xref: /linux-6.15/kernel/audit_tree.c (revision 49a4ee7d)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "audit.h"
3 #include <linux/fsnotify_backend.h>
4 #include <linux/namei.h>
5 #include <linux/mount.h>
6 #include <linux/kthread.h>
7 #include <linux/refcount.h>
8 #include <linux/slab.h>
9 
10 struct audit_tree;
11 struct audit_chunk;
12 
13 struct audit_tree {
14 	refcount_t count;
15 	int goner;
16 	struct audit_chunk *root;
17 	struct list_head chunks;
18 	struct list_head rules;
19 	struct list_head list;
20 	struct list_head same_root;
21 	struct rcu_head head;
22 	char pathname[];
23 };
24 
25 struct audit_chunk {
26 	struct list_head hash;
27 	unsigned long key;
28 	struct fsnotify_mark *mark;
29 	struct list_head trees;		/* with root here */
30 	int dead;
31 	int count;
32 	atomic_long_t refs;
33 	struct rcu_head head;
34 	struct node {
35 		struct list_head list;
36 		struct audit_tree *owner;
37 		unsigned index;		/* index; upper bit indicates 'will prune' */
38 	} owners[];
39 };
40 
41 struct audit_tree_mark {
42 	struct fsnotify_mark mark;
43 	struct audit_chunk *chunk;
44 };
45 
46 static LIST_HEAD(tree_list);
47 static LIST_HEAD(prune_list);
48 static struct task_struct *prune_thread;
49 
50 /*
51  * One struct chunk is attached to each inode of interest.
52  * We replace struct chunk on tagging/untagging.
53  * Rules have pointer to struct audit_tree.
54  * Rules have struct list_head rlist forming a list of rules over
55  * the same tree.
56  * References to struct chunk are collected at audit_inode{,_child}()
57  * time and used in AUDIT_TREE rule matching.
58  * These references are dropped at the same time we are calling
59  * audit_free_names(), etc.
60  *
61  * Cyclic lists galore:
62  * tree.chunks anchors chunk.owners[].list			hash_lock
63  * tree.rules anchors rule.rlist				audit_filter_mutex
64  * chunk.trees anchors tree.same_root				hash_lock
65  * chunk.hash is a hash with middle bits of watch.inode as
66  * a hash function.						RCU, hash_lock
67  *
68  * tree is refcounted; one reference for "some rules on rules_list refer to
69  * it", one for each chunk with pointer to it.
70  *
71  * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
72  * of watch contributes 1 to .refs).
73  *
74  * node.index allows to get from node.list to containing chunk.
75  * MSB of that sucker is stolen to mark taggings that we might have to
76  * revert - several operations have very unpleasant cleanup logics and
77  * that makes a difference.  Some.
78  */
79 
80 static struct fsnotify_group *audit_tree_group;
81 static struct kmem_cache *audit_tree_mark_cachep __read_mostly;
82 
83 static struct audit_tree *alloc_tree(const char *s)
84 {
85 	struct audit_tree *tree;
86 
87 	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
88 	if (tree) {
89 		refcount_set(&tree->count, 1);
90 		tree->goner = 0;
91 		INIT_LIST_HEAD(&tree->chunks);
92 		INIT_LIST_HEAD(&tree->rules);
93 		INIT_LIST_HEAD(&tree->list);
94 		INIT_LIST_HEAD(&tree->same_root);
95 		tree->root = NULL;
96 		strcpy(tree->pathname, s);
97 	}
98 	return tree;
99 }
100 
101 static inline void get_tree(struct audit_tree *tree)
102 {
103 	refcount_inc(&tree->count);
104 }
105 
106 static inline void put_tree(struct audit_tree *tree)
107 {
108 	if (refcount_dec_and_test(&tree->count))
109 		kfree_rcu(tree, head);
110 }
111 
112 /* to avoid bringing the entire thing in audit.h */
113 const char *audit_tree_path(struct audit_tree *tree)
114 {
115 	return tree->pathname;
116 }
117 
118 static void free_chunk(struct audit_chunk *chunk)
119 {
120 	int i;
121 
122 	for (i = 0; i < chunk->count; i++) {
123 		if (chunk->owners[i].owner)
124 			put_tree(chunk->owners[i].owner);
125 	}
126 	kfree(chunk);
127 }
128 
129 void audit_put_chunk(struct audit_chunk *chunk)
130 {
131 	if (atomic_long_dec_and_test(&chunk->refs))
132 		free_chunk(chunk);
133 }
134 
135 static void __put_chunk(struct rcu_head *rcu)
136 {
137 	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
138 	audit_put_chunk(chunk);
139 }
140 
141 /*
142  * Drop reference to the chunk that was held by the mark. This is the reference
143  * that gets dropped after we've removed the chunk from the hash table and we
144  * use it to make sure chunk cannot be freed before RCU grace period expires.
