1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 52 #define DEV_CREATE_FLAG_MASK \ 53 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 54 55 struct xdp_dev_bulk_queue { 56 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 57 struct list_head flush_node; 58 struct net_device *dev; 59 struct net_device *dev_rx; 60 struct bpf_prog *xdp_prog; 61 unsigned int count; 62 }; 63 64 struct bpf_dtab_netdev { 65 struct net_device *dev; /* must be first member, due to tracepoint */ 66 struct hlist_node index_hlist; 67 struct bpf_dtab *dtab; 68 struct bpf_prog *xdp_prog; 69 struct rcu_head rcu; 70 unsigned int idx; 71 struct bpf_devmap_val val; 72 }; 73 74 struct bpf_dtab { 75 struct bpf_map map; 76 struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */ 77 struct list_head list; 78 79 /* these are only used for DEVMAP_HASH type maps */ 80 struct hlist_head *dev_index_head; 81 spinlock_t index_lock; 82 unsigned int items; 83 u32 n_buckets; 84 }; 85 86 static DEFINE_PER_CPU(struct list_head, dev_flush_list); 87 static DEFINE_SPINLOCK(dev_map_lock); 88 static LIST_HEAD(dev_map_list); 89 90 static struct hlist_head *dev_map_create_hash(unsigned int entries, 91 int numa_node) 92 { 93 int i; 94 struct hlist_head *hash; 95 96 hash = bpf_map_area_alloc(entries * sizeof(*hash), numa_node); 97 if (hash != NULL) 98 for (i = 0; i < entries; i++) 99 INIT_HLIST_HEAD(&hash[i]); 100 101 return hash; 102 } 103 104 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 105 int idx) 106 { 107 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 108 } 109 110 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 111 { 112 u32 valsize = attr->value_size; 113 114 /* check sanity of attributes. 2 value sizes supported: 115 * 4 bytes: ifindex 116 * 8 bytes: ifindex + prog fd 117 */ 118 if (attr->max_entries == 0 || attr->key_size != 4 || 119 (valsize != offsetofend(struct bpf_devmap_val, ifindex) && 120 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) || 121 attr->map_flags & ~DEV_CREATE_FLAG_MASK) 122 return -EINVAL; 123 124 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 125 * verifier prevents writes from the BPF side 126 */ 127 attr->map_flags |= BPF_F_RDONLY_PROG; 128 129 130 bpf_map_init_from_attr(&dtab->map, attr); 131 132 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 133 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 134 135 if (!dtab->n_buckets) /* Overflow check */ 136 return -EINVAL; 137 } 138 139 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 140 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets, 141 dtab->map.numa_node); 142 if (!dtab->dev_index_head) 143 return -ENOMEM; 144 145 spin_lock_init(&dtab->index_lock); 146 } else { 147 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * 148 sizeof(struct bpf_dtab_netdev *), 149 dtab->map.numa_node); 150 if (!dtab->netdev_map) 151 return -ENOMEM; 152 } 153 154 return 0; 155 } 156 157 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 158 { 159 struct bpf_dtab *dtab; 160 int err; 161 162 if (!capable(CAP_NET_ADMIN)) 163 return ERR_PTR(-EPERM); 164 165 dtab = kzalloc(sizeof(*dtab), GFP_USER | __GFP_ACCOUNT); 166 if (!dtab) 167 return ERR_PTR(-ENOMEM); 168 169 err = dev_map_init_map(dtab, attr); 170 if (err) { 171 kfree(dtab); 172 return ERR_PTR(err); 173 } 174 175 spin_lock(&dev_map_lock); 176 list_add_tail_rcu(&dtab->list, &dev_map_list); 177 spin_unlock(&dev_map_lock); 178 179 return &dtab->map; 180 } 181 182 static void dev_map_free(struct bpf_map *map) 183 { 184 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 185 int i; 186 187 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 188 * so the programs (can be more than one that used this map) were 189 * disconnected from events. The following synchronize_rcu() guarantees 190 * both rcu read critical sections complete and waits for 191 * preempt-disable regions (NAPI being the relevant context here) so we 192 * are certain there will be no further reads against the netdev_map and 193 * all flush operations are complete. Flush operations can only be done 194 * from NAPI context for this reason. 