1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 #include <linux/btf_ids.h> 52 53 #define DEV_CREATE_FLAG_MASK \ 54 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 55 56 struct xdp_dev_bulk_queue { 57 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 58 struct list_head flush_node; 59 struct net_device *dev; 60 struct net_device *dev_rx; 61 struct bpf_prog *xdp_prog; 62 unsigned int count; 63 }; 64 65 struct bpf_dtab_netdev { 66 struct net_device *dev; /* must be first member, due to tracepoint */ 67 struct hlist_node index_hlist; 68 struct bpf_prog *xdp_prog; 69 struct rcu_head rcu; 70 unsigned int idx; 71 struct bpf_devmap_val val; 72 }; 73 74 struct bpf_dtab { 75 struct bpf_map map; 76 struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */ 77 struct list_head list; 78 79 /* these are only used for DEVMAP_HASH type maps */ 80 struct hlist_head *dev_index_head; 81 spinlock_t index_lock; 82 unsigned int items; 83 u32 n_buckets; 84 }; 85 86 static DEFINE_SPINLOCK(dev_map_lock); 87 static LIST_HEAD(dev_map_list); 88 89 static struct hlist_head *dev_map_create_hash(unsigned int entries, 90 int numa_node) 91 { 92 int i; 93 struct hlist_head *hash; 94 95 hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node); 96 if (hash != NULL) 97 for (i = 0; i < entries; i++) 98 INIT_HLIST_HEAD(&hash[i]); 99 100 return hash; 101 } 102 103 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 104 int idx) 105 { 106 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 107 } 108 109 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 110 { 111 u32 valsize = attr->value_size; 112 113 /* check sanity of attributes. 2 value sizes supported: 114 * 4 bytes: ifindex 115 * 8 bytes: ifindex + prog fd 116 */ 117 if (attr->max_entries == 0 || attr->key_size != 4 || 118 (valsize != offsetofend(struct bpf_devmap_val, ifindex) && 119 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) || 120 attr->map_flags & ~DEV_CREATE_FLAG_MASK) 121 return -EINVAL; 122 123 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 124 * verifier prevents writes from the BPF side 125 */ 126 attr->map_flags |= BPF_F_RDONLY_PROG; 127 128 129 bpf_map_init_from_attr(&dtab->map, attr); 130 131 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 132 /* hash table size must be power of 2; roundup_pow_of_two() can 133 * overflow into UB on 32-bit arches, so check that first 134 */ 135 if (dtab->map.max_entries > 1UL << 31) 136 return -EINVAL; 137 138 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 139 140 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets, 141 dtab->map.numa_node); 142 if (!dtab->dev_index_head) 143 return -ENOMEM; 144 145 spin_lock_init(&dtab->index_lock); 146 } else { 147 dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries * 148 sizeof(struct bpf_dtab_netdev *), 149 dtab->map.numa_node); 150 if (!dtab->netdev_map) 151 return -ENOMEM; 152 } 153 154 return 0; 155 } 156 157 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 158 { 159 struct bpf_dtab *dtab; 160 int err; 161 162 dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE); 163 if (!dtab) 164 return ERR_PTR(-ENOMEM); 165 166 err = dev_map_init_map(dtab, attr); 167 if (err) { 168 bpf_map_area_free(dtab); 169 return ERR_PTR(err); 170 } 171 172 spin_lock(&dev_map_lock); 173 list_add_tail_rcu(&dtab->list, &dev_map_list); 174 spin_unlock(&dev_map_lock); 175 176 return &dtab->map; 177 } 178 179 static void dev_map_free(struct bpf_map *map) 180 { 181 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 182 int i; 183 184 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 185 * so the programs (can be more than one that used this map) were 186 * disconnected from events. The following synchronize_rcu() guarantees 187 * both rcu read critical sections complete and waits for 188 * preempt-disable regions (NAPI being the relevant context here) so we 189 * are certain there will be no further reads against the netdev_map and 190 * all flush operations are complete. Flush operations can only be done 191 * from NAPI context for this reason. 