1 /* 2 * async.c: Asynchronous function calls for boot performance 3 * 4 * (C) Copyright 2009 Intel Corporation 5 * Author: Arjan van de Ven <[email protected]> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 */ 12 13 14 /* 15 16 Goals and Theory of Operation 17 18 The primary goal of this feature is to reduce the kernel boot time, 19 by doing various independent hardware delays and discovery operations 20 decoupled and not strictly serialized. 21 22 More specifically, the asynchronous function call concept allows 23 certain operations (primarily during system boot) to happen 24 asynchronously, out of order, while these operations still 25 have their externally visible parts happen sequentially and in-order. 26 (not unlike how out-of-order CPUs retire their instructions in order) 27 28 Key to the asynchronous function call implementation is the concept of 29 a "sequence cookie" (which, although it has an abstracted type, can be 30 thought of as a monotonically incrementing number). 31 32 The async core will assign each scheduled event such a sequence cookie and 33 pass this to the called functions. 34 35 The asynchronously called function should before doing a globally visible 36 operation, such as registering device numbers, call the 37 async_synchronize_cookie() function and pass in its own cookie. The 38 async_synchronize_cookie() function will make sure that all asynchronous 39 operations that were scheduled prior to the operation corresponding with the 40 cookie have completed. 41 42 Subsystem/driver initialization code that scheduled asynchronous probe 43 functions, but which shares global resources with other drivers/subsystems 44 that do not use the asynchronous call feature, need to do a full 45 synchronization with the async_synchronize_full() function, before returning 46 from their init function. This is to maintain strict ordering between the 47 asynchronous and synchronous parts of the kernel. 48 49 */ 50 51 #include <linux/async.h> 52 #include <linux/atomic.h> 53 #include <linux/ktime.h> 54 #include <linux/export.h> 55 #include <linux/wait.h> 56 #include <linux/sched.h> 57 #include <linux/slab.h> 58 #include <linux/workqueue.h> 59 60 #include "workqueue_internal.h" 61 62 static async_cookie_t next_cookie = 1; 63 64 #define MAX_WORK 32768 65 66 static LIST_HEAD(async_pending); 67 static ASYNC_DOMAIN(async_dfl_domain); 68 static LIST_HEAD(async_domains); 69 static DEFINE_SPINLOCK(async_lock); 70 static DEFINE_MUTEX(async_register_mutex); 71 72 struct async_entry { 73 struct list_head list; 74 struct work_struct work; 75 async_cookie_t cookie; 76 async_func_ptr *func; 77 void *data; 78 struct async_domain *domain; 79 }; 80 81 static DECLARE_WAIT_QUEUE_HEAD(async_done); 82 83 static atomic_t entry_count; 84 85 86 /* 87 * MUST be called with the lock held! 88 */ 89 static async_cookie_t __lowest_in_progress(struct async_domain *domain) 90 { 91 async_cookie_t first_running = next_cookie; /* infinity value */ 92 async_cookie_t first_pending = next_cookie; /* ditto */ 93 struct async_entry *entry; 94 95 /* 96 * Both running and pending lists are sorted but not disjoint. 97 * Take the first cookies from both and return the min. 98 */ 99 if (!list_empty(&domain->running)) { 100 entry = list_first_entry(&domain->running, typeof(*entry), list); 101 first_running = entry->cookie; 102 } 103 104 list_for_each_entry(entry, &async_pending, list) { 105 if (entry->domain == domain) { 106 first_pending = entry->cookie; 107 break; 108 } 109 } 110 111 return min(first_running, first_pending); 112 } 113 114 static async_cookie_t lowest_in_progress(struct async_domain *domain) 115 { 116 unsigned long flags; 117 async_cookie_t ret; 118 119 spin_lock_irqsave(&async_lock, flags); 120 ret = __lowest_in_progress(domain); 121 spin_unlock_irqrestore(&async_lock, flags); 122 return ret; 123 } 124 125 /* 126 * pick the first pending entry and run it 127 */ 128 static void async_run_entry_fn(struct work_struct *work) 129 { 130 struct async_entry *entry = 131 container_of(work, struct async_entry, work); 132 