1 /* 2 * POSIX message queues filesystem for Linux. 3 * 4 * Copyright (C) 2003,2004 Krzysztof Benedyczak ([email protected]) 5 * Michal Wronski ([email protected]) 6 * 7 * Spinlocks: Mohamed Abbas ([email protected]) 8 * Lockless receive & send, fd based notify: 9 * Manfred Spraul ([email protected]) 10 * 11 * Audit: George Wilson ([email protected]) 12 * 13 * This file is released under the GPL. 14 */ 15 16 #include <linux/capability.h> 17 #include <linux/init.h> 18 #include <linux/pagemap.h> 19 #include <linux/file.h> 20 #include <linux/mount.h> 21 #include <linux/fs_context.h> 22 #include <linux/namei.h> 23 #include <linux/sysctl.h> 24 #include <linux/poll.h> 25 #include <linux/mqueue.h> 26 #include <linux/msg.h> 27 #include <linux/skbuff.h> 28 #include <linux/vmalloc.h> 29 #include <linux/netlink.h> 30 #include <linux/syscalls.h> 31 #include <linux/audit.h> 32 #include <linux/signal.h> 33 #include <linux/mutex.h> 34 #include <linux/nsproxy.h> 35 #include <linux/pid.h> 36 #include <linux/ipc_namespace.h> 37 #include <linux/user_namespace.h> 38 #include <linux/slab.h> 39 #include <linux/sched/wake_q.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/user.h> 42 43 #include <net/sock.h> 44 #include "util.h" 45 46 struct mqueue_fs_context { 47 struct ipc_namespace *ipc_ns; 48 }; 49 50 #define MQUEUE_MAGIC 0x19800202 51 #define DIRENT_SIZE 20 52 #define FILENT_SIZE 80 53 54 #define SEND 0 55 #define RECV 1 56 57 #define STATE_NONE 0 58 #define STATE_READY 1 59 60 struct posix_msg_tree_node { 61 struct rb_node rb_node; 62 struct list_head msg_list; 63 int priority; 64 }; 65 66 /* 67 * Locking: 68 * 69 * Accesses to a message queue are synchronized by acquiring info->lock. 70 * 71 * There are two notable exceptions: 72 * - The actual wakeup of a sleeping task is performed using the wake_q 73 * framework. info->lock is already released when wake_up_q is called. 74 * - The exit codepaths after sleeping check ext_wait_queue->state without 75 * any locks. If it is STATE_READY, then the syscall is completed without 76 * acquiring info->lock. 77 * 78 * MQ_BARRIER: 79 * To achieve proper release/acquire memory barrier pairing, the state is set to 80 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed 81 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used. 82 * 83 * This prevents the following races: 84 * 85 * 1) With the simple wake_q_add(), the task could be gone already before 86 * the increase of the reference happens 87 * Thread A 88 * Thread B 89 * WRITE_ONCE(wait.state, STATE_NONE); 90 * schedule_hrtimeout() 91 * wake_q_add(A) 92 * if (cmpxchg()) // success 93 * ->state = STATE_READY (reordered) 94 * <timeout returns> 95 * if (wait.state == STATE_READY) return; 96 * sysret to user space 97 * sys_exit() 98 * get_task_struct() // UaF 99 * 100 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before 101 * the smp_store_release() that does ->state = STATE_READY. 102 * 103 * 2) Without proper _release/_acquire barriers, the woken up task 104 * could read stale data 105 * 106 * Thread A 107 * Thread B 108 * do_mq_timedreceive 109 * WRITE_ONCE(wait.state, STATE_NONE); 110 * schedule_hrtimeout() 111 * state = STATE_READY; 112 * <timeout returns> 113 * if (wait.state == STATE_READY) return; 114 * msg_ptr = wait.msg; // Access to stale data! 115 * receiver->msg = message; (reordered) 116 * 117 * Solution: use _release and _acquire barriers. 118 * 119 * 3) There is intentionally no barrier when setting current->state 120 * to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the 121 * release memory barrier, and the wakeup is triggered when holding 122 * info->lock, i.e. spin_lock(&info->lock) provided a pairing 123 * acquire memory barrier. 124 */ 125 126 struct ext_wait_queue { /* queue of sleeping tasks */ 127 struct task_struct *task; 128 struct list_head list; 129 struct msg_msg *msg; /* ptr of loaded message */ 130 int state; /* one of STATE_* values */ 131 }; 132 133 struct mqueue_inode_info { 134 spinlock_t lock; 135 struct inode vfs_inode; 136 wait_queue_head_t wait_q; 137 138 struct rb_root msg_tree; 139 struct rb_node *msg_tree_rightmost; 140 struct posix_msg_tree_node *node_cache; 141 struct mq_attr attr; 142 143 struct sigevent notify; 144 struct pid *notify_owner; 145 u32 notify_self_exec_id; 146 struct user_namespace *notify_user_ns; 147 struct ucounts *ucounts; /* user who created, for accounting */ 148 struct sock *notify_sock; 149 struct sk_buff *notify_cookie; 150 151 /* for tasks waiting for free space and messages, respectively */ 152 struct ext_wait_queue e_wait_q[2]; 153 154 unsigned long qsize; /* size of queue in memory (sum of all msgs) */ 155 }; 156 157 static struct file_system_type mqueue_fs_type; 158 static const struct inode_operations mqueue_dir_inode_operations; 159 static const struct file_operations mqueue_file_operations; 160 static const struct super_operations mqueue_super_ops; 161 static const struct fs_context_operations mqueue_fs_context_ops; 162 static void remove_notification(struct mqueue_inode_info *info); 163 164 static struct kmem_cache *mqueue_inode_cachep; 165 166 static struct ctl_table_header *mq_sysctl_table; 167 168 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode) 169 { 170 return container_of(inode, struct mqueue_inode_info, vfs_inode); 171 } 172 173 /* 174 * This routine should be called with the mq_lock held. 175 */ 176 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode) 177 { 178 return get_ipc_ns(inode->i_sb->s_fs_info); 179 } 180 181 static struct ipc_namespace *get_ns_from_inode(struct inode *inode) 182 { 183 struct ipc_namespace *ns; 184 185 spin_lock(&mq_lock); 186 ns = __get_ns_from_inode(inode); 187 spin_unlock(&mq_lock); 188 return ns; 189 } 190 191 /* Auxiliary functions to manipulate messages' list */ 192 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info) 193 { 194 struct rb_node **p, *parent = NULL; 195 struct posix_msg_tree_node *leaf; 196 bool rightmost = true; 197 198 p = &info->msg_tree.rb_node; 199 while (*p) { 200 parent = *p; 201 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 