1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 52 #define DEV_CREATE_FLAG_MASK \ 53 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 54 55 #define DEV_MAP_BULK_SIZE 16 56 struct xdp_dev_bulk_queue { 57 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 58 struct list_head flush_node; 59 struct net_device *dev; 60 struct net_device *dev_rx; 61 unsigned int count; 62 }; 63 64 struct bpf_dtab_netdev { 65 struct net_device *dev; /* must be first member, due to tracepoint */ 66 struct hlist_node index_hlist; 67 struct bpf_dtab *dtab; 68 struct rcu_head rcu; 69 unsigned int idx; 70 }; 71 72 struct bpf_dtab { 73 struct bpf_map map; 74 struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */ 75 struct list_head list; 76 77 /* these are only used for DEVMAP_HASH type maps */ 78 struct hlist_head *dev_index_head; 79 spinlock_t index_lock; 80 unsigned int items; 81 u32 n_buckets; 82 }; 83 84 static DEFINE_PER_CPU(struct list_head, dev_flush_list); 85 static DEFINE_SPINLOCK(dev_map_lock); 86 static LIST_HEAD(dev_map_list); 87 88 static struct hlist_head *dev_map_create_hash(unsigned int entries) 89 { 90 int i; 91 struct hlist_head *hash; 92 93 hash = kmalloc_array(entries, sizeof(*hash), GFP_KERNEL); 94 if (hash != NULL) 95 for (i = 0; i < entries; i++) 96 INIT_HLIST_HEAD(&hash[i]); 97 98 return hash; 99 } 100 101 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 102 int idx) 103 { 104 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 105 } 106 107 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 108 { 109 u64 cost = 0; 110 int err; 111 112 /* check sanity of attributes */ 113 if (attr->max_entries == 0 || attr->key_size != 4 || 114 attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK) 115 return -EINVAL; 116 117 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 118 * verifier prevents writes from the BPF side 119 */ 120 attr->map_flags |= BPF_F_RDONLY_PROG; 121 122 123 bpf_map_init_from_attr(&dtab->map, attr); 124 125 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 126 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 127 128 if (!dtab->n_buckets) /* Overflow check */ 129 return -EINVAL; 130 cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets; 131 } else { 132 cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); 133 } 134 135 /* if map size is larger than memlock limit, reject it */ 136 err = bpf_map_charge_init(&dtab->map.memory, cost); 137 if (err) 138 return -EINVAL; 139 140 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 141 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets); 142 if (!dtab->dev_index_head) 143 goto free_charge; 144 145 spin_lock_init(&dtab->index_lock); 146 } else { 147 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * 148 sizeof(struct bpf_dtab_netdev *), 149 dtab->map.numa_node); 150 if (!dtab->netdev_map) 151 goto free_charge; 152 } 153 154 return 0; 155 156 free_charge: 157 bpf_map_charge_finish(&dtab->map.memory); 158 return -ENOMEM; 159 } 160 161 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 162 { 163 struct bpf_dtab *dtab; 164 int err; 165 166 if (!capable(CAP_NET_ADMIN)) 167 return ERR_PTR(-EPERM); 168 169 dtab = kzalloc(sizeof(*dtab), GFP_USER); 170 if (!dtab) 171 return ERR_PTR(-ENOMEM); 172 173 err = dev_map_init_map(dtab, attr); 174 if (err) { 175 kfree(dtab); 176 return ERR_PTR(err); 177 } 178 179 spin_lock(&dev_map_lock); 180 list_add_tail_rcu(&dtab->list, &dev_map_list); 181 spin_unlock(&dev_map_lock); 182 183 return &dtab->map; 184 } 185 186 static void dev_map_free(struct bpf_map *map) 187 { 188 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 189 int i; 190 191 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 192 * so the programs (can be more than one that used this map) were 193 * disconnected from events. Wait for outstanding critical sections in 194 * these programs to complete. The rcu critical section only guarantees 195 * no further reads against netdev_map. It does __not__ ensure pending 196 * flush operations (if any) are complete. 