1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* audit.c -- Auditing support 3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 4 * System-call specific features have moved to auditsc.c 5 * 6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 7 * All Rights Reserved. 8 * 9 * Written by Rickard E. (Rik) Faith <[email protected]> 10 * 11 * Goals: 1) Integrate fully with Security Modules. 12 * 2) Minimal run-time overhead: 13 * a) Minimal when syscall auditing is disabled (audit_enable=0). 14 * b) Small when syscall auditing is enabled and no audit record 15 * is generated (defer as much work as possible to record 16 * generation time): 17 * i) context is allocated, 18 * ii) names from getname are stored without a copy, and 19 * iii) inode information stored from path_lookup. 20 * 3) Ability to disable syscall auditing at boot time (audit=0). 21 * 4) Usable by other parts of the kernel (if audit_log* is called, 22 * then a syscall record will be generated automatically for the 23 * current syscall). 24 * 5) Netlink interface to user-space. 25 * 6) Support low-overhead kernel-based filtering to minimize the 26 * information that must be passed to user-space. 27 * 28 * Audit userspace, documentation, tests, and bug/issue trackers: 29 * https://github.com/linux-audit 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/file.h> 35 #include <linux/init.h> 36 #include <linux/types.h> 37 #include <linux/atomic.h> 38 #include <linux/mm.h> 39 #include <linux/export.h> 40 #include <linux/slab.h> 41 #include <linux/err.h> 42 #include <linux/kthread.h> 43 #include <linux/kernel.h> 44 #include <linux/syscalls.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/mutex.h> 48 #include <linux/gfp.h> 49 #include <linux/pid.h> 50 51 #include <linux/audit.h> 52 53 #include <net/sock.h> 54 #include <net/netlink.h> 55 #include <linux/skbuff.h> 56 #include <linux/security.h> 57 #include <linux/freezer.h> 58 #include <linux/pid_namespace.h> 59 #include <net/netns/generic.h> 60 61 #include "audit.h" 62 63 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 64 * (Initialization happens after skb_init is called.) */ 65 #define AUDIT_DISABLED -1 66 #define AUDIT_UNINITIALIZED 0 67 #define AUDIT_INITIALIZED 1 68 static int audit_initialized = AUDIT_UNINITIALIZED; 69 70 u32 audit_enabled = AUDIT_OFF; 71 bool audit_ever_enabled = !!AUDIT_OFF; 72 73 EXPORT_SYMBOL_GPL(audit_enabled); 74 75 /* Default state when kernel boots without any parameters. */ 76 static u32 audit_default = AUDIT_OFF; 77 78 /* If auditing cannot proceed, audit_failure selects what happens. */ 79 static u32 audit_failure = AUDIT_FAIL_PRINTK; 80 81 /* private audit network namespace index */ 82 static unsigned int audit_net_id; 83 84 /** 85 * struct audit_net - audit private network namespace data 86 * @sk: communication socket 87 */ 88 struct audit_net { 89 struct sock *sk; 90 }; 91 92 /** 93 * struct auditd_connection - kernel/auditd connection state 94 * @pid: auditd PID 95 * @portid: netlink portid 96 * @net: the associated network namespace 97 * @rcu: RCU head 98 * 99 * Description: 100 * This struct is RCU protected; you must either hold the RCU lock for reading 101 * or the associated spinlock for writing. 102 */ 103 struct auditd_connection { 104 struct pid *pid; 105 u32 portid; 106 struct net *net; 107 struct rcu_head rcu; 108 }; 109 static struct auditd_connection __rcu *auditd_conn; 110 static DEFINE_SPINLOCK(auditd_conn_lock); 111 112 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 113 * to that number per second. This prevents DoS attacks, but results in 114 * audit records being dropped. */ 115 static u32 audit_rate_limit; 116 117 /* Number of outstanding audit_buffers allowed. 118 * When set to zero, this means unlimited. */ 119 static u32 audit_backlog_limit = 64; 120 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 121 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 122 123 /* The identity of the user shutting down the audit system. */ 124 static kuid_t audit_sig_uid = INVALID_UID; 125 static pid_t audit_sig_pid = -1; 126 static u32 audit_sig_sid; 127 128 /* Records can be lost in several ways: 129 0) [suppressed in audit_alloc] 130 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 131 2) out of memory in audit_log_move [alloc_skb] 132 3) suppressed due to audit_rate_limit 133 4) suppressed due to audit_backlog_limit 134 */ 135 static atomic_t audit_lost = ATOMIC_INIT(0); 136 137 /* Monotonically increasing sum of time the kernel has spent 138 * waiting while the backlog limit is exceeded. 139 */ 140 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0); 141 142 /* Hash for inode-based rules */ 143 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 144 145 static struct kmem_cache *audit_buffer_cache; 146 147 /* queue msgs to send via kauditd_task */ 148 static struct sk_buff_head audit_queue; 149 /* queue msgs due to temporary unicast send problems */ 150 static struct sk_buff_head audit_retry_queue; 151 /* queue msgs waiting for new auditd connection */ 152 static struct sk_buff_head audit_hold_queue; 153 154 /* queue servicing thread */ 155 static struct task_struct *kauditd_task; 156 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 157 158 /* waitqueue for callers who are blocked on the audit backlog */ 159 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 160 161 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 162 .mask = -1, 163 .features = 0, 164 .lock = 0,}; 165 166 static char *audit_feature_names[2] = { 167 "only_unset_loginuid", 168 "loginuid_immutable", 169 }; 170 171 /** 172 * struct audit_ctl_mutex - serialize requests from userspace 173 * @lock: the mutex used for locking 174 * @owner: the task which owns the lock 175 * 176 * Description: 177 * This is the lock struct used to ensure we only process userspace requests 178 * in an orderly fashion. We can't simply use a mutex/lock here because we 179 * need to track lock ownership so we don't end up blocking the lock owner in 180 * audit_log_start() or similar. 181 */ 182 static struct audit_ctl_mutex { 183 struct mutex lock; 184 void *owner; 185 } audit_cmd_mutex; 186 187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 188 * audit records. Since printk uses a 1024 byte buffer, this buffer 189 * should be at least that large. */ 190 #define AUDIT_BUFSIZ 1024 191 192 /* The audit_buffer is used when formatting an audit record. The caller 193 * locks briefly to get the record off the freelist or to allocate the 194 * buffer, and locks briefly to send the buffer to the netlink layer or 195 * to place it on a transmit queue. Multiple audit_buffers can be in 196 * use simultaneously. */ 197 struct audit_buffer { 198 struct sk_buff *skb; /* formatted skb ready to send */ 199 struct audit_context *ctx; /* NULL or associated context */ 200 gfp_t gfp_mask; 201 }; 202 203 struct audit_reply { 204 __u32 portid; 205 struct net *net; 206 struct sk_buff *skb; 207 }; 208 209 /** 210 * auditd_test_task - Check to see if a given task is an audit daemon 211 * @task: the task to check 212 * 213 * Description: 214 * Return 1 if the task is a registered audit daemon, 0 otherwise. 215 */ 216 int auditd_test_task(struct task_struct *task) 217 { 218 int rc; 219 struct auditd_connection *ac; 220 221 rcu_read_lock(); 222 ac = rcu_dereference(auditd_conn); 223 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 224 rcu_read_unlock(); 225 226 return rc; 227 } 228 229 /** 230 * audit_ctl_lock - Take the audit control lock 231 */ 232 void audit_ctl_lock(void) 233 { 234 mutex_lock(&audit_cmd_mutex.lock); 235 audit_cmd_mutex.owner = current; 236 } 237 238 /** 239 * audit_ctl_unlock - Drop the audit control lock 240 */ 241 void audit_ctl_unlock(void) 242 { 243 audit_cmd_mutex.owner = NULL; 244 mutex_unlock(&audit_cmd_mutex.lock); 245 } 246 247 /** 248 * audit_ctl_owner_current - Test to see if the current task owns the lock 249 * 250 * Description: 251 * Return true if the current task owns the audit control lock, false if it 252 * doesn't own the lock. 253 */ 254 static bool audit_ctl_owner_current(void) 255 { 256 return (current == audit_cmd_mutex.owner); 257 } 258 259 /** 260 * auditd_pid_vnr - Return the auditd PID relative to the namespace 261 * 262 * Description: 263 * Returns the PID in relation to the namespace, 0 on failure. 