195 */ 196 197 spin_lock(&dev_map_lock); 198 list_del_rcu(&dtab->list); 199 spin_unlock(&dev_map_lock); 200 201 bpf_clear_redirect_map(map); 202 synchronize_rcu(); 203 204 /* Make sure prior __dev_map_entry_free() have completed. */ 205 rcu_barrier(); 206 207 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 208 for (i = 0; i < dtab->n_buckets; i++) { 209 struct bpf_dtab_netdev *dev; 210 struct hlist_head *head; 211 struct hlist_node *next; 212 213 head = dev_map_index_hash(dtab, i); 214 215 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 216 hlist_del_rcu(&dev->index_hlist); 217 if (dev->xdp_prog) 218 bpf_prog_put(dev->xdp_prog); 219 dev_put(dev->dev); 220 kfree(dev); 221 } 222 } 223 224 bpf_map_area_free(dtab->dev_index_head); 225 } else { 226 for (i = 0; i < dtab->map.max_entries; i++) { 227 struct bpf_dtab_netdev *dev; 228 229 dev = dtab->netdev_map[i]; 230 if (!dev) 231 continue; 232 233 if (dev->xdp_prog) 234 bpf_prog_put(dev->xdp_prog); 235 dev_put(dev->dev); 236 kfree(dev); 237 } 238 239 bpf_map_area_free(dtab->netdev_map); 240 } 241 242 kfree(dtab); 243 } 244 245 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 246 { 247 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 248 u32 index = key ? *(u32 *)key : U32_MAX; 249 u32 *next = next_key; 250 251 if (index >= dtab->map.max_entries) { 252 *next = 0; 253 return 0; 254 } 255 256 if (index == dtab->map.max_entries - 1) 257 return -ENOENT; 258 *next = index + 1; 259 return 0; 260 } 261 262 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 263 { 264 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 265 struct hlist_head *head = dev_map_index_hash(dtab, key); 266 struct bpf_dtab_netdev *dev; 267 268 hlist_for_each_entry_rcu(dev, head, index_hlist, 269 lockdep_is_held(&dtab->index_lock)) 270 if (dev->idx == key) 271 return dev; 272 273 return NULL; 274 } 275 276 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 277 void *next_key) 278 { 279 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 280 u32 idx, *next = next_key; 281 struct bpf_dtab_netdev *dev, *next_dev; 282 struct hlist_head *head; 283 int i = 0; 284 285 if (!key) 286 goto find_first; 287 288 idx = *(u32 *)key; 289 290 dev = __dev_map_hash_lookup_elem(map, idx); 291 if (!dev) 292 goto find_first; 293 294 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 295 struct bpf_dtab_netdev, index_hlist); 296 297 if (next_dev) { 298 *next = next_dev->idx; 299 return 0; 300 } 301 302 i = idx & (dtab->n_buckets - 1); 303 i++; 304 305 find_first: 306 for (; i < dtab->n_buckets; i++) { 307 head = dev_map_index_hash(dtab, i); 308 309 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 310 struct bpf_dtab_netdev, 311 index_hlist); 312 if (next_dev) { 313 *next = next_dev->idx; 314 return 0; 315 } 316 } 317 318 return -ENOENT; 319 } 320 321 bool dev_map_can_have_prog(struct bpf_map *map) 322 { 323 if ((map->map_type == BPF_MAP_TYPE_DEVMAP || 324 map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) && 325 map->value_size != offsetofend(struct bpf_devmap_val, ifindex)) 326 return true; 327 328 return false; 329 } 330 331 static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog, 332 struct xdp_frame **frames, int n, 333 struct net_device *dev) 334 { 335 struct xdp_txq_info txq = { .dev = dev }; 336 struct xdp_buff xdp; 337 int i, nframes = 0; 338 339 for (i = 0; i < n; i++) { 340 struct xdp_frame *xdpf = frames[i]; 341 u32 act; 342 int err; 343 344 xdp_convert_frame_to_buff(xdpf, &xdp); 345 xdp.txq = &txq; 346 347 act = bpf_prog_run_xdp(xdp_prog, &xdp); 348 switch (act) { 349 case XDP_PASS: 350 err = xdp_update_frame_from_buff(&xdp, xdpf); 351 if (unlikely(err < 0)) 352 xdp_return_frame_rx_napi(xdpf); 353 else 354 