192 */ 193 194 spin_lock(&dev_map_lock); 195 list_del_rcu(&dtab->list); 196 spin_unlock(&dev_map_lock); 197 198 /* bpf_redirect_info->map is assigned in __bpf_xdp_redirect_map() 199 * during NAPI callback and cleared after the XDP redirect. There is no 200 * explicit RCU read section which protects bpf_redirect_info->map but 201 * local_bh_disable() also marks the beginning an RCU section. This 202 * makes the complete softirq callback RCU protected. Thus after 203 * following synchronize_rcu() there no bpf_redirect_info->map == map 204 * assignment. 205 */ 206 synchronize_rcu(); 207 208 /* Make sure prior __dev_map_entry_free() have completed. */ 209 rcu_barrier(); 210 211 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 212 for (i = 0; i < dtab->n_buckets; i++) { 213 struct bpf_dtab_netdev *dev; 214 struct hlist_head *head; 215 struct hlist_node *next; 216 217 head = dev_map_index_hash(dtab, i); 218 219 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 220 hlist_del_rcu(&dev->index_hlist); 221 if (dev->xdp_prog) 222 bpf_prog_put(dev->xdp_prog); 223 dev_put(dev->dev); 224 kfree(dev); 225 } 226 } 227 228 bpf_map_area_free(dtab->dev_index_head); 229 } else { 230 for (i = 0; i < dtab->map.max_entries; i++) { 231 struct bpf_dtab_netdev *dev; 232 233 dev = rcu_dereference_raw(dtab->netdev_map[i]); 234 if (!dev) 235 continue; 236 237 if (dev->xdp_prog) 238 bpf_prog_put(dev->xdp_prog); 239 dev_put(dev->dev); 240 kfree(dev); 241 } 242 243 bpf_map_area_free(dtab->netdev_map); 244 } 245 246 bpf_map_area_free(dtab); 247 } 248 249 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 250 { 251 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 252 u32 index = key ? *(u32 *)key : U32_MAX; 253 u32 *next = next_key; 254 255 if (index >= dtab->map.max_entries) { 256 *next = 0; 257 return 0; 258 } 259 260 if (index == dtab->map.max_entries - 1) 261 return -ENOENT; 262 *next = index + 1; 263 return 0; 264 } 265 266 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 267 * by local_bh_disable() (from XDP calls inside NAPI). The 268 * rcu_read_lock_bh_held() below makes lockdep accept both. 269 */ 270 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 271 { 272 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 273 struct hlist_head *head = dev_map_index_hash(dtab, key); 274 struct bpf_dtab_netdev *dev; 275 276 hlist_for_each_entry_rcu(dev, head, index_hlist, 277 lockdep_is_held(&dtab->index_lock)) 278 if (dev->idx == key) 279 return dev; 280 281 return NULL; 282 } 283 284 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 285 void *next_key) 286 { 287 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 288 u32 idx, *next = next_key; 289 struct bpf_dtab_netdev *dev, *next_dev; 290 struct hlist_head *head; 291 int i = 0; 292 293 if (!key) 294 goto find_first; 295 296 idx = *(u32 *)key; 297 298 dev = __dev_map_hash_lookup_elem(map, idx); 299 if (!dev) 300 goto find_first; 301 302 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 303 struct bpf_dtab_netdev, index_hlist); 304 305 if (next_dev) { 306 *next = next_dev->idx; 307 return 0; 308 } 309 310 i = idx & (dtab->n_buckets - 1); 311 i++; 312 313 find_first: 314 for (; i < dtab->n_buckets; i++) { 315 head = dev_map_index_hash(dtab, i); 316 317 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 318 struct bpf_dtab_netdev, 319 index_hlist); 320 if (next_dev) { 321 *next = next_dev->idx; 