xref: /linux-6.15/kernel/audit.c (revision be4187fa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4  * System-call specific features have moved to auditsc.c
5  *
6  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7  * All Rights Reserved.
8  *
9  * Written by Rickard E. (Rik) Faith <[email protected]>
10  *
11  * Goals: 1) Integrate fully with Security Modules.
12  *	  2) Minimal run-time overhead:
13  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
14  *	     b) Small when syscall auditing is enabled and no audit record
15  *		is generated (defer as much work as possible to record
16  *		generation time):
17  *		i) context is allocated,
18  *		ii) names from getname are stored without a copy, and
19  *		iii) inode information stored from path_lookup.
20  *	  3) Ability to disable syscall auditing at boot time (audit=0).
21  *	  4) Usable by other parts of the kernel (if audit_log* is called,
22  *	     then a syscall record will be generated automatically for the
23  *	     current syscall).
24  *	  5) Netlink interface to user-space.
25  *	  6) Support low-overhead kernel-based filtering to minimize the
26  *	     information that must be passed to user-space.
27  *
28  * Audit userspace, documentation, tests, and bug/issue trackers:
29  * 	https://github.com/linux-audit
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50 
51 #include <linux/audit.h>
52 
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #include <linux/security.h>
57 #include <linux/freezer.h>
58 #include <linux/pid_namespace.h>
59 #include <net/netns/generic.h>
60 
61 #include "audit.h"
62 
63 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
64  * (Initialization happens after skb_init is called.) */
65 #define AUDIT_DISABLED		-1
66 #define AUDIT_UNINITIALIZED	0
67 #define AUDIT_INITIALIZED	1
68 static int	audit_initialized = AUDIT_UNINITIALIZED;
69 
70 u32		audit_enabled = AUDIT_OFF;
71 bool		audit_ever_enabled = !!AUDIT_OFF;
72 
73 EXPORT_SYMBOL_GPL(audit_enabled);
74 
75 /* Default state when kernel boots without any parameters. */
76 static u32	audit_default = AUDIT_OFF;
77 
78 /* If auditing cannot proceed, audit_failure selects what happens. */
79 static u32	audit_failure = AUDIT_FAIL_PRINTK;
80 
81 /* private audit network namespace index */
82 static unsigned int audit_net_id;
83 
84 /**
85  * struct audit_net - audit private network namespace data
86  * @sk: communication socket
87  */
88 struct audit_net {
89 	struct sock *sk;
90 };
91 
92 /**
93  * struct auditd_connection - kernel/auditd connection state
94  * @pid: auditd PID
95  * @portid: netlink portid
96  * @net: the associated network namespace
97  * @rcu: RCU head
98  *
99  * Description:
100  * This struct is RCU protected; you must either hold the RCU lock for reading
101  * or the associated spinlock for writing.
102  */
103 struct auditd_connection {
104 	struct pid *pid;
105 	u32 portid;
106 	struct net *net;
107 	struct rcu_head rcu;
108 };
109 static struct auditd_connection __rcu *auditd_conn;
110 static DEFINE_SPINLOCK(auditd_conn_lock);
111 
112 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
113  * to that number per second.  This prevents DoS attacks, but results in
114  * audit records being dropped. */
115 static u32	audit_rate_limit;
116 
117 /* Number of outstanding audit_buffers allowed.
118  * When set to zero, this means unlimited. */
119 static u32	audit_backlog_limit = 64;
120 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
121 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
122 
123 /* The identity of the user shutting down the audit system. */
124 static kuid_t		audit_sig_uid = INVALID_UID;
125 static pid_t		audit_sig_pid = -1;
126 static u32		audit_sig_sid;
127 
128 /* Records can be lost in several ways:
129    0) [suppressed in audit_alloc]
130    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
131    2) out of memory in audit_log_move [alloc_skb]
132    3) suppressed due to audit_rate_limit
133    4) suppressed due to audit_backlog_limit
134 */
135 static atomic_t	audit_lost = ATOMIC_INIT(0);
136 
137 /* Monotonically increasing sum of time the kernel has spent
138  * waiting while the backlog limit is exceeded.
139  */
140 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
141 
142 /* Hash for inode-based rules */
143 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
144 
145 static struct kmem_cache *audit_buffer_cache;
146 
147 /* queue msgs to send via kauditd_task */
148 static struct sk_buff_head audit_queue;
149 /* queue msgs due to temporary unicast send problems */
150 static struct sk_buff_head audit_retry_queue;
151 /* queue msgs waiting for new auditd connection */
152 static struct sk_buff_head audit_hold_queue;
153 
154 /* queue servicing thread */
155 static struct task_struct *kauditd_task;
156 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
157 
158 /* waitqueue for callers who are blocked on the audit backlog */
159 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
160 
161 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
162 				   .mask = -1,
163 				   .features = 0,
164 				   .lock = 0,};
165 
166 static char *audit_feature_names[2] = {
167 	"only_unset_loginuid",
168 	"loginuid_immutable",
169 };
170 
171 /**
172  * struct audit_ctl_mutex - serialize requests from userspace
173  * @lock: the mutex used for locking
174  * @owner: the task which owns the lock
175  *
176  * Description:
177  * This is the lock struct used to ensure we only process userspace requests
178  * in an orderly fashion.  We can't simply use a mutex/lock here because we
179  * need to track lock ownership so we don't end up blocking the lock owner in
180  * audit_log_start() or similar.
181  */
182 static struct audit_ctl_mutex {
183 	struct mutex lock;
184 	void *owner;
185 } audit_cmd_mutex;
186 
187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188  * audit records.  Since printk uses a 1024 byte buffer, this buffer
189  * should be at least that large. */
190 #define AUDIT_BUFSIZ 1024
191 
192 /* The audit_buffer is used when formatting an audit record.  The caller
193  * locks briefly to get the record off the freelist or to allocate the
194  * buffer, and locks briefly to send the buffer to the netlink layer or
195  * to place it on a transmit queue.  Multiple audit_buffers can be in
196  * use simultaneously. */
197 struct audit_buffer {
198 	struct sk_buff       *skb;	/* formatted skb ready to send */
199 	struct audit_context *ctx;	/* NULL or associated context */
200 	gfp_t		     gfp_mask;
201 };
202 
203 struct audit_reply {
204 	__u32 portid;
205 	struct net *net;
206 	struct sk_buff *skb;
207 };
208 
209 /**
210  * auditd_test_task - Check to see if a given task is an audit daemon
211  * @task: the task to check
212  *
213  * Description:
214  * Return 1 if the task is a registered audit daemon, 0 otherwise.
215  */
216 int auditd_test_task(struct task_struct *task)
217 {
218 	int rc;
219 	struct auditd_connection *ac;
220 
221 	rcu_read_lock();
222 	ac = rcu_dereference(auditd_conn);
223 	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224 	rcu_read_unlock();
225 
226 	return rc;
227 }
228 
229 /**
230  * audit_ctl_lock - Take the audit control lock
231  */
232 void audit_ctl_lock(void)
233 {
234 	mutex_lock(&audit_cmd_mutex.lock);
235 	audit_cmd_mutex.owner = current;
236 }
237 
238 /**
239  * audit_ctl_unlock - Drop the audit control lock
240  */
241 void audit_ctl_unlock(void)
242 {
243 	audit_cmd_mutex.owner = NULL;
244 	mutex_unlock(&audit_cmd_mutex.lock);
245 }
246 
247 /**
248  * audit_ctl_owner_current - Test to see if the current task owns the lock
249  *
250  * Description:
251  * Return true if the current task owns the audit control lock, false if it
252  * doesn't own the lock.
253  */
254 static bool audit_ctl_owner_current(void)
255 {
256 	return (current == audit_cmd_mutex.owner);
257 }
258 
259 /**
260  * auditd_pid_vnr - Return the auditd PID relative to the namespace
261  *
262  * Description:
263  * Returns the PID in relation to the namespace, 0 on failure.
264  */
265 static pid_t auditd_pid_vnr(void)
266 {
267 	pid_t pid;
268 	const struct auditd_connection *ac;
269 
270 	rcu_read_lock();
271 	ac = rcu_dereference(auditd_conn);
272 	if (!ac || !ac->pid)
273 		pid = 0;
274 	else
275 		pid = pid_vnr(ac->pid);
276 	rcu_read_unlock();
277 
278 	return pid;
279 }
280 
281 /**
282  * audit_get_sk - Return the audit socket for the given network namespace
283  * @net: the destination network namespace
284  *
285  * Description:
286  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
287  * that a reference is held for the network namespace while the sock is in use.
288  */
289 static struct sock *audit_get_sk(const struct net *net)
290 {
291 	struct audit_net *aunet;
292 
293 	if (!net)
294 		return NULL;
295 
296 	aunet = net_generic(net, audit_net_id);
297 	return aunet->sk;
298 }
299 
300 void audit_panic(const char *message)
301 {
302 	switch (audit_failure) {
303 	case AUDIT_FAIL_SILENT:
304 		break;
305 	case AUDIT_FAIL_PRINTK:
306 		if (printk_ratelimit())
307 			pr_err("%s\n", message);
308 		break;
309 	case AUDIT_FAIL_PANIC:
310 		panic("audit: %s\n", message);
311 		break;
312 	}
313 }
314 
315 static inline int audit_rate_check(void)
316 {
317 	static unsigned long	last_check = 0;
318 	static int		messages   = 0;
319 	static DEFINE_SPINLOCK(lock);
320 	unsigned long		flags;
321 	unsigned long		now;
322 	int			retval	   = 0;
323 
324 	if (!audit_rate_limit) return 1;
325 
326 	spin_lock_irqsave(&lock, flags);
327 	if (++messages < audit_rate_limit) {
328 		retval = 1;
329 	} else {
330 		now = jiffies;
331 		if (time_after(now, last_check + HZ)) {
332 			last_check = now;
333 			messages   = 0;
334 			retval     = 1;
335 		}
336 	}
337 	spin_unlock_irqrestore(&lock, flags);
338 
339 	return retval;
340 }
341 
342 /**
343  * audit_log_lost - conditionally log lost audit message event
344  * @message: the message stating reason for lost audit message
345  *
346  * Emit at least 1 message per second, even if audit_rate_check is
347  * throttling.