202 203 if (likely(leaf->priority == msg->m_type)) 204 goto insert_msg; 205 else if (msg->m_type < leaf->priority) { 206 p = &(*p)->rb_left; 207 rightmost = false; 208 } else 209 p = &(*p)->rb_right; 210 } 211 if (info->node_cache) { 212 leaf = info->node_cache; 213 info->node_cache = NULL; 214 } else { 215 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC); 216 if (!leaf) 217 return -ENOMEM; 218 INIT_LIST_HEAD(&leaf->msg_list); 219 } 220 leaf->priority = msg->m_type; 221 222 if (rightmost) 223 info->msg_tree_rightmost = &leaf->rb_node; 224 225 rb_link_node(&leaf->rb_node, parent, p); 226 rb_insert_color(&leaf->rb_node, &info->msg_tree); 227 insert_msg: 228 info->attr.mq_curmsgs++; 229 info->qsize += msg->m_ts; 230 list_add_tail(&msg->m_list, &leaf->msg_list); 231 return 0; 232 } 233 234 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf, 235 struct mqueue_inode_info *info) 236 { 237 struct rb_node *node = &leaf->rb_node; 238 239 if (info->msg_tree_rightmost == node) 240 info->msg_tree_rightmost = rb_prev(node); 241 242 rb_erase(node, &info->msg_tree); 243 if (info->node_cache) 244 kfree(leaf); 245 else 246 info->node_cache = leaf; 247 } 248 249 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info) 250 { 251 struct rb_node *parent = NULL; 252 struct posix_msg_tree_node *leaf; 253 struct msg_msg *msg; 254 255 try_again: 256 /* 257 * During insert, low priorities go to the left and high to the 258 * right. On receive, we want the highest priorities first, so 259 * walk all the way to the right. 260 */ 261 parent = info->msg_tree_rightmost; 262 if (!parent) { 263 if (info->attr.mq_curmsgs) { 264 pr_warn_once("Inconsistency in POSIX message queue, " 265 "no tree element, but supposedly messages " 266 "should exist!\n"); 267 info->attr.mq_curmsgs = 0; 268 } 269 return NULL; 270 } 271 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 272 if (unlikely(list_empty(&leaf->msg_list))) { 273 pr_warn_once("Inconsistency in POSIX message queue, " 274 "empty leaf node but we haven't implemented " 275 "lazy leaf delete!\n"); 276 msg_tree_erase(leaf, info); 277 goto try_again; 278 } else { 279 msg = list_first_entry(&leaf->msg_list, 280 struct msg_msg, m_list); 281 list_del(&msg->m_list); 282 if (list_empty(&leaf->msg_list)) { 283 msg_tree_erase(leaf, info); 284 } 285 } 286 info->attr.mq_curmsgs--; 287 info->qsize -= msg->m_ts; 288 return msg; 289 } 290 291 static struct inode *mqueue_get_inode(struct super_block *sb, 292 struct ipc_namespace *ipc_ns, umode_t mode, 293 struct mq_attr *attr) 294 { 295 struct inode *inode; 296 int ret = -ENOMEM; 297 298 inode = new_inode(sb); 299 if (!inode) 300 goto err; 301 302 inode->i_ino = get_next_ino(); 303 inode->i_mode = mode; 304 inode->i_uid = current_fsuid(); 305 inode->i_gid = current_fsgid(); 306 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode); 307 308 if (S_ISREG(mode)) { 309 struct mqueue_inode_info *info; 310 unsigned long mq_bytes, mq_treesize; 311 312 inode->i_fop = &mqueue_file_operations; 313 inode->i_size = FILENT_SIZE; 314 /* mqueue specific info */ 315 info = MQUEUE_I(inode); 316 spin_lock_init(&info->lock); 317 init_waitqueue_head(&info->wait_q); 318 INIT_LIST_HEAD(&info->e_wait_q[0].list); 319 INIT_LIST_HEAD(&info->e_wait_q[1].list); 320 info->notify_owner = NULL; 321 info->notify_user_ns = NULL; 322 info->qsize = 0; 323 info->ucounts = NULL; /* set when all is ok */ 324 info->msg_tree = RB_ROOT; 325 info->msg_tree_rightmost = NULL; 326 info->node_cache = NULL; 327 memset(&info->attr, 0, sizeof(info->attr)); 328 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max, 329 ipc_ns->mq_msg_default); 330 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max, 331 ipc_ns->mq_msgsize_default); 332 if (attr) { 333 info->attr.mq_maxmsg = attr->mq_maxmsg; 334 info->attr.mq_msgsize = attr->mq_msgsize; 335 } 336 /* 337 * We used to allocate a static array of pointers and account 338 * the size of that array as well as one msg_msg struct per 339 * possible message into the queue size. That's no longer 340 * accurate as the queue is now an rbtree and will grow and 341 * shrink depending on usage patterns. We can, however, still 342 * account one msg_msg struct per message, but the nodes are 343 * allocated depending on priority usage, and most programs 344 * only use one, or a handful, of priorities. However, since 345 * this is pinned memory, we need to assume worst case, so 346 * that means the min(mq_maxmsg, max_priorities) * struct 347 * posix_msg_tree_node. 348 */ 349 350 ret = -EINVAL; 351 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0) 352 goto out_inode; 353 if (capable(CAP_SYS_RESOURCE)) { 354 if (info->attr.mq_maxmsg > HARD_MSGMAX || 355 info->attr.mq_msgsize > HARD_MSGSIZEMAX) 356 goto out_inode; 357 } else { 358 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max || 359 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max) 360 goto out_inode; 361 } 362 ret = -EOVERFLOW; 363 /* check for overflow */ 364 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg) 365 goto out_inode; 366 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 367 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 368 sizeof(struct posix_msg_tree_node); 369 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize; 370 if (mq_bytes + mq_treesize < mq_bytes) 371 goto out_inode; 372 mq_bytes += mq_treesize; 373 info->ucounts = get_ucounts(current_ucounts()); 374 if (info->ucounts) { 375 long msgqueue; 376 377 spin_lock(&mq_lock); 378 msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes); 379 if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) { 380 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes); 381 spin_unlock(&mq_lock); 382 put_ucounts(info->ucounts); 383 info->ucounts = NULL; 384 /* mqueue_evict_inode() releases info->messages */ 385 ret = -EMFILE; 386 goto out_inode; 387 } 388 spin_unlock(&mq_lock); 389 } 390 } else if (S_ISDIR(mode)) { 391 inc_nlink(inode); 392 /* Some things misbehave if size == 0 on a directory */ 393 inode->i_size = 2 * DIRENT_SIZE; 394 inode->i_op = &mqueue_dir_inode_operations; 