xref: /linux-6.15/kernel/audit_tree.c (revision a115bc07)
1 #include "audit.h"
2 #include <linux/inotify.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 
7 struct audit_tree;
8 struct audit_chunk;
9 
10 struct audit_tree {
11 	atomic_t count;
12 	int goner;
13 	struct audit_chunk *root;
14 	struct list_head chunks;
15 	struct list_head rules;
16 	struct list_head list;
17 	struct list_head same_root;
18 	struct rcu_head head;
19 	char pathname[];
20 };
21 
22 struct audit_chunk {
23 	struct list_head hash;
24 	struct inotify_watch watch;
25 	struct list_head trees;		/* with root here */
26 	int dead;
27 	int count;
28 	atomic_long_t refs;
29 	struct rcu_head head;
30 	struct node {
31 		struct list_head list;
32 		struct audit_tree *owner;
33 		unsigned index;		/* index; upper bit indicates 'will prune' */
34 	} owners[];
35 };
36 
37 static LIST_HEAD(tree_list);
38 static LIST_HEAD(prune_list);
39 
40 /*
41  * One struct chunk is attached to each inode of interest.
42  * We replace struct chunk on tagging/untagging.
43  * Rules have pointer to struct audit_tree.
44  * Rules have struct list_head rlist forming a list of rules over
45  * the same tree.
46  * References to struct chunk are collected at audit_inode{,_child}()
47  * time and used in AUDIT_TREE rule matching.
48  * These references are dropped at the same time we are calling
49  * audit_free_names(), etc.
50  *
51  * Cyclic lists galore:
52  * tree.chunks anchors chunk.owners[].list			hash_lock
53  * tree.rules anchors rule.rlist				audit_filter_mutex
54  * chunk.trees anchors tree.same_root				hash_lock
55  * chunk.hash is a hash with middle bits of watch.inode as
56  * a hash function.						RCU, hash_lock
57  *
58  * tree is refcounted; one reference for "some rules on rules_list refer to
59  * it", one for each chunk with pointer to it.
60  *
61  * chunk is refcounted by embedded inotify_watch + .refs (non-zero refcount
62  * of watch contributes 1 to .refs).
63  *
64  * node.index allows to get from node.list to containing chunk.
65  * MSB of that sucker is stolen to mark taggings that we might have to
66  * revert - several operations have very unpleasant cleanup logics and
67  * that makes a difference.  Some.
68  */
69 
70 static struct inotify_handle *rtree_ih;
71 
72 static struct audit_tree *alloc_tree(const char *s)
73 {
74 	struct audit_tree *tree;
75 
76 	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
77 	if (tree) {
78 		atomic_set(&tree->count, 1);
79 		tree->goner = 0;
80 		INIT_LIST_HEAD(&tree->chunks);
81 		INIT_LIST_HEAD(&tree->rules);
82 		INIT_LIST_HEAD(&tree->list);
83 		INIT_LIST_HEAD(&tree->same_root);
84 		tree->root = NULL;
85 		strcpy(tree->pathname, s);
86 	}
87 	return tree;
88 }
89 
90 static inline void get_tree(struct audit_tree *tree)
91 {
92 	atomic_inc(&tree->count);
93 }
94 
95 static void __put_tree(struct rcu_head *rcu)
96 {
97 	struct audit_tree *tree = container_of(rcu, struct audit_tree, head);
98 	kfree(tree);
99 }
100 
101 static inline void put_tree(struct audit_tree *tree)
102 {
103 	if (atomic_dec_and_test(&tree->count))
104 		call_rcu(&tree->head, __put_tree);
105 }
106 
107 /* to avoid bringing the entire thing in audit.h */
108 const char *audit_tree_path(struct audit_tree *tree)
109 {
110 	return tree->pathname;
111 }
112 
