1 // SPDX-License-Identifier: GPL-2.0 2 #include "audit.h" 3 #include <linux/fsnotify_backend.h> 4 #include <linux/namei.h> 5 #include <linux/mount.h> 6 #include <linux/kthread.h> 7 #include <linux/refcount.h> 8 #include <linux/slab.h> 9 10 struct audit_tree; 11 struct audit_chunk; 12 13 struct audit_tree { 14 refcount_t count; 15 int goner; 16 struct audit_chunk *root; 17 struct list_head chunks; 18 struct list_head rules; 19 struct list_head list; 20 struct list_head same_root; 21 struct rcu_head head; 22 char pathname[]; 23 }; 24 25 struct audit_chunk { 26 struct list_head hash; 27 unsigned long key; 28 struct fsnotify_mark *mark; 29 struct list_head trees; /* with root here */ 30 int dead; 31 int count; 32 atomic_long_t refs; 33 struct rcu_head head; 34 struct node { 35 struct list_head list; 36 struct audit_tree *owner; 37 unsigned index; /* index; upper bit indicates 'will prune' */ 38 } owners[]; 39 }; 40 41 struct audit_tree_mark { 42 struct fsnotify_mark mark; 43 struct audit_chunk *chunk; 44 }; 45 46 static LIST_HEAD(tree_list); 47 static LIST_HEAD(prune_list); 48 static struct task_struct *prune_thread; 49 50 /* 51 * One struct chunk is attached to each inode of interest. 52 * We replace struct chunk on tagging/untagging. 53 * Rules have pointer to struct audit_tree. 54 * Rules have struct list_head rlist forming a list of rules over 55 * the same tree. 56 * References to struct chunk are collected at audit_inode{,_child}() 57 * time and used in AUDIT_TREE rule matching. 58 * These references are dropped at the same time we are calling 59 * audit_free_names(), etc. 60 * 61 * Cyclic lists galore: 62 * tree.chunks anchors chunk.owners[].list hash_lock 63 * tree.rules anchors rule.rlist audit_filter_mutex 64 * chunk.trees anchors tree.same_root hash_lock 65 * chunk.hash is a hash with middle bits of watch.inode as 66 * a hash function. RCU, hash_lock 67 * 68 * tree is refcounted; one reference for "some rules on rules_list refer to 69 * it", one for each chunk with pointer to it. 70 * 71 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount 72 * of watch contributes 1 to .refs). 73 * 74 * node.index allows to get from node.list to containing chunk. 75 * MSB of that sucker is stolen to mark taggings that we might have to 76 * revert - several operations have very unpleasant cleanup logics and 77 * that makes a difference. Some. 78 */ 79 80 static struct fsnotify_group *audit_tree_group; 81 static struct kmem_cache *audit_tree_mark_cachep __read_mostly; 82 83 static struct audit_tree *alloc_tree(const char *s) 84 { 85 struct audit_tree *tree; 86 87 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL); 88 if (tree) { 89 refcount_set(&tree->count, 1); 90 tree->goner = 0; 91 INIT_LIST_HEAD(&tree->chunks); 92 INIT_LIST_HEAD(&tree->rules); 93 INIT_LIST_HEAD(&tree->list); 94 INIT_LIST_HEAD(&tree->same_root); 95 tree->root = NULL; 96 strcpy(tree->pathname, s); 97 } 98 return tree; 99 } 100 101 static inline void get_tree(struct audit_tree *tree) 102 { 103 refcount_inc(&tree->count); 104 } 105 106 static inline void put_tree(struct audit_tree *tree) 107 { 108 if (refcount_dec_and_test(&tree->count)) 109 kfree_rcu(tree, head); 110 } 111 112 /* to avoid bringing the entire thing in audit.h */ 113 const char *audit_tree_path(struct audit_tree *tree) 114 { 115 return tree->pathname; 116 } 117 118 static void free_chunk(struct audit_chunk *chunk) 119 { 120 int i; 121 122 for (i = 0; i < chunk->count; i++) { 123 if (chunk->owners[i].owner) 124 