xref: /linux-6.15/kernel/bpf/devmap.c (revision 521fe8bb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
21  * this list is empty, indicating outstanding flush operations have completed.
22  *
23  * BPF syscalls may race with BPF program calls on any of the update, delete
24  * or lookup operations. As noted above the xchg() operation also keep the
25  * netdev_map consistent in this case. From the devmap side BPF programs
26  * calling into these operations are the same as multiple user space threads
27  * making system calls.
28  *
29  * Finally, any of the above may race with a netdev_unregister notifier. The
30  * unregister notifier must search for net devices in the map structure that
31  * contain a reference to the net device and remove them. This is a two step
32  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33  * check to see if the ifindex is the same as the net_device being removed.
34  * When removing the dev a cmpxchg() is used to ensure the correct dev is
35  * removed, in the case of a concurrent update or delete operation it is
36  * possible that the initially referenced dev is no longer in the map. As the
37  * notifier hook walks the map we know that new dev references can not be
38  * added by the user because core infrastructure ensures dev_get_by_index()
39  * calls will fail at this point.
40  *
41  * The devmap_hash type is a map type which interprets keys as ifindexes and
42  * indexes these using a hashmap. This allows maps that use ifindex as key to be
43  * densely packed instead of having holes in the lookup array for unused
44  * ifindexes. The setup and packet enqueue/send code is shared between the two
45  * types of devmap; only the lookup and insertion is different.
46  */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51 
52 #define DEV_CREATE_FLAG_MASK \
53 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
54 
55 #define DEV_MAP_BULK_SIZE 16
56 struct xdp_dev_bulk_queue {
57 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
58 	struct list_head flush_node;
59 	struct net_device *dev;
60 	struct net_device *dev_rx;
61 	unsigned int count;
62 };
63 
64 struct bpf_dtab_netdev {
65 	struct net_device *dev; /* must be first member, due to tracepoint */
66 	struct hlist_node index_hlist;
67 	struct bpf_dtab *dtab;
68 	struct rcu_head rcu;
69 	unsigned int idx;
70 };
71 
72 struct bpf_dtab {
73 	struct bpf_map map;
74 	struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
75 	struct list_head list;
76 
77 	/* these are only used for DEVMAP_HASH type maps */
78 	struct hlist_head *dev_index_head;
79 	spinlock_t index_lock;
80 	unsigned int items;
81 	u32 n_buckets;
82 };
83 
84 static DEFINE_PER_CPU(struct list_head, dev_flush_list);
85 static DEFINE_SPINLOCK(dev_map_lock);
86 static LIST_HEAD(dev_map_list);
87 
88 static struct hlist_head *dev_map_create_hash(unsigned int entries)
89 {
90 	int i;
91 	struct hlist_head *hash;
92 
93 	hash = kmalloc_array(entries, sizeof(*hash), GFP_KERNEL);
94 	if (hash != NULL)
95 		for (i = 0; i < entries; i++)
96 			INIT_HLIST_HEAD(&hash[i]);
97 
98 	return hash;
99 }
100 
101 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
102 						    int idx)
103 {
104 	return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
105 }
106 
107 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
108 {
109 	u64 cost = 0;
110 	int err;
111 
112 	/* check sanity of attributes */
113 	if (attr->max_entries == 0 || attr->key_size != 4 ||
114 	    attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
115 		return -EINVAL;
116 
117 	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
118 	 * verifier prevents writes from the BPF side
119 	 */
120 	attr->map_flags |= BPF_F_RDONLY_PROG;
121 
122 
123 	bpf_map_init_from_attr(&dtab->map, attr);
124 
125 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
126 		dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
