1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016,2017 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/err.h> 8 #include <linux/slab.h> 9 #include <linux/mm.h> 10 #include <linux/filter.h> 11 #include <linux/perf_event.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/rcupdate_trace.h> 14 #include <linux/btf_ids.h> 15 16 #include "map_in_map.h" 17 18 #define ARRAY_CREATE_FLAG_MASK \ 19 (BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \ 20 BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP) 21 22 static void bpf_array_free_percpu(struct bpf_array *array) 23 { 24 int i; 25 26 for (i = 0; i < array->map.max_entries; i++) { 27 free_percpu(array->pptrs[i]); 28 cond_resched(); 29 } 30 } 31 32 static int bpf_array_alloc_percpu(struct bpf_array *array) 33 { 34 void __percpu *ptr; 35 int i; 36 37 for (i = 0; i < array->map.max_entries; i++) { 38 ptr = bpf_map_alloc_percpu(&array->map, array->elem_size, 8, 39 GFP_USER | __GFP_NOWARN); 40 if (!ptr) { 41 bpf_array_free_percpu(array); 42 return -ENOMEM; 43 } 44 array->pptrs[i] = ptr; 45 cond_resched(); 46 } 47 48 return 0; 49 } 50 51 /* Called from syscall */ 52 int array_map_alloc_check(union bpf_attr *attr) 53 { 54 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 55 int numa_node = bpf_map_attr_numa_node(attr); 56 57 /* check sanity of attributes */ 58 if (attr->max_entries == 0 || attr->key_size != 4 || 59 attr->value_size == 0 || 60 attr->map_flags & ~ARRAY_CREATE_FLAG_MASK || 61 !bpf_map_flags_access_ok(attr->map_flags) || 62 (percpu && numa_node != NUMA_NO_NODE)) 63 return -EINVAL; 64 65 if (attr->map_type != BPF_MAP_TYPE_ARRAY && 66 attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP)) 67 return -EINVAL; 68 69 if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY && 70 attr->map_flags & BPF_F_PRESERVE_ELEMS) 71 return -EINVAL; 72 73 /* avoid overflow on round_up(map->value_size) */ 74 if (attr->value_size > INT_MAX) 75 return -E2BIG; 76 77 return 0; 78 } 79 80 static struct bpf_map *array_map_alloc(union bpf_attr *attr) 81 { 82 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 83 int numa_node = bpf_map_attr_numa_node(attr); 84 u32 elem_size, index_mask, max_entries; 85 bool bypass_spec_v1 = bpf_bypass_spec_v1(); 86 u64 array_size, mask64; 87 struct bpf_array *array; 88 89 elem_size = round_up(attr->value_size, 8); 90 91 max_entries = attr->max_entries; 92 93 /* On 32 bit archs roundup_pow_of_two() with max_entries that has 94 * upper most bit set in u32 space is undefined behavior due to 95 * resulting 1U << 32, so do it manually here in u64 space. 96 */ 97 mask64 = fls_long(max_entries - 1); 98 mask64 = 1ULL << mask64; 99 mask64 -= 1; 100 101 index_mask = mask64; 102 if (!bypass_spec_v1) { 103 /* round up array size to nearest power of 2, 104 * since cpu will speculate within index_mask limits 105 */ 106 max_entries = index_mask + 1; 107 /* Check for overflows. */ 108 if (max_entries < attr->max_entries) 109 return ERR_PTR(-E2BIG); 110 } 111 112 array_size = sizeof(*array); 113 if (percpu) { 114 array_size += (u64) max_entries * sizeof(void *); 115 } else { 116 /* rely on vmalloc() to return page-aligned memory and 117 * ensure array->value is exactly page-aligned 118 */ 119 if (attr->map_flags & BPF_F_MMAPABLE) { 120 array_size = PAGE_ALIGN(array_size); 121 array_size += PAGE_ALIGN((u64) max_entries * elem_size); 122 } else { 123 array_size += (u64) max_entries * elem_size; 124 } 125 } 126 127 /* allocate all map elements and zero-initialize them */ 128 if (attr->map_flags & BPF_F_MMAPABLE) { 129 void *data; 130 131 /* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */ 132 data = bpf_map_area_mmapable_alloc(array_size, numa_node); 133 if (!data) 134 return ERR_PTR(-ENOMEM); 135 array = data + PAGE_ALIGN(sizeof(struct bpf_array)) 136 - offsetof(struct bpf_array, value); 137 } else { 138 array = bpf_map_area_alloc(array_size, numa_node); 139 } 140 if (!array) 141 return ERR_PTR(-ENOMEM); 142 array->index_mask = index_mask; 143 array->map.bypass_spec_v1 = bypass_spec_v1; 144 145 /* copy mandatory map attributes */ 146 bpf_map_init_from_attr(&array->map, attr); 147 array->elem_size = elem_size; 148 149 if (percpu && bpf_array_alloc_percpu(array)) { 150 bpf_map_area_free(array); 151 return ERR_PTR(-ENOMEM); 152 } 153 154 return &array->map; 155 } 156 157 static void *array_map_elem_ptr(struct bpf_array* array, u32 index) 158 { 159 return array->value + (u64)array->elem_size * index; 160 } 161 162 /* Called from syscall or from eBPF program */ 163 static void *array_map_lookup_elem(struct bpf_map *map, void *key) 164 { 165 struct bpf_array *array = container_of(map, struct bpf_array, map); 166 u32 index = *(u32 *)key; 167 168 if (unlikely(index >= array->map.max_entries)) 169 return NULL; 170 171 return array->value + (u64)array->elem_size * (index & array->index_mask); 172 } 173 174 static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm, 175 u32 off) 176 { 177 struct bpf_array *array = container_of(map, struct bpf_array, map); 178 179 if (map->max_entries != 1) 180 return -ENOTSUPP; 181 if (off >= map->value_size) 182 return -EINVAL; 183 184 *imm = (unsigned long)array->value; 185 return 0; 186 } 187 188 static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm, 189 