145  */
146 static void audit_mark_put_chunk(struct audit_chunk *chunk)
147 {
148 	call_rcu(&chunk->head, __put_chunk);
149 }
150 
151 static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *entry)
152 {
153 	return container_of(entry, struct audit_tree_mark, mark);
154 }
155 
156 static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark)
157 {
158 	return audit_mark(mark)->chunk;
159 }
160 
161 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
162 {
163 	struct audit_chunk *chunk = mark_chunk(entry);
164 	audit_mark_put_chunk(chunk);
165 	kmem_cache_free(audit_tree_mark_cachep, audit_mark(entry));
166 }
167 
168 static struct fsnotify_mark *alloc_mark(void)
169 {
170 	struct audit_tree_mark *amark;
171 
172 	amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL);
173 	if (!amark)
174 		return NULL;
175 	fsnotify_init_mark(&amark->mark, audit_tree_group);
176 	amark->mark.mask = FS_IN_IGNORED;
177 	return &amark->mark;
178 }
179 
180 static struct audit_chunk *alloc_chunk(int count)
181 {
182 	struct audit_chunk *chunk;
183 	size_t size;
184 	int i;
185 
186 	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
187 	chunk = kzalloc(size, GFP_KERNEL);
188 	if (!chunk)
189 		return NULL;
190 
191 	chunk->mark = alloc_mark();
192 	if (!chunk->mark) {
193 		kfree(chunk);
194 		return NULL;
195 	}
196 	audit_mark(chunk->mark)->chunk = chunk;
197 
198 	INIT_LIST_HEAD(&chunk->hash);
199 	INIT_LIST_HEAD(&chunk->trees);
200 	chunk->count = count;
201 	atomic_long_set(&chunk->refs, 1);
202 	for (i = 0; i < count; i++) {
203 		INIT_LIST_HEAD(&chunk->owners[i].list);
204 		chunk->owners[i].index = i;
205 	}
206 	return chunk;
207 }
208 
209 enum {HASH_SIZE = 128};
210 static struct list_head chunk_hash_heads[HASH_SIZE];
211 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
212 
213 /* Function to return search key in our hash from inode. */
214 static unsigned long inode_to_key(const struct inode *inode)
215 {
216 	/* Use address pointed to by connector->obj as the key */
217 	return (unsigned long)&inode->i_fsnotify_marks;
218 }
219 
220 static inline struct list_head *chunk_hash(unsigned long key)
221 {
222 	unsigned long n = key / L1_CACHE_BYTES;
223 	return chunk_hash_heads + n % HASH_SIZE;
224 }
225 
226 /* hash_lock & entry->group->mark_mutex is held by caller */
227 static void insert_hash(struct audit_chunk *chunk)
228 {
229 	struct list_head *list;
230 
231 	/*
232 	 * Make sure chunk is fully initialized before making it visible in the
233 	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
234 	 * audit_tree_lookup().
235 	 */
236 	smp_wmb();
237 	WARN_ON_ONCE(!chunk->key);
238 	list = chunk_hash(chunk->key);
239 	list_add_rcu(&chunk->hash, list);
240 }
241 
242 /* called under rcu_read_lock */
243 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
244 {
245 	unsigned long key = inode_to_key(inode);
246 	struct list_head *list = chunk_hash(key);
247 	struct audit_chunk *p;
248 
249 	list_for_each_entry_rcu(p, list, hash) {
250 		/*
251 		 * We use a data dependency barrier in READ_ONCE() to make sure
252 		 * the chunk we see is fully initialized.