197 */ 198 199 spin_lock(&dev_map_lock); 200 list_del_rcu(&dtab->list); 201 spin_unlock(&dev_map_lock); 202 203 bpf_clear_redirect_map(map); 204 synchronize_rcu(); 205 206 /* Make sure prior __dev_map_entry_free() have completed. */ 207 rcu_barrier(); 208 209 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 210 for (i = 0; i < dtab->n_buckets; i++) { 211 struct bpf_dtab_netdev *dev; 212 struct hlist_head *head; 213 struct hlist_node *next; 214 215 head = dev_map_index_hash(dtab, i); 216 217 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 218 hlist_del_rcu(&dev->index_hlist); 219 dev_put(dev->dev); 220 kfree(dev); 221 } 222 } 223 224 kfree(dtab->dev_index_head); 225 } else { 226 for (i = 0; i < dtab->map.max_entries; i++) { 227 struct bpf_dtab_netdev *dev; 228 229 dev = dtab->netdev_map[i]; 230 if (!dev) 231 continue; 232 233 dev_put(dev->dev); 234 kfree(dev); 235 } 236 237 bpf_map_area_free(dtab->netdev_map); 238 } 239 240 kfree(dtab); 241 } 242 243 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 244 { 245 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 246 u32 index = key ? *(u32 *)key : U32_MAX; 247 u32 *next = next_key; 248 249 if (index >= dtab->map.max_entries) { 250 *next = 0; 251 return 0; 252 } 253 254 if (index == dtab->map.max_entries - 1) 255 return -ENOENT; 256 *next = index + 1; 257 return 0; 258 } 259 260 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 261 { 262 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 263 struct hlist_head *head = dev_map_index_hash(dtab, key); 264 struct bpf_dtab_netdev *dev; 265 266 hlist_for_each_entry_rcu(dev, head, index_hlist) 267 if (dev->idx == key) 268 return dev; 269 270 return NULL; 271 } 272 273 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 274 void *next_key) 275 { 276 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 277 u32 idx, *next = next_key; 278 struct bpf_dtab_netdev *dev, *next_dev; 279 struct hlist_head *head; 280 int i = 0; 281 282 if (!key) 283 goto find_first; 284 285 idx = *(u32 *)key; 286 287 dev = __dev_map_hash_lookup_elem(map, idx); 288 if (!dev) 289 goto find_first; 290 291 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 292 struct bpf_dtab_netdev, index_hlist); 293 294 if (next_dev) { 295 *next = next_dev->idx; 296 return 0; 297 } 298 299 i = idx & (dtab->n_buckets - 1); 300 i++; 301 302 find_first: 303 for (; i < dtab->n_buckets; i++) { 304 head = dev_map_index_hash(dtab, i); 305 306 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 307 struct bpf_dtab_netdev, 308 index_hlist); 309 if (next_dev) { 310 *next = next_dev->idx; 311 return 0; 312 } 313 } 314 315 return -ENOENT; 316 } 317 318 static int bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) 319 { 320 struct net_device *dev = bq->dev; 321 int sent = 0, drops = 0, err = 0; 322 int i; 323 324 if (unlikely(!bq->count)) 325 return 0; 326 327 for (i = 0; i < bq->count; i++) { 328 struct xdp_frame *xdpf = bq->q[i]; 329 330 prefetch(xdpf); 331 } 332 333 sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags); 334 if (sent < 0) { 335 err = sent; 336 sent = 0; 337 goto error; 338 } 339 drops = bq->count - sent; 340 out: 341 bq->count = 0; 342 343 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err); 344 bq->dev_rx = NULL; 345 __list_del_clearprev(&bq->flush_node); 346 return 0; 347 error: 348 /* If ndo_xdp_xmit fails with an errno, no frames have been 349 * xmit'ed and it's our responsibility to them free all. 350 */ 351 for (i = 0; i < bq->count; i++) { 352 struct xdp_frame *xdpf = bq->q[i]; 353 354 xdp_return_frame_rx_napi(xdpf); 355 drops++; 356 } 357 goto out; 358 } 359 360 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled 361 * from the driver before returning from its napi->poll() routine. The poll() 362 * routine is called either from busy_poll context or net_rx_action signaled 363 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the 364 * net device can be torn down. On devmap tear down we ensure the flush list 365 * is empty before completing to ensure all flush operations have completed. 