frames[nframes++] = xdpf; 355 break; 356 default: 357 bpf_warn_invalid_xdp_action(act); 358 fallthrough; 359 case XDP_ABORTED: 360 trace_xdp_exception(dev, xdp_prog, act); 361 fallthrough; 362 case XDP_DROP: 363 xdp_return_frame_rx_napi(xdpf); 364 break; 365 } 366 } 367 return nframes; /* sent frames count */ 368 } 369 370 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) 371 { 372 struct net_device *dev = bq->dev; 373 int sent = 0, drops = 0, err = 0; 374 unsigned int cnt = bq->count; 375 int to_send = cnt; 376 int i; 377 378 if (unlikely(!cnt)) 379 return; 380 381 for (i = 0; i < cnt; i++) { 382 struct xdp_frame *xdpf = bq->q[i]; 383 384 prefetch(xdpf); 385 } 386 387 if (bq->xdp_prog) { 388 to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev); 389 if (!to_send) 390 goto out; 391 392 drops = cnt - to_send; 393 } 394 395 sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags); 396 if (sent < 0) { 397 /* If ndo_xdp_xmit fails with an errno, no frames have 398 * been xmit'ed. 399 */ 400 err = sent; 401 sent = 0; 402 } 403 404 /* If not all frames have been transmitted, it is our 405 * responsibility to free them 406 */ 407 for (i = sent; unlikely(i < to_send); i++) 408 xdp_return_frame_rx_napi(bq->q[i]); 409 410 out: 411 drops = cnt - sent; 412 bq->count = 0; 413 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err); 414 } 415 416 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled 417 * from the driver before returning from its napi->poll() routine. The poll() 418 * routine is called either from busy_poll context or net_rx_action signaled 419 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the 420 * net device can be torn down. On devmap tear down we ensure the flush list 421 * is empty before completing to ensure all flush operations have completed. 422 * When drivers update the bpf program they may need to ensure any flush ops 423 * are also complete. Using synchronize_rcu or call_rcu will suffice for this 424 * because both wait for napi context to exit. 425 */ 426 void __dev_flush(void) 427 { 428 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 429 struct xdp_dev_bulk_queue *bq, *tmp; 430 431 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 432 bq_xmit_all(bq, XDP_XMIT_FLUSH); 433 bq->dev_rx = NULL; 434 bq->xdp_prog = NULL; 435 __list_del_clearprev(&bq->flush_node); 436 } 437 } 438 439 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or 440 * update happens in parallel here a dev_put won't happen until after reading 441 * the ifindex. 442 */ 443 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 444 { 445 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 446 struct bpf_dtab_netdev *obj; 447 448 if (key >= map->max_entries) 449 return NULL; 450 451 obj = READ_ONCE(dtab->netdev_map[key]); 452 return obj; 453 } 454 455 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 456 * Thus, safe percpu variable access. 457 */ 458 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 459 struct net_device *dev_rx, struct bpf_prog *xdp_prog) 460 { 461 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 462 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); 463 464 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 465 bq_xmit_all(bq, 0); 466 467 /* Ingress dev_rx will be the same for all xdp_frame's in 468 * bulk_queue, because bq stored per-CPU and must be flushed 469 * from net_device drivers NAPI func end. 470 * 471 * Do the same with xdp_prog and flush_list since these fields 472 * are only ever modified together. 