253 		 */
254 		if (READ_ONCE(p->key) == key) {
255 			atomic_long_inc(&p->refs);
256 			return p;
257 		}
258 	}
259 	return NULL;
260 }
261 
262 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
263 {
264 	int n;
265 	for (n = 0; n < chunk->count; n++)
266 		if (chunk->owners[n].owner == tree)
267 			return true;
268 	return false;
269 }
270 
271 /* tagging and untagging inodes with trees */
272 
273 static struct audit_chunk *find_chunk(struct node *p)
274 {
275 	int index = p->index & ~(1U<<31);
276 	p -= index;
277 	return container_of(p, struct audit_chunk, owners[0]);
278 }
279 
280 static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old,
281 			  struct node *skip)
282 {
283 	struct audit_tree *owner;
284 	int i, j;
285 
286 	new->key = old->key;
287 	list_splice_init(&old->trees, &new->trees);
288 	list_for_each_entry(owner, &new->trees, same_root)
289 		owner->root = new;
290 	for (i = j = 0; j < old->count; i++, j++) {
291 		if (&old->owners[j] == skip) {
292 			i--;
293 			continue;
294 		}
295 		owner = old->owners[j].owner;
296 		new->owners[i].owner = owner;
297 		new->owners[i].index = old->owners[j].index - j + i;
298 		if (!owner) /* result of earlier fallback */
299 			continue;
300 		get_tree(owner);
301 		list_replace_init(&old->owners[j].list, &new->owners[i].list);
302 	}
303 	/*
304 	 * Make sure chunk is fully initialized before making it visible in the
305 	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
306 	 * audit_tree_lookup().
307 	 */
308 	smp_wmb();
309 	list_replace_rcu(&old->hash, &new->hash);
310 }
311 
312 static void remove_chunk_node(struct audit_chunk *chunk, struct node *p)
313 {
314 	struct audit_tree *owner = p->owner;
315 
316 	if (owner->root == chunk) {
317 		list_del_init(&owner->same_root);
318 		owner->root = NULL;
319 	}
320 	list_del_init(&p->list);
321 	p->owner = NULL;
322 	put_tree(owner);
323 }
324 
325 static void untag_chunk(struct node *p)
326 {
327 	struct audit_chunk *chunk = find_chunk(p);
328 	struct fsnotify_mark *entry = chunk->mark;
329 	struct audit_chunk *new = NULL;
330 	int size = chunk->count - 1;
331 
332 	remove_chunk_node(chunk, p);
333 	fsnotify_get_mark(entry);
334 	spin_unlock(&hash_lock);
335 
336 	if (size)
337 		new = alloc_chunk(size);
338 
339 	mutex_lock(&entry->group->mark_mutex);
340 	/*
341 	 * mark_mutex protects mark from getting detached and thus also from
342 	 * mark->connector->obj getting NULL.
343 	 */
344 	if (chunk->dead || !(entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
345 		mutex_unlock(&entry->group->mark_mutex);
346 		if (new)
347 			fsnotify_put_mark(new->mark);
348 		goto out;
349 	}
350 
351 	if (!size) {
352 		chunk->dead = 1;
353 		spin_lock(&hash_lock);
354 		list_del_init(&chunk->trees);
355 		list_del_rcu(&chunk->hash);
356 		spin_unlock(&hash_lock);
357 		fsnotify_detach_mark(entry);
358 		mutex_unlock(&entry->group->mark_mutex);
359 		fsnotify_free_mark(entry);
360 		goto out;
361 	}
362 
363 	if (!new)
364 		goto out_mutex;
365 
366 	if (fsnotify_add_mark_locked(new->mark, entry->connector->obj,
367 				     FSNOTIFY_OBJ_TYPE_INODE, 1)) {
368 		fsnotify_put_mark(new->mark);
369 		goto out_mutex;
370 	}
371 
372 	chunk->dead = 1;
373 	spin_lock(&hash_lock);
374 	/*
375 	 * This has to go last when updating chunk as once replace_chunk() is
376 	 * called, new RCU readers can see the new chunk.