348  * Always increment the lost messages counter.
349 */
350 void audit_log_lost(const char *message)
351 {
352 	static unsigned long	last_msg = 0;
353 	static DEFINE_SPINLOCK(lock);
354 	unsigned long		flags;
355 	unsigned long		now;
356 	int			print;
357 
358 	atomic_inc(&audit_lost);
359 
360 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
361 
362 	if (!print) {
363 		spin_lock_irqsave(&lock, flags);
364 		now = jiffies;
365 		if (time_after(now, last_msg + HZ)) {
366 			print = 1;
367 			last_msg = now;
368 		}
369 		spin_unlock_irqrestore(&lock, flags);
370 	}
371 
372 	if (print) {
373 		if (printk_ratelimit())
374 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
375 				atomic_read(&audit_lost),
376 				audit_rate_limit,
377 				audit_backlog_limit);
378 		audit_panic(message);
379 	}
380 }
381 
382 static int audit_log_config_change(char *function_name, u32 new, u32 old,
383 				   int allow_changes)
384 {
385 	struct audit_buffer *ab;
386 	int rc = 0;
387 
388 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
389 	if (unlikely(!ab))
390 		return rc;
391 	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
392 	audit_log_session_info(ab);
393 	rc = audit_log_task_context(ab);
394 	if (rc)
395 		allow_changes = 0; /* Something weird, deny request */
396 	audit_log_format(ab, " res=%d", allow_changes);
397 	audit_log_end(ab);
398 	return rc;
399 }
400 
401 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
402 {
403 	int allow_changes, rc = 0;
404 	u32 old = *to_change;
405 
406 	/* check if we are locked */
407 	if (audit_enabled == AUDIT_LOCKED)
408 		allow_changes = 0;
409 	else
410 		allow_changes = 1;
411 
412 	if (audit_enabled != AUDIT_OFF) {
413 		rc = audit_log_config_change(function_name, new, old, allow_changes);
414 		if (rc)
415 			allow_changes = 0;
416 	}
417 
418 	/* If we are allowed, make the change */
419 	if (allow_changes == 1)
420 		*to_change = new;
421 	/* Not allowed, update reason */
422 	else if (rc == 0)
423 		rc = -EPERM;
424 	return rc;
425 }
426 
427 static int audit_set_rate_limit(u32 limit)
428 {
429 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
430 }
431 
432 static int audit_set_backlog_limit(u32 limit)
433 {
434 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
435 }
436 
437 static int audit_set_backlog_wait_time(u32 timeout)
438 {
439 	return audit_do_config_change("audit_backlog_wait_time",
440 				      &audit_backlog_wait_time, timeout);
441 }
442 
443 static int audit_set_enabled(u32 state)
444 {
445 	int rc;
446 	if (state > AUDIT_LOCKED)
447 		return -EINVAL;
448 
449 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
450 	if (!rc)
451 		audit_ever_enabled |= !!state;
452 
453 	return rc;
454 }
455 
456 static int audit_set_failure(u32 state)
457 {
458 	if (state != AUDIT_FAIL_SILENT
459 	    && state != AUDIT_FAIL_PRINTK
460 	    && state != AUDIT_FAIL_PANIC)
461 		return -EINVAL;
462 
463 	return audit_do_config_change("audit_failure", &audit_failure, state);
464 }
465 
466 /**
467  * auditd_conn_free - RCU helper to release an auditd connection struct
468  * @rcu: RCU head
469  *
470  * Description:
471  * Drop any references inside the auditd connection tracking struct and free
472  * the memory.
473  */
474 static void auditd_conn_free(struct rcu_head *rcu)
475 {
476 	struct auditd_connection *ac;
477 
478 	ac = container_of(rcu, struct auditd_connection, rcu);
479 	put_pid(ac->pid);
480 	put_net(ac->net);
481 	kfree(ac);
482 }
483 
484 /**
485  * auditd_set - Set/Reset the auditd connection state
486  * @pid: auditd PID
487  * @portid: auditd netlink portid
488  * @net: auditd network namespace pointer
489  *
490  * Description:
491  * This function will obtain and drop network namespace references as
492  * necessary.  Returns zero on success, negative values on failure.
493  */
494 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
495 {
496 	unsigned long flags;
497 	struct auditd_connection *ac_old, *ac_new;
498 
499 	if (!pid || !net)
500 		return -EINVAL;
501 
502 	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
503 	if (!ac_new)
504 		return -ENOMEM;
505 	ac_new->pid = get_pid(pid);
506 	ac_new->portid = portid;
507 	ac_new->net = get_net(net);
508 
509 	spin_lock_irqsave(&auditd_conn_lock, flags);
510 	ac_old = rcu_dereference_protected(auditd_conn,
511 					   lockdep_is_held(&auditd_conn_lock));
512 	rcu_assign_pointer(auditd_conn, ac_new);
513 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
514 
515 	if (ac_old)
516 		call_rcu(&ac_old->rcu, auditd_conn_free);
517 
518 	return 0;
519 }
520 
521 /**
522  * kauditd_printk_skb - Print the audit record to the ring buffer
523  * @skb: audit record
524  *
525  * Whatever the reason, this packet may not make it to the auditd connection
526  * so write it via printk so the information isn't completely lost.
527  */
528 static void kauditd_printk_skb(struct sk_buff *skb)
529 {
530 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
531 	char *data = nlmsg_data(nlh);
532 
533 	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
534 		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
535 }
536 
537 /**
538  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
539  * @skb: audit record
540  * @error: error code (unused)
541  *
542  * Description:
543  * This should only be used by the kauditd_thread when it fails to flush the
544  * hold queue.
545  */
546 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
547 {
548 	/* put the record back in the queue */
549 	skb_queue_tail(&audit_hold_queue, skb);
550 }
551 
552 /**
553  * kauditd_hold_skb - Queue an audit record, waiting for auditd
554  * @skb: audit record
555  * @error: error code
556  *
557  * Description:
558  * Queue the audit record, waiting for an instance of auditd.  When this
559  * function is called we haven't given up yet on sending the record, but things
560  * are not looking good.  The first thing we want to do is try to write the
561  * record via printk and then see if we want to try and hold on to the record
562  * and queue it, if we have room.  If we want to hold on to the record, but we
563  * don't have room, record a record lost message.
564  */
565 static void kauditd_hold_skb(struct sk_buff *skb, int error)
566 {
567 	/* at this point it is uncertain if we will ever send this to auditd so
568 	 * try to send the message via printk before we go any further */
569 	kauditd_printk_skb(skb);
570 
571 	/* can we just silently drop the message? */
572 	if (!audit_default)
573 		goto drop;
574 
575 	/* the hold queue is only for when the daemon goes away completely,
576 	 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
577 	 * record on the retry queue unless it's full, in which case drop it
578 	 */
579 	if (error == -EAGAIN) {
580 		if (!audit_backlog_limit ||
581 		    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
582 			skb_queue_tail(&audit_retry_queue, skb);
583 			return;
584 		}
585 		audit_log_lost("kauditd retry queue overflow");
586 		goto drop;
587 	}
588 
589 	/* if we have room in the hold queue, queue the message */
590 	if (!audit_backlog_limit ||
591 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
592 		skb_queue_tail(&audit_hold_queue, skb);
593 		return;
594 	}
595 
596 	/* we have no other options - drop the message */
597 	audit_log_lost("kauditd hold queue overflow");
598 drop:
599 	kfree_skb(skb);
600 }
601 
602 /**
603  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
604  * @skb: audit record
605  * @error: error code (unused)
606  *
607  * Description:
608  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
609  * but for some reason we are having problems sending it audit records so
610  * queue the given record and attempt to resend.
611  */
612 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
613 {
614 	if (!audit_backlog_limit ||
615 	    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
616 		skb_queue_tail(&audit_retry_queue, skb);
617 		return;
618 	}
619 
620 	/* we have to drop the record, send it via printk as a last effort */
621 	kauditd_printk_skb(skb);
622 	audit_log_lost("kauditd retry queue overflow");
623 	kfree_skb(skb);
624 }
625 
626 /**
627  * auditd_reset - Disconnect the auditd connection
628  * @ac: auditd connection state
629  *
630  * Description:
631  * Break the auditd/kauditd connection and move all the queued records into the
632  * hold queue in case auditd reconnects.  It is important to note that the @ac
633  * pointer should never be dereferenced inside this function as it may be NULL
634  * or invalid, you can only compare the memory address!  If @ac is NULL then
635  * the connection will always be reset.
636  */
637 static void auditd_reset(const struct auditd_connection *ac)
638 {
639 	unsigned long flags;
640 	struct sk_buff *skb;
641 	struct auditd_connection *ac_old;
642 
643 	/* if it isn't already broken, break the connection */
644 	spin_lock_irqsave(&auditd_conn_lock, flags);
645 	ac_old = rcu_dereference_protected(auditd_conn,
646 					   lockdep_is_held(&auditd_conn_lock));
647 	if (ac && ac != ac_old) {
648 		/* someone already registered a new auditd connection */
649 		spin_unlock_irqrestore(&auditd_conn_lock, flags);
650 		return;
651 	}
652 	rcu_assign_pointer(auditd_conn, NULL);
653 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
654 
655 	if (ac_old)
656 		call_rcu(&ac_old->rcu, auditd_conn_free);
657 
658 	/* flush the retry queue to the hold queue, but don't touch the main
659 	 * queue since we need to process that normally for multicast */
660 	while ((skb = skb_dequeue(&audit_retry_queue)))
661 		kauditd_hold_skb(skb, -ECONNREFUSED);
662 }
663 
664 /**
665  * auditd_send_unicast_skb - Send a record via unicast to auditd
666  * @skb: audit record
667  *
668  * Description:
669  * Send a skb to the audit daemon, returns positive/zero values on success and
670  * negative values on failure; in all cases the skb will be consumed by this
671  * function.  If the send results in -ECONNREFUSED the connection with auditd
672  * will be reset.  This function may sleep so callers should not hold any locks
673  * where this would cause a problem.
