xref: /linux-6.15/kernel/bpf/devmap.c (revision bbb03029)
1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10  * General Public License for more details.
11  */
12 
13 /* Devmaps primary use is as a backend map for XDP BPF helper call
14  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
15  * spent some effort to ensure the datapath with redirect maps does not use
16  * any locking. This is a quick note on the details.
17  *
18  * We have three possible paths to get into the devmap control plane bpf
19  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
20  * will invoke an update, delete, or lookup operation. To ensure updates and
21  * deletes appear atomic from the datapath side xchg() is used to modify the
22  * netdev_map array. Then because the datapath does a lookup into the netdev_map
23  * array (read-only) from an RCU critical section we use call_rcu() to wait for
24  * an rcu grace period before free'ing the old data structures. This ensures the
25  * datapath always has a valid copy. However, the datapath does a "flush"
26  * operation that pushes any pending packets in the driver outside the RCU
27  * critical section. Each bpf_dtab_netdev tracks these pending operations using
28  * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
29  * until all bits are cleared indicating outstanding flush operations have
30  * completed.
31  *
32  * BPF syscalls may race with BPF program calls on any of the update, delete
33  * or lookup operations. As noted above the xchg() operation also keep the
34  * netdev_map consistent in this case. From the devmap side BPF programs
35  * calling into these operations are the same as multiple user space threads
36  * making system calls.
37  *
38  * Finally, any of the above may race with a netdev_unregister notifier. The
39  * unregister notifier must search for net devices in the map structure that
40  * contain a reference to the net device and remove them. This is a two step
41  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
42  * check to see if the ifindex is the same as the net_device being removed.
43  * Unfortunately, the xchg() operations do not protect against this. To avoid
44  * potentially removing incorrect objects the dev_map_list_mutex protects
45  * conflicting netdev unregister and BPF syscall operations. Updates and
46  * deletes from a BPF program (done in rcu critical section) are blocked
47  * because of this mutex.
48  */
49 #include <linux/bpf.h>
50 #include <linux/jhash.h>
51 #include <linux/filter.h>
52 #include <linux/rculist_nulls.h>
53 #include "percpu_freelist.h"
54 #include "bpf_lru_list.h"
55 #include "map_in_map.h"
56 
57 struct bpf_dtab_netdev {
58 	struct net_device *dev;
59 	int key;
60 	struct rcu_head rcu;
61 	struct bpf_dtab *dtab;
62 };
63 
64 struct bpf_dtab {
65 	struct bpf_map map;
66 	struct bpf_dtab_netdev **netdev_map;
67 	unsigned long int __percpu *flush_needed;
68 	struct list_head list;
69 };
70 
71 static DEFINE_MUTEX(dev_map_list_mutex);
72 static LIST_HEAD(dev_map_list);
73 
74 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
75 {
76 	struct bpf_dtab *dtab;
77 	u64 cost;
78 	int err;
79 
80 	/* check sanity of attributes */
81 	if (attr->max_entries == 0 || attr->key_size != 4 ||
82 	    attr->value_size != 4 || attr->map_flags)
83 		return ERR_PTR(-EINVAL);
84 
85 	/* if value_size is bigger, the user space won't be able to
86 	 * access the elements.
87 	 */
88 	if (attr->value_size > KMALLOC_MAX_SIZE)
89 		return ERR_PTR(-E2BIG);
90 
91 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
92 	if (!dtab)
93 		return ERR_PTR(-ENOMEM);
94 
95 	/* mandatory map attributes */
96 	dtab->map.map_type = attr->map_type;
97 	dtab->map.key_size = attr->key_size;
98 	dtab->map.value_size = attr->value_size;
99 	dtab->map.max_entries = attr->max_entries;
100 	dtab->map.map_flags = attr->map_flags;
101 
102 	err = -ENOMEM;
103 
104 	/* make sure page count doesn't overflow */
105 	cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
106 	cost += BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
107 	if (cost >= U32_MAX - PAGE_SIZE)
108 		goto free_dtab;
109 
110 	dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
111 
112 	/* if map size is larger than memlock limit, reject it early */
113 	err = bpf_map_precharge_memlock(dtab->map.pages);
114 	if (err)
115 		goto free_dtab;
116 
117 	err = -ENOMEM;
118 	/* A per cpu bitfield with a bit per possible net device */
119 	dtab->flush_needed = __alloc_percpu(
120 				BITS_TO_LONGS(attr->max_entries) *
121 				sizeof(unsigned long),
122 				__alignof__(unsigned long));
123 	if (!dtab->flush_needed)
124 		goto free_dtab;
125 
126 	dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
127 					      sizeof(struct bpf_dtab_netdev *));
128 	if (!dtab->netdev_map)
129 		goto free_dtab;
130 
131 	mutex_lock(&dev_map_list_mutex);
132 	list_add_tail(&dtab->list, &dev_map_list);
133 	mutex_unlock(&dev_map_list_mutex);
134 	return &dtab->map;
135 
136 free_dtab:
137 	free_percpu(dtab->flush_needed);
138 	kfree(dtab);
139 	return ERR_PTR(err);
140 }
141 
142 static void dev_map_free(struct bpf_map *map)
143 {
144 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
145 	int i, cpu;
146 
147 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
148 	 * so the programs (can be more than one that used this map) were
149 	 * disconnected from events. Wait for outstanding critical sections in
150 	 * these programs to complete. The rcu critical section only guarantees
151 	 * no further reads against netdev_map. It does __not__ ensure pending
152 	 * flush operations (if any) are complete.
