xref: /linux-6.15/include/uapi/linux/vfio.h (revision fa60ce2c)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3  * VFIO API definition
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <[email protected]>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #ifndef _UAPIVFIO_H
13 #define _UAPIVFIO_H
14 
15 #include <linux/types.h>
16 #include <linux/ioctl.h>
17 
18 #define VFIO_API_VERSION	0
19 
20 
21 /* Kernel & User level defines for VFIO IOCTLs. */
22 
23 /* Extensions */
24 
25 #define VFIO_TYPE1_IOMMU		1
26 #define VFIO_SPAPR_TCE_IOMMU		2
27 #define VFIO_TYPE1v2_IOMMU		3
28 /*
29  * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping).  This
30  * capability is subject to change as groups are added or removed.
31  */
32 #define VFIO_DMA_CC_IOMMU		4
33 
34 /* Check if EEH is supported */
35 #define VFIO_EEH			5
36 
37 /* Two-stage IOMMU */
38 #define VFIO_TYPE1_NESTING_IOMMU	6	/* Implies v2 */
39 
40 #define VFIO_SPAPR_TCE_v2_IOMMU		7
41 
42 /*
43  * The No-IOMMU IOMMU offers no translation or isolation for devices and
44  * supports no ioctls outside of VFIO_CHECK_EXTENSION.  Use of VFIO's No-IOMMU
45  * code will taint the host kernel and should be used with extreme caution.
46  */
47 #define VFIO_NOIOMMU_IOMMU		8
48 
49 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */
50 #define VFIO_UNMAP_ALL			9
51 
52 /* Supports the vaddr flag for DMA map and unmap */
53 #define VFIO_UPDATE_VADDR		10
54 
55 /*
56  * The IOCTL interface is designed for extensibility by embedding the
57  * structure length (argsz) and flags into structures passed between
58  * kernel and userspace.  We therefore use the _IO() macro for these
59  * defines to avoid implicitly embedding a size into the ioctl request.
60  * As structure fields are added, argsz will increase to match and flag
61  * bits will be defined to indicate additional fields with valid data.
62  * It's *always* the caller's responsibility to indicate the size of
63  * the structure passed by setting argsz appropriately.
64  */
65 
66 #define VFIO_TYPE	(';')
67 #define VFIO_BASE	100
68 
69 /*
70  * For extension of INFO ioctls, VFIO makes use of a capability chain
71  * designed after PCI/e capabilities.  A flag bit indicates whether
72  * this capability chain is supported and a field defined in the fixed
73  * structure defines the offset of the first capability in the chain.
74  * This field is only valid when the corresponding bit in the flags
75  * bitmap is set.  This offset field is relative to the start of the
76  * INFO buffer, as is the next field within each capability header.
77  * The id within the header is a shared address space per INFO ioctl,
78  * while the version field is specific to the capability id.  The
79  * contents following the header are specific to the capability id.
80  */
81 struct vfio_info_cap_header {
82 	__u16	id;		/* Identifies capability */
83 	__u16	version;	/* Version specific to the capability ID */
84 	__u32	next;		/* Offset of next capability */
85 };
86 
87 /*
88  * Callers of INFO ioctls passing insufficiently sized buffers will see
89  * the capability chain flag bit set, a zero value for the first capability
90  * offset (if available within the provided argsz), and argsz will be
91  * updated to report the necessary buffer size.  For compatibility, the
92  * INFO ioctl will not report error in this case, but the capability chain
93  * will not be available.
94  */
95 
96 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
97 
98 /**
99  * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
100  *
101  * Report the version of the VFIO API.  This allows us to bump the entire
102  * API version should we later need to add or change features in incompatible
103  * ways.
104  * Return: VFIO_API_VERSION
105  * Availability: Always
106  */
107 #define VFIO_GET_API_VERSION		_IO(VFIO_TYPE, VFIO_BASE + 0)
108 
109 /**
110  * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
111  *
112  * Check whether an extension is supported.
113  * Return: 0 if not supported, 1 (or some other positive integer) if supported.
114  * Availability: Always
115  */
116 #define VFIO_CHECK_EXTENSION		_IO(VFIO_TYPE, VFIO_BASE + 1)
117 
118 /**
119  * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
120  *
121  * Set the iommu to the given type.  The type must be supported by an
122  * iommu driver as verified by calling CHECK_EXTENSION using the same
123  * type.  A group must be set to this file descriptor before this
124  * ioctl is available.  The IOMMU interfaces enabled by this call are
125  * specific to the value set.
126  * Return: 0 on success, -errno on failure
127  * Availability: When VFIO group attached
128  */
129 #define VFIO_SET_IOMMU			_IO(VFIO_TYPE, VFIO_BASE + 2)
130 
131 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
132 
133 /**
134  * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
135  *						struct vfio_group_status)
136  *
137  * Retrieve information about the group.  Fills in provided
138  * struct vfio_group_info.  Caller sets argsz.
139  * Return: 0 on succes, -errno on failure.
140  * Availability: Always
141  */
142 struct vfio_group_status {
143 	__u32	argsz;
144 	__u32	flags;
145 #define VFIO_GROUP_FLAGS_VIABLE		(1 << 0)
146 #define VFIO_GROUP_FLAGS_CONTAINER_SET	(1 << 1)
147 };
148 #define VFIO_GROUP_GET_STATUS		_IO(VFIO_TYPE, VFIO_BASE + 3)
149 
150 /**
151  * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
152  *
153  * Set the container for the VFIO group to the open VFIO file
154  * descriptor provided.  Groups may only belong to a single
155  * container.  Containers may, at their discretion, support multiple
156  * groups.  Only when a container is set are all of the interfaces
157  * of the VFIO file descriptor and the VFIO group file descriptor
158  * available to the user.
159  * Return: 0 on success, -errno on failure.
160  * Availability: Always
161  */
162 #define VFIO_GROUP_SET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 4)
163 
164 /**
165  * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
166  *
167  * Remove the group from the attached container.  This is the
168  * opposite of the SET_CONTAINER call and returns the group to
169  * an initial state.  All device file descriptors must be released
170  * prior to calling this interface.  When removing the last group
171  * from a container, the IOMMU will be disabled and all state lost,
172  * effectively also returning the VFIO file descriptor to an initial
173  * state.
174  * Return: 0 on success, -errno on failure.
175  * Availability: When attached to container
176  */
177 #define VFIO_GROUP_UNSET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 5)
178 
179 /**
180  * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
181  *
182  * Return a new file descriptor for the device object described by
183  * the provided string.  The string should match a device listed in
184  * the devices subdirectory of the IOMMU group sysfs entry.  The
185  * group containing the device must already be added to this context.
186  * Return: new file descriptor on success, -errno on failure.
