xref: /linux-6.15/include/uapi/linux/vfio.h (revision bbaf1ff0)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3  * VFIO API definition
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <[email protected]>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #ifndef _UAPIVFIO_H
13 #define _UAPIVFIO_H
14 
15 #include <linux/types.h>
16 #include <linux/ioctl.h>
17 
18 #define VFIO_API_VERSION	0
19 
20 
21 /* Kernel & User level defines for VFIO IOCTLs. */
22 
23 /* Extensions */
24 
25 #define VFIO_TYPE1_IOMMU		1
26 #define VFIO_SPAPR_TCE_IOMMU		2
27 #define VFIO_TYPE1v2_IOMMU		3
28 /*
29  * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping).  This
30  * capability is subject to change as groups are added or removed.
31  */
32 #define VFIO_DMA_CC_IOMMU		4
33 
34 /* Check if EEH is supported */
35 #define VFIO_EEH			5
36 
37 /* Two-stage IOMMU */
38 #define VFIO_TYPE1_NESTING_IOMMU	6	/* Implies v2 */
39 
40 #define VFIO_SPAPR_TCE_v2_IOMMU		7
41 
42 /*
43  * The No-IOMMU IOMMU offers no translation or isolation for devices and
44  * supports no ioctls outside of VFIO_CHECK_EXTENSION.  Use of VFIO's No-IOMMU
45  * code will taint the host kernel and should be used with extreme caution.
46  */
47 #define VFIO_NOIOMMU_IOMMU		8
48 
49 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */
50 #define VFIO_UNMAP_ALL			9
51 
52 /*
53  * Supports the vaddr flag for DMA map and unmap.  Not supported for mediated
54  * devices, so this capability is subject to change as groups are added or
55  * removed.
56  */
57 #define VFIO_UPDATE_VADDR		10
58 
59 /*
60  * The IOCTL interface is designed for extensibility by embedding the
61  * structure length (argsz) and flags into structures passed between
62  * kernel and userspace.  We therefore use the _IO() macro for these
63  * defines to avoid implicitly embedding a size into the ioctl request.
64  * As structure fields are added, argsz will increase to match and flag
65  * bits will be defined to indicate additional fields with valid data.
66  * It's *always* the caller's responsibility to indicate the size of
67  * the structure passed by setting argsz appropriately.
68  */
69 
70 #define VFIO_TYPE	(';')
71 #define VFIO_BASE	100
72 
73 /*
74  * For extension of INFO ioctls, VFIO makes use of a capability chain
75  * designed after PCI/e capabilities.  A flag bit indicates whether
76  * this capability chain is supported and a field defined in the fixed
77  * structure defines the offset of the first capability in the chain.
78  * This field is only valid when the corresponding bit in the flags
79  * bitmap is set.  This offset field is relative to the start of the
80  * INFO buffer, as is the next field within each capability header.
81  * The id within the header is a shared address space per INFO ioctl,
82  * while the version field is specific to the capability id.  The
83  * contents following the header are specific to the capability id.
84  */
85 struct vfio_info_cap_header {
86 	__u16	id;		/* Identifies capability */
87 	__u16	version;	/* Version specific to the capability ID */
88 	__u32	next;		/* Offset of next capability */
89 };
90 
91 /*
92  * Callers of INFO ioctls passing insufficiently sized buffers will see
93  * the capability chain flag bit set, a zero value for the first capability
94  * offset (if available within the provided argsz), and argsz will be
95  * updated to report the necessary buffer size.  For compatibility, the
96  * INFO ioctl will not report error in this case, but the capability chain
97  * will not be available.
98  */
99 
100 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
101 
102 /**
103  * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
104  *
105  * Report the version of the VFIO API.  This allows us to bump the entire
106  * API version should we later need to add or change features in incompatible
107  * ways.
108  * Return: VFIO_API_VERSION
109  * Availability: Always
110  */
111 #define VFIO_GET_API_VERSION		_IO(VFIO_TYPE, VFIO_BASE + 0)
112 
113 /**
114  * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
115  *
116  * Check whether an extension is supported.
117  * Return: 0 if not supported, 1 (or some other positive integer) if supported.
118  * Availability: Always
119  */
120 #define VFIO_CHECK_EXTENSION		_IO(VFIO_TYPE, VFIO_BASE + 1)
121 
122 /**
123  * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
124  *
125  * Set the iommu to the given type.  The type must be supported by an
126  * iommu driver as verified by calling CHECK_EXTENSION using the same
127  * type.  A group must be set to this file descriptor before this
128  * ioctl is available.  The IOMMU interfaces enabled by this call are
129  * specific to the value set.