113 static struct audit_chunk *alloc_chunk(int count)
114 {
115 	struct audit_chunk *chunk;
116 	size_t size;
117 	int i;
118 
119 	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
120 	chunk = kzalloc(size, GFP_KERNEL);
121 	if (!chunk)
122 		return NULL;
123 
124 	INIT_LIST_HEAD(&chunk->hash);
125 	INIT_LIST_HEAD(&chunk->trees);
126 	chunk->count = count;
127 	atomic_long_set(&chunk->refs, 1);
128 	for (i = 0; i < count; i++) {
129 		INIT_LIST_HEAD(&chunk->owners[i].list);
130 		chunk->owners[i].index = i;
131 	}
132 	inotify_init_watch(&chunk->watch);
133 	return chunk;
134 }
135 
136 static void free_chunk(struct audit_chunk *chunk)
137 {
138 	int i;
139 
140 	for (i = 0; i < chunk->count; i++) {
141 		if (chunk->owners[i].owner)
142 			put_tree(chunk->owners[i].owner);
143 	}
144 	kfree(chunk);
145 }
146 
147 void audit_put_chunk(struct audit_chunk *chunk)
148 {
149 	if (atomic_long_dec_and_test(&chunk->refs))
150 		free_chunk(chunk);
151 }
152 
153 static void __put_chunk(struct rcu_head *rcu)
154 {
155 	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
156 	audit_put_chunk(chunk);
157 }
158 
159 enum {HASH_SIZE = 128};
160 static struct list_head chunk_hash_heads[HASH_SIZE];
161 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
162 
163 static inline struct list_head *chunk_hash(const struct inode *inode)
164 {
165 	unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
166 	return chunk_hash_heads + n % HASH_SIZE;
167 }
168 
169 /* hash_lock is held by caller */
170 static void insert_hash(struct audit_chunk *chunk)
171 {
172 	struct list_head *list = chunk_hash(chunk->watch.inode);
173 	list_add_rcu(&chunk->hash, list);
174 }
175 
176 /* called under rcu_read_lock */
177 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
178 {
179 	struct list_head *list = chunk_hash(inode);
180 	struct audit_chunk *p;
181 
182 	list_for_each_entry_rcu(p, list, hash) {
183 		if (p->watch.inode == inode) {
184 			atomic_long_inc(&p->refs);
185 			return p;
186 		}
187 	}
188 	return NULL;
189 }
190 
191 int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
192 {
193 	int n;
194 	for (n = 0; n < chunk->count; n++)
195 		if (chunk->owners[n].owner == tree)
196 			return 1;
197 	return 0;
198 }
199 
200 /* tagging and untagging inodes with trees */
201 
202 static struct audit_chunk *find_chunk(struct node *p)
203 {
204 	int index = p->index & ~(1U<<31);
205 	p -= index;
206 	return container_of(p, struct audit_chunk, owners[0]);
207 }
208 
209 static void untag_chunk(struct node *p)
210 {
211 	struct audit_chunk *chunk = find_chunk(p);
212 	struct audit_chunk *new;
213 	struct audit_tree *owner;
214 	int size = chunk->count - 1;
215 	int i, j;
216 
217 	if (!pin_inotify_watch(&chunk->watch)) {
218 		/*
219 		 * Filesystem is shutting down; all watches are getting
220 		 * evicted, just take it off the node list for this
221 		 * tree and let the eviction logics take care of the
222 		 * rest.
223 		 */
224 		owner = p->owner;
225 		if (owner->root == chunk) {
226 			list_del_init(&owner->same_root);
227 			owner->root = NULL;
228 		}
229 		list_del_init(&p->list);
230 		p->owner = NULL;
231 		put_tree(owner);
232 		return;
233 	}
234 
235 	spin_unlock(&hash_lock);
236 
237 	/*
238 	 * pin_inotify_watch() succeeded, so the watch won't go away
239 	 * from under us.