674  */
675 static int auditd_send_unicast_skb(struct sk_buff *skb)
676 {
677 	int rc;
678 	u32 portid;
679 	struct net *net;
680 	struct sock *sk;
681 	struct auditd_connection *ac;
682 
683 	/* NOTE: we can't call netlink_unicast while in the RCU section so
684 	 *       take a reference to the network namespace and grab local
685 	 *       copies of the namespace, the sock, and the portid; the
686 	 *       namespace and sock aren't going to go away while we hold a
687 	 *       reference and if the portid does become invalid after the RCU
688 	 *       section netlink_unicast() should safely return an error */
689 
690 	rcu_read_lock();
691 	ac = rcu_dereference(auditd_conn);
692 	if (!ac) {
693 		rcu_read_unlock();
694 		kfree_skb(skb);
695 		rc = -ECONNREFUSED;
696 		goto err;
697 	}
698 	net = get_net(ac->net);
699 	sk = audit_get_sk(net);
700 	portid = ac->portid;
701 	rcu_read_unlock();
702 
703 	rc = netlink_unicast(sk, skb, portid, 0);
704 	put_net(net);
705 	if (rc < 0)
706 		goto err;
707 
708 	return rc;
709 
710 err:
711 	if (ac && rc == -ECONNREFUSED)
712 		auditd_reset(ac);
713 	return rc;
714 }
715 
716 /**
717  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
718  * @sk: the sending sock
719  * @portid: the netlink destination
720  * @queue: the skb queue to process
721  * @retry_limit: limit on number of netlink unicast failures
722  * @skb_hook: per-skb hook for additional processing
723  * @err_hook: hook called if the skb fails the netlink unicast send
724  *
725  * Description:
726  * Run through the given queue and attempt to send the audit records to auditd,
727  * returns zero on success, negative values on failure.  It is up to the caller
728  * to ensure that the @sk is valid for the duration of this function.
729  *
730  */
731 static int kauditd_send_queue(struct sock *sk, u32 portid,
732 			      struct sk_buff_head *queue,
733 			      unsigned int retry_limit,
734 			      void (*skb_hook)(struct sk_buff *skb),
735 			      void (*err_hook)(struct sk_buff *skb, int error))
736 {
737 	int rc = 0;
738 	struct sk_buff *skb = NULL;
739 	struct sk_buff *skb_tail;
740 	unsigned int failed = 0;
741 
742 	/* NOTE: kauditd_thread takes care of all our locking, we just use
743 	 *       the netlink info passed to us (e.g. sk and portid) */
744 
745 	skb_tail = skb_peek_tail(queue);
746 	while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
747 		/* call the skb_hook for each skb we touch */
748 		if (skb_hook)
749 			(*skb_hook)(skb);
750 
751 		/* can we send to anyone via unicast? */
752 		if (!sk) {
753 			if (err_hook)
754 				(*err_hook)(skb, -ECONNREFUSED);
755 			continue;
756 		}
757 
758 retry:
759 		/* grab an extra skb reference in case of error */
760 		skb_get(skb);
761 		rc = netlink_unicast(sk, skb, portid, 0);
762 		if (rc < 0) {
763 			/* send failed - try a few times unless fatal error */
764 			if (++failed >= retry_limit ||
765 			    rc == -ECONNREFUSED || rc == -EPERM) {
766 				sk = NULL;
767 				if (err_hook)
768 					(*err_hook)(skb, rc);
769 				if (rc == -EAGAIN)
770 					rc = 0;
771 				/* continue to drain the queue */
772 				continue;
773 			} else
774 				goto retry;
775 		} else {
776 			/* skb sent - drop the extra reference and continue */
777 			consume_skb(skb);
778 			failed = 0;
779 		}
780 	}
781 
782 	return (rc >= 0 ? 0 : rc);
783 }
784 
785 /*
786  * kauditd_send_multicast_skb - Send a record to any multicast listeners
787  * @skb: audit record
788  *
789  * Description:
790  * Write a multicast message to anyone listening in the initial network
791  * namespace.  This function doesn't consume an skb as might be expected since
792  * it has to copy it anyways.
793  */
794 static void kauditd_send_multicast_skb(struct sk_buff *skb)
795 {
796 	struct sk_buff *copy;
797 	struct sock *sock = audit_get_sk(&init_net);
798 	struct nlmsghdr *nlh;
799 
800 	/* NOTE: we are not taking an additional reference for init_net since
801 	 *       we don't have to worry about it going away */
802 
803 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
804 		return;
805 
806 	/*
807 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
808 	 * using skb_get() is necessary because non-standard mods are made to
809 	 * the skb by the original kaudit unicast socket send routine.  The
810 	 * existing auditd daemon assumes this breakage.  Fixing this would
811 	 * require co-ordinating a change in the established protocol between
812 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
813 	 * no reason for new multicast clients to continue with this
814 	 * non-compliance.
815 	 */
816 	copy = skb_copy(skb, GFP_KERNEL);
817 	if (!copy)
818 		return;
819 	nlh = nlmsg_hdr(copy);
820 	nlh->nlmsg_len = skb->len;
821 
822 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
823 }
824 
825 /**
826  * kauditd_thread - Worker thread to send audit records to userspace
827  * @dummy: unused
828  */
829 static int kauditd_thread(void *dummy)
830 {
831 	int rc;
832 	u32 portid = 0;
833 	struct net *net = NULL;
834 	struct sock *sk = NULL;
835 	struct auditd_connection *ac;
836 
837 #define UNICAST_RETRIES 5
838 
839 	set_freezable();
840 	while (!kthread_should_stop()) {
841 		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
842 		rcu_read_lock();
843 		ac = rcu_dereference(auditd_conn);
844 		if (!ac) {
845 			rcu_read_unlock();
846 			goto main_queue;
847 		}
848 		net = get_net(ac->net);
849 		sk = audit_get_sk(net);
850 		portid = ac->portid;
851 		rcu_read_unlock();
852 
853 		/* attempt to flush the hold queue */
854 		rc = kauditd_send_queue(sk, portid,
855 					&audit_hold_queue, UNICAST_RETRIES,
856 					NULL, kauditd_rehold_skb);
857 		if (rc < 0) {
858 			sk = NULL;
859 			auditd_reset(ac);
860 			goto main_queue;
861 		}
862 
863 		/* attempt to flush the retry queue */
864 		rc = kauditd_send_queue(sk, portid,
865 					&audit_retry_queue, UNICAST_RETRIES,
866 					NULL, kauditd_hold_skb);
867 		if (rc < 0) {
868 			sk = NULL;
869 			auditd_reset(ac);
870 			goto main_queue;
871 		}
872 
873 main_queue:
874 		/* process the main queue - do the multicast send and attempt
875 		 * unicast, dump failed record sends to the retry queue; if
876 		 * sk == NULL due to previous failures we will just do the
877 		 * multicast send and move the record to the hold queue */
878 		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
879 					kauditd_send_multicast_skb,
880 					(sk ?
881 					 kauditd_retry_skb : kauditd_hold_skb));
882 		if (ac && rc < 0)
883 			auditd_reset(ac);
884 		sk = NULL;
885 
886 		/* drop our netns reference, no auditd sends past this line */
887 		if (net) {
888 			put_net(net);
889 			net = NULL;
890 		}
891 
892 		/* we have processed all the queues so wake everyone */
893 		wake_up(&audit_backlog_wait);
894 
895 		/* NOTE: we want to wake up if there is anything on the queue,
896 		 *       regardless of if an auditd is connected, as we need to
897 		 *       do the multicast send and rotate records from the
898 		 *       main queue to the retry/hold queues */
899 		wait_event_freezable(kauditd_wait,
900 				     (skb_queue_len(&audit_queue) ? 1 : 0));
901 	}
902 
903 	return 0;
904 }
905 
906 int audit_send_list_thread(void *_dest)
907 {
908 	struct audit_netlink_list *dest = _dest;
909 	struct sk_buff *skb;
910 	struct sock *sk = audit_get_sk(dest->net);
911 
912 	/* wait for parent to finish and send an ACK */
913 	audit_ctl_lock();
914 	audit_ctl_unlock();
915 
916 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
917 		netlink_unicast(sk, skb, dest->portid, 0);
918 
919 	put_net(dest->net);
920 	kfree(dest);
921 
922 	return 0;
923 }
924 
925 struct sk_buff *audit_make_reply(int seq, int type, int done,
926 				 int multi, const void *payload, int size)
927 {
928 	struct sk_buff	*skb;
929 	struct nlmsghdr	*nlh;
930 	void		*data;
931 	int		flags = multi ? NLM_F_MULTI : 0;
932 	int		t     = done  ? NLMSG_DONE  : type;
933 
934 	skb = nlmsg_new(size, GFP_KERNEL);
935 	if (!skb)
936 		return NULL;
937 
938 	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
939 	if (!nlh)
940 		goto out_kfree_skb;
941 	data = nlmsg_data(nlh);
942 	memcpy(data, payload, size);
943 	return skb;
944 
945 out_kfree_skb:
946 	kfree_skb(skb);
947 	return NULL;
948 }
949 
950 static void audit_free_reply(struct audit_reply *reply)
951 {
952 	if (!reply)
953 		return;
954 
955 	kfree_skb(reply->skb);
956 	if (reply->net)
957 		put_net(reply->net);
958 	kfree(reply);
959 }
960 
961 static int audit_send_reply_thread(void *arg)
962 {
963 	struct audit_reply *reply = (struct audit_reply *)arg;
964 
965 	audit_ctl_lock();
966 	audit_ctl_unlock();
967 
968 	/* Ignore failure. It'll only happen if the sender goes away,
969 	   because our timeout is set to infinite. */
970 	netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
971 	reply->skb = NULL;
972 	audit_free_reply(reply);
973 	return 0;
974 }
975 
976 /**
977  * audit_send_reply - send an audit reply message via netlink
978  * @request_skb: skb of request we are replying to (used to target the reply)
979  * @seq: sequence number
980  * @type: audit message type
981  * @done: done (last) flag
982  * @multi: multi-part message flag
983  * @payload: payload data
984  * @size: payload size
985  *
986  * Allocates a skb, builds the netlink message, and sends it to the port id.