187  * Availability: When attached to container
188  */
189 #define VFIO_GROUP_GET_DEVICE_FD	_IO(VFIO_TYPE, VFIO_BASE + 6)
190 
191 /* --------------- IOCTLs for DEVICE file descriptors --------------- */
192 
193 /**
194  * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
195  *						struct vfio_device_info)
196  *
197  * Retrieve information about the device.  Fills in provided
198  * struct vfio_device_info.  Caller sets argsz.
199  * Return: 0 on success, -errno on failure.
200  */
201 struct vfio_device_info {
202 	__u32	argsz;
203 	__u32	flags;
204 #define VFIO_DEVICE_FLAGS_RESET	(1 << 0)	/* Device supports reset */
205 #define VFIO_DEVICE_FLAGS_PCI	(1 << 1)	/* vfio-pci device */
206 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2)	/* vfio-platform device */
207 #define VFIO_DEVICE_FLAGS_AMBA  (1 << 3)	/* vfio-amba device */
208 #define VFIO_DEVICE_FLAGS_CCW	(1 << 4)	/* vfio-ccw device */
209 #define VFIO_DEVICE_FLAGS_AP	(1 << 5)	/* vfio-ap device */
210 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6)	/* vfio-fsl-mc device */
211 #define VFIO_DEVICE_FLAGS_CAPS	(1 << 7)	/* Info supports caps */
212 	__u32	num_regions;	/* Max region index + 1 */
213 	__u32	num_irqs;	/* Max IRQ index + 1 */
214 	__u32   cap_offset;	/* Offset within info struct of first cap */
215 };
216 #define VFIO_DEVICE_GET_INFO		_IO(VFIO_TYPE, VFIO_BASE + 7)
217 
218 /*
219  * Vendor driver using Mediated device framework should provide device_api
220  * attribute in supported type attribute groups. Device API string should be one
221  * of the following corresponding to device flags in vfio_device_info structure.
222  */
223 
224 #define VFIO_DEVICE_API_PCI_STRING		"vfio-pci"
225 #define VFIO_DEVICE_API_PLATFORM_STRING		"vfio-platform"
226 #define VFIO_DEVICE_API_AMBA_STRING		"vfio-amba"
227 #define VFIO_DEVICE_API_CCW_STRING		"vfio-ccw"
228 #define VFIO_DEVICE_API_AP_STRING		"vfio-ap"
229 
230 /*
231  * The following capabilities are unique to s390 zPCI devices.  Their contents
232  * are further-defined in vfio_zdev.h
233  */
234 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE		1
235 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP		2
236 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL		3
237 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP		4
238 
239 /**
240  * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
241  *				       struct vfio_region_info)
242  *
243  * Retrieve information about a device region.  Caller provides
244  * struct vfio_region_info with index value set.  Caller sets argsz.
245  * Implementation of region mapping is bus driver specific.  This is
246  * intended to describe MMIO, I/O port, as well as bus specific
247  * regions (ex. PCI config space).  Zero sized regions may be used
248  * to describe unimplemented regions (ex. unimplemented PCI BARs).
249  * Return: 0 on success, -errno on failure.
250  */
251 struct vfio_region_info {
252 	__u32	argsz;
253 	__u32	flags;
254 #define VFIO_REGION_INFO_FLAG_READ	(1 << 0) /* Region supports read */
255 #define VFIO_REGION_INFO_FLAG_WRITE	(1 << 1) /* Region supports write */
256 #define VFIO_REGION_INFO_FLAG_MMAP	(1 << 2) /* Region supports mmap */
257 #define VFIO_REGION_INFO_FLAG_CAPS	(1 << 3) /* Info supports caps */
258 	__u32	index;		/* Region index */
259 	__u32	cap_offset;	/* Offset within info struct of first cap */
260 	__u64	size;		/* Region size (bytes) */
261 	__u64	offset;		/* Region offset from start of device fd */
262 };
263 #define VFIO_DEVICE_GET_REGION_INFO	_IO(VFIO_TYPE, VFIO_BASE + 8)
264 
265 /*
266  * The sparse mmap capability allows finer granularity of specifying areas
267  * within a region with mmap support.  When specified, the user should only
268  * mmap the offset ranges specified by the areas array.  mmaps outside of the
269  * areas specified may fail (such as the range covering a PCI MSI-X table) or
270  * may result in improper device behavior.
271  *
272  * The structures below define version 1 of this capability.
273  */
274 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP	1
275 
276 struct vfio_region_sparse_mmap_area {
277 	__u64	offset;	/* Offset of mmap'able area within region */
278 	__u64	size;	/* Size of mmap'able area */
279 };
280 
281 struct vfio_region_info_cap_sparse_mmap {
282 	struct vfio_info_cap_header header;
283 	__u32	nr_areas;
284 	__u32	reserved;
285 	struct vfio_region_sparse_mmap_area areas[];
286 };
287 
288 /*
289  * The device specific type capability allows regions unique to a specific
290  * device or class of devices to be exposed.  This helps solve the problem for
291  * vfio bus drivers of defining which region indexes correspond to which region
292  * on the device, without needing to resort to static indexes, as done by
293  * vfio-pci.  For instance, if we were to go back in time, we might remove
294  * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
295  * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
296  * make a "VGA" device specific type to describe the VGA access space.  This
297  * means that non-VGA devices wouldn't need to waste this index, and thus the
298  * address space associated with it due to implementation of device file
299  * descriptor offsets in vfio-pci.
300  *
301  * The current implementation is now part of the user ABI, so we can't use this
302  * for VGA, but there are other upcoming use cases, such as opregions for Intel
303  * IGD devices and framebuffers for vGPU devices.  We missed VGA, but we'll
304  * use this for future additions.
305  *
306  * The structure below defines version 1 of this capability.
307  */
308 #define VFIO_REGION_INFO_CAP_TYPE	2
309 
310 struct vfio_region_info_cap_type {
311 	struct vfio_info_cap_header header;
312 	__u32 type;	/* global per bus driver */
313 	__u32 subtype;	/* type specific */
314 };
315 
316 /*
317  * List of region types, global per bus driver.
318  * If you introduce a new type, please add it here.
319  */
320 
321 /* PCI region type containing a PCI vendor part */
322 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE	(1 << 31)
323 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK	(0xffff)
324 #define VFIO_REGION_TYPE_GFX                    (1)
325 #define VFIO_REGION_TYPE_CCW			(2)
326 #define VFIO_REGION_TYPE_MIGRATION              (3)
327 
328 /* sub-types for VFIO_REGION_TYPE_PCI_* */
329 
330 /* 8086 vendor PCI sub-types */
331 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION	(1)
332 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG	(2)
333 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG	(3)
334 
335 /* 10de vendor PCI sub-types */
336 /* subtype 1 was VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM, don't use */
337 
338 /* 1014 vendor PCI sub-types */
339 /* subtype 1 was VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD, don't use */
340 
341 /* sub-types for VFIO_REGION_TYPE_GFX */
342 #define VFIO_REGION_SUBTYPE_GFX_EDID            (1)
343 
344 /**
345  * struct vfio_region_gfx_edid - EDID region layout.