473 */ 474 if (!bq->dev_rx) { 475 bq->dev_rx = dev_rx; 476 bq->xdp_prog = xdp_prog; 477 list_add(&bq->flush_node, flush_list); 478 } 479 480 bq->q[bq->count++] = xdpf; 481 } 482 483 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp, 484 struct net_device *dev_rx, 485 struct bpf_prog *xdp_prog) 486 { 487 struct xdp_frame *xdpf; 488 int err; 489 490 if (!dev->netdev_ops->ndo_xdp_xmit) 491 return -EOPNOTSUPP; 492 493 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data); 494 if (unlikely(err)) 495 return err; 496 497 xdpf = xdp_convert_buff_to_frame(xdp); 498 if (unlikely(!xdpf)) 499 return -EOVERFLOW; 500 501 bq_enqueue(dev, xdpf, dev_rx, xdp_prog); 502 return 0; 503 } 504 505 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp, 506 struct net_device *dev_rx) 507 { 508 return __xdp_enqueue(dev, xdp, dev_rx, NULL); 509 } 510 511 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, 512 struct net_device *dev_rx) 513 { 514 struct net_device *dev = dst->dev; 515 516 return __xdp_enqueue(dev, xdp, dev_rx, dst->xdp_prog); 517 } 518 519 static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_buff *xdp, 520 int exclude_ifindex) 521 { 522 if (!obj || obj->dev->ifindex == exclude_ifindex || 523 !obj->dev->netdev_ops->ndo_xdp_xmit) 524 return false; 525 526 if (xdp_ok_fwd_dev(obj->dev, xdp->data_end - xdp->data)) 527 return false; 528 529 return true; 530 } 531 532 static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj, 533 struct net_device *dev_rx, 534 struct xdp_frame *xdpf) 535 { 536 struct xdp_frame *nxdpf; 537 538 nxdpf = xdpf_clone(xdpf); 539 if (!nxdpf) 540 return -ENOMEM; 541 542 bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog); 543 544 return 0; 545 } 546 547 int dev_map_enqueue_multi(struct xdp_buff *xdp, struct net_device *dev_rx, 548 struct bpf_map *map, bool exclude_ingress) 549 { 550 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 551 int exclude_ifindex = exclude_ingress ? dev_rx->ifindex : 0; 552 struct bpf_dtab_netdev *dst, *last_dst = NULL; 553 struct hlist_head *head; 554 struct xdp_frame *xdpf; 555 unsigned int i; 556 int err; 557 558 xdpf = xdp_convert_buff_to_frame(xdp); 559 if (unlikely(!xdpf)) 560 return -EOVERFLOW; 561 562 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 563 for (i = 0; i < map->max_entries; i++) { 564 dst = READ_ONCE(dtab->netdev_map[i]); 565 if (!is_valid_dst(dst, xdp, exclude_ifindex)) 566 continue; 567 568 /* we only need n-1 clones; last_dst enqueued below */ 569 if (!last_dst) { 570 last_dst = dst; 571 continue; 572 } 573 574 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 575 if (err) 576 return err; 577 578 last_dst = dst; 579 } 580 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 581 for (i = 0; i < dtab->n_buckets; i++) { 582 head = dev_map_index_hash(dtab, i); 583 hlist_for_each_entry_rcu(dst, head, index_hlist, 584 lockdep_is_held(&dtab->index_lock)) { 585 if (!is_valid_dst(dst, xdp, exclude_ifindex)) 586 continue; 587 588 /* we only need n-1 clones; last_dst enqueued below */ 589 if (!last_dst) { 590 last_dst = dst; 591 continue; 592 } 593 594 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 595 if (err) 596 return err; 597 598 last_dst = dst; 599 } 600 } 601 } 602 603 /* consume the last copy of the frame */ 604 if (last_dst) 605 bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog); 606 else 607 xdp_return_frame_rx_napi(xdpf); /* dtab is empty */ 608 609 return 0; 610 } 611 612 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 613 struct bpf_prog *xdp_prog) 614 { 615 int err; 616 617 err = xdp_ok_fwd_dev(dst->dev, skb->len); 618 if (unlikely(err)) 619 return err; 620 skb->dev = dst->dev; 621 generic_xdp_tx(skb, xdp_prog); 622 623 return 0; 624 } 625 626 static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst, 627 struct sk_buff *skb, 628 struct bpf_prog *xdp_prog) 629 { 630 struct sk_buff *nskb; 631 int err; 632 633 nskb = skb_clone(skb, GFP_ATOMIC); 634 if (!nskb) 635 return -ENOMEM; 636 637 err = dev_map_generic_redirect(dst, nskb, xdp_prog); 638 if (unlikely(err)) { 639 consume_skb(nskb); 640 return err; 641 } 642 643 return 0; 644 } 645 646 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 647 struct bpf_prog *xdp_prog, struct bpf_map *map, 648 bool exclude_ingress) 649 { 650 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 