put_tree(chunk->owners[i].owner); 125 } 126 kfree(chunk); 127 } 128 129 void audit_put_chunk(struct audit_chunk *chunk) 130 { 131 if (atomic_long_dec_and_test(&chunk->refs)) 132 free_chunk(chunk); 133 } 134 135 static void __put_chunk(struct rcu_head *rcu) 136 { 137 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head); 138 audit_put_chunk(chunk); 139 } 140 141 /* 142 * Drop reference to the chunk that was held by the mark. This is the reference 143 * that gets dropped after we've removed the chunk from the hash table and we 144 * use it to make sure chunk cannot be freed before RCU grace period expires. 145 */ 146 static void audit_mark_put_chunk(struct audit_chunk *chunk) 147 { 148 call_rcu(&chunk->head, __put_chunk); 149 } 150 151 static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *entry) 152 { 153 return container_of(entry, struct audit_tree_mark, mark); 154 } 155 156 static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark) 157 { 158 return audit_mark(mark)->chunk; 159 } 160 161 static void audit_tree_destroy_watch(struct fsnotify_mark *entry) 162 { 163 struct audit_chunk *chunk = mark_chunk(entry); 164 audit_mark_put_chunk(chunk); 165 kmem_cache_free(audit_tree_mark_cachep, audit_mark(entry)); 166 } 167 168 static struct fsnotify_mark *alloc_mark(void) 169 { 170 struct audit_tree_mark *amark; 171 172 amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL); 173 if (!amark) 174 return NULL; 175 fsnotify_init_mark(&amark->mark, audit_tree_group); 176 amark->mark.mask = FS_IN_IGNORED; 177 return &amark->mark; 178 } 179 180 static struct audit_chunk *alloc_chunk(int count) 181 { 182 struct audit_chunk *chunk; 183 size_t size; 184 int i; 185 186 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node); 187 chunk = kzalloc(size, GFP_KERNEL); 188 if (!chunk) 189 return NULL; 190 191 chunk->mark = alloc_mark(); 192 if (!chunk->mark) { 193 kfree(chunk); 194 return NULL; 195 } 196 audit_mark(chunk->mark)->chunk = chunk; 197 198 INIT_LIST_HEAD(&chunk->hash); 199 INIT_LIST_HEAD(&chunk->trees); 200 chunk->count = count; 201 atomic_long_set(&chunk->refs, 1); 202 for (i = 0; i < count; i++) { 203 INIT_LIST_HEAD(&chunk->owners[i].list); 204 chunk->owners[i].index = i; 205 } 206 return chunk; 207 } 208 209 enum {HASH_SIZE = 128}; 210 static struct list_head chunk_hash_heads[HASH_SIZE]; 211 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock); 212 213 /* Function to return search key in our hash from inode. */ 214 static unsigned long inode_to_key(const struct inode *inode) 215 { 216 /* Use address pointed to by connector->obj as the key */ 217 return (unsigned long)&inode->i_fsnotify_marks; 218 } 219 220 static inline struct list_head *chunk_hash(unsigned long key) 221 { 222 unsigned long n = key / L1_CACHE_BYTES; 223 return chunk_hash_heads + n % HASH_SIZE; 224 } 225 226 /* hash_lock & entry->group->mark_mutex is held by caller */ 227 static void insert_hash(struct audit_chunk *chunk) 228 { 229 struct list_head *list; 230 231 /* 232 * Make sure chunk is fully initialized before making it visible in the 233 * hash. Pairs with a data dependency barrier in READ_ONCE() in 234 * audit_tree_lookup(). 235 */ 236 smp_wmb(); 237 WARN_ON_ONCE(!chunk->key); 238 list = chunk_hash(chunk->key); 239 list_add_rcu(&chunk->hash, list); 240 } 241 242 /* called under rcu_read_lock */ 243 struct audit_chunk *audit_tree_lookup(const struct inode *inode) 244 { 245 unsigned long key = inode_to_key(inode); 246 struct list_head *list = chunk_hash(key); 247 struct audit_chunk *p; 248 249 list_for_each_entry_rcu(p, list, hash) { 250 /* 251 * We use a data dependency barrier in READ_ONCE() to make sure 252 * the chunk we see is fully initialized. 