395 inode->i_fop = &simple_dir_operations; 396 } 397 398 return inode; 399 out_inode: 400 iput(inode); 401 err: 402 return ERR_PTR(ret); 403 } 404 405 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc) 406 { 407 struct inode *inode; 408 struct ipc_namespace *ns = sb->s_fs_info; 409 410 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 411 sb->s_blocksize = PAGE_SIZE; 412 sb->s_blocksize_bits = PAGE_SHIFT; 413 sb->s_magic = MQUEUE_MAGIC; 414 sb->s_op = &mqueue_super_ops; 415 416 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL); 417 if (IS_ERR(inode)) 418 return PTR_ERR(inode); 419 420 sb->s_root = d_make_root(inode); 421 if (!sb->s_root) 422 return -ENOMEM; 423 return 0; 424 } 425 426 static int mqueue_get_tree(struct fs_context *fc) 427 { 428 struct mqueue_fs_context *ctx = fc->fs_private; 429 430 return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns); 431 } 432 433 static void mqueue_fs_context_free(struct fs_context *fc) 434 { 435 struct mqueue_fs_context *ctx = fc->fs_private; 436 437 put_ipc_ns(ctx->ipc_ns); 438 kfree(ctx); 439 } 440 441 static int mqueue_init_fs_context(struct fs_context *fc) 442 { 443 struct mqueue_fs_context *ctx; 444 445 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL); 446 if (!ctx) 447 return -ENOMEM; 448 449 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns); 450 put_user_ns(fc->user_ns); 451 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 452 fc->fs_private = ctx; 453 fc->ops = &mqueue_fs_context_ops; 454 return 0; 455 } 456 457 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns) 458 { 459 struct mqueue_fs_context *ctx; 460 struct fs_context *fc; 461 struct vfsmount *mnt; 462 463 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT); 464 if (IS_ERR(fc)) 465 return ERR_CAST(fc); 466 467 ctx = fc->fs_private; 468 put_ipc_ns(ctx->ipc_ns); 469 ctx->ipc_ns = get_ipc_ns(ns); 470 put_user_ns(fc->user_ns); 471 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 472 473 mnt = fc_mount(fc); 474 put_fs_context(fc); 475 return mnt; 476 } 477 478 static void init_once(void *foo) 479 { 480 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo; 481 482 inode_init_once(&p->vfs_inode); 483 } 484 485 static struct inode *mqueue_alloc_inode(struct super_block *sb) 486 { 487 struct mqueue_inode_info *ei; 488 489 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL); 490 if (!ei) 491 return NULL; 492 return &ei->vfs_inode; 493 } 494 495 static void mqueue_free_inode(struct inode *inode) 496 { 497 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode)); 498 } 499 500 static void mqueue_evict_inode(struct inode *inode) 501 { 502 struct mqueue_inode_info *info; 503 struct ipc_namespace *ipc_ns; 504 struct msg_msg *msg, *nmsg; 505 LIST_HEAD(tmp_msg); 506 507 clear_inode(inode); 508 509 if (S_ISDIR(inode->i_mode)) 510 return; 511 512 ipc_ns = get_ns_from_inode(inode); 513 info = MQUEUE_I(inode); 514 spin_lock(&info->lock); 515 while ((msg = msg_get(info)) != NULL) 516 list_add_tail(&msg->m_list, &tmp_msg); 517 kfree(info->node_cache); 518 spin_unlock(&info->lock); 519 520 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) { 521 list_del(&msg->m_list); 522 free_msg(msg); 523 } 524 525 if (info->ucounts) { 526 unsigned long mq_bytes, mq_treesize; 527 528 /* Total amount of bytes accounted for the mqueue */ 529 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 530 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 531 sizeof(struct posix_msg_tree_node); 532 533 mq_bytes = mq_treesize + (info->attr.mq_maxmsg * 534 info->attr.mq_msgsize); 535 536 spin_lock(&mq_lock); 537 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes); 538 /* 539 * get_ns_from_inode() ensures that the 540 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns 541 * to which we now hold a reference, or it is NULL. 542 * We can't put it here under mq_lock, though. 543 */ 544 if (ipc_ns) 545 ipc_ns->mq_queues_count--; 546 spin_unlock(&mq_lock); 547 put_ucounts(info->ucounts); 548 info->ucounts = NULL; 549 } 550 if (ipc_ns) 551 put_ipc_ns(ipc_ns); 552 } 553 554 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg) 555 { 556 struct inode *dir = dentry->d_parent->d_inode; 557 struct inode *inode; 558 struct mq_attr *attr = arg; 559 int error; 560 struct ipc_namespace *ipc_ns; 561 562 spin_lock(&mq_lock); 563 ipc_ns = __get_ns_from_inode(dir); 564 if (!ipc_ns) { 565 error = -EACCES; 566 goto out_unlock; 567 } 568 569 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max && 570 !capable(CAP_SYS_RESOURCE)) { 571 error = -ENOSPC; 572 goto out_unlock; 573 } 574 ipc_ns->mq_queues_count++; 575 spin_unlock(&mq_lock); 576 577 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr); 578 if (IS_ERR(inode)) { 579 error = PTR_ERR(inode); 580 spin_lock(&mq_lock); 581 ipc_ns->mq_queues_count--; 582 goto out_unlock; 583 } 584 585 put_ipc_ns(ipc_ns); 586 dir->i_size += DIRENT_SIZE; 587 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 588 589 d_instantiate(dentry, inode); 590 dget(dentry); 591 return 0; 592 out_unlock: 593 spin_unlock(&mq_lock); 594 if (ipc_ns) 595 put_ipc_ns(ipc_ns); 596 return error; 597 } 598 599 static int mqueue_create(struct user_namespace *mnt_userns, struct inode *dir, 600 struct dentry *dentry, umode_t mode, bool excl) 601 { 602 return mqueue_create_attr(dentry, mode, NULL); 603 } 604 605 static int mqueue_unlink(struct inode *dir, struct dentry *dentry) 606 { 607 struct inode *inode = d_inode(dentry); 608 609 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 610 dir->i_size -= DIRENT_SIZE; 611 drop_nlink(inode); 612 dput(dentry); 613 return 0; 614 } 615 616 /* 617 * This is routine for system read from queue file. 618 * To avoid mess with doing here some sort of mq_receive we allow 619 * to read only queue size & notification info (the only values 620 * that are interesting from user point of view and aren't accessible 621 * through std routines) 622 */ 623 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data, 624 size_t count, loff_t *off) 625 { 626 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 627 char buffer[FILENT_SIZE]; 628 ssize_t ret; 629 630 spin_lock(&info->lock); 631 snprintf(buffer, sizeof(buffer), 632 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n", 633 info->qsize, 634 info->notify_owner ? info->notify.sigev_notify : 0, 635 (info->notify_owner && 636 info->notify.sigev_notify == SIGEV_SIGNAL) ? 