987  */
988 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
989 			     int multi, const void *payload, int size)
990 {
991 	struct task_struct *tsk;
992 	struct audit_reply *reply;
993 
994 	reply = kzalloc(sizeof(*reply), GFP_KERNEL);
995 	if (!reply)
996 		return;
997 
998 	reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
999 	if (!reply->skb)
1000 		goto err;
1001 	reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1002 	reply->portid = NETLINK_CB(request_skb).portid;
1003 
1004 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1005 	if (IS_ERR(tsk))
1006 		goto err;
1007 
1008 	return;
1009 
1010 err:
1011 	audit_free_reply(reply);
1012 }
1013 
1014 /*
1015  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1016  * control messages.
1017  */
1018 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1019 {
1020 	int err = 0;
1021 
1022 	/* Only support initial user namespace for now. */
1023 	/*
1024 	 * We return ECONNREFUSED because it tricks userspace into thinking
1025 	 * that audit was not configured into the kernel.  Lots of users
1026 	 * configure their PAM stack (because that's what the distro does)
1027 	 * to reject login if unable to send messages to audit.  If we return
1028 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1029 	 * configured in and will let login proceed.  If we return EPERM
1030 	 * userspace will reject all logins.  This should be removed when we
1031 	 * support non init namespaces!!
1032 	 */
1033 	if (current_user_ns() != &init_user_ns)
1034 		return -ECONNREFUSED;
1035 
1036 	switch (msg_type) {
1037 	case AUDIT_LIST:
1038 	case AUDIT_ADD:
1039 	case AUDIT_DEL:
1040 		return -EOPNOTSUPP;
1041 	case AUDIT_GET:
1042 	case AUDIT_SET:
1043 	case AUDIT_GET_FEATURE:
1044 	case AUDIT_SET_FEATURE:
1045 	case AUDIT_LIST_RULES:
1046 	case AUDIT_ADD_RULE:
1047 	case AUDIT_DEL_RULE:
1048 	case AUDIT_SIGNAL_INFO:
1049 	case AUDIT_TTY_GET:
1050 	case AUDIT_TTY_SET:
1051 	case AUDIT_TRIM:
1052 	case AUDIT_MAKE_EQUIV:
1053 		/* Only support auditd and auditctl in initial pid namespace
1054 		 * for now. */
1055 		if (task_active_pid_ns(current) != &init_pid_ns)
1056 			return -EPERM;
1057 
1058 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1059 			err = -EPERM;
1060 		break;
1061 	case AUDIT_USER:
1062 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1063 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1064 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1065 			err = -EPERM;
1066 		break;
1067 	default:  /* bad msg */
1068 		err = -EINVAL;
1069 	}
1070 
1071 	return err;
1072 }
1073 
1074 static void audit_log_common_recv_msg(struct audit_context *context,
1075 					struct audit_buffer **ab, u16 msg_type)
1076 {
1077 	uid_t uid = from_kuid(&init_user_ns, current_uid());
1078 	pid_t pid = task_tgid_nr(current);
1079 
1080 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1081 		*ab = NULL;
1082 		return;
1083 	}
1084 
1085 	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1086 	if (unlikely(!*ab))
1087 		return;
1088 	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1089 	audit_log_session_info(*ab);
1090 	audit_log_task_context(*ab);
1091 }
1092 
1093 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1094 					   u16 msg_type)
1095 {
1096 	audit_log_common_recv_msg(NULL, ab, msg_type);
1097 }
1098 
1099 static int is_audit_feature_set(int i)
1100 {
1101 	return af.features & AUDIT_FEATURE_TO_MASK(i);
1102 }
1103 
1104 
1105 static int audit_get_feature(struct sk_buff *skb)
1106 {
1107 	u32 seq;
1108 
1109 	seq = nlmsg_hdr(skb)->nlmsg_seq;
1110 
1111 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1112 
1113 	return 0;
1114 }
1115 
1116 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1117 				     u32 old_lock, u32 new_lock, int res)
1118 {
1119 	struct audit_buffer *ab;
1120 
1121 	if (audit_enabled == AUDIT_OFF)
1122 		return;
1123 
1124 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1125 	if (!ab)
1126 		return;
1127 	audit_log_task_info(ab);
1128 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1129 			 audit_feature_names[which], !!old_feature, !!new_feature,
1130 			 !!old_lock, !!new_lock, res);
1131 	audit_log_end(ab);
1132 }
1133 
1134 static int audit_set_feature(struct audit_features *uaf)
1135 {
1136 	int i;
1137 
1138 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1139 
1140 	/* if there is ever a version 2 we should handle that here */
1141 
1142 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1143 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1144 		u32 old_feature, new_feature, old_lock, new_lock;
1145 
1146 		/* if we are not changing this feature, move along */
1147 		if (!(feature & uaf->mask))
1148 			continue;
1149 
1150 		old_feature = af.features & feature;
1151 		new_feature = uaf->features & feature;
1152 		new_lock = (uaf->lock | af.lock) & feature;
1153 		old_lock = af.lock & feature;
1154 
1155 		/* are we changing a locked feature? */
1156 		if (old_lock && (new_feature != old_feature)) {
1157 			audit_log_feature_change(i, old_feature, new_feature,
1158 						 old_lock, new_lock, 0);
1159 			return -EPERM;
1160 		}
1161 	}
1162 	/* nothing invalid, do the changes */
1163 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1164 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1165 		u32 old_feature, new_feature, old_lock, new_lock;
1166 
1167 		/* if we are not changing this feature, move along */
1168 		if (!(feature & uaf->mask))
1169 			continue;
1170 
1171 		old_feature = af.features & feature;
1172 		new_feature = uaf->features & feature;
1173 		old_lock = af.lock & feature;
1174 		new_lock = (uaf->lock | af.lock) & feature;
1175 
1176 		if (new_feature != old_feature)
1177 			audit_log_feature_change(i, old_feature, new_feature,
1178 						 old_lock, new_lock, 1);
1179 
1180 		if (new_feature)
1181 			af.features |= feature;
1182 		else
1183 			af.features &= ~feature;
1184 		af.lock |= new_lock;
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 static int audit_replace(struct pid *pid)
1191 {
1192 	pid_t pvnr;
1193 	struct sk_buff *skb;
1194 
1195 	pvnr = pid_vnr(pid);
1196 	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1197 	if (!skb)
1198 		return -ENOMEM;
1199 	return auditd_send_unicast_skb(skb);
1200 }
1201 
1202 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1203 {
1204 	u32			seq;
1205 	void			*data;
1206 	int			data_len;
1207 	int			err;
1208 	struct audit_buffer	*ab;
1209 	u16			msg_type = nlh->nlmsg_type;
1210 	struct audit_sig_info   *sig_data;
1211 	char			*ctx = NULL;
1212 	u32			len;
1213 
1214 	err = audit_netlink_ok(skb, msg_type);
1215 	if (err)
1216 		return err;
1217 
1218 	seq  = nlh->nlmsg_seq;
1219 	data = nlmsg_data(nlh);
1220 	data_len = nlmsg_len(nlh);
1221 
1222 	switch (msg_type) {
1223 	case AUDIT_GET: {
1224 		struct audit_status	s;
1225 		memset(&s, 0, sizeof(s));
1226 		s.enabled		   = audit_enabled;
1227 		s.failure		   = audit_failure;
1228 		/* NOTE: use pid_vnr() so the PID is relative to the current
1229 		 *       namespace */
1230 		s.pid			   = auditd_pid_vnr();
1231 		s.rate_limit		   = audit_rate_limit;
1232 		s.backlog_limit		   = audit_backlog_limit;
1233 		s.lost			   = atomic_read(&audit_lost);
1234 		s.backlog		   = skb_queue_len(&audit_queue);
1235 		s.feature_bitmap	   = AUDIT_FEATURE_BITMAP_ALL;
1236 		s.backlog_wait_time	   = audit_backlog_wait_time;
1237 		s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1238 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1239 		break;
1240 	}
1241 	case AUDIT_SET: {
1242 		struct audit_status	s;
1243 		memset(&s, 0, sizeof(s));
1244 		/* guard against past and future API changes */
1245 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1246 		if (s.mask & AUDIT_STATUS_ENABLED) {
1247 			err = audit_set_enabled(s.enabled);
1248 			if (err < 0)
1249 				return err;
1250 		}
1251 		if (s.mask & AUDIT_STATUS_FAILURE) {
1252 			err = audit_set_failure(s.failure);
1253 			if (err < 0)
1254 				return err;
1255 		}
1256 		if (s.mask & AUDIT_STATUS_PID) {
1257 			/* NOTE: we are using the vnr PID functions below
1258 			 *       because the s.pid value is relative to the
1259 			 *       namespace of the caller; at present this
1260 			 *       doesn't matter much since you can really only
1261 			 *       run auditd from the initial pid namespace, but
1262 			 *       something to keep in mind if this changes */
1263 			pid_t new_pid = s.pid;
1264 			pid_t auditd_pid;
1265 			struct pid *req_pid = task_tgid(current);