377 	 */
378 	replace_chunk(new, chunk, p);
379 	spin_unlock(&hash_lock);
380 	fsnotify_detach_mark(entry);
381 	mutex_unlock(&entry->group->mark_mutex);
382 	fsnotify_free_mark(entry);
383 	fsnotify_put_mark(new->mark);	/* drop initial reference */
384 	goto out;
385 
386 out_mutex:
387 	mutex_unlock(&entry->group->mark_mutex);
388 out:
389 	fsnotify_put_mark(entry);
390 	spin_lock(&hash_lock);
391 }
392 
393 /* Call with group->mark_mutex held, releases it */
394 static int create_chunk(struct inode *inode, struct audit_tree *tree)
395 {
396 	struct fsnotify_mark *entry;
397 	struct audit_chunk *chunk = alloc_chunk(1);
398 
399 	if (!chunk) {
400 		mutex_unlock(&audit_tree_group->mark_mutex);
401 		return -ENOMEM;
402 	}
403 
404 	entry = chunk->mark;
405 	if (fsnotify_add_inode_mark_locked(entry, inode, 0)) {
406 		mutex_unlock(&audit_tree_group->mark_mutex);
407 		fsnotify_put_mark(entry);
408 		return -ENOSPC;
409 	}
410 
411 	spin_lock(&hash_lock);
412 	if (tree->goner) {
413 		spin_unlock(&hash_lock);
414 		chunk->dead = 1;
415 		fsnotify_detach_mark(entry);
416 		mutex_unlock(&audit_tree_group->mark_mutex);
417 		fsnotify_free_mark(entry);
418 		fsnotify_put_mark(entry);
419 		return 0;
420 	}
421 	chunk->owners[0].index = (1U << 31);
422 	chunk->owners[0].owner = tree;
423 	get_tree(tree);
424 	list_add(&chunk->owners[0].list, &tree->chunks);
425 	if (!tree->root) {
426 		tree->root = chunk;
427 		list_add(&tree->same_root, &chunk->trees);
428 	}
429 	chunk->key = inode_to_key(inode);
430 	/*
431 	 * Inserting into the hash table has to go last as once we do that RCU
432 	 * readers can see the chunk.
433 	 */
434 	insert_hash(chunk);
435 	spin_unlock(&hash_lock);
436 	mutex_unlock(&audit_tree_group->mark_mutex);
437 	fsnotify_put_mark(entry);	/* drop initial reference */
438 	return 0;
439 }
440 
441 /* the first tagged inode becomes root of tree */
442 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
443 {
444 	struct fsnotify_mark *old_entry, *chunk_entry;
445 	struct audit_chunk *chunk, *old;
446 	struct node *p;
447 	int n;
448 
449 	mutex_lock(&audit_tree_group->mark_mutex);
450 	old_entry = fsnotify_find_mark(&inode->i_fsnotify_marks,
451 				       audit_tree_group);
452 	if (!old_entry)
453 		return create_chunk(inode, tree);
454 
455 	old = mark_chunk(old_entry);
456 
457 	/* are we already there? */
458 	spin_lock(&hash_lock);
459 	for (n = 0; n < old->count; n++) {
460 		if (old->owners[n].owner == tree) {
461 			spin_unlock(&hash_lock);
462 			mutex_unlock(&audit_tree_group->mark_mutex);
463 			fsnotify_put_mark(old_entry);
464 			return 0;
465 		}
466 	}
467 	spin_unlock(&hash_lock);
468 
469 	chunk = alloc_chunk(old->count + 1);
470 	if (!chunk) {
471 		mutex_unlock(&audit_tree_group->mark_mutex);
472 		fsnotify_put_mark(old_entry);
473 		return -ENOMEM;
474 	}
475 
476 	chunk_entry = chunk->mark;
477 
478 	/*
479 	 * mark_mutex protects mark from getting detached and thus also from
480 	 * mark->connector->obj getting NULL.
481 	 */
482 	if (!(old_entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
483 		/* old_entry is being shot, lets just lie */
484 		mutex_unlock(&audit_tree_group->mark_mutex);
485 		fsnotify_put_mark(old_entry);
486 		fsnotify_put_mark(chunk->mark);
487 		return -ENOENT;
488 	}
489 
490 	if (fsnotify_add_mark_locked(chunk_entry, old_entry->connector->obj,
491 				     FSNOTIFY_OBJ_TYPE_INODE, 1)) {
492 		mutex_unlock(&audit_tree_group->mark_mutex);
493 		fsnotify_put_mark(chunk_entry);
494 		fsnotify_put_mark(old_entry);
495 		return -ENOSPC;
496 	}
497 
498 	spin_lock(&hash_lock);
499 	if (tree->goner) {
500 		spin_unlock(&hash_lock);
501 		chunk->dead = 1;
502 		fsnotify_detach_mark(chunk_entry);
503 		mutex_unlock(&audit_tree_group->mark_mutex);
504 		fsnotify_free_mark(chunk_entry);
505 		fsnotify_put_mark(chunk_entry);
506 		fsnotify_put_mark(old_entry);
507 		return 0;
508 	}
509 	p = &chunk->owners[chunk->count - 1];
510 	p->index = (chunk->count - 1) | (1U<<31);
511 	p->owner = tree;
512 	get_tree(tree);
513 	list_add(&p->list, &tree->chunks);
514 	old->dead = 1;
515 	if (!tree->root) {
516 		tree->root = chunk;
517 		list_add(&tree->same_root, &chunk->trees);
518 	}
519 	/*
520 	 * This has to go last when updating chunk as once replace_chunk() is
521 	 * called, new RCU readers can see the new chunk.