264 */ 265 static pid_t auditd_pid_vnr(void) 266 { 267 pid_t pid; 268 const struct auditd_connection *ac; 269 270 rcu_read_lock(); 271 ac = rcu_dereference(auditd_conn); 272 if (!ac || !ac->pid) 273 pid = 0; 274 else 275 pid = pid_vnr(ac->pid); 276 rcu_read_unlock(); 277 278 return pid; 279 } 280 281 /** 282 * audit_get_sk - Return the audit socket for the given network namespace 283 * @net: the destination network namespace 284 * 285 * Description: 286 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 287 * that a reference is held for the network namespace while the sock is in use. 288 */ 289 static struct sock *audit_get_sk(const struct net *net) 290 { 291 struct audit_net *aunet; 292 293 if (!net) 294 return NULL; 295 296 aunet = net_generic(net, audit_net_id); 297 return aunet->sk; 298 } 299 300 void audit_panic(const char *message) 301 { 302 switch (audit_failure) { 303 case AUDIT_FAIL_SILENT: 304 break; 305 case AUDIT_FAIL_PRINTK: 306 if (printk_ratelimit()) 307 pr_err("%s\n", message); 308 break; 309 case AUDIT_FAIL_PANIC: 310 panic("audit: %s\n", message); 311 break; 312 } 313 } 314 315 static inline int audit_rate_check(void) 316 { 317 static unsigned long last_check = 0; 318 static int messages = 0; 319 static DEFINE_SPINLOCK(lock); 320 unsigned long flags; 321 unsigned long now; 322 int retval = 0; 323 324 if (!audit_rate_limit) return 1; 325 326 spin_lock_irqsave(&lock, flags); 327 if (++messages < audit_rate_limit) { 328 retval = 1; 329 } else { 330 now = jiffies; 331 if (time_after(now, last_check + HZ)) { 332 last_check = now; 333 messages = 0; 334 retval = 1; 335 } 336 } 337 spin_unlock_irqrestore(&lock, flags); 338 339 return retval; 340 } 341 342 /** 343 * audit_log_lost - conditionally log lost audit message event 344 * @message: the message stating reason for lost audit message 345 * 346 * Emit at least 1 message per second, even if audit_rate_check is 347 * throttling. 348 * Always increment the lost messages counter. 349 */ 350 void audit_log_lost(const char *message) 351 { 352 static unsigned long last_msg = 0; 353 static DEFINE_SPINLOCK(lock); 354 unsigned long flags; 355 unsigned long now; 356 int print; 357 358 atomic_inc(&audit_lost); 359 360 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 361 362 if (!print) { 363 spin_lock_irqsave(&lock, flags); 364 now = jiffies; 365 if (time_after(now, last_msg + HZ)) { 366 print = 1; 367 last_msg = now; 368 } 369 spin_unlock_irqrestore(&lock, flags); 370 } 371 372 if (print) { 373 if (printk_ratelimit()) 374 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 375 atomic_read(&audit_lost), 376 audit_rate_limit, 377 audit_backlog_limit); 378 audit_panic(message); 379 } 380 } 381 382 static int audit_log_config_change(char *function_name, u32 new, u32 old, 383 int allow_changes) 384 { 385 struct audit_buffer *ab; 386 int rc = 0; 387 388 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); 389 if (unlikely(!ab)) 390 return rc; 391 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old); 392 audit_log_session_info(ab); 393 rc = audit_log_task_context(ab); 394 if (rc) 395 allow_changes = 0; /* Something weird, deny request */ 396 audit_log_format(ab, " res=%d", allow_changes); 397 audit_log_end(ab); 398 return rc; 399 } 400 401 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 402 { 403 int allow_changes, rc = 0; 404 u32 old = *to_change; 405 406 /* check if we are locked */ 407 if (audit_enabled == AUDIT_LOCKED) 408 allow_changes = 0; 409 else 410 allow_changes = 1; 411 412 if (audit_enabled != AUDIT_OFF) { 413 rc = audit_log_config_change(function_name, new, old, allow_changes); 414 if (rc) 415 allow_changes = 0; 416 } 417 418 /* If we are allowed, make the change */ 419 if (allow_changes == 1) 420 *to_change = new; 421 /* Not allowed, update reason */ 422 else if (rc == 0) 423 rc = -EPERM; 424 return rc; 425 } 426 427 static int audit_set_rate_limit(u32 limit) 428 { 429 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 430 } 431 432 static int audit_set_backlog_limit(u32 limit) 433 { 434 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 435 } 436 437 static int audit_set_backlog_wait_time(u32 timeout) 438 { 439 return audit_do_config_change("audit_backlog_wait_time", 440 &audit_backlog_wait_time, timeout); 441 } 442 443 static int audit_set_enabled(u32 state) 444 { 445 int rc; 446 if (state > AUDIT_LOCKED) 447 return -EINVAL; 448 449 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 450 if (!rc) 451 audit_ever_enabled |= !!state; 452 453 return rc; 454 } 455 456 static int audit_set_failure(u32 state) 457 { 458 if (state != AUDIT_FAIL_SILENT 459 && state != AUDIT_FAIL_PRINTK 460 && state != AUDIT_FAIL_PANIC) 461 return -EINVAL; 462 463 return audit_do_config_change("audit_failure", &audit_failure, state); 464 } 465 466 /** 467 * auditd_conn_free - RCU helper to release an auditd connection struct 468 * @rcu: RCU head 469 * 470 * Description: 471 * Drop any references inside the auditd connection tracking struct and free 472 * the memory. 473 */ 474 static void auditd_conn_free(struct rcu_head *rcu) 475 { 476 struct auditd_connection *ac; 477 478 ac = container_of(rcu, struct auditd_connection, rcu); 479 put_pid(ac->pid); 480 put_net(ac->net); 481 kfree(ac); 482 } 483 484 /** 485 * auditd_set - Set/Reset the auditd connection state 486 * @pid: auditd PID 487 * @portid: auditd netlink portid 488 * @net: auditd network namespace pointer 489 * 490 * Description: 491 * This function will obtain and drop network namespace references as 492 * necessary. Returns zero on success, negative values on failure. 493 */ 494 static int auditd_set(struct pid *pid, u32 portid, struct net *net) 495 { 496 unsigned long flags; 497 struct auditd_connection *ac_old, *ac_new; 498 499 if (!pid || !net) 500 return -EINVAL; 501 502 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 503 if (!ac_new) 504 return -ENOMEM; 505 ac_new->pid = get_pid(pid); 506 ac_new->portid = portid; 507 ac_new->net = get_net(net); 508 509 spin_lock_irqsave(&auditd_conn_lock, flags); 510 ac_old = rcu_dereference_protected(auditd_conn, 511 lockdep_is_held(&auditd_conn_lock)); 512 rcu_assign_pointer(auditd_conn, ac_new); 513 spin_unlock_irqrestore(&auditd_conn_lock, flags); 514 515 if (ac_old) 516 call_rcu(&ac_old->rcu, auditd_conn_free); 517 518 return 0; 519 } 520 521 /** 522 * kauditd_printk_skb - Print the audit record to the ring buffer 523 * @skb: audit record 524 * 525 * Whatever the reason, this packet may not make it to the auditd connection 526 * so write it via printk so the information isn't completely lost. 527 */ 528 static void kauditd_printk_skb(struct sk_buff *skb) 529 { 530 struct nlmsghdr *nlh = nlmsg_hdr(skb); 531 char *data = nlmsg_data(nlh); 532 533 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 534 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 535 } 536 537 /** 538 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 539 * @skb: audit record 540 * @error: error code (unused) 541 * 542 * Description: 543 * This should only be used by the kauditd_thread when it fails to flush the 544 * hold queue. 545 */ 546 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error) 547 { 548 /* put the record back in the queue */ 549 skb_queue_tail(&audit_hold_queue, skb); 550 } 551 552 /** 553 * kauditd_hold_skb - Queue an audit record, waiting for auditd 554 * @skb: audit record 555 * @error: error code 556 * 557 * Description: 558 * Queue the audit record, waiting for an instance of auditd. When this 559 * function is called we haven't given up yet on sending the record, but things 560 * are not looking good. The first thing we want to do is try to write the 561 * record via printk and then see if we want to try and hold on to the record 562 * and queue it, if we have room. If we want to hold on to the record, but we 563 * don't have room, record a record lost message. 564 */ 565 static void kauditd_hold_skb(struct sk_buff *skb, int error) 566 { 567 /* at this point it is uncertain if we will ever send this to auditd so 568 * try to send the message via printk before we go any further */ 569 kauditd_printk_skb(skb); 570 571 /* can we just silently drop the message? */ 572 if (!audit_default) 573 goto drop; 574 575 /* the hold queue is only for when the daemon goes away completely, 576 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the 577 * record on the retry queue unless it's full, in which case drop it 578 */ 579 if (error == -EAGAIN) { 580 if (!audit_backlog_limit || 581 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 582 skb_queue_tail(&audit_retry_queue, skb); 583 return; 584 } 585 audit_log_lost("kauditd retry queue overflow"); 586 goto drop; 587 } 588 589 /* if we have room in the hold queue, queue the message */ 590 if (!audit_backlog_limit || 591 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 592 skb_queue_tail(&audit_hold_queue, skb); 593 return; 594 } 595 596 /* we have no other options - drop the message */ 597 audit_log_lost("kauditd hold queue overflow"); 598 drop: 599 kfree_skb(skb); 600 } 601 602 /** 603 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 604 * @skb: audit record 605 * @error: error code (unused) 606 * 607 * Description: 608 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 609 * but for some reason we are having problems sending it audit records so 610 * queue the given record and attempt to resend. 