1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016,2017 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/err.h> 8 #include <linux/slab.h> 9 #include <linux/mm.h> 10 #include <linux/filter.h> 11 #include <linux/perf_event.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/rcupdate_trace.h> 14 #include <linux/btf_ids.h> 15 16 #include "map_in_map.h" 17 18 #define ARRAY_CREATE_FLAG_MASK \ 19 (BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \ 20 BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP) 21 22 static void bpf_array_free_percpu(struct bpf_array *array) 23 { 24 int i; 25 26 for (i = 0; i < array->map.max_entries; i++) { 27 free_percpu(array->pptrs[i]); 28 cond_resched(); 29 } 30 } 31 32 static int bpf_array_alloc_percpu(struct bpf_array *array) 33 { 34 void __percpu *ptr; 35 int i; 36 37 for (i = 0; i < array->map.max_entries; i++) { 38 ptr = bpf_map_alloc_percpu(&array->map, array->elem_size, 8, 39 GFP_USER | __GFP_NOWARN); 40 if (!ptr) { 41 bpf_array_free_percpu(array); 42 return -ENOMEM; 43 } 44 array->pptrs[i] = ptr; 45 cond_resched(); 46 } 47 48 return 0; 49 } 50 51 /* Called from syscall */ 52 int array_map_alloc_check(union bpf_attr *attr) 53 { 54 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 55 int numa_node = bpf_map_attr_numa_node(attr); 56 57 /* check sanity of attributes */ 58 if (attr->max_entries == 0 || attr->key_size != 4 || 59 attr->value_size == 0 || 60 attr->map_flags & ~ARRAY_CREATE_FLAG_MASK || 61 !bpf_map_flags_access_ok(attr->map_flags) || 62 (percpu && numa_node != NUMA_NO_NODE)) 63 return -EINVAL; 64 65 if (attr->map_type != BPF_MAP_TYPE_ARRAY && 66 attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP)) 67 return -EINVAL; 68 69 if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY && 70 attr->map_flags & BPF_F_PRESERVE_ELEMS) 71 return -EINVAL; 72 73 if (attr->value_size > KMALLOC_MAX_SIZE) 74 /* if value_size is bigger, the user space won't be able to 75 * access the elements. 76 */ 77 return -E2BIG; 78 79 return 0; 80 } 81 82 static struct bpf_map *array_map_alloc(union bpf_attr *attr) 83 { 84 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 85 int numa_node = bpf_map_attr_numa_node(attr); 86 u32 elem_size, index_mask, max_entries; 87 bool bypass_spec_v1 = bpf_bypass_spec_v1(); 88 u64 array_size, mask64; 89 struct bpf_array *array; 90 91 elem_size = round_up(attr->value_size, 8); 92 93 max_entries = attr->max_entries; 94 95 /* On 32 bit archs roundup_pow_of_two() with max_entries that has 96 * upper most bit set in u32 space is undefined behavior due to 97 * resulting 1U << 32, so do it manually here in u64 space. 98 */ 99 mask64 = fls_long(max_entries - 1); 100 mask64 = 1ULL << mask64; 101 mask64 -= 1; 102 103 index_mask = mask64; 104 if (!bypass_spec_v1) { 105 /* round up array size to nearest power of 2, 106 * since cpu will speculate within index_mask limits 107 */ 108 max_entries = index_mask + 1; 109 /* Check for overflows. */ 110 if (max_entries < attr->max_entries) 111 return ERR_PTR(-E2BIG); 112 } 113 114 array_size = sizeof(*array); 115 if (percpu) { 116 array_size += (u64) max_entries * sizeof(void *); 117 } else { 118 /* rely on vmalloc() to return page-aligned memory and 119 * ensure array->value is exactly page-aligned 120 */ 121 if (attr->map_flags & BPF_F_MMAPABLE) { 122 array_size = PAGE_ALIGN(array_size); 123 array_size += PAGE_ALIGN((u64) max_entries * elem_size); 124 } else { 125 array_size += (u64) max_entries * elem_size; 126 } 127 } 128 129 /* allocate all map elements and zero-initialize them */ 130 if (attr->map_flags & BPF_F_MMAPABLE) { 131 void *data; 132 133 /* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */ 134 data = bpf_map_area_mmapable_alloc(array_size, numa_node); 135 if (!data) 136 return ERR_PTR(-ENOMEM); 137 array = data + PAGE_ALIGN(sizeof(struct bpf_array)) 138 - offsetof(struct bpf_array, value); 139 } else { 140 array = bpf_map_area_alloc(array_size, numa_node); 141 } 142 if (!array) 143 return ERR_PTR(-ENOMEM); 144 array->index_mask = index_mask; 145 array->map.bypass_spec_v1 = bypass_spec_v1; 146 147 /* copy mandatory map attributes */ 148 bpf_map_init_from_attr(&array->map, attr); 149 array->elem_size = elem_size; 150 151 if (percpu && bpf_array_alloc_percpu(array)) { 152 bpf_map_area_free(array); 153 return ERR_PTR(-ENOMEM); 154 } 155 156 return &array->map; 157 } 158 159 static void *array_map_elem_ptr(struct bpf_array* array, u32 index) 160 { 161 return array->value + (u64)array->elem_size * index; 162 } 163 164 /* Called from syscall or from eBPF program */ 165 static void *array_map_lookup_elem(struct bpf_map *map, void *key) 166 { 167 struct bpf_array *array = container_of(map, struct bpf_array, map); 168 u32 index = *(u32 *)key; 169 170 if (unlikely(index >= array->map.max_entries)) 171 return NULL; 172 173 return array->value + (u64)array->elem_size * (index & array->index_mask); 174 } 175 176 static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm, 177 u32 off) 178 { 179 struct bpf_array *array = container_of(map, struct