130  * Return: 0 on success, -errno on failure
131  * Availability: When VFIO group attached
132  */
133 #define VFIO_SET_IOMMU			_IO(VFIO_TYPE, VFIO_BASE + 2)
134 
135 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
136 
137 /**
138  * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
139  *						struct vfio_group_status)
140  *
141  * Retrieve information about the group.  Fills in provided
142  * struct vfio_group_info.  Caller sets argsz.
143  * Return: 0 on succes, -errno on failure.
144  * Availability: Always
145  */
146 struct vfio_group_status {
147 	__u32	argsz;
148 	__u32	flags;
149 #define VFIO_GROUP_FLAGS_VIABLE		(1 << 0)
150 #define VFIO_GROUP_FLAGS_CONTAINER_SET	(1 << 1)
151 };
152 #define VFIO_GROUP_GET_STATUS		_IO(VFIO_TYPE, VFIO_BASE + 3)
153 
154 /**
155  * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
156  *
157  * Set the container for the VFIO group to the open VFIO file
158  * descriptor provided.  Groups may only belong to a single
159  * container.  Containers may, at their discretion, support multiple
160  * groups.  Only when a container is set are all of the interfaces
161  * of the VFIO file descriptor and the VFIO group file descriptor
162  * available to the user.
163  * Return: 0 on success, -errno on failure.
164  * Availability: Always
165  */
166 #define VFIO_GROUP_SET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 4)
167 
168 /**
169  * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
170  *
171  * Remove the group from the attached container.  This is the
172  * opposite of the SET_CONTAINER call and returns the group to
173  * an initial state.  All device file descriptors must be released
174  * prior to calling this interface.  When removing the last group
175  * from a container, the IOMMU will be disabled and all state lost,
176  * effectively also returning the VFIO file descriptor to an initial
177  * state.
178  * Return: 0 on success, -errno on failure.
179  * Availability: When attached to container
180  */
181 #define VFIO_GROUP_UNSET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 5)
182 
183 /**
184  * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
185  *
186  * Return a new file descriptor for the device object described by
187  * the provided string.  The string should match a device listed in
188  * the devices subdirectory of the IOMMU group sysfs entry.  The
189  * group containing the device must already be added to this context.
190  * Return: new file descriptor on success, -errno on failure.
191  * Availability: When attached to container
192  */
193 #define VFIO_GROUP_GET_DEVICE_FD	_IO(VFIO_TYPE, VFIO_BASE + 6)
194 
195 /* --------------- IOCTLs for DEVICE file descriptors --------------- */
196 
197 /**
198  * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
199  *						struct vfio_device_info)
200  *
201  * Retrieve information about the device.  Fills in provided
202  * struct vfio_device_info.  Caller sets argsz.
203  * Return: 0 on success, -errno on failure.
204  */
205 struct vfio_device_info {
206 	__u32	argsz;
207 	__u32	flags;
208 #define VFIO_DEVICE_FLAGS_RESET	(1 << 0)	/* Device supports reset */
209 #define VFIO_DEVICE_FLAGS_PCI	(1 << 1)	/* vfio-pci device */
210 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2)	/* vfio-platform device */
211 #define VFIO_DEVICE_FLAGS_AMBA  (1 << 3)	/* vfio-amba device */
212 #define VFIO_DEVICE_FLAGS_CCW	(1 << 4)	/* vfio-ccw device */
213 #define VFIO_DEVICE_FLAGS_AP	(1 << 5)	/* vfio-ap device */
214 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6)	/* vfio-fsl-mc device */
215 #define VFIO_DEVICE_FLAGS_CAPS	(1 << 7)	/* Info supports caps */
216 	__u32	num_regions;	/* Max region index + 1 */
217 	__u32	num_irqs;	/* Max IRQ index + 1 */
218 	__u32   cap_offset;	/* Offset within info struct of first cap */
219 };
220 #define VFIO_DEVICE_GET_INFO		_IO(VFIO_TYPE, VFIO_BASE + 7)
221 
222 /*
223  * Vendor driver using Mediated device framework should provide device_api
224  * attribute in supported type attribute groups. Device API string should be one
225  * of the following corresponding to device flags in vfio_device_info structure.