127 
128 		if (!dtab->n_buckets) /* Overflow check */
129 			return -EINVAL;
130 		cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets;
131 	} else {
132 		cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
133 	}
134 
135 	/* if map size is larger than memlock limit, reject it */
136 	err = bpf_map_charge_init(&dtab->map.memory, cost);
137 	if (err)
138 		return -EINVAL;
139 
140 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
141 		dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets);
142 		if (!dtab->dev_index_head)
143 			goto free_charge;
144 
145 		spin_lock_init(&dtab->index_lock);
146 	} else {
147 		dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
148 						      sizeof(struct bpf_dtab_netdev *),
149 						      dtab->map.numa_node);
150 		if (!dtab->netdev_map)
151 			goto free_charge;
152 	}
153 
154 	return 0;
155 
156 free_charge:
157 	bpf_map_charge_finish(&dtab->map.memory);
158 	return -ENOMEM;
159 }
160 
161 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
162 {
163 	struct bpf_dtab *dtab;
164 	int err;
165 
166 	if (!capable(CAP_NET_ADMIN))
167 		return ERR_PTR(-EPERM);
168 
169 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
170 	if (!dtab)
171 		return ERR_PTR(-ENOMEM);
172 
173 	err = dev_map_init_map(dtab, attr);
174 	if (err) {
175 		kfree(dtab);
176 		return ERR_PTR(err);
177 	}
178 
179 	spin_lock(&dev_map_lock);
180 	list_add_tail_rcu(&dtab->list, &dev_map_list);
181 	spin_unlock(&dev_map_lock);
182 
183 	return &dtab->map;
184 }
185 
186 static void dev_map_free(struct bpf_map *map)
187 {
188 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
189 	int i;
190 
191 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
192 	 * so the programs (can be more than one that used this map) were
193 	 * disconnected from events. Wait for outstanding critical sections in
194 	 * these programs to complete. The rcu critical section only guarantees
195 	 * no further reads against netdev_map. It does __not__ ensure pending
196 	 * flush operations (if any) are complete.
197 	 */
198 
199 	spin_lock(&dev_map_lock);
200 	list_del_rcu(&dtab->list);
201 	spin_unlock(&dev_map_lock);
202 
203 	bpf_clear_redirect_map(map);
204 	synchronize_rcu();
205 
206 	/* Make sure prior __dev_map_entry_free() have completed. */
207 	rcu_barrier();
208 
209 	if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
210 		for (i = 0; i < dtab->n_buckets; i++) {
211 			struct bpf_dtab_netdev *dev;
212 			struct hlist_head *head;
213 			struct hlist_node *next;
214 
215 			head = dev_map_index_hash(dtab, i);
216 
217 			hlist_for_each_entry_safe(dev, next, head, index_hlist) {
218 				hlist_del_rcu(&dev->index_hlist);
219 				dev_put(dev->dev);
220 				kfree(dev);
221 			}
222 		}
223 
224 		kfree(dtab->dev_index_head);
225 	} else {
226 		for (i = 0; i < dtab->map.max_entries; i++) {
227 			struct bpf_dtab_netdev *dev;
228 
229 			dev = dtab->netdev_map[i];
230 			if (!dev)
231 				continue;
232 
233 			dev_put(dev->dev);
234 			kfree(dev);
235 		}
236 
237 		bpf_map_area_free(dtab->netdev_map);
238 	}
239 
240 	kfree(dtab);
241 }
242 
243 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
244 {
245 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
246 	u32 index = key ? *(u32 *)key : U32_MAX;
247 	u32 *next = next_key;
248 
249 	if (index >= dtab->map.max_entries) {
250 		*next = 0;
251 		return 0;
252 	}
253 
254 	if (index == dtab->map.max_entries - 1)
255 		return -ENOENT;
256 	*next = index + 1;
257 	return 0;
258 }
259 
260 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
261 {
262 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
263 	struct hlist_head *head = dev_map_index_hash(dtab, key);
264 	struct bpf_dtab_netdev *dev;
265 
266 	hlist_for_each_entry_rcu(dev, head, index_hlist)
267 		if (dev->idx == key)
268 			return dev;
269 
270 	return NULL;