1266 
1267 			/* Sanity check - PID values must match. Setting
1268 			 * pid to 0 is how auditd ends auditing. */
1269 			if (new_pid && (new_pid != pid_vnr(req_pid)))
1270 				return -EINVAL;
1271 
1272 			/* test the auditd connection */
1273 			audit_replace(req_pid);
1274 
1275 			auditd_pid = auditd_pid_vnr();
1276 			if (auditd_pid) {
1277 				/* replacing a healthy auditd is not allowed */
1278 				if (new_pid) {
1279 					audit_log_config_change("audit_pid",
1280 							new_pid, auditd_pid, 0);
1281 					return -EEXIST;
1282 				}
1283 				/* only current auditd can unregister itself */
1284 				if (pid_vnr(req_pid) != auditd_pid) {
1285 					audit_log_config_change("audit_pid",
1286 							new_pid, auditd_pid, 0);
1287 					return -EACCES;
1288 				}
1289 			}
1290 
1291 			if (new_pid) {
1292 				/* register a new auditd connection */
1293 				err = auditd_set(req_pid,
1294 						 NETLINK_CB(skb).portid,
1295 						 sock_net(NETLINK_CB(skb).sk));
1296 				if (audit_enabled != AUDIT_OFF)
1297 					audit_log_config_change("audit_pid",
1298 								new_pid,
1299 								auditd_pid,
1300 								err ? 0 : 1);
1301 				if (err)
1302 					return err;
1303 
1304 				/* try to process any backlog */
1305 				wake_up_interruptible(&kauditd_wait);
1306 			} else {
1307 				if (audit_enabled != AUDIT_OFF)
1308 					audit_log_config_change("audit_pid",
1309 								new_pid,
1310 								auditd_pid, 1);
1311 
1312 				/* unregister the auditd connection */
1313 				auditd_reset(NULL);
1314 			}
1315 		}
1316 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1317 			err = audit_set_rate_limit(s.rate_limit);
1318 			if (err < 0)
1319 				return err;
1320 		}
1321 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1322 			err = audit_set_backlog_limit(s.backlog_limit);
1323 			if (err < 0)
1324 				return err;
1325 		}
1326 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1327 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1328 				return -EINVAL;
1329 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1330 				return -EINVAL;
1331 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1332 			if (err < 0)
1333 				return err;
1334 		}
1335 		if (s.mask == AUDIT_STATUS_LOST) {
1336 			u32 lost = atomic_xchg(&audit_lost, 0);
1337 
1338 			audit_log_config_change("lost", 0, lost, 1);
1339 			return lost;
1340 		}
1341 		if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1342 			u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1343 
1344 			audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1345 			return actual;
1346 		}
1347 		break;
1348 	}
1349 	case AUDIT_GET_FEATURE:
1350 		err = audit_get_feature(skb);
1351 		if (err)
1352 			return err;
1353 		break;
1354 	case AUDIT_SET_FEATURE:
1355 		if (data_len < sizeof(struct audit_features))
1356 			return -EINVAL;
1357 		err = audit_set_feature(data);
1358 		if (err)
1359 			return err;
1360 		break;
1361 	case AUDIT_USER:
1362 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1363 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1364 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1365 			return 0;
1366 		/* exit early if there isn't at least one character to print */
1367 		if (data_len < 2)
1368 			return -EINVAL;
1369 
1370 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1371 		if (err == 1) { /* match or error */
1372 			char *str = data;
1373 
1374 			err = 0;
1375 			if (msg_type == AUDIT_USER_TTY) {
1376 				err = tty_audit_push();
1377 				if (err)
1378 					break;
1379 			}
1380 			audit_log_user_recv_msg(&ab, msg_type);
1381 			if (msg_type != AUDIT_USER_TTY) {
1382 				/* ensure NULL termination */
1383 				str[data_len - 1] = '\0';
1384 				audit_log_format(ab, " msg='%.*s'",
1385 						 AUDIT_MESSAGE_TEXT_MAX,
1386 						 str);
1387 			} else {
1388 				audit_log_format(ab, " data=");
1389 				if (str[data_len - 1] == '\0')
1390 					data_len--;
1391 				audit_log_n_untrustedstring(ab, str, data_len);
1392 			}
1393 			audit_log_end(ab);
1394 		}
1395 		break;
1396 	case AUDIT_ADD_RULE:
1397 	case AUDIT_DEL_RULE:
1398 		if (data_len < sizeof(struct audit_rule_data))
1399 			return -EINVAL;
1400 		if (audit_enabled == AUDIT_LOCKED) {
1401 			audit_log_common_recv_msg(audit_context(), &ab,
1402 						  AUDIT_CONFIG_CHANGE);
1403 			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1404 					 msg_type == AUDIT_ADD_RULE ?
1405 						"add_rule" : "remove_rule",
1406 					 audit_enabled);
1407 			audit_log_end(ab);
1408 			return -EPERM;
1409 		}
1410 		err = audit_rule_change(msg_type, seq, data, data_len);
1411 		break;
1412 	case AUDIT_LIST_RULES:
1413 		err = audit_list_rules_send(skb, seq);
1414 		break;
1415 	case AUDIT_TRIM:
1416 		audit_trim_trees();
1417 		audit_log_common_recv_msg(audit_context(), &ab,
1418 					  AUDIT_CONFIG_CHANGE);
1419 		audit_log_format(ab, " op=trim res=1");
1420 		audit_log_end(ab);
1421 		break;
1422 	case AUDIT_MAKE_EQUIV: {
1423 		void *bufp = data;
1424 		u32 sizes[2];
1425 		size_t msglen = data_len;
1426 		char *old, *new;
1427 
1428 		err = -EINVAL;
1429 		if (msglen < 2 * sizeof(u32))
1430 			break;
1431 		memcpy(sizes, bufp, 2 * sizeof(u32));
1432 		bufp += 2 * sizeof(u32);
1433 		msglen -= 2 * sizeof(u32);
1434 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1435 		if (IS_ERR(old)) {
1436 			err = PTR_ERR(old);
1437 			break;
1438 		}
1439 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1440 		if (IS_ERR(new)) {
1441 			err = PTR_ERR(new);
1442 			kfree(old);
1443 			break;
1444 		}
1445 		/* OK, here comes... */
1446 		err = audit_tag_tree(old, new);
1447 
1448 		audit_log_common_recv_msg(audit_context(), &ab,
1449 					  AUDIT_CONFIG_CHANGE);
1450 		audit_log_format(ab, " op=make_equiv old=");
1451 		audit_log_untrustedstring(ab, old);
1452 		audit_log_format(ab, " new=");
1453 		audit_log_untrustedstring(ab, new);
1454 		audit_log_format(ab, " res=%d", !err);
1455 		audit_log_end(ab);
1456 		kfree(old);
1457 		kfree(new);
1458 		break;
1459 	}
1460 	case AUDIT_SIGNAL_INFO:
1461 		len = 0;
1462 		if (audit_sig_sid) {
1463 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1464 			if (err)
1465 				return err;
1466 		}
1467 		sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
1468 		if (!sig_data) {
1469 			if (audit_sig_sid)
1470 				security_release_secctx(ctx, len);
1471 			return -ENOMEM;
1472 		}
1473 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1474 		sig_data->pid = audit_sig_pid;
1475 		if (audit_sig_sid) {
1476 			memcpy(sig_data->ctx, ctx, len);
1477 			security_release_secctx(ctx, len);
1478 		}
1479 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1480 				 sig_data, struct_size(sig_data, ctx, len));
1481 		kfree(sig_data);
1482 		break;
1483 	case AUDIT_TTY_GET: {
1484 		struct audit_tty_status s;
1485 		unsigned int t;
1486 
1487 		t = READ_ONCE(current->signal->audit_tty);
1488 		s.enabled = t & AUDIT_TTY_ENABLE;
1489 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1490 
1491 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1492 		break;
1493 	}
1494 	case AUDIT_TTY_SET: {
1495 		struct audit_tty_status s, old;
1496 		struct audit_buffer	*ab;
1497 		unsigned int t;
1498 
1499 		memset(&s, 0, sizeof(s));
1500 		/* guard against past and future API changes */
1501 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1502 		/* check if new data is valid */
1503 		if ((s.enabled != 0 && s.enabled != 1) ||
1504 		    (s.log_passwd != 0 && s.log_passwd != 1))
1505 			err = -EINVAL;
1506 
1507 		if (err)
1508 			t = READ_ONCE(current->signal->audit_tty);
1509 		else {
1510 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1511 			t = xchg(&current->signal->audit_tty, t);
1512 		}
1513 		old.enabled = t & AUDIT_TTY_ENABLE;
1514 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1515 
1516 		audit_log_common_recv_msg(audit_context(), &ab,
1517 					  AUDIT_CONFIG_CHANGE);
1518 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1519 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1520 				 old.enabled, s.enabled, old.log_passwd,
1521 				 s.log_passwd, !err);
1522 		audit_log_end(ab);
1523 		break;
1524 	}
1525 	default:
1526 		err = -EINVAL;
1527 		break;
1528 	}
1529 
1530 	return err < 0 ? err : 0;
1531 }
1532 
1533 /**
1534  * audit_receive - receive messages from a netlink control socket
1535  * @skb: the message buffer
1536  *
1537  * Parse the provided skb and deal with any messages that may be present,
1538  * malformed skbs are discarded.