struct async_entry *pos; 133 unsigned long flags; 134 ktime_t uninitialized_var(calltime), delta, rettime; 135 struct async_domain *domain = entry->domain; 136 137 /* 1) move self to the running queue, make sure it stays sorted */ 138 spin_lock_irqsave(&async_lock, flags); 139 list_for_each_entry_reverse(pos, &domain->running, list) 140 if (entry->cookie < pos->cookie) 141 break; 142 list_move_tail(&entry->list, &pos->list); 143 spin_unlock_irqrestore(&async_lock, flags); 144 145 /* 2) run (and print duration) */ 146 if (initcall_debug && system_state == SYSTEM_BOOTING) { 147 printk(KERN_DEBUG "calling %lli_%pF @ %i\n", 148 (long long)entry->cookie, 149 entry->func, task_pid_nr(current)); 150 calltime = ktime_get(); 151 } 152 entry->func(entry->data, entry->cookie); 153 if (initcall_debug && system_state == SYSTEM_BOOTING) { 154 rettime = ktime_get(); 155 delta = ktime_sub(rettime, calltime); 156 printk(KERN_DEBUG "initcall %lli_%pF returned 0 after %lld usecs\n", 157 (long long)entry->cookie, 158 entry->func, 159 (long long)ktime_to_ns(delta) >> 10); 160 } 161 162 /* 3) remove self from the running queue */ 163 spin_lock_irqsave(&async_lock, flags); 164 list_del(&entry->list); 165 if (domain->registered && --domain->count == 0) 166 list_del_init(&domain->node); 167 168 /* 4) free the entry */ 169 kfree(entry); 170 atomic_dec(&entry_count); 171 172 spin_unlock_irqrestore(&async_lock, flags); 173 174 /* 5) wake up any waiters */ 175 wake_up(&async_done); 176 } 177 178 static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct async_domain *domain) 179 { 180 struct async_entry *entry; 181 unsigned long flags; 182 async_cookie_t newcookie; 183 184 /* allow irq-off callers */ 185 entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC); 186 187 /* 188 * If we're out of memory or if there's too much work 189 * pending already, we execute synchronously. 190 */ 191 if (!entry || atomic_read(&entry_count) > MAX_WORK) { 192 kfree(entry); 193 spin_lock_irqsave(&async_lock, flags); 194 newcookie = next_cookie++; 195 spin_unlock_irqrestore(&async_lock, flags); 196 197 /* low on memory.. run synchronously */ 198 ptr(data, newcookie); 199 return newcookie; 200 } 201 INIT_WORK(&entry->work, async_run_entry_fn); 202 entry->func = ptr; 203 entry->data = data; 204 entry->domain = domain; 205 206 spin_lock_irqsave(&async_lock, flags); 207 newcookie = entry->cookie = next_cookie++; 208 list_add_tail(&entry->list, &async_pending); 209 if (domain->registered && domain->count++ == 0) 210 list_add_tail(&domain->node, &async_domains); 211 atomic_inc(&entry_count); 212 spin_unlock_irqrestore(&async_lock, flags); 213 214 /* mark that this task has queued an async job, used by module init */ 215 current->flags |= PF_USED_ASYNC; 216 217 /* schedule for execution */ 218 queue_work(system_unbound_wq, &entry->work); 219 220 return newcookie; 221 } 222 223 /** 224 * async_schedule - schedule a function for asynchronous execution 225 * @ptr: function to execute asynchronously 226 * @data: data pointer to pass to the function 227 * 228 * Returns an async_cookie_t that may be used for checkpointing later. 229 * Note: This function may be called from atomic or non-atomic contexts. 230 */ 231 async_cookie_t async_schedule(async_func_ptr *ptr, void *data) 232 { 233 return __async_schedule(ptr, data, &async_dfl_domain); 234 } 235 EXPORT_SYMBOL_GPL(async_schedule); 236 237 /** 238 * async_schedule_domain - schedule a function for asynchronous execution within a certain domain 239 * @ptr: function to execute asynchronously 240 * @data: data pointer to pass to the function 241 * @domain: the domain 242 * 243 * Returns an async_cookie_t that may be used for checkpointing later. 244 * @domain may be used in the async_synchronize_*_domain() functions to 245 * wait within a certain synchronization domain rather than globally. A 246 * synchronization domain is specified via @domain. Note: This function 247 * may be called from atomic or non-atomic contexts. 