u32 *off) 190 { 191 struct bpf_array *array = container_of(map, struct bpf_array, map); 192 u64 base = (unsigned long)array->value; 193 u64 range = array->elem_size; 194 195 if (map->max_entries != 1) 196 return -ENOTSUPP; 197 if (imm < base || imm >= base + range) 198 return -ENOENT; 199 200 *off = imm - base; 201 return 0; 202 } 203 204 /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */ 205 static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 206 { 207 struct bpf_array *array = container_of(map, struct bpf_array, map); 208 struct bpf_insn *insn = insn_buf; 209 u32 elem_size = array->elem_size; 210 const int ret = BPF_REG_0; 211 const int map_ptr = BPF_REG_1; 212 const int index = BPF_REG_2; 213 214 if (map->map_flags & BPF_F_INNER_MAP) 215 return -EOPNOTSUPP; 216 217 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 218 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 219 if (!map->bypass_spec_v1) { 220 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4); 221 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 222 } else { 223 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3); 224 } 225 226 if (is_power_of_2(elem_size)) { 227 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 228 } else { 229 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 230 } 231 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 232 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 233 *insn++ = BPF_MOV64_IMM(ret, 0); 234 return insn - insn_buf; 235 } 236 237 /* Called from eBPF program */ 238 static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key) 239 { 240 struct bpf_array *array = container_of(map, struct bpf_array, map); 241 u32 index = *(u32 *)key; 242 243 if (unlikely(index >= array->map.max_entries)) 244 return NULL; 245 246 return this_cpu_ptr(array->pptrs[index & array->index_mask]); 247 } 248 249 static void *percpu_array_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 250 { 251 struct bpf_array *array = container_of(map, struct bpf_array, map); 252 u32 index = *(u32 *)key; 253 254 if (cpu >= nr_cpu_ids) 255 return NULL; 256 257 if (unlikely(index >= array->map.max_entries)) 258 return NULL; 259 260 return per_cpu_ptr(array->pptrs[index & array->index_mask], cpu); 261 } 262 263 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value) 264 { 265 struct bpf_array *array = container_of(map, struct bpf_array, map); 266 u32 index = *(u32 *)key; 267 void __percpu *pptr; 268 int cpu, off = 0; 269 u32 size; 270 271 if (unlikely(index >= array->map.max_entries)) 272 return -ENOENT; 273 274 /* per_cpu areas are zero-filled and bpf programs can only 275 * access 'value_size' of them, so copying rounded areas 276 * will not leak any kernel data 277 */ 278 size = array->elem_size; 279 rcu_read_lock(); 280 pptr = array->pptrs[index & array->index_mask]; 281 for_each_possible_cpu(cpu) { 282 copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); 283 check_and_init_map_value(map, value + off); 284 off += size; 285 } 286 rcu_read_unlock(); 287 return 0; 288 } 289 290 /* Called from syscall */ 291 static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 292 { 293 struct bpf_array *array = container_of(map, struct bpf_array, map); 294 u32 index = key ? *(u32 *)key : U32_MAX; 295 u32 *next = (u32 *)next_key; 296 297 if (index >= array->map.max_entries) { 298 *next = 0; 299 return 0; 300 } 301 302 if (index == array->map.max_entries - 1) 303 return -ENOENT; 304 305 *next = index + 1; 306 return 0; 307 } 308 309 /* Called from syscall or from eBPF program */ 310 static long array_map_update_elem(struct bpf_map *map, void *key, void *value, 311 u64 map_flags) 312 { 313 struct bpf_array *array = container_of(map, struct bpf_array, map); 314 u32 index = *(u32 *)key; 315 char *val; 316 317 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 318 /* unknown flags */ 319 return -EINVAL; 320 321 if (unlikely(index >= array->map.max_entries)) 322 /* all elements were pre-allocated, cannot insert a new one */ 323 return -E2BIG; 324 325 if (unlikely(map_flags & BPF_NOEXIST)) 326 /* all elements already exist */ 327 return -EEXIST; 328 329 if (unlikely((map_flags & BPF_F_LOCK) && 330 !btf_record_has_field(map->record, BPF_SPIN_LOCK))) 331 return -EINVAL; 332 333 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 334 val = this_cpu_ptr(array->pptrs[index & array->index_mask]); 335 copy_map_value(map, val, value); 336 bpf_obj_free_fields(array->map.record, val); 337 } else { 338 val = array->value + 339 (u64)array->elem_size * (index & array->index_mask); 340 if (map_flags & BPF_F_LOCK) 341 copy_map_value_locked(map, val, value, false); 342 else 343 copy_map_value(map, val, value); 344 bpf_obj_free_fields(array->map.record, val); 345 } 346 return 0; 347 } 348 349 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 350 u64 map_flags) 351 { 352 struct bpf_array *array = container_of(map, struct bpf_array, map); 353 u32 index = *(u32 *)key; 354 void __percpu *pptr; 355 int cpu, off = 0; 356 u32 size; 357 358 if (unlikely(map_flags > BPF_EXIST)) 359 /* unknown flags */ 360 return -EINVAL; 361 362 if (unlikely(index >= array->map.max_entries)) 363 /* all elements were pre-allocated, cannot insert a new one */ 364 return -E2BIG; 365 366 if (unlikely(map_flags == BPF_NOEXIST)) 367 /* all elements already exist */ 368 return -EEXIST; 369 370 /* the user space will provide round_up(value_size, 8) bytes that 371 * will be copied into per-cpu area. bpf programs can only access 372 * value_size of it. During lookup the same extra bytes will be 373 * returned or zeros which were zero-filled by percpu_alloc, 374 * so no kernel data leaks possible 375 */ 376 size = array->elem_size; 377 rcu_read_lock(); 378 pptr = array->pptrs[index & array->index_mask]; 379 for_each_possible_cpu(cpu) { 380 copy_map_value_long(map, per_cpu_ptr(pptr, cpu), value + off); 381 bpf_obj_free_fields(array->map.record, per_cpu_ptr(pptr, cpu)); 382 off += size; 383 } 384 rcu_read_unlock(); 385 return 0; 386 } 387 388 /* Called from syscall or from eBPF program */ 389 static long array_map_delete_elem(struct bpf_map *map, void *key) 390 { 391 return -EINVAL; 392 } 393 394 static void *array_map_vmalloc_addr(struct bpf_array *array) 395 { 396 return (void *)round_down((unsigned long)array, PAGE_SIZE); 397 } 398 399 static void array_map_free_timers(struct bpf_map *map) 400 { 401 struct bpf_array *array = container_of(map, struct bpf_array, map); 402 int i; 403 404 /* We don't reset or free fields other than timer on uref dropping to zero. */ 405 if (!btf_record_has_field(map->record, BPF_TIMER)) 406 return; 407 408 for (i = 0; i < array->map.max_entries; i++) 409 bpf_obj_free_timer(map->record, array_map_elem_ptr(array, i)); 410 } 411 412 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 413 static void array_map_free(struct bpf_map *map) 414 { 415 struct bpf_array *array = container_of(map, struct bpf_array, map); 416 int i; 417 418 if (!IS_ERR_OR_NULL(map->record)) { 419 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 420 for (i = 0; i < array->map.max_entries; i++) { 421 void __percpu *pptr = array->pptrs[i & array->index_mask]; 422 int cpu; 423 424 for_each_possible_cpu(cpu) { 425 bpf_obj_free_fields(map->record, per_cpu_ptr(pptr, cpu)); 426 cond_resched(); 427 } 428 } 429 } else { 430 for (i = 0; i < array->map.max_entries; i++) 431 bpf_obj_free_fields(map->record, array_map_elem_ptr(array, i)); 432 } 433 } 434 435 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) 436 bpf_array_free_percpu(array); 437 438 if (array->map.map_flags & BPF_F_MMAPABLE) 439 bpf_map_area_free(array_map_vmalloc_addr(array)); 440 else 441 bpf_map_area_free(array); 442 } 443 444 static void array_map_seq_show_elem(struct bpf_map *map, void *key, 445 struct seq_file *m) 446 { 447 void *value; 448 449 rcu_read_lock(); 450 451 value = array_map_lookup_elem(map, key); 452 if (!value) { 453 rcu_read_unlock(); 454 return; 455 } 456 457 if (map->btf_key_type_id) 458 seq_printf(m, "%u: ", *(u32 *)key); 459 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 460 seq_puts(m, "\n"); 461 462 rcu_read_unlock(); 463 } 464 465 static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key, 466 struct seq_file *m) 467 { 468 struct bpf_array *array = container_of(map, struct bpf_array, map); 469 u32 index = *(u32 *)key; 470 void __percpu *pptr; 471 int cpu; 472 473 rcu_read_lock(); 474 475 seq_printf(m, "%u: {\n", *(u32 *)key); 476 pptr = array->pptrs[index & array->index_mask]; 477 for_each_possible_cpu(cpu) { 478 seq_printf(m, "\tcpu%d: ", cpu); 479 btf_type_seq_show(map->btf, map->btf_value_type_id, 480 per_cpu_ptr(pptr, cpu), m); 481 seq_puts(m, "\n"); 482 } 483 seq_puts(m, "}\n"); 484 485 rcu_read_unlock(); 486 } 487 488 static int array_map_check_btf(const struct bpf_map *map, 489 const struct btf *btf, 490 const struct btf_type *key_type, 491 const struct btf_type *value_type) 492 { 493 u32 int_data; 494 495 /* One exception for keyless BTF: .bss/.data/.rodata map */ 496 if (btf_type_is_void(key_type)) { 497 if (map->map_type != BPF_MAP_TYPE_ARRAY || 498 map->max_entries != 1) 499 return -EINVAL; 500 501 if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC) 502 return -EINVAL; 503 504 return 0; 505 } 506 507 if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) 508 return -EINVAL; 509 510 int_data = *(u32 *)(key_type + 1); 511 /* bpf array can only take a u32 key. This check makes sure 512 * that the btf matches the attr used during map_create. 513 */ 514 if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) 515 return -EINVAL; 516 517 return 0; 518 } 519 520 static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) 521 { 522 struct bpf_array *array = container_of(map, struct bpf_array, map); 523 pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT; 524 525 if (!