240 	 */
241 	mutex_lock(&chunk->watch.inode->inotify_mutex);
242 	if (chunk->dead) {
243 		mutex_unlock(&chunk->watch.inode->inotify_mutex);
244 		goto out;
245 	}
246 
247 	owner = p->owner;
248 
249 	if (!size) {
250 		chunk->dead = 1;
251 		spin_lock(&hash_lock);
252 		list_del_init(&chunk->trees);
253 		if (owner->root == chunk)
254 			owner->root = NULL;
255 		list_del_init(&p->list);
256 		list_del_rcu(&chunk->hash);
257 		spin_unlock(&hash_lock);
258 		inotify_evict_watch(&chunk->watch);
259 		mutex_unlock(&chunk->watch.inode->inotify_mutex);
260 		put_inotify_watch(&chunk->watch);
261 		goto out;
262 	}
263 
264 	new = alloc_chunk(size);
265 	if (!new)
266 		goto Fallback;
267 	if (inotify_clone_watch(&chunk->watch, &new->watch) < 0) {
268 		free_chunk(new);
269 		goto Fallback;
270 	}
271 
272 	chunk->dead = 1;
273 	spin_lock(&hash_lock);
274 	list_replace_init(&chunk->trees, &new->trees);
275 	if (owner->root == chunk) {
276 		list_del_init(&owner->same_root);
277 		owner->root = NULL;
278 	}
279 
280 	for (i = j = 0; j <= size; i++, j++) {
281 		struct audit_tree *s;
282 		if (&chunk->owners[j] == p) {
283 			list_del_init(&p->list);
284 			i--;
285 			continue;
286 		}
287 		s = chunk->owners[j].owner;
288 		new->owners[i].owner = s;
289 		new->owners[i].index = chunk->owners[j].index - j + i;
290 		if (!s) /* result of earlier fallback */
291 			continue;
292 		get_tree(s);
293 		list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
294 	}
295 
296 	list_replace_rcu(&chunk->hash, &new->hash);
297 	list_for_each_entry(owner, &new->trees, same_root)
298 		owner->root = new;
299 	spin_unlock(&hash_lock);
300 	inotify_evict_watch(&chunk->watch);
301 	mutex_unlock(&chunk->watch.inode->inotify_mutex);
302 	put_inotify_watch(&chunk->watch);
303 	goto out;
304 
305 Fallback:
306 	// do the best we can
307 	spin_lock(&hash_lock);
308 	if (owner->root == chunk) {
309 		list_del_init(&owner->same_root);
310 		owner->root = NULL;
311 	}
312 	list_del_init(&p->list);
313 	p->owner = NULL;
314 	put_tree(owner);
315 	spin_unlock(&hash_lock);
316 	mutex_unlock(&chunk->watch.inode->inotify_mutex);
317 out:
318 	unpin_inotify_watch(&chunk->watch);
319 	spin_lock(&hash_lock);
320 }
321 
322 static int create_chunk(struct inode *inode, struct audit_tree *tree)
323 {
324 	struct audit_chunk *chunk = alloc_chunk(1);
325 	if (!chunk)
326 		return -ENOMEM;
327 
328 	if (inotify_add_watch(rtree_ih, &chunk->watch, inode, IN_IGNORED | IN_DELETE_SELF) < 0) {
329 		free_chunk(chunk);
330 		return -ENOSPC;
331 	}
332 
333 	mutex_lock(&inode->inotify_mutex);
334 	spin_lock(&hash_lock);
335 	if (tree->goner) {
336 		spin_unlock(&hash_lock);
337 		chunk->dead = 1;
338 		inotify_evict_watch(&chunk->watch);
339 		mutex_unlock(&inode->inotify_mutex);
340 		put_inotify_watch(&chunk->watch);
341 		return 0;
342 	}
343 	chunk->owners[0].index = (1U << 31);
344 	chunk->owners[0].owner = tree;
345 	get_tree(tree);
346 	list_add(&chunk->owners[0].list, &tree->chunks);
347 	if (!tree->root) {
348 		tree->root = chunk;
349 		list_add(&tree->same_root, &chunk->trees);
350 	}
351 	insert_hash(chunk);
352 	spin_unlock(&hash_lock);
353 	mutex_unlock(&inode->inotify_mutex);
354 	return 0;
355 }
356 
357 /* the first tagged inode becomes root of tree */
358 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
359 {
360 	struct inotify_watch *watch;
361 	struct audit_tree *owner;
362 	struct audit_chunk *chunk, *old;
363 	struct node *p;
364 	int n;
365 
366 	if (inotify_find_watch(rtree_ih, inode, &watch) < 0)
367 		return create_chunk(inode, tree);
368 
369 	old = container_of(watch, struct audit_chunk, watch);
370 