346  *
347  * Set display link state and EDID blob.
348  *
349  * The EDID blob has monitor information such as brand, name, serial
350  * number, physical size, supported video modes and more.
351  *
352  * This special region allows userspace (typically qemu) set a virtual
353  * EDID for the virtual monitor, which allows a flexible display
354  * configuration.
355  *
356  * For the edid blob spec look here:
357  *    https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
358  *
359  * On linux systems you can find the EDID blob in sysfs:
360  *    /sys/class/drm/${card}/${connector}/edid
361  *
362  * You can use the edid-decode ulility (comes with xorg-x11-utils) to
363  * decode the EDID blob.
364  *
365  * @edid_offset: location of the edid blob, relative to the
366  *               start of the region (readonly).
367  * @edid_max_size: max size of the edid blob (readonly).
368  * @edid_size: actual edid size (read/write).
369  * @link_state: display link state (read/write).
370  * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
371  * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
372  * @max_xres: max display width (0 == no limitation, readonly).
373  * @max_yres: max display height (0 == no limitation, readonly).
374  *
375  * EDID update protocol:
376  *   (1) set link-state to down.
377  *   (2) update edid blob and size.
378  *   (3) set link-state to up.
379  */
380 struct vfio_region_gfx_edid {
381 	__u32 edid_offset;
382 	__u32 edid_max_size;
383 	__u32 edid_size;
384 	__u32 max_xres;
385 	__u32 max_yres;
386 	__u32 link_state;
387 #define VFIO_DEVICE_GFX_LINK_STATE_UP    1
388 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN  2
389 };
390 
391 /* sub-types for VFIO_REGION_TYPE_CCW */
392 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD	(1)
393 #define VFIO_REGION_SUBTYPE_CCW_SCHIB		(2)
394 #define VFIO_REGION_SUBTYPE_CCW_CRW		(3)
395 
396 /* sub-types for VFIO_REGION_TYPE_MIGRATION */
397 #define VFIO_REGION_SUBTYPE_MIGRATION           (1)
398 
399 /*
400  * The structure vfio_device_migration_info is placed at the 0th offset of
401  * the VFIO_REGION_SUBTYPE_MIGRATION region to get and set VFIO device related
402  * migration information. Field accesses from this structure are only supported
403  * at their native width and alignment. Otherwise, the result is undefined and
404  * vendor drivers should return an error.
405  *
406  * device_state: (read/write)
407  *      - The user application writes to this field to inform the vendor driver
408  *        about the device state to be transitioned to.
409  *      - The vendor driver should take the necessary actions to change the
410  *        device state. After successful transition to a given state, the
411  *        vendor driver should return success on write(device_state, state)
412  *        system call. If the device state transition fails, the vendor driver
413  *        should return an appropriate -errno for the fault condition.
414  *      - On the user application side, if the device state transition fails,
415  *	  that is, if write(device_state, state) returns an error, read
416  *	  device_state again to determine the current state of the device from
417  *	  the vendor driver.
418  *      - The vendor driver should return previous state of the device unless
419  *        the vendor driver has encountered an internal error, in which case
420  *        the vendor driver may report the device_state VFIO_DEVICE_STATE_ERROR.
421  *      - The user application must use the device reset ioctl to recover the
422  *        device from VFIO_DEVICE_STATE_ERROR state. If the device is
423  *        indicated to be in a valid device state by reading device_state, the
424  *        user application may attempt to transition the device to any valid
425  *        state reachable from the current state or terminate itself.
426  *
427  *      device_state consists of 3 bits:
428  *      - If bit 0 is set, it indicates the _RUNNING state. If bit 0 is clear,
429  *        it indicates the _STOP state. When the device state is changed to
430  *        _STOP, driver should stop the device before write() returns.
431  *      - If bit 1 is set, it indicates the _SAVING state, which means that the
432  *        driver should start gathering device state information that will be
433  *        provided to the VFIO user application to save the device's state.
434  *      - If bit 2 is set, it indicates the _RESUMING state, which means that
435  *        the driver should prepare to resume the device. Data provided through
436  *        the migration region should be used to resume the device.
437  *      Bits 3 - 31 are reserved for future use. To preserve them, the user
438  *      application should perform a read-modify-write operation on this
439  *      field when modifying the specified bits.
440  *
441  *  +------- _RESUMING
442  *  |+------ _SAVING
443  *  ||+----- _RUNNING
444  *  |||
445  *  000b => Device Stopped, not saving or resuming
446  *  001b => Device running, which is the default state
447  *  010b => Stop the device & save the device state, stop-and-copy state
448  *  011b => Device running and save the device state, pre-copy state
449  *  100b => Device stopped and the device state is resuming
450  *  101b => Invalid state
451  *  110b => Error state
452  *  111b => Invalid state
453  *
454  * State transitions:
455  *
456  *              _RESUMING  _RUNNING    Pre-copy    Stop-and-copy   _STOP
457  *                (100b)     (001b)     (011b)        (010b)       (000b)
458  * 0. Running or default state
459  *                             |
460  *
461  * 1. Normal Shutdown (optional)
462  *                             |------------------------------------->|
463  *
464  * 2. Save the state or suspend
465  *                             |------------------------->|---------->|
466  *
467  * 3. Save the state during live migration
468  *                             |----------->|------------>|---------->|
469  *
470  * 4. Resuming
471  *                  |<---------|
472  *
473  * 5. Resumed
474  *                  |--------->|
475  *
476  * 0. Default state of VFIO device is _RUNNING when the user application starts.
477  * 1. During normal shutdown of the user application, the user application may
478  *    optionally change the VFIO device state from _RUNNING to _STOP. This
479  *    transition is optional. The vendor driver must support this transition but
480  *    must not require it.
481  * 2. When the user application saves state or suspends the application, the
482  *    device state transitions from _RUNNING to stop-and-copy and then to _STOP.
483  *    On state transition from _RUNNING to stop-and-copy, driver must stop the
484  *    device, save the device state and send it to the application through the
485  *    migration region. The sequence to be followed for such transition is given
486  *    below.
487  * 3. In live migration of user application, the state transitions from _RUNNING
488  *    to pre-copy, to stop-and-copy, and to _STOP.
489  *    On state transition from _RUNNING to pre-copy, the driver should start
490  *    gathering the device state while the application is still running and send
491  *    the device state data to application through the migration region.
492  *    On state transition from pre-copy to stop-and-copy, the driver must stop
493  *    the device, save the device state and send it to the user application
494  *    through the migration region.
495  *    Vendor drivers must support the pre-copy state even for implementations
496  *    where no data is provided to the user before the stop-and-copy state. The
497  *    user must not be required to consume all migration data before the device
498  *    transitions to a new state, including the stop-and-copy state.
499  *    The sequence to be followed for above two transitions is given below.
500  * 4. To start the resuming phase, the device state should be transitioned from
501  *    the _RUNNING to the _RESUMING state.