226  */
227 
228 #define VFIO_DEVICE_API_PCI_STRING		"vfio-pci"
229 #define VFIO_DEVICE_API_PLATFORM_STRING		"vfio-platform"
230 #define VFIO_DEVICE_API_AMBA_STRING		"vfio-amba"
231 #define VFIO_DEVICE_API_CCW_STRING		"vfio-ccw"
232 #define VFIO_DEVICE_API_AP_STRING		"vfio-ap"
233 
234 /*
235  * The following capabilities are unique to s390 zPCI devices.  Their contents
236  * are further-defined in vfio_zdev.h
237  */
238 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE		1
239 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP		2
240 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL		3
241 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP		4
242 
243 /**
244  * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
245  *				       struct vfio_region_info)
246  *
247  * Retrieve information about a device region.  Caller provides
248  * struct vfio_region_info with index value set.  Caller sets argsz.
249  * Implementation of region mapping is bus driver specific.  This is
250  * intended to describe MMIO, I/O port, as well as bus specific
251  * regions (ex. PCI config space).  Zero sized regions may be used
252  * to describe unimplemented regions (ex. unimplemented PCI BARs).
253  * Return: 0 on success, -errno on failure.
254  */
255 struct vfio_region_info {
256 	__u32	argsz;
257 	__u32	flags;
258 #define VFIO_REGION_INFO_FLAG_READ	(1 << 0) /* Region supports read */
259 #define VFIO_REGION_INFO_FLAG_WRITE	(1 << 1) /* Region supports write */
260 #define VFIO_REGION_INFO_FLAG_MMAP	(1 << 2) /* Region supports mmap */
261 #define VFIO_REGION_INFO_FLAG_CAPS	(1 << 3) /* Info supports caps */
262 	__u32	index;		/* Region index */
263 	__u32	cap_offset;	/* Offset within info struct of first cap */
264 	__u64	size;		/* Region size (bytes) */
265 	__u64	offset;		/* Region offset from start of device fd */
266 };
267 #define VFIO_DEVICE_GET_REGION_INFO	_IO(VFIO_TYPE, VFIO_BASE + 8)
268 
269 /*
270  * The sparse mmap capability allows finer granularity of specifying areas
271  * within a region with mmap support.  When specified, the user should only
272  * mmap the offset ranges specified by the areas array.  mmaps outside of the
273  * areas specified may fail (such as the range covering a PCI MSI-X table) or
274  * may result in improper device behavior.
275  *
276  * The structures below define version 1 of this capability.
277  */
278 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP	1
279 
280 struct vfio_region_sparse_mmap_area {
281 	__u64	offset;	/* Offset of mmap'able area within region */
282 	__u64	size;	/* Size of mmap'able area */
283 };
284 
285 struct vfio_region_info_cap_sparse_mmap {
286 	struct vfio_info_cap_header header;
287 	__u32	nr_areas;
288 	__u32	reserved;
289 	struct vfio_region_sparse_mmap_area areas[];
290 };
291 
292 /*
293  * The device specific type capability allows regions unique to a specific
294  * device or class of devices to be exposed.  This helps solve the problem for
295  * vfio bus drivers of defining which region indexes correspond to which region
296  * on the device, without needing to resort to static indexes, as done by
297  * vfio-pci.  For instance, if we were to go back in time, we might remove
298  * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
299  * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
300  * make a "VGA" device specific type to describe the VGA access space.  This
301  * means that non-VGA devices wouldn't need to waste this index, and thus the
302  * address space associated with it due to implementation of device file
303  * descriptor offsets in vfio-pci.
304  *
305  * The current implementation is now part of the user ABI, so we can't use this
306  * for VGA, but there are other upcoming use cases, such as opregions for Intel
307  * IGD devices and framebuffers for vGPU devices.  We missed VGA, but we'll
308  * use this for future additions.
309  *
310  * The structure below defines version 1 of this capability.
311  */
312 #define VFIO_REGION_INFO_CAP_TYPE	2
313 
314 struct vfio_region_info_cap_type {
315 	struct vfio_info_cap_header header;
316 	__u32 type;	/* global per bus driver */
317 	__u32 subtype;	/* type specific */
318 };
319 
320 /*
321  * List of region types, global per bus driver.
322  * If you introduce a new type, please add it here.
323  */
324 
325 /* PCI region type containing a PCI vendor part */
326 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE	(1 << 31)
327 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK	(0xffff)
328 #define VFIO_REGION_TYPE_GFX                    (1)
329 #define VFIO_REGION_TYPE_CCW			(2)
330 #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED   (3)
331 
332 /* sub-types for VFIO_REGION_TYPE_PCI_* */
333 
334 /* 8086 vendor PCI sub-types */
335 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION	(1)
336 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG	(2)
337 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG	(3)
338 
339 /* 10de vendor PCI sub-types */
340 /*
341  * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
342  *
343  * Deprecated, region no longer provided
344  */
345 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM	(1)
346 
347 /* 1014 vendor PCI sub-types */
348 /*
349  * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
350  * to do TLB invalidation on a GPU.