(map->map_flags & BPF_F_MMAPABLE)) 526 return -EINVAL; 527 528 if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > 529 PAGE_ALIGN((u64)array->map.max_entries * array->elem_size)) 530 return -EINVAL; 531 532 return remap_vmalloc_range(vma, array_map_vmalloc_addr(array), 533 vma->vm_pgoff + pgoff); 534 } 535 536 static bool array_map_meta_equal(const struct bpf_map *meta0, 537 const struct bpf_map *meta1) 538 { 539 if (!bpf_map_meta_equal(meta0, meta1)) 540 return false; 541 return meta0->map_flags & BPF_F_INNER_MAP ? true : 542 meta0->max_entries == meta1->max_entries; 543 } 544 545 struct bpf_iter_seq_array_map_info { 546 struct bpf_map *map; 547 void *percpu_value_buf; 548 u32 index; 549 }; 550 551 static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos) 552 { 553 struct bpf_iter_seq_array_map_info *info = seq->private; 554 struct bpf_map *map = info->map; 555 struct bpf_array *array; 556 u32 index; 557 558 if (info->index >= map->max_entries) 559 return NULL; 560 561 if (*pos == 0) 562 ++*pos; 563 array = container_of(map, struct bpf_array, map); 564 index = info->index & array->index_mask; 565 if (info->percpu_value_buf) 566 return array->pptrs[index]; 567 return array_map_elem_ptr(array, index); 568 } 569 570 static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 571 { 572 struct bpf_iter_seq_array_map_info *info = seq->private; 573 struct bpf_map *map = info->map; 574 struct bpf_array *array; 575 u32 index; 576 577 ++*pos; 578 ++info->index; 579 if (info->index >= map->max_entries) 580 return NULL; 581 582 array = container_of(map, struct bpf_array, map); 583 index = info->index & array->index_mask; 584 if (info->percpu_value_buf) 585 return array->pptrs[index]; 586 return array_map_elem_ptr(array, index); 587 } 588 589 static int __bpf_array_map_seq_show(struct seq_file *seq, void *v) 590 { 591 struct bpf_iter_seq_array_map_info *info = seq->private; 592 struct bpf_iter__bpf_map_elem ctx = {}; 593 struct bpf_map *map = info->map; 594 struct bpf_array *array = container_of(map, struct bpf_array, map); 595 struct bpf_iter_meta meta; 596 struct bpf_prog *prog; 597 int off = 0, cpu = 0; 598 void __percpu **pptr; 599 u32 size; 600 601 meta.seq = seq; 602 prog = bpf_iter_get_info(&meta, v == NULL); 603 if (!prog) 604 return 0; 605 606 ctx.meta = &meta; 607 ctx.map = info->map; 608 if (v) { 609 ctx.key = &info->index; 610 611 if (!info->percpu_value_buf) { 612 ctx.value = v; 613 } else { 614 pptr = v; 615 size = array->elem_size; 616 for_each_possible_cpu(cpu) { 617 copy_map_value_long(map, info->percpu_value_buf + off, 618 per_cpu_ptr(pptr, cpu)); 619 check_and_init_map_value(map, info->percpu_value_buf + off); 620 off += size; 621 } 622 ctx.value = info->percpu_value_buf; 623 } 624 } 625 626 return bpf_iter_run_prog(prog, &ctx); 627 } 628 629 static int bpf_array_map_seq_show(struct seq_file *seq, void *v) 630 { 631 return __bpf_array_map_seq_show(seq, v); 632 } 633 634 static void bpf_array_map_seq_stop(struct seq_file *seq, void *v) 635 { 636 if (!v) 637 (void)__bpf_array_map_seq_show(seq, NULL); 638 } 639 640 static int bpf_iter_init_array_map(void *priv_data, 641 struct bpf_iter_aux_info *aux) 642 { 643 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 644 struct bpf_map *map = aux->map; 645 struct bpf_array *array = container_of(map, struct bpf_array, map); 646 void *value_buf; 647 u32 buf_size; 648 649 if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 650 buf_size = array->elem_size * num_possible_cpus(); 651 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 652 if (!value_buf) 653 return -ENOMEM; 654 655 seq_info->percpu_value_buf = value_buf; 656 } 657 658 /* bpf_iter_attach_map() acquires a map uref, and the uref may be 659 * released before or in the middle of iterating map elements, so 660 * acquire an extra map uref for iterator. 661 */ 662 bpf_map_inc_with_uref(map); 663 seq_info->map = map; 664 return 0; 665 } 666 667 static void bpf_iter_fini_array_map(void *priv_data) 668 { 669 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 670 671 bpf_map_put_with_uref(seq_info->map); 672 kfree(seq_info->percpu_value_buf); 673 } 674 675 static const struct seq_operations bpf_array_map_seq_ops = { 676 .start = bpf_array_map_seq_start, 677 .next = bpf_array_map_seq_next, 678 .stop = bpf_array_map_seq_stop, 679 .show = bpf_array_map_seq_show, 680 }; 681 682 static const struct bpf_iter_seq_info iter_seq_info = { 683 .seq_ops = &bpf_array_map_seq_ops, 684 .init_seq_private = bpf_iter_init_array_map, 685 .fini_seq_private = bpf_iter_fini_array_map, 686 .seq_priv_size = sizeof(struct bpf_iter_seq_array_map_info), 687 }; 688 689 static long bpf_for_each_array_elem(struct bpf_map *map, bpf_callback_t callback_fn, 690 void *callback_ctx, u64 flags) 691 { 692 u32 i, key, num_elems = 0; 693 struct bpf_array *array; 694 bool is_percpu; 695 u64 ret = 0; 696 void *val; 697 698 if (flags != 0) 699 return -EINVAL; 700 701 is_percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 702 array = container_of(map, struct bpf_array, map); 703 if (is_percpu) 704 migrate_disable(); 705 for (i = 0; i < map->max_entries; i++) { 706 if (is_percpu) 707 val = this_cpu_ptr(array->pptrs[i]); 708 else 709 val = array_map_elem_ptr(array, i); 710 num_elems++; 711 key = i; 712 ret = callback_fn((u64)(long)map, (u64)(long)&key, 713 (u64)(long)val, (u64)(long)callback_ctx, 0); 714 /* return value: 0 - continue, 1 - stop and return */ 715 if (ret) 716 break; 717 } 718 719 if (is_percpu) 720 migrate_enable(); 721 return num_elems; 722 } 723 724 static u64 array_map_mem_usage(const struct bpf_map *map) 725 { 726 struct bpf_array *array = container_of(map, struct bpf_array, map); 727 bool percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 728 u32 elem_size = array->elem_size; 729 u64 entries = map->max_entries; 730 u64 usage = sizeof(*array); 731 732 if (percpu) { 733 usage += entries * sizeof(void *); 734 usage += entries * elem_size * num_possible_cpus(); 