bpf_array, map); 180 181 if (map->max_entries != 1) 182 return -ENOTSUPP; 183 if (off >= map->value_size) 184 return -EINVAL; 185 186 *imm = (unsigned long)array->value; 187 return 0; 188 } 189 190 static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm, 191 u32 *off) 192 { 193 struct bpf_array *array = container_of(map, struct bpf_array, map); 194 u64 base = (unsigned long)array->value; 195 u64 range = array->elem_size; 196 197 if (map->max_entries != 1) 198 return -ENOTSUPP; 199 if (imm < base || imm >= base + range) 200 return -ENOENT; 201 202 *off = imm - base; 203 return 0; 204 } 205 206 /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */ 207 static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 208 { 209 struct bpf_array *array = container_of(map, struct bpf_array, map); 210 struct bpf_insn *insn = insn_buf; 211 u32 elem_size = array->elem_size; 212 const int ret = BPF_REG_0; 213 const int map_ptr = BPF_REG_1; 214 const int index = BPF_REG_2; 215 216 if (map->map_flags & BPF_F_INNER_MAP) 217 return -EOPNOTSUPP; 218 219 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 220 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 221 if (!map->bypass_spec_v1) { 222 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4); 223 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 224 } else { 225 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3); 226 } 227 228 if (is_power_of_2(elem_size)) { 229 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 230 } else { 231 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 232 } 233 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 234 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 235 *insn++ = BPF_MOV64_IMM(ret, 0); 236 return insn - insn_buf; 237 } 238 239 /* Called from eBPF program */ 240 static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key) 241 { 242 struct bpf_array *array = container_of(map, struct bpf_array, map); 243 u32 index = *(u32 *)key; 244 245 if (unlikely(index >= array->map.max_entries)) 246 return NULL; 247 248 return this_cpu_ptr(array->pptrs[index & array->index_mask]); 249 } 250 251 static void *percpu_array_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 252 { 253 struct bpf_array *array = container_of(map, struct bpf_array, map); 254 u32 index = *(u32 *)key; 255 256 if (cpu >= nr_cpu_ids) 257 return NULL; 258 259 if (unlikely(index >= array->map.max_entries)) 260 return NULL; 261 262 return per_cpu_ptr(array->pptrs[index & array->index_mask], cpu); 263 } 264 265 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value) 266 { 267 struct bpf_array *array = container_of(map, struct bpf_array, map); 268 u32 index = *(u32 *)key; 269 void __percpu *pptr; 270 int cpu, off = 0; 271 u32 size; 272 273 if (unlikely(index >= array->map.max_entries)) 274 return -ENOENT; 275 276 /* per_cpu areas are zero-filled and bpf programs can only 277 * access 'value_size' of them, so copying rounded areas 278 * will not leak any kernel data 279 */ 280 size = array->elem_size; 281 rcu_read_lock(); 282 pptr = array->pptrs[index & array->index_mask]; 283 for_each_possible_cpu(cpu) { 284 bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size); 285 off += size; 286 } 287 rcu_read_unlock(); 288 return 0; 289 } 290 291 /* Called from syscall */ 292 static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 293 { 294 struct bpf_array *array = container_of(map, struct bpf_array, map); 295 u32 index = key ? *(u32 *)key : U32_MAX; 296 u32 *next = (u32 *)next_key; 297 298 if (index >= array->map.max_entries) { 299 *next = 0; 300 return 0; 301 } 302 303 if (index == array->map.max_entries - 1) 304 return -ENOENT; 305 306 *next = index + 1; 307 return 0; 308 } 309 310 static void check_and_free_fields(struct bpf_array *arr, void *val) 311 { 312 if (map_value_has_timer(&arr->map)) 313 bpf_timer_cancel_and_free(val + arr->map.timer_off); 314 if (map_value_has_kptrs(&arr->map)) 315 bpf_map_free_kptrs(&arr->map, val); 316 } 317 318 /* Called from syscall or from eBPF program */ 319 static int array_map_update_elem(struct bpf_map *map, void *key, void *value, 320 u64 map_flags) 321 { 322 struct bpf_array *array = container_of(map, struct bpf_array, map); 323 u32 index = *(u32 *)key; 324 char *val; 325 326 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 327 /* unknown flags */ 328 return -EINVAL; 329 330 if (unlikely(index >= array->map.max_entries)) 331 /* all elements were pre-allocated, cannot insert a new one */ 332 return -E2BIG; 333 334 if (unlikely(map_flags & BPF_NOEXIST)) 335 /* all elements already exist */ 336 return -EEXIST; 337 338 if (unlikely((map_flags & BPF_F_LOCK) && 339 !map_value_has_spin_lock(map))) 340 return -EINVAL; 341 342 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 343 memcpy(this_cpu_ptr(array->pptrs[index & array->index_mask]), 344 value, map->value_size); 345 } else { 346 val = array->value + 347 (u64)array->elem_size * (index & array->index_mask); 348 if (map_flags & BPF_F_LOCK) 349 copy_map_value_locked(map, val, value, false); 