153 	 */
154 	synchronize_rcu();
155 
156 	/* To ensure all pending flush operations have completed wait for flush
157 	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
158 	 * Because the above synchronize_rcu() ensures the map is disconnected
159 	 * from the program we can assume no new bits will be set.
160 	 */
161 	for_each_online_cpu(cpu) {
162 		unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
163 
164 		while (!bitmap_empty(bitmap, dtab->map.max_entries))
165 			cpu_relax();
166 	}
167 
168 	/* Although we should no longer have datapath or bpf syscall operations
169 	 * at this point we we can still race with netdev notifier, hence the
170 	 * lock.
171 	 */
172 	mutex_lock(&dev_map_list_mutex);
173 	for (i = 0; i < dtab->map.max_entries; i++) {
174 		struct bpf_dtab_netdev *dev;
175 
176 		dev = dtab->netdev_map[i];
177 		if (!dev)
178 			continue;
179 
180 		dev_put(dev->dev);
181 		kfree(dev);
182 	}
183 
184 	/* At this point bpf program is detached and all pending operations
185 	 * _must_ be complete
186 	 */
187 	list_del(&dtab->list);
188 	mutex_unlock(&dev_map_list_mutex);
189 	free_percpu(dtab->flush_needed);
190 	bpf_map_area_free(dtab->netdev_map);
191 	kfree(dtab);
192 }
193 
194 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
195 {
196 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
197 	u32 index = key ? *(u32 *)key : U32_MAX;
198 	u32 *next = (u32 *)next_key;
199 
200 	if (index >= dtab->map.max_entries) {
201 		*next = 0;
202 		return 0;
203 	}
204 
205 	if (index == dtab->map.max_entries - 1)
206 		return -ENOENT;
207 
208 	*next = index + 1;
209 	return 0;
210 }
211 
212 void __dev_map_insert_ctx(struct bpf_map *map, u32 key)
213 {
214 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
215 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
216 
217 	__set_bit(key, bitmap);
218 }
219 
220 struct net_device  *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
221 {
222 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
223 	struct bpf_dtab_netdev *dev;
224 
225 	if (key >= map->max_entries)
226 		return NULL;
227 
228 	dev = READ_ONCE(dtab->netdev_map[key]);
229 	return dev ? dev->dev : NULL;
230 }
231 
232 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
233  * from the driver before returning from its napi->poll() routine. The poll()
234  * routine is called either from busy_poll context or net_rx_action signaled
235  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
236  * net device can be torn down. On devmap tear down we ensure the ctx bitmap
237  * is zeroed before completing to ensure all flush operations have completed.
238  */
239 void __dev_map_flush(struct bpf_map *map)
240 {
241 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
242 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
243 	u32 bit;
244 
245 	for_each_set_bit(bit, bitmap, map->max_entries) {
246 		struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
247 		struct net_device *netdev;
248 
249 		/* This is possible if the dev entry is removed by user space
250 		 * between xdp redirect and flush op.
251 		 */
252 		if (unlikely(!dev))
253 			continue;
254 
255 		netdev = dev->dev;
256 
257 		__clear_bit(bit, bitmap);
258 		if (unlikely(!netdev || !netdev->netdev_ops->ndo_xdp_flush))
259 			continue;
260 
261 		netdev->netdev_ops->ndo_xdp_flush(netdev);
262 	}
263 }
264 
265 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
266  * update happens in parallel here a dev_put wont happen until after reading the
267  * ifindex.