366 */ 367 void __dev_flush(void) 368 { 369 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 370 struct xdp_dev_bulk_queue *bq, *tmp; 371 372 rcu_read_lock(); 373 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) 374 bq_xmit_all(bq, XDP_XMIT_FLUSH); 375 rcu_read_unlock(); 376 } 377 378 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or 379 * update happens in parallel here a dev_put wont happen until after reading the 380 * ifindex. 381 */ 382 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 383 { 384 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 385 struct bpf_dtab_netdev *obj; 386 387 if (key >= map->max_entries) 388 return NULL; 389 390 obj = READ_ONCE(dtab->netdev_map[key]); 391 return obj; 392 } 393 394 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 395 * Thus, safe percpu variable access. 396 */ 397 static int bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 398 struct net_device *dev_rx) 399 { 400 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 401 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); 402 403 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 404 bq_xmit_all(bq, 0); 405 406 /* Ingress dev_rx will be the same for all xdp_frame's in 407 * bulk_queue, because bq stored per-CPU and must be flushed 408 * from net_device drivers NAPI func end. 409 */ 410 if (!bq->dev_rx) 411 bq->dev_rx = dev_rx; 412 413 bq->q[bq->count++] = xdpf; 414 415 if (!bq->flush_node.prev) 416 list_add(&bq->flush_node, flush_list); 417 418 return 0; 419 } 420 421 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp, 422 struct net_device *dev_rx) 423 { 424 struct xdp_frame *xdpf; 425 int err; 426 427 if (!dev->netdev_ops->ndo_xdp_xmit) 428 return -EOPNOTSUPP; 429 430 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data); 431 if (unlikely(err)) 432 return err; 433 434 xdpf = convert_to_xdp_frame(xdp); 435 if (unlikely(!xdpf)) 436 return -EOVERFLOW; 437 438 return bq_enqueue(dev, xdpf, dev_rx); 439 } 440 441 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp, 442 struct net_device *dev_rx) 443 { 444 return __xdp_enqueue(dev, xdp, dev_rx); 445 } 446 447 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, 448 struct net_device *dev_rx) 449 { 450 struct net_device *dev = dst->dev; 451 452 return __xdp_enqueue(dev, xdp, dev_rx); 453 } 454 455 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 456 struct bpf_prog *xdp_prog) 457 { 458 int err; 459 460 err = xdp_ok_fwd_dev(dst->dev, skb->len); 461 if (unlikely(err)) 462 return err; 463 skb->dev = dst->dev; 464 generic_xdp_tx(skb, xdp_prog); 465 466 return 0; 467 } 468 469 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 470 { 471 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 472 struct net_device *dev = obj ? obj->dev : NULL; 473 474 return dev ? &dev->ifindex : NULL; 475 } 476 477 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 478 { 479 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 480 *(u32 *)key); 481 struct net_device *dev = obj ? obj->dev : NULL; 482 483 return dev ? &dev->ifindex : NULL; 484 } 485 486 static void __dev_map_entry_free(struct rcu_head *rcu) 487 { 488 struct bpf_dtab_netdev *dev; 489 490 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 491 dev_put(dev->dev); 492 kfree(dev); 493 } 494 495 static int dev_map_delete_elem(struct bpf_map *map, void *key) 496 { 497 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 498 struct bpf_dtab_netdev *old_dev; 499 int k = *(u32 *)key; 500 501 if (k >= map->max_entries) 502 return -EINVAL; 503 