350 else 351 copy_map_value(map, val, value); 352 check_and_free_fields(array, val); 353 } 354 return 0; 355 } 356 357 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 358 u64 map_flags) 359 { 360 struct bpf_array *array = container_of(map, struct bpf_array, map); 361 u32 index = *(u32 *)key; 362 void __percpu *pptr; 363 int cpu, off = 0; 364 u32 size; 365 366 if (unlikely(map_flags > BPF_EXIST)) 367 /* unknown flags */ 368 return -EINVAL; 369 370 if (unlikely(index >= array->map.max_entries)) 371 /* all elements were pre-allocated, cannot insert a new one */ 372 return -E2BIG; 373 374 if (unlikely(map_flags == BPF_NOEXIST)) 375 /* all elements already exist */ 376 return -EEXIST; 377 378 /* the user space will provide round_up(value_size, 8) bytes that 379 * will be copied into per-cpu area. bpf programs can only access 380 * value_size of it. During lookup the same extra bytes will be 381 * returned or zeros which were zero-filled by percpu_alloc, 382 * so no kernel data leaks possible 383 */ 384 size = array->elem_size; 385 rcu_read_lock(); 386 pptr = array->pptrs[index & array->index_mask]; 387 for_each_possible_cpu(cpu) { 388 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size); 389 off += size; 390 } 391 rcu_read_unlock(); 392 return 0; 393 } 394 395 /* Called from syscall or from eBPF program */ 396 static int array_map_delete_elem(struct bpf_map *map, void *key) 397 { 398 return -EINVAL; 399 } 400 401 static void *array_map_vmalloc_addr(struct bpf_array *array) 402 { 403 return (void *)round_down((unsigned long)array, PAGE_SIZE); 404 } 405 406 static void array_map_free_timers(struct bpf_map *map) 407 { 408 struct bpf_array *array = container_of(map, struct bpf_array, map); 409 int i; 410 411 /* We don't reset or free kptr on uref dropping to zero. */ 412 if (!map_value_has_timer(map)) 413 return; 414 415 for (i = 0; i < array->map.max_entries; i++) 416 bpf_timer_cancel_and_free(array_map_elem_ptr(array, i) + map->timer_off); 417 } 418 419 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 420 static void array_map_free(struct bpf_map *map) 421 { 422 struct bpf_array *array = container_of(map, struct bpf_array, map); 423 int i; 424 425 if (map_value_has_kptrs(map)) { 426 for (i = 0; i < array->map.max_entries; i++) 427 bpf_map_free_kptrs(map, array_map_elem_ptr(array, i)); 428 bpf_map_free_kptr_off_tab(map); 429 } 430 431 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) 432 bpf_array_free_percpu(array); 433 434 if (array->map.map_flags & BPF_F_MMAPABLE) 435 bpf_map_area_free(array_map_vmalloc_addr(array)); 436 else 437 bpf_map_area_free(array); 438 } 439 440 static void array_map_seq_show_elem(struct bpf_map *map, void *key, 441 struct seq_file *m) 442 { 443 void *value; 444 445 rcu_read_lock(); 446 447 value = array_map_lookup_elem(map, key); 448 if (!value) { 449 rcu_read_unlock(); 450 return; 451 } 452 453 if (map->btf_key_type_id) 454 seq_printf(m, "%u: ", *(u32 *)key); 455 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 456 seq_puts(m, "\n"); 457 458 rcu_read_unlock(); 459 } 460 461 static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key, 462 struct seq_file *m) 463 { 464 struct bpf_array *array = container_of(map, struct bpf_array, map); 465 u32 index = *(u32 *)key; 466 void __percpu *pptr; 467 int cpu; 468 469 rcu_read_lock(); 470 471 seq_printf(m, "%u: {\n", *(u32 *)key); 472 pptr = array->pptrs[index & array->index_mask]; 473 for_each_possible_cpu(cpu) { 474 seq_printf(m, "\tcpu%d: ", cpu); 475 btf_type_seq_show(map->btf, map->btf_value_type_id, 476 per_cpu_ptr(pptr, cpu), m); 477 seq_puts(m, "\n"); 478 } 479 seq_puts(m, "}\n"); 480 481 rcu_read_unlock(); 482 } 483 484 static int array_map_check_btf(const struct bpf_map *map, 485 const struct btf *btf, 486 const struct btf_type *key_type, 487 const struct btf_type *value_type) 488 { 489 u32 int_data; 490 491 /* One exception for keyless BTF: .bss/.data/.rodata map */ 492 if (btf_type_is_void(key_type)) { 493 if (map->map_type != BPF_MAP_TYPE_ARRAY || 494 map->max_entries != 1) 495 return -EINVAL; 496 497 if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC) 498 return -EINVAL; 499 500 return 0; 501 } 502 503 if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) 504 return -EINVAL; 505 506 int_data = *(u32 *)(key_type + 1); 507 /* bpf array can only take a u32 key. This check makes sure 508 * that the btf matches the attr used during map_create. 509 */ 510 if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) 511 return -EINVAL; 512 513 return 0; 514 } 515 516 static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) 517 { 518 struct bpf_array *array = container_of(map, struct bpf_array, map); 519 pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT; 520 521 if (!