268  */
269 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
270 {
271 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
272 	struct bpf_dtab_netdev *dev;
273 	u32 i = *(u32 *)key;
274 
275 	if (i >= map->max_entries)
276 		return NULL;
277 
278 	dev = READ_ONCE(dtab->netdev_map[i]);
279 	return dev ? &dev->dev->ifindex : NULL;
280 }
281 
282 static void dev_map_flush_old(struct bpf_dtab_netdev *old_dev)
283 {
284 	if (old_dev->dev->netdev_ops->ndo_xdp_flush) {
285 		struct net_device *fl = old_dev->dev;
286 		unsigned long *bitmap;
287 		int cpu;
288 
289 		for_each_online_cpu(cpu) {
290 			bitmap = per_cpu_ptr(old_dev->dtab->flush_needed, cpu);
291 			__clear_bit(old_dev->key, bitmap);
292 
293 			fl->netdev_ops->ndo_xdp_flush(old_dev->dev);
294 		}
295 	}
296 }
297 
298 static void __dev_map_entry_free(struct rcu_head *rcu)
299 {
300 	struct bpf_dtab_netdev *old_dev;
301 
302 	old_dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
303 	dev_map_flush_old(old_dev);
304 	dev_put(old_dev->dev);
305 	kfree(old_dev);
306 }
307 
308 static int dev_map_delete_elem(struct bpf_map *map, void *key)
309 {
310 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
311 	struct bpf_dtab_netdev *old_dev;
312 	int k = *(u32 *)key;
313 
314 	if (k >= map->max_entries)
315 		return -EINVAL;
316 
317 	/* Use synchronize_rcu() here to ensure any rcu critical sections
318 	 * have completed, but this does not guarantee a flush has happened
319 	 * yet. Because driver side rcu_read_lock/unlock only protects the
320 	 * running XDP program. However, for pending flush operations the
321 	 * dev and ctx are stored in another per cpu map. And additionally,
322 	 * the driver tear down ensures all soft irqs are complete before
323 	 * removing the net device in the case of dev_put equals zero.
324 	 */
325 	mutex_lock(&dev_map_list_mutex);
326 	old_dev = xchg(&dtab->netdev_map[k], NULL);
327 	if (old_dev)
328 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
329 	mutex_unlock(&dev_map_list_mutex);
330 	return 0;
331 }
332 
333 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
334 				u64 map_flags)
335 {
336 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
337 	struct net *net = current->nsproxy->net_ns;
338 	struct bpf_dtab_netdev *dev, *old_dev;
339 	u32 i = *(u32 *)key;
340 	u32 ifindex = *(u32 *)value;
341 
342 	if (unlikely(map_flags > BPF_EXIST))
343 		return -EINVAL;
344 
345 	if (unlikely(i >= dtab->map.max_entries))
346 		return -E2BIG;
347 
348 	if (unlikely(map_flags == BPF_NOEXIST))
349 		return -EEXIST;
350 
351 	if (!ifindex) {
352 		dev = NULL;
353 	} else {
354 		dev = kmalloc(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN);
355 		if (!dev)
356 			return -ENOMEM;
357 
358 		dev->dev = dev_get_by_index(net, ifindex);
359 		if (!dev->dev) {
360 			kfree(dev);
361 			return -EINVAL;
362 		}
363 
364 		dev->key = i;
365 		dev->dtab = dtab;
366 	}
367 
368 	/* Use call_rcu() here to ensure rcu critical sections have completed
369 	 * Remembering the driver side flush operation will happen before the
370 	 * net device is removed.
371 	 */
372 	mutex_lock(&dev_map_list_mutex);
373 	old_dev = xchg(&dtab->netdev_map[i], dev);
374 	if (old_dev)
375 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
376 	mutex_unlock(&dev_map_list_mutex);
377 
378 	return 0;
379 }
380 
381 const struct bpf_map_ops dev_map_ops = {
382 	.map_alloc = dev_map_alloc,
383 	.map_free = dev_map_free,
384 	.map_get_next_key = dev_map_get_next_key,
385 	.map_lookup_elem = dev_map_lookup_elem,
386 	.map_update_elem = dev_map_update_elem,
387 	.map_delete_elem = dev_map_delete_elem,
388 };
389 
390 static int dev_map_notification(struct notifier_block *notifier,
391 				ulong event, void *ptr)
392 {
393 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
394 	struct bpf_dtab *dtab;
395 	int i;
396 
397 	switch (event) {
398 	case NETDEV_UNREGISTER:
399 		mutex_lock(&dev_map_list_mutex);
400 		list_for_each_entry(dtab, &dev_map_list, list) {
401 			for (i = 0; i < dtab->map.max_entries; i++) {
402 				struct bpf_dtab_netdev *dev;
403 
404 				dev = dtab->netdev_map[i];
405 				if (!dev ||
406 				    dev->dev->ifindex != netdev->ifindex)
407 					continue;
408 				dev = xchg(&dtab->netdev_map[i], NULL);
409 				if (dev)
410 					call_rcu(&dev->rcu,
411 						 __dev_map_entry_free);
412 			}
413 		}
414 		mutex_unlock(&dev_map_list_mutex);
415 		break;
416 	default:
417 		break;
418 	}
419 	return NOTIFY_OK;
420 }
421 
422 static struct notifier_block dev_map_notifier = {
423 	.notifier_call = dev_map_notification,
424 };
425 
426 static int __init dev_map_init(void)
427 {
428 	register_netdevice_notifier(&dev_map_notifier);
429 	return 0;
430 }
431 
432 subsys_initcall(dev_map_init);
433