1539  */
1540 static void audit_receive(struct sk_buff  *skb)
1541 {
1542 	struct nlmsghdr *nlh;
1543 	/*
1544 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1545 	 * if the nlmsg_len was not aligned
1546 	 */
1547 	int len;
1548 	int err;
1549 
1550 	nlh = nlmsg_hdr(skb);
1551 	len = skb->len;
1552 
1553 	audit_ctl_lock();
1554 	while (nlmsg_ok(nlh, len)) {
1555 		err = audit_receive_msg(skb, nlh);
1556 		/* if err or if this message says it wants a response */
1557 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1558 			netlink_ack(skb, nlh, err, NULL);
1559 
1560 		nlh = nlmsg_next(nlh, &len);
1561 	}
1562 	audit_ctl_unlock();
1563 
1564 	/* can't block with the ctrl lock, so penalize the sender now */
1565 	if (audit_backlog_limit &&
1566 	    (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1567 		DECLARE_WAITQUEUE(wait, current);
1568 
1569 		/* wake kauditd to try and flush the queue */
1570 		wake_up_interruptible(&kauditd_wait);
1571 
1572 		add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1573 		set_current_state(TASK_UNINTERRUPTIBLE);
1574 		schedule_timeout(audit_backlog_wait_time);
1575 		remove_wait_queue(&audit_backlog_wait, &wait);
1576 	}
1577 }
1578 
1579 /* Log information about who is connecting to the audit multicast socket */
1580 static void audit_log_multicast(int group, const char *op, int err)
1581 {
1582 	const struct cred *cred;
1583 	struct tty_struct *tty;
1584 	char comm[sizeof(current->comm)];
1585 	struct audit_buffer *ab;
1586 
1587 	if (!audit_enabled)
1588 		return;
1589 
1590 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1591 	if (!ab)
1592 		return;
1593 
1594 	cred = current_cred();
1595 	tty = audit_get_tty();
1596 	audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1597 			 task_pid_nr(current),
1598 			 from_kuid(&init_user_ns, cred->uid),
1599 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1600 			 tty ? tty_name(tty) : "(none)",
1601 			 audit_get_sessionid(current));
1602 	audit_put_tty(tty);
1603 	audit_log_task_context(ab); /* subj= */
1604 	audit_log_format(ab, " comm=");
1605 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
1606 	audit_log_d_path_exe(ab, current->mm); /* exe= */
1607 	audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1608 	audit_log_end(ab);
1609 }
1610 
1611 /* Run custom bind function on netlink socket group connect or bind requests. */
1612 static int audit_multicast_bind(struct net *net, int group)
1613 {
1614 	int err = 0;
1615 
1616 	if (!capable(CAP_AUDIT_READ))
1617 		err = -EPERM;
1618 	audit_log_multicast(group, "connect", err);
1619 	return err;
1620 }
1621 
1622 static void audit_multicast_unbind(struct net *net, int group)
1623 {
1624 	audit_log_multicast(group, "disconnect", 0);
1625 }
1626 
1627 static int __net_init audit_net_init(struct net *net)
1628 {
1629 	struct netlink_kernel_cfg cfg = {
1630 		.input	= audit_receive,
1631 		.bind	= audit_multicast_bind,
1632 		.unbind	= audit_multicast_unbind,
1633 		.flags	= NL_CFG_F_NONROOT_RECV,
1634 		.groups	= AUDIT_NLGRP_MAX,
1635 	};
1636 
1637 	struct audit_net *aunet = net_generic(net, audit_net_id);
1638 
1639 	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1640 	if (aunet->sk == NULL) {
1641 		audit_panic("cannot initialize netlink socket in namespace");
1642 		return -ENOMEM;
1643 	}
1644 	/* limit the timeout in case auditd is blocked/stopped */
1645 	aunet->sk->sk_sndtimeo = HZ / 10;
1646 
1647 	return 0;
1648 }
1649 
1650 static void __net_exit audit_net_exit(struct net *net)
1651 {
1652 	struct audit_net *aunet = net_generic(net, audit_net_id);
1653 
1654 	/* NOTE: you would think that we would want to check the auditd
1655 	 * connection and potentially reset it here if it lives in this
1656 	 * namespace, but since the auditd connection tracking struct holds a
1657 	 * reference to this namespace (see auditd_set()) we are only ever
1658 	 * going to get here after that connection has been released */
1659 
1660 	netlink_kernel_release(aunet->sk);
1661 }
1662 
1663 static struct pernet_operations audit_net_ops __net_initdata = {
1664 	.init = audit_net_init,
1665 	.exit = audit_net_exit,
1666 	.id = &audit_net_id,
1667 	.size = sizeof(struct audit_net),
1668 };
1669 
1670 /* Initialize audit support at boot time. */
1671 static int __init audit_init(void)
1672 {
1673 	int i;
1674 
1675 	if (audit_initialized == AUDIT_DISABLED)
1676 		return 0;
1677 
1678 	audit_buffer_cache = kmem_cache_create("audit_buffer",
1679 					       sizeof(struct audit_buffer),
1680 					       0, SLAB_PANIC, NULL);
1681 
1682 	skb_queue_head_init(&audit_queue);
1683 	skb_queue_head_init(&audit_retry_queue);
1684 	skb_queue_head_init(&audit_hold_queue);
1685 
1686 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1687 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1688 
1689 	mutex_init(&audit_cmd_mutex.lock);
1690 	audit_cmd_mutex.owner = NULL;
1691 
1692 	pr_info("initializing netlink subsys (%s)\n",
1693 		audit_default ? "enabled" : "disabled");
1694 	register_pernet_subsys(&audit_net_ops);
1695 
1696 	audit_initialized = AUDIT_INITIALIZED;
1697 
1698 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1699 	if (IS_ERR(kauditd_task)) {
1700 		int err = PTR_ERR(kauditd_task);
1701 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1702 	}
1703 
1704 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1705 		"state=initialized audit_enabled=%u res=1",
1706 		 audit_enabled);
1707 
1708 	return 0;
1709 }
1710 postcore_initcall(audit_init);
1711 
1712 /*
1713  * Process kernel command-line parameter at boot time.
1714  * audit={0|off} or audit={1|on}.
1715  */
1716 static int __init audit_enable(char *str)
1717 {
1718 	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1719 		audit_default = AUDIT_OFF;
1720 	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1721 		audit_default = AUDIT_ON;
1722 	else {
1723 		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1724 		audit_default = AUDIT_ON;
1725 	}
1726 
1727 	if (audit_default == AUDIT_OFF)
1728 		audit_initialized = AUDIT_DISABLED;
1729 	if (audit_set_enabled(audit_default))
1730 		pr_err("audit: error setting audit state (%d)\n",
1731 		       audit_default);
1732 
1733 	pr_info("%s\n", audit_default ?
1734 		"enabled (after initialization)" : "disabled (until reboot)");
1735 
1736 	return 1;
1737 }
1738 __setup("audit=", audit_enable);
1739 
1740 /* Process kernel command-line parameter at boot time.
1741  * audit_backlog_limit=<n> */
1742 static int __init audit_backlog_limit_set(char *str)
1743 {
1744 	u32 audit_backlog_limit_arg;
1745 
1746 	pr_info("audit_backlog_limit: ");
1747 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1748 		pr_cont("using default of %u, unable to parse %s\n",
1749 			audit_backlog_limit, str);
1750 		return 1;
1751 	}
1752 
1753 	audit_backlog_limit = audit_backlog_limit_arg;
1754 	pr_cont("%d\n", audit_backlog_limit);
1755 
1756 	return 1;
1757 }
1758 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1759 
1760 static void audit_buffer_free(struct audit_buffer *ab)
1761 {
1762 	if (!ab)
1763 		return;
1764 
1765 	kfree_skb(ab->skb);
1766 	kmem_cache_free(audit_buffer_cache, ab);
1767 }
1768 
1769 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1770 					       gfp_t gfp_mask, int type)
1771 {
1772 	struct audit_buffer *ab;
1773 
1774 	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1775 	if (!ab)
1776 		return NULL;
1777 
1778 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1779 	if (!ab->skb)
1780 		goto err;
1781 	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1782 		goto err;
1783 
1784 	ab->ctx = ctx;
1785 	ab->gfp_mask = gfp_mask;
1786 
1787 	return ab;
1788 
1789 err:
1790 	audit_buffer_free(ab);
1791 	return NULL;
1792 }
1793 
1794 /**
1795  * audit_serial - compute a serial number for the audit record
1796  *
1797  * Compute a serial number for the audit record.  Audit records are
1798  * written to user-space as soon as they are generated, so a complete
1799  * audit record may be written in several pieces.  The timestamp of the
1800  * record and this serial number are used by the user-space tools to
1801  * determine which pieces belong to the same audit record.  The
1802  * (timestamp,serial) tuple is unique for each syscall and is live from
1803  * syscall entry to syscall exit.
1804  *
1805  * NOTE: Another possibility is to store the formatted records off the
1806  * audit context (for those records that have a context), and emit them
1807  * all at syscall exit.  However, this could delay the reporting of
1808  * significant errors until syscall exit (or never, if the system
1809  * halts).
1810  */
1811 unsigned int audit_serial(void)
1812 {
1813 	static atomic_t serial = ATOMIC_INIT(0);
1814 
1815 	return atomic_inc_return(&serial);
1816 }
1817 
1818 static inline void audit_get_stamp(struct audit_context *ctx,
1819 				   struct timespec64 *t, unsigned int *serial)
1820 {
1821 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1822 		ktime_get_coarse_real_ts64(t);
1823 		*serial = audit_serial();
1824 	}
1825 }
1826 
1827 /**
1828  * audit_log_start - obtain an audit buffer
1829  * @ctx: audit_context (may be NULL)
1830  * @gfp_mask: type of allocation
1831  * @type: audit message type
1832  *
1833  * Returns audit_buffer pointer on success or NULL on error.
1834  *
1835  * Obtain an audit buffer.  This routine does locking to obtain the
1836  * audit buffer, but then no locking is required for calls to
1837  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1838  * syscall, then the syscall is marked as auditable and an audit record
1839  * will be written at syscall exit.  If there is no associated task, then
1840  * task context (ctx) should be NULL.