611 */ 612 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error) 613 { 614 if (!audit_backlog_limit || 615 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 616 skb_queue_tail(&audit_retry_queue, skb); 617 return; 618 } 619 620 /* we have to drop the record, send it via printk as a last effort */ 621 kauditd_printk_skb(skb); 622 audit_log_lost("kauditd retry queue overflow"); 623 kfree_skb(skb); 624 } 625 626 /** 627 * auditd_reset - Disconnect the auditd connection 628 * @ac: auditd connection state 629 * 630 * Description: 631 * Break the auditd/kauditd connection and move all the queued records into the 632 * hold queue in case auditd reconnects. It is important to note that the @ac 633 * pointer should never be dereferenced inside this function as it may be NULL 634 * or invalid, you can only compare the memory address! If @ac is NULL then 635 * the connection will always be reset. 636 */ 637 static void auditd_reset(const struct auditd_connection *ac) 638 { 639 unsigned long flags; 640 struct sk_buff *skb; 641 struct auditd_connection *ac_old; 642 643 /* if it isn't already broken, break the connection */ 644 spin_lock_irqsave(&auditd_conn_lock, flags); 645 ac_old = rcu_dereference_protected(auditd_conn, 646 lockdep_is_held(&auditd_conn_lock)); 647 if (ac && ac != ac_old) { 648 /* someone already registered a new auditd connection */ 649 spin_unlock_irqrestore(&auditd_conn_lock, flags); 650 return; 651 } 652 rcu_assign_pointer(auditd_conn, NULL); 653 spin_unlock_irqrestore(&auditd_conn_lock, flags); 654 655 if (ac_old) 656 call_rcu(&ac_old->rcu, auditd_conn_free); 657 658 /* flush the retry queue to the hold queue, but don't touch the main 659 * queue since we need to process that normally for multicast */ 660 while ((skb = skb_dequeue(&audit_retry_queue))) 661 kauditd_hold_skb(skb, -ECONNREFUSED); 662 } 663 664 /** 665 * auditd_send_unicast_skb - Send a record via unicast to auditd 666 * @skb: audit record 667 * 668 * Description: 669 * Send a skb to the audit daemon, returns positive/zero values on success and 670 * negative values on failure; in all cases the skb will be consumed by this 671 * function. If the send results in -ECONNREFUSED the connection with auditd 672 * will be reset. This function may sleep so callers should not hold any locks 673 * where this would cause a problem. 674 */ 675 static int auditd_send_unicast_skb(struct sk_buff *skb) 676 { 677 int rc; 678 u32 portid; 679 struct net *net; 680 struct sock *sk; 681 struct auditd_connection *ac; 682 683 /* NOTE: we can't call netlink_unicast while in the RCU section so 684 * take a reference to the network namespace and grab local 685 * copies of the namespace, the sock, and the portid; the 686 * namespace and sock aren't going to go away while we hold a 687 * reference and if the portid does become invalid after the RCU 688 * section netlink_unicast() should safely return an error */ 689 690 rcu_read_lock(); 691 ac = rcu_dereference(auditd_conn); 692 if (!ac) { 693 rcu_read_unlock(); 694 kfree_skb(skb); 695 rc = -ECONNREFUSED; 696 goto err; 697 } 698 net = get_net(ac->net); 699 sk = audit_get_sk(net); 700 portid = ac->portid; 701 rcu_read_unlock(); 702 703 rc = netlink_unicast(sk, skb, portid, 0); 704 put_net(net); 705 if (rc < 0) 706 goto err; 707 708 return rc; 709 710 err: 711 if (ac && rc == -ECONNREFUSED) 712 auditd_reset(ac); 713 return rc; 714 } 715 716 /** 717 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 718 * @sk: the sending sock 719 * @portid: the netlink destination 720 * @queue: the skb queue to process 721 * @retry_limit: limit on number of netlink unicast failures 722 * @skb_hook: per-skb hook for additional processing 723 * @err_hook: hook called if the skb fails the netlink unicast send 724 * 725 * Description: 726 * Run through the given queue and attempt to send the audit records to auditd, 727 * returns zero on success, negative values on failure. It is up to the caller 728 * to ensure that the @sk is valid for the duration of this function. 729 * 730 */ 731 static int kauditd_send_queue(struct sock *sk, u32 portid, 732 struct sk_buff_head *queue, 733 unsigned int retry_limit, 734 void (*skb_hook)(struct sk_buff *skb), 735 void (*err_hook)(struct sk_buff *skb, int error)) 736 { 737 int rc = 0; 738 struct sk_buff *skb = NULL; 739 struct sk_buff *skb_tail; 740 unsigned int failed = 0; 741 742 /* NOTE: kauditd_thread takes care of all our locking, we just use 743 * the netlink info passed to us (e.g. sk and portid) */ 744 745 skb_tail = skb_peek_tail(queue); 746 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) { 747 /* call the skb_hook for each skb we touch */ 748 if (skb_hook) 749 (*skb_hook)(skb); 750 751 /* can we send to anyone via unicast? */ 752 if (!sk) { 753 if (err_hook) 754 (*err_hook)(skb, -ECONNREFUSED); 755 continue; 756 } 757 758 retry: 759 /* grab an extra skb reference in case of error */ 760 skb_get(skb); 761 rc = netlink_unicast(sk, skb, portid, 0); 762 if (rc < 0) { 763 /* send failed - try a few times unless fatal error */ 764 if (++failed >= retry_limit || 765 rc == -ECONNREFUSED || rc == -EPERM) { 766 sk = NULL; 767 if (err_hook) 768 (*err_hook)(skb, rc); 769 if (rc == -EAGAIN) 770 rc = 0; 771 /* continue to drain the queue */ 772 continue; 773 } else 774 goto retry; 775 } else { 776 /* skb sent - drop the extra reference and continue */ 777 consume_skb(skb); 778 failed = 0; 779 } 780 } 781 782 return (rc >= 0 ? 0 : rc); 783 } 784 785 /* 786 * kauditd_send_multicast_skb - Send a record to any multicast listeners 787 * @skb: audit record 788 * 789 * Description: 790 * Write a multicast message to anyone listening in the initial network 791 * namespace. This function doesn't consume an skb as might be expected since 792 * it has to copy it anyways. 793 */ 794 static void kauditd_send_multicast_skb(struct sk_buff *skb) 795 { 796 struct sk_buff *copy; 797 struct sock *sock = audit_get_sk(&init_net); 798 struct nlmsghdr *nlh; 799 800 /* NOTE: we are not taking an additional reference for init_net since 801 * we don't have to worry about it going away */ 802 803 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 804 return; 805 806 /* 807 * The seemingly wasteful skb_copy() rather than bumping the refcount 808 * using skb_get() is necessary because non-standard mods are made to 809 * the skb by the original kaudit unicast socket send routine. The 810 * existing auditd daemon assumes this breakage. Fixing this would 811 * require co-ordinating a change in the established protocol between 812 * the kaudit kernel subsystem and the auditd userspace code. There is 813 * no reason for new multicast clients to continue with this 814 * non-compliance. 815 */ 816 copy = skb_copy(skb, GFP_KERNEL); 817 if (!copy) 818 return; 819 nlh = nlmsg_hdr(copy); 820 nlh->nlmsg_len = skb->len; 821 822 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 823 } 824 825 /** 826 * kauditd_thread - Worker thread to send audit records to userspace 827 * @dummy: unused 828 */ 829 static int kauditd_thread(void *dummy) 830 { 831 int rc; 832 u32 portid = 0; 833 struct net *net = NULL; 834 struct sock *sk = NULL; 835 struct auditd_connection *ac; 836 837 #define UNICAST_RETRIES 5 838 839 set_freezable(); 840 while (!kthread_should_stop()) { 841 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 842 rcu_read_lock(); 843 ac = rcu_dereference(auditd_conn); 844 if (!ac) { 845 rcu_read_unlock(); 846 goto main_queue; 847 } 848 net = get_net(ac->net); 849 sk = audit_get_sk(net); 850 portid = ac->portid; 851 rcu_read_unlock(); 852 853 /* attempt to flush the hold queue */ 854 rc = kauditd_send_queue(sk, portid, 855 &audit_hold_queue, UNICAST_RETRIES, 856 NULL, kauditd_rehold_skb); 857 if (rc < 0) { 858 sk = NULL; 859 auditd_reset(ac); 860 goto main_queue; 861 } 862 863 /* attempt to flush the retry queue */ 864 rc = kauditd_send_queue(sk, portid, 865 &audit_retry_queue, UNICAST_RETRIES, 866 NULL, kauditd_hold_skb); 867 if (rc < 0) { 868 sk = NULL; 869 auditd_reset(ac); 870 goto main_queue; 871 } 872 873 main_queue: 874 /* process the main queue - do the multicast send and attempt 875 * unicast, dump failed record sends to the retry queue; if 876 * sk == NULL due to previous failures we will just do the 877 * multicast send and move the record to the hold queue */ 878 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 879 kauditd_send_multicast_skb, 880 (sk ? 881 kauditd_retry_skb : kauditd_hold_skb)); 882 if (ac && rc < 0) 883 auditd_reset(ac); 884 sk = NULL; 885 886 /* drop our netns reference, no auditd sends past this line */ 887 if (net) { 888 put_net(net); 889 net = NULL; 890 } 891 892 /* we have processed all the queues so wake everyone */ 893 wake_up(&audit_backlog_wait); 894 895 /* NOTE: we want to wake up if there is anything on the queue, 896 * regardless of if an auditd is connected, as we need to 897 * do the multicast send and rotate records from the 898 * main queue to the retry/hold queues */ 899 wait_event_freezable(kauditd_wait, 900 (skb_queue_len(&audit_queue) ? 