522 	 */
523 	replace_chunk(chunk, old, NULL);
524 	spin_unlock(&hash_lock);
525 	fsnotify_detach_mark(old_entry);
526 	mutex_unlock(&audit_tree_group->mark_mutex);
527 	fsnotify_free_mark(old_entry);
528 	fsnotify_put_mark(chunk_entry);	/* drop initial reference */
529 	fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
530 	return 0;
531 }
532 
533 static void audit_tree_log_remove_rule(struct audit_krule *rule)
534 {
535 	struct audit_buffer *ab;
536 
537 	if (!audit_enabled)
538 		return;
539 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
540 	if (unlikely(!ab))
541 		return;
542 	audit_log_format(ab, "op=remove_rule");
543 	audit_log_format(ab, " dir=");
544 	audit_log_untrustedstring(ab, rule->tree->pathname);
545 	audit_log_key(ab, rule->filterkey);
546 	audit_log_format(ab, " list=%d res=1", rule->listnr);
547 	audit_log_end(ab);
548 }
549 
550 static void kill_rules(struct audit_tree *tree)
551 {
552 	struct audit_krule *rule, *next;
553 	struct audit_entry *entry;
554 
555 	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
556 		entry = container_of(rule, struct audit_entry, rule);
557 
558 		list_del_init(&rule->rlist);
559 		if (rule->tree) {
560 			/* not a half-baked one */
561 			audit_tree_log_remove_rule(rule);
562 			if (entry->rule.exe)
563 				audit_remove_mark(entry->rule.exe);
564 			rule->tree = NULL;
565 			list_del_rcu(&entry->list);
566 			list_del(&entry->rule.list);
567 			call_rcu(&entry->rcu, audit_free_rule_rcu);
568 		}
569 	}
570 }
571 
572 /*
573  * finish killing struct audit_tree
574  */
575 static void prune_one(struct audit_tree *victim)
576 {
577 	spin_lock(&hash_lock);
578 	while (!list_empty(&victim->chunks)) {
579 		struct node *p;
580 
581 		p = list_entry(victim->chunks.next, struct node, list);
582 
583 		untag_chunk(p);
584 	}
585 	spin_unlock(&hash_lock);
586 	put_tree(victim);
587 }
588 
589 /* trim the uncommitted chunks from tree */
590 
591 static void trim_marked(struct audit_tree *tree)
592 {
593 	struct list_head *p, *q;
594 	spin_lock(&hash_lock);
595 	if (tree->goner) {
596 		spin_unlock(&hash_lock);
597 		return;
598 	}
599 	/* reorder */
600 	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
601 		struct node *node = list_entry(p, struct node, list);
602 		q = p->next;
603 		if (node->index & (1U<<31)) {
604 			list_del_init(p);
605 			list_add(p, &tree->chunks);
606 		}
607 	}
608 
609 	while (!list_empty(&tree->chunks)) {
610 		struct node *node;
611 
612 		node = list_entry(tree->chunks.next, struct node, list);
613 
614 		/* have we run out of marked? */
615 		if (!(node->index & (1U<<31)))
616 			break;
617 
618 		untag_chunk(node);
619 	}
620 	if (!tree->root && !tree->goner) {
621 		tree->goner = 1;
622 		spin_unlock(&hash_lock);
623 		mutex_lock(&audit_filter_mutex);
624 		kill_rules(tree);
625 		list_del_init(&tree->list);
626 		mutex_unlock(&audit_filter_mutex);
627 		prune_one(tree);
628 	} else {
629 		spin_unlock(&hash_lock);
630 	}
631 }
632 
633 static void audit_schedule_prune(void);
634 
635 /* called with audit_filter_mutex */
636 int audit_remove_tree_rule(struct audit_krule *rule)
637 {
638 	struct audit_tree *tree;
639 	tree = rule->tree;
640 	if (tree) {
641 		spin_lock(&hash_lock);
642 		list_del_init(&rule->rlist);
643 		if (list_empty(&tree->rules) && !tree->goner) {
644 			tree->root = NULL;
645 			list_del_init(&tree->same_root);
646 			tree->goner = 1;
647 			list_move(&tree->list, &prune_list);
648 			rule->tree = NULL;
649 			spin_unlock(&hash_lock);
650 			audit_schedule_prune();
651 			return 1;
652 		}
653 		rule->tree = NULL;
654 		spin_unlock(&hash_lock);
655 		return 1;
656 	}
657 	return 0;
658 }
659 
660 static int compare_root(struct vfsmount *mnt, void *arg)
661 {