271 }
272 
273 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
274 				    void *next_key)
275 {
276 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
277 	u32 idx, *next = next_key;
278 	struct bpf_dtab_netdev *dev, *next_dev;
279 	struct hlist_head *head;
280 	int i = 0;
281 
282 	if (!key)
283 		goto find_first;
284 
285 	idx = *(u32 *)key;
286 
287 	dev = __dev_map_hash_lookup_elem(map, idx);
288 	if (!dev)
289 		goto find_first;
290 
291 	next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
292 				    struct bpf_dtab_netdev, index_hlist);
293 
294 	if (next_dev) {
295 		*next = next_dev->idx;
296 		return 0;
297 	}
298 
299 	i = idx & (dtab->n_buckets - 1);
300 	i++;
301 
302  find_first:
303 	for (; i < dtab->n_buckets; i++) {
304 		head = dev_map_index_hash(dtab, i);
305 
306 		next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
307 					    struct bpf_dtab_netdev,
308 					    index_hlist);
309 		if (next_dev) {
310 			*next = next_dev->idx;
311 			return 0;
312 		}
313 	}
314 
315 	return -ENOENT;
316 }
317 
318 static int bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
319 {
320 	struct net_device *dev = bq->dev;
321 	int sent = 0, drops = 0, err = 0;
322 	int i;
323 
324 	if (unlikely(!bq->count))
325 		return 0;
326 
327 	for (i = 0; i < bq->count; i++) {
328 		struct xdp_frame *xdpf = bq->q[i];
329 
330 		prefetch(xdpf);
331 	}
332 
333 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
334 	if (sent < 0) {
335 		err = sent;
336 		sent = 0;
337 		goto error;
338 	}
339 	drops = bq->count - sent;
340 out:
341 	bq->count = 0;
342 
343 	trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err);
344 	bq->dev_rx = NULL;
345 	__list_del_clearprev(&bq->flush_node);
346 	return 0;
347 error:
348 	/* If ndo_xdp_xmit fails with an errno, no frames have been
349 	 * xmit'ed and it's our responsibility to them free all.
350 	 */
351 	for (i = 0; i < bq->count; i++) {
352 		struct xdp_frame *xdpf = bq->q[i];
353 
354 		xdp_return_frame_rx_napi(xdpf);
355 		drops++;
356 	}
357 	goto out;
358 }
359 
360 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled
361  * from the driver before returning from its napi->poll() routine. The poll()
362  * routine is called either from busy_poll context or net_rx_action signaled
363  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
364  * net device can be torn down. On devmap tear down we ensure the flush list
365  * is empty before completing to ensure all flush operations have completed.
366  */
367 void __dev_flush(void)
368 {
369 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
370 	struct xdp_dev_bulk_queue *bq, *tmp;
371 
372 	rcu_read_lock();
373 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
374 		bq_xmit_all(bq, XDP_XMIT_FLUSH);
375 	rcu_read_unlock();
376 }
377 
378 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
379  * update happens in parallel here a dev_put wont happen until after reading the
380  * ifindex.
381  */
382 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
383 {
384 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
385 	struct bpf_dtab_netdev *obj;
386 
387 	if (key >= map->max_entries)
388 		return NULL;
389 
390 	obj = READ_ONCE(dtab->netdev_map[key]);
391 	return obj;
392 }
393 
394 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
395  * Thus, safe percpu variable access.
396  */
397 static int bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
398 		      struct net_device *dev_rx)
399 {
400 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
401 	struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
402 
403 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
404 		bq_xmit_all(bq, 0);
405 
406 	/* Ingress dev_rx will be the same for all xdp_frame's in
407 	 * bulk_queue, because bq stored per-CPU and must be flushed
408 	 * from net_device drivers NAPI func end.