637 info->notify.sigev_signo : 0, 638 pid_vnr(info->notify_owner)); 639 spin_unlock(&info->lock); 640 buffer[sizeof(buffer)-1] = '\0'; 641 642 ret = simple_read_from_buffer(u_data, count, off, buffer, 643 strlen(buffer)); 644 if (ret <= 0) 645 return ret; 646 647 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp)); 648 return ret; 649 } 650 651 static int mqueue_flush_file(struct file *filp, fl_owner_t id) 652 { 653 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 654 655 spin_lock(&info->lock); 656 if (task_tgid(current) == info->notify_owner) 657 remove_notification(info); 658 659 spin_unlock(&info->lock); 660 return 0; 661 } 662 663 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab) 664 { 665 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 666 __poll_t retval = 0; 667 668 poll_wait(filp, &info->wait_q, poll_tab); 669 670 spin_lock(&info->lock); 671 if (info->attr.mq_curmsgs) 672 retval = EPOLLIN | EPOLLRDNORM; 673 674 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg) 675 retval |= EPOLLOUT | EPOLLWRNORM; 676 spin_unlock(&info->lock); 677 678 return retval; 679 } 680 681 /* Adds current to info->e_wait_q[sr] before element with smaller prio */ 682 static void wq_add(struct mqueue_inode_info *info, int sr, 683 struct ext_wait_queue *ewp) 684 { 685 struct ext_wait_queue *walk; 686 687 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) { 688 if (walk->task->prio <= current->prio) { 689 list_add_tail(&ewp->list, &walk->list); 690 return; 691 } 692 } 693 list_add_tail(&ewp->list, &info->e_wait_q[sr].list); 694 } 695 696 /* 697 * Puts current task to sleep. Caller must hold queue lock. After return 698 * lock isn't held. 699 * sr: SEND or RECV 700 */ 701 static int wq_sleep(struct mqueue_inode_info *info, int sr, 702 ktime_t *timeout, struct ext_wait_queue *ewp) 703 __releases(&info->lock) 704 { 705 int retval; 706 signed long time; 707 708 wq_add(info, sr, ewp); 709 710 for (;;) { 711 /* memory barrier not required, we hold info->lock */ 712 __set_current_state(TASK_INTERRUPTIBLE); 713 714 spin_unlock(&info->lock); 715 time = schedule_hrtimeout_range_clock(timeout, 0, 716 HRTIMER_MODE_ABS, CLOCK_REALTIME); 717 718 if (READ_ONCE(ewp->state) == STATE_READY) { 719 /* see MQ_BARRIER for purpose/pairing */ 720 smp_acquire__after_ctrl_dep(); 721 retval = 0; 722 goto out; 723 } 724 spin_lock(&info->lock); 725 726 /* we hold info->lock, so no memory barrier required */ 727 if (READ_ONCE(ewp->state) == STATE_READY) { 728 retval = 0; 729 goto out_unlock; 730 } 731 if (signal_pending(current)) { 732 retval = -ERESTARTSYS; 733 break; 734 } 735 if (time == 0) { 736 retval = -ETIMEDOUT; 737 break; 738 } 739 } 740 list_del(&ewp->list); 741 out_unlock: 742 spin_unlock(&info->lock); 743 out: 744 return retval; 745 } 746 747 /* 748 * Returns waiting task that should be serviced first or NULL if none exists 749 */ 750 static struct ext_wait_queue *wq_get_first_waiter( 751 struct mqueue_inode_info *info, int sr) 752 { 753 struct list_head *ptr; 754 755 ptr = info->e_wait_q[sr].list.prev; 756 if (ptr == &info->e_wait_q[sr].list) 757 return NULL; 758 return list_entry(ptr, struct ext_wait_queue, list); 759 } 760 761 762 static inline void set_cookie(struct sk_buff *skb, char code) 763 { 764 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code; 765 } 766 767 /* 768 * The next function is only to split too long sys_mq_timedsend 769 */ 770 static void __do_notify(struct mqueue_inode_info *info) 771 { 772 /* notification 773 * invoked when there is registered process and there isn't process 774 * waiting synchronously for message AND state of queue changed from 775 * empty to not empty. Here we are sure that no one is waiting 776 * synchronously. */ 777 if (info->notify_owner && 778 info->attr.mq_curmsgs == 1) { 779 switch (info->notify.sigev_notify) { 780 case SIGEV_NONE: 781 break; 782 case SIGEV_SIGNAL: { 783 struct kernel_siginfo sig_i; 784 struct task_struct *task; 785 786 /* do_mq_notify() accepts sigev_signo == 0, why?? */ 787 if (!info->notify.sigev_signo) 788 break; 789 790 clear_siginfo(&sig_i); 791 sig_i.si_signo = info->notify.sigev_signo; 792 sig_i.si_errno = 0; 793 sig_i.si_code = SI_MESGQ; 794 sig_i.si_value = info->notify.sigev_value; 795 rcu_read_lock(); 796 /* map current pid/uid into info->owner's namespaces */ 797 sig_i.si_pid = task_tgid_nr_ns(current, 798 ns_of_pid(info->notify_owner)); 799 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, 800 current_uid()); 801 /* 802 * We can't use kill_pid_info(), this signal should 803 * bypass check_kill_permission(). It is from kernel 804 * but si_fromuser() can't know this. 805 * We do check the self_exec_id, to avoid sending 806 * signals to programs that don't expect them. 807 */ 808 task = pid_task(info->notify_owner, PIDTYPE_TGID); 809 if (task && task->self_exec_id == 810 info->notify_self_exec_id) { 811 do_send_sig_info(info->notify.sigev_signo, 812 &sig_i, task, PIDTYPE_TGID); 813 } 814 rcu_read_unlock(); 815 break; 816 } 817 case SIGEV_THREAD: 818 set_cookie(info->notify_cookie, NOTIFY_WOKENUP); 819 netlink_sendskb(info->notify_sock, info->notify_cookie); 820 break; 821 } 822 /* after notification unregisters process */ 823 put_pid(info->notify_owner); 824 put_user_ns(info->notify_user_ns); 825 info->notify_owner = NULL; 826 info->notify_user_ns = NULL; 827 } 828 wake_up(&info->wait_q); 829 } 830 831 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout, 832 struct timespec64 *ts) 833 { 834 if (get_timespec64(ts, u_abs_timeout)) 835 return -EFAULT; 836 if (!timespec64_valid(ts)) 837 return -EINVAL; 838 return 0; 839 } 840 841 static void remove_notification(struct mqueue_inode_info *info) 842 { 843 if (info->notify_owner != NULL && 844 info->notify.sigev_notify == SIGEV_THREAD) { 845 set_cookie(info->notify_cookie, NOTIFY_REMOVED); 846 netlink_sendskb(info->notify_sock, info->notify_cookie); 847 } 848 put_pid(info->notify_owner); 849 put_user_ns(info->notify_user_ns); 850 info->notify_owner = NULL; 851 info->notify_user_ns = NULL; 852 } 853 854 static int prepare_open(struct dentry *dentry, int oflag, int ro, 855 umode_t mode, struct filename *name, 856 struct mq_attr *attr) 857 { 858 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE, 859 MAY_READ | MAY_WRITE }; 860 int acc; 861 862 if (d_really_is_negative(dentry)) { 863 if (!