}; 963 u32 idx = *(u32 *)key; 964 unsigned long flags; 965 int err = -EEXIST; 966 967 /* already verified value_size <= sizeof val */ 968 memcpy(&val, value, map->value_size); 969 970 if (unlikely(map_flags > BPF_EXIST || !val.ifindex)) 971 return -EINVAL; 972 973 spin_lock_irqsave(&dtab->index_lock, flags); 974 975 old_dev = __dev_map_hash_lookup_elem(map, idx); 976 if (old_dev && (map_flags & BPF_NOEXIST)) 977 goto out_err; 978 979 dev = __dev_map_alloc_node(net, dtab, &val, idx); 980 if (IS_ERR(dev)) { 981 err = PTR_ERR(dev); 982 goto out_err; 983 } 984 985 if (old_dev) { 986 hlist_del_rcu(&old_dev->index_hlist); 987 } else { 988 if (dtab->items >= dtab->map.max_entries) { 989 spin_unlock_irqrestore(&dtab->index_lock, flags); 990 call_rcu(&dev->rcu, __dev_map_entry_free); 991 return -E2BIG; 992 } 993 dtab->items++; 994 } 995 996 hlist_add_head_rcu(&dev->index_hlist, 997 dev_map_index_hash(dtab, idx)); 998 spin_unlock_irqrestore(&dtab->index_lock, flags); 999 1000 if (old_dev) 1001 call_rcu(&old_dev->rcu, __dev_map_entry_free); 1002 1003 return 0; 1004 1005 out_err: 1006 spin_unlock_irqrestore(&dtab->index_lock, flags); 1007 return err; 1008 } 1009 1010 static long dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 1011 u64 map_flags) 1012 { 1013 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 1014 map, key, value, map_flags); 1015 } 1016 1017 static long dev_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1018 { 1019 return __bpf_xdp_redirect_map(map, ifindex, flags, 1020 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1021 __dev_map_lookup_elem); 1022 } 1023 1024 static long dev_hash_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1025 { 1026 return __bpf_xdp_redirect_map(map, ifindex, flags, 1027 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1028 __dev_map_hash_lookup_elem); 1029 } 1030 1031 static u64 dev_map_mem_usage(const struct bpf_map *map) 1032 { 1033 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 1034 u64 usage = sizeof(struct bpf_dtab); 1035 1036 if (map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) 1037 usage += (u64)dtab->n_buckets * sizeof(struct hlist_head); 1038 else 1039 usage += (u64)map->max_entries * sizeof(struct bpf_dtab_netdev *); 1040 usage += atomic_read((atomic_t *)&dtab->items) * 1041 (u64)sizeof(struct bpf_dtab_netdev); 1042 return usage; 1043 } 1044 1045 BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab) 1046 const struct bpf_map_ops dev_map_ops = { 1047 .map_meta_equal = bpf_map_meta_equal, 1048 .map_alloc_check = dev_map_alloc_check, 1049 .map_alloc = dev_map_alloc, 1050 .map_free = dev_map_free, 1051 .map_get_next_key = dev_map_get_next_key, 1052 .map_lookup_elem = dev_map_lookup_elem, 1053 .map_update_elem = dev_map_update_elem, 1054 .map_delete_elem = dev_map_delete_elem, 1055 .map_check_btf = map_check_no_btf, 1056 .map_mem_usage = dev_map_mem_usage, 1057 .map_btf_id = &dev_map_btf_ids[0], 1058 .map_redirect = dev_map_redirect, 1059 }; 1060 1061 const struct bpf_map_ops dev_map_hash_ops = { 1062 .map_meta_equal = bpf_map_meta_equal, 1063 .map_alloc_check = dev_map_alloc_check, 1064 .map_alloc = dev_map_alloc, 1065 .map_free = dev_map_free, 1066 .map_get_next_key = dev_map_hash_get_next_key, 1067 .map_lookup_elem = dev_map_hash_lookup_elem, 1068 .map_update_elem = dev_map_hash_update_elem, 1069 .map_delete_elem = dev_map_hash_delete_elem, 1070 .map_check_btf = map_check_no_btf, 1071 .map_mem_usage = dev_map_mem_usage, 1072 .map_btf_id = &dev_map_btf_ids[0], 1073 .map_redirect = dev_hash_map_redirect, 1074 }; 1075 1076 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 1077 struct net_device *netdev) 1078 { 1079 unsigned long flags; 1080 u32 i; 1081 1082 spin_lock_irqsave(&dtab->index_lock, flags); 1083 for (i = 0; i < dtab->n_buckets; i++) { 1084 struct bpf_dtab_netdev *dev; 1085 struct hlist_head *head; 1086 struct hlist_node *next; 1087 1088 head = dev_map_index_hash(dtab, i); 1089 1090 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 1091 if (netdev != dev->dev) 1092 continue; 1093 1094 dtab->items--; 1095 hlist_del_rcu(&dev->index_hlist); 1096 call_rcu(&dev->rcu, __dev_map_entry_free); 1097 } 1098 } 1099 spin_unlock_irqrestore(&dtab->index_lock, flags); 1100 } 1101 1102 static int dev_map_notification(struct notifier_block *notifier, 1103 ulong event, void *ptr) 1104 { 1105 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 1106 struct bpf_dtab *dtab; 1107 int i, cpu; 1108 1109 switch (event) { 1110 case NETDEV_REGISTER: 1111 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) 1112 break; 1113 1114 /* will be freed in free_netdev() */ 1115 netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue); 1116 if (!netdev->xdp_bulkq) 1117 return NOTIFY_BAD; 1118 1119 for_each_possible_cpu(cpu) 1120 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; 1121 break; 1122 case NETDEV_UNREGISTER: 1123 /* This rcu_read_lock/unlock pair is needed because 1124 * dev_map_list is an RCU list AND to ensure a delete 1125 * operation does not free a netdev_map entry while we 1126 * are comparing it against the netdev being unregistered. 1127 */ 1128 rcu_read_lock(); 1129 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 1130 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 1131 dev_map_hash_remove_netdev(dtab, netdev); 1132 continue; 1133 } 1134 1135 for (i = 0; i < dtab->map.max_entries; i++) { 1136 struct bpf_dtab_netdev *dev, *odev; 1137 1138 dev = rcu_dereference(dtab->netdev_map[i]); 1139 if (!dev || netdev != dev->dev) 1140 continue; 1141 odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL)); 1142 if (dev == odev) { 1143 call_rcu(&dev->rcu, 1144 __dev_map_entry_free); 1145 atomic_dec((atomic_t *)&dtab->items); 1146 } 1147 } 1148 } 1149 rcu_read_unlock(); 1150 break; 1151 default: 1152 break; 1153 } 1154 return NOTIFY_OK; 1155 } 1156 1157 static struct notifier_block dev_map_notifier = { 1158 .notifier_call = dev_map_notification, 1159 }; 1160 1161 static int __init dev_map_init(void) 1162 { 1163 int cpu; 1164 1165 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 1166 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 1167 offsetof(struct _bpf_dtab_netdev, dev)); 1168 register_netdevice_notifier(&dev_map_notifier); 1169 1170 for_each_possible_cpu(cpu) 1171 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu)); 1172 return 0; 1173 } 1174 1175 subsys_initcall(dev_map_init); 1176