502  *    In the _RESUMING state, the driver should use the device state data
503  *    received through the migration region to resume the device.
504  * 5. After providing saved device data to the driver, the application should
505  *    change the state from _RESUMING to _RUNNING.
506  *
507  * reserved:
508  *      Reads on this field return zero and writes are ignored.
509  *
510  * pending_bytes: (read only)
511  *      The number of pending bytes still to be migrated from the vendor driver.
512  *
513  * data_offset: (read only)
514  *      The user application should read data_offset field from the migration
515  *      region. The user application should read the device data from this
516  *      offset within the migration region during the _SAVING state or write
517  *      the device data during the _RESUMING state. See below for details of
518  *      sequence to be followed.
519  *
520  * data_size: (read/write)
521  *      The user application should read data_size to get the size in bytes of
522  *      the data copied in the migration region during the _SAVING state and
523  *      write the size in bytes of the data copied in the migration region
524  *      during the _RESUMING state.
525  *
526  * The format of the migration region is as follows:
527  *  ------------------------------------------------------------------
528  * |vfio_device_migration_info|    data section                      |
529  * |                          |     ///////////////////////////////  |
530  * ------------------------------------------------------------------
531  *   ^                              ^
532  *  offset 0-trapped part        data_offset
533  *
534  * The structure vfio_device_migration_info is always followed by the data
535  * section in the region, so data_offset will always be nonzero. The offset
536  * from where the data is copied is decided by the kernel driver. The data
537  * section can be trapped, mmapped, or partitioned, depending on how the kernel
538  * driver defines the data section. The data section partition can be defined
539  * as mapped by the sparse mmap capability. If mmapped, data_offset must be
540  * page aligned, whereas initial section which contains the
541  * vfio_device_migration_info structure, might not end at the offset, which is
542  * page aligned. The user is not required to access through mmap regardless
543  * of the capabilities of the region mmap.
544  * The vendor driver should determine whether and how to partition the data
545  * section. The vendor driver should return data_offset accordingly.
546  *
547  * The sequence to be followed while in pre-copy state and stop-and-copy state
548  * is as follows:
549  * a. Read pending_bytes, indicating the start of a new iteration to get device
550  *    data. Repeated read on pending_bytes at this stage should have no side
551  *    effects.
552  *    If pending_bytes == 0, the user application should not iterate to get data
553  *    for that device.
554  *    If pending_bytes > 0, perform the following steps.
555  * b. Read data_offset, indicating that the vendor driver should make data
556  *    available through the data section. The vendor driver should return this
557  *    read operation only after data is available from (region + data_offset)
558  *    to (region + data_offset + data_size).
559  * c. Read data_size, which is the amount of data in bytes available through
560  *    the migration region.
561  *    Read on data_offset and data_size should return the offset and size of
562  *    the current buffer if the user application reads data_offset and
563  *    data_size more than once here.
564  * d. Read data_size bytes of data from (region + data_offset) from the
565  *    migration region.
566  * e. Process the data.
567  * f. Read pending_bytes, which indicates that the data from the previous
568  *    iteration has been read. If pending_bytes > 0, go to step b.
569  *
570  * The user application can transition from the _SAVING|_RUNNING
571  * (pre-copy state) to the _SAVING (stop-and-copy) state regardless of the
572  * number of pending bytes. The user application should iterate in _SAVING
573  * (stop-and-copy) until pending_bytes is 0.
574  *
575  * The sequence to be followed while _RESUMING device state is as follows:
576  * While data for this device is available, repeat the following steps:
577  * a. Read data_offset from where the user application should write data.
578  * b. Write migration data starting at the migration region + data_offset for
579  *    the length determined by data_size from the migration source.
580  * c. Write data_size, which indicates to the vendor driver that data is
581  *    written in the migration region. Vendor driver must return this write
582  *    operations on consuming data. Vendor driver should apply the
583  *    user-provided migration region data to the device resume state.
584  *
585  * If an error occurs during the above sequences, the vendor driver can return
586  * an error code for next read() or write() operation, which will terminate the
587  * loop. The user application should then take the next necessary action, for
588  * example, failing migration or terminating the user application.
589  *
590  * For the user application, data is opaque. The user application should write
591  * data in the same order as the data is received and the data should be of
592  * same transaction size at the source.
593  */
594 
595 struct vfio_device_migration_info {
596 	__u32 device_state;         /* VFIO device state */
597 #define VFIO_DEVICE_STATE_STOP      (0)
598 #define VFIO_DEVICE_STATE_RUNNING   (1 << 0)
599 #define VFIO_DEVICE_STATE_SAVING    (1 << 1)
600 #define VFIO_DEVICE_STATE_RESUMING  (1 << 2)
601 #define VFIO_DEVICE_STATE_MASK      (VFIO_DEVICE_STATE_RUNNING | \
602 				     VFIO_DEVICE_STATE_SAVING |  \
603 				     VFIO_DEVICE_STATE_RESUMING)
604 
605 #define VFIO_DEVICE_STATE_VALID(state) \
606 	(state & VFIO_DEVICE_STATE_RESUMING ? \
607 	(state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_RESUMING : 1)
608 
609 #define VFIO_DEVICE_STATE_IS_ERROR(state) \
610 	((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_SAVING | \
611 					      VFIO_DEVICE_STATE_RESUMING))
612 
613 #define VFIO_DEVICE_STATE_SET_ERROR(state) \
614 	((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_SATE_SAVING | \
615 					     VFIO_DEVICE_STATE_RESUMING)
616 
617 	__u32 reserved;
618 	__u64 pending_bytes;
619 	__u64 data_offset;
620 	__u64 data_size;
621 };
622 
623 /*
624  * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
625  * which allows direct access to non-MSIX registers which happened to be within
626  * the same system page.
627  *
628  * Even though the userspace gets direct access to the MSIX data, the existing
629  * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
630  */
631 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE	3
632 
633 /* subtype 4 was VFIO_REGION_INFO_CAP_NVLINK2_SSATGT, don't use */
634 
635 /* subtype 5 was VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD, don't use */
636 
637 /**
638  * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
639  *				    struct vfio_irq_info)
640  *
641  * Retrieve information about a device IRQ.  Caller provides
642  * struct vfio_irq_info with index value set.  Caller sets argsz.
643  * Implementation of IRQ mapping is bus driver specific.  Indexes
644  * using multiple IRQs are primarily intended to support MSI-like
645  * interrupt blocks.  Zero count irq blocks may be used to describe
646  * unimplemented interrupt types.
647  *
648  * The EVENTFD flag indicates the interrupt index supports eventfd based
649  * signaling.
650  *
651  * The MASKABLE flags indicates the index supports MASK and UNMASK
652  * actions described below.
653  *
654  * AUTOMASKED indicates that after signaling, the interrupt line is
655  * automatically masked by VFIO and the user needs to unmask the line
656  * to receive new interrupts.  This is primarily intended to distinguish
657  * level triggered interrupts.