351  *
352  * Deprecated, region no longer provided
353  */
354 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD	(1)
355 
356 /* sub-types for VFIO_REGION_TYPE_GFX */
357 #define VFIO_REGION_SUBTYPE_GFX_EDID            (1)
358 
359 /**
360  * struct vfio_region_gfx_edid - EDID region layout.
361  *
362  * Set display link state and EDID blob.
363  *
364  * The EDID blob has monitor information such as brand, name, serial
365  * number, physical size, supported video modes and more.
366  *
367  * This special region allows userspace (typically qemu) set a virtual
368  * EDID for the virtual monitor, which allows a flexible display
369  * configuration.
370  *
371  * For the edid blob spec look here:
372  *    https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
373  *
374  * On linux systems you can find the EDID blob in sysfs:
375  *    /sys/class/drm/${card}/${connector}/edid
376  *
377  * You can use the edid-decode ulility (comes with xorg-x11-utils) to
378  * decode the EDID blob.
379  *
380  * @edid_offset: location of the edid blob, relative to the
381  *               start of the region (readonly).
382  * @edid_max_size: max size of the edid blob (readonly).
383  * @edid_size: actual edid size (read/write).
384  * @link_state: display link state (read/write).
385  * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
386  * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
387  * @max_xres: max display width (0 == no limitation, readonly).
388  * @max_yres: max display height (0 == no limitation, readonly).
389  *
390  * EDID update protocol:
391  *   (1) set link-state to down.
392  *   (2) update edid blob and size.
393  *   (3) set link-state to up.
394  */
395 struct vfio_region_gfx_edid {
396 	__u32 edid_offset;
397 	__u32 edid_max_size;
398 	__u32 edid_size;
399 	__u32 max_xres;
400 	__u32 max_yres;
401 	__u32 link_state;
402 #define VFIO_DEVICE_GFX_LINK_STATE_UP    1
403 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN  2
404 };
405 
406 /* sub-types for VFIO_REGION_TYPE_CCW */
407 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD	(1)
408 #define VFIO_REGION_SUBTYPE_CCW_SCHIB		(2)
409 #define VFIO_REGION_SUBTYPE_CCW_CRW		(3)
410 
411 /* sub-types for VFIO_REGION_TYPE_MIGRATION */
412 #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1)
413 
414 struct vfio_device_migration_info {
415 	__u32 device_state;         /* VFIO device state */
416 #define VFIO_DEVICE_STATE_V1_STOP      (0)
417 #define VFIO_DEVICE_STATE_V1_RUNNING   (1 << 0)
418 #define VFIO_DEVICE_STATE_V1_SAVING    (1 << 1)
419 #define VFIO_DEVICE_STATE_V1_RESUMING  (1 << 2)
420 #define VFIO_DEVICE_STATE_MASK      (VFIO_DEVICE_STATE_V1_RUNNING | \
421 				     VFIO_DEVICE_STATE_V1_SAVING |  \
422 				     VFIO_DEVICE_STATE_V1_RESUMING)
423 
424 #define VFIO_DEVICE_STATE_VALID(state) \
425 	(state & VFIO_DEVICE_STATE_V1_RESUMING ? \
426 	(state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1)
427 
428 #define VFIO_DEVICE_STATE_IS_ERROR(state) \
429 	((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \
430 					      VFIO_DEVICE_STATE_V1_RESUMING))
431 
432 #define VFIO_DEVICE_STATE_SET_ERROR(state) \
433 	((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \
434 					     VFIO_DEVICE_STATE_V1_RESUMING)
435 
436 	__u32 reserved;
437 	__u64 pending_bytes;
438 	__u64 data_offset;
439 	__u64 data_size;
440 };
441 
442 /*
443  * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
444  * which allows direct access to non-MSIX registers which happened to be within
445  * the same system page.
446  *
447  * Even though the userspace gets direct access to the MSIX data, the existing
448  * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
449  */
450 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE	3
451 
452 /*
453  * Capability with compressed real address (aka SSA - small system address)
454  * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
455  * and by the userspace to associate a NVLink bridge with a GPU.
