1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 2 * 3 * This program is free software; you can redistribute it and/or 4 * modify it under the terms of version 2 of the GNU General Public 5 * License as published by the Free Software Foundation. 6 * 7 * This program is distributed in the hope that it will be useful, but 8 * WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 10 * General Public License for more details. 11 */ 12 13 /* Devmaps primary use is as a backend map for XDP BPF helper call 14 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 15 * spent some effort to ensure the datapath with redirect maps does not use 16 * any locking. This is a quick note on the details. 17 * 18 * We have three possible paths to get into the devmap control plane bpf 19 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 20 * will invoke an update, delete, or lookup operation. To ensure updates and 21 * deletes appear atomic from the datapath side xchg() is used to modify the 22 * netdev_map array. Then because the datapath does a lookup into the netdev_map 23 * array (read-only) from an RCU critical section we use call_rcu() to wait for 24 * an rcu grace period before free'ing the old data structures. This ensures the 25 * datapath always has a valid copy. However, the datapath does a "flush" 26 * operation that pushes any pending packets in the driver outside the RCU 27 * critical section. Each bpf_dtab_netdev tracks these pending operations using 28 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed 29 * until all bits are cleared indicating outstanding flush operations have 30 * completed. 31 * 32 * BPF syscalls may race with BPF program calls on any of the update, delete 33 * or lookup operations. As noted above the xchg() operation also keep the 34 * netdev_map consistent in this case. From the devmap side BPF programs 35 * calling into these operations are the same as multiple user space threads 36 * making system calls. 37 * 38 * Finally, any of the above may race with a netdev_unregister notifier. The 39 * unregister notifier must search for net devices in the map structure that 40 * contain a reference to the net device and remove them. This is a two step 41 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 42 * check to see if the ifindex is the same as the net_device being removed. 43 * When removing the dev a cmpxchg() is used to ensure the correct dev is 44 * removed, in the case of a concurrent update or delete operation it is 45 * possible that the initially referenced dev is no longer in the map. As the 46 * notifier hook walks the map we know that new dev references can not be 47 * added by the user because core infrastructure ensures dev_get_by_index() 48 * calls will fail at this point. 49 */ 50 #include <linux/bpf.h> 51 #include <linux/jhash.h> 52 #include <linux/filter.h> 53 #include <linux/rculist_nulls.h> 54 #include "percpu_freelist.h" 55 #include "bpf_lru_list.h" 56 #include "map_in_map.h" 57 58 struct bpf_dtab_netdev { 59 struct net_device *dev; 60 int key; 61 struct rcu_head rcu; 62 struct bpf_dtab *dtab; 63 }; 64 65 struct bpf_dtab { 66 struct bpf_map map; 67 struct bpf_dtab_netdev **netdev_map; 68 unsigned long int __percpu *flush_needed; 69 struct list_head list; 70 }; 71 72 static DEFINE_SPINLOCK(dev_map_lock); 73 static LIST_HEAD(dev_map_list); 74 75 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 76 { 77 struct bpf_dtab *dtab; 78 u64 cost; 79 int err; 80 81 /* check sanity of attributes */ 82 if (attr->max_entries == 0 || attr->key_size != 4 || 83 attr->value_size != 4 || attr->map_flags) 84 return ERR_PTR(-EINVAL); 85 86 /* if value_size is bigger, the user space won't be able to 87 * access the elements. 88 */ 89 if (attr->value_size > KMALLOC_MAX_SIZE) 90 return ERR_PTR(-E2BIG); 91 92 dtab = kzalloc(sizeof(*dtab), GFP_USER); 93 if (!dtab) 94 return ERR_PTR(-ENOMEM); 95 96 /* mandatory map attributes */ 97 dtab->map.map_type = attr->map_type; 98 dtab->map.key_size = attr->key_size; 99 dtab->map.value_size = attr->value_size; 100 dtab->map.max_entries = attr->max_entries; 101 dtab->map.map_flags = attr->map_flags; 102 103 err = -ENOMEM; 104 105 /* make sure page count doesn't overflow */ 106 cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); 107 cost += BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long); 108 if (cost >= U32_MAX - PAGE_SIZE) 109 goto free_dtab; 110 111 dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; 112 113 /* if map size is larger than memlock limit, reject it early */ 114 err = bpf_map_precharge_memlock(dtab->map.pages); 115 if (err) 116 goto