651 int exclude_ifindex = exclude_ingress ? dev->ifindex : 0; 652 struct bpf_dtab_netdev *dst, *last_dst = NULL; 653 struct hlist_head *head; 654 struct hlist_node *next; 655 unsigned int i; 656 int err; 657 658 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 659 for (i = 0; i < map->max_entries; i++) { 660 dst = READ_ONCE(dtab->netdev_map[i]); 661 if (!dst || dst->dev->ifindex == exclude_ifindex) 662 continue; 663 664 /* we only need n-1 clones; last_dst enqueued below */ 665 if (!last_dst) { 666 last_dst = dst; 667 continue; 668 } 669 670 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 671 if (err) 672 return err; 673 674 last_dst = dst; 675 } 676 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 677 for (i = 0; i < dtab->n_buckets; i++) { 678 head = dev_map_index_hash(dtab, i); 679 hlist_for_each_entry_safe(dst, next, head, index_hlist) { 680 if (!dst || dst->dev->ifindex == exclude_ifindex) 681 continue; 682 683 /* we only need n-1 clones; last_dst enqueued below */ 684 if (!last_dst) { 685 last_dst = dst; 686 continue; 687 } 688 689 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 690 if (err) 691 return err; 692 693 last_dst = dst; 694 } 695 } 696 } 697 698 /* consume the first skb and return */ 699 if (last_dst) 700 return dev_map_generic_redirect(last_dst, skb, xdp_prog); 701 702 /* dtab is empty */ 703 consume_skb(skb); 704 return 0; 705 } 706 707 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 708 { 709 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 710 711 return obj ? &obj->val : NULL; 712 } 713 714 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 715 { 716 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 717 *(u32 *)key); 718 return obj ? &obj->val : NULL; 719 } 720 721 static void __dev_map_entry_free(struct rcu_head *rcu) 722 { 723 struct bpf_dtab_netdev *dev; 724 725 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 726 if (dev->xdp_prog) 727 bpf_prog_put(dev->xdp_prog); 728 dev_put(dev->dev); 729 kfree(dev); 730 } 731 732 static int dev_map_delete_elem(struct bpf_map *map, void *key) 733 { 734 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 735 struct bpf_dtab_netdev *old_dev; 736 int k = *(u32 *)key; 737 738 if (k >= map->max_entries) 739 return -EINVAL; 740 741 /* Use call_rcu() here to ensure any rcu critical sections have 742 * completed as well as any flush operations because call_rcu 743 * will wait for preempt-disable region to complete, NAPI in this 744 * context. And additionally, the driver tear down ensures all 745 * soft irqs are complete before removing the net device in the 746 * case of dev_put equals zero. 747 */ 748 old_dev = xchg(&dtab->netdev_map[k], NULL); 749 if (old_dev) 750 call_rcu(&old_dev->rcu, __dev_map_entry_free); 751 return 0; 752 } 753 754 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key) 755 { 756 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 757 struct bpf_dtab_netdev *old_dev; 758 int k = *(u32 *)key; 759 unsigned long flags; 760 int ret = -ENOENT; 761 762 spin_lock_irqsave(&dtab->index_lock, flags); 763 764 old_dev = __dev_map_hash_lookup_elem(map, k); 765 if (old_dev) { 766 dtab->items--; 767 hlist_del_init_rcu(&old_dev->index_hlist); 768 call_rcu(&old_dev->rcu, __dev_map_entry_free); 769 ret = 0; 770 } 771 spin_unlock_irqrestore(&dtab->index_lock, flags); 772 773 return ret; 774 } 775 776 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 777 struct bpf_dtab *dtab, 778 struct bpf_devmap_val *val, 779 unsigned int idx) 780 { 781 struct bpf_prog *prog = NULL; 782 struct bpf_dtab_netdev *dev; 783 784 dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev), 785 GFP_ATOMIC | __GFP_NOWARN, 786 dtab->map.numa_node); 787 if (!dev) 788 return ERR_PTR(-ENOMEM); 789 790 dev->dev = dev_get_by_index(net, val->ifindex); 791 if (!dev->dev) 792 goto err_out; 793 794 if (val->bpf_prog.fd > 0) { 795 prog = bpf_prog_get_type_dev(val->bpf_prog.fd, 796 BPF_PROG_TYPE_XDP, false); 797 if (IS_ERR(prog)) 798 goto err_put_dev; 799 if (prog->expected_attach_type != BPF_XDP_DEVMAP) 800 goto err_put_prog; 801 } 802 803 dev->idx = idx; 804 dev->dtab = dtab; 805 if (prog) { 806 dev->xdp_prog = prog; 807 dev->val.bpf_prog.id = prog->aux->id; 808 } else { 809 dev->xdp_prog = NULL; 810 dev->val.bpf_prog.id = 0; 811 } 812 dev->val.ifindex = val->ifindex; 813 814 return dev; 815 err_put_prog: 816 bpf_prog_put(prog); 817 err_put_dev: 818 dev_put(dev->dev); 819 err_out: 820 kfree(dev); 821 return ERR_PTR(-EINVAL); 822 } 823 824 static int __dev_map_update_elem(struct net *net, struct bpf_map *map, 825 void *key, void *value, u64 map_flags) 826 { 827 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 828 struct bpf_dtab_netdev *dev, *old_dev; 829 struct bpf_devmap_val val = {}; 830 u32 i = *(u32 *)key; 831 832 if (unlikely(map_flags > BPF_EXIST)) 833 return -EINVAL; 834 if (unlikely(i >= dtab->map.max_entries)) 835 return -E2BIG; 836 if (unlikely(map_flags == BPF_NOEXIST)) 837 return -EEXIST; 838 839 /* already verified value_size <= sizeof val */ 840 memcpy(&val, value, map->value_size); 841 842 if (!val.ifindex) { 843 dev = NULL; 844 /* can not specify fd if ifindex is 0 */ 845 if (val.bpf_prog.fd > 0) 846 return -EINVAL; 847 } else { 848 dev = __dev_map_alloc_node(net, dtab, &val, i); 849 if (IS_ERR(dev)) 850 return PTR_ERR(dev); 851 } 852 853 /* Use call_rcu() here to ensure rcu critical sections have completed 854 * Remembering the driver side flush operation will happen before the 855 * net device is removed. 856 */ 857 old_dev = xchg(&dtab->netdev_map[i], dev); 858 if (old_dev) 859 call_rcu(&old_dev->rcu, __dev_map_entry_free); 860 861 return 0; 862 } 863 864 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 865 u64 map_flags) 866 { 867 return __dev_map_update_elem(current->nsproxy->net_ns, 868 map, key, value, map_flags); 869 } 870 871 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 872 void *key, void *value, u64 map_flags) 873 { 874 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 875 struct bpf_dtab_netdev *dev, *old_dev; 876 struct bpf_devmap_val val = {}; 877 u32 idx = *(u32 *)key; 878 unsigned long flags; 879 int err = -EEXIST; 880 881 /* already verified value_size <= sizeof val */ 882 memcpy(&val, value, map->value_size); 883 884 if (unlikely(map_flags > BPF_EXIST || !val.ifindex)) 885 return -EINVAL; 886 887 spin_lock_irqsave(&dtab->index_lock, flags); 888 889 old_dev = __dev_map_hash_lookup_elem(map, idx); 890 if (old_dev && (map_flags & BPF_NOEXIST)) 891 goto out_err; 892 893 dev = __dev_map_alloc_node(net, dtab, &val, idx); 894 if (IS_ERR(dev)) { 895 err = PTR_ERR(dev); 896 goto out_err; 897 } 898 899 if (old_dev) { 900 hlist_del_rcu(&old_dev->index_hlist); 901 } else { 902 if (dtab->items >= dtab->map.max_entries) { 903 spin_unlock_irqrestore(&dtab->index_lock, flags); 904 call_rcu(&dev->rcu, __dev_map_entry_free); 905 return -E2BIG; 906 } 907 dtab->items++; 908 } 909 910 hlist_add_head_rcu(&dev->index_hlist, 911 dev_map_index_hash(dtab, idx)); 912 spin_unlock_irqrestore(&dtab->index_lock, flags); 913 914 if (old_dev) 915 call_rcu(&old_dev->rcu, __dev_map_entry_free); 916 917 return 0; 918 919 out_err: 920 spin_unlock_irqrestore(&dtab->index_lock, flags); 921 return err; 922 } 923 924 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 925 u64 map_flags) 926 { 927 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 928 map, key, value, map_flags); 929 } 930 931 static int dev_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags) 932 { 933 return __bpf_xdp_redirect_map(map, ifindex, flags, 934 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 935 __dev_map_lookup_elem); 936 } 937 938 static int dev_hash_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags) 939 { 940 return __bpf_xdp_redirect_map(map, ifindex, flags, 941 