1 : 0)); 901 } 902 903 return 0; 904 } 905 906 int audit_send_list_thread(void *_dest) 907 { 908 struct audit_netlink_list *dest = _dest; 909 struct sk_buff *skb; 910 struct sock *sk = audit_get_sk(dest->net); 911 912 /* wait for parent to finish and send an ACK */ 913 audit_ctl_lock(); 914 audit_ctl_unlock(); 915 916 while ((skb = __skb_dequeue(&dest->q)) != NULL) 917 netlink_unicast(sk, skb, dest->portid, 0); 918 919 put_net(dest->net); 920 kfree(dest); 921 922 return 0; 923 } 924 925 struct sk_buff *audit_make_reply(int seq, int type, int done, 926 int multi, const void *payload, int size) 927 { 928 struct sk_buff *skb; 929 struct nlmsghdr *nlh; 930 void *data; 931 int flags = multi ? NLM_F_MULTI : 0; 932 int t = done ? NLMSG_DONE : type; 933 934 skb = nlmsg_new(size, GFP_KERNEL); 935 if (!skb) 936 return NULL; 937 938 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 939 if (!nlh) 940 goto out_kfree_skb; 941 data = nlmsg_data(nlh); 942 memcpy(data, payload, size); 943 return skb; 944 945 out_kfree_skb: 946 kfree_skb(skb); 947 return NULL; 948 } 949 950 static void audit_free_reply(struct audit_reply *reply) 951 { 952 if (!reply) 953 return; 954 955 kfree_skb(reply->skb); 956 if (reply->net) 957 put_net(reply->net); 958 kfree(reply); 959 } 960 961 static int audit_send_reply_thread(void *arg) 962 { 963 struct audit_reply *reply = (struct audit_reply *)arg; 964 965 audit_ctl_lock(); 966 audit_ctl_unlock(); 967 968 /* Ignore failure. It'll only happen if the sender goes away, 969 because our timeout is set to infinite. */ 970 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0); 971 reply->skb = NULL; 972 audit_free_reply(reply); 973 return 0; 974 } 975 976 /** 977 * audit_send_reply - send an audit reply message via netlink 978 * @request_skb: skb of request we are replying to (used to target the reply) 979 * @seq: sequence number 980 * @type: audit message type 981 * @done: done (last) flag 982 * @multi: multi-part message flag 983 * @payload: payload data 984 * @size: payload size 985 * 986 * Allocates a skb, builds the netlink message, and sends it to the port id. 987 */ 988 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 989 int multi, const void *payload, int size) 990 { 991 struct task_struct *tsk; 992 struct audit_reply *reply; 993 994 reply = kzalloc(sizeof(*reply), GFP_KERNEL); 995 if (!reply) 996 return; 997 998 reply->skb = audit_make_reply(seq, type, done, multi, payload, size); 999 if (!reply->skb) 1000 goto err; 1001 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk)); 1002 reply->portid = NETLINK_CB(request_skb).portid; 1003 1004 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 1005 if (IS_ERR(tsk)) 1006 goto err; 1007 1008 return; 1009 1010 err: 1011 audit_free_reply(reply); 1012 } 1013 1014 /* 1015 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 1016 * control messages. 1017 */ 1018 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 1019 { 1020 int err = 0; 1021 1022 /* Only support initial user namespace for now. */ 1023 /* 1024 * We return ECONNREFUSED because it tricks userspace into thinking 1025 * that audit was not configured into the kernel. Lots of users 1026 * configure their PAM stack (because that's what the distro does) 1027 * to reject login if unable to send messages to audit. If we return 1028 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 1029 * configured in and will let login proceed. If we return EPERM 1030 * userspace will reject all logins. This should be removed when we 1031 * support non init namespaces!! 1032 */ 1033 if (current_user_ns() != &init_user_ns) 1034 return -ECONNREFUSED; 1035 1036 switch (msg_type) { 1037 case AUDIT_LIST: 1038 case AUDIT_ADD: 1039 case AUDIT_DEL: 1040 return -EOPNOTSUPP; 1041 case AUDIT_GET: 1042 case AUDIT_SET: 1043 case AUDIT_GET_FEATURE: 1044 case AUDIT_SET_FEATURE: 1045 case AUDIT_LIST_RULES: 1046 case AUDIT_ADD_RULE: 1047 case AUDIT_DEL_RULE: 1048 case AUDIT_SIGNAL_INFO: 1049 case AUDIT_TTY_GET: 1050 case AUDIT_TTY_SET: 1051 case AUDIT_TRIM: 1052 case AUDIT_MAKE_EQUIV: 1053 /* Only support auditd and auditctl in initial pid namespace 1054 * for now. */ 1055 if (task_active_pid_ns(current) != &init_pid_ns) 1056 return -EPERM; 1057 1058 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1059 err = -EPERM; 1060 break; 1061 case AUDIT_USER: 1062 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1063 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1064 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1065 err = -EPERM; 1066 break; 1067 default: /* bad msg */ 1068 err = -EINVAL; 1069 } 1070 1071 return err; 1072 } 1073 1074 static void audit_log_common_recv_msg(struct audit_context *context, 1075 struct audit_buffer **ab, u16 msg_type) 1076 { 1077 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1078 pid_t pid = task_tgid_nr(current); 1079 1080 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1081 *ab = NULL; 1082 return; 1083 } 1084 1085 *ab = audit_log_start(context, GFP_KERNEL, msg_type); 1086 if (unlikely(!*ab)) 1087 return; 1088 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid); 1089 audit_log_session_info(*ab); 1090 audit_log_task_context(*ab); 1091 } 1092 1093 static inline void audit_log_user_recv_msg(struct audit_buffer **ab, 1094 u16 msg_type) 1095 { 1096 audit_log_common_recv_msg(NULL, ab, msg_type); 1097 } 1098 1099 static int is_audit_feature_set(int i) 1100 { 1101 return af.features & AUDIT_FEATURE_TO_MASK(i); 1102 } 1103 1104 1105 static int audit_get_feature(struct sk_buff *skb) 1106 { 1107 u32 seq; 1108 1109 seq = nlmsg_hdr(skb)->nlmsg_seq; 1110 1111 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1112 1113 return 0; 1114 } 1115 1116 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1117 u32 old_lock, u32 new_lock, int res) 1118 { 1119 struct audit_buffer *ab; 1120 1121 if (audit_enabled == AUDIT_OFF) 1122 return; 1123 1124 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1125 if (!ab) 1126 return; 1127 audit_log_task_info(ab); 1128 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1129 audit_feature_names[which], !!old_feature, !!new_feature, 1130 !!old_lock, !!new_lock, res); 1131 audit_log_end(ab); 1132 } 1133 1134 static int audit_set_feature(struct audit_features *uaf) 1135 { 1136 int i; 1137 1138 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1139 1140 /* if there is ever a version 2 we should handle that here */ 1141 1142 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1143 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1144 u32 old_feature, new_feature, old_lock, new_lock; 1145 1146 /* if we are not changing this feature, move along */ 1147 if (!(feature & uaf->mask)) 1148 continue; 1149 1150 old_feature = af.features & feature; 1151 new_feature = uaf->features & feature; 1152 new_lock = (uaf->lock | af.lock) & feature; 1153 old_lock = af.lock & feature; 1154 1155 /* are we changing a locked feature? */ 1156 if (old_lock && (new_feature != old_feature)) { 1157 audit_log_feature_change(i, old_feature, new_feature, 1158 old_lock, new_lock, 0); 1159 return -EPERM; 1160 } 1161 } 1162 /* nothing invalid, do the changes */ 1163 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1164 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1165 u32 old_feature, new_feature, old_lock, new_lock; 1166 1167 /* if we are not changing this feature, move along */ 1168 if (!(feature & uaf->mask)) 1169 continue; 1170 1171 old_feature = af.features & feature; 1172 new_feature = uaf->features & feature; 1173 old_lock = af.lock & feature; 1174 new_lock = (uaf->lock | af.lock) & feature; 1175 1176 if (new_feature != old_feature) 1177 audit_log_feature_change(i, old_feature, new_feature, 1178 old_lock, new_lock, 1); 1179 1180 if (new_feature) 1181 af.features |= feature; 1182 else 1183 af.features &= ~feature; 1184 af.lock |= new_lock; 1185 } 1186 1187 return 0; 1188 } 1189 1190 static int audit_replace(struct pid *pid) 1191 { 1192 pid_t pvnr; 1193 struct sk_buff *skb; 1194 1195 pvnr = pid_vnr(pid); 1196 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1197 if (!skb) 1198 return -ENOMEM; 1199 return auditd_send_unicast_skb(skb); 1200 } 1201 1202 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 1203 { 1204 u32 seq; 1205 void *data; 1206 int data_len; 1207 int err; 1208 struct audit_buffer *ab; 1209 u16 msg_type = nlh->nlmsg_type; 1210 struct audit_sig_info *sig_data; 1211 char *ctx = NULL; 1212 u32 len; 1213 1214 err = audit_netlink_ok(skb, msg_type); 1215 if (err) 1216 return err; 1217 1218 seq = nlh->nlmsg_seq; 1219 data = nlmsg_data(nlh); 1220 data_len = nlmsg_len(nlh); 1221 1222 switch (msg_type) { 1223 case AUDIT_GET: { 1224 struct audit_status s; 1225 memset(&s, 0, sizeof(s)); 1226 s.enabled = audit_enabled; 1227 s.failure = audit_failure; 1228 /* NOTE: use pid_vnr() so the PID is relative to the current 1229 * namespace */ 1230 s.pid = auditd_pid_vnr(); 1231 s.rate_limit = audit_rate_limit; 1232 s.backlog_limit = audit_backlog_limit; 1233 s.lost = atomic_read(&audit_lost); 1234 s.backlog = skb_queue_len(&audit_queue); 1235 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1236 s.backlog_wait_time = audit_backlog_wait_time; 1237 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual); 1238 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1239 break; 1240 } 1241 case AUDIT_SET: { 1242 struct audit_status s; 1243 memset(&s, 0, sizeof(s)); 1244 /* guard against past and future API changes */ 1245 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1246 