504 /* Use call_rcu() here to ensure any rcu critical sections have 505 * completed, but this does not guarantee a flush has happened 506 * yet. Because driver side rcu_read_lock/unlock only protects the 507 * running XDP program. However, for pending flush operations the 508 * dev and ctx are stored in another per cpu map. And additionally, 509 * the driver tear down ensures all soft irqs are complete before 510 * removing the net device in the case of dev_put equals zero. 511 */ 512 old_dev = xchg(&dtab->netdev_map[k], NULL); 513 if (old_dev) 514 call_rcu(&old_dev->rcu, __dev_map_entry_free); 515 return 0; 516 } 517 518 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key) 519 { 520 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 521 struct bpf_dtab_netdev *old_dev; 522 int k = *(u32 *)key; 523 unsigned long flags; 524 int ret = -ENOENT; 525 526 spin_lock_irqsave(&dtab->index_lock, flags); 527 528 old_dev = __dev_map_hash_lookup_elem(map, k); 529 if (old_dev) { 530 dtab->items--; 531 hlist_del_init_rcu(&old_dev->index_hlist); 532 call_rcu(&old_dev->rcu, __dev_map_entry_free); 533 ret = 0; 534 } 535 spin_unlock_irqrestore(&dtab->index_lock, flags); 536 537 return ret; 538 } 539 540 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 541 struct bpf_dtab *dtab, 542 u32 ifindex, 543 unsigned int idx) 544 { 545 struct bpf_dtab_netdev *dev; 546 547 dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN, 548 dtab->map.numa_node); 549 if (!dev) 550 return ERR_PTR(-ENOMEM); 551 552 dev->dev = dev_get_by_index(net, ifindex); 553 if (!dev->dev) { 554 kfree(dev); 555 return ERR_PTR(-EINVAL); 556 } 557 558 dev->idx = idx; 559 dev->dtab = dtab; 560 561 return dev; 562 } 563 564 static int __dev_map_update_elem(struct net *net, struct bpf_map *map, 565 void *key, void *value, u64 map_flags) 566 { 567 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 568 struct bpf_dtab_netdev *dev, *old_dev; 569 u32 ifindex = *(u32 *)value; 570 u32 i = *(u32 *)key; 571 572 if (unlikely(map_flags > BPF_EXIST)) 573 return -EINVAL; 574 if (unlikely(i >= dtab->map.max_entries)) 575 return -E2BIG; 576 if (unlikely(map_flags == BPF_NOEXIST)) 577 return -EEXIST; 578 579 if (!ifindex) { 580 dev = NULL; 581 } else { 582 dev = __dev_map_alloc_node(net, dtab, ifindex, i); 583 if (IS_ERR(dev)) 584 return PTR_ERR(dev); 585 } 586 587 /* Use call_rcu() here to ensure rcu critical sections have completed 588 * Remembering the driver side flush operation will happen before the 589 * net device is removed. 590 */ 591 old_dev = xchg(&dtab->netdev_map[i], dev); 592 if (old_dev) 593 call_rcu(&old_dev->rcu, __dev_map_entry_free); 594 595 return 0; 596 } 597 598 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 599 u64 map_flags) 600 { 601 return __dev_map_update_elem(current->nsproxy->net_ns, 602 map, key, value, map_flags); 603 } 604 605 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 606 void *key, void *value, u64 map_flags) 607 { 608 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 609 struct bpf_dtab_netdev *dev, *old_dev; 610 u32 ifindex = *(u32 *)value; 611 u32 idx = *(u32 *)key; 612 unsigned long flags; 613 int err = -EEXIST; 614 615 if (unlikely(map_flags > BPF_EXIST || !ifindex)) 616 return -EINVAL; 617 618 spin_lock_irqsave(&dtab->index_lock, flags); 619 620 old_dev = __dev_map_hash_lookup_elem(map, idx); 621 if (old_dev && (map_flags & BPF_NOEXIST)) 622 goto out_err; 623 624 dev = __dev_map_alloc_node(net, dtab, ifindex, idx); 625 if (IS_ERR(dev)) { 626 err = PTR_ERR(dev); 627 goto out_err; 628 } 629 630 if (old_dev) { 631 hlist_del_rcu(&old_dev->index_hlist); 632 } else { 633 if (dtab->items >= dtab->map.max_entries) { 634 spin_unlock_irqrestore(&dtab->index_lock, flags); 635 call_rcu(&dev->rcu, __dev_map_entry_free); 636 return -E2BIG; 637 } 638 dtab->items++; 639 } 640 641 hlist_add_head_rcu(&dev->index_hlist, 642 