658  *
659  * The NORESIZE flag indicates that the interrupt lines within the index
660  * are setup as a set and new subindexes cannot be enabled without first
661  * disabling the entire index.  This is used for interrupts like PCI MSI
662  * and MSI-X where the driver may only use a subset of the available
663  * indexes, but VFIO needs to enable a specific number of vectors
664  * upfront.  In the case of MSI-X, where the user can enable MSI-X and
665  * then add and unmask vectors, it's up to userspace to make the decision
666  * whether to allocate the maximum supported number of vectors or tear
667  * down setup and incrementally increase the vectors as each is enabled.
668  */
669 struct vfio_irq_info {
670 	__u32	argsz;
671 	__u32	flags;
672 #define VFIO_IRQ_INFO_EVENTFD		(1 << 0)
673 #define VFIO_IRQ_INFO_MASKABLE		(1 << 1)
674 #define VFIO_IRQ_INFO_AUTOMASKED	(1 << 2)
675 #define VFIO_IRQ_INFO_NORESIZE		(1 << 3)
676 	__u32	index;		/* IRQ index */
677 	__u32	count;		/* Number of IRQs within this index */
678 };
679 #define VFIO_DEVICE_GET_IRQ_INFO	_IO(VFIO_TYPE, VFIO_BASE + 9)
680 
681 /**
682  * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
683  *
684  * Set signaling, masking, and unmasking of interrupts.  Caller provides
685  * struct vfio_irq_set with all fields set.  'start' and 'count' indicate
686  * the range of subindexes being specified.
687  *
688  * The DATA flags specify the type of data provided.  If DATA_NONE, the
689  * operation performs the specified action immediately on the specified
690  * interrupt(s).  For example, to unmask AUTOMASKED interrupt [0,0]:
691  * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
692  *
693  * DATA_BOOL allows sparse support for the same on arrays of interrupts.
694  * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
695  * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
696  * data = {1,0,1}
697  *
698  * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
699  * A value of -1 can be used to either de-assign interrupts if already
700  * assigned or skip un-assigned interrupts.  For example, to set an eventfd
701  * to be trigger for interrupts [0,0] and [0,2]:
702  * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
703  * data = {fd1, -1, fd2}
704  * If index [0,1] is previously set, two count = 1 ioctls calls would be
705  * required to set [0,0] and [0,2] without changing [0,1].
706  *
707  * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
708  * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
709  * from userspace (ie. simulate hardware triggering).
710  *
711  * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
712  * enables the interrupt index for the device.  Individual subindex interrupts
713  * can be disabled using the -1 value for DATA_EVENTFD or the index can be
714  * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
715  *
716  * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
717  * ACTION_TRIGGER specifies kernel->user signaling.
718  */
719 struct vfio_irq_set {
720 	__u32	argsz;
721 	__u32	flags;
722 #define VFIO_IRQ_SET_DATA_NONE		(1 << 0) /* Data not present */
723 #define VFIO_IRQ_SET_DATA_BOOL		(1 << 1) /* Data is bool (u8) */
724 #define VFIO_IRQ_SET_DATA_EVENTFD	(1 << 2) /* Data is eventfd (s32) */
725 #define VFIO_IRQ_SET_ACTION_MASK	(1 << 3) /* Mask interrupt */
726 #define VFIO_IRQ_SET_ACTION_UNMASK	(1 << 4) /* Unmask interrupt */
727 #define VFIO_IRQ_SET_ACTION_TRIGGER	(1 << 5) /* Trigger interrupt */
728 	__u32	index;
729 	__u32	start;
730 	__u32	count;
731 	__u8	data[];
732 };
733 #define VFIO_DEVICE_SET_IRQS		_IO(VFIO_TYPE, VFIO_BASE + 10)
734 
735 #define VFIO_IRQ_SET_DATA_TYPE_MASK	(VFIO_IRQ_SET_DATA_NONE | \
736 					 VFIO_IRQ_SET_DATA_BOOL | \
737 					 VFIO_IRQ_SET_DATA_EVENTFD)
738 #define VFIO_IRQ_SET_ACTION_TYPE_MASK	(VFIO_IRQ_SET_ACTION_MASK | \
739 					 VFIO_IRQ_SET_ACTION_UNMASK | \
740 					 VFIO_IRQ_SET_ACTION_TRIGGER)
741 /**
742  * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
743  *
744  * Reset a device.
745  */
746 #define VFIO_DEVICE_RESET		_IO(VFIO_TYPE, VFIO_BASE + 11)
747 
748 /*
749  * The VFIO-PCI bus driver makes use of the following fixed region and
750  * IRQ index mapping.  Unimplemented regions return a size of zero.
751  * Unimplemented IRQ types return a count of zero.
752  */
753 
754 enum {
755 	VFIO_PCI_BAR0_REGION_INDEX,
756 	VFIO_PCI_BAR1_REGION_INDEX,
757 	VFIO_PCI_BAR2_REGION_INDEX,
758 	VFIO_PCI_BAR3_REGION_INDEX,
759 	VFIO_PCI_BAR4_REGION_INDEX,
760 	VFIO_PCI_BAR5_REGION_INDEX,
761 	VFIO_PCI_ROM_REGION_INDEX,
762 	VFIO_PCI_CONFIG_REGION_INDEX,
763 	/*
764 	 * Expose VGA regions defined for PCI base class 03, subclass 00.
765 	 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
766 	 * as well as the MMIO range 0xa0000 to 0xbffff.  Each implemented
767 	 * range is found at it's identity mapped offset from the region
768 	 * offset, for example 0x3b0 is region_info.offset + 0x3b0.  Areas
769 	 * between described ranges are unimplemented.
770 	 */
771 	VFIO_PCI_VGA_REGION_INDEX,
772 	VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
773 				 /* device specific cap to define content. */
774 };
775 
776 enum {
777 	VFIO_PCI_INTX_IRQ_INDEX,
778 	VFIO_PCI_MSI_IRQ_INDEX,
779 	VFIO_PCI_MSIX_IRQ_INDEX,
780 	VFIO_PCI_ERR_IRQ_INDEX,
781 	VFIO_PCI_REQ_IRQ_INDEX,
782 	VFIO_PCI_NUM_IRQS
783 };
784 
785 /*
786  * The vfio-ccw bus driver makes use of the following fixed region and
787  * IRQ index mapping. Unimplemented regions return a size of zero.
788  * Unimplemented IRQ types return a count of zero.
789  */
790 
791 enum {
792 	VFIO_CCW_CONFIG_REGION_INDEX,
793 	VFIO_CCW_NUM_REGIONS
794 };
795 
796 enum {
797 	VFIO_CCW_IO_IRQ_INDEX,
798 	VFIO_CCW_CRW_IRQ_INDEX,
799 	VFIO_CCW_REQ_IRQ_INDEX,
800 	VFIO_CCW_NUM_IRQS
801 };
802 
803 /**
804  * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IORW(VFIO_TYPE, VFIO_BASE + 12,
805  *					      struct vfio_pci_hot_reset_info)
806  *
807  * Return: 0 on success, -errno on failure:
808  *	-enospc = insufficient buffer, -enodev = unsupported for device.