1841  */
1842 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1843 				     int type)
1844 {
1845 	struct audit_buffer *ab;
1846 	struct timespec64 t;
1847 	unsigned int serial;
1848 
1849 	if (audit_initialized != AUDIT_INITIALIZED)
1850 		return NULL;
1851 
1852 	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1853 		return NULL;
1854 
1855 	/* NOTE: don't ever fail/sleep on these two conditions:
1856 	 * 1. auditd generated record - since we need auditd to drain the
1857 	 *    queue; also, when we are checking for auditd, compare PIDs using
1858 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1859 	 *    using a PID anchored in the caller's namespace
1860 	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1861 	 *    while holding the mutex, although we do penalize the sender
1862 	 *    later in audit_receive() when it is safe to block
1863 	 */
1864 	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1865 		long stime = audit_backlog_wait_time;
1866 
1867 		while (audit_backlog_limit &&
1868 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1869 			/* wake kauditd to try and flush the queue */
1870 			wake_up_interruptible(&kauditd_wait);
1871 
1872 			/* sleep if we are allowed and we haven't exhausted our
1873 			 * backlog wait limit */
1874 			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1875 				long rtime = stime;
1876 
1877 				DECLARE_WAITQUEUE(wait, current);
1878 
1879 				add_wait_queue_exclusive(&audit_backlog_wait,
1880 							 &wait);
1881 				set_current_state(TASK_UNINTERRUPTIBLE);
1882 				stime = schedule_timeout(rtime);
1883 				atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1884 				remove_wait_queue(&audit_backlog_wait, &wait);
1885 			} else {
1886 				if (audit_rate_check() && printk_ratelimit())
1887 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1888 						skb_queue_len(&audit_queue),
1889 						audit_backlog_limit);
1890 				audit_log_lost("backlog limit exceeded");
1891 				return NULL;
1892 			}
1893 		}
1894 	}
1895 
1896 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1897 	if (!ab) {
1898 		audit_log_lost("out of memory in audit_log_start");
1899 		return NULL;
1900 	}
1901 
1902 	audit_get_stamp(ab->ctx, &t, &serial);
1903 	/* cancel dummy context to enable supporting records */
1904 	if (ctx)
1905 		ctx->dummy = 0;
1906 	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1907 			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1908 
1909 	return ab;
1910 }
1911 
1912 /**
1913  * audit_expand - expand skb in the audit buffer
1914  * @ab: audit_buffer
1915  * @extra: space to add at tail of the skb
1916  *
1917  * Returns 0 (no space) on failed expansion, or available space if
1918  * successful.
1919  */
1920 static inline int audit_expand(struct audit_buffer *ab, int extra)
1921 {
1922 	struct sk_buff *skb = ab->skb;
1923 	int oldtail = skb_tailroom(skb);
1924 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1925 	int newtail = skb_tailroom(skb);
1926 
1927 	if (ret < 0) {
1928 		audit_log_lost("out of memory in audit_expand");
1929 		return 0;
1930 	}
1931 
1932 	skb->truesize += newtail - oldtail;
1933 	return newtail;
1934 }
1935 
1936 /*
1937  * Format an audit message into the audit buffer.  If there isn't enough
1938  * room in the audit buffer, more room will be allocated and vsnprint
1939  * will be called a second time.  Currently, we assume that a printk
1940  * can't format message larger than 1024 bytes, so we don't either.
1941  */
1942 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1943 			      va_list args)
1944 {
1945 	int len, avail;
1946 	struct sk_buff *skb;
1947 	va_list args2;
1948 
1949 	if (!ab)
1950 		return;
1951 
1952 	BUG_ON(!ab->skb);
1953 	skb = ab->skb;
1954 	avail = skb_tailroom(skb);
1955 	if (avail == 0) {
1956 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1957 		if (!avail)
1958 			goto out;
1959 	}
1960 	va_copy(args2, args);
1961 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1962 	if (len >= avail) {
1963 		/* The printk buffer is 1024 bytes long, so if we get
1964 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1965 		 * log everything that printk could have logged. */
1966 		avail = audit_expand(ab,
1967 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1968 		if (!avail)
1969 			goto out_va_end;
1970 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1971 	}
1972 	if (len > 0)
1973 		skb_put(skb, len);
1974 out_va_end:
1975 	va_end(args2);
1976 out:
1977 	return;
1978 }
1979 
1980 /**
1981  * audit_log_format - format a message into the audit buffer.
1982  * @ab: audit_buffer
1983  * @fmt: format string
1984  * @...: optional parameters matching @fmt string
1985  *
1986  * All the work is done in audit_log_vformat.
1987  */
1988 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1989 {
1990 	va_list args;
1991 
1992 	if (!ab)
1993 		return;
1994 	va_start(args, fmt);
1995 	audit_log_vformat(ab, fmt, args);
1996 	va_end(args);
1997 }
1998 
1999 /**
2000  * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2001  * @ab: the audit_buffer
2002  * @buf: buffer to convert to hex
2003  * @len: length of @buf to be converted
2004  *
2005  * No return value; failure to expand is silently ignored.
2006  *
2007  * This function will take the passed buf and convert it into a string of
2008  * ascii hex digits. The new string is placed onto the skb.
2009  */
2010 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2011 		size_t len)
2012 {
2013 	int i, avail, new_len;
2014 	unsigned char *ptr;
2015 	struct sk_buff *skb;
2016 
2017 	if (!ab)
2018 		return;
2019 
2020 	BUG_ON(!ab->skb);
2021 	skb = ab->skb;
2022 	avail = skb_tailroom(skb);
2023 	new_len = len<<1;
2024 	if (new_len >= avail) {
2025 		/* Round the buffer request up to the next multiple */
2026 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2027 		avail = audit_expand(ab, new_len);
2028 		if (!avail)
2029 			return;
2030 	}
2031 
2032 	ptr = skb_tail_pointer(skb);
2033 	for (i = 0; i < len; i++)
2034 		ptr = hex_byte_pack_upper(ptr, buf[i]);
2035 	*ptr = 0;
2036 	skb_put(skb, len << 1); /* new string is twice the old string */
2037 }
2038 
2039 /*
2040  * Format a string of no more than slen characters into the audit buffer,
2041  * enclosed in quote marks.
2042  */
2043 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2044 			size_t slen)
2045 {
2046 	int avail, new_len;
2047 	unsigned char *ptr;
2048 	struct sk_buff *skb;
2049 
2050 	if (!ab)
2051 		return;
2052 
2053 	BUG_ON(!ab->skb);
2054 	skb = ab->skb;
2055 	avail = skb_tailroom(skb);
2056 	new_len = slen + 3;	/* enclosing quotes + null terminator */
2057 	if (new_len > avail) {
2058 		avail = audit_expand(ab, new_len);
2059 		if (!avail)
2060 			return;
2061 	}
2062 	ptr = skb_tail_pointer(skb);
2063 	*ptr++ = '"';
2064 	memcpy(ptr, string, slen);
2065 	ptr += slen;
2066 	*ptr++ = '"';
2067 	*ptr = 0;
2068 	skb_put(skb, slen + 2);	/* don't include null terminator */
2069 }
2070 
2071 /**
2072  * audit_string_contains_control - does a string need to be logged in hex
2073  * @string: string to be checked
2074  * @len: max length of the string to check
2075  */
2076 bool audit_string_contains_control(const char *string, size_t len)
2077 {
2078 	const unsigned char *p;
2079 	for (p = string; p < (const unsigned char *)string + len; p++) {
2080 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
2081 			return true;
2082 	}
2083 	return false;
2084 }
2085 
2086 /**
2087  * audit_log_n_untrustedstring - log a string that may contain random characters
2088  * @ab: audit_buffer
2089  * @len: length of string (not including trailing null)
2090  * @string: string to be logged
2091  *
2092  * This code will escape a string that is passed to it if the string
2093  * contains a control character, unprintable character, double quote mark,
2094  * or a space. Unescaped strings will start and end with a double quote mark.
2095  * Strings that are escaped are printed in hex (2 digits per char).
2096  *
2097  * The caller specifies the number of characters in the string to log, which may
2098  * or may not be the entire string.
2099  */
2100 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2101 				 size_t len)
2102 {
2103 	if (audit_string_contains_control(string, len))
2104 		audit_log_n_hex(ab, string, len);
2105 	else
2106 		audit_log_n_string(ab, string, len);
2107 }
2108 
2109 /**
2110  * audit_log_untrustedstring - log a string that may contain random characters
2111  * @ab: audit_buffer
2112  * @string: string to be logged
2113  *
2114  * Same as audit_log_n_untrustedstring(), except that strlen is used to
2115  * determine string length.