free_dtab; 117 118 err = -ENOMEM; 119 /* A per cpu bitfield with a bit per possible net device */ 120 dtab->flush_needed = __alloc_percpu( 121 BITS_TO_LONGS(attr->max_entries) * 122 sizeof(unsigned long), 123 __alignof__(unsigned long)); 124 if (!dtab->flush_needed) 125 goto free_dtab; 126 127 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * 128 sizeof(struct bpf_dtab_netdev *)); 129 if (!dtab->netdev_map) 130 goto free_dtab; 131 132 spin_lock(&dev_map_lock); 133 list_add_tail_rcu(&dtab->list, &dev_map_list); 134 spin_unlock(&dev_map_lock); 135 return &dtab->map; 136 137 free_dtab: 138 free_percpu(dtab->flush_needed); 139 kfree(dtab); 140 return ERR_PTR(err); 141 } 142 143 static void dev_map_free(struct bpf_map *map) 144 { 145 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 146 int i, cpu; 147 148 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 149 * so the programs (can be more than one that used this map) were 150 * disconnected from events. Wait for outstanding critical sections in 151 * these programs to complete. The rcu critical section only guarantees 152 * no further reads against netdev_map. It does __not__ ensure pending 153 * flush operations (if any) are complete. 154 */ 155 synchronize_rcu(); 156 157 /* To ensure all pending flush operations have completed wait for flush 158 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. 159 * Because the above synchronize_rcu() ensures the map is disconnected 160 * from the program we can assume no new bits will be set. 161 */ 162 for_each_online_cpu(cpu) { 163 unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu); 164 165 while (!bitmap_empty(bitmap, dtab->map.max_entries)) 166 cpu_relax(); 167 } 168 169 /* Although we should no longer have datapath or bpf syscall operations 170 * at this point we we can still race with netdev notifier, hence the 171 * lock. 172 */ 173 for (i = 0; i < dtab->map.max_entries; i++) { 174 struct bpf_dtab_netdev *dev; 175 176 dev = dtab->netdev_map[i]; 177 if (!dev) 178 continue; 179 180 dev_put(dev->dev); 181 kfree(dev); 182 } 183 184 /* At this point bpf program is detached and all pending operations 185 * _must_ be complete 186 */ 187 spin_lock(&dev_map_lock); 188 list_del_rcu(&dtab->list); 189 spin_unlock(&dev_map_lock); 190 free_percpu(dtab->flush_needed); 191 bpf_map_area_free(dtab->netdev_map); 192 kfree(dtab); 193 } 194 195 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 196 { 197 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 198 u32 index = key ? *(u32 *)key : U32_MAX; 199 u32 *next = (u32 *)next_key; 200 201 if (index >= dtab->map.max_entries) { 202 *next = 0; 203 return 0; 204 } 205 206 if (index == dtab->map.max_entries - 1) 207 return -ENOENT; 208 209 *next = index + 1; 210 return 0; 211 } 212 213 void __dev_map_insert_ctx(struct bpf_map *map, u32 key) 214 { 215 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 216 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 217 218 __set_bit(key, bitmap); 219 } 220 221 struct net_device *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 222 { 223 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 224 struct bpf_dtab_netdev *dev; 225 226 if (key >= map->max_entries) 227 return NULL; 228 229 dev = READ_ONCE(dtab->netdev_map[key]); 230 return dev ? dev->dev : NULL; 231 } 232 233 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled 234 * from the driver before returning from its napi->poll() routine. The poll() 235 * routine is called either from busy_poll context or net_rx_action signaled 236 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the 237 * net device can be torn down. On devmap tear down we ensure the ctx bitmap 238 * is zeroed before completing to ensure all flush operations have completed. 239 */ 240 void __dev_map_flush(struct bpf_map *map) 241 { 242 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 243 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 244 u32 bit; 245 246 for_each_set_bit(bit, bitmap, map->max_entries) { 247 struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]); 248 struct net_device *netdev; 249 250 /* This is possible if the dev entry is removed by user space 251 * between xdp redirect and flush op. 252 */ 253 if (unlikely(!dev)) 254 continue; 255 256 netdev = dev->dev; 257 258 __clear_bit(bit, bitmap); 259 if (unlikely(!netdev || !netdev->netdev_ops->ndo_xdp_flush)) 260 continue; 261 262 netdev->netdev_ops->ndo_xdp_flush(netdev); 263 } 264 } 265 266 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or 267 * update happens in parallel here a dev_put wont happen until after reading the 268 * ifindex. 