dev_map_index_hash(dtab, idx)); 643 spin_unlock_irqrestore(&dtab->index_lock, flags); 644 645 if (old_dev) 646 call_rcu(&old_dev->rcu, __dev_map_entry_free); 647 648 return 0; 649 650 out_err: 651 spin_unlock_irqrestore(&dtab->index_lock, flags); 652 return err; 653 } 654 655 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 656 u64 map_flags) 657 { 658 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 659 map, key, value, map_flags); 660 } 661 662 const struct bpf_map_ops dev_map_ops = { 663 .map_alloc = dev_map_alloc, 664 .map_free = dev_map_free, 665 .map_get_next_key = dev_map_get_next_key, 666 .map_lookup_elem = dev_map_lookup_elem, 667 .map_update_elem = dev_map_update_elem, 668 .map_delete_elem = dev_map_delete_elem, 669 .map_check_btf = map_check_no_btf, 670 }; 671 672 const struct bpf_map_ops dev_map_hash_ops = { 673 .map_alloc = dev_map_alloc, 674 .map_free = dev_map_free, 675 .map_get_next_key = dev_map_hash_get_next_key, 676 .map_lookup_elem = dev_map_hash_lookup_elem, 677 .map_update_elem = dev_map_hash_update_elem, 678 .map_delete_elem = dev_map_hash_delete_elem, 679 .map_check_btf = map_check_no_btf, 680 }; 681 682 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 683 struct net_device *netdev) 684 { 685 unsigned long flags; 686 u32 i; 687 688 spin_lock_irqsave(&dtab->index_lock, flags); 689 for (i = 0; i < dtab->n_buckets; i++) { 690 struct bpf_dtab_netdev *dev; 691 struct hlist_head *head; 692 struct hlist_node *next; 693 694 head = dev_map_index_hash(dtab, i); 695 696 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 697 if (netdev != dev->dev) 698 continue; 699 700 dtab->items--; 701 hlist_del_rcu(&dev->index_hlist); 702 call_rcu(&dev->rcu, __dev_map_entry_free); 703 } 704 } 705 spin_unlock_irqrestore(&dtab->index_lock, flags); 706 } 707 708 static int dev_map_notification(struct notifier_block *notifier, 709 ulong event, void *ptr) 710 { 711 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 712 struct bpf_dtab *dtab; 713 int i, cpu; 714 715 switch (event) { 716 case NETDEV_REGISTER: 717 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) 718 break; 719 720 /* will be freed in free_netdev() */ 721 netdev->xdp_bulkq = 722 __alloc_percpu_gfp(sizeof(struct xdp_dev_bulk_queue), 723 sizeof(void *), GFP_ATOMIC); 724 if (!netdev->xdp_bulkq) 725 return NOTIFY_BAD; 726 727 for_each_possible_cpu(cpu) 728 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; 729 break; 730 case NETDEV_UNREGISTER: 731 /* This rcu_read_lock/unlock pair is needed because 732 * dev_map_list is an RCU list AND to ensure a delete 733 * operation does not free a netdev_map entry while we 734 * are comparing it against the netdev being unregistered. 735 */ 736 rcu_read_lock(); 737 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 738 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 739 dev_map_hash_remove_netdev(dtab, netdev); 740 continue; 741 } 742 743 for (i = 0; i < dtab->map.max_entries; i++) { 744 struct bpf_dtab_netdev *dev, *odev; 745 746 dev = READ_ONCE(dtab->netdev_map[i]); 747 if (!dev || netdev != dev->dev) 748 continue; 749 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); 750 if (dev == odev) 751 call_rcu(&dev->rcu, 752 __dev_map_entry_free); 753 } 754 } 755 rcu_read_unlock(); 756 break; 757 default: 758 break; 759 } 760 return NOTIFY_OK; 761 } 762 763 static struct notifier_block dev_map_notifier = { 764 .notifier_call = dev_map_notification, 765 }; 766 767 static int __init dev_map_init(void) 768 { 769 int cpu; 770 771 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 772 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 773 offsetof(struct _bpf_dtab_netdev, dev)); 774 register_netdevice_notifier(&dev_map_notifier); 775 776 for_each_possible_cpu(cpu) 777 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu)); 778 return 0; 779 } 780 781 subsys_initcall(dev_map_init); 782