409 	 */
410 	if (!bq->dev_rx)
411 		bq->dev_rx = dev_rx;
412 
413 	bq->q[bq->count++] = xdpf;
414 
415 	if (!bq->flush_node.prev)
416 		list_add(&bq->flush_node, flush_list);
417 
418 	return 0;
419 }
420 
421 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
422 			       struct net_device *dev_rx)
423 {
424 	struct xdp_frame *xdpf;
425 	int err;
426 
427 	if (!dev->netdev_ops->ndo_xdp_xmit)
428 		return -EOPNOTSUPP;
429 
430 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
431 	if (unlikely(err))
432 		return err;
433 
434 	xdpf = convert_to_xdp_frame(xdp);
435 	if (unlikely(!xdpf))
436 		return -EOVERFLOW;
437 
438 	return bq_enqueue(dev, xdpf, dev_rx);
439 }
440 
441 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
442 		    struct net_device *dev_rx)
443 {
444 	return __xdp_enqueue(dev, xdp, dev_rx);
445 }
446 
447 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
448 		    struct net_device *dev_rx)
449 {
450 	struct net_device *dev = dst->dev;
451 
452 	return __xdp_enqueue(dev, xdp, dev_rx);
453 }
454 
455 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
456 			     struct bpf_prog *xdp_prog)
457 {
458 	int err;
459 
460 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
461 	if (unlikely(err))
462 		return err;
463 	skb->dev = dst->dev;
464 	generic_xdp_tx(skb, xdp_prog);
465 
466 	return 0;
467 }
468 
469 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
470 {
471 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
472 	struct net_device *dev = obj ? obj->dev : NULL;
473 
474 	return dev ? &dev->ifindex : NULL;
475 }
476 
477 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
478 {
479 	struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
480 								*(u32 *)key);
481 	struct net_device *dev = obj ? obj->dev : NULL;
482 
483 	return dev ? &dev->ifindex : NULL;
484 }
485 
486 static void __dev_map_entry_free(struct rcu_head *rcu)
487 {
488 	struct bpf_dtab_netdev *dev;
489 
490 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
491 	dev_put(dev->dev);
492 	kfree(dev);
493 }
494 
495 static int dev_map_delete_elem(struct bpf_map *map, void *key)
496 {
497 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
498 	struct bpf_dtab_netdev *old_dev;
499 	int k = *(u32 *)key;
500 
501 	if (k >= map->max_entries)
502 		return -EINVAL;
503 
504 	/* Use call_rcu() here to ensure any rcu critical sections have
505 	 * completed, but this does not guarantee a flush has happened
506 	 * yet. Because driver side rcu_read_lock/unlock only protects the
507 	 * running XDP program. However, for pending flush operations the
508 	 * dev and ctx are stored in another per cpu map. And additionally,
509 	 * the driver tear down ensures all soft irqs are complete before
510 	 * removing the net device in the case of dev_put equals zero.