371 	/* are we already there? */
372 	spin_lock(&hash_lock);
373 	for (n = 0; n < old->count; n++) {
374 		if (old->owners[n].owner == tree) {
375 			spin_unlock(&hash_lock);
376 			put_inotify_watch(&old->watch);
377 			return 0;
378 		}
379 	}
380 	spin_unlock(&hash_lock);
381 
382 	chunk = alloc_chunk(old->count + 1);
383 	if (!chunk) {
384 		put_inotify_watch(&old->watch);
385 		return -ENOMEM;
386 	}
387 
388 	mutex_lock(&inode->inotify_mutex);
389 	if (inotify_clone_watch(&old->watch, &chunk->watch) < 0) {
390 		mutex_unlock(&inode->inotify_mutex);
391 		put_inotify_watch(&old->watch);
392 		free_chunk(chunk);
393 		return -ENOSPC;
394 	}
395 	spin_lock(&hash_lock);
396 	if (tree->goner) {
397 		spin_unlock(&hash_lock);
398 		chunk->dead = 1;
399 		inotify_evict_watch(&chunk->watch);
400 		mutex_unlock(&inode->inotify_mutex);
401 		put_inotify_watch(&old->watch);
402 		put_inotify_watch(&chunk->watch);
403 		return 0;
404 	}
405 	list_replace_init(&old->trees, &chunk->trees);
406 	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
407 		struct audit_tree *s = old->owners[n].owner;
408 		p->owner = s;
409 		p->index = old->owners[n].index;
410 		if (!s) /* result of fallback in untag */
411 			continue;
412 		get_tree(s);
413 		list_replace_init(&old->owners[n].list, &p->list);
414 	}
415 	p->index = (chunk->count - 1) | (1U<<31);
416 	p->owner = tree;
417 	get_tree(tree);
418 	list_add(&p->list, &tree->chunks);
419 	list_replace_rcu(&old->hash, &chunk->hash);
420 	list_for_each_entry(owner, &chunk->trees, same_root)
421 		owner->root = chunk;
422 	old->dead = 1;
423 	if (!tree->root) {
424 		tree->root = chunk;
425 		list_add(&tree->same_root, &chunk->trees);
426 	}
427 	spin_unlock(&hash_lock);
428 	inotify_evict_watch(&old->watch);
429 	mutex_unlock(&inode->inotify_mutex);
430 	put_inotify_watch(&old->watch); /* pair to inotify_find_watch */
431 	put_inotify_watch(&old->watch); /* and kill it */
432 	return 0;
433 }
434 
435 static void kill_rules(struct audit_tree *tree)
436 {
437 	struct audit_krule *rule, *next;
438 	struct audit_entry *entry;
439 	struct audit_buffer *ab;
440 
441 	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
442 		entry = container_of(rule, struct audit_entry, rule);
443 
444 		list_del_init(&rule->rlist);
445 		if (rule->tree) {
446 			/* not a half-baked one */
447 			ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
448 			audit_log_format(ab, "op=");
449 			audit_log_string(ab, "remove rule");
450 			audit_log_format(ab, " dir=");
451 			audit_log_untrustedstring(ab, rule->tree->pathname);
452 			audit_log_key(ab, rule->filterkey);
453 			audit_log_format(ab, " list=%d res=1", rule->listnr);
454 			audit_log_end(ab);
455 			rule->tree = NULL;
456 			list_del_rcu(&entry->list);
457 			list_del(&entry->rule.list);
458 			call_rcu(&entry->rcu, audit_free_rule_rcu);
459 		}
460 	}
461 }
462 
463 /*
464  * finish killing struct audit_tree
465  */
466 static void prune_one(struct audit_tree *victim)
467 {
468 	spin_lock(&hash_lock);
469 	while (!list_empty(&victim->chunks)) {
470 		struct node *p;
471 
472 		p = list_entry(victim->chunks.next, struct node, list);
473 
474 		untag_chunk(p);
475 	}
476 	spin_unlock(&hash_lock);
477 	put_tree(victim);
478 }
479 
480 /* trim the uncommitted chunks from tree */
481 
482 static void trim_marked(struct audit_tree *tree)
483 {
484 	struct list_head *p, *q;
485 	spin_lock(&hash_lock);
486 	if (tree->goner) {
487 		spin_unlock(&hash_lock);
488 		return;
489 	}
490 	/* reorder */
491 	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
492 		struct node *node = list_entry(p, struct node, list);
493 		q = p->next;