248 */ 249 async_cookie_t async_schedule_domain(async_func_ptr *ptr, void *data, 250 struct async_domain *domain) 251 { 252 return __async_schedule(ptr, data, domain); 253 } 254 EXPORT_SYMBOL_GPL(async_schedule_domain); 255 256 /** 257 * async_synchronize_full - synchronize all asynchronous function calls 258 * 259 * This function waits until all asynchronous function calls have been done. 260 */ 261 void async_synchronize_full(void) 262 { 263 mutex_lock(&async_register_mutex); 264 do { 265 struct async_domain *domain = NULL; 266 267 spin_lock_irq(&async_lock); 268 if (!list_empty(&async_domains)) 269 domain = list_first_entry(&async_domains, typeof(*domain), node); 270 spin_unlock_irq(&async_lock); 271 272 async_synchronize_cookie_domain(next_cookie, domain); 273 } while (!list_empty(&async_domains)); 274 mutex_unlock(&async_register_mutex); 275 } 276 EXPORT_SYMBOL_GPL(async_synchronize_full); 277 278 /** 279 * async_unregister_domain - ensure no more anonymous waiters on this domain 280 * @domain: idle domain to flush out of any async_synchronize_full instances 281 * 282 * async_synchronize_{cookie|full}_domain() are not flushed since callers 283 * of these routines should know the lifetime of @domain 284 * 285 * Prefer ASYNC_DOMAIN_EXCLUSIVE() declarations over flushing 286 */ 287 void async_unregister_domain(struct async_domain *domain) 288 { 289 mutex_lock(&async_register_mutex); 290 spin_lock_irq(&async_lock); 291 WARN_ON(!domain->registered || !list_empty(&domain->node) || 292 !list_empty(&domain->running)); 293 domain->registered = 0; 294 spin_unlock_irq(&async_lock); 295 mutex_unlock(&async_register_mutex); 296 } 297 EXPORT_SYMBOL_GPL(async_unregister_domain); 298 299 /** 300 * async_synchronize_full_domain - synchronize all asynchronous function within a certain domain 301 * @domain: the domain to synchronize 302 * 303 * This function waits until all asynchronous function calls for the 304 * synchronization domain specified by @domain have been done. 305 */ 306 void async_synchronize_full_domain(struct async_domain *domain) 307 { 308 async_synchronize_cookie_domain(next_cookie, domain); 309 } 310 EXPORT_SYMBOL_GPL(async_synchronize_full_domain); 311 312 /** 313 * async_synchronize_cookie_domain - synchronize asynchronous function calls within a certain domain with cookie checkpointing 314 * @cookie: async_cookie_t to use as checkpoint 315 * @domain: the domain to synchronize 316 * 317 * This function waits until all asynchronous function calls for the 318 * synchronization domain specified by @domain submitted prior to @cookie 319 * have been done. 320 */ 321 void async_synchronize_cookie_domain(async_cookie_t cookie, struct async_domain *domain) 322 { 323 ktime_t uninitialized_var(starttime), delta, endtime; 324 325 if (!domain) 326 return; 327 328 if (initcall_debug && system_state == SYSTEM_BOOTING) { 329 printk(KERN_DEBUG "async_waiting @ %i\n", task_pid_nr(current)); 330 starttime = ktime_get(); 331 } 332 333 wait_event(async_done, lowest_in_progress(domain) >= cookie); 334 335 if (initcall_debug && system_state == SYSTEM_BOOTING) { 336 endtime = ktime_get(); 337 delta = ktime_sub(endtime, starttime); 338 339 printk(KERN_DEBUG "async_continuing @ %i after %lli usec\n", 340 task_pid_nr(current), 341 (long long)ktime_to_ns(delta) >> 10); 342 } 343 } 344 EXPORT_SYMBOL_GPL(async_synchronize_cookie_domain); 345 346 /** 347 * async_synchronize_cookie - synchronize asynchronous function calls with cookie checkpointing 348 * @cookie: async_cookie_t to use as checkpoint 349 * 350 * This function waits until all asynchronous function calls prior to @cookie 351 * have been done. 352 */ 353 void async_synchronize_cookie(async_cookie_t cookie) 354 { 355 async_synchronize_cookie_domain(cookie, &async_dfl_domain); 356 } 357 EXPORT_SYMBOL_GPL(async_synchronize_cookie); 358 359 /** 360 * current_is_async - is %current an async worker task? 361 * 362 * Returns %true if %current is an async worker task. 363 */ 364 bool current_is_async(void) 365 { 366 struct worker *worker = current_wq_worker(); 367 368 return worker && worker->current_func == async_run_entry_fn; 369 } 370