456  *
457  * Deprecated, capability no longer provided
458  */
459 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT	4
460 
461 struct vfio_region_info_cap_nvlink2_ssatgt {
462 	struct vfio_info_cap_header header;
463 	__u64 tgt;
464 };
465 
466 /*
467  * Capability with an NVLink link speed. The value is read by
468  * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
469  * property in the device tree. The value is fixed in the hardware
470  * and failing to provide the correct value results in the link
471  * not working with no indication from the driver why.
472  *
473  * Deprecated, capability no longer provided
474  */
475 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD	5
476 
477 struct vfio_region_info_cap_nvlink2_lnkspd {
478 	struct vfio_info_cap_header header;
479 	__u32 link_speed;
480 	__u32 __pad;
481 };
482 
483 /**
484  * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
485  *				    struct vfio_irq_info)
486  *
487  * Retrieve information about a device IRQ.  Caller provides
488  * struct vfio_irq_info with index value set.  Caller sets argsz.
489  * Implementation of IRQ mapping is bus driver specific.  Indexes
490  * using multiple IRQs are primarily intended to support MSI-like
491  * interrupt blocks.  Zero count irq blocks may be used to describe
492  * unimplemented interrupt types.
493  *
494  * The EVENTFD flag indicates the interrupt index supports eventfd based
495  * signaling.
496  *
497  * The MASKABLE flags indicates the index supports MASK and UNMASK
498  * actions described below.
499  *
500  * AUTOMASKED indicates that after signaling, the interrupt line is
501  * automatically masked by VFIO and the user needs to unmask the line
502  * to receive new interrupts.  This is primarily intended to distinguish
503  * level triggered interrupts.
504  *
505  * The NORESIZE flag indicates that the interrupt lines within the index
506  * are setup as a set and new subindexes cannot be enabled without first
507  * disabling the entire index.  This is used for interrupts like PCI MSI
508  * and MSI-X where the driver may only use a subset of the available
509  * indexes, but VFIO needs to enable a specific number of vectors
510  * upfront.  In the case of MSI-X, where the user can enable MSI-X and
511  * then add and unmask vectors, it's up to userspace to make the decision
512  * whether to allocate the maximum supported number of vectors or tear
513  * down setup and incrementally increase the vectors as each is enabled.
514  */
515 struct vfio_irq_info {
516 	__u32	argsz;
517 	__u32	flags;
518 #define VFIO_IRQ_INFO_EVENTFD		(1 << 0)
519 #define VFIO_IRQ_INFO_MASKABLE		(1 << 1)
520 #define VFIO_IRQ_INFO_AUTOMASKED	(1 << 2)
521 #define VFIO_IRQ_INFO_NORESIZE		(1 << 3)
522 	__u32	index;		/* IRQ index */
523 	__u32	count;		/* Number of IRQs within this index */
524 };
525 #define VFIO_DEVICE_GET_IRQ_INFO	_IO(VFIO_TYPE, VFIO_BASE + 9)
526 
527 /**
528  * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
529  *
530  * Set signaling, masking, and unmasking of interrupts.  Caller provides
531  * struct vfio_irq_set with all fields set.  'start' and 'count' indicate
532  * the range of subindexes being specified.
533  *
534  * The DATA flags specify the type of data provided.  If DATA_NONE, the
535  * operation performs the specified action immediately on the specified
536  * interrupt(s).  For example, to unmask AUTOMASKED interrupt [0,0]:
537  * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
538  *
539  * DATA_BOOL allows sparse support for the same on arrays of interrupts.
540  * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
541  * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
542  * data = {1,0,1}
543  *
544  * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
545  * A value of -1 can be used to either de-assign interrupts if already
546  * assigned or skip un-assigned interrupts.  For example, to set an eventfd
547  * to be trigger for interrupts [0,0] and [0,2]:
548  * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
549  * data = {fd1, -1, fd2}
550  * If index [0,1] is previously set, two count = 1 ioctls calls would be
551  * required to set [0,0] and [0,2] without changing [0,1].
552  *
553  * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
554  * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
555  * from userspace (ie. simulate hardware triggering).
556  *
557  * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
558  * enables the interrupt index for the device.  Individual subindex interrupts
559  * can be disabled using the -1 value for DATA_EVENTFD or the index can be
560  * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
561  *
562  * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
563  * ACTION_TRIGGER specifies kernel->user signaling.