662 	return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
663 	       (unsigned long)arg;
664 }
665 
666 void audit_trim_trees(void)
667 {
668 	struct list_head cursor;
669 
670 	mutex_lock(&audit_filter_mutex);
671 	list_add(&cursor, &tree_list);
672 	while (cursor.next != &tree_list) {
673 		struct audit_tree *tree;
674 		struct path path;
675 		struct vfsmount *root_mnt;
676 		struct node *node;
677 		int err;
678 
679 		tree = container_of(cursor.next, struct audit_tree, list);
680 		get_tree(tree);
681 		list_del(&cursor);
682 		list_add(&cursor, &tree->list);
683 		mutex_unlock(&audit_filter_mutex);
684 
685 		err = kern_path(tree->pathname, 0, &path);
686 		if (err)
687 			goto skip_it;
688 
689 		root_mnt = collect_mounts(&path);
690 		path_put(&path);
691 		if (IS_ERR(root_mnt))
692 			goto skip_it;
693 
694 		spin_lock(&hash_lock);
695 		list_for_each_entry(node, &tree->chunks, list) {
696 			struct audit_chunk *chunk = find_chunk(node);
697 			/* this could be NULL if the watch is dying else where... */
698 			node->index |= 1U<<31;
699 			if (iterate_mounts(compare_root,
700 					   (void *)(chunk->key),
701 					   root_mnt))
702 				node->index &= ~(1U<<31);
703 		}
704 		spin_unlock(&hash_lock);
705 		trim_marked(tree);
706 		drop_collected_mounts(root_mnt);
707 skip_it:
708 		put_tree(tree);
709 		mutex_lock(&audit_filter_mutex);
710 	}
711 	list_del(&cursor);
712 	mutex_unlock(&audit_filter_mutex);
713 }
714 
715 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
716 {
717 
718 	if (pathname[0] != '/' ||
719 	    rule->listnr != AUDIT_FILTER_EXIT ||
720 	    op != Audit_equal ||
721 	    rule->inode_f || rule->watch || rule->tree)
722 		return -EINVAL;
723 	rule->tree = alloc_tree(pathname);
724 	if (!rule->tree)
725 		return -ENOMEM;
726 	return 0;
727 }
728 
729 void audit_put_tree(struct audit_tree *tree)
730 {
731 	put_tree(tree);
732 }
733 
734 static int tag_mount(struct vfsmount *mnt, void *arg)
735 {
736 	return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
737 }
738 
739 /*
740  * That gets run when evict_chunk() ends up needing to kill audit_tree.
741  * Runs from a separate thread.
742  */
743 static int prune_tree_thread(void *unused)
744 {
745 	for (;;) {
746 		if (list_empty(&prune_list)) {
747 			set_current_state(TASK_INTERRUPTIBLE);
748 			schedule();
749 		}
750 
751 		audit_ctl_lock();
752 		mutex_lock(&audit_filter_mutex);
753 
754 		while (!list_empty(&prune_list)) {
755 			struct audit_tree *victim;
756 
757 			victim = list_entry(prune_list.next,
758 					struct audit_tree, list);
759 			list_del_init(&victim->list);
760 
761 			mutex_unlock(&audit_filter_mutex);
762 
763 			prune_one(victim);
764 
765 			mutex_lock(&audit_filter_mutex);
766 		}
767 
768 		mutex_unlock(&audit_filter_mutex);
769 		audit_ctl_unlock();
770 	}
771 	return 0;
772 }
773 
774 static int audit_launch_prune(void)
775 {
776 	if (prune_thread)
777 		return 0;
778 	prune_thread = kthread_run(prune_tree_thread, NULL,
779 				"audit_prune_tree");
780 	if (IS_ERR(prune_thread)) {
781 		pr_err("cannot start thread audit_prune_tree");
782 		prune_thread = NULL;
783 		return -ENOMEM;
784 	}
785 	return 0;
786 }
787 
788 /* called with audit_filter_mutex */
789 int audit_add_tree_rule(struct audit_krule *rule)
790 {
791 	struct audit_tree *seed = rule->tree, *tree;
792 	struct path path;
793 	struct vfsmount *mnt;
794 	int err;
795 
796 	rule->tree = NULL;
797 	list_for_each_entry(tree, &tree_list, list) {
798 		if (!strcmp(seed->pathname, tree->pathname)) {
799 			put_tree(seed);
800 			rule->tree = tree;
801 			list_add(&rule->rlist, &tree->rules);
802 			return 0;
803 		}
804 	}
805 	tree = seed;
806 	list_add(&tree->list, &tree_list);