(oflag & O_CREAT)) 864 return -ENOENT; 865 if (ro) 866 return ro; 867 audit_inode_parent_hidden(name, dentry->d_parent); 868 return vfs_mkobj(dentry, mode & ~current_umask(), 869 mqueue_create_attr, attr); 870 } 871 /* it already existed */ 872 audit_inode(name, dentry, 0); 873 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 874 return -EEXIST; 875 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) 876 return -EINVAL; 877 acc = oflag2acc[oflag & O_ACCMODE]; 878 return inode_permission(&init_user_ns, d_inode(dentry), acc); 879 } 880 881 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode, 882 struct mq_attr *attr) 883 { 884 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt; 885 struct dentry *root = mnt->mnt_root; 886 struct filename *name; 887 struct path path; 888 int fd, error; 889 int ro; 890 891 audit_mq_open(oflag, mode, attr); 892 893 if (IS_ERR(name = getname(u_name))) 894 return PTR_ERR(name); 895 896 fd = get_unused_fd_flags(O_CLOEXEC); 897 if (fd < 0) 898 goto out_putname; 899 900 ro = mnt_want_write(mnt); /* we'll drop it in any case */ 901 inode_lock(d_inode(root)); 902 path.dentry = lookup_one_len(name->name, root, strlen(name->name)); 903 if (IS_ERR(path.dentry)) { 904 error = PTR_ERR(path.dentry); 905 goto out_putfd; 906 } 907 path.mnt = mntget(mnt); 908 error = prepare_open(path.dentry, oflag, ro, mode, name, attr); 909 if (!error) { 910 struct file *file = dentry_open(&path, oflag, current_cred()); 911 if (!IS_ERR(file)) 912 fd_install(fd, file); 913 else 914 error = PTR_ERR(file); 915 } 916 path_put(&path); 917 out_putfd: 918 if (error) { 919 put_unused_fd(fd); 920 fd = error; 921 } 922 inode_unlock(d_inode(root)); 923 if (!ro) 924 mnt_drop_write(mnt); 925 out_putname: 926 putname(name); 927 return fd; 928 } 929 930 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode, 931 struct mq_attr __user *, u_attr) 932 { 933 struct mq_attr attr; 934 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr))) 935 return -EFAULT; 936 937 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL); 938 } 939 940 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name) 941 { 942 int err; 943 struct filename *name; 944 struct dentry *dentry; 945 struct inode *inode = NULL; 946 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns; 947 struct vfsmount *mnt = ipc_ns->mq_mnt; 948 949 name = getname(u_name); 950 if (IS_ERR(name)) 951 return PTR_ERR(name); 952 953 audit_inode_parent_hidden(name, mnt->mnt_root); 954 err = mnt_want_write(mnt); 955 if (err) 956 goto out_name; 957 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT); 958 dentry = lookup_one_len(name->name, mnt->mnt_root, 959 strlen(name->name)); 960 if (IS_ERR(dentry)) { 961 err = PTR_ERR(dentry); 962 goto out_unlock; 963 } 964 965 inode = d_inode(dentry); 966 if (!inode) { 967 err = -ENOENT; 968 } else { 969 ihold(inode); 970 err = vfs_unlink(&init_user_ns, d_inode(dentry->d_parent), 971 dentry, NULL); 972 } 973 dput(dentry); 974 975 out_unlock: 976 inode_unlock(d_inode(mnt->mnt_root)); 977 if (inode) 978 iput(inode); 979 mnt_drop_write(mnt); 980 out_name: 981 putname(name); 982 983 return err; 984 } 985 986 /* Pipelined send and receive functions. 987 * 988 * If a receiver finds no waiting message, then it registers itself in the 989 * list of waiting receivers. A sender checks that list before adding the new 990 * message into the message array. If there is a waiting receiver, then it 991 * bypasses the message array and directly hands the message over to the 992 * receiver. The receiver accepts the message and returns without grabbing the 993 * queue spinlock: 994 * 995 * - Set pointer to message. 996 * - Queue the receiver task for later wakeup (without the info->lock). 997 * - Update its state to STATE_READY. Now the receiver can continue. 998 * - Wake up the process after the lock is dropped. Should the process wake up 999 * before this wakeup (due to a timeout or a signal) it will either see 1000 * STATE_READY and continue or acquire the lock to check the state again. 1001 * 1002 * The same algorithm is used for senders. 1003 */ 1004 1005 static inline void __pipelined_op(struct wake_q_head *wake_q, 1006 struct mqueue_inode_info *info, 1007 struct ext_wait_queue *this) 1008 { 1009 list_del(&this->list); 1010 get_task_struct(this->task); 1011 1012 /* see MQ_BARRIER for purpose/pairing */ 1013 smp_store_release(&this->state, STATE_READY); 1014 wake_q_add_safe(wake_q, this->task); 1015 } 1016 1017 /* pipelined_send() - send a message directly to the task waiting in 1018 * sys_mq_timedreceive() (without inserting message into a queue). 