if (s.mask & AUDIT_STATUS_ENABLED) { 1247 err = audit_set_enabled(s.enabled); 1248 if (err < 0) 1249 return err; 1250 } 1251 if (s.mask & AUDIT_STATUS_FAILURE) { 1252 err = audit_set_failure(s.failure); 1253 if (err < 0) 1254 return err; 1255 } 1256 if (s.mask & AUDIT_STATUS_PID) { 1257 /* NOTE: we are using the vnr PID functions below 1258 * because the s.pid value is relative to the 1259 * namespace of the caller; at present this 1260 * doesn't matter much since you can really only 1261 * run auditd from the initial pid namespace, but 1262 * something to keep in mind if this changes */ 1263 pid_t new_pid = s.pid; 1264 pid_t auditd_pid; 1265 struct pid *req_pid = task_tgid(current); 1266 1267 /* Sanity check - PID values must match. Setting 1268 * pid to 0 is how auditd ends auditing. */ 1269 if (new_pid && (new_pid != pid_vnr(req_pid))) 1270 return -EINVAL; 1271 1272 /* test the auditd connection */ 1273 audit_replace(req_pid); 1274 1275 auditd_pid = auditd_pid_vnr(); 1276 if (auditd_pid) { 1277 /* replacing a healthy auditd is not allowed */ 1278 if (new_pid) { 1279 audit_log_config_change("audit_pid", 1280 new_pid, auditd_pid, 0); 1281 return -EEXIST; 1282 } 1283 /* only current auditd can unregister itself */ 1284 if (pid_vnr(req_pid) != auditd_pid) { 1285 audit_log_config_change("audit_pid", 1286 new_pid, auditd_pid, 0); 1287 return -EACCES; 1288 } 1289 } 1290 1291 if (new_pid) { 1292 /* register a new auditd connection */ 1293 err = auditd_set(req_pid, 1294 NETLINK_CB(skb).portid, 1295 sock_net(NETLINK_CB(skb).sk)); 1296 if (audit_enabled != AUDIT_OFF) 1297 audit_log_config_change("audit_pid", 1298 new_pid, 1299 auditd_pid, 1300 err ? 0 : 1); 1301 if (err) 1302 return err; 1303 1304 /* try to process any backlog */ 1305 wake_up_interruptible(&kauditd_wait); 1306 } else { 1307 if (audit_enabled != AUDIT_OFF) 1308 audit_log_config_change("audit_pid", 1309 new_pid, 1310 auditd_pid, 1); 1311 1312 /* unregister the auditd connection */ 1313 auditd_reset(NULL); 1314 } 1315 } 1316 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1317 err = audit_set_rate_limit(s.rate_limit); 1318 if (err < 0) 1319 return err; 1320 } 1321 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1322 err = audit_set_backlog_limit(s.backlog_limit); 1323 if (err < 0) 1324 return err; 1325 } 1326 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1327 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1328 return -EINVAL; 1329 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1330 return -EINVAL; 1331 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1332 if (err < 0) 1333 return err; 1334 } 1335 if (s.mask == AUDIT_STATUS_LOST) { 1336 u32 lost = atomic_xchg(&audit_lost, 0); 1337 1338 audit_log_config_change("lost", 0, lost, 1); 1339 return lost; 1340 } 1341 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) { 1342 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0); 1343 1344 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1); 1345 return actual; 1346 } 1347 break; 1348 } 1349 case AUDIT_GET_FEATURE: 1350 err = audit_get_feature(skb); 1351 if (err) 1352 return err; 1353 break; 1354 case AUDIT_SET_FEATURE: 1355 if (data_len < sizeof(struct audit_features)) 1356 return -EINVAL; 1357 err = audit_set_feature(data); 1358 if (err) 1359 return err; 1360 break; 1361 case AUDIT_USER: 1362 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1363 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1364 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1365 return 0; 1366 /* exit early if there isn't at least one character to print */ 1367 if (data_len < 2) 1368 return -EINVAL; 1369 1370 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1371 if (err == 1) { /* match or error */ 1372 char *str = data; 1373 1374 err = 0; 1375 if (msg_type == AUDIT_USER_TTY) { 1376 err = tty_audit_push(); 1377 if (err) 1378 break; 1379 } 1380 audit_log_user_recv_msg(&ab, msg_type); 1381 if (msg_type != AUDIT_USER_TTY) { 1382 /* ensure NULL termination */ 1383 str[data_len - 1] = '\0'; 1384 audit_log_format(ab, " msg='%.*s'", 1385 AUDIT_MESSAGE_TEXT_MAX, 1386 str); 1387 } else { 1388 audit_log_format(ab, " data="); 1389 if (str[data_len - 1] == '\0') 1390 data_len--; 1391 audit_log_n_untrustedstring(ab, str, data_len); 1392 } 1393 audit_log_end(ab); 1394 } 1395 break; 1396 case AUDIT_ADD_RULE: 1397 case AUDIT_DEL_RULE: 1398 if (data_len < sizeof(struct audit_rule_data)) 1399 return -EINVAL; 1400 if (audit_enabled == AUDIT_LOCKED) { 1401 audit_log_common_recv_msg(audit_context(), &ab, 1402 AUDIT_CONFIG_CHANGE); 1403 audit_log_format(ab, " op=%s audit_enabled=%d res=0", 1404 msg_type == AUDIT_ADD_RULE ? 1405 "add_rule" : "remove_rule", 1406 audit_enabled); 1407 audit_log_end(ab); 1408 return -EPERM; 1409 } 1410 err = audit_rule_change(msg_type, seq, data, data_len); 1411 break; 1412 case AUDIT_LIST_RULES: 1413 err = audit_list_rules_send(skb, seq); 1414 break; 1415 case AUDIT_TRIM: 1416 audit_trim_trees(); 1417 audit_log_common_recv_msg(audit_context(), &ab, 1418 AUDIT_CONFIG_CHANGE); 1419 audit_log_format(ab, " op=trim res=1"); 1420 audit_log_end(ab); 1421 break; 1422 case AUDIT_MAKE_EQUIV: { 1423 void *bufp = data; 1424 u32 sizes[2]; 1425 size_t msglen = data_len; 1426 char *old, *new; 1427 1428 err = -EINVAL; 1429 if (msglen < 2 * sizeof(u32)) 1430 break; 1431 memcpy(sizes, bufp, 2 * sizeof(u32)); 1432 bufp += 2 * sizeof(u32); 1433 msglen -= 2 * sizeof(u32); 1434 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1435 if (IS_ERR(old)) { 1436 err = PTR_ERR(old); 1437 break; 1438 } 1439 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1440 if (IS_ERR(new)) { 1441 err = PTR_ERR(new); 1442 kfree(old); 1443 break; 1444 } 1445 /* OK, here comes... */ 1446 err = audit_tag_tree(old, new); 1447 1448 audit_log_common_recv_msg(audit_context(), &ab, 1449 AUDIT_CONFIG_CHANGE); 1450 audit_log_format(ab, " op=make_equiv old="); 1451 audit_log_untrustedstring(ab, old); 1452 audit_log_format(ab, " new="); 1453 audit_log_untrustedstring(ab, new); 1454 audit_log_format(ab, " res=%d", !err); 1455 audit_log_end(ab); 1456 kfree(old); 1457 kfree(new); 1458 break; 1459 } 1460 case AUDIT_SIGNAL_INFO: 1461 len = 0; 1462 if (audit_sig_sid) { 1463 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1464 if (err) 1465 return err; 1466 } 1467 sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL); 1468 if (!sig_data) { 1469 if (audit_sig_sid) 1470 security_release_secctx(ctx, len); 1471 return -ENOMEM; 1472 } 1473 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1474 sig_data->pid = audit_sig_pid; 1475 if (audit_sig_sid) { 1476 memcpy(sig_data->ctx, ctx, len); 1477 security_release_secctx(ctx, len); 1478 } 1479 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1480 sig_data, struct_size(sig_data, ctx, len)); 1481 kfree(sig_data); 1482 break; 1483 case AUDIT_TTY_GET: { 1484 struct audit_tty_status s; 1485 unsigned int t; 1486 1487 t = READ_ONCE(current->signal->audit_tty); 1488 s.enabled = t & AUDIT_TTY_ENABLE; 1489 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1490 1491 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1492 break; 1493 } 1494 case AUDIT_TTY_SET: { 1495 struct audit_tty_status s, old; 1496 struct audit_buffer *ab; 1497 unsigned int t; 1498 1499 memset(&s, 0, sizeof(s)); 1500 /* guard against past and future API changes */ 1501 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1502 /* check if new data is valid */ 1503 if ((s.enabled != 0 && s.enabled != 1) || 1504 (s.log_passwd != 0 && s.log_passwd != 1)) 1505 err = -EINVAL; 1506 1507 if (err) 1508 t = READ_ONCE(current->signal->audit_tty); 1509 else { 1510 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1511 t = xchg(¤t->signal->audit_tty, t); 1512 } 1513 old.enabled = t & AUDIT_TTY_ENABLE; 1514 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1515 1516 audit_log_common_recv_msg(audit_context(), &ab, 1517 AUDIT_CONFIG_CHANGE); 1518 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1519 " old-log_passwd=%d new-log_passwd=%d res=%d", 1520 old.enabled, s.enabled, old.log_passwd, 1521 s.log_passwd, !err); 1522 audit_log_end(ab); 1523 break; 1524 } 1525 default: 1526 err = -EINVAL; 1527 break; 1528 } 1529 1530 return err < 0 ? err : 0; 1531 } 1532 1533 /** 1534 * audit_receive - receive messages from a netlink control socket 1535 * @skb: the message buffer 1536 * 1537 * Parse the provided skb and deal with any messages that may be present, 1538 * malformed skbs are discarded. 