735 } else { 736 if (map->map_flags & BPF_F_MMAPABLE) { 737 usage = PAGE_ALIGN(usage); 738 usage += PAGE_ALIGN(entries * elem_size); 739 } else { 740 usage += entries * elem_size; 741 } 742 } 743 return usage; 744 } 745 746 BTF_ID_LIST_SINGLE(array_map_btf_ids, struct, bpf_array) 747 const struct bpf_map_ops array_map_ops = { 748 .map_meta_equal = array_map_meta_equal, 749 .map_alloc_check = array_map_alloc_check, 750 .map_alloc = array_map_alloc, 751 .map_free = array_map_free, 752 .map_get_next_key = array_map_get_next_key, 753 .map_release_uref = array_map_free_timers, 754 .map_lookup_elem = array_map_lookup_elem, 755 .map_update_elem = array_map_update_elem, 756 .map_delete_elem = array_map_delete_elem, 757 .map_gen_lookup = array_map_gen_lookup, 758 .map_direct_value_addr = array_map_direct_value_addr, 759 .map_direct_value_meta = array_map_direct_value_meta, 760 .map_mmap = array_map_mmap, 761 .map_seq_show_elem = array_map_seq_show_elem, 762 .map_check_btf = array_map_check_btf, 763 .map_lookup_batch = generic_map_lookup_batch, 764 .map_update_batch = generic_map_update_batch, 765 .map_set_for_each_callback_args = map_set_for_each_callback_args, 766 .map_for_each_callback = bpf_for_each_array_elem, 767 .map_mem_usage = array_map_mem_usage, 768 .map_btf_id = &array_map_btf_ids[0], 769 .iter_seq_info = &iter_seq_info, 770 }; 771 772 const struct bpf_map_ops percpu_array_map_ops = { 773 .map_meta_equal = bpf_map_meta_equal, 774 .map_alloc_check = array_map_alloc_check, 775 .map_alloc = array_map_alloc, 776 .map_free = array_map_free, 777 .map_get_next_key = array_map_get_next_key, 778 .map_lookup_elem = percpu_array_map_lookup_elem, 779 .map_update_elem = array_map_update_elem, 780 .map_delete_elem = array_map_delete_elem, 781 .map_lookup_percpu_elem = percpu_array_map_lookup_percpu_elem, 782 .map_seq_show_elem = percpu_array_map_seq_show_elem, 783 .map_check_btf = array_map_check_btf, 784 .map_lookup_batch = generic_map_lookup_batch, 785 .map_update_batch = generic_map_update_batch, 786 .map_set_for_each_callback_args = map_set_for_each_callback_args, 787 .map_for_each_callback = bpf_for_each_array_elem, 788 .map_mem_usage = array_map_mem_usage, 789 .map_btf_id = &array_map_btf_ids[0], 790 .iter_seq_info = &iter_seq_info, 791 }; 792 793 static int fd_array_map_alloc_check(union bpf_attr *attr) 794 { 795 /* only file descriptors can be stored in this type of map */ 796 if (attr->value_size != sizeof(u32)) 797 return -EINVAL; 798 /* Program read-only/write-only not supported for special maps yet. */ 799 if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) 800 return -EINVAL; 801 return array_map_alloc_check(attr); 802 } 803 804 static void fd_array_map_free(struct bpf_map *map) 805 { 806 struct bpf_array *array = container_of(map, struct bpf_array, map); 807 int i; 808 809 /* make sure it's empty */ 810 for (i = 0; i < array->map.max_entries; i++) 811 BUG_ON(array->ptrs[i] != NULL); 812 813 bpf_map_area_free(array); 814 } 815 816 static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key) 817 { 818 return ERR_PTR(-EOPNOTSUPP); 819 } 820 821 /* only called from syscall */ 822 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 823 { 824 void **elem, *ptr; 825 int ret = 0; 826 827 if (!map->ops->map_fd_sys_lookup_elem) 828 return -ENOTSUPP; 829 830 rcu_read_lock(); 831 elem = array_map_lookup_elem(map, key); 832 if (elem && (ptr = READ_ONCE(*elem))) 833 *value = map->ops->map_fd_sys_lookup_elem(ptr); 834 else 835 ret = -ENOENT; 836 rcu_read_unlock(); 837 838 return ret; 839 } 840 841 /* only called from syscall */ 842 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 843 void *key, void *value, u64 map_flags) 844 { 845 struct bpf_array *array = container_of(map, struct bpf_array, map); 846 void *new_ptr, *old_ptr; 847 u32 index = *(u32 *)key, ufd; 848 849 if (map_flags != BPF_ANY) 850 return -EINVAL; 851 852 if (index >= array->map.max_entries) 853 return -E2BIG; 854 855 ufd = *(u32 *)value; 856 new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 857 if (IS_ERR(new_ptr)) 858 return PTR_ERR(new_ptr); 859 860 if (map->ops->map_poke_run) { 861 mutex_lock(&array->aux->poke_mutex); 862 old_ptr = xchg(array->ptrs + index, new_ptr); 863 map->ops->map_poke_run(map, index, old_ptr, new_ptr); 864 mutex_unlock(&array->aux->poke_mutex); 865 } else { 866 old_ptr = xchg(array->ptrs + index, new_ptr); 867 } 868 869 if (old_ptr) 870 map->ops->map_fd_put_ptr(map, old_ptr, true); 871 return 0; 872 } 873 874 static long fd_array_map_delete_elem(struct bpf_map *map, void *key) 875 { 876 struct bpf_array *array = container_of(map, struct bpf_array, map); 877 void *old_ptr; 878 u32 index = *(u32 *)key; 879 880 if (index >= array->map.max_entries) 881 return -E2BIG; 882 883 if (map->ops->map_poke_run) { 884 mutex_lock(&array->aux->poke_mutex); 885 old_ptr = xchg(array->ptrs + index, NULL); 886 map->ops->map_poke_run(map, index, old_ptr, NULL); 887 mutex_unlock(&array->aux->poke_mutex); 888 } else { 889 old_ptr = xchg(array->ptrs + index, NULL); 890 } 891 892 if (old_ptr) { 893 map->ops->map_fd_put_ptr(map, old_ptr, true); 894 return 0; 895 } else { 896 return -ENOENT; 897 } 898 } 899 900 static void *prog_fd_array_get_ptr(struct bpf_map *map, 901 struct file *map_file, int fd) 902 { 903 struct bpf_prog *prog = bpf_prog_get(fd); 904 905 if (IS_ERR(prog)) 906 return prog; 907 908 if (!bpf_prog_map_compatible(map, prog)) { 909 bpf_prog_put(prog); 910 return ERR_PTR(-EINVAL); 911 } 912 913 return prog; 914 } 915 916 static void prog_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) 917 { 918 /* bpf_prog is freed after one RCU or tasks trace grace period */ 919 bpf_prog_put(ptr); 920 } 921 922 static u32 prog_fd_array_sys_lookup_elem(void *ptr) 923 { 924 return ((struct bpf_prog *)ptr)->aux->id; 925 } 926 927 /* decrement refcnt of all bpf_progs that are stored in this map */ 928 static void bpf_fd_array_map_clear(struct bpf_map *map) 929 { 930 struct bpf_array *array = container_of(map, struct bpf_array, map); 931 int i; 932 933 for (i = 0; i < array->map.max_entries; i++) 934 fd_array_map_delete_elem(map, &i); 935 } 936 937 static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key, 938 struct seq_file *m) 939 { 940 void **elem, *ptr; 941 u32 prog_id; 942 943 rcu_read_lock(); 944 945 elem = array_map_lookup_elem(map, key); 946 if (elem) { 947 ptr = READ_ONCE(*elem); 948 if (ptr) { 949 seq_printf(m, "%u: ", *(u32 *)key); 950 prog_id = prog_fd_array_sys_lookup_elem(ptr); 951 btf_type_seq_show(map->btf, map->btf_value_type_id, 952 &prog_id, m); 953 seq_puts(m, "\n"); 954 } 955 } 956 957 rcu_read_unlock(); 958 } 959 960 struct prog_poke_elem { 961 struct list_head list; 962 struct bpf_prog_aux *aux; 963 }; 964 965 static int prog_array_map_poke_track(struct bpf_map *map, 966 struct bpf_prog_aux *prog_aux) 967 { 968 struct prog_poke_elem *elem; 969 struct bpf_array_aux *aux; 970 int ret = 0; 971 972 aux = container_of(map, struct bpf_array, map)->aux; 973 mutex_lock(&aux->poke_mutex); 974 list_for_each_entry(elem, &aux->poke_progs, list) { 975 if (elem->aux == prog_aux) 976 goto out; 977 } 978 979 elem = kmalloc(sizeof(*elem), GFP_KERNEL); 980 if (!elem) { 981 ret = -ENOMEM; 982 goto out; 983 } 984 985 INIT_LIST_HEAD(&elem->list); 986 /* We must track the program's aux info at this point in time 987 * since the program pointer itself may not be stable yet, see 988 * also comment in prog_array_map_poke_run(). 989 */ 990 elem->aux = prog_aux; 991 992 list_add_tail(&elem->list, &aux->poke_progs); 993 out: 994 mutex_unlock(&aux->poke_mutex); 995 return ret; 996 } 997 998 static void prog_array_map_poke_untrack(struct bpf_map *map, 999 struct bpf_prog_aux *prog_aux) 1000 { 1001 struct prog_poke_elem *elem, *tmp; 1002 struct bpf_array_aux *aux; 1003 1004 aux = container_of(map, struct bpf_array, map)->aux; 1005 mutex_lock(&aux->poke_mutex); 1006 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 1007 if (elem->aux == prog_aux) { 1008 list_del_init(&elem->list); 1009 kfree(elem); 1010 break; 1011 } 1012 } 1013 mutex_unlock(&aux->poke_mutex); 1014 } 1015 1016 static void prog_array_map_poke_run(struct bpf_map *map, u32 key, 1017 struct bpf_prog *old, 1018 struct bpf_prog *new) 1019 { 1020 u8 *old_addr, *new_addr, *old_bypass_addr; 1021 struct prog_poke_elem *elem; 1022 struct bpf_array_aux *aux; 1023 1024 aux = container_of(map, struct bpf_array, map)->aux; 1025 WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex)); 1026 1027 list_for_each_entry(elem, &aux->poke_progs, list) { 1028 struct bpf_jit_poke_descriptor *poke; 1029 int i, ret; 1030 1031 for (i = 0; i < elem->aux->size_poke_tab; i++) { 1032 poke = &elem->aux->poke_tab[i]; 1033 1034 /* Few things to be aware of: 1035 * 1036 * 1) We can only ever access aux in this context, but 1037 * not aux->prog since it might not be stable yet and 1038 * there could be danger of use after free otherwise. 1039 * 2) Initially when we start tracking aux, the program 1040 * is not JITed yet and also does not have a kallsyms 1041 * entry. We skip these as poke->tailcall_target_stable 1042 * is not active yet. The JIT will do the final fixup 1043 * before setting it stable. The various 1044 * poke->tailcall_target_stable are successively 1045 * activated, so tail call updates can arrive from here 1046 * while JIT is still finishing its final fixup for 1047 * non-activated poke entries. 1048 * 3) On program teardown, the program's kallsym entry gets 1049 * removed out of RCU callback, but we can only untrack 1050 * from sleepable context, therefore bpf_arch_text_poke() 1051 * might not see that this is in BPF text section and 1052 * bails out with -EINVAL. As these are unreachable since 1053 * RCU grace period already passed, we simply skip them. 1054 * 4) Also programs reaching refcount of zero while patching 1055 * is in progress is okay since we're protected under 1056 * poke_mutex and untrack the programs before the JIT 1057 * buffer is freed. When we're still in the middle of 1058 * patching and suddenly kallsyms entry of the program 1059 * gets evicted, we just skip the rest which is fine due 1060 * to point 3). 