322 return 0; 323 } 324 } 325 326 return -ENOENT; 327 } 328 329 static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog, 330 struct xdp_frame **frames, int n, 331 struct net_device *dev) 332 { 333 struct xdp_txq_info txq = { .dev = dev }; 334 struct xdp_buff xdp; 335 int i, nframes = 0; 336 337 for (i = 0; i < n; i++) { 338 struct xdp_frame *xdpf = frames[i]; 339 u32 act; 340 int err; 341 342 xdp_convert_frame_to_buff(xdpf, &xdp); 343 xdp.txq = &txq; 344 345 act = bpf_prog_run_xdp(xdp_prog, &xdp); 346 switch (act) { 347 case XDP_PASS: 348 err = xdp_update_frame_from_buff(&xdp, xdpf); 349 if (unlikely(err < 0)) 350 xdp_return_frame_rx_napi(xdpf); 351 else 352 frames[nframes++] = xdpf; 353 break; 354 default: 355 bpf_warn_invalid_xdp_action(NULL, xdp_prog, act); 356 fallthrough; 357 case XDP_ABORTED: 358 trace_xdp_exception(dev, xdp_prog, act); 359 fallthrough; 360 case XDP_DROP: 361 xdp_return_frame_rx_napi(xdpf); 362 break; 363 } 364 } 365 return nframes; /* sent frames count */ 366 } 367 368 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) 369 { 370 struct net_device *dev = bq->dev; 371 unsigned int cnt = bq->count; 372 int sent = 0, err = 0; 373 int to_send = cnt; 374 int i; 375 376 if (unlikely(!cnt)) 377 return; 378 379 for (i = 0; i < cnt; i++) { 380 struct xdp_frame *xdpf = bq->q[i]; 381 382 prefetch(xdpf); 383 } 384 385 if (bq->xdp_prog) { 386 to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev); 387 if (!to_send) 388 goto out; 389 } 390 391 sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags); 392 if (sent < 0) { 393 /* If ndo_xdp_xmit fails with an errno, no frames have 394 * been xmit'ed. 395 */ 396 err = sent; 397 sent = 0; 398 } 399 400 /* If not all frames have been transmitted, it is our 401 * responsibility to free them 402 */ 403 for (i = sent; unlikely(i < to_send); i++) 404 xdp_return_frame_rx_napi(bq->q[i]); 405 406 out: 407 bq->count = 0; 408 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err); 409 } 410 411 /* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the 412 * driver before returning from its napi->poll() routine. See the comment above 413 * xdp_do_flush() in filter.c. 414 */ 415 void __dev_flush(struct list_head *flush_list) 416 { 417 struct xdp_dev_bulk_queue *bq, *tmp; 418 419 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 420 bq_xmit_all(bq, XDP_XMIT_FLUSH); 421 bq->dev_rx = NULL; 422 bq->xdp_prog = NULL; 423 __list_del_clearprev(&bq->flush_node); 424 } 425 } 426 427 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 428 * by local_bh_disable() (from XDP calls inside NAPI). The 429 * rcu_read_lock_bh_held() below makes lockdep accept both. 430 */ 431 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 432 { 433 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 434 struct bpf_dtab_netdev *obj; 435 436 if (key >= map->max_entries) 437 return NULL; 438 439 obj = rcu_dereference_check(dtab->netdev_map[key], 440 rcu_read_lock_bh_held()); 441 return obj; 442 } 443 444 /* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu 445 * variable access, and map elements stick around. See comment above 446 * xdp_do_flush() in filter.c. 447 */ 448 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 449 struct net_device *dev_rx, struct bpf_prog *xdp_prog) 450 { 451 struct list_head *flush_list = bpf_net_ctx_get_dev_flush_list(); 452 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); 453 454 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 455 bq_xmit_all(bq, 0); 456 457 /* Ingress dev_rx will be the same for all xdp_frame's in 458 * bulk_queue, because bq stored per-CPU and must be flushed 459 * from net_device drivers NAPI func end. 460 * 461 * Do the same with xdp_prog and flush_list since these fields 462 * are only ever modified together. 