(map->map_flags & BPF_F_MMAPABLE)) 522 return -EINVAL; 523 524 if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > 525 PAGE_ALIGN((u64)array->map.max_entries * array->elem_size)) 526 return -EINVAL; 527 528 return remap_vmalloc_range(vma, array_map_vmalloc_addr(array), 529 vma->vm_pgoff + pgoff); 530 } 531 532 static bool array_map_meta_equal(const struct bpf_map *meta0, 533 const struct bpf_map *meta1) 534 { 535 if (!bpf_map_meta_equal(meta0, meta1)) 536 return false; 537 return meta0->map_flags & BPF_F_INNER_MAP ? true : 538 meta0->max_entries == meta1->max_entries; 539 } 540 541 struct bpf_iter_seq_array_map_info { 542 struct bpf_map *map; 543 void *percpu_value_buf; 544 u32 index; 545 }; 546 547 static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos) 548 { 549 struct bpf_iter_seq_array_map_info *info = seq->private; 550 struct bpf_map *map = info->map; 551 struct bpf_array *array; 552 u32 index; 553 554 if (info->index >= map->max_entries) 555 return NULL; 556 557 if (*pos == 0) 558 ++*pos; 559 array = container_of(map, struct bpf_array, map); 560 index = info->index & array->index_mask; 561 if (info->percpu_value_buf) 562 return array->pptrs[index]; 563 return array_map_elem_ptr(array, index); 564 } 565 566 static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 567 { 568 struct bpf_iter_seq_array_map_info *info = seq->private; 569 struct bpf_map *map = info->map; 570 struct bpf_array *array; 571 u32 index; 572 573 ++*pos; 574 ++info->index; 575 if (info->index >= map->max_entries) 576 return NULL; 577 578 array = container_of(map, struct bpf_array, map); 579 index = info->index & array->index_mask; 580 if (info->percpu_value_buf) 581 return array->pptrs[index]; 582 return array_map_elem_ptr(array, index); 583 } 584 585 static int __bpf_array_map_seq_show(struct seq_file *seq, void *v) 586 { 587 struct bpf_iter_seq_array_map_info *info = seq->private; 588 struct bpf_iter__bpf_map_elem ctx = {}; 589 struct bpf_map *map = info->map; 590 struct bpf_array *array = container_of(map, struct bpf_array, map); 591 struct bpf_iter_meta meta; 592 struct bpf_prog *prog; 593 int off = 0, cpu = 0; 594 void __percpu **pptr; 595 u32 size; 596 597 meta.seq = seq; 598 prog = bpf_iter_get_info(&meta, v == NULL); 599 if (!prog) 600 return 0; 601 602 ctx.meta = &meta; 603 ctx.map = info->map; 604 if (v) { 605 ctx.key = &info->index; 606 607 if (!info->percpu_value_buf) { 608 ctx.value = v; 609 } else { 610 pptr = v; 611 size = array->elem_size; 612 for_each_possible_cpu(cpu) { 613 bpf_long_memcpy(info->percpu_value_buf + off, 614 per_cpu_ptr(pptr, cpu), 615 size); 616 off += size; 617 } 618 ctx.value = info->percpu_value_buf; 619 } 620 } 621 622 return bpf_iter_run_prog(prog, &ctx); 623 } 624 625 static int bpf_array_map_seq_show(struct seq_file *seq, void *v) 626 { 627 return __bpf_array_map_seq_show(seq, v); 628 } 629 630 static void bpf_array_map_seq_stop(struct seq_file *seq, void *v) 631 { 632 if (!v) 633 (void)__bpf_array_map_seq_show(seq, NULL); 634 } 635 636 static int bpf_iter_init_array_map(void *priv_data, 637 struct bpf_iter_aux_info *aux) 638 { 639 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 640 struct bpf_map *map = aux->map; 641 struct bpf_array *array = container_of(map, struct bpf_array, map); 642 void *value_buf; 643 u32 buf_size; 644 645 if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 646 buf_size = array->elem_size * num_possible_cpus(); 647 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 648 if (!value_buf) 649 return -ENOMEM; 650 651 seq_info->percpu_value_buf = value_buf; 652 } 653 654 seq_info->map = map; 655 return 0; 656 } 657 658 static void bpf_iter_fini_array_map(void *priv_data) 659 { 660 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 661 662 kfree(seq_info->percpu_value_buf); 663 } 664 665 static const struct seq_operations bpf_array_map_seq_ops = { 666 .start = bpf_array_map_seq_start, 667 .next = bpf_array_map_seq_next, 668 .stop = bpf_array_map_seq_stop, 669 .show = bpf_array_map_seq_show, 670 }; 671 672 static const struct bpf_iter_seq_info iter_seq_info = { 673 .seq_ops = &bpf_array_map_seq_ops, 674 .init_seq_private = bpf_iter_init_array_map, 675 .fini_seq_private = bpf_iter_fini_array_map, 676 .seq_priv_size = sizeof(struct bpf_iter_seq_array_map_info), 677 }; 678 679 static int bpf_for_each_array_elem(struct bpf_map *map, bpf_callback_t callback_fn, 680 void *callback_ctx, u64 flags) 681 { 682 u32 i, key, num_elems = 0; 683 struct bpf_array *array; 684 bool is_percpu; 685 u64 ret = 0; 686 void *val; 687 688 if (flags != 0) 689 return -EINVAL; 690 691 is_percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 692 array = container_of(map, struct bpf_array, map); 693 if (is_percpu) 694 migrate_disable(); 695 for (i = 0; i < map->max_entries; i++) { 696 if (is_percpu) 697 val = this_cpu_ptr(array->pptrs[i]); 698 else 699 val = array_map_elem_ptr(array, i); 700 num_elems++; 701 key = i; 702 ret = callback_fn((u64)(long)map, (u64)(long)&key, 703 (u64)(long)val, (u64)(long)callback_ctx, 0); 704 /* return value: 0 - continue, 1 - stop and return */ 705 if (ret) 706 break; 707 } 708 709 if (is_percpu) 710 migrate_enable(); 711 return num_elems; 712 } 713 714 BTF_ID_LIST_SINGLE(array_map_btf_ids, struct, bpf_array) 715 const struct bpf_map_ops array_map_ops = { 716 .map_meta_equal = array_map_meta_equal, 717 .map_alloc_check = array_map_alloc_check, 718 .map_alloc = array_map_alloc, 719 .map_free = array_map_free, 720 .map_get_next_key = array_map_get_next_key, 721 .map_release_uref = array_map_free_timers, 722 .map_lookup_elem = array_map_lookup_elem, 723 .map_update_elem = array_map_update_elem, 724 .map_delete_elem = array_map_delete_elem, 725 .map_gen_lookup = array_map_gen_lookup, 726 .map_direct_value_addr = array_map_direct_value_addr, 727 .map_direct_value_meta = array_map_direct_value_meta, 728 .map_mmap = array_map_mmap, 729 .map_seq_show_elem = array_map_seq_show_elem, 730 .map_check_btf = array_map_check_btf, 731 .map_lookup_batch = generic_map_lookup_batch, 732 .map_update_batch = generic_map_update_batch, 733 .map_set_for_each_callback_args = map_set_for_each_callback_args, 734 .map_for_each_callback = bpf_for_each_array_elem, 735 .map_btf_id = &array_map_btf_ids[0], 736 .iter_seq_info = &iter_seq_info, 737 }; 738 739 const struct bpf_map_ops percpu_array_map_ops = { 740 .map_meta_equal = bpf_map_meta_equal, 741 .map_alloc_check = array_map_alloc_check, 742 .map_alloc = array_map_alloc, 743 .map_free = array_map_free, 744 .map_get_next_key = array_map_get_next_key, 745 .map_lookup_elem = percpu_array_map_lookup_elem, 746 .map_update_elem = array_map_update_elem, 747 .map_delete_elem = array_map_delete_elem, 748 .map_lookup_percpu_elem = percpu_array_map_lookup_percpu_elem, 749 .map_seq_show_elem = percpu_array_map_seq_show_elem, 750 .map_check_btf = array_map_check_btf, 751 .map_lookup_batch = generic_map_lookup_batch, 752 .map_update_batch = generic_map_update_batch, 753 .map_set_for_each_callback_args = map_set_for_each_callback_args, 754 .map_for_each_callback = bpf_for_each_array_elem, 755 .map_btf_id = &array_map_btf_ids[0], 756 .iter_seq_info = &iter_seq_info, 757 }; 758 759 static int fd_array_map_alloc_check(union bpf_attr *attr) 760 { 761 /* only file descriptors can be stored in this type of map */ 762 if (attr->value_size != sizeof(u32)) 763 return -EINVAL; 764 /* Program read-only/write-only not supported for special maps yet. */ 765 if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) 766 return -EINVAL; 767 return array_map_alloc_check(attr); 768 } 769 770 static void fd_array_map_free(struct bpf_map *map) 771 { 772 struct bpf_array *array = container_of(map, struct bpf_array, map); 773 int i; 774 775 /* make sure it's empty */ 776 for (i = 0; i < array->map.max_entries; i++) 777 BUG_ON(array->ptrs[i] != NULL); 778 779 bpf_map_area_free(array); 780 } 781 782 static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key) 783 { 784 return ERR_PTR(-EOPNOTSUPP); 785 } 786 787 /* only called from syscall */ 788 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 789 { 790 void **elem, *ptr; 791 int ret = 0; 792 793 if (!map->ops->map_fd_sys_lookup_elem) 794 return -ENOTSUPP; 795 796 rcu_read_lock(); 797 elem = array_map_lookup_elem(map, key); 798 if (elem && (ptr = READ_ONCE(*elem))) 799 *value = map->ops->map_fd_sys_lookup_elem(ptr); 800 else 801 ret = -ENOENT; 802 rcu_read_unlock(); 803 804 return ret; 805 } 806 807 /* only called from syscall */ 808 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 809 void *key, void *value, u64 map_flags) 810 { 811 struct bpf_array *array = container_of(map, struct bpf_array, map); 812 void *new_ptr, *old_ptr; 813 u32 index = *(u32 *)key, ufd; 814 815 if (map_flags != BPF_ANY) 816 return -EINVAL; 817 818 if (index >= array->map.max_entries) 819 return -E2BIG; 820 821 ufd = *(u32 *)value; 822 new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 823 if (IS_ERR(new_ptr)) 824 return PTR_ERR(new_ptr); 825 826 if (map->ops->map_poke_run) { 827 mutex_lock(&array->aux->poke_mutex); 828 old_ptr = xchg(array->ptrs + index, new_ptr); 829 map->ops->map_poke_run(map, index, old_ptr, new_ptr); 830 mutex_unlock(&array->aux->poke_mutex); 831 } else { 832 old_ptr = xchg(array->ptrs + index, new_ptr); 833 } 834 835 if (old_ptr) 836 map->ops->map_fd_put_ptr(old_ptr); 837 return 0; 838 } 839 840 static int fd_array_map_delete_elem(struct bpf_map *map, void *key) 841 { 842 struct bpf_array *array = container_of(map, struct bpf_array, map); 843 void *old_ptr; 844 u32 index = *(u32 *)key; 845 846 if (index >= array->map.max_entries) 847 return -E2BIG; 848 849 if (map->ops->map_poke_run) { 850 mutex_lock(&array->aux->poke_mutex); 851 old_ptr = xchg(array->ptrs + index, NULL); 852 map->ops->map_poke_run(map, index, old_ptr, NULL); 853 mutex_unlock(&array->aux->poke_mutex); 854 } else { 855 old_ptr = xchg(array->ptrs + index, NULL); 856 } 857 858 if (old_ptr) { 859 map->ops->map_fd_put_ptr(old_ptr); 860 return 0; 861 } else { 862 return -ENOENT; 863 } 864 } 865 866 static void *prog_fd_array_get_ptr(struct bpf_map *map, 867 struct file *map_file, int fd) 868 { 869 struct bpf_prog *prog = bpf_prog_get(fd); 870 871 if (IS_ERR(prog)) 872 return prog; 873 874 if (!bpf_prog_map_compatible(map, prog)) { 875 bpf_prog_put(prog); 876 return ERR_PTR(-EINVAL); 877 } 878 879 return