809  */
810 struct vfio_pci_dependent_device {
811 	__u32	group_id;
812 	__u16	segment;
813 	__u8	bus;
814 	__u8	devfn; /* Use PCI_SLOT/PCI_FUNC */
815 };
816 
817 struct vfio_pci_hot_reset_info {
818 	__u32	argsz;
819 	__u32	flags;
820 	__u32	count;
821 	struct vfio_pci_dependent_device	devices[];
822 };
823 
824 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
825 
826 /**
827  * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
828  *				    struct vfio_pci_hot_reset)
829  *
830  * Return: 0 on success, -errno on failure.
831  */
832 struct vfio_pci_hot_reset {
833 	__u32	argsz;
834 	__u32	flags;
835 	__u32	count;
836 	__s32	group_fds[];
837 };
838 
839 #define VFIO_DEVICE_PCI_HOT_RESET	_IO(VFIO_TYPE, VFIO_BASE + 13)
840 
841 /**
842  * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
843  *                                    struct vfio_device_query_gfx_plane)
844  *
845  * Set the drm_plane_type and flags, then retrieve the gfx plane info.
846  *
847  * flags supported:
848  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
849  *   to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
850  *   support for dma-buf.
851  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
852  *   to ask if the mdev supports region. 0 on support, -EINVAL on no
853  *   support for region.
854  * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
855  *   with each call to query the plane info.
856  * - Others are invalid and return -EINVAL.
857  *
858  * Note:
859  * 1. Plane could be disabled by guest. In that case, success will be
860  *    returned with zero-initialized drm_format, size, width and height
861  *    fields.
862  * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
863  *
864  * Return: 0 on success, -errno on other failure.
865  */
866 struct vfio_device_gfx_plane_info {
867 	__u32 argsz;
868 	__u32 flags;
869 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
870 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
871 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
872 	/* in */
873 	__u32 drm_plane_type;	/* type of plane: DRM_PLANE_TYPE_* */
874 	/* out */
875 	__u32 drm_format;	/* drm format of plane */
876 	__u64 drm_format_mod;   /* tiled mode */
877 	__u32 width;	/* width of plane */
878 	__u32 height;	/* height of plane */
879 	__u32 stride;	/* stride of plane */
880 	__u32 size;	/* size of plane in bytes, align on page*/
881 	__u32 x_pos;	/* horizontal position of cursor plane */
882 	__u32 y_pos;	/* vertical position of cursor plane*/
883 	__u32 x_hot;    /* horizontal position of cursor hotspot */
884 	__u32 y_hot;    /* vertical position of cursor hotspot */
885 	union {
886 		__u32 region_index;	/* region index */
887 		__u32 dmabuf_id;	/* dma-buf id */
888 	};
889 };
890 
891 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
892 
893 /**
894  * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
895  *
896  * Return a new dma-buf file descriptor for an exposed guest framebuffer
897  * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
898  * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
899  */
900 
901 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
902 
903 /**
904  * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
905  *                              struct vfio_device_ioeventfd)
906  *
907  * Perform a write to the device at the specified device fd offset, with
908  * the specified data and width when the provided eventfd is triggered.
909  * vfio bus drivers may not support this for all regions, for all widths,
910  * or at all.  vfio-pci currently only enables support for BAR regions,
911  * excluding the MSI-X vector table.
912  *
913  * Return: 0 on success, -errno on failure.
914  */
915 struct vfio_device_ioeventfd {
916 	__u32	argsz;
917 	__u32	flags;
918 #define VFIO_DEVICE_IOEVENTFD_8		(1 << 0) /* 1-byte write */
919 #define VFIO_DEVICE_IOEVENTFD_16	(1 << 1) /* 2-byte write */
920 #define VFIO_DEVICE_IOEVENTFD_32	(1 << 2) /* 4-byte write */
921 #define VFIO_DEVICE_IOEVENTFD_64	(1 << 3) /* 8-byte write */
922 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK	(0xf)
923 	__u64	offset;			/* device fd offset of write */
924 	__u64	data;			/* data to be written */
925 	__s32	fd;			/* -1 for de-assignment */
926 };
927 
928 #define VFIO_DEVICE_IOEVENTFD		_IO(VFIO_TYPE, VFIO_BASE + 16)
929 
930 /**
931  * VFIO_DEVICE_FEATURE - _IORW(VFIO_TYPE, VFIO_BASE + 17,
932  *			       struct vfio_device_feature)
933  *
934  * Get, set, or probe feature data of the device.  The feature is selected
935  * using the FEATURE_MASK portion of the flags field.  Support for a feature
936  * can be probed by setting both the FEATURE_MASK and PROBE bits.  A probe
937  * may optionally include the GET and/or SET bits to determine read vs write
938  * access of the feature respectively.  Probing a feature will return success
939  * if the feature is supported and all of the optionally indicated GET/SET
940  * methods are supported.  The format of the data portion of the structure is
941  * specific to the given feature.  The data portion is not required for
942  * probing.  GET and SET are mutually exclusive, except for use with PROBE.
943  *
944  * Return 0 on success, -errno on failure.
945  */
946 struct vfio_device_feature {
947 	__u32	argsz;
948 	__u32	flags;
949 #define VFIO_DEVICE_FEATURE_MASK	(0xffff) /* 16-bit feature index */
950 #define VFIO_DEVICE_FEATURE_GET		(1 << 16) /* Get feature into data[] */
951 #define VFIO_DEVICE_FEATURE_SET		(1 << 17) /* Set feature from data[] */
952 #define VFIO_DEVICE_FEATURE_PROBE	(1 << 18) /* Probe feature support */
953 	__u8	data[];
954 };
955 
956 #define VFIO_DEVICE_FEATURE		_IO(VFIO_TYPE, VFIO_BASE + 17)
957 
958 /*
959  * Provide support for setting a PCI VF Token, which is used as a shared
960  * secret between PF and VF drivers.  This feature may only be set on a
961  * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
962  * open VFs.  Data provided when setting this feature is a 16-byte array
963  * (__u8 b[16]), representing a UUID.
964  */
965 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN	(0)
966 
967 /* -------- API for Type1 VFIO IOMMU -------- */
968 
969 /**
970  * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
971  *
972  * Retrieve information about the IOMMU object. Fills in provided
973  * struct vfio_iommu_info. Caller sets argsz.
974  *
975  * XXX Should we do these by CHECK_EXTENSION too?