494 		if (node->index & (1U<<31)) {
495 			list_del_init(p);
496 			list_add(p, &tree->chunks);
497 		}
498 	}
499 
500 	while (!list_empty(&tree->chunks)) {
501 		struct node *node;
502 
503 		node = list_entry(tree->chunks.next, struct node, list);
504 
505 		/* have we run out of marked? */
506 		if (!(node->index & (1U<<31)))
507 			break;
508 
509 		untag_chunk(node);
510 	}
511 	if (!tree->root && !tree->goner) {
512 		tree->goner = 1;
513 		spin_unlock(&hash_lock);
514 		mutex_lock(&audit_filter_mutex);
515 		kill_rules(tree);
516 		list_del_init(&tree->list);
517 		mutex_unlock(&audit_filter_mutex);
518 		prune_one(tree);
519 	} else {
520 		spin_unlock(&hash_lock);
521 	}
522 }
523 
524 static void audit_schedule_prune(void);
525 
526 /* called with audit_filter_mutex */
527 int audit_remove_tree_rule(struct audit_krule *rule)
528 {
529 	struct audit_tree *tree;
530 	tree = rule->tree;
531 	if (tree) {
532 		spin_lock(&hash_lock);
533 		list_del_init(&rule->rlist);
534 		if (list_empty(&tree->rules) && !tree->goner) {
535 			tree->root = NULL;
536 			list_del_init(&tree->same_root);
537 			tree->goner = 1;
538 			list_move(&tree->list, &prune_list);
539 			rule->tree = NULL;
540 			spin_unlock(&hash_lock);
541 			audit_schedule_prune();
542 			return 1;
543 		}
544 		rule->tree = NULL;
545 		spin_unlock(&hash_lock);
546 		return 1;
547 	}
548 	return 0;
549 }
550 
551 static int compare_root(struct vfsmount *mnt, void *arg)
552 {
553 	return mnt->mnt_root->d_inode == arg;
554 }
555 
556 void audit_trim_trees(void)
557 {
558 	struct list_head cursor;
559 
560 	mutex_lock(&audit_filter_mutex);
561 	list_add(&cursor, &tree_list);
562 	while (cursor.next != &tree_list) {
563 		struct audit_tree *tree;
564 		struct path path;
565 		struct vfsmount *root_mnt;
566 		struct node *node;
567 		int err;
568 
569 		tree = container_of(cursor.next, struct audit_tree, list);
570 		get_tree(tree);
571 		list_del(&cursor);
572 		list_add(&cursor, &tree->list);
573 		mutex_unlock(&audit_filter_mutex);
574 
575 		err = kern_path(tree->pathname, 0, &path);
576 		if (err)
577 			goto skip_it;
578 
579 		root_mnt = collect_mounts(&path);
580 		path_put(&path);
581 		if (!root_mnt)
582 			goto skip_it;
583 
584 		spin_lock(&hash_lock);
585 		list_for_each_entry(node, &tree->chunks, list) {
586 			struct inode *inode = find_chunk(node)->watch.inode;
587 			node->index |= 1U<<31;
588 			if (iterate_mounts(compare_root, inode, root_mnt))
589 				node->index &= ~(1U<<31);
590 		}
591 		spin_unlock(&hash_lock);
592 		trim_marked(tree);
593 		put_tree(tree);
594 		drop_collected_mounts(root_mnt);
595 skip_it:
596 		mutex_lock(&audit_filter_mutex);
597 	}
598 	list_del(&cursor);
599 	mutex_unlock(&audit_filter_mutex);
600 }
601 
602 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
603 {
604 
605 	if (pathname[0] != '/' ||
606 	    rule->listnr != AUDIT_FILTER_EXIT ||
607 	    op != Audit_equal ||
608 	    rule->inode_f || rule->watch || rule->tree)
609 		return -EINVAL;
610 	rule->tree = alloc_tree(pathname);
611 	if (!rule->tree)
612 		return -ENOMEM;
613 	return 0;
614 }
615 
616 void audit_put_tree(struct audit_tree *tree)
617 {
618 	put_tree(tree);
619 }
620 
621 static int tag_mount(struct vfsmount *mnt, void *arg)
622 {
623 	return tag_chunk(mnt->mnt_root->d_inode, arg);
624 }
625 
626 /* called with audit_filter_mutex */
627 int audit_add_tree_rule(struct audit_krule *rule)
628 {
629 	struct audit_tree *seed = rule->tree, *tree;
630 	struct path path;
631 	struct vfsmount *mnt;
632 	int err;
633 
634 	list_for_each_entry(tree, &tree_list, list) {
635 		if (!strcmp(seed->pathname, tree->pathname)) {