253 */ 254 if (READ_ONCE(p->key) == key) { 255 atomic_long_inc(&p->refs); 256 return p; 257 } 258 } 259 return NULL; 260 } 261 262 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree) 263 { 264 int n; 265 for (n = 0; n < chunk->count; n++) 266 if (chunk->owners[n].owner == tree) 267 return true; 268 return false; 269 } 270 271 /* tagging and untagging inodes with trees */ 272 273 static struct audit_chunk *find_chunk(struct node *p) 274 { 275 int index = p->index & ~(1U<<31); 276 p -= index; 277 return container_of(p, struct audit_chunk, owners[0]); 278 } 279 280 static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old, 281 struct node *skip) 282 { 283 struct audit_tree *owner; 284 int i, j; 285 286 new->key = old->key; 287 list_splice_init(&old->trees, &new->trees); 288 list_for_each_entry(owner, &new->trees, same_root) 289 owner->root = new; 290 for (i = j = 0; j < old->count; i++, j++) { 291 if (&old->owners[j] == skip) { 292 i--; 293 continue; 294 } 295 owner = old->owners[j].owner; 296 new->owners[i].owner = owner; 297 new->owners[i].index = old->owners[j].index - j + i; 298 if (!owner) /* result of earlier fallback */ 299 continue; 300 get_tree(owner); 301 list_replace_init(&old->owners[j].list, &new->owners[i].list); 302 } 303 /* 304 * Make sure chunk is fully initialized before making it visible in the 305 * hash. Pairs with a data dependency barrier in READ_ONCE() in 306 * audit_tree_lookup(). 307 */ 308 smp_wmb(); 309 list_replace_rcu(&old->hash, &new->hash); 310 } 311 312 static void remove_chunk_node(struct audit_chunk *chunk, struct node *p) 313 { 314 struct audit_tree *owner = p->owner; 315 316 if (owner->root == chunk) { 317 list_del_init(&owner->same_root); 318 owner->root = NULL; 319 } 320 list_del_init(&p->list); 321 p->owner = NULL; 322 put_tree(owner); 323 } 324 325 static void untag_chunk(struct node *p) 326 { 327 struct audit_chunk *chunk = find_chunk(p); 328 struct fsnotify_mark *entry = chunk->mark; 329 struct audit_chunk *new = NULL; 330 int size = chunk->count - 1; 331 332 remove_chunk_node(chunk, p); 333 fsnotify_get_mark(entry); 334 spin_unlock(&hash_lock); 335 336 if (size) 337 new = alloc_chunk(size); 338 339 mutex_lock(&entry->group->mark_mutex); 340 /* 341 * mark_mutex protects mark from getting detached and thus also from 342 * mark->connector->obj getting NULL. 343 */ 344 if (chunk->dead || !(entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) { 345 mutex_unlock(&entry->group->mark_mutex); 346 if (new) 347 fsnotify_put_mark(new->mark); 348 goto out; 349 } 350 351 if (!size) { 352 chunk->dead = 1; 353 spin_lock(&hash_lock); 354 list_del_init(&chunk->trees); 355 list_del_rcu(&chunk->hash); 356 spin_unlock(&hash_lock); 357 fsnotify_detach_mark(entry); 358 mutex_unlock(&entry->group->mark_mutex); 359 fsnotify_free_mark(entry); 360 goto out; 361 } 362 363 if (!new) 364 goto out_mutex; 365 366 if (fsnotify_add_mark_locked(new->mark, entry->connector->obj, 367 FSNOTIFY_OBJ_TYPE_INODE, 1)) { 368 fsnotify_put_mark(new->mark); 369 goto out_mutex; 370 } 371 372 chunk->dead = 1; 373 spin_lock(&hash_lock); 374 /* 375 * This has to go last when updating chunk as once replace_chunk() is 376 * called, new RCU readers can see the new chunk. 