prog; 880 } 881 882 static void prog_fd_array_put_ptr(void *ptr) 883 { 884 bpf_prog_put(ptr); 885 } 886 887 static u32 prog_fd_array_sys_lookup_elem(void *ptr) 888 { 889 return ((struct bpf_prog *)ptr)->aux->id; 890 } 891 892 /* decrement refcnt of all bpf_progs that are stored in this map */ 893 static void bpf_fd_array_map_clear(struct bpf_map *map) 894 { 895 struct bpf_array *array = container_of(map, struct bpf_array, map); 896 int i; 897 898 for (i = 0; i < array->map.max_entries; i++) 899 fd_array_map_delete_elem(map, &i); 900 } 901 902 static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key, 903 struct seq_file *m) 904 { 905 void **elem, *ptr; 906 u32 prog_id; 907 908 rcu_read_lock(); 909 910 elem = array_map_lookup_elem(map, key); 911 if (elem) { 912 ptr = READ_ONCE(*elem); 913 if (ptr) { 914 seq_printf(m, "%u: ", *(u32 *)key); 915 prog_id = prog_fd_array_sys_lookup_elem(ptr); 916 btf_type_seq_show(map->btf, map->btf_value_type_id, 917 &prog_id, m); 918 seq_puts(m, "\n"); 919 } 920 } 921 922 rcu_read_unlock(); 923 } 924 925 struct prog_poke_elem { 926 struct list_head list; 927 struct bpf_prog_aux *aux; 928 }; 929 930 static int prog_array_map_poke_track(struct bpf_map *map, 931 struct bpf_prog_aux *prog_aux) 932 { 933 struct prog_poke_elem *elem; 934 struct bpf_array_aux *aux; 935 int ret = 0; 936 937 aux = container_of(map, struct bpf_array, map)->aux; 938 mutex_lock(&aux->poke_mutex); 939 list_for_each_entry(elem, &aux->poke_progs, list) { 940 if (elem->aux == prog_aux) 941 goto out; 942 } 943 944 elem = kmalloc(sizeof(*elem), GFP_KERNEL); 945 if (!elem) { 946 ret = -ENOMEM; 947 goto out; 948 } 949 950 INIT_LIST_HEAD(&elem->list); 951 /* We must track the program's aux info at this point in time 952 * since the program pointer itself may not be stable yet, see 953 * also comment in prog_array_map_poke_run(). 954 */ 955 elem->aux = prog_aux; 956 957 list_add_tail(&elem->list, &aux->poke_progs); 958 out: 959 mutex_unlock(&aux->poke_mutex); 960 return ret; 961 } 962 963 static void prog_array_map_poke_untrack(struct bpf_map *map, 964 struct bpf_prog_aux *prog_aux) 965 { 966 struct prog_poke_elem *elem, *tmp; 967 struct bpf_array_aux *aux; 968 969 aux = container_of(map, struct bpf_array, map)->aux; 970 mutex_lock(&aux->poke_mutex); 971 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 972 if (elem->aux == prog_aux) { 973 list_del_init(&elem->list); 974 kfree(elem); 975 break; 976 } 977 } 978 mutex_unlock(&aux->poke_mutex); 979 } 980 981 static void prog_array_map_poke_run(struct bpf_map *map, u32 key, 982 struct bpf_prog *old, 983 struct bpf_prog *new) 984 { 985 u8 *old_addr, *new_addr, *old_bypass_addr; 986 struct prog_poke_elem *elem; 987 struct bpf_array_aux *aux; 988 989 aux = container_of(map, struct bpf_array, map)->aux; 990 WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex)); 991 992 list_for_each_entry(elem, &aux->poke_progs, list) { 993 struct bpf_jit_poke_descriptor *poke; 994 int i, ret; 995 996 for (i = 0; i < elem->aux->size_poke_tab; i++) { 997 poke = &elem->aux->poke_tab[i]; 998 999 /* Few things to be aware of: 1000 * 1001 * 1) We can only ever access aux in this context, but 1002 * not aux->prog since it might not be stable yet and 1003 * there could be danger of use after free otherwise. 1004 * 2) Initially when we start tracking aux, the program 1005 * is not JITed yet and also does not have a kallsyms 1006 * entry. We skip these as poke->tailcall_target_stable 1007 * is not active yet. The JIT will do the final fixup 1008 * before setting it stable. The various 1009 * poke->tailcall_target_stable are successively 1010 * activated, so tail call updates can arrive from here 1011 * while JIT is still finishing its final fixup for 1012 * non-activated poke entries. 1013 * 3) On program teardown, the program's kallsym entry gets 1014 * removed out of RCU callback, but we can only untrack 1015 * from sleepable context, therefore bpf_arch_text_poke() 1016 * might not see that this is in BPF text section and 1017 * bails out with -EINVAL. As these are unreachable since 1018 * RCU grace period already passed, we simply skip them. 1019 * 4) Also programs reaching refcount of zero while patching 1020 * is in progress is okay since we're protected under 1021 * poke_mutex and untrack the programs before the JIT 1022 * buffer is freed. When we're still in the middle of 1023 * patching and suddenly kallsyms entry of the program 1024 * gets evicted, we just skip the rest which is fine due 1025 * to point 3). 