564  */
565 struct vfio_irq_set {
566 	__u32	argsz;
567 	__u32	flags;
568 #define VFIO_IRQ_SET_DATA_NONE		(1 << 0) /* Data not present */
569 #define VFIO_IRQ_SET_DATA_BOOL		(1 << 1) /* Data is bool (u8) */
570 #define VFIO_IRQ_SET_DATA_EVENTFD	(1 << 2) /* Data is eventfd (s32) */
571 #define VFIO_IRQ_SET_ACTION_MASK	(1 << 3) /* Mask interrupt */
572 #define VFIO_IRQ_SET_ACTION_UNMASK	(1 << 4) /* Unmask interrupt */
573 #define VFIO_IRQ_SET_ACTION_TRIGGER	(1 << 5) /* Trigger interrupt */
574 	__u32	index;
575 	__u32	start;
576 	__u32	count;
577 	__u8	data[];
578 };
579 #define VFIO_DEVICE_SET_IRQS		_IO(VFIO_TYPE, VFIO_BASE + 10)
580 
581 #define VFIO_IRQ_SET_DATA_TYPE_MASK	(VFIO_IRQ_SET_DATA_NONE | \
582 					 VFIO_IRQ_SET_DATA_BOOL | \
583 					 VFIO_IRQ_SET_DATA_EVENTFD)
584 #define VFIO_IRQ_SET_ACTION_TYPE_MASK	(VFIO_IRQ_SET_ACTION_MASK | \
585 					 VFIO_IRQ_SET_ACTION_UNMASK | \
586 					 VFIO_IRQ_SET_ACTION_TRIGGER)
587 /**
588  * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
589  *
590  * Reset a device.
591  */
592 #define VFIO_DEVICE_RESET		_IO(VFIO_TYPE, VFIO_BASE + 11)
593 
594 /*
595  * The VFIO-PCI bus driver makes use of the following fixed region and
596  * IRQ index mapping.  Unimplemented regions return a size of zero.
597  * Unimplemented IRQ types return a count of zero.
598  */
599 
600 enum {
601 	VFIO_PCI_BAR0_REGION_INDEX,
602 	VFIO_PCI_BAR1_REGION_INDEX,
603 	VFIO_PCI_BAR2_REGION_INDEX,
604 	VFIO_PCI_BAR3_REGION_INDEX,
605 	VFIO_PCI_BAR4_REGION_INDEX,
606 	VFIO_PCI_BAR5_REGION_INDEX,
607 	VFIO_PCI_ROM_REGION_INDEX,
608 	VFIO_PCI_CONFIG_REGION_INDEX,
609 	/*
610 	 * Expose VGA regions defined for PCI base class 03, subclass 00.
611 	 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
612 	 * as well as the MMIO range 0xa0000 to 0xbffff.  Each implemented
613 	 * range is found at it's identity mapped offset from the region
614 	 * offset, for example 0x3b0 is region_info.offset + 0x3b0.  Areas
615 	 * between described ranges are unimplemented.
616 	 */
617 	VFIO_PCI_VGA_REGION_INDEX,
618 	VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
619 				 /* device specific cap to define content. */
620 };
621 
622 enum {
623 	VFIO_PCI_INTX_IRQ_INDEX,
624 	VFIO_PCI_MSI_IRQ_INDEX,
625 	VFIO_PCI_MSIX_IRQ_INDEX,
626 	VFIO_PCI_ERR_IRQ_INDEX,
627 	VFIO_PCI_REQ_IRQ_INDEX,
628 	VFIO_PCI_NUM_IRQS
629 };
630 
631 /*
632  * The vfio-ccw bus driver makes use of the following fixed region and
633  * IRQ index mapping. Unimplemented regions return a size of zero.
634  * Unimplemented IRQ types return a count of zero.
635  */
636 
637 enum {
638 	VFIO_CCW_CONFIG_REGION_INDEX,
639 	VFIO_CCW_NUM_REGIONS
640 };
641 
642 enum {
643 	VFIO_CCW_IO_IRQ_INDEX,
644 	VFIO_CCW_CRW_IRQ_INDEX,
645 	VFIO_CCW_REQ_IRQ_INDEX,
646 	VFIO_CCW_NUM_IRQS
647 };
648 
649 /*
650  * The vfio-ap bus driver makes use of the following IRQ index mapping.
651  * Unimplemented IRQ types return a count of zero.
652  */
653 enum {
654 	VFIO_AP_REQ_IRQ_INDEX,
655 	VFIO_AP_NUM_IRQS
656 };
657 
658 /**
659  * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12,
660  *					      struct vfio_pci_hot_reset_info)
661  *
662  * Return: 0 on success, -errno on failure:
663  *	-enospc = insufficient buffer, -enodev = unsupported for device.