377 */ 378 replace_chunk(new, chunk, p); 379 spin_unlock(&hash_lock); 380 fsnotify_detach_mark(entry); 381 mutex_unlock(&entry->group->mark_mutex); 382 fsnotify_free_mark(entry); 383 fsnotify_put_mark(new->mark); /* drop initial reference */ 384 goto out; 385 386 out_mutex: 387 mutex_unlock(&entry->group->mark_mutex); 388 out: 389 fsnotify_put_mark(entry); 390 spin_lock(&hash_lock); 391 } 392 393 /* Call with group->mark_mutex held, releases it */ 394 static int create_chunk(struct inode *inode, struct audit_tree *tree) 395 { 396 struct fsnotify_mark *entry; 397 struct audit_chunk *chunk = alloc_chunk(1); 398 399 if (!chunk) { 400 mutex_unlock(&audit_tree_group->mark_mutex); 401 return -ENOMEM; 402 } 403 404 entry = chunk->mark; 405 if (fsnotify_add_inode_mark_locked(entry, inode, 0)) { 406 mutex_unlock(&audit_tree_group->mark_mutex); 407 fsnotify_put_mark(entry); 408 return -ENOSPC; 409 } 410 411 spin_lock(&hash_lock); 412 if (tree->goner) { 413 spin_unlock(&hash_lock); 414 chunk->dead = 1; 415 fsnotify_detach_mark(entry); 416 mutex_unlock(&audit_tree_group->mark_mutex); 417 fsnotify_free_mark(entry); 418 fsnotify_put_mark(entry); 419 return 0; 420 } 421 chunk->owners[0].index = (1U << 31); 422 chunk->owners[0].owner = tree; 423 get_tree(tree); 424 list_add(&chunk->owners[0].list, &tree->chunks); 425 if (!tree->root) { 426 tree->root = chunk; 427 list_add(&tree->same_root, &chunk->trees); 428 } 429 chunk->key = inode_to_key(inode); 430 /* 431 * Inserting into the hash table has to go last as once we do that RCU 432 * readers can see the chunk. 433 */ 434 insert_hash(chunk); 435 spin_unlock(&hash_lock); 436 mutex_unlock(&audit_tree_group->mark_mutex); 437 fsnotify_put_mark(entry); /* drop initial reference */ 438 return 0; 439 } 440 441 /* the first tagged inode becomes root of tree */ 442 static int tag_chunk(struct inode *inode, struct audit_tree *tree) 443 { 444 struct fsnotify_mark *old_entry, *chunk_entry; 445 struct audit_chunk *chunk, *old; 446 struct node *p; 447 int n; 448 449 mutex_lock(&audit_tree_group->mark_mutex); 450 old_entry = fsnotify_find_mark(&inode->i_fsnotify_marks, 451 audit_tree_group); 452 if (!old_entry) 453 return create_chunk(inode, tree); 454 455 old = mark_chunk(old_entry); 456 457 /* are we already there? */ 458 spin_lock(&hash_lock); 459 for (n = 0; n < old->count; n++) { 460 if (old->owners[n].owner == tree) { 461 spin_unlock(&hash_lock); 462 mutex_unlock(&audit_tree_group->mark_mutex); 463 fsnotify_put_mark(old_entry); 464 return 0; 465 } 466 } 467 spin_unlock(&hash_lock); 468 469 chunk = alloc_chunk(old->count + 1); 470 if (!chunk) { 471 mutex_unlock(&audit_tree_group->mark_mutex); 472 fsnotify_put_mark(old_entry); 473 return -ENOMEM; 474 } 475 476 chunk_entry = chunk->mark; 477 478 /* 479 * mark_mutex protects mark from getting detached and thus also from 480 * mark->connector->obj getting NULL. 481 */ 482 if (!(old_entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) { 483 /* old_entry is being shot, lets just lie */ 484 mutex_unlock(&audit_tree_group->mark_mutex); 485 fsnotify_put_mark(old_entry); 486 fsnotify_put_mark(chunk->mark); 487 return -ENOENT; 488 } 489 490 if (fsnotify_add_mark_locked(chunk_entry, old_entry->connector->obj, 491 FSNOTIFY_OBJ_TYPE_INODE, 1)) { 492 mutex_unlock(&audit_tree_group->mark_mutex); 493 fsnotify_put_mark(chunk_entry); 494 fsnotify_put_mark(old_entry); 495 return -ENOSPC; 496 } 497 498 spin_lock(&hash_lock); 499 if (tree->goner) { 500 spin_unlock(&hash_lock); 501 chunk->dead = 1; 502 fsnotify_detach_mark(chunk_entry); 503 mutex_unlock(&audit_tree_group->mark_mutex); 