269 */ 270 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 271 { 272 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 273 struct bpf_dtab_netdev *dev; 274 u32 i = *(u32 *)key; 275 276 if (i >= map->max_entries) 277 return NULL; 278 279 dev = READ_ONCE(dtab->netdev_map[i]); 280 return dev ? &dev->dev->ifindex : NULL; 281 } 282 283 static void dev_map_flush_old(struct bpf_dtab_netdev *old_dev) 284 { 285 if (old_dev->dev->netdev_ops->ndo_xdp_flush) { 286 struct net_device *fl = old_dev->dev; 287 unsigned long *bitmap; 288 int cpu; 289 290 for_each_online_cpu(cpu) { 291 bitmap = per_cpu_ptr(old_dev->dtab->flush_needed, cpu); 292 __clear_bit(old_dev->key, bitmap); 293 294 fl->netdev_ops->ndo_xdp_flush(old_dev->dev); 295 } 296 } 297 } 298 299 static void __dev_map_entry_free(struct rcu_head *rcu) 300 { 301 struct bpf_dtab_netdev *old_dev; 302 303 old_dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 304 dev_map_flush_old(old_dev); 305 dev_put(old_dev->dev); 306 kfree(old_dev); 307 } 308 309 static int dev_map_delete_elem(struct bpf_map *map, void *key) 310 { 311 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 312 struct bpf_dtab_netdev *old_dev; 313 int k = *(u32 *)key; 314 315 if (k >= map->max_entries) 316 return -EINVAL; 317 318 /* Use synchronize_rcu() here to ensure any rcu critical sections 319 * have completed, but this does not guarantee a flush has happened 320 * yet. Because driver side rcu_read_lock/unlock only protects the 321 * running XDP program. However, for pending flush operations the 322 * dev and ctx are stored in another per cpu map. And additionally, 323 * the driver tear down ensures all soft irqs are complete before 324 * removing the net device in the case of dev_put equals zero. 325 */ 326 old_dev = xchg(&dtab->netdev_map[k], NULL); 327 if (old_dev) 328 call_rcu(&old_dev->rcu, __dev_map_entry_free); 329 return 0; 330 } 331 332 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 333 u64 map_flags) 334 { 335 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 336 struct net *net = current->nsproxy->net_ns; 337 struct bpf_dtab_netdev *dev, *old_dev; 338 u32 i = *(u32 *)key; 339 u32 ifindex = *(u32 *)value; 340 341 if (unlikely(map_flags > BPF_EXIST)) 342 return -EINVAL; 343 344 if (unlikely(i >= dtab->map.max_entries)) 345 return -E2BIG; 346 347 if (unlikely(map_flags == BPF_NOEXIST)) 348 return -EEXIST; 349 350 if (!ifindex) { 351 dev = NULL; 352 } else { 353 dev = kmalloc(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN); 354 if (!dev) 355 return -ENOMEM; 356 357 dev->dev = dev_get_by_index(net, ifindex); 358 if (!dev->dev) { 359 kfree(dev); 360 return -EINVAL; 361 } 362 363 dev->key = i; 364 dev->dtab = dtab; 365 } 366 367 /* Use call_rcu() here to ensure rcu critical sections have completed 368 * Remembering the driver side flush operation will happen before the 369 * net device is removed. 370 */ 371 old_dev = xchg(&dtab->netdev_map[i], dev); 372 if (old_dev) 373 call_rcu(&old_dev->rcu, __dev_map_entry_free); 374 375 return 0; 376 } 377 378 const struct bpf_map_ops dev_map_ops = { 379 .map_alloc = dev_map_alloc, 380 .map_free = dev_map_free, 381 .map_get_next_key = dev_map_get_next_key, 382 .map_lookup_elem = dev_map_lookup_elem, 383 .map_update_elem = dev_map_update_elem, 384 .map_delete_elem = dev_map_delete_elem, 385 }; 386 387 static int dev_map_notification(struct notifier_block *notifier, 388 ulong event, void *ptr) 389 { 390 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 391 struct bpf_dtab *dtab; 392 int i; 393 394 switch (event) { 395 case NETDEV_UNREGISTER: 396 /* This rcu_read_lock/unlock pair is needed because 397 * dev_map_list is an RCU list AND to ensure a delete 398 * operation does not free a netdev_map entry while we 399 * are comparing it against the netdev being unregistered. 400 */ 401 rcu_read_lock(); 402 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 403 for (i = 0; i < dtab->map.max_entries; i++) { 404 struct bpf_dtab_netdev *dev, *odev; 405 406 dev = READ_ONCE(dtab->netdev_map[i]); 407 if (!dev || 408 dev->dev->ifindex != netdev->ifindex) 409 continue; 410 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); 411 if (dev == odev) 412 call_rcu(&dev->rcu, 413 __dev_map_entry_free); 414 } 415 } 416 rcu_read_unlock(); 417 break; 418 default: 419 break; 420 } 421 return NOTIFY_OK; 422 } 423 424 static struct notifier_block dev_map_notifier = { 425 .notifier_call = dev_map_notification, 426 }; 427 428 static int __init dev_map_init(void) 429 { 430 register_netdevice_notifier(&dev_map_notifier); 431 return 0; 432 } 433 434 subsys_initcall(dev_map_init); 435