1539 */ 1540 static void audit_receive(struct sk_buff *skb) 1541 { 1542 struct nlmsghdr *nlh; 1543 /* 1544 * len MUST be signed for nlmsg_next to be able to dec it below 0 1545 * if the nlmsg_len was not aligned 1546 */ 1547 int len; 1548 int err; 1549 1550 nlh = nlmsg_hdr(skb); 1551 len = skb->len; 1552 1553 audit_ctl_lock(); 1554 while (nlmsg_ok(nlh, len)) { 1555 err = audit_receive_msg(skb, nlh); 1556 /* if err or if this message says it wants a response */ 1557 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1558 netlink_ack(skb, nlh, err, NULL); 1559 1560 nlh = nlmsg_next(nlh, &len); 1561 } 1562 audit_ctl_unlock(); 1563 1564 /* can't block with the ctrl lock, so penalize the sender now */ 1565 if (audit_backlog_limit && 1566 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1567 DECLARE_WAITQUEUE(wait, current); 1568 1569 /* wake kauditd to try and flush the queue */ 1570 wake_up_interruptible(&kauditd_wait); 1571 1572 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1573 set_current_state(TASK_UNINTERRUPTIBLE); 1574 schedule_timeout(audit_backlog_wait_time); 1575 remove_wait_queue(&audit_backlog_wait, &wait); 1576 } 1577 } 1578 1579 /* Log information about who is connecting to the audit multicast socket */ 1580 static void audit_log_multicast(int group, const char *op, int err) 1581 { 1582 const struct cred *cred; 1583 struct tty_struct *tty; 1584 char comm[sizeof(current->comm)]; 1585 struct audit_buffer *ab; 1586 1587 if (!audit_enabled) 1588 return; 1589 1590 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER); 1591 if (!ab) 1592 return; 1593 1594 cred = current_cred(); 1595 tty = audit_get_tty(); 1596 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u", 1597 task_pid_nr(current), 1598 from_kuid(&init_user_ns, cred->uid), 1599 from_kuid(&init_user_ns, audit_get_loginuid(current)), 1600 tty ? tty_name(tty) : "(none)", 1601 audit_get_sessionid(current)); 1602 audit_put_tty(tty); 1603 audit_log_task_context(ab); /* subj= */ 1604 audit_log_format(ab, " comm="); 1605 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 1606 audit_log_d_path_exe(ab, current->mm); /* exe= */ 1607 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err); 1608 audit_log_end(ab); 1609 } 1610 1611 /* Run custom bind function on netlink socket group connect or bind requests. */ 1612 static int audit_multicast_bind(struct net *net, int group) 1613 { 1614 int err = 0; 1615 1616 if (!capable(CAP_AUDIT_READ)) 1617 err = -EPERM; 1618 audit_log_multicast(group, "connect", err); 1619 return err; 1620 } 1621 1622 static void audit_multicast_unbind(struct net *net, int group) 1623 { 1624 audit_log_multicast(group, "disconnect", 0); 1625 } 1626 1627 static int __net_init audit_net_init(struct net *net) 1628 { 1629 struct netlink_kernel_cfg cfg = { 1630 .input = audit_receive, 1631 .bind = audit_multicast_bind, 1632 .unbind = audit_multicast_unbind, 1633 .flags = NL_CFG_F_NONROOT_RECV, 1634 .groups = AUDIT_NLGRP_MAX, 1635 }; 1636 1637 struct audit_net *aunet = net_generic(net, audit_net_id); 1638 1639 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1640 if (aunet->sk == NULL) { 1641 audit_panic("cannot initialize netlink socket in namespace"); 1642 return -ENOMEM; 1643 } 1644 /* limit the timeout in case auditd is blocked/stopped */ 1645 aunet->sk->sk_sndtimeo = HZ / 10; 1646 1647 return 0; 1648 } 1649 1650 static void __net_exit audit_net_exit(struct net *net) 1651 { 1652 struct audit_net *aunet = net_generic(net, audit_net_id); 1653 1654 /* NOTE: you would think that we would want to check the auditd 1655 * connection and potentially reset it here if it lives in this 1656 * namespace, but since the auditd connection tracking struct holds a 1657 * reference to this namespace (see auditd_set()) we are only ever 1658 * going to get here after that connection has been released */ 1659 1660 netlink_kernel_release(aunet->sk); 1661 } 1662 1663 static struct pernet_operations audit_net_ops __net_initdata = { 1664 .init = audit_net_init, 1665 .exit = audit_net_exit, 1666 .id = &audit_net_id, 1667 .size = sizeof(struct audit_net), 1668 }; 1669 1670 /* Initialize audit support at boot time. */ 1671 static int __init audit_init(void) 1672 { 1673 int i; 1674 1675 if (audit_initialized == AUDIT_DISABLED) 1676 return 0; 1677 1678 audit_buffer_cache = kmem_cache_create("audit_buffer", 1679 sizeof(struct audit_buffer), 1680 0, SLAB_PANIC, NULL); 1681 1682 skb_queue_head_init(&audit_queue); 1683 skb_queue_head_init(&audit_retry_queue); 1684 skb_queue_head_init(&audit_hold_queue); 1685 1686 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1687 INIT_LIST_HEAD(&audit_inode_hash[i]); 1688 1689 mutex_init(&audit_cmd_mutex.lock); 1690 audit_cmd_mutex.owner = NULL; 1691 1692 pr_info("initializing netlink subsys (%s)\n", 1693 audit_default ? "enabled" : "disabled"); 1694 register_pernet_subsys(&audit_net_ops); 1695 1696 audit_initialized = AUDIT_INITIALIZED; 1697 1698 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1699 if (IS_ERR(kauditd_task)) { 1700 int err = PTR_ERR(kauditd_task); 1701 panic("audit: failed to start the kauditd thread (%d)\n", err); 1702 } 1703 1704 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1705 "state=initialized audit_enabled=%u res=1", 1706 audit_enabled); 1707 1708 return 0; 1709 } 1710 postcore_initcall(audit_init); 1711 1712 /* 1713 * Process kernel command-line parameter at boot time. 1714 * audit={0|off} or audit={1|on}. 1715 */ 1716 static int __init audit_enable(char *str) 1717 { 1718 if (!strcasecmp(str, "off") || !strcmp(str, "0")) 1719 audit_default = AUDIT_OFF; 1720 else if (!strcasecmp(str, "on") || !strcmp(str, "1")) 1721 audit_default = AUDIT_ON; 1722 else { 1723 pr_err("audit: invalid 'audit' parameter value (%s)\n", str); 1724 audit_default = AUDIT_ON; 1725 } 1726 1727 if (audit_default == AUDIT_OFF) 1728 audit_initialized = AUDIT_DISABLED; 1729 if (audit_set_enabled(audit_default)) 1730 pr_err("audit: error setting audit state (%d)\n", 1731 audit_default); 1732 1733 pr_info("%s\n", audit_default ? 1734 "enabled (after initialization)" : "disabled (until reboot)"); 1735 1736 return 1; 1737 } 1738 __setup("audit=", audit_enable); 1739 1740 /* Process kernel command-line parameter at boot time. 1741 * audit_backlog_limit=<n> */ 1742 static int __init audit_backlog_limit_set(char *str) 1743 { 1744 u32 audit_backlog_limit_arg; 1745 1746 pr_info("audit_backlog_limit: "); 1747 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1748 pr_cont("using default of %u, unable to parse %s\n", 1749 audit_backlog_limit, str); 1750 return 1; 1751 } 1752 1753 audit_backlog_limit = audit_backlog_limit_arg; 1754 pr_cont("%d\n", audit_backlog_limit); 1755 1756 return 1; 1757 } 1758 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1759 1760 static void audit_buffer_free(struct audit_buffer *ab) 1761 { 1762 if (!ab) 1763 return; 1764 1765 kfree_skb(ab->skb); 1766 kmem_cache_free(audit_buffer_cache, ab); 1767 } 1768 1769 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1770 gfp_t gfp_mask, int type) 1771 { 1772 struct audit_buffer *ab; 1773 1774 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1775 if (!ab) 1776 return NULL; 1777 1778 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1779 if (!ab->skb) 1780 goto err; 1781 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1782 goto err; 1783 1784 ab->ctx = ctx; 1785 ab->gfp_mask = gfp_mask; 1786 1787 return ab; 1788 1789 err: 1790 audit_buffer_free(ab); 1791 return NULL; 1792 } 1793 1794 /** 1795 * audit_serial - compute a serial number for the audit record 1796 * 1797 * Compute a serial number for the audit record. Audit records are 1798 * written to user-space as soon as they are generated, so a complete 1799 * audit record may be written in several pieces. The timestamp of the 1800 * record and this serial number are used by the user-space tools to 1801 * determine which pieces belong to the same audit record. The 1802 * (timestamp,serial) tuple is unique for each syscall and is live from 1803 * syscall entry to syscall exit. 1804 * 1805 * NOTE: Another possibility is to store the formatted records off the 1806 * audit context (for those records that have a context), and emit them 1807 * all at syscall exit. However, this could delay the reporting of 1808 * significant errors until syscall exit (or never, if the system 1809 * halts). 1810 */ 1811 unsigned int audit_serial(void) 1812 { 1813 static atomic_t serial = ATOMIC_INIT(0); 1814 1815 return atomic_inc_return(&serial); 1816 } 1817 1818 static inline void audit_get_stamp(struct audit_context *ctx, 1819 struct timespec64 *t, unsigned int *serial) 1820 { 1821 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1822 ktime_get_coarse_real_ts64(t); 1823 *serial = audit_serial(); 1824 } 1825 } 1826 1827 /** 1828 * audit_log_start - obtain an audit buffer 1829 * @ctx: audit_context (may be NULL) 1830 * @gfp_mask: type of allocation 1831 * @type: audit message type 1832 * 1833 * Returns audit_buffer pointer on success or NULL on error. 