504 fsnotify_free_mark(chunk_entry); 505 fsnotify_put_mark(chunk_entry); 506 fsnotify_put_mark(old_entry); 507 return 0; 508 } 509 p = &chunk->owners[chunk->count - 1]; 510 p->index = (chunk->count - 1) | (1U<<31); 511 p->owner = tree; 512 get_tree(tree); 513 list_add(&p->list, &tree->chunks); 514 old->dead = 1; 515 if (!tree->root) { 516 tree->root = chunk; 517 list_add(&tree->same_root, &chunk->trees); 518 } 519 /* 520 * This has to go last when updating chunk as once replace_chunk() is 521 * called, new RCU readers can see the new chunk. 522 */ 523 replace_chunk(chunk, old, NULL); 524 spin_unlock(&hash_lock); 525 fsnotify_detach_mark(old_entry); 526 mutex_unlock(&audit_tree_group->mark_mutex); 527 fsnotify_free_mark(old_entry); 528 fsnotify_put_mark(chunk_entry); /* drop initial reference */ 529 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */ 530 return 0; 531 } 532 533 static void audit_tree_log_remove_rule(struct audit_krule *rule) 534 { 535 struct audit_buffer *ab; 536 537 if (!audit_enabled) 538 return; 539 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 540 if (unlikely(!ab)) 541 return; 542 audit_log_format(ab, "op=remove_rule"); 543 audit_log_format(ab, " dir="); 544 audit_log_untrustedstring(ab, rule->tree->pathname); 545 audit_log_key(ab, rule->filterkey); 546 audit_log_format(ab, " list=%d res=1", rule->listnr); 547 audit_log_end(ab); 548 } 549 550 static void kill_rules(struct audit_tree *tree) 551 { 552 struct audit_krule *rule, *next; 553 struct audit_entry *entry; 554 555 list_for_each_entry_safe(rule, next, &tree->rules, rlist) { 556 entry = container_of(rule, struct audit_entry, rule); 557 558 list_del_init(&rule->rlist); 559 if (rule->tree) { 560 /* not a half-baked one */ 561 audit_tree_log_remove_rule(rule); 562 if (entry->rule.exe) 563 audit_remove_mark(entry->rule.exe); 564 rule->tree = NULL; 565 list_del_rcu(&entry->list); 566 list_del(&entry->rule.list); 567 call_rcu(&entry->rcu, audit_free_rule_rcu); 568 } 569 } 570 } 571 572 /* 573 * finish killing struct audit_tree 574 */ 575 static void prune_one(struct audit_tree *victim) 576 { 577 spin_lock(&hash_lock); 578 while (!list_empty(&victim->chunks)) { 579 struct node *p; 580 581 p = list_entry(victim->chunks.next, struct node, list); 582 583 untag_chunk(p); 584 } 585 spin_unlock(&hash_lock); 586 put_tree(victim); 587 } 588 589 /* trim the uncommitted chunks from tree */ 590 591 static void trim_marked(struct audit_tree *tree) 592 { 593 struct list_head *p, *q; 594 spin_lock(&hash_lock); 595 if (tree->goner) { 596 spin_unlock(&hash_lock); 597 return; 598 } 599 /* reorder */ 600 for (p = tree->chunks.next; p != &tree->chunks; p = q) { 601 struct node *node = list_entry(p, struct node, list); 602 q = p->next; 603 if (node->index & (1U<<31)) { 604 list_del_init(p); 605 list_add(p, &tree->chunks); 606 } 607 } 608 609 while (!list_empty(&tree->chunks)) { 610 struct node *node; 611 612 node = list_entry(tree->chunks.next, struct node, list); 613 614 /* have we run out of marked? */ 615 if (!