1026 * 5) Any other error happening below from bpf_arch_text_poke() 1027 * is a unexpected bug. 1028 */ 1029 if (!READ_ONCE(poke->tailcall_target_stable)) 1030 continue; 1031 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 1032 continue; 1033 if (poke->tail_call.map != map || 1034 poke->tail_call.key != key) 1035 continue; 1036 1037 old_bypass_addr = old ? NULL : poke->bypass_addr; 1038 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL; 1039 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL; 1040 1041 if (new) { 1042 ret = bpf_arch_text_poke(poke->tailcall_target, 1043 BPF_MOD_JUMP, 1044 old_addr, new_addr); 1045 BUG_ON(ret < 0 && ret != -EINVAL); 1046 if (!old) { 1047 ret = bpf_arch_text_poke(poke->tailcall_bypass, 1048 BPF_MOD_JUMP, 1049 poke->bypass_addr, 1050 NULL); 1051 BUG_ON(ret < 0 && ret != -EINVAL); 1052 } 1053 } else { 1054 ret = bpf_arch_text_poke(poke->tailcall_bypass, 1055 BPF_MOD_JUMP, 1056 old_bypass_addr, 1057 poke->bypass_addr); 1058 BUG_ON(ret < 0 && ret != -EINVAL); 1059 /* let other CPUs finish the execution of program 1060 * so that it will not possible to expose them 1061 * to invalid nop, stack unwind, nop state 1062 */ 1063 if (!ret) 1064 synchronize_rcu(); 1065 ret = bpf_arch_text_poke(poke->tailcall_target, 1066 BPF_MOD_JUMP, 1067 old_addr, NULL); 1068 BUG_ON(ret < 0 && ret != -EINVAL); 1069 } 1070 } 1071 } 1072 } 1073 1074 static void prog_array_map_clear_deferred(struct work_struct *work) 1075 { 1076 struct bpf_map *map = container_of(work, struct bpf_array_aux, 1077 work)->map; 1078 bpf_fd_array_map_clear(map); 1079 bpf_map_put(map); 1080 } 1081 1082 static void prog_array_map_clear(struct bpf_map *map) 1083 { 1084 struct bpf_array_aux *aux = container_of(map, struct bpf_array, 1085 map)->aux; 1086 bpf_map_inc(map); 1087 schedule_work(&aux->work); 1088 } 1089 1090 static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr) 1091 { 1092 struct bpf_array_aux *aux; 1093 struct bpf_map *map; 1094 1095 aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT); 1096 if (!aux) 1097 return ERR_PTR(-ENOMEM); 1098 1099 INIT_WORK(&aux->work, prog_array_map_clear_deferred); 1100 INIT_LIST_HEAD(&aux->poke_progs); 1101 mutex_init(&aux->poke_mutex); 1102 1103 map = array_map_alloc(attr); 1104 if (IS_ERR(map)) { 1105 kfree(aux); 1106 return map; 1107 } 1108 1109 container_of(map, struct bpf_array, map)->aux = aux; 1110 aux->map = map; 1111 1112 return map; 1113 } 1114 1115 static void prog_array_map_free(struct bpf_map *map) 1116 { 1117 struct prog_poke_elem *elem, *tmp; 1118 struct bpf_array_aux *aux; 1119 1120 aux = container_of(map, struct bpf_array, map)->aux; 1121 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 1122 list_del_init(&elem->list); 1123 kfree(elem); 1124 } 1125 kfree(aux); 1126 fd_array_map_free(map); 1127 } 1128 1129 /* prog_array->aux->{type,jited} is a runtime binding. 1130 * Doing static check alone in the verifier is not enough. 1131 * Thus, prog_array_map cannot be used as an inner_map 1132 * and map_meta_equal is not implemented. 1133 */ 1134 const struct bpf_map_ops prog_array_map_ops = { 1135 .map_alloc_check = fd_array_map_alloc_check, 1136 .map_alloc = prog_array_map_alloc, 1137 .map_free = prog_array_map_free, 1138 .map_poke_track = prog_array_map_poke_track, 1139 .map_poke_untrack = prog_array_map_poke_untrack, 1140 .map_poke_run = prog_array_map_poke_run, 1141 .map_get_next_key = array_map_get_next_key, 1142 .map_lookup_elem = fd_array_map_lookup_elem, 1143 .map_delete_elem = fd_array_map_delete_elem, 1144 .map_fd_get_ptr = prog_fd_array_get_ptr, 1145 .map_fd_put_ptr = prog_fd_array_put_ptr, 1146 .map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem, 1147 .map_release_uref = prog_array_map_clear, 1148 .map_seq_show_elem = prog_array_map_seq_show_elem, 1149 .map_btf_id = &array_map_btf_ids[0], 1150 }; 1151 1152 static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file, 1153 struct file *map_file) 1154 { 1155 struct bpf_event_entry *ee; 1156 1157 ee = kzalloc(sizeof(*ee), GFP_ATOMIC); 1158 if (ee) { 1159 ee->event = perf_file->private_data; 1160 ee->perf_file = perf_file; 1161 ee->map_file = map_file; 1162 } 1163 1164 return ee; 1165 } 1166 1167 static void __bpf_event_entry_free(struct rcu_head *rcu) 1168 { 1169 struct bpf_event_entry *ee; 1170 1171 ee = container_of(rcu, struct bpf_event_entry, rcu); 1172 fput(ee->perf_file); 1173 kfree(ee); 1174 } 1175 1176 static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee) 1177 { 1178 call_rcu(&ee->rcu, __bpf_event_entry_free); 1179 } 1180 1181 static void *perf_event_fd_array_get_ptr(struct bpf_map *map, 1182 struct file *map_file, int fd) 1183 { 1184 struct bpf_event_entry *ee; 1185 struct perf_event *event; 1186 struct file *perf_file; 1187 u64 value; 1188 1189 perf_file = perf_event_get(fd); 1190 if (IS_ERR(perf_file)) 1191 return perf_file; 1192 1193 ee = ERR_PTR(-EOPNOTSUPP); 1194 event = perf_file->private_data; 1195 if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP) 1196 goto err_out; 1197 1198 ee = bpf_event_entry_gen(perf_file, map_file); 1199 if (ee) 1200 return ee; 1201 ee = ERR_PTR(-ENOMEM); 1202 err_out: 1203 fput(perf_file); 1204 return ee; 1205 } 1206 1207 static void perf_event_fd_array_put_ptr(void *ptr) 1208 { 1209 bpf_event_entry_free_rcu(ptr); 1210 } 1211 1212 static void perf_event_fd_array_release(struct bpf_map *map, 1213 struct file *map_file) 1214 { 1215 struct bpf_array *array = container_of(map, struct bpf_array, map); 1216 struct bpf_event_entry *ee; 1217 int i; 1218 1219 if (map->map_flags & BPF_F_PRESERVE_ELEMS) 