636 			put_tree(seed);
637 			rule->tree = tree;
638 			list_add(&rule->rlist, &tree->rules);
639 			return 0;
640 		}
641 	}
642 	tree = seed;
643 	list_add(&tree->list, &tree_list);
644 	list_add(&rule->rlist, &tree->rules);
645 	/* do not set rule->tree yet */
646 	mutex_unlock(&audit_filter_mutex);
647 
648 	err = kern_path(tree->pathname, 0, &path);
649 	if (err)
650 		goto Err;
651 	mnt = collect_mounts(&path);
652 	path_put(&path);
653 	if (!mnt) {
654 		err = -ENOMEM;
655 		goto Err;
656 	}
657 
658 	get_tree(tree);
659 	err = iterate_mounts(tag_mount, tree, mnt);
660 	drop_collected_mounts(mnt);
661 
662 	if (!err) {
663 		struct node *node;
664 		spin_lock(&hash_lock);
665 		list_for_each_entry(node, &tree->chunks, list)
666 			node->index &= ~(1U<<31);
667 		spin_unlock(&hash_lock);
668 	} else {
669 		trim_marked(tree);
670 		goto Err;
671 	}
672 
673 	mutex_lock(&audit_filter_mutex);
674 	if (list_empty(&rule->rlist)) {
675 		put_tree(tree);
676 		return -ENOENT;
677 	}
678 	rule->tree = tree;
679 	put_tree(tree);
680 
681 	return 0;
682 Err:
683 	mutex_lock(&audit_filter_mutex);
684 	list_del_init(&tree->list);
685 	list_del_init(&tree->rules);
686 	put_tree(tree);
687 	return err;
688 }
689 
690 int audit_tag_tree(char *old, char *new)
691 {
692 	struct list_head cursor, barrier;
693 	int failed = 0;
694 	struct path path1, path2;
695 	struct vfsmount *tagged;
696 	int err;
697 
698 	err = kern_path(new, 0, &path2);
699 	if (err)
700 		return err;
701 	tagged = collect_mounts(&path2);
702 	path_put(&path2);
703 	if (!tagged)
704 		return -ENOMEM;
705 
706 	err = kern_path(old, 0, &path1);
707 	if (err) {
708 		drop_collected_mounts(tagged);
709 		return err;
710 	}
711 
712 	mutex_lock(&audit_filter_mutex);
713 	list_add(&barrier, &tree_list);
714 	list_add(&cursor, &barrier);
715 
716 	while (cursor.next != &tree_list) {
717 		struct audit_tree *tree;
718 		int good_one = 0;
719 
720 		tree = container_of(cursor.next, struct audit_tree, list);
721 		get_tree(tree);
722 		list_del(&cursor);
723 		list_add(&cursor, &tree->list);
724 		mutex_unlock(&audit_filter_mutex);
725 
726 		err = kern_path(tree->pathname, 0, &path2);
727 		if (!err) {
728 			good_one = path_is_under(&path1, &path2);
729 			path_put(&path2);
730 		}
731 
732 		if (!good_one) {
733 			put_tree(tree);
734 			mutex_lock(&audit_filter_mutex);
735 			continue;
736 		}
737 
738 		failed = iterate_mounts(tag_mount, tree, tagged);
739 		if (failed) {
740 			put_tree(tree);
741 			mutex_lock(&audit_filter_mutex);
742 			break;
743 		}
744 
745 		mutex_lock(&audit_filter_mutex);
746 		spin_lock(&hash_lock);
747 		if (!tree->goner) {
748 			list_del(&tree->list);
749 			list_add(&tree->list, &tree_list);
750 		}
751 		spin_unlock(&hash_lock);
752 		put_tree(tree);
753 	}
754 
755 	while (barrier.prev != &tree_list) {
756 		struct audit_tree *tree;
757 
758 		tree = container_of(barrier.prev, struct audit_tree, list);
759 		get_tree(tree);
760 		list_del(&tree->list);
761 		list_add(&tree->list, &barrier);
762 		mutex_unlock(&audit_filter_mutex);
763 
764 		if (!failed) {
765 			struct node *node;
766 			spin_lock(&hash_lock);
767 			list_for_each_entry(node, &tree->chunks, list)
768 				node->index &= ~(1U<<31);
769 			spin_unlock(&hash_lock);
770 		} else {
771 			trim_marked(tree);
772 		}
773 
774 		put_tree(tree);
775 		mutex_lock(&audit_filter_mutex);
776 	}
777 	list_del(&barrier);
778 	list_del(&cursor);
779 	mutex_unlock(&audit_filter_mutex);
780 	path_put(&path1);
781 	drop_collected_mounts(tagged);
782 	return failed;
783 }
784 
785 /*
786  * That gets run when evict_chunk() ends up needing to kill audit_tree.