511 	 */
512 	old_dev = xchg(&dtab->netdev_map[k], NULL);
513 	if (old_dev)
514 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
515 	return 0;
516 }
517 
518 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
519 {
520 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
521 	struct bpf_dtab_netdev *old_dev;
522 	int k = *(u32 *)key;
523 	unsigned long flags;
524 	int ret = -ENOENT;
525 
526 	spin_lock_irqsave(&dtab->index_lock, flags);
527 
528 	old_dev = __dev_map_hash_lookup_elem(map, k);
529 	if (old_dev) {
530 		dtab->items--;
531 		hlist_del_init_rcu(&old_dev->index_hlist);
532 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
533 		ret = 0;
534 	}
535 	spin_unlock_irqrestore(&dtab->index_lock, flags);
536 
537 	return ret;
538 }
539 
540 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
541 						    struct bpf_dtab *dtab,
542 						    u32 ifindex,
543 						    unsigned int idx)
544 {
545 	struct bpf_dtab_netdev *dev;
546 
547 	dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
548 			   dtab->map.numa_node);
549 	if (!dev)
550 		return ERR_PTR(-ENOMEM);
551 
552 	dev->dev = dev_get_by_index(net, ifindex);
553 	if (!dev->dev) {
554 		kfree(dev);
555 		return ERR_PTR(-EINVAL);
556 	}
557 
558 	dev->idx = idx;
559 	dev->dtab = dtab;
560 
561 	return dev;
562 }
563 
564 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
565 				 void *key, void *value, u64 map_flags)
566 {
567 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
568 	struct bpf_dtab_netdev *dev, *old_dev;
569 	u32 ifindex = *(u32 *)value;
570 	u32 i = *(u32 *)key;
571 
572 	if (unlikely(map_flags > BPF_EXIST))
573 		return -EINVAL;
574 	if (unlikely(i >= dtab->map.max_entries))
575 		return -E2BIG;
576 	if (unlikely(map_flags == BPF_NOEXIST))
577 		return -EEXIST;
578 
579 	if (!ifindex) {
580 		dev = NULL;
581 	} else {
582 		dev = __dev_map_alloc_node(net, dtab, ifindex, i);
583 		if (IS_ERR(dev))
584 			return PTR_ERR(dev);
585 	}
586 
587 	/* Use call_rcu() here to ensure rcu critical sections have completed
588 	 * Remembering the driver side flush operation will happen before the
589 	 * net device is removed.
590 	 */
591 	old_dev = xchg(&dtab->netdev_map[i], dev);
592 	if (old_dev)
593 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
594 
595 	return 0;
596 }
597 
598 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
599 			       u64 map_flags)
600 {
601 	return __dev_map_update_elem(current->nsproxy->net_ns,
602 				     map, key, value, map_flags);
603 }
604 
605 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
606 				     void *key, void *value, u64 map_flags)
607 {
608 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
609 	struct bpf_dtab_netdev *dev, *old_dev;
610 	u32 ifindex = *(u32 *)value;
611 	u32 idx = *(u32 *)key;
612 	unsigned long flags;
613 	int err = -EEXIST;
614 
615 	if (unlikely(map_flags > BPF_EXIST || !ifindex))
616 		return -EINVAL;
617 
618 	spin_lock_irqsave(&dtab->index_lock, flags);
619 
620 	old_dev = __dev_map_hash_lookup_elem(map, idx);
621 	if (old_dev && (map_flags & BPF_NOEXIST))
622 		goto out_err;
623 
624 	dev = __dev_map_alloc_node(net, dtab, ifindex, idx);
625 	if (IS_ERR(dev)) {
626 		err = PTR_ERR(dev);
627 		goto out_err;
628 	}
629 
630 	if (old_dev) {
631 		hlist_del_rcu(&old_dev->index_hlist);
632 	} else {
633 		if (dtab->items >= dtab->map.max_entries) {
634 			spin_unlock_irqrestore(&dtab->index_lock, flags);
635 			call_rcu(&dev->rcu, __dev_map_entry_free);
636 			return -E2BIG;
637 		}
638 		dtab->items++;
639 	}
640 
641 	hlist_add_head_rcu(&dev->index_hlist,
642 			   dev_map_index_hash(dtab, idx));
643 	spin_unlock_irqrestore(&dtab->index_lock, flags);
644 
645 	if (old_dev)
646 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
647 
648 	return 0;
649 
650 out_err:
651 	spin_unlock_irqrestore(&dtab->index_lock, flags);