1834 * 1835 * Obtain an audit buffer. This routine does locking to obtain the 1836 * audit buffer, but then no locking is required for calls to 1837 * audit_log_*format. If the task (ctx) is a task that is currently in a 1838 * syscall, then the syscall is marked as auditable and an audit record 1839 * will be written at syscall exit. If there is no associated task, then 1840 * task context (ctx) should be NULL. 1841 */ 1842 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1843 int type) 1844 { 1845 struct audit_buffer *ab; 1846 struct timespec64 t; 1847 unsigned int serial; 1848 1849 if (audit_initialized != AUDIT_INITIALIZED) 1850 return NULL; 1851 1852 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE))) 1853 return NULL; 1854 1855 /* NOTE: don't ever fail/sleep on these two conditions: 1856 * 1. auditd generated record - since we need auditd to drain the 1857 * queue; also, when we are checking for auditd, compare PIDs using 1858 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1859 * using a PID anchored in the caller's namespace 1860 * 2. generator holding the audit_cmd_mutex - we don't want to block 1861 * while holding the mutex, although we do penalize the sender 1862 * later in audit_receive() when it is safe to block 1863 */ 1864 if (!(auditd_test_task(current) || audit_ctl_owner_current())) { 1865 long stime = audit_backlog_wait_time; 1866 1867 while (audit_backlog_limit && 1868 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1869 /* wake kauditd to try and flush the queue */ 1870 wake_up_interruptible(&kauditd_wait); 1871 1872 /* sleep if we are allowed and we haven't exhausted our 1873 * backlog wait limit */ 1874 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1875 long rtime = stime; 1876 1877 DECLARE_WAITQUEUE(wait, current); 1878 1879 add_wait_queue_exclusive(&audit_backlog_wait, 1880 &wait); 1881 set_current_state(TASK_UNINTERRUPTIBLE); 1882 stime = schedule_timeout(rtime); 1883 atomic_add(rtime - stime, &audit_backlog_wait_time_actual); 1884 remove_wait_queue(&audit_backlog_wait, &wait); 1885 } else { 1886 if (audit_rate_check() && printk_ratelimit()) 1887 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1888 skb_queue_len(&audit_queue), 1889 audit_backlog_limit); 1890 audit_log_lost("backlog limit exceeded"); 1891 return NULL; 1892 } 1893 } 1894 } 1895 1896 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1897 if (!ab) { 1898 audit_log_lost("out of memory in audit_log_start"); 1899 return NULL; 1900 } 1901 1902 audit_get_stamp(ab->ctx, &t, &serial); 1903 /* cancel dummy context to enable supporting records */ 1904 if (ctx) 1905 ctx->dummy = 0; 1906 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1907 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); 1908 1909 return ab; 1910 } 1911 1912 /** 1913 * audit_expand - expand skb in the audit buffer 1914 * @ab: audit_buffer 1915 * @extra: space to add at tail of the skb 1916 * 1917 * Returns 0 (no space) on failed expansion, or available space if 1918 * successful. 1919 */ 1920 static inline int audit_expand(struct audit_buffer *ab, int extra) 1921 { 1922 struct sk_buff *skb = ab->skb; 1923 int oldtail = skb_tailroom(skb); 1924 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1925 int newtail = skb_tailroom(skb); 1926 1927 if (ret < 0) { 1928 audit_log_lost("out of memory in audit_expand"); 1929 return 0; 1930 } 1931 1932 skb->truesize += newtail - oldtail; 1933 return newtail; 1934 } 1935 1936 /* 1937 * Format an audit message into the audit buffer. If there isn't enough 1938 * room in the audit buffer, more room will be allocated and vsnprint 1939 * will be called a second time. Currently, we assume that a printk 1940 * can't format message larger than 1024 bytes, so we don't either. 1941 */ 1942 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1943 va_list args) 1944 { 1945 int len, avail; 1946 struct sk_buff *skb; 1947 va_list args2; 1948 1949 if (!ab) 1950 return; 1951 1952 BUG_ON(!ab->skb); 1953 skb = ab->skb; 1954 avail = skb_tailroom(skb); 1955 if (avail == 0) { 1956 avail = audit_expand(ab, AUDIT_BUFSIZ); 1957 if (!avail) 1958 goto out; 1959 } 1960 va_copy(args2, args); 1961 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1962 if (len >= avail) { 1963 /* The printk buffer is 1024 bytes long, so if we get 1964 * here and AUDIT_BUFSIZ is at least 1024, then we can 1965 * log everything that printk could have logged. */ 1966 avail = audit_expand(ab, 1967 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1968 if (!avail) 1969 goto out_va_end; 1970 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1971 } 1972 if (len > 0) 1973 skb_put(skb, len); 1974 out_va_end: 1975 va_end(args2); 1976 out: 1977 return; 1978 } 1979 1980 /** 1981 * audit_log_format - format a message into the audit buffer. 1982 * @ab: audit_buffer 1983 * @fmt: format string 1984 * @...: optional parameters matching @fmt string 1985 * 1986 * All the work is done in audit_log_vformat. 1987 */ 1988 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1989 { 1990 va_list args; 1991 1992 if (!ab) 1993 return; 1994 va_start(args, fmt); 1995 audit_log_vformat(ab, fmt, args); 1996 va_end(args); 1997 } 1998 1999 /** 2000 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb 2001 * @ab: the audit_buffer 2002 * @buf: buffer to convert to hex 2003 * @len: length of @buf to be converted 2004 * 2005 * No return value; failure to expand is silently ignored. 2006 * 2007 * This function will take the passed buf and convert it into a string of 2008 * ascii hex digits. The new string is placed onto the skb. 2009 */ 2010 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 2011 size_t len) 2012 { 2013 int i, avail, new_len; 2014 unsigned char *ptr; 2015 struct sk_buff *skb; 2016 2017 if (!ab) 2018 return; 2019 2020 BUG_ON(!ab->skb); 2021 skb = ab->skb; 2022 avail = skb_tailroom(skb); 2023 new_len = len<<1; 2024 if (new_len >= avail) { 2025 /* Round the buffer request up to the next multiple */ 2026 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 2027 avail = audit_expand(ab, new_len); 2028 if (!avail) 2029 return; 2030 } 2031 2032 ptr = skb_tail_pointer(skb); 2033 for (i = 0; i < len; i++) 2034 ptr = hex_byte_pack_upper(ptr, buf[i]); 2035 *ptr = 0; 2036 skb_put(skb, len << 1); /* new string is twice the old string */ 2037 } 2038 2039 /* 2040 * Format a string of no more than slen characters into the audit buffer, 2041 * enclosed in quote marks. 2042 */ 2043 void audit_log_n_string(struct audit_buffer *ab, const char *string, 2044 size_t slen) 2045 { 2046 int avail, new_len; 2047 unsigned char *ptr; 2048 struct sk_buff *skb; 2049 2050 if (!ab) 2051 return; 2052 2053 BUG_ON(!ab->skb); 2054 skb = ab->skb; 2055 avail = skb_tailroom(skb); 2056 new_len = slen + 3; /* enclosing quotes + null terminator */ 2057 if (new_len > avail) { 2058 avail = audit_expand(ab, new_len); 2059 if (!avail) 2060 return; 2061 } 2062 ptr = skb_tail_pointer(skb); 2063 *ptr++ = '"'; 2064 memcpy(ptr, string, slen); 2065 ptr += slen; 2066 *ptr++ = '"'; 2067 *ptr = 0; 2068 skb_put(skb, slen + 2); /* don't include null terminator */ 2069 } 2070 2071 /** 2072 * audit_string_contains_control - does a string need to be logged in hex 2073 * @string: string to be checked 2074 * @len: max length of the string to check 2075 */ 2076 bool audit_string_contains_control(const char *string, size_t len) 2077 { 2078 const unsigned char *p; 2079 for (p = string; p < (const unsigned char *)string + len; p++) { 2080 if (*p == '"' || *p < 0x21 || *p > 0x7e) 2081 return true; 2082 } 2083 return false; 2084 } 2085 2086 /** 2087 * audit_log_n_untrustedstring - log a string that may contain random characters 2088 * @ab: audit_buffer 2089 * @len: length of string (not including trailing null) 2090 * @string: string to be logged 2091 * 2092 * This code will escape a string that is passed to it if the string 2093 * contains a control character, unprintable character, double quote mark, 2094 * or a space. Unescaped strings will start and end with a double quote mark. 2095 * Strings that are escaped are printed in hex (2 digits per char). 2096 * 2097 * The caller specifies the number of characters in the string to log, which may 2098 * or may not be the entire string. 2099 */ 2100 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 2101 size_t len) 2102 { 2103 if (audit_string_contains_control(string, len)) 2104 audit_log_n_hex(ab, string, len); 2105 else 2106 audit_log_n_string(ab, string, len); 2107 } 2108 2109 /** 2110 * audit_log_untrustedstring - log a string that may contain random characters 2111 * @ab: audit_buffer 2112 * @string: string to be logged 2113 * 2114 * Same as audit_log_n_untrustedstring(), except that strlen is used to 2115 * determine string length. 