807 	list_add(&rule->rlist, &tree->rules);
808 	/* do not set rule->tree yet */
809 	mutex_unlock(&audit_filter_mutex);
810 
811 	if (unlikely(!prune_thread)) {
812 		err = audit_launch_prune();
813 		if (err)
814 			goto Err;
815 	}
816 
817 	err = kern_path(tree->pathname, 0, &path);
818 	if (err)
819 		goto Err;
820 	mnt = collect_mounts(&path);
821 	path_put(&path);
822 	if (IS_ERR(mnt)) {
823 		err = PTR_ERR(mnt);
824 		goto Err;
825 	}
826 
827 	get_tree(tree);
828 	err = iterate_mounts(tag_mount, tree, mnt);
829 	drop_collected_mounts(mnt);
830 
831 	if (!err) {
832 		struct node *node;
833 		spin_lock(&hash_lock);
834 		list_for_each_entry(node, &tree->chunks, list)
835 			node->index &= ~(1U<<31);
836 		spin_unlock(&hash_lock);
837 	} else {
838 		trim_marked(tree);
839 		goto Err;
840 	}
841 
842 	mutex_lock(&audit_filter_mutex);
843 	if (list_empty(&rule->rlist)) {
844 		put_tree(tree);
845 		return -ENOENT;
846 	}
847 	rule->tree = tree;
848 	put_tree(tree);
849 
850 	return 0;
851 Err:
852 	mutex_lock(&audit_filter_mutex);
853 	list_del_init(&tree->list);
854 	list_del_init(&tree->rules);
855 	put_tree(tree);
856 	return err;
857 }
858 
859 int audit_tag_tree(char *old, char *new)
860 {
861 	struct list_head cursor, barrier;
862 	int failed = 0;
863 	struct path path1, path2;
864 	struct vfsmount *tagged;
865 	int err;
866 
867 	err = kern_path(new, 0, &path2);
868 	if (err)
869 		return err;
870 	tagged = collect_mounts(&path2);
871 	path_put(&path2);
872 	if (IS_ERR(tagged))
873 		return PTR_ERR(tagged);
874 
875 	err = kern_path(old, 0, &path1);
876 	if (err) {
877 		drop_collected_mounts(tagged);
878 		return err;
879 	}
880 
881 	mutex_lock(&audit_filter_mutex);
882 	list_add(&barrier, &tree_list);
883 	list_add(&cursor, &barrier);
884 
885 	while (cursor.next != &tree_list) {
886 		struct audit_tree *tree;
887 		int good_one = 0;
888 
889 		tree = container_of(cursor.next, struct audit_tree, list);
890 		get_tree(tree);
891 		list_del(&cursor);
892 		list_add(&cursor, &tree->list);
893 		mutex_unlock(&audit_filter_mutex);
894 
895 		err = kern_path(tree->pathname, 0, &path2);
896 		if (!err) {
897 			good_one = path_is_under(&path1, &path2);
898 			path_put(&path2);
899 		}
900 
901 		if (!good_one) {
902 			put_tree(tree);
903 			mutex_lock(&audit_filter_mutex);
904 			continue;
905 		}
906 
907 		failed = iterate_mounts(tag_mount, tree, tagged);
908 		if (failed) {
909 			put_tree(tree);
910 			mutex_lock(&audit_filter_mutex);
911 			break;
912 		}
913 
914 		mutex_lock(&audit_filter_mutex);
915 		spin_lock(&hash_lock);
916 		if (!tree->goner) {
917 			list_del(&tree->list);
918 			list_add(&tree->list, &tree_list);
919 		}
920 		spin_unlock(&hash_lock);
921 		put_tree(tree);
922 	}
923 
924 	while (barrier.prev != &tree_list) {
925 		struct audit_tree *tree;
926 
927 		tree = container_of(barrier.prev, struct audit_tree, list);
928 		get_tree(tree);
929 		list_del(&tree->list);
930 		list_add(&tree->list, &barrier);
931 		mutex_unlock(&audit_filter_mutex);
932 
933 		if (!failed) {
934 			struct node *node;
935 			spin_lock(&hash_lock);
936 			list_for_each_entry(node, &tree->chunks, list)
937 				node->index &= ~(1U<<31);
938 			spin_unlock(&hash_lock);
939 		} else {
940 			trim_marked(tree);
941 		}
942 
943 		put_tree(tree);
944 		mutex_lock(&audit_filter_mutex);
945 	}
946 	list_del(&barrier);
947 	list_del(&cursor);
948 	mutex_unlock(&audit_filter_mutex);
949 	path_put(&path1);
950 	drop_collected_mounts(tagged);
951 	return failed;
952 }
953 
954 
955 static void audit_schedule_prune(void)
956 {
957 	wake_up_process(prune_thread);
958 }
959 
960 /*
961  * ... and that one is done if evict_chunk() decides to delay until the end
962  * of syscall.  Runs synchronously.