652 	return err;
653 }
654 
655 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
656 				   u64 map_flags)
657 {
658 	return __dev_map_hash_update_elem(current->nsproxy->net_ns,
659 					 map, key, value, map_flags);
660 }
661 
662 const struct bpf_map_ops dev_map_ops = {
663 	.map_alloc = dev_map_alloc,
664 	.map_free = dev_map_free,
665 	.map_get_next_key = dev_map_get_next_key,
666 	.map_lookup_elem = dev_map_lookup_elem,
667 	.map_update_elem = dev_map_update_elem,
668 	.map_delete_elem = dev_map_delete_elem,
669 	.map_check_btf = map_check_no_btf,
670 };
671 
672 const struct bpf_map_ops dev_map_hash_ops = {
673 	.map_alloc = dev_map_alloc,
674 	.map_free = dev_map_free,
675 	.map_get_next_key = dev_map_hash_get_next_key,
676 	.map_lookup_elem = dev_map_hash_lookup_elem,
677 	.map_update_elem = dev_map_hash_update_elem,
678 	.map_delete_elem = dev_map_hash_delete_elem,
679 	.map_check_btf = map_check_no_btf,
680 };
681 
682 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
683 				       struct net_device *netdev)
684 {
685 	unsigned long flags;
686 	u32 i;
687 
688 	spin_lock_irqsave(&dtab->index_lock, flags);
689 	for (i = 0; i < dtab->n_buckets; i++) {
690 		struct bpf_dtab_netdev *dev;
691 		struct hlist_head *head;
692 		struct hlist_node *next;
693 
694 		head = dev_map_index_hash(dtab, i);
695 
696 		hlist_for_each_entry_safe(dev, next, head, index_hlist) {
697 			if (netdev != dev->dev)
698 				continue;
699 
700 			dtab->items--;
701 			hlist_del_rcu(&dev->index_hlist);
702 			call_rcu(&dev->rcu, __dev_map_entry_free);
703 		}
704 	}
705 	spin_unlock_irqrestore(&dtab->index_lock, flags);
706 }
707 
708 static int dev_map_notification(struct notifier_block *notifier,
709 				ulong event, void *ptr)
710 {
711 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
712 	struct bpf_dtab *dtab;
713 	int i, cpu;
714 
715 	switch (event) {
716 	case NETDEV_REGISTER:
717 		if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
718 			break;
719 
720 		/* will be freed in free_netdev() */
721 		netdev->xdp_bulkq =
722 			__alloc_percpu_gfp(sizeof(struct xdp_dev_bulk_queue),
723 					   sizeof(void *), GFP_ATOMIC);
724 		if (!netdev->xdp_bulkq)
725 			return NOTIFY_BAD;
726 
727 		for_each_possible_cpu(cpu)
728 			per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
729 		break;
730 	case NETDEV_UNREGISTER:
731 		/* This rcu_read_lock/unlock pair is needed because
732 		 * dev_map_list is an RCU list AND to ensure a delete
733 		 * operation does not free a netdev_map entry while we
734 		 * are comparing it against the netdev being unregistered.
735 		 */
736 		rcu_read_lock();
737 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
738 			if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
739 				dev_map_hash_remove_netdev(dtab, netdev);
740 				continue;
741 			}
742 
743 			for (i = 0; i < dtab->map.max_entries; i++) {
744 				struct bpf_dtab_netdev *dev, *odev;
745 
746 				dev = READ_ONCE(dtab->netdev_map[i]);
747 				if (!dev || netdev != dev->dev)
748 					continue;
749 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
750 				if (dev == odev)
751 					call_rcu(&dev->rcu,
752 						 __dev_map_entry_free);
753 			}
754 		}
755 		rcu_read_unlock();
756 		break;
757 	default:
758 		break;
759 	}
760 	return NOTIFY_OK;
761 }
762 
763 static struct notifier_block dev_map_notifier = {
764 	.notifier_call = dev_map_notification,
765 };
766 
767 static int __init dev_map_init(void)
768 {
769 	int cpu;
770 
771 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
772 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
773 		     offsetof(struct _bpf_dtab_netdev, dev));
774 	register_netdevice_notifier(&dev_map_notifier);
775 
776 	for_each_possible_cpu(cpu)
777 		INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
778 	return 0;
779 }
780 
781 subsys_initcall(dev_map_init);
782