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 942 __dev_map_hash_lookup_elem); 943 } 944 945 static int dev_map_btf_id; 946 const struct bpf_map_ops dev_map_ops = { 947 .map_meta_equal = bpf_map_meta_equal, 948 .map_alloc = dev_map_alloc, 949 .map_free = dev_map_free, 950 .map_get_next_key = dev_map_get_next_key, 951 .map_lookup_elem = dev_map_lookup_elem, 952 .map_update_elem = dev_map_update_elem, 953 .map_delete_elem = dev_map_delete_elem, 954 .map_check_btf = map_check_no_btf, 955 .map_btf_name = "bpf_dtab", 956 .map_btf_id = &dev_map_btf_id, 957 .map_redirect = dev_map_redirect, 958 }; 959 960 static int dev_map_hash_map_btf_id; 961 const struct bpf_map_ops dev_map_hash_ops = { 962 .map_meta_equal = bpf_map_meta_equal, 963 .map_alloc = dev_map_alloc, 964 .map_free = dev_map_free, 965 .map_get_next_key = dev_map_hash_get_next_key, 966 .map_lookup_elem = dev_map_hash_lookup_elem, 967 .map_update_elem = dev_map_hash_update_elem, 968 .map_delete_elem = dev_map_hash_delete_elem, 969 .map_check_btf = map_check_no_btf, 970 .map_btf_name = "bpf_dtab", 971 .map_btf_id = &dev_map_hash_map_btf_id, 972 .map_redirect = dev_hash_map_redirect, 973 }; 974 975 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 976 struct net_device *netdev) 977 { 978 unsigned long flags; 979 u32 i; 980 981 spin_lock_irqsave(&dtab->index_lock, flags); 982 for (i = 0; i < dtab->n_buckets; i++) { 983 struct bpf_dtab_netdev *dev; 984 struct hlist_head *head; 985 struct hlist_node *next; 986 987 head = dev_map_index_hash(dtab, i); 988 989 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 990 if (netdev != dev->dev) 991 continue; 992 993 dtab->items--; 994 hlist_del_rcu(&dev->index_hlist); 995 call_rcu(&dev->rcu, __dev_map_entry_free); 996 } 997 } 998 spin_unlock_irqrestore(&dtab->index_lock, flags); 999 } 1000 1001 static int dev_map_notification(struct notifier_block *notifier, 1002 ulong event, void *ptr) 1003 { 1004 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 1005 struct bpf_dtab *dtab; 1006 int i, cpu; 1007 1008 switch (event) { 1009 case NETDEV_REGISTER: 1010 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) 1011 break; 1012 1013 /* will be freed in free_netdev() */ 1014 netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue); 1015 if (!netdev->xdp_bulkq) 1016 return NOTIFY_BAD; 1017 1018 for_each_possible_cpu(cpu) 1019 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; 1020 break; 1021 case NETDEV_UNREGISTER: 1022 /* This rcu_read_lock/unlock pair is needed because 1023 * dev_map_list is an RCU list AND to ensure a delete 1024 * operation does not free a netdev_map entry while we 1025 * are comparing it against the netdev being unregistered. 1026 */ 1027 rcu_read_lock(); 1028 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 1029 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 1030 dev_map_hash_remove_netdev(dtab, netdev); 1031 continue; 1032 } 1033 1034 for (i = 0; i < dtab->map.max_entries; i++) { 1035 struct bpf_dtab_netdev *dev, *odev; 1036 1037 dev = READ_ONCE(dtab->netdev_map[i]); 1038 if (!dev || netdev != dev->dev) 1039 continue; 1040 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); 1041 if (dev == odev) 1042 call_rcu(&dev->rcu, 1043 __dev_map_entry_free); 1044 } 1045 } 1046 rcu_read_unlock(); 1047 break; 1048 default: 1049 break; 1050 } 1051 return NOTIFY_OK; 1052 } 1053 1054 static struct notifier_block dev_map_notifier = { 1055 .notifier_call = dev_map_notification, 1056 }; 1057 1058 static int __init dev_map_init(void) 1059 { 1060 int cpu; 1061 1062 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 1063 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 1064 offsetof(struct _bpf_dtab_netdev, dev)); 1065 register_netdevice_notifier(&dev_map_notifier); 1066 1067 for_each_possible_cpu(cpu) 1068 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu)); 1069 return 0; 1070 } 1071 1072 subsys_initcall(dev_map_init); 1073