787  * Runs from a separate thread.
788  */
789 static int prune_tree_thread(void *unused)
790 {
791 	mutex_lock(&audit_cmd_mutex);
792 	mutex_lock(&audit_filter_mutex);
793 
794 	while (!list_empty(&prune_list)) {
795 		struct audit_tree *victim;
796 
797 		victim = list_entry(prune_list.next, struct audit_tree, list);
798 		list_del_init(&victim->list);
799 
800 		mutex_unlock(&audit_filter_mutex);
801 
802 		prune_one(victim);
803 
804 		mutex_lock(&audit_filter_mutex);
805 	}
806 
807 	mutex_unlock(&audit_filter_mutex);
808 	mutex_unlock(&audit_cmd_mutex);
809 	return 0;
810 }
811 
812 static void audit_schedule_prune(void)
813 {
814 	kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
815 }
816 
817 /*
818  * ... and that one is done if evict_chunk() decides to delay until the end
819  * of syscall.  Runs synchronously.
820  */
821 void audit_kill_trees(struct list_head *list)
822 {
823 	mutex_lock(&audit_cmd_mutex);
824 	mutex_lock(&audit_filter_mutex);
825 
826 	while (!list_empty(list)) {
827 		struct audit_tree *victim;
828 
829 		victim = list_entry(list->next, struct audit_tree, list);
830 		kill_rules(victim);
831 		list_del_init(&victim->list);
832 
833 		mutex_unlock(&audit_filter_mutex);
834 
835 		prune_one(victim);
836 
837 		mutex_lock(&audit_filter_mutex);
838 	}
839 
840 	mutex_unlock(&audit_filter_mutex);
841 	mutex_unlock(&audit_cmd_mutex);
842 }
843 
844 /*
845  *  Here comes the stuff asynchronous to auditctl operations
846  */
847 
848 /* inode->inotify_mutex is locked */
849 static void evict_chunk(struct audit_chunk *chunk)
850 {
851 	struct audit_tree *owner;
852 	struct list_head *postponed = audit_killed_trees();
853 	int need_prune = 0;
854 	int n;
855 
856 	if (chunk->dead)
857 		return;
858 
859 	chunk->dead = 1;
860 	mutex_lock(&audit_filter_mutex);
861 	spin_lock(&hash_lock);
862 	while (!list_empty(&chunk->trees)) {
863 		owner = list_entry(chunk->trees.next,
864 				   struct audit_tree, same_root);
865 		owner->goner = 1;
866 		owner->root = NULL;
867 		list_del_init(&owner->same_root);
868 		spin_unlock(&hash_lock);
869 		if (!postponed) {
870 			kill_rules(owner);
871 			list_move(&owner->list, &prune_list);
872 			need_prune = 1;
873 		} else {
874 			list_move(&owner->list, postponed);
875 		}
876 		spin_lock(&hash_lock);
877 	}
878 	list_del_rcu(&chunk->hash);
879 	for (n = 0; n < chunk->count; n++)
880 		list_del_init(&chunk->owners[n].list);
881 	spin_unlock(&hash_lock);
882 	if (need_prune)
883 		audit_schedule_prune();
884 	mutex_unlock(&audit_filter_mutex);
885 }
886 
887 static void handle_event(struct inotify_watch *watch, u32 wd, u32 mask,
888                          u32 cookie, const char *dname, struct inode *inode)
889 {
890 	struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
891 
892 	if (mask & IN_IGNORED) {
893 		evict_chunk(chunk);
894 		put_inotify_watch(watch);
895 	}
896 }
897 
898 static void destroy_watch(struct inotify_watch *watch)
899 {
900 	struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
901 	call_rcu(&chunk->head, __put_chunk);
902 }
903 
904 static const struct inotify_operations rtree_inotify_ops = {
905 	.handle_event	= handle_event,
906 	.destroy_watch	= destroy_watch,
907 };
908 
909 static int __init audit_tree_init(void)
910 {
911 	int i;
912 
913 	rtree_ih = inotify_init(&rtree_inotify_ops);
914 	if (IS_ERR(rtree_ih))
915 		audit_panic("cannot initialize inotify handle for rectree watches");
916 
917 	for (i = 0; i < HASH_SIZE; i++)
918 		INIT_LIST_HEAD(&chunk_hash_heads[i]);
919 
920 	return 0;
921 }
922 __initcall(audit_tree_init);
923