963  */
964 void audit_kill_trees(struct list_head *list)
965 {
966 	audit_ctl_lock();
967 	mutex_lock(&audit_filter_mutex);
968 
969 	while (!list_empty(list)) {
970 		struct audit_tree *victim;
971 
972 		victim = list_entry(list->next, struct audit_tree, list);
973 		kill_rules(victim);
974 		list_del_init(&victim->list);
975 
976 		mutex_unlock(&audit_filter_mutex);
977 
978 		prune_one(victim);
979 
980 		mutex_lock(&audit_filter_mutex);
981 	}
982 
983 	mutex_unlock(&audit_filter_mutex);
984 	audit_ctl_unlock();
985 }
986 
987 /*
988  *  Here comes the stuff asynchronous to auditctl operations
989  */
990 
991 static void evict_chunk(struct audit_chunk *chunk)
992 {
993 	struct audit_tree *owner;
994 	struct list_head *postponed = audit_killed_trees();
995 	int need_prune = 0;
996 	int n;
997 
998 	if (chunk->dead)
999 		return;
1000 
1001 	chunk->dead = 1;
1002 	mutex_lock(&audit_filter_mutex);
1003 	spin_lock(&hash_lock);
1004 	while (!list_empty(&chunk->trees)) {
1005 		owner = list_entry(chunk->trees.next,
1006 				   struct audit_tree, same_root);
1007 		owner->goner = 1;
1008 		owner->root = NULL;
1009 		list_del_init(&owner->same_root);
1010 		spin_unlock(&hash_lock);
1011 		if (!postponed) {
1012 			kill_rules(owner);
1013 			list_move(&owner->list, &prune_list);
1014 			need_prune = 1;
1015 		} else {
1016 			list_move(&owner->list, postponed);
1017 		}
1018 		spin_lock(&hash_lock);
1019 	}
1020 	list_del_rcu(&chunk->hash);
1021 	for (n = 0; n < chunk->count; n++)
1022 		list_del_init(&chunk->owners[n].list);
1023 	spin_unlock(&hash_lock);
1024 	mutex_unlock(&audit_filter_mutex);
1025 	if (need_prune)
1026 		audit_schedule_prune();
1027 }
1028 
1029 static int audit_tree_handle_event(struct fsnotify_group *group,
1030 				   struct inode *to_tell,
1031 				   u32 mask, const void *data, int data_type,
1032 				   const unsigned char *file_name, u32 cookie,
1033 				   struct fsnotify_iter_info *iter_info)
1034 {
1035 	return 0;
1036 }
1037 
1038 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
1039 {
1040 	struct audit_chunk *chunk = mark_chunk(entry);
1041 
1042 	evict_chunk(chunk);
1043 
1044 	/*
1045 	 * We are guaranteed to have at least one reference to the mark from
1046 	 * either the inode or the caller of fsnotify_destroy_mark().
1047 	 */
1048 	BUG_ON(refcount_read(&entry->refcnt) < 1);
1049 }
1050 
1051 static const struct fsnotify_ops audit_tree_ops = {
1052 	.handle_event = audit_tree_handle_event,
1053 	.freeing_mark = audit_tree_freeing_mark,
1054 	.free_mark = audit_tree_destroy_watch,
1055 };
1056 
1057 static int __init audit_tree_init(void)
1058 {
1059 	int i;
1060 
1061 	audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC);
1062 
1063 	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
1064 	if (IS_ERR(audit_tree_group))
1065 		audit_panic("cannot initialize fsnotify group for rectree watches");
1066 
1067 	for (i = 0; i < HASH_SIZE; i++)
1068 		INIT_LIST_HEAD(&chunk_hash_heads[i]);
1069 
1070 	return 0;
1071 }
1072 __initcall(audit_tree_init);
1073