664  */
665 struct vfio_pci_dependent_device {
666 	__u32	group_id;
667 	__u16	segment;
668 	__u8	bus;
669 	__u8	devfn; /* Use PCI_SLOT/PCI_FUNC */
670 };
671 
672 struct vfio_pci_hot_reset_info {
673 	__u32	argsz;
674 	__u32	flags;
675 	__u32	count;
676 	struct vfio_pci_dependent_device	devices[];
677 };
678 
679 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
680 
681 /**
682  * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
683  *				    struct vfio_pci_hot_reset)
684  *
685  * Return: 0 on success, -errno on failure.
686  */
687 struct vfio_pci_hot_reset {
688 	__u32	argsz;
689 	__u32	flags;
690 	__u32	count;
691 	__s32	group_fds[];
692 };
693 
694 #define VFIO_DEVICE_PCI_HOT_RESET	_IO(VFIO_TYPE, VFIO_BASE + 13)
695 
696 /**
697  * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
698  *                                    struct vfio_device_query_gfx_plane)
699  *
700  * Set the drm_plane_type and flags, then retrieve the gfx plane info.
701  *
702  * flags supported:
703  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
704  *   to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
705  *   support for dma-buf.
706  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
707  *   to ask if the mdev supports region. 0 on support, -EINVAL on no
708  *   support for region.
709  * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
710  *   with each call to query the plane info.
711  * - Others are invalid and return -EINVAL.
712  *
713  * Note:
714  * 1. Plane could be disabled by guest. In that case, success will be
715  *    returned with zero-initialized drm_format, size, width and height
716  *    fields.
717  * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
718  *
719  * Return: 0 on success, -errno on other failure.
720  */
721 struct vfio_device_gfx_plane_info {
722 	__u32 argsz;
723 	__u32 flags;
724 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
725 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
726 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
727 	/* in */
728 	__u32 drm_plane_type;	/* type of plane: DRM_PLANE_TYPE_* */
729 	/* out */
730 	__u32 drm_format;	/* drm format of plane */
731 	__u64 drm_format_mod;   /* tiled mode */
732 	__u32 width;	/* width of plane */
733 	__u32 height;	/* height of plane */
734 	__u32 stride;	/* stride of plane */
735 	__u32 size;	/* size of plane in bytes, align on page*/
736 	__u32 x_pos;	/* horizontal position of cursor plane */
737 	__u32 y_pos;	/* vertical position of cursor plane*/
738 	__u32 x_hot;    /* horizontal position of cursor hotspot */
739 	__u32 y_hot;    /* vertical position of cursor hotspot */
740 	union {
741 		__u32 region_index;	/* region index */
742 		__u32 dmabuf_id;	/* dma-buf id */
743 	};
744 };
745 
746 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
747 
748 /**
749  * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
750  *
751  * Return a new dma-buf file descriptor for an exposed guest framebuffer
752  * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
753  * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
754  */
755 
756 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
757 
758 /**
759  * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
760  *                              struct vfio_device_ioeventfd)
761  *
762  * Perform a write to the device at the specified device fd offset, with
763  * the specified data and width when the provided eventfd is triggered.
764  * vfio bus drivers may not support this for all regions, for all widths,
765  * or at all.  vfio-pci currently only enables support for BAR regions,
766  * excluding the MSI-X vector table.
767  *
768  * Return: 0 on success, -errno on failure.
769  */
770 struct vfio_device_ioeventfd {
771 	__u32	argsz;
772 	__u32	flags;
773 #define VFIO_DEVICE_IOEVENTFD_8		(1 << 0) /* 1-byte write */
774 #define VFIO_DEVICE_IOEVENTFD_16	(1 << 1) /* 2-byte write */
775 #define VFIO_DEVICE_IOEVENTFD_32	(1 << 2) /* 4-byte write */
776 #define VFIO_DEVICE_IOEVENTFD_64	(1 << 3) /* 8-byte write */
777 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK	(0xf)
778 	__u64	offset;			/* device fd offset of write */
779 	__u64	data;			/* data to be written */
780 	__s32	fd;			/* -1 for de-assignment */
781 };
782 
783 #define VFIO_DEVICE_IOEVENTFD		_IO(VFIO_TYPE, VFIO_BASE + 16)
784 
785 /**
786  * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
787  *			       struct vfio_device_feature)
788  *
789  * Get, set, or probe feature data of the device.  The feature is selected
790  * using the FEATURE_MASK portion of the flags field.  Support for a feature
791  * can be probed by setting both the FEATURE_MASK and PROBE bits.  A probe
792  * may optionally include the GET and/or SET bits to determine read vs write
793  * access of the feature respectively.  Probing a feature will return success
794  * if the feature is supported and all of the optionally indicated GET/SET
795  * methods are supported.  The format of the data portion of the structure is
796  * specific to the given feature.  The data portion is not required for
797  * probing.  GET and SET are mutually exclusive, except for use with PROBE.