1220 return; 1221 1222 rcu_read_lock(); 1223 for (i = 0; i < array->map.max_entries; i++) { 1224 ee = READ_ONCE(array->ptrs[i]); 1225 if (ee && ee->map_file == map_file) 1226 fd_array_map_delete_elem(map, &i); 1227 } 1228 rcu_read_unlock(); 1229 } 1230 1231 static void perf_event_fd_array_map_free(struct bpf_map *map) 1232 { 1233 if (map->map_flags & BPF_F_PRESERVE_ELEMS) 1234 bpf_fd_array_map_clear(map); 1235 fd_array_map_free(map); 1236 } 1237 1238 const struct bpf_map_ops perf_event_array_map_ops = { 1239 .map_meta_equal = bpf_map_meta_equal, 1240 .map_alloc_check = fd_array_map_alloc_check, 1241 .map_alloc = array_map_alloc, 1242 .map_free = perf_event_fd_array_map_free, 1243 .map_get_next_key = array_map_get_next_key, 1244 .map_lookup_elem = fd_array_map_lookup_elem, 1245 .map_delete_elem = fd_array_map_delete_elem, 1246 .map_fd_get_ptr = perf_event_fd_array_get_ptr, 1247 .map_fd_put_ptr = perf_event_fd_array_put_ptr, 1248 .map_release = perf_event_fd_array_release, 1249 .map_check_btf = map_check_no_btf, 1250 .map_btf_id = &array_map_btf_ids[0], 1251 }; 1252 1253 #ifdef CONFIG_CGROUPS 1254 static void *cgroup_fd_array_get_ptr(struct bpf_map *map, 1255 struct file *map_file /* not used */, 1256 int fd) 1257 { 1258 return cgroup_get_from_fd(fd); 1259 } 1260 1261 static void cgroup_fd_array_put_ptr(void *ptr) 1262 { 1263 /* cgroup_put free cgrp after a rcu grace period */ 1264 cgroup_put(ptr); 1265 } 1266 1267 static void cgroup_fd_array_free(struct bpf_map *map) 1268 { 1269 bpf_fd_array_map_clear(map); 1270 fd_array_map_free(map); 1271 } 1272 1273 const struct bpf_map_ops cgroup_array_map_ops = { 1274 .map_meta_equal = bpf_map_meta_equal, 1275 .map_alloc_check = fd_array_map_alloc_check, 1276 .map_alloc = array_map_alloc, 1277 .map_free = cgroup_fd_array_free, 1278 .map_get_next_key = array_map_get_next_key, 1279 .map_lookup_elem = fd_array_map_lookup_elem, 1280 .map_delete_elem = fd_array_map_delete_elem, 1281 .map_fd_get_ptr = cgroup_fd_array_get_ptr, 1282 .map_fd_put_ptr = cgroup_fd_array_put_ptr, 1283 .map_check_btf = map_check_no_btf, 1284 .map_btf_id = &array_map_btf_ids[0], 1285 }; 1286 #endif 1287 1288 static struct bpf_map *array_of_map_alloc(union bpf_attr *attr) 1289 { 1290 struct bpf_map *map, *inner_map_meta; 1291 1292 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 1293 if (IS_ERR(inner_map_meta)) 1294 return inner_map_meta; 1295 1296 map = array_map_alloc(attr); 1297 if (IS_ERR(map)) { 1298 bpf_map_meta_free(inner_map_meta); 1299 return map; 1300 } 1301 1302 map->inner_map_meta = inner_map_meta; 1303 1304 return map; 1305 } 1306 1307 static void array_of_map_free(struct bpf_map *map) 1308 { 1309 /* map->inner_map_meta is only accessed by syscall which 1310 * is protected by fdget/fdput. 1311 */ 1312 bpf_map_meta_free(map->inner_map_meta); 1313 bpf_fd_array_map_clear(map); 1314 fd_array_map_free(map); 1315 } 1316 1317 static void *array_of_map_lookup_elem(struct bpf_map *map, void *key) 1318 { 1319 struct bpf_map **inner_map = array_map_lookup_elem(map, key); 1320 1321 if (!inner_map) 1322 return NULL; 1323 1324 return READ_ONCE(*inner_map); 1325 } 1326 1327 static int array_of_map_gen_lookup(struct bpf_map *map, 1328 struct bpf_insn *insn_buf) 1329 { 1330 struct bpf_array *array = container_of(map, struct bpf_array, map); 1331 u32 elem_size = array->elem_size; 1332 struct bpf_insn *insn = insn_buf; 1333 const int ret = BPF_REG_0; 1334 const int map_ptr = BPF_REG_1; 1335 const int index = BPF_REG_2; 1336 1337 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 1338 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 1339 if (!map->bypass_spec_v1) { 1340 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6); 1341 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 1342 } else { 1343 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5); 1344 } 1345 if (is_power_of_2(elem_size)) 1346 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 1347 else 1348 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 1349 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 1350 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 1351 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 1352 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 1353 *insn++ = BPF_MOV64_IMM(ret, 0); 1354 1355 return insn - insn_buf; 1356 } 1357 1358 const struct bpf_map_ops array_of_maps_map_ops = { 1359 .map_alloc_check = fd_array_map_alloc_check, 1360 .map_alloc = array_of_map_alloc, 1361 .map_free = array_of_map_free, 1362 .map_get_next_key = array_map_get_next_key, 1363 .map_lookup_elem = array_of_map_lookup_elem, 1364 .map_delete_elem = fd_array_map_delete_elem, 1365 .map_fd_get_ptr = bpf_map_fd_get_ptr, 1366 .map_fd_put_ptr = bpf_map_fd_put_ptr, 1367 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 1368 .map_gen_lookup = array_of_map_gen_lookup, 1369 .map_lookup_batch = generic_map_lookup_batch, 1370 .map_update_batch = generic_map_update_batch, 1371 .map_check_btf = map_check_no_btf, 1372 .map_btf_id = &array_map_btf_ids[0], 1373 }; 1374