976  */
977 struct vfio_iommu_type1_info {
978 	__u32	argsz;
979 	__u32	flags;
980 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0)	/* supported page sizes info */
981 #define VFIO_IOMMU_INFO_CAPS	(1 << 1)	/* Info supports caps */
982 	__u64	iova_pgsizes;	/* Bitmap of supported page sizes */
983 	__u32   cap_offset;	/* Offset within info struct of first cap */
984 };
985 
986 /*
987  * The IOVA capability allows to report the valid IOVA range(s)
988  * excluding any non-relaxable reserved regions exposed by
989  * devices attached to the container. Any DMA map attempt
990  * outside the valid iova range will return error.
991  *
992  * The structures below define version 1 of this capability.
993  */
994 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE  1
995 
996 struct vfio_iova_range {
997 	__u64	start;
998 	__u64	end;
999 };
1000 
1001 struct vfio_iommu_type1_info_cap_iova_range {
1002 	struct	vfio_info_cap_header header;
1003 	__u32	nr_iovas;
1004 	__u32	reserved;
1005 	struct	vfio_iova_range iova_ranges[];
1006 };
1007 
1008 /*
1009  * The migration capability allows to report supported features for migration.
1010  *
1011  * The structures below define version 1 of this capability.
1012  *
1013  * The existence of this capability indicates that IOMMU kernel driver supports
1014  * dirty page logging.
1015  *
1016  * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1017  * page logging.
1018  * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1019  * size in bytes that can be used by user applications when getting the dirty
1020  * bitmap.
1021  */
1022 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION  2
1023 
1024 struct vfio_iommu_type1_info_cap_migration {
1025 	struct	vfio_info_cap_header header;
1026 	__u32	flags;
1027 	__u64	pgsize_bitmap;
1028 	__u64	max_dirty_bitmap_size;		/* in bytes */
1029 };
1030 
1031 /*
1032  * The DMA available capability allows to report the current number of
1033  * simultaneously outstanding DMA mappings that are allowed.
1034  *
1035  * The structure below defines version 1 of this capability.
1036  *
1037  * avail: specifies the current number of outstanding DMA mappings allowed.
1038  */
1039 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
1040 
1041 struct vfio_iommu_type1_info_dma_avail {
1042 	struct	vfio_info_cap_header header;
1043 	__u32	avail;
1044 };
1045 
1046 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1047 
1048 /**
1049  * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1050  *
1051  * Map process virtual addresses to IO virtual addresses using the
1052  * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
1053  *
1054  * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova, and
1055  * unblock translation of host virtual addresses in the iova range.  The vaddr
1056  * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR.  To
1057  * maintain memory consistency within the user application, the updated vaddr
1058  * must address the same memory object as originally mapped.  Failure to do so
1059  * will result in user memory corruption and/or device misbehavior.  iova and
1060  * size must match those in the original MAP_DMA call.  Protection is not
1061  * changed, and the READ & WRITE flags must be 0.
1062  */
1063 struct vfio_iommu_type1_dma_map {
1064 	__u32	argsz;
1065 	__u32	flags;
1066 #define VFIO_DMA_MAP_FLAG_READ (1 << 0)		/* readable from device */
1067 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1)	/* writable from device */
1068 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2)
1069 	__u64	vaddr;				/* Process virtual address */
1070 	__u64	iova;				/* IO virtual address */
1071 	__u64	size;				/* Size of mapping (bytes) */
1072 };
1073 
1074 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1075 
1076 struct vfio_bitmap {
1077 	__u64        pgsize;	/* page size for bitmap in bytes */
1078 	__u64        size;	/* in bytes */
1079 	__u64 __user *data;	/* one bit per page */
1080 };
1081 
1082 /**
1083  * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1084  *							struct vfio_dma_unmap)
1085  *
1086  * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
1087  * Caller sets argsz.  The actual unmapped size is returned in the size
1088  * field.  No guarantee is made to the user that arbitrary unmaps of iova
1089  * or size different from those used in the original mapping call will
1090  * succeed.
1091  *
1092  * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1093  * before unmapping IO virtual addresses. When this flag is set, the user must
1094  * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1095  * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1096  * A bit in the bitmap represents one page, of user provided page size in
1097  * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1098  * indicates that the page at that offset from iova is dirty. A Bitmap of the
1099  * pages in the range of unmapped size is returned in the user-provided
1100  * vfio_bitmap.data.
1101  *
1102  * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses.  iova and size
1103  * must be 0.  This cannot be combined with the get-dirty-bitmap flag.
1104  *
1105  * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host
1106  * virtual addresses in the iova range.  Tasks that attempt to translate an
1107  * iova's vaddr will block.  DMA to already-mapped pages continues.  This
1108  * cannot be combined with the get-dirty-bitmap flag.
1109  */
1110 struct vfio_iommu_type1_dma_unmap {
1111 	__u32	argsz;
1112 	__u32	flags;
1113 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
1114 #define VFIO_DMA_UNMAP_FLAG_ALL		     (1 << 1)
1115 #define VFIO_DMA_UNMAP_FLAG_VADDR	     (1 << 2)
1116 	__u64	iova;				/* IO virtual address */
1117 	__u64	size;				/* Size of mapping (bytes) */
1118 	__u8    data[];
1119 };
1120 
1121 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1122 
1123 /*
1124  * IOCTLs to enable/disable IOMMU container usage.
1125  * No parameters are supported.
1126  */
1127 #define VFIO_IOMMU_ENABLE	_IO(VFIO_TYPE, VFIO_BASE + 15)
1128 #define VFIO_IOMMU_DISABLE	_IO(VFIO_TYPE, VFIO_BASE + 16)
1129 
1130 /**
1131  * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1132  *                                     struct vfio_iommu_type1_dirty_bitmap)
1133  * IOCTL is used for dirty pages logging.
1134  * Caller should set flag depending on which operation to perform, details as
1135  * below:
1136  *
1137  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1138  * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1139  * the device; designed to be used when a migration is in progress. Dirty pages
1140  * are logged until logging is disabled by user application by calling the IOCTL
1141  * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1142  *
1143  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1144  * the IOMMU driver to stop logging dirtied pages.
1145  *
1146  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1147  * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1148  * The user must specify the IOVA range and the pgsize through the structure
1149  * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1150  * supports getting a bitmap of the smallest supported pgsize only and can be
1151  * modified in future to get a bitmap of any specified supported pgsize. The
1152  * user must provide a zeroed memory area for the bitmap memory and specify its
1153  * size in bitmap.size. One bit is used to represent one page consecutively
1154  * starting from iova offset. The user should provide page size in bitmap.pgsize
1155  * field. A bit set in the bitmap indicates that the page at that offset from
1156  * iova is dirty. The caller must set argsz to a value including the size of
1157  * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1158  * actual bitmap. If dirty pages logging is not enabled, an error will be
1159  * returned.
1160  *
1161  * Only one of the flags _START, _STOP and _GET may be specified at a time.