463 */ 464 if (!bq->dev_rx) { 465 bq->dev_rx = dev_rx; 466 bq->xdp_prog = xdp_prog; 467 list_add(&bq->flush_node, flush_list); 468 } 469 470 bq->q[bq->count++] = xdpf; 471 } 472 473 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 474 struct net_device *dev_rx, 475 struct bpf_prog *xdp_prog) 476 { 477 int err; 478 479 if (!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 480 return -EOPNOTSUPP; 481 482 if (unlikely(!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 483 xdp_frame_has_frags(xdpf))) 484 return -EOPNOTSUPP; 485 486 err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf)); 487 if (unlikely(err)) 488 return err; 489 490 bq_enqueue(dev, xdpf, dev_rx, xdp_prog); 491 return 0; 492 } 493 494 static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst) 495 { 496 struct xdp_txq_info txq = { .dev = dst->dev }; 497 struct xdp_buff xdp; 498 u32 act; 499 500 if (!dst->xdp_prog) 501 return XDP_PASS; 502 503 __skb_pull(skb, skb->mac_len); 504 xdp.txq = &txq; 505 506 act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog); 507 switch (act) { 508 case XDP_PASS: 509 __skb_push(skb, skb->mac_len); 510 break; 511 default: 512 bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act); 513 fallthrough; 514 case XDP_ABORTED: 515 trace_xdp_exception(dst->dev, dst->xdp_prog, act); 516 fallthrough; 517 case XDP_DROP: 518 kfree_skb(skb); 519 break; 520 } 521 522 return act; 523 } 524 525 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 526 struct net_device *dev_rx) 527 { 528 return __xdp_enqueue(dev, xdpf, dev_rx, NULL); 529 } 530 531 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 532 struct net_device *dev_rx) 533 { 534 struct net_device *dev = dst->dev; 535 536 return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog); 537 } 538 539 static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf) 540 { 541 if (!obj) 542 return false; 543 544 if (!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 545 return false; 546 547 if (unlikely(!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 548 xdp_frame_has_frags(xdpf))) 549 return false; 550 551 if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf))) 552 return false; 553 554 return true; 555 } 556 557 static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj, 558 struct net_device *dev_rx, 559 struct xdp_frame *xdpf) 560 { 561 struct xdp_frame *nxdpf; 562 563 nxdpf = xdpf_clone(xdpf); 564 if (!nxdpf) 565 return -ENOMEM; 566 567 bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog); 568 569 return 0; 570 } 571 572 static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex) 573 { 574 while (num_excluded--) { 575 if (ifindex == excluded[num_excluded]) 576 return true; 577 } 578 return false; 579 } 580 581 /* Get ifindex of each upper device. 'indexes' must be able to hold at 582 * least MAX_NEST_DEV elements. 583 * Returns the number of ifindexes added. 584 */ 585 static int get_upper_ifindexes(struct net_device *dev, int *indexes) 586 { 587 struct net_device *upper; 588 struct list_head *iter; 589 int n = 0; 590 591 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 592 indexes[n++] = upper->ifindex; 593 } 594 return n; 595 } 596 597 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 598 struct bpf_map *map, bool exclude_ingress) 599 { 600 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 601 struct bpf_dtab_netdev *dst, *last_dst = NULL; 602 int excluded_devices[1+MAX_NEST_DEV]; 603 struct hlist_head *head; 604 int num_excluded = 0; 605 unsigned int i; 606 int err; 607 608 if (exclude_ingress) { 609 num_excluded = get_upper_ifindexes(dev_rx, excluded_devices); 610 excluded_devices[num_excluded++] = dev_rx->ifindex; 611 } 612 613 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 614 for (i = 0; i < map->max_entries; i++) { 615 dst = rcu_dereference_check(dtab->netdev_map[i], 616 rcu_read_lock_bh_held()); 617 if (!is_valid_dst(dst, xdpf)) 618 continue; 619 620 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 621 continue; 622 623 /* we only need n-1 clones; last_dst enqueued below */ 624 if (!last_dst) { 625 last_dst = dst; 626 continue; 627 } 628 629 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 630 if (err) 631 return err; 632 633 last_dst = dst; 634 } 635 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 636 for (i = 0; i < dtab->n_buckets; i++) { 637 head = dev_map_index_hash(dtab, i); 638 hlist_for_each_entry_rcu(dst, head, index_hlist, 639 lockdep_is_held(&dtab->index_lock)) { 640 if (!is_valid_dst(dst, xdpf)) 641 continue; 642 643 if (is_ifindex_excluded(excluded_devices, num_excluded, 644 dst->dev->ifindex)) 645 continue; 646 647 /* we only need n-1 clones; last_dst enqueued below */ 648 if (!last_dst) { 649 last_dst = dst; 650 continue; 651 } 652 653 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 654 if (err) 655 return err; 656 657 last_dst = dst; 658 } 659 } 660 } 661 662 /* consume the last copy of the frame */ 663 if (last_dst) 664 bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog); 665 else 666 xdp_return_frame_rx_napi(xdpf); /* dtab is empty */ 667 668 return 0; 669 } 670 671 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 672 struct bpf_prog *xdp_prog) 673 { 674 int err; 675 676 err = xdp_ok_fwd_dev(dst->dev, skb->len); 677 if (unlikely(err)) 678 return err; 679 680 /* Redirect has already succeeded semantically at this point, so we just 681 * return 0 even if packet is dropped. Helper below takes care of 682 * freeing skb. 683 */ 684 if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS) 685 return 0; 686 687 skb->dev = dst->dev; 688 generic_xdp_tx(skb, xdp_prog); 689 690 return 0; 691 } 692 693 static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst, 694 struct sk_buff *skb, 695 struct bpf_prog *xdp_prog) 696 { 697 struct sk_buff *nskb; 698 int err; 699 700 nskb = skb_clone(skb, GFP_ATOMIC); 701 if (!nskb) 702 return -ENOMEM; 703 704 err = dev_map_generic_redirect(dst, nskb, xdp_prog); 705 if (unlikely(err)) { 706 consume_skb(nskb); 707 return err; 708 } 709 710 return 0; 711 } 712 713 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 714 struct bpf_prog *xdp_prog, struct bpf_map *map, 715 bool exclude_ingress) 716 { 717 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 718 struct bpf_dtab_netdev *dst, *last_dst = NULL; 719 int excluded_devices[1+MAX_NEST_DEV]; 720 struct hlist_head *head; 721 struct hlist_node *next; 722 int num_excluded = 0; 723 unsigned int i; 724 int err; 725 726 if (exclude_ingress) { 727 num_excluded = get_upper_ifindexes(dev, excluded_devices); 728 excluded_devices[num_excluded++] = dev->ifindex; 729 } 730 731 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 732 for (i = 0; i < map->max_entries; i++) { 733 dst = rcu_dereference_check(dtab->netdev_map[i], 734 rcu_read_lock_bh_held()); 735 if (!dst) 736 continue; 737 738 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 739 continue; 740 741 /* we only need n-1 clones; last_dst enqueued below */ 742 if (!last_dst) { 743 last_dst = dst; 744 continue; 745 } 746 747 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 748 if (err) 749 return err; 750 751 last_dst = dst; 752 753 } 754 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 755 for (i = 0; i < dtab->n_buckets; i++) { 756 head = dev_map_index_hash(dtab, i); 757 hlist_for_each_entry_safe(dst, next, head, index_hlist) { 758 if (is_ifindex_excluded(excluded_devices, num_excluded, 