1061 * 5) Any other error happening below from bpf_arch_text_poke() 1062 * is a unexpected bug. 1063 */ 1064 if (!READ_ONCE(poke->tailcall_target_stable)) 1065 continue; 1066 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 1067 continue; 1068 if (poke->tail_call.map != map || 1069 poke->tail_call.key != key) 1070 continue; 1071 1072 old_bypass_addr = old ? NULL : poke->bypass_addr; 1073 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL; 1074 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL; 1075 1076 if (new) { 1077 ret = bpf_arch_text_poke(poke->tailcall_target, 1078 BPF_MOD_JUMP, 1079 old_addr, new_addr); 1080 BUG_ON(ret < 0 && ret != -EINVAL); 1081 if (!old) { 1082 ret = bpf_arch_text_poke(poke->tailcall_bypass, 1083 BPF_MOD_JUMP, 1084 poke->bypass_addr, 1085 NULL); 1086 BUG_ON(ret < 0 && ret != -EINVAL); 1087 } 1088 } else { 1089 ret = bpf_arch_text_poke(poke->tailcall_bypass, 1090 BPF_MOD_JUMP, 1091 old_bypass_addr, 1092 poke->bypass_addr); 1093 BUG_ON(ret < 0 && ret != -EINVAL); 1094 /* let other CPUs finish the execution of program 1095 * so that it will not possible to expose them 1096 * to invalid nop, stack unwind, nop state 1097 */ 1098 if (!ret) 1099 synchronize_rcu(); 1100 ret = bpf_arch_text_poke(poke->tailcall_target, 1101 BPF_MOD_JUMP, 1102 old_addr, NULL); 1103 BUG_ON(ret < 0 && ret != -EINVAL); 1104 } 1105 } 1106 } 1107 } 1108 1109 static void prog_array_map_clear_deferred(struct work_struct *work) 1110 { 1111 struct bpf_map *map = container_of(work, struct bpf_array_aux, 1112 work)->map; 1113 bpf_fd_array_map_clear(map); 1114 bpf_map_put(map); 1115 } 1116 1117 static void prog_array_map_clear(struct bpf_map *map) 1118 { 1119 struct bpf_array_aux *aux = container_of(map, struct bpf_array, 1120 map)->aux; 1121 bpf_map_inc(map); 1122 schedule_work(&aux->work); 1123 } 1124 1125 static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr) 1126 { 1127 struct bpf_array_aux *aux; 1128 struct bpf_map *map; 1129 1130 aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT); 1131 if (!aux) 1132 return ERR_PTR(-ENOMEM); 1133 1134 INIT_WORK(&aux->work, prog_array_map_clear_deferred); 1135 INIT_LIST_HEAD(&aux->poke_progs); 1136 mutex_init(&aux->poke_mutex); 1137 1138 map = array_map_alloc(attr); 1139 if (IS_ERR(map)) { 1140 kfree(aux); 1141 return map; 1142 } 1143 1144 container_of(map, struct bpf_array, map)->aux = aux; 1145 aux->map = map; 1146 1147 return map; 1148 } 1149 1150 static void prog_array_map_free(struct bpf_map *map) 1151 { 1152 struct prog_poke_elem *elem, *tmp; 1153 struct bpf_array_aux *aux; 1154 1155 aux = container_of(map, struct bpf_array, map)->aux; 1156 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 1157 list_del_init(&elem->list); 1158 kfree(elem); 1159 } 1160 kfree(aux); 1161 fd_array_map_free(map); 1162 } 1163 1164 /* prog_array->aux->{type,jited} is a runtime binding. 1165 * Doing static check alone in the verifier is not enough. 1166 * Thus, prog_array_map cannot be used as an inner_map 1167 * and map_meta_equal is not implemented. 1168 */ 1169 const struct bpf_map_ops prog_array_map_ops = { 1170 .map_alloc_check = fd_array_map_alloc_check, 1171 .map_alloc = prog_array_map_alloc, 1172 .map_free = prog_array_map_free, 1173 .map_poke_track = prog_array_map_poke_track, 1174 .map_poke_untrack = prog_array_map_poke_untrack, 1175 .map_poke_run = prog_array_map_poke_run, 1176 .map_get_next_key = array_map_get_next_key, 1177 .map_lookup_elem = fd_array_map_lookup_elem, 1178 .map_delete_elem = fd_array_map_delete_elem, 1179 .map_fd_get_ptr = prog_fd_array_get_ptr, 1180 .map_fd_put_ptr = prog_fd_array_put_ptr, 1181 .map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem, 1182 .map_release_uref = prog_array_map_clear, 1183 .map_seq_show_elem = prog_array_map_seq_show_elem, 1184 .map_mem_usage = array_map_mem_usage, 1185 .map_btf_id = &array_map_btf_ids[0], 1186 }; 1187 1188 static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file, 1189 struct file *map_file) 1190 { 1191 struct bpf_event_entry *ee; 1192 1193 ee = kzalloc(sizeof(*ee), GFP_ATOMIC); 1194 if (ee) { 1195 ee->event = perf_file->private_data; 1196 ee->perf_file = perf_file; 1197 ee->map_file = map_file; 1198 } 1199 1200 return ee; 1201 } 1202 1203 static void __bpf_event_entry_free(struct rcu_head *rcu) 1204 { 1205 struct bpf_event_entry *ee; 1206 1207 ee = container_of(rcu, struct bpf_event_entry, rcu); 1208 fput(ee->perf_file); 1209 kfree(ee); 1210 } 1211 1212 static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee) 1213 { 1214 call_rcu(&ee->rcu, __bpf_event_entry_free); 1215 } 1216 1217 static void *perf_event_fd_array_get_ptr(struct bpf_map *map, 1218 struct file *map_file, int fd) 1219 { 1220 struct bpf_event_entry *ee; 1221 struct perf_event *event; 1222 struct file *perf_file; 1223 u64 value; 1224 1225 perf_file = perf_event_get(fd); 1226 if (IS_ERR(perf_file)) 1227 return perf_file; 1228 1229 ee = ERR_PTR(-EOPNOTSUPP); 1230 event = perf_file->private_data; 1231 if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP) 1232 goto err_out; 1233 1234 ee = bpf_event_entry_gen(perf_file, map_file); 1235 if (ee) 1236 return ee; 1237 ee = ERR_PTR(-ENOMEM); 1238 err_out: 1239 fput(perf_file); 1240 return ee; 1241 } 1242 1243 static void perf_event_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) 1244 { 1245 /* bpf_perf_event is freed after one RCU grace period */ 1246 bpf_event_entry_free_rcu(ptr); 1247 } 1248 1249 static void perf_event_fd_array_release(struct bpf_map *map, 1250 struct file *map_file) 1251 { 1252 struct bpf_array *array = container_of(map, struct bpf_array, map); 1253 struct bpf_event_entry *ee; 