2116 */ 2117 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 2118 { 2119 audit_log_n_untrustedstring(ab, string, strlen(string)); 2120 } 2121 2122 /* This is a helper-function to print the escaped d_path */ 2123 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 2124 const struct path *path) 2125 { 2126 char *p, *pathname; 2127 2128 if (prefix) 2129 audit_log_format(ab, "%s", prefix); 2130 2131 /* We will allow 11 spaces for ' (deleted)' to be appended */ 2132 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 2133 if (!pathname) { 2134 audit_log_format(ab, "\"<no_memory>\""); 2135 return; 2136 } 2137 p = d_path(path, pathname, PATH_MAX+11); 2138 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 2139 /* FIXME: can we save some information here? */ 2140 audit_log_format(ab, "\"<too_long>\""); 2141 } else 2142 audit_log_untrustedstring(ab, p); 2143 kfree(pathname); 2144 } 2145 2146 void audit_log_session_info(struct audit_buffer *ab) 2147 { 2148 unsigned int sessionid = audit_get_sessionid(current); 2149 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 2150 2151 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid); 2152 } 2153 2154 void audit_log_key(struct audit_buffer *ab, char *key) 2155 { 2156 audit_log_format(ab, " key="); 2157 if (key) 2158 audit_log_untrustedstring(ab, key); 2159 else 2160 audit_log_format(ab, "(null)"); 2161 } 2162 2163 int audit_log_task_context(struct audit_buffer *ab) 2164 { 2165 char *ctx = NULL; 2166 unsigned len; 2167 int error; 2168 u32 sid; 2169 2170 security_current_getsecid_subj(&sid); 2171 if (!sid) 2172 return 0; 2173 2174 error = security_secid_to_secctx(sid, &ctx, &len); 2175 if (error) { 2176 if (error != -EINVAL) 2177 goto error_path; 2178 return 0; 2179 } 2180 2181 audit_log_format(ab, " subj=%s", ctx); 2182 security_release_secctx(ctx, len); 2183 return 0; 2184 2185 error_path: 2186 audit_panic("error in audit_log_task_context"); 2187 return error; 2188 } 2189 EXPORT_SYMBOL(audit_log_task_context); 2190 2191 void audit_log_d_path_exe(struct audit_buffer *ab, 2192 struct mm_struct *mm) 2193 { 2194 struct file *exe_file; 2195 2196 if (!mm) 2197 goto out_null; 2198 2199 exe_file = get_mm_exe_file(mm); 2200 if (!exe_file) 2201 goto out_null; 2202 2203 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2204 fput(exe_file); 2205 return; 2206 out_null: 2207 audit_log_format(ab, " exe=(null)"); 2208 } 2209 2210 struct tty_struct *audit_get_tty(void) 2211 { 2212 struct tty_struct *tty = NULL; 2213 unsigned long flags; 2214 2215 spin_lock_irqsave(¤t->sighand->siglock, flags); 2216 if (current->signal) 2217 tty = tty_kref_get(current->signal->tty); 2218 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 2219 return tty; 2220 } 2221 2222 void audit_put_tty(struct tty_struct *tty) 2223 { 2224 tty_kref_put(tty); 2225 } 2226 2227 void audit_log_task_info(struct audit_buffer *ab) 2228 { 2229 const struct cred *cred; 2230 char comm[sizeof(current->comm)]; 2231 struct tty_struct *tty; 2232 2233 if (!ab) 2234 return; 2235 2236 cred = current_cred(); 2237 tty = audit_get_tty(); 2238 audit_log_format(ab, 2239 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2240 " euid=%u suid=%u fsuid=%u" 2241 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2242 task_ppid_nr(current), 2243 task_tgid_nr(current), 2244 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2245 from_kuid(&init_user_ns, cred->uid), 2246 from_kgid(&init_user_ns, cred->gid), 2247 from_kuid(&init_user_ns, cred->euid), 2248 from_kuid(&init_user_ns, cred->suid), 2249 from_kuid(&init_user_ns, cred->fsuid), 2250 from_kgid(&init_user_ns, cred->egid), 2251 from_kgid(&init_user_ns, cred->sgid), 2252 from_kgid(&init_user_ns, cred->fsgid), 2253 tty ? tty_name(tty) : "(none)", 2254 audit_get_sessionid(current)); 2255 audit_put_tty(tty); 2256 audit_log_format(ab, " comm="); 2257 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2258 audit_log_d_path_exe(ab, current->mm); 2259 audit_log_task_context(ab); 2260 } 2261 EXPORT_SYMBOL(audit_log_task_info); 2262 2263 /** 2264 * audit_log_path_denied - report a path restriction denial 2265 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc) 2266 * @operation: specific operation name 2267 */ 2268 void audit_log_path_denied(int type, const char *operation) 2269 { 2270 struct audit_buffer *ab; 2271 2272 if (!audit_enabled || audit_dummy_context()) 2273 return; 2274 2275 /* Generate log with subject, operation, outcome. */ 2276 ab = audit_log_start(audit_context(), GFP_KERNEL, type); 2277 if (!ab) 2278 return; 2279 audit_log_format(ab, "op=%s", operation); 2280 audit_log_task_info(ab); 2281 audit_log_format(ab, " res=0"); 2282 audit_log_end(ab); 2283 } 2284 2285 /* global counter which is incremented every time something logs in */ 2286 static atomic_t session_id = ATOMIC_INIT(0); 2287 2288 static int audit_set_loginuid_perm(kuid_t loginuid) 2289 { 2290 /* if we are unset, we don't need privs */ 2291 if (!audit_loginuid_set(current)) 2292 return 0; 2293 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2294 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2295 return -EPERM; 2296 /* it is set, you need permission */ 2297 if (!capable(CAP_AUDIT_CONTROL)) 2298 return -EPERM; 2299 /* reject if this is not an unset and we don't allow that */ 2300 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) 2301 && uid_valid(loginuid)) 2302 return -EPERM; 2303 return 0; 2304 } 2305 2306 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2307 unsigned int oldsessionid, 2308 unsigned int sessionid, int rc) 2309 { 2310 struct audit_buffer *ab; 2311 uid_t uid, oldloginuid, loginuid; 2312 struct tty_struct *tty; 2313 2314 if (!audit_enabled) 2315 return; 2316 2317 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN); 2318 if (!ab) 2319 return; 2320 2321 uid = from_kuid(&init_user_ns, task_uid(current)); 2322 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2323 loginuid = from_kuid(&init_user_ns, kloginuid); 2324 tty = audit_get_tty(); 2325 2326 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 2327 audit_log_task_context(ab); 2328 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 2329 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2330 oldsessionid, sessionid, !rc); 2331 audit_put_tty(tty); 2332 audit_log_end(ab); 2333 } 2334 2335 /** 2336 * audit_set_loginuid - set current task's loginuid 2337 * @loginuid: loginuid value 2338 * 2339 * Returns 0. 2340 * 2341 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2342 */ 2343 int audit_set_loginuid(kuid_t loginuid) 2344 { 2345 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET; 2346 kuid_t oldloginuid; 2347 int rc; 2348 2349 oldloginuid = audit_get_loginuid(current); 2350 oldsessionid = audit_get_sessionid(current); 2351 2352 rc = audit_set_loginuid_perm(loginuid); 2353 if (rc) 2354 goto out; 2355 2356 /* are we setting or clearing? */ 2357 if (uid_valid(loginuid)) { 2358 sessionid = (unsigned int)atomic_inc_return(&session_id); 2359 if (unlikely(sessionid == AUDIT_SID_UNSET)) 2360 sessionid = (unsigned int)atomic_inc_return(&session_id); 2361 } 2362 2363 current->sessionid = sessionid; 2364 current->loginuid = loginuid; 2365 out: 2366 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2367 return rc; 2368 } 2369 2370 /** 2371 * audit_signal_info - record signal info for shutting down audit subsystem 2372 * @sig: signal value 2373 * @t: task being signaled 2374 * 2375 * If the audit subsystem is being terminated, record the task (pid) 2376 * and uid that is doing that. 2377 */ 2378 int audit_signal_info(int sig, struct task_struct *t) 2379 { 2380 kuid_t uid = current_uid(), auid; 2381 2382 if (auditd_test_task(t) && 2383 (sig == SIGTERM || sig == SIGHUP || 2384 sig == SIGUSR1 || sig == SIGUSR2)) { 2385 audit_sig_pid = task_tgid_nr(current); 2386 auid = audit_get_loginuid(current); 2387 if (uid_valid(auid)) 2388 audit_sig_uid = auid; 2389 else 2390 audit_sig_uid = uid; 2391 security_current_getsecid_subj(&audit_sig_sid); 2392 } 2393 2394 return audit_signal_info_syscall(t); 2395 } 2396 2397 /** 2398 * audit_log_end - end one audit record 2399 * @ab: the audit_buffer 2400 * 2401 * We can not do a netlink send inside an irq context because it blocks (last 2402 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2403 * queue and a kthread is scheduled to remove them from the queue outside the 2404 * irq context. May be called in any context. 2405 */ 2406 void audit_log_end(struct audit_buffer *ab) 2407 { 2408 struct sk_buff *skb; 2409 struct nlmsghdr *nlh; 2410 2411 if (!ab) 2412 return; 2413 2414 if (audit_rate_check()) { 2415 skb = ab->skb; 2416 ab->skb = NULL; 2417 2418 /* setup the netlink header, see the comments in 2419 * kauditd_send_multicast_skb() for length quirks */ 2420 nlh = nlmsg_hdr(skb); 2421 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2422 2423 /* queue the netlink packet and poke the kauditd thread */ 2424 skb_queue_tail(&audit_queue, skb); 2425 wake_up_interruptible(&kauditd_wait); 2426 } else 2427 audit_log_lost("rate limit exceeded"); 2428 2429 audit_buffer_free(ab); 2430 } 2431 2432 /** 2433 * audit_log - Log an audit record 2434 * @ctx: audit context 2435 * @gfp_mask: type of allocation 2436 * @type: audit message type 2437 * @fmt: format string to use 2438 * @...: variable parameters matching the format string 2439 * 2440 * This is a convenience function that calls audit_log_start, 2441 * audit_log_vformat, and audit_log_end. It may be called 2442 * in any context. 2443 */ 2444 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2445 const char *fmt, ...) 2446 { 2447 struct audit_buffer *ab; 2448 va_list args; 2449 2450 ab = audit_log_start(ctx, gfp_mask, type); 2451 if (ab) { 2452 va_start(args, fmt); 2453 audit_log_vformat(ab, fmt, args); 2454 va_end(args); 2455 audit_log_end(ab); 2456 } 2457 } 2458 2459 EXPORT_SYMBOL(audit_log_start); 2460 EXPORT_SYMBOL(audit_log_end); 2461 EXPORT_SYMBOL(audit_log_format); 2462 EXPORT_SYMBOL(audit_log); 2463