759 dst->dev->ifindex)) 760 continue; 761 762 /* we only need n-1 clones; last_dst enqueued below */ 763 if (!last_dst) { 764 last_dst = dst; 765 continue; 766 } 767 768 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 769 if (err) 770 return err; 771 772 last_dst = dst; 773 } 774 } 775 } 776 777 /* consume the first skb and return */ 778 if (last_dst) 779 return dev_map_generic_redirect(last_dst, skb, xdp_prog); 780 781 /* dtab is empty */ 782 consume_skb(skb); 783 return 0; 784 } 785 786 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 787 { 788 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 789 790 return obj ? &obj->val : NULL; 791 } 792 793 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 794 { 795 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 796 *(u32 *)key); 797 return obj ? &obj->val : NULL; 798 } 799 800 static void __dev_map_entry_free(struct rcu_head *rcu) 801 { 802 struct bpf_dtab_netdev *dev; 803 804 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 805 if (dev->xdp_prog) 806 bpf_prog_put(dev->xdp_prog); 807 dev_put(dev->dev); 808 kfree(dev); 809 } 810 811 static long dev_map_delete_elem(struct bpf_map *map, void *key) 812 { 813 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 814 struct bpf_dtab_netdev *old_dev; 815 int k = *(u32 *)key; 816 817 if (k >= map->max_entries) 818 return -EINVAL; 819 820 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL)); 821 if (old_dev) { 822 call_rcu(&old_dev->rcu, __dev_map_entry_free); 823 atomic_dec((atomic_t *)&dtab->items); 824 } 825 return 0; 826 } 827 828 static long dev_map_hash_delete_elem(struct bpf_map *map, void *key) 829 { 830 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 831 struct bpf_dtab_netdev *old_dev; 832 int k = *(u32 *)key; 833 unsigned long flags; 834 int ret = -ENOENT; 835 836 spin_lock_irqsave(&dtab->index_lock, flags); 837 838 old_dev = __dev_map_hash_lookup_elem(map, k); 839 if (old_dev) { 840 dtab->items--; 841 hlist_del_init_rcu(&old_dev->index_hlist); 842 call_rcu(&old_dev->rcu, __dev_map_entry_free); 843 ret = 0; 844 } 845 spin_unlock_irqrestore(&dtab->index_lock, flags); 846 847 return ret; 848 } 849 850 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 851 struct bpf_dtab *dtab, 852 struct bpf_devmap_val *val, 853 unsigned int idx) 854 { 855 struct bpf_prog *prog = NULL; 856 struct bpf_dtab_netdev *dev; 857 858 dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev), 859 GFP_NOWAIT | __GFP_NOWARN, 860 dtab->map.numa_node); 861 if (!dev) 862 return ERR_PTR(-ENOMEM); 863 864 dev->dev = dev_get_by_index(net, val->ifindex); 865 if (!dev->dev) 866 goto err_out; 867 868 if (val->bpf_prog.fd > 0) { 869 prog = bpf_prog_get_type_dev(val->bpf_prog.fd, 870 BPF_PROG_TYPE_XDP, false); 871 if (IS_ERR(prog)) 872 goto err_put_dev; 873 if (prog->expected_attach_type != BPF_XDP_DEVMAP || 874 !bpf_prog_map_compatible(&dtab->map, prog)) 875 goto err_put_prog; 876 } 877 878 dev->idx = idx; 879 if (prog) { 880 dev->xdp_prog = prog; 881 dev->val.bpf_prog.id = prog->aux->id; 882 } else { 883 dev->xdp_prog = NULL; 884 dev->val.bpf_prog.id = 0; 885 } 886 dev->val.ifindex = val->ifindex; 887 888 return dev; 889 err_put_prog: 890 bpf_prog_put(prog); 891 err_put_dev: 892 dev_put(dev->dev); 893 err_out: 894 kfree(dev); 895 return ERR_PTR(-EINVAL); 896 } 897 898 static long __dev_map_update_elem(struct net *net, struct bpf_map *map, 899 void *key, void *value, u64 map_flags) 900 { 901 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 902 struct bpf_dtab_netdev *dev, *old_dev; 903 struct bpf_devmap_val val = {}; 904 u32 i = *(u32 *)key; 905 906 if (unlikely(map_flags > BPF_EXIST)) 907 return -EINVAL; 908 if (unlikely(i >= dtab->map.max_entries)) 909 return -E2BIG; 