1019 */ 1020 static inline void pipelined_send(struct wake_q_head *wake_q, 1021 struct mqueue_inode_info *info, 1022 struct msg_msg *message, 1023 struct ext_wait_queue *receiver) 1024 { 1025 receiver->msg = message; 1026 __pipelined_op(wake_q, info, receiver); 1027 } 1028 1029 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend() 1030 * gets its message and put to the queue (we have one free place for sure). */ 1031 static inline void pipelined_receive(struct wake_q_head *wake_q, 1032 struct mqueue_inode_info *info) 1033 { 1034 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND); 1035 1036 if (!sender) { 1037 /* for poll */ 1038 wake_up_interruptible(&info->wait_q); 1039 return; 1040 } 1041 if (msg_insert(sender->msg, info)) 1042 return; 1043 1044 __pipelined_op(wake_q, info, sender); 1045 } 1046 1047 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr, 1048 size_t msg_len, unsigned int msg_prio, 1049 struct timespec64 *ts) 1050 { 1051 struct fd f; 1052 struct inode *inode; 1053 struct ext_wait_queue wait; 1054 struct ext_wait_queue *receiver; 1055 struct msg_msg *msg_ptr; 1056 struct mqueue_inode_info *info; 1057 ktime_t expires, *timeout = NULL; 1058 struct posix_msg_tree_node *new_leaf = NULL; 1059 int ret = 0; 1060 DEFINE_WAKE_Q(wake_q); 1061 1062 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX)) 1063 return -EINVAL; 1064 1065 if (ts) { 1066 expires = timespec64_to_ktime(*ts); 1067 timeout = &expires; 1068 } 1069 1070 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts); 1071 1072 f = fdget(mqdes); 1073 if (unlikely(!f.file)) { 1074 ret = -EBADF; 1075 goto out; 1076 } 1077 1078 inode = file_inode(f.file); 1079 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1080 ret = -EBADF; 1081 goto out_fput; 1082 } 1083 info = MQUEUE_I(inode); 1084 audit_file(f.file); 1085 1086 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) { 1087 ret = -EBADF; 1088 goto out_fput; 1089 } 1090 1091 if (unlikely(msg_len > info->attr.mq_msgsize)) { 1092 ret = -EMSGSIZE; 1093 goto out_fput; 1094 } 1095 1096 /* First try to allocate memory, before doing anything with 1097 * existing queues. */ 1098 msg_ptr = load_msg(u_msg_ptr, msg_len); 1099 if (IS_ERR(msg_ptr)) { 1100 ret = PTR_ERR(msg_ptr); 1101 goto out_fput; 1102 } 1103 msg_ptr->m_ts = msg_len; 1104 msg_ptr->m_type = msg_prio; 1105 1106 /* 1107 * msg_insert really wants us to have a valid, spare node struct so 1108 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1109 * fall back to that if necessary. 1110 */ 1111 if (!info->node_cache) 1112 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1113 1114 spin_lock(&info->lock); 1115 1116 if (!info->node_cache && new_leaf) { 1117 /* Save our speculative allocation into the cache */ 1118 INIT_LIST_HEAD(&new_leaf->msg_list); 1119 info->node_cache = new_leaf; 1120 new_leaf = NULL; 1121 } else { 1122 kfree(new_leaf); 1123 } 1124 1125 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) { 1126 if (f.file->f_flags & O_NONBLOCK) { 1127 ret = -EAGAIN; 1128 } else { 1129 wait.task = current; 1130 wait.msg = (void *) msg_ptr; 1131 1132 /* memory barrier not required, we hold info->lock */ 1133 WRITE_ONCE(wait.state, STATE_NONE); 1134 ret = wq_sleep(info, SEND, timeout, &wait); 1135 /* 1136 * wq_sleep must be called with info->lock held, and 1137 * returns with the lock released 1138 */ 1139 goto out_free; 1140 } 1141 } else { 1142 receiver = wq_get_first_waiter(info, RECV); 1143 if (receiver) { 1144 pipelined_send(&wake_q, info, msg_ptr, receiver); 1145 } else { 1146 /* adds message to the queue */ 1147 ret = msg_insert(msg_ptr, info); 1148 if (ret) 1149 goto out_unlock; 1150 __do_notify(info); 1151 } 1152 inode->i_atime = inode->i_mtime = inode->i_ctime = 1153 current_time(inode); 1154 } 1155 out_unlock: 1156 spin_unlock(&info->lock); 1157 wake_up_q(&wake_q); 1158 out_free: 1159 if (ret) 1160 free_msg(msg_ptr); 1161 out_fput: 1162 fdput(f); 1163 out: 1164 return ret; 1165 } 1166 1167 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr, 1168 size_t msg_len, unsigned int __user *u_msg_prio, 1169 struct timespec64 *ts) 1170 { 1171 ssize_t ret; 1172 struct msg_msg *msg_ptr; 1173 struct fd f; 1174 struct inode *inode; 1175 struct mqueue_inode_info *info; 1176 struct ext_wait_queue wait; 1177 ktime_t expires, *timeout = NULL; 1178 struct posix_msg_tree_node *new_leaf = NULL; 1179 1180 if (ts) { 1181 expires = timespec64_to_ktime(*ts); 1182 timeout = &expires; 1183 } 1184 1185 audit_mq_sendrecv(mqdes, msg_len, 0, ts); 1186 1187 f = fdget(mqdes); 1188 if (unlikely(!f.file)) { 1189 ret = -EBADF; 1190 goto out; 1191 } 1192 1193 inode = file_inode(f.file); 1194 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1195 ret = -EBADF; 1196 goto out_fput; 1197 } 1198 info = MQUEUE_I(inode); 1199 audit_file(f.file); 1200 1201 if (unlikely(!(f.file->f_mode & FMODE_READ))) { 1202 ret = -EBADF; 1203 goto out_fput; 1204 } 1205 1206 /* checks if buffer is big enough */ 1207 if (unlikely(msg_len < info->attr.mq_msgsize)) { 1208 ret = -EMSGSIZE; 1209 goto out_fput; 1210 } 1211 1212 /* 1213 * msg_insert really wants us to have a valid, spare node struct so 1214 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1215 * fall back to that if necessary. 1216 */ 1217 if (!info->node_cache) 1218 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1219 1220 spin_lock(&info->lock); 1221 1222 if (!info->node_cache && new_leaf) { 1223 /* Save our speculative allocation into the cache */ 1224 INIT_LIST_HEAD(&new_leaf->msg_list); 1225 info->node_cache = new_leaf; 1226 } else { 1227 kfree(new_leaf); 1228 } 1229 1230 if (info->attr.mq_curmsgs == 0) { 1231 if (f.file->f_flags & O_NONBLOCK) { 1232 spin_unlock(&info->lock); 1233 ret = -EAGAIN; 1234 } else { 1235 wait.task = current; 1236 1237 /* memory barrier not required, we hold info->lock */ 1238 WRITE_ONCE(wait.state, STATE_NONE); 1239 ret = wq_sleep(info, RECV, timeout, &wait); 1240 msg_ptr = wait.msg; 1241 } 1242 } else { 1243 DEFINE_WAKE_Q(wake_q); 1244 1245 msg_ptr = msg_get(info); 1246 1247 inode->i_atime = inode->i_mtime = inode->i_ctime = 1248 current_time(inode); 1249 1250 /* There is now free space in queue. */ 1251 pipelined_receive(&wake_q, info); 1252 spin_unlock(&info->lock); 1253 wake_up_q(&wake_q); 1254 ret = 0; 1255 } 1256 if (ret == 0) { 1257 ret = msg_ptr->m_ts; 1258 1259 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) || 1260 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) { 1261 ret = -EFAULT; 1262 } 1263 free_msg(msg_ptr); 1264 } 1265 out_fput: 1266 fdput(f); 1267 out: 1268 return ret; 1269 } 1270 1271 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr, 1272 size_t, msg_len, unsigned int, msg_prio, 1273 const struct __kernel_timespec __user *, u_abs_timeout) 1274 { 1275 struct timespec64 ts, *p = NULL; 1276 if (u_abs_timeout) { 1277 int res = prepare_timeout(u_abs_timeout, &ts); 1278 if (res) 1279 return res; 1280 p = &ts; 1281 } 1282 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1283 } 1284 1285 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr, 1286 size_t, msg_len, unsigned int __user *, u_msg_prio, 1287 const struct __kernel_timespec __user *, u_abs_timeout) 1288 { 1289 struct timespec64 ts, *p = NULL; 1290 if (u_abs_timeout) { 1291 int res = prepare_timeout(u_abs_timeout, &ts); 1292 if (res) 1293 return res; 1294 p = &ts; 1295 } 1296 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1297 } 1298 1299 /* 1300 * Notes: the case when user wants us to deregister (with NULL as pointer) 1301 * and he isn't currently owner of notification, will be silently discarded. 