2116  */
2117 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2118 {
2119 	audit_log_n_untrustedstring(ab, string, strlen(string));
2120 }
2121 
2122 /* This is a helper-function to print the escaped d_path */
2123 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2124 		      const struct path *path)
2125 {
2126 	char *p, *pathname;
2127 
2128 	if (prefix)
2129 		audit_log_format(ab, "%s", prefix);
2130 
2131 	/* We will allow 11 spaces for ' (deleted)' to be appended */
2132 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2133 	if (!pathname) {
2134 		audit_log_format(ab, "\"<no_memory>\"");
2135 		return;
2136 	}
2137 	p = d_path(path, pathname, PATH_MAX+11);
2138 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2139 		/* FIXME: can we save some information here? */
2140 		audit_log_format(ab, "\"<too_long>\"");
2141 	} else
2142 		audit_log_untrustedstring(ab, p);
2143 	kfree(pathname);
2144 }
2145 
2146 void audit_log_session_info(struct audit_buffer *ab)
2147 {
2148 	unsigned int sessionid = audit_get_sessionid(current);
2149 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2150 
2151 	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2152 }
2153 
2154 void audit_log_key(struct audit_buffer *ab, char *key)
2155 {
2156 	audit_log_format(ab, " key=");
2157 	if (key)
2158 		audit_log_untrustedstring(ab, key);
2159 	else
2160 		audit_log_format(ab, "(null)");
2161 }
2162 
2163 int audit_log_task_context(struct audit_buffer *ab)
2164 {
2165 	char *ctx = NULL;
2166 	unsigned len;
2167 	int error;
2168 	u32 sid;
2169 
2170 	security_current_getsecid_subj(&sid);
2171 	if (!sid)
2172 		return 0;
2173 
2174 	error = security_secid_to_secctx(sid, &ctx, &len);
2175 	if (error) {
2176 		if (error != -EINVAL)
2177 			goto error_path;
2178 		return 0;
2179 	}
2180 
2181 	audit_log_format(ab, " subj=%s", ctx);
2182 	security_release_secctx(ctx, len);
2183 	return 0;
2184 
2185 error_path:
2186 	audit_panic("error in audit_log_task_context");
2187 	return error;
2188 }
2189 EXPORT_SYMBOL(audit_log_task_context);
2190 
2191 void audit_log_d_path_exe(struct audit_buffer *ab,
2192 			  struct mm_struct *mm)
2193 {
2194 	struct file *exe_file;
2195 
2196 	if (!mm)
2197 		goto out_null;
2198 
2199 	exe_file = get_mm_exe_file(mm);
2200 	if (!exe_file)
2201 		goto out_null;
2202 
2203 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2204 	fput(exe_file);
2205 	return;
2206 out_null:
2207 	audit_log_format(ab, " exe=(null)");
2208 }
2209 
2210 struct tty_struct *audit_get_tty(void)
2211 {
2212 	struct tty_struct *tty = NULL;
2213 	unsigned long flags;
2214 
2215 	spin_lock_irqsave(&current->sighand->siglock, flags);
2216 	if (current->signal)
2217 		tty = tty_kref_get(current->signal->tty);
2218 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
2219 	return tty;
2220 }
2221 
2222 void audit_put_tty(struct tty_struct *tty)
2223 {
2224 	tty_kref_put(tty);
2225 }
2226 
2227 void audit_log_task_info(struct audit_buffer *ab)
2228 {
2229 	const struct cred *cred;
2230 	char comm[sizeof(current->comm)];
2231 	struct tty_struct *tty;
2232 
2233 	if (!ab)
2234 		return;
2235 
2236 	cred = current_cred();
2237 	tty = audit_get_tty();
2238 	audit_log_format(ab,
2239 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2240 			 " euid=%u suid=%u fsuid=%u"
2241 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2242 			 task_ppid_nr(current),
2243 			 task_tgid_nr(current),
2244 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2245 			 from_kuid(&init_user_ns, cred->uid),
2246 			 from_kgid(&init_user_ns, cred->gid),
2247 			 from_kuid(&init_user_ns, cred->euid),
2248 			 from_kuid(&init_user_ns, cred->suid),
2249 			 from_kuid(&init_user_ns, cred->fsuid),
2250 			 from_kgid(&init_user_ns, cred->egid),
2251 			 from_kgid(&init_user_ns, cred->sgid),
2252 			 from_kgid(&init_user_ns, cred->fsgid),
2253 			 tty ? tty_name(tty) : "(none)",
2254 			 audit_get_sessionid(current));
2255 	audit_put_tty(tty);
2256 	audit_log_format(ab, " comm=");
2257 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2258 	audit_log_d_path_exe(ab, current->mm);
2259 	audit_log_task_context(ab);
2260 }
2261 EXPORT_SYMBOL(audit_log_task_info);
2262 
2263 /**
2264  * audit_log_path_denied - report a path restriction denial
2265  * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2266  * @operation: specific operation name
2267  */
2268 void audit_log_path_denied(int type, const char *operation)
2269 {
2270 	struct audit_buffer *ab;
2271 
2272 	if (!audit_enabled || audit_dummy_context())
2273 		return;
2274 
2275 	/* Generate log with subject, operation, outcome. */
2276 	ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2277 	if (!ab)
2278 		return;
2279 	audit_log_format(ab, "op=%s", operation);
2280 	audit_log_task_info(ab);
2281 	audit_log_format(ab, " res=0");
2282 	audit_log_end(ab);
2283 }
2284 
2285 /* global counter which is incremented every time something logs in */
2286 static atomic_t session_id = ATOMIC_INIT(0);
2287 
2288 static int audit_set_loginuid_perm(kuid_t loginuid)
2289 {
2290 	/* if we are unset, we don't need privs */
2291 	if (!audit_loginuid_set(current))
2292 		return 0;
2293 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2294 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2295 		return -EPERM;
2296 	/* it is set, you need permission */
2297 	if (!capable(CAP_AUDIT_CONTROL))
2298 		return -EPERM;
2299 	/* reject if this is not an unset and we don't allow that */
2300 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2301 				 && uid_valid(loginuid))
2302 		return -EPERM;
2303 	return 0;
2304 }
2305 
2306 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2307 				   unsigned int oldsessionid,
2308 				   unsigned int sessionid, int rc)
2309 {
2310 	struct audit_buffer *ab;
2311 	uid_t uid, oldloginuid, loginuid;
2312 	struct tty_struct *tty;
2313 
2314 	if (!audit_enabled)
2315 		return;
2316 
2317 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2318 	if (!ab)
2319 		return;
2320 
2321 	uid = from_kuid(&init_user_ns, task_uid(current));
2322 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2323 	loginuid = from_kuid(&init_user_ns, kloginuid);
2324 	tty = audit_get_tty();
2325 
2326 	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2327 	audit_log_task_context(ab);
2328 	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2329 			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2330 			 oldsessionid, sessionid, !rc);
2331 	audit_put_tty(tty);
2332 	audit_log_end(ab);
2333 }
2334 
2335 /**
2336  * audit_set_loginuid - set current task's loginuid
2337  * @loginuid: loginuid value
2338  *
2339  * Returns 0.
2340  *
2341  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2342  */
2343 int audit_set_loginuid(kuid_t loginuid)
2344 {
2345 	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2346 	kuid_t oldloginuid;
2347 	int rc;
2348 
2349 	oldloginuid = audit_get_loginuid(current);
2350 	oldsessionid = audit_get_sessionid(current);
2351 
2352 	rc = audit_set_loginuid_perm(loginuid);
2353 	if (rc)
2354 		goto out;
2355 
2356 	/* are we setting or clearing? */
2357 	if (uid_valid(loginuid)) {
2358 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2359 		if (unlikely(sessionid == AUDIT_SID_UNSET))
2360 			sessionid = (unsigned int)atomic_inc_return(&session_id);
2361 	}
2362 
2363 	current->sessionid = sessionid;
2364 	current->loginuid = loginuid;
2365 out:
2366 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2367 	return rc;
2368 }
2369 
2370 /**
2371  * audit_signal_info - record signal info for shutting down audit subsystem
2372  * @sig: signal value
2373  * @t: task being signaled
2374  *
2375  * If the audit subsystem is being terminated, record the task (pid)
2376  * and uid that is doing that.
2377  */
2378 int audit_signal_info(int sig, struct task_struct *t)
2379 {
2380 	kuid_t uid = current_uid(), auid;
2381 
2382 	if (auditd_test_task(t) &&
2383 	    (sig == SIGTERM || sig == SIGHUP ||
2384 	     sig == SIGUSR1 || sig == SIGUSR2)) {
2385 		audit_sig_pid = task_tgid_nr(current);
2386 		auid = audit_get_loginuid(current);
2387 		if (uid_valid(auid))
2388 			audit_sig_uid = auid;
2389 		else
2390 			audit_sig_uid = uid;
2391 		security_current_getsecid_subj(&audit_sig_sid);
2392 	}
2393 
2394 	return audit_signal_info_syscall(t);
2395 }
2396 
2397 /**
2398  * audit_log_end - end one audit record
2399  * @ab: the audit_buffer
2400  *
2401  * We can not do a netlink send inside an irq context because it blocks (last
2402  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2403  * queue and a kthread is scheduled to remove them from the queue outside the
2404  * irq context.  May be called in any context.
2405  */
2406 void audit_log_end(struct audit_buffer *ab)
2407 {
2408 	struct sk_buff *skb;
2409 	struct nlmsghdr *nlh;
2410 
2411 	if (!ab)
2412 		return;
2413 
2414 	if (audit_rate_check()) {
2415 		skb = ab->skb;
2416 		ab->skb = NULL;
2417 
2418 		/* setup the netlink header, see the comments in
2419 		 * kauditd_send_multicast_skb() for length quirks */
2420 		nlh = nlmsg_hdr(skb);
2421 		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2422 
2423 		/* queue the netlink packet and poke the kauditd thread */
2424 		skb_queue_tail(&audit_queue, skb);
2425 		wake_up_interruptible(&kauditd_wait);
2426 	} else
2427 		audit_log_lost("rate limit exceeded");
2428 
2429 	audit_buffer_free(ab);
2430 }
2431 
2432 /**
2433  * audit_log - Log an audit record
2434  * @ctx: audit context
2435  * @gfp_mask: type of allocation
2436  * @type: audit message type
2437  * @fmt: format string to use
2438  * @...: variable parameters matching the format string
2439  *
2440  * This is a convenience function that calls audit_log_start,
2441  * audit_log_vformat, and audit_log_end.  It may be called
2442  * in any context.
2443  */
2444 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2445 	       const char *fmt, ...)
2446 {
2447 	struct audit_buffer *ab;
2448 	va_list args;
2449 
2450 	ab = audit_log_start(ctx, gfp_mask, type);
2451 	if (ab) {
2452 		va_start(args, fmt);
2453 		audit_log_vformat(ab, fmt, args);
2454 		va_end(args);
2455 		audit_log_end(ab);
2456 	}
2457 }
2458 
2459 EXPORT_SYMBOL(audit_log_start);
2460 EXPORT_SYMBOL(audit_log_end);
2461 EXPORT_SYMBOL(audit_log_format);
2462 EXPORT_SYMBOL(audit_log);
2463