(node->index & (1U<<31))) 616 break; 617 618 untag_chunk(node); 619 } 620 if (!tree->root && !tree->goner) { 621 tree->goner = 1; 622 spin_unlock(&hash_lock); 623 mutex_lock(&audit_filter_mutex); 624 kill_rules(tree); 625 list_del_init(&tree->list); 626 mutex_unlock(&audit_filter_mutex); 627 prune_one(tree); 628 } else { 629 spin_unlock(&hash_lock); 630 } 631 } 632 633 static void audit_schedule_prune(void); 634 635 /* called with audit_filter_mutex */ 636 int audit_remove_tree_rule(struct audit_krule *rule) 637 { 638 struct audit_tree *tree; 639 tree = rule->tree; 640 if (tree) { 641 spin_lock(&hash_lock); 642 list_del_init(&rule->rlist); 643 if (list_empty(&tree->rules) && !tree->goner) { 644 tree->root = NULL; 645 list_del_init(&tree->same_root); 646 tree->goner = 1; 647 list_move(&tree->list, &prune_list); 648 rule->tree = NULL; 649 spin_unlock(&hash_lock); 650 audit_schedule_prune(); 651 return 1; 652 } 653 rule->tree = NULL; 654 spin_unlock(&hash_lock); 655 return 1; 656 } 657 return 0; 658 } 659 660 static int compare_root(struct vfsmount *mnt, void *arg) 661 { 662 return inode_to_key(d_backing_inode(mnt->mnt_root)) == 663 (unsigned long)arg; 664 } 665 666 void audit_trim_trees(void) 667 { 668 struct list_head cursor; 669 670 mutex_lock(&audit_filter_mutex); 671 list_add(&cursor, &tree_list); 672 while (cursor.next != &tree_list) { 673 struct audit_tree *tree; 674 struct path path; 675 struct vfsmount *root_mnt; 676 struct node *node; 677 int err; 678 679 tree = container_of(cursor.next, struct audit_tree, list); 680 get_tree(tree); 681 list_del(&cursor); 682 list_add(&cursor, &tree->list); 683 mutex_unlock(&audit_filter_mutex); 684 685 err = kern_path(tree->pathname, 0, &path); 686 if (err) 687 goto skip_it; 688 689 root_mnt = collect_mounts(&path); 690 path_put(&path); 691 if (IS_ERR(root_mnt)) 692 goto skip_it; 693 694 spin_lock(&hash_lock); 695 list_for_each_entry(node, &tree->chunks, list) { 696 struct audit_chunk *chunk = find_chunk(node); 697 /* this could be NULL if the watch is dying else where... */ 698 node->index |= 1U<<31; 699 if (iterate_mounts(compare_root, 700 (void *)(chunk->key), 701 root_mnt)) 702 node->index &= ~(1U<<31); 703 } 704 spin_unlock(&hash_lock); 705 trim_marked(tree); 706 drop_collected_mounts(root_mnt); 707 skip_it: 708 put_tree(tree); 709 mutex_lock(&audit_filter_mutex); 710 } 711 list_del(&cursor); 712 mutex_unlock(&audit_filter_mutex); 713 } 714 715 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op) 716 { 717 718 if (pathname[0] != '/' || 719 rule->listnr != AUDIT_FILTER_EXIT || 720 op != Audit_equal || 721 rule->inode_f || rule->watch || rule->tree) 722 return -EINVAL; 723 rule->tree = alloc_tree(pathname); 724 if (!rule->tree) 725 return -ENOMEM; 726 return 0; 727 } 728 729 void audit_put_tree(struct audit_tree *tree) 730 { 731 put_tree(tree); 732 } 733 734 static int tag_mount(struct vfsmount *mnt, void *arg) 735 { 736 return tag_chunk(d_backing_inode(mnt->mnt_root), arg); 737 } 738 739 /* 740 * That gets run when evict_chunk() ends up needing to kill audit_tree. 741 * Runs from a separate thread. 742 */ 743 static int prune_tree_thread(void *unused) 744 { 745 for (;;) { 746 if (list_empty(&prune_list)) { 747 set_current_state(TASK_INTERRUPTIBLE); 748 schedule(); 749 } 750 751 audit_ctl_lock(); 752 mutex_lock(&audit_filter_mutex); 753 754 while (!list_empty(&prune_list)) { 755 struct audit_tree *victim; 756 757 victim = list_entry(prune_list.next, 758 struct audit_tree, list); 759 list_del_init(&victim->list); 760 761 mutex_unlock(&audit_filter_mutex); 762 763 prune_one(victim); 764 765 mutex_lock(&audit_filter_mutex); 766 } 767 768 mutex_unlock(&audit_filter_mutex); 769 audit_ctl_unlock(); 770 } 771 return 0; 772 } 773 774 static int audit_launch_prune(void) 775 { 776 if (prune_thread) 777 return 0; 778 prune_thread = kthread_run(prune_tree_thread, NULL, 779 "audit_prune_tree"); 780 if (IS_ERR(prune_thread)) { 781 pr_err("cannot start thread audit_prune_tree"); 