1162  *
1163  */
1164 struct vfio_iommu_type1_dirty_bitmap {
1165 	__u32        argsz;
1166 	__u32        flags;
1167 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START	(1 << 0)
1168 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP	(1 << 1)
1169 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP	(1 << 2)
1170 	__u8         data[];
1171 };
1172 
1173 struct vfio_iommu_type1_dirty_bitmap_get {
1174 	__u64              iova;	/* IO virtual address */
1175 	__u64              size;	/* Size of iova range */
1176 	struct vfio_bitmap bitmap;
1177 };
1178 
1179 #define VFIO_IOMMU_DIRTY_PAGES             _IO(VFIO_TYPE, VFIO_BASE + 17)
1180 
1181 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1182 
1183 /*
1184  * The SPAPR TCE DDW info struct provides the information about
1185  * the details of Dynamic DMA window capability.
1186  *
1187  * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1188  * @max_dynamic_windows_supported tells the maximum number of windows
1189  * which the platform can create.
1190  * @levels tells the maximum number of levels in multi-level IOMMU tables;
1191  * this allows splitting a table into smaller chunks which reduces
1192  * the amount of physically contiguous memory required for the table.
1193  */
1194 struct vfio_iommu_spapr_tce_ddw_info {
1195 	__u64 pgsizes;			/* Bitmap of supported page sizes */
1196 	__u32 max_dynamic_windows_supported;
1197 	__u32 levels;
1198 };
1199 
1200 /*
1201  * The SPAPR TCE info struct provides the information about the PCI bus
1202  * address ranges available for DMA, these values are programmed into
1203  * the hardware so the guest has to know that information.
1204  *
1205  * The DMA 32 bit window start is an absolute PCI bus address.
1206  * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1207  * addresses too so the window works as a filter rather than an offset
1208  * for IOVA addresses.
1209  *
1210  * Flags supported:
1211  * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1212  *   (DDW) support is present. @ddw is only supported when DDW is present.
1213  */
1214 struct vfio_iommu_spapr_tce_info {
1215 	__u32 argsz;
1216 	__u32 flags;
1217 #define VFIO_IOMMU_SPAPR_INFO_DDW	(1 << 0)	/* DDW supported */
1218 	__u32 dma32_window_start;	/* 32 bit window start (bytes) */
1219 	__u32 dma32_window_size;	/* 32 bit window size (bytes) */
1220 	struct vfio_iommu_spapr_tce_ddw_info ddw;
1221 };
1222 
1223 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
1224 
1225 /*
1226  * EEH PE operation struct provides ways to:
1227  * - enable/disable EEH functionality;
1228  * - unfreeze IO/DMA for frozen PE;
1229  * - read PE state;
1230  * - reset PE;
1231  * - configure PE;
1232  * - inject EEH error.
1233  */
1234 struct vfio_eeh_pe_err {
1235 	__u32 type;
1236 	__u32 func;
1237 	__u64 addr;
1238 	__u64 mask;
1239 };
1240 
1241 struct vfio_eeh_pe_op {
1242 	__u32 argsz;
1243 	__u32 flags;
1244 	__u32 op;
1245 	union {
1246 		struct vfio_eeh_pe_err err;
1247 	};
1248 };
1249 
1250 #define VFIO_EEH_PE_DISABLE		0	/* Disable EEH functionality */
1251 #define VFIO_EEH_PE_ENABLE		1	/* Enable EEH functionality  */
1252 #define VFIO_EEH_PE_UNFREEZE_IO		2	/* Enable IO for frozen PE   */
1253 #define VFIO_EEH_PE_UNFREEZE_DMA	3	/* Enable DMA for frozen PE  */
1254 #define VFIO_EEH_PE_GET_STATE		4	/* PE state retrieval        */
1255 #define  VFIO_EEH_PE_STATE_NORMAL	0	/* PE in functional state    */
1256 #define  VFIO_EEH_PE_STATE_RESET	1	/* PE reset in progress      */
1257 #define  VFIO_EEH_PE_STATE_STOPPED	2	/* Stopped DMA and IO        */
1258 #define  VFIO_EEH_PE_STATE_STOPPED_DMA	4	/* Stopped DMA only          */
1259 #define  VFIO_EEH_PE_STATE_UNAVAIL	5	/* State unavailable         */
1260 #define VFIO_EEH_PE_RESET_DEACTIVATE	5	/* Deassert PE reset         */
1261 #define VFIO_EEH_PE_RESET_HOT		6	/* Assert hot reset          */
1262 #define VFIO_EEH_PE_RESET_FUNDAMENTAL	7	/* Assert fundamental reset  */
1263 #define VFIO_EEH_PE_CONFIGURE		8	/* PE configuration          */
1264 #define VFIO_EEH_PE_INJECT_ERR		9	/* Inject EEH error          */
1265 
1266 #define VFIO_EEH_PE_OP			_IO(VFIO_TYPE, VFIO_BASE + 21)
1267 
1268 /**
1269  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1270  *
1271  * Registers user space memory where DMA is allowed. It pins
1272  * user pages and does the locked memory accounting so
1273  * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1274  * get faster.
1275  */
1276 struct vfio_iommu_spapr_register_memory {
1277 	__u32	argsz;
1278 	__u32	flags;
1279 	__u64	vaddr;				/* Process virtual address */
1280 	__u64	size;				/* Size of mapping (bytes) */
1281 };
1282 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 17)
1283 
1284 /**
1285  * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1286  *
1287  * Unregisters user space memory registered with
1288  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1289  * Uses vfio_iommu_spapr_register_memory for parameters.
1290  */
1291 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 18)
1292 
1293 /**
1294  * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1295  *
1296  * Creates an additional TCE table and programs it (sets a new DMA window)
1297  * to every IOMMU group in the container. It receives page shift, window
1298  * size and number of levels in the TCE table being created.
1299  *
1300  * It allocates and returns an offset on a PCI bus of the new DMA window.
1301  */
1302 struct vfio_iommu_spapr_tce_create {
1303 	__u32 argsz;
1304 	__u32 flags;
1305 	/* in */
1306 	__u32 page_shift;
1307 	__u32 __resv1;
1308 	__u64 window_size;
1309 	__u32 levels;
1310 	__u32 __resv2;
1311 	/* out */
1312 	__u64 start_addr;
1313 };
1314 #define VFIO_IOMMU_SPAPR_TCE_CREATE	_IO(VFIO_TYPE, VFIO_BASE + 19)
1315 
1316 /**
1317  * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1318  *
1319  * Unprograms a TCE table from all groups in the container and destroys it.
1320  * It receives a PCI bus offset as a window id.
1321  */
1322 struct vfio_iommu_spapr_tce_remove {
1323 	__u32 argsz;
1324 	__u32 flags;
1325 	/* in */
1326 	__u64 start_addr;
1327 };
1328 #define VFIO_IOMMU_SPAPR_TCE_REMOVE	_IO(VFIO_TYPE, VFIO_BASE + 20)
1329 
1330 /* ***************************************************************** */
1331 
1332 #endif /* _UAPIVFIO_H */
1333