1254 int i; 1255 1256 if (map->map_flags & BPF_F_PRESERVE_ELEMS) 1257 return; 1258 1259 rcu_read_lock(); 1260 for (i = 0; i < array->map.max_entries; i++) { 1261 ee = READ_ONCE(array->ptrs[i]); 1262 if (ee && ee->map_file == map_file) 1263 fd_array_map_delete_elem(map, &i); 1264 } 1265 rcu_read_unlock(); 1266 } 1267 1268 static void perf_event_fd_array_map_free(struct bpf_map *map) 1269 { 1270 if (map->map_flags & BPF_F_PRESERVE_ELEMS) 1271 bpf_fd_array_map_clear(map); 1272 fd_array_map_free(map); 1273 } 1274 1275 const struct bpf_map_ops perf_event_array_map_ops = { 1276 .map_meta_equal = bpf_map_meta_equal, 1277 .map_alloc_check = fd_array_map_alloc_check, 1278 .map_alloc = array_map_alloc, 1279 .map_free = perf_event_fd_array_map_free, 1280 .map_get_next_key = array_map_get_next_key, 1281 .map_lookup_elem = fd_array_map_lookup_elem, 1282 .map_delete_elem = fd_array_map_delete_elem, 1283 .map_fd_get_ptr = perf_event_fd_array_get_ptr, 1284 .map_fd_put_ptr = perf_event_fd_array_put_ptr, 1285 .map_release = perf_event_fd_array_release, 1286 .map_check_btf = map_check_no_btf, 1287 .map_mem_usage = array_map_mem_usage, 1288 .map_btf_id = &array_map_btf_ids[0], 1289 }; 1290 1291 #ifdef CONFIG_CGROUPS 1292 static void *cgroup_fd_array_get_ptr(struct bpf_map *map, 1293 struct file *map_file /* not used */, 1294 int fd) 1295 { 1296 return cgroup_get_from_fd(fd); 1297 } 1298 1299 static void cgroup_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) 1300 { 1301 /* cgroup_put free cgrp after a rcu grace period */ 1302 cgroup_put(ptr); 1303 } 1304 1305 static void cgroup_fd_array_free(struct bpf_map *map) 1306 { 1307 bpf_fd_array_map_clear(map); 1308 fd_array_map_free(map); 1309 } 1310 1311 const struct bpf_map_ops cgroup_array_map_ops = { 1312 .map_meta_equal = bpf_map_meta_equal, 1313 .map_alloc_check = fd_array_map_alloc_check, 1314 .map_alloc = array_map_alloc, 1315 .map_free = cgroup_fd_array_free, 1316 .map_get_next_key = array_map_get_next_key, 1317 .map_lookup_elem = fd_array_map_lookup_elem, 1318 .map_delete_elem = fd_array_map_delete_elem, 1319 .map_fd_get_ptr = cgroup_fd_array_get_ptr, 1320 .map_fd_put_ptr = cgroup_fd_array_put_ptr, 1321 .map_check_btf = map_check_no_btf, 1322 .map_mem_usage = array_map_mem_usage, 1323 .map_btf_id = &array_map_btf_ids[0], 1324 }; 1325 #endif 1326 1327 static struct bpf_map *array_of_map_alloc(union bpf_attr *attr) 1328 { 1329 struct bpf_map *map, *inner_map_meta; 1330 1331 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 1332 if (IS_ERR(inner_map_meta)) 1333 return inner_map_meta; 1334 1335 map = array_map_alloc(attr); 1336 if (IS_ERR(map)) { 1337 bpf_map_meta_free(inner_map_meta); 1338 return map; 1339 } 1340 1341 map->inner_map_meta = inner_map_meta; 1342 1343 return map; 1344 } 1345 1346 static void array_of_map_free(struct bpf_map *map) 1347 { 1348 /* map->inner_map_meta is only accessed by syscall which 1349 * is protected by fdget/fdput. 1350 */ 1351 bpf_map_meta_free(map->inner_map_meta); 1352 bpf_fd_array_map_clear(map); 1353 fd_array_map_free(map); 1354 } 1355 1356 static void *array_of_map_lookup_elem(struct bpf_map *map, void *key) 1357 { 1358 struct bpf_map **inner_map = array_map_lookup_elem(map, key); 1359 1360 if (!inner_map) 1361 return NULL; 1362 1363 return READ_ONCE(*inner_map); 1364 } 1365 1366 static int array_of_map_gen_lookup(struct bpf_map *map, 1367 struct bpf_insn *insn_buf) 1368 { 1369 struct bpf_array *array = container_of(map, struct bpf_array, map); 1370 u32 elem_size = array->elem_size; 1371 struct bpf_insn *insn = insn_buf; 1372 const int ret = BPF_REG_0; 1373 const int map_ptr = BPF_REG_1; 1374 const int index = BPF_REG_2; 1375 1376 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 1377 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 1378 if (!map->bypass_spec_v1) { 1379 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6); 1380 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 1381 } else { 1382 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5); 1383 } 1384 if (is_power_of_2(elem_size)) 1385 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 1386 else 1387 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 1388 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 1389 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 1390 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 1391 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 1392 *insn++ = BPF_MOV64_IMM(ret, 0); 1393 1394 return insn - insn_buf; 1395 } 1396 1397 const struct bpf_map_ops array_of_maps_map_ops = { 1398 .map_alloc_check = fd_array_map_alloc_check, 1399 .map_alloc = array_of_map_alloc, 1400 .map_free = array_of_map_free, 1401 .map_get_next_key = array_map_get_next_key, 1402 .map_lookup_elem = array_of_map_lookup_elem, 1403 .map_delete_elem = fd_array_map_delete_elem, 1404 .map_fd_get_ptr = bpf_map_fd_get_ptr, 1405 .map_fd_put_ptr = bpf_map_fd_put_ptr, 1406 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 1407 .map_gen_lookup = array_of_map_gen_lookup, 1408 .map_lookup_batch = generic_map_lookup_batch, 1409 .map_update_batch = generic_map_update_batch, 1410 .map_check_btf = map_check_no_btf, 1411 .map_mem_usage = array_map_mem_usage, 1412 .map_btf_id = &array_map_btf_ids[0], 1413 }; 1414