782 prune_thread = NULL; 783 return -ENOMEM; 784 } 785 return 0; 786 } 787 788 /* called with audit_filter_mutex */ 789 int audit_add_tree_rule(struct audit_krule *rule) 790 { 791 struct audit_tree *seed = rule->tree, *tree; 792 struct path path; 793 struct vfsmount *mnt; 794 int err; 795 796 rule->tree = NULL; 797 list_for_each_entry(tree, &tree_list, list) { 798 if (!strcmp(seed->pathname, tree->pathname)) { 799 put_tree(seed); 800 rule->tree = tree; 801 list_add(&rule->rlist, &tree->rules); 802 return 0; 803 } 804 } 805 tree = seed; 806 list_add(&tree->list, &tree_list); 807 list_add(&rule->rlist, &tree->rules); 808 /* do not set rule->tree yet */ 809 mutex_unlock(&audit_filter_mutex); 810 811 if (unlikely(!prune_thread)) { 812 err = audit_launch_prune(); 813 if (err) 814 goto Err; 815 } 816 817 err = kern_path(tree->pathname, 0, &path); 818 if (err) 819 goto Err; 820 mnt = collect_mounts(&path); 821 path_put(&path); 822 if (IS_ERR(mnt)) { 823 err = PTR_ERR(mnt); 824 goto Err; 825 } 826 827 get_tree(tree); 828 err = iterate_mounts(tag_mount, tree, mnt); 829 drop_collected_mounts(mnt); 830 831 if (!err) { 832 struct node *node; 833 spin_lock(&hash_lock); 834 list_for_each_entry(node, &tree->chunks, list) 835 node->index &= ~(1U<<31); 836 spin_unlock(&hash_lock); 837 } else { 838 trim_marked(tree); 839 goto Err; 840 } 841 842 mutex_lock(&audit_filter_mutex); 843 if (list_empty(&rule->rlist)) { 844 put_tree(tree); 845 return -ENOENT; 846 } 847 rule->tree = tree; 848 put_tree(tree); 849 850 return 0; 851 Err: 852 mutex_lock(&audit_filter_mutex); 853 list_del_init(&tree->list); 854 list_del_init(&tree->rules); 855 put_tree(tree); 856 return err; 857 } 858 859 int audit_tag_tree(char *old, char *new) 860 { 861 struct list_head cursor, barrier; 862 int failed = 0; 863 struct path path1, path2; 864 struct vfsmount *tagged; 865 int err; 866 867 err = kern_path(new, 0, &path2); 868 if (err) 869 return err; 870 tagged = collect_mounts(&path2); 871 path_put(&path2); 872 if (IS_ERR(tagged)) 873 return PTR_ERR(tagged); 874 875 err = kern_path(old, 0, &path1); 876 if (err) { 877 drop_collected_mounts(tagged); 878 return err; 879 } 880 881 mutex_lock(&audit_filter_mutex); 882 list_add(&barrier, &tree_list); 883 list_add(&cursor, &barrier); 884 885 while (cursor.next != &tree_list) { 886 struct audit_tree *tree; 887 int good_one = 0; 888 889 tree = container_of(cursor.next, struct audit_tree, list); 890 get_tree(tree); 891 list_del(&cursor); 892 list_add(&cursor, &tree->list); 893 mutex_unlock(&audit_filter_mutex); 894 895 err = kern_path(tree->pathname, 0, &path2); 896 if (!err) { 897 good_one = path_is_under(&path1, &path2); 898 path_put(&path2); 899 } 900 901 if (!good_one) { 902 put_tree(tree); 903 mutex_lock(&audit_filter_mutex); 904 continue; 905 } 906 907 failed = iterate_mounts(tag_mount, tree, tagged); 908 if (failed) { 909 put_tree(tree); 910 mutex_lock(&audit_filter_mutex); 911 break; 912 } 913 914 mutex_lock(&audit_filter_mutex); 915 spin_lock(&hash_lock); 916 if (!tree->goner) { 917 list_del(&tree->list); 918 list_add(&tree->list, &tree_list); 919 } 920 spin_unlock(&hash_lock); 921 put_tree(tree); 922 } 923 924 while (barrier.prev != &tree_list) { 925 struct audit_tree *tree; 926 927 tree = container_of(barrier.prev, struct audit_tree, list); 928 get_tree(tree); 929 list_del(&tree->list); 930 list_add(&tree->list, &barrier); 931 mutex_unlock(&audit_filter_mutex); 932 933 if (!failed) { 934 struct node *node; 935 spin_lock(&hash_lock); 936 