910 if (unlikely(map_flags == BPF_NOEXIST)) 911 return -EEXIST; 912 913 /* already verified value_size <= sizeof val */ 914 memcpy(&val, value, map->value_size); 915 916 if (!val.ifindex) { 917 dev = NULL; 918 /* can not specify fd if ifindex is 0 */ 919 if (val.bpf_prog.fd > 0) 920 return -EINVAL; 921 } else { 922 dev = __dev_map_alloc_node(net, dtab, &val, i); 923 if (IS_ERR(dev)) 924 return PTR_ERR(dev); 925 } 926 927 /* Use call_rcu() here to ensure rcu critical sections have completed 928 * Remembering the driver side flush operation will happen before the 929 * net device is removed. 930 */ 931 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev))); 932 if (old_dev) 933 call_rcu(&old_dev->rcu, __dev_map_entry_free); 934 else 935 atomic_inc((atomic_t *)&dtab->items); 936 937 return 0; 938 } 939 940 static long dev_map_update_elem(struct bpf_map *map, void *key, void *value, 941 u64 map_flags) 942 { 943 return __dev_map_update_elem(current->nsproxy->net_ns, 944 map, key, value, map_flags); 945 } 946 947 static long __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 948 void *key, void *value, u64 map_flags) 949 { 950 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 951 struct bpf_dtab_netdev *dev, *old_dev; 952 struct bpf_devmap_val val = {}; 953 u32 idx = *(u32 *)key; 954 unsigned long flags; 955 int err = -EEXIST; 956 957 /* already verified value_size <= sizeof val */ 958 memcpy(&val, value, map->value_size); 959 960 if (unlikely(map_flags > BPF_EXIST || !val.ifindex)) 961 return -EINVAL; 962 963 spin_lock_irqsave(&dtab->index_lock, flags); 964 965 old_dev = __dev_map_hash_lookup_elem(map, idx); 966 if (old_dev && (map_flags & BPF_NOEXIST)) 967 goto out_err; 968 969 dev = __dev_map_alloc_node(net, dtab, &val, idx); 970 if (IS_ERR(dev)) { 971 err = PTR_ERR(dev); 972 goto out_err; 973 } 974 975 if (old_dev) { 976 hlist_del_rcu(&old_dev->index_hlist); 977 } else { 978 if (dtab->items >= dtab->map.max_entries) { 979 spin_unlock_irqrestore(&dtab->index_lock, flags); 980 call_rcu(&dev->rcu, __dev_map_entry_free); 981 return -E2BIG; 982 } 983 dtab->items++; 984 } 985 986 hlist_add_head_rcu(&dev->index_hlist, 987 dev_map_index_hash(dtab, idx)); 988 spin_unlock_irqrestore(&dtab->index_lock, flags); 989 990 if (old_dev) 991 call_rcu(&old_dev->rcu, __dev_map_entry_free); 992 993 return 0; 994 995 out_err: 996 spin_unlock_irqrestore(&dtab->index_lock, flags); 997 return err; 998 } 999 1000 static long dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 1001 u64 map_flags) 1002 { 1003 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 1004 map, key, value, map_flags); 1005 } 1006 1007 static long dev_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1008 { 1009 return __bpf_xdp_redirect_map(map, ifindex, flags, 1010 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1011 __dev_map_lookup_elem); 1012 } 1013 1014 static long dev_hash_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1015 { 1016 return __bpf_xdp_redirect_map(map, ifindex, flags, 1017 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1018 __dev_map_hash_lookup_elem); 1019 } 1020 1021 static u64 dev_map_mem_usage(const struct bpf_map *map) 1022 { 1023 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 1024 u64 usage = sizeof(struct bpf_dtab); 1025 1026 if (map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) 1027 usage += (u64)dtab->n_buckets * sizeof(struct hlist_head); 1028 else 1029 usage += (u64)map->max_entries * sizeof(struct bpf_dtab_netdev *); 1030 usage += atomic_read((atomic_t *)&dtab->items) * 1031 (u64)sizeof(struct bpf_dtab_netdev); 1032 return usage; 1033 } 1034 1035 BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab) 1036 const struct bpf_map_ops dev_map_ops = { 1037 .map_meta_equal = bpf_map_meta_equal, 1038 .map_alloc = dev_map_alloc, 1039 .map_free = dev_map_free, 1040 .map_get_next_key = dev_map_get_next_key, 1041 .map_lookup_elem = dev_map_lookup_elem, 1042 .map_update_elem = dev_map_update_elem, 1043 .map_delete_elem = dev_map_delete_elem, 1044 .map_check_btf = map_check_no_btf, 1045 .map_mem_usage = dev_map_mem_usage, 1046 .map_btf_id = &dev_map_btf_ids[0], 1047 .map_redirect = dev_map_redirect, 1048 }; 1049 1050 const struct bpf_map_ops dev_map_hash_ops = { 1051 .map_meta_equal = bpf_map_meta_equal, 1052 .map_alloc = dev_map_alloc, 1053 .map_free = dev_map_free, 1054 .map_get_next_key = dev_map_hash_get_next_key, 1055 .map_lookup_elem = dev_map_hash_lookup_elem, 1056 .map_update_elem = dev_map_hash_update_elem, 1057 .map_delete_elem = dev_map_hash_delete_elem, 1058 .map_check_btf = map_check_no_btf, 1059 .map_mem_usage = dev_map_mem_usage, 1060 .map_btf_id = &dev_map_btf_ids[0], 1061 .map_redirect = dev_hash_map_redirect, 1062 }; 1063 1064 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 1065 struct net_device *netdev) 1066 { 1067 unsigned long flags; 1068 u32 i; 1069 1070 spin_lock_irqsave(&dtab->index_lock, flags); 1071 for (i = 0; i < dtab->n_buckets; i++) { 1072 struct bpf_dtab_netdev *dev; 1073 struct hlist_head *head; 1074 struct hlist_node *next; 1075 1076 head = dev_map_index_hash(dtab, i); 1077 1078 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 1079 if (netdev != dev->dev) 1080 continue; 1081 1082 dtab->items--; 1083 hlist_del_rcu(&dev->index_hlist); 1084 call_rcu(&dev->rcu, __dev_map_entry_free); 1085 } 1086 } 1087 spin_unlock_irqrestore(&dtab->index_lock, flags); 1088 } 1089 1090 static int dev_map_notification(struct notifier_block *notifier, 1091 ulong event, void *ptr) 1092 { 1093 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 1094 struct bpf_dtab *dtab; 1095 int i, cpu; 1096 1097 switch (event) { 1098 case NETDEV_REGISTER: 1099 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) 1100 break; 1101 1102 /* will be freed in free_netdev() */ 1103 netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue); 1104 if (!netdev->xdp_bulkq) 1105 return NOTIFY_BAD; 1106 1107 for_each_possible_cpu(cpu) 1108 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; 1109 break; 1110 case NETDEV_UNREGISTER: 1111 /* This rcu_read_lock/unlock pair is needed because 1112 * dev_map_list is an RCU list AND to ensure a delete 1113 * operation does not free a netdev_map entry while we 1114 * are comparing it against the netdev being unregistered. 1115 */ 1116 rcu_read_lock(); 1117 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 1118 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 1119 dev_map_hash_remove_netdev(dtab, netdev); 1120 continue; 1121 } 1122 1123 for (i = 0; i < dtab->map.max_entries; i++) { 1124 struct bpf_dtab_netdev *dev, *odev; 1125 1126 dev = rcu_dereference(dtab->netdev_map[i]); 1127 if (!dev || netdev != dev->dev) 1128 continue; 1129 odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL)); 1130 if (dev == odev) { 1131 call_rcu(&dev->rcu, 1132 __dev_map_entry_free); 1133 atomic_dec((atomic_t *)&dtab->items); 1134 } 1135 } 1136 } 1137 rcu_read_unlock(); 1138 break; 1139 default: 1140 break; 1141 } 1142 return NOTIFY_OK; 1143 } 1144 1145 static struct notifier_block dev_map_notifier = { 1146 .notifier_call = dev_map_notification, 1147 }; 1148 1149 static int __init dev_map_init(void) 1150 { 1151 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 1152 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 1153 offsetof(struct _bpf_dtab_netdev, dev)); 1154 register_netdevice_notifier(&dev_map_notifier); 1155 1156 return 0; 1157 } 1158 1159 subsys_initcall(dev_map_init); 1160