1302 * It isn't explicitly defined in the POSIX. 1303 */ 1304 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification) 1305 { 1306 int ret; 1307 struct fd f; 1308 struct sock *sock; 1309 struct inode *inode; 1310 struct mqueue_inode_info *info; 1311 struct sk_buff *nc; 1312 1313 audit_mq_notify(mqdes, notification); 1314 1315 nc = NULL; 1316 sock = NULL; 1317 if (notification != NULL) { 1318 if (unlikely(notification->sigev_notify != SIGEV_NONE && 1319 notification->sigev_notify != SIGEV_SIGNAL && 1320 notification->sigev_notify != SIGEV_THREAD)) 1321 return -EINVAL; 1322 if (notification->sigev_notify == SIGEV_SIGNAL && 1323 !valid_signal(notification->sigev_signo)) { 1324 return -EINVAL; 1325 } 1326 if (notification->sigev_notify == SIGEV_THREAD) { 1327 long timeo; 1328 1329 /* create the notify skb */ 1330 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL); 1331 if (!nc) 1332 return -ENOMEM; 1333 1334 if (copy_from_user(nc->data, 1335 notification->sigev_value.sival_ptr, 1336 NOTIFY_COOKIE_LEN)) { 1337 ret = -EFAULT; 1338 goto free_skb; 1339 } 1340 1341 /* TODO: add a header? */ 1342 skb_put(nc, NOTIFY_COOKIE_LEN); 1343 /* and attach it to the socket */ 1344 retry: 1345 f = fdget(notification->sigev_signo); 1346 if (!f.file) { 1347 ret = -EBADF; 1348 goto out; 1349 } 1350 sock = netlink_getsockbyfilp(f.file); 1351 fdput(f); 1352 if (IS_ERR(sock)) { 1353 ret = PTR_ERR(sock); 1354 goto free_skb; 1355 } 1356 1357 timeo = MAX_SCHEDULE_TIMEOUT; 1358 ret = netlink_attachskb(sock, nc, &timeo, NULL); 1359 if (ret == 1) { 1360 sock = NULL; 1361 goto retry; 1362 } 1363 if (ret) 1364 return ret; 1365 } 1366 } 1367 1368 f = fdget(mqdes); 1369 if (!f.file) { 1370 ret = -EBADF; 1371 goto out; 1372 } 1373 1374 inode = file_inode(f.file); 1375 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1376 ret = -EBADF; 1377 goto out_fput; 1378 } 1379 info = MQUEUE_I(inode); 1380 1381 ret = 0; 1382 spin_lock(&info->lock); 1383 if (notification == NULL) { 1384 if (info->notify_owner == task_tgid(current)) { 1385 remove_notification(info); 1386 inode->i_atime = inode->i_ctime = current_time(inode); 1387 } 1388 } else if (info->notify_owner != NULL) { 1389 ret = -EBUSY; 1390 } else { 1391 switch (notification->sigev_notify) { 1392 case SIGEV_NONE: 1393 info->notify.sigev_notify = SIGEV_NONE; 1394 break; 1395 case SIGEV_THREAD: 1396 info->notify_sock = sock; 1397 info->notify_cookie = nc; 1398 sock = NULL; 1399 nc = NULL; 1400 info->notify.sigev_notify = SIGEV_THREAD; 1401 break; 1402 case SIGEV_SIGNAL: 1403 info->notify.sigev_signo = notification->sigev_signo; 1404 info->notify.sigev_value = notification->sigev_value; 1405 info->notify.sigev_notify = SIGEV_SIGNAL; 1406 info->notify_self_exec_id = current->self_exec_id; 1407 break; 1408 } 1409 1410 info->notify_owner = get_pid(task_tgid(current)); 1411 info->notify_user_ns = get_user_ns(current_user_ns()); 1412 inode->i_atime = inode->i_ctime = current_time(inode); 1413 } 1414 spin_unlock(&info->lock); 1415 out_fput: 1416 fdput(f); 1417 out: 1418 if (sock) 1419 netlink_detachskb(sock, nc); 1420 else 1421 free_skb: 1422 dev_kfree_skb(nc); 1423 1424 return ret; 1425 } 1426 1427 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1428 const struct sigevent __user *, u_notification) 1429 { 1430 struct sigevent n, *p = NULL; 1431 if (u_notification) { 1432 if (copy_from_user(&n, u_notification, sizeof(struct sigevent))) 1433 return -EFAULT; 1434 p = &n; 1435 } 1436 return do_mq_notify(mqdes, p); 1437 } 1438 1439 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old) 1440 { 1441 struct fd f; 1442 struct inode *inode; 1443 struct mqueue_inode_info *info; 1444 1445 if (new && (new->mq_flags & (~O_NONBLOCK))) 1446 return -EINVAL; 1447 1448 f = fdget(mqdes); 1449 if (!f.file) 1450 return -EBADF; 1451 1452 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1453 fdput(f); 1454 return -EBADF; 1455 } 1456 1457 inode = file_inode(f.file); 1458 info = MQUEUE_I(inode); 1459 1460 spin_lock(&info->lock); 1461 1462 if (old) { 1463 *old = info->attr; 1464 old->mq_flags = f.file->f_flags & O_NONBLOCK; 1465 } 1466 if (new) { 1467 audit_mq_getsetattr(mqdes, new); 1468 spin_lock(&f.file->f_lock); 1469 if (new->mq_flags & O_NONBLOCK) 1470 f.file->f_flags |= O_NONBLOCK; 1471 else 1472 f.file->f_flags &= ~O_NONBLOCK; 1473 spin_unlock(&f.file->f_lock); 1474 1475 inode->i_atime = inode->i_ctime = current_time(inode); 1476 } 1477 1478 spin_unlock(&info->lock); 1479 fdput(f); 1480 return 0; 1481 } 1482 1483 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1484 const struct mq_attr __user *, u_mqstat, 1485 struct mq_attr __user *, u_omqstat) 1486 { 1487 int ret; 1488 struct mq_attr mqstat, omqstat; 1489 struct mq_attr *new = NULL, *old = NULL; 1490 1491 if (u_mqstat) { 1492 new = &mqstat; 1493 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr))) 1494 return -EFAULT; 1495 } 1496 if (u_omqstat) 1497 old = &omqstat; 1498 1499 ret = do_mq_getsetattr(mqdes, new, old); 1500 if (ret || !old) 1501 return ret; 1502 1503 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr))) 1504 return -EFAULT; 1505 return 0; 1506 } 1507 1508 #ifdef CONFIG_COMPAT 1509 1510 struct compat_mq_attr { 1511 compat_long_t mq_flags; /* message queue flags */ 1512 compat_long_t mq_maxmsg; /* maximum number of messages */ 1513 compat_long_t mq_msgsize; /* maximum message size */ 1514 compat_long_t mq_curmsgs; /* number of messages currently queued */ 1515 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */ 1516 }; 1517 1518 static inline int get_compat_mq_attr(struct mq_attr *attr, 1519 const struct compat_mq_attr __user *uattr) 1520 { 1521 struct compat_mq_attr v; 1522 1523 if (copy_from_user(&v, uattr, sizeof(*uattr))) 1524 return -EFAULT; 1525 1526 memset(attr, 0, sizeof(*attr)); 1527 attr->mq_flags = v.mq_flags; 1528 attr->mq_maxmsg = v.mq_maxmsg; 1529 attr->mq_msgsize = v.mq_msgsize; 1530 attr->mq_curmsgs = v.mq_curmsgs; 1531 return 0; 1532 } 1533 1534 static inline int put_compat_mq_attr(const struct mq_attr *attr, 1535 struct compat_mq_attr __user *uattr) 1536 { 1537 struct compat_mq_attr v; 1538 1539 memset(&v, 0, sizeof(v)); 1540 v.mq_flags = attr->mq_flags; 1541 v.mq_maxmsg = attr->mq_maxmsg; 1542 v.mq_msgsize = attr->mq_msgsize; 1543 v.mq_curmsgs = attr->mq_curmsgs; 1544 if (copy_to_user(uattr, &v, sizeof(*uattr))) 1545 return -EFAULT; 1546 return 0; 1547 } 1548 1549 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name, 1550 int, oflag, compat_mode_t, mode, 1551 struct compat_mq_attr __user *, u_attr) 1552 { 1553 struct mq_attr attr, *p = NULL; 1554 if (u_attr && oflag & O_CREAT) { 1555 p = &attr; 1556 if (get_compat_mq_attr(&attr, u_attr)) 1557 return -EFAULT; 1558 } 1559 return do_mq_open(u_name, oflag, mode, p); 1560 } 1561 1562 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1563 const struct compat_sigevent __user *, u_notification) 1564 { 1565 struct sigevent n, *p = NULL; 1566 if (u_notification) { 1567 if (get_compat_sigevent(&n, u_notification)) 1568 return -EFAULT; 1569 if (n.sigev_notify == SIGEV_THREAD) 1570 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int); 1571 p = &n; 1572 } 1573 return do_mq_notify(mqdes, p); 1574 } 1575 1576 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1577 const struct compat_mq_attr __user *, u_mqstat, 1578 struct compat_mq_attr __user *, u_omqstat) 1579 { 1580 int ret; 1581 struct mq_attr mqstat, omqstat; 1582 struct mq_attr *new = NULL, *old = NULL; 1583 1584 if (u_mqstat) { 1585 new = &mqstat; 1586 if (get_compat_mq_attr(new, u_mqstat)) 1587 return -EFAULT; 1588 } 1589 if (u_omqstat) 1590 old = &omqstat; 1591 1592 ret = do_mq_getsetattr(mqdes, new, old); 1593 if (ret || !old) 1594 return ret; 1595 1596 if (put_compat_mq_attr(old, u_omqstat)) 1597 return -EFAULT; 1598 return 0; 1599 } 1600 #endif 1601 1602 #ifdef CONFIG_COMPAT_32BIT_TIME 1603 static int compat_prepare_timeout(const struct old_timespec32 __user *p, 1604 struct timespec64 *ts) 1605 { 1606 if (get_old_timespec32(ts, p)) 1607 return -EFAULT; 1608 if (!timespec64_valid(ts)) 1609 return -EINVAL; 1610 return 0; 1611 } 1612 1613 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes, 1614 const char __user *, u_msg_ptr, 1615 unsigned int, msg_len, unsigned int, msg_prio, 1616 const struct old_timespec32 __user *, u_abs_timeout) 1617 { 1618 struct timespec64 ts, *p = NULL; 1619 if (u_abs_timeout) { 1620 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1621 if (res) 1622 return res; 1623 p = &ts; 1624 } 1625 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1626 } 1627 1628 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes, 1629 char __user *, u_msg_ptr, 1630 unsigned int, msg_len, unsigned int __user *, u_msg_prio, 1631 const struct old_timespec32 __user *, u_abs_timeout) 1632 { 1633 struct timespec64 ts, *p = NULL; 1634 if (u_abs_timeout) { 1635 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1636 if (res) 1637 return res; 1638 p = &ts; 1639 } 1640 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1641 } 1642 #endif 1643 1644 static const struct inode_operations mqueue_dir_inode_operations = { 1645 .lookup = simple_lookup, 1646 .create = mqueue_create, 1647 .unlink = mqueue_unlink, 1648 }; 1649 1650 static const struct file_operations mqueue_file_operations = { 1651 .flush = mqueue_flush_file, 1652 .poll = mqueue_poll_file, 1653 .read = mqueue_read_file, 1654 .llseek = default_llseek, 1655 }; 1656 1657 static const struct super_operations mqueue_super_ops = { 1658 .alloc_inode = mqueue_alloc_inode, 1659 .free_inode = mqueue_free_inode, 1660 .evict_inode = mqueue_evict_inode, 1661 .statfs = simple_statfs, 1662 }; 1663 1664 static const struct fs_context_operations mqueue_fs_context_ops = { 1665 .free = mqueue_fs_context_free, 1666 .get_tree = mqueue_get_tree, 1667 }; 1668 1669 static struct file_system_type mqueue_fs_type = { 1670 .name = "mqueue", 1671 .init_fs_context = mqueue_init_fs_context, 1672 .kill_sb = kill_litter_super, 1673 .fs_flags = FS_USERNS_MOUNT, 1674 }; 1675 1676 int mq_init_ns(struct ipc_namespace *ns) 1677 { 1678 struct vfsmount *m; 1679 1680 ns->mq_queues_count = 0; 1681 ns->mq_queues_max = DFLT_QUEUESMAX; 1682 ns->mq_msg_max = DFLT_MSGMAX; 1683 ns->mq_msgsize_max = DFLT_MSGSIZEMAX; 1684 ns->mq_msg_default = DFLT_MSG; 1685 ns->mq_msgsize_default = DFLT_MSGSIZE; 1686 1687 m = mq_create_mount(ns); 1688 if (IS_ERR(m)) 1689 return PTR_ERR(m); 1690 ns->mq_mnt = m; 1691 return 0; 1692 } 1693 1694 void mq_clear_sbinfo(struct ipc_namespace *ns) 1695 { 1696 ns->mq_mnt->mnt_sb->s_fs_info = NULL; 1697 } 1698 1699 void mq_put_mnt(struct ipc_namespace *ns) 1700 { 1701 kern_unmount(ns->mq_mnt); 1702 } 1703 1704 static int __init init_mqueue_fs(void) 1705 { 1706 int error; 1707 1708 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache", 1709 sizeof(struct mqueue_inode_info), 0, 1710 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once); 1711 if (mqueue_inode_cachep == NULL) 1712 return -ENOMEM; 1713 1714 /* ignore failures - they are not fatal */ 1715 mq_sysctl_table = mq_register_sysctl_table(); 1716 1717 error = register_filesystem(&mqueue_fs_type); 1718 if (error) 1719 goto out_sysctl; 1720 1721 spin_lock_init(&mq_lock); 1722 1723 error = mq_init_ns(&init_ipc_ns); 1724 if (error) 1725 goto out_filesystem; 1726 1727 return 0; 1728 1729 out_filesystem: 1730 unregister_filesystem(&mqueue_fs_type); 1731 out_sysctl: 1732 if (mq_sysctl_table) 1733 unregister_sysctl_table(mq_sysctl_table); 1734 kmem_cache_destroy(mqueue_inode_cachep); 1735 return error; 1736 } 1737 1738 device_initcall(init_mqueue_fs); 1739