list_for_each_entry(node, &tree->chunks, list) 937 node->index &= ~(1U<<31); 938 spin_unlock(&hash_lock); 939 } else { 940 trim_marked(tree); 941 } 942 943 put_tree(tree); 944 mutex_lock(&audit_filter_mutex); 945 } 946 list_del(&barrier); 947 list_del(&cursor); 948 mutex_unlock(&audit_filter_mutex); 949 path_put(&path1); 950 drop_collected_mounts(tagged); 951 return failed; 952 } 953 954 955 static void audit_schedule_prune(void) 956 { 957 wake_up_process(prune_thread); 958 } 959 960 /* 961 * ... and that one is done if evict_chunk() decides to delay until the end 962 * of syscall. Runs synchronously. 963 */ 964 void audit_kill_trees(struct list_head *list) 965 { 966 audit_ctl_lock(); 967 mutex_lock(&audit_filter_mutex); 968 969 while (!list_empty(list)) { 970 struct audit_tree *victim; 971 972 victim = list_entry(list->next, struct audit_tree, list); 973 kill_rules(victim); 974 list_del_init(&victim->list); 975 976 mutex_unlock(&audit_filter_mutex); 977 978 prune_one(victim); 979 980 mutex_lock(&audit_filter_mutex); 981 } 982 983 mutex_unlock(&audit_filter_mutex); 984 audit_ctl_unlock(); 985 } 986 987 /* 988 * Here comes the stuff asynchronous to auditctl operations 989 */ 990 991 static void evict_chunk(struct audit_chunk *chunk) 992 { 993 struct audit_tree *owner; 994 struct list_head *postponed = audit_killed_trees(); 995 int need_prune = 0; 996 int n; 997 998 if (chunk->dead) 999 return; 1000 1001 chunk->dead = 1; 1002 mutex_lock(&audit_filter_mutex); 1003 spin_lock(&hash_lock); 1004 while (!list_empty(&chunk->trees)) { 1005 owner = list_entry(chunk->trees.next, 1006 struct audit_tree, same_root); 1007 owner->goner = 1; 1008 owner->root = NULL; 1009 list_del_init(&owner->same_root); 1010 spin_unlock(&hash_lock); 1011 if (!postponed) { 1012 kill_rules(owner); 1013 list_move(&owner->list, &prune_list); 1014 need_prune = 1; 1015 } else { 1016 list_move(&owner->list, postponed); 1017 } 1018 spin_lock(&hash_lock); 1019 } 1020 list_del_rcu(&chunk->hash); 1021 for (n = 0; n < chunk->count; n++) 1022 list_del_init(&chunk->owners[n].list); 1023 spin_unlock(&hash_lock); 1024 mutex_unlock(&audit_filter_mutex); 1025 if (need_prune) 1026 audit_schedule_prune(); 1027 } 1028 1029 static int audit_tree_handle_event(struct fsnotify_group *group, 1030 struct inode *to_tell, 1031 u32 mask, const void *data, int data_type, 1032 const unsigned char *file_name, u32 cookie, 1033 struct fsnotify_iter_info *iter_info) 1034 { 1035 return 0; 1036 } 1037 1038 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group) 1039 { 1040 struct audit_chunk *chunk = mark_chunk(entry); 1041 1042 evict_chunk(chunk); 1043 1044 /* 1045 * We are guaranteed to have at least one reference to the mark from 1046 * either the inode or the caller of fsnotify_destroy_mark(). 1047 */ 1048 BUG_ON(refcount_read(&entry->refcnt) < 1); 1049 } 1050 1051 static const struct fsnotify_ops audit_tree_ops = { 1052 .handle_event = audit_tree_handle_event, 1053 .freeing_mark = audit_tree_freeing_mark, 1054 .free_mark = audit_tree_destroy_watch, 1055 }; 1056 1057 static int __init audit_tree_init(void) 1058 { 1059 int i; 1060 1061 audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC); 1062 1063 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops); 1064 if (IS_ERR(audit_tree_group)) 1065 audit_panic("cannot initialize fsnotify group for rectree watches"); 1066 1067 for (i = 0; i < HASH_SIZE; i++) 1068 INIT_LIST_HEAD(&chunk_hash_heads[i]); 1069 1070 return 0; 1071 } 1072 __initcall(audit_tree_init); 1073