798  *
799  * Return 0 on success, -errno on failure.
800  */
801 struct vfio_device_feature {
802 	__u32	argsz;
803 	__u32	flags;
804 #define VFIO_DEVICE_FEATURE_MASK	(0xffff) /* 16-bit feature index */
805 #define VFIO_DEVICE_FEATURE_GET		(1 << 16) /* Get feature into data[] */
806 #define VFIO_DEVICE_FEATURE_SET		(1 << 17) /* Set feature from data[] */
807 #define VFIO_DEVICE_FEATURE_PROBE	(1 << 18) /* Probe feature support */
808 	__u8	data[];
809 };
810 
811 #define VFIO_DEVICE_FEATURE		_IO(VFIO_TYPE, VFIO_BASE + 17)
812 
813 /*
814  * Provide support for setting a PCI VF Token, which is used as a shared
815  * secret between PF and VF drivers.  This feature may only be set on a
816  * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
817  * open VFs.  Data provided when setting this feature is a 16-byte array
818  * (__u8 b[16]), representing a UUID.
819  */
820 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN	(0)
821 
822 /*
823  * Indicates the device can support the migration API through
824  * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and
825  * ERROR states are always supported. Support for additional states is
826  * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be
827  * set.
828  *
829  * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and
830  * RESUMING are supported.
831  *
832  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P
833  * is supported in addition to the STOP_COPY states.
834  *
835  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that
836  * PRE_COPY is supported in addition to the STOP_COPY states.
837  *
838  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY
839  * means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported
840  * in addition to the STOP_COPY states.
841  *
842  * Other combinations of flags have behavior to be defined in the future.
843  */
844 struct vfio_device_feature_migration {
845 	__aligned_u64 flags;
846 #define VFIO_MIGRATION_STOP_COPY	(1 << 0)
847 #define VFIO_MIGRATION_P2P		(1 << 1)
848 #define VFIO_MIGRATION_PRE_COPY		(1 << 2)
849 };
850 #define VFIO_DEVICE_FEATURE_MIGRATION 1
851 
852 /*
853  * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO
854  * device. The new state is supplied in device_state, see enum
855  * vfio_device_mig_state for details
856  *
857  * The kernel migration driver must fully transition the device to the new state
858  * value before the operation returns to the user.
859  *
860  * The kernel migration driver must not generate asynchronous device state
861  * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET
862  * ioctl as described above.
863  *
864  * If this function fails then current device_state may be the original
865  * operating state or some other state along the combination transition path.
866  * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt
867  * to return to the original state, or attempt to return to some other state
868  * such as RUNNING or STOP.
869  *
870  * If the new_state starts a new data transfer session then the FD associated
871  * with that session is returned in data_fd. The user is responsible to close
872  * this FD when it is finished. The user must consider the migration data stream
873  * carried over the FD to be opaque and must preserve the byte order of the
874  * stream. The user is not required to preserve buffer segmentation when writing
875  * the data stream during the RESUMING operation.
876  *
877  * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO
878  * device, data_fd will be -1.
879  */
880 struct vfio_device_feature_mig_state {
881 	__u32 device_state; /* From enum vfio_device_mig_state */
882 	__s32 data_fd;
883 };
884 #define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2
885 
886 /*
887  * The device migration Finite State Machine is described by the enum
888  * vfio_device_mig_state. Some of the FSM arcs will create a migration data
889  * transfer session by returning a FD, in this case the migration data will
890  * flow over the FD using read() and write() as discussed below.
891  *
892  * There are 5 states to support VFIO_MIGRATION_STOP_COPY:
893  *  RUNNING - The device is running normally
894  *  STOP - The device does not change the internal or external state
895  *  STOP_COPY - The device internal state can be read out
896  *  RESUMING - The device is stopped and is loading a new internal state
897  *  ERROR - The device has failed and must be reset
898  *
899  * And optional states to support VFIO_MIGRATION_P2P:
900  *  RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA
901  * And VFIO_MIGRATION_PRE_COPY:
902  *  PRE_COPY - The device is running normally but tracking internal state
903  *             changes
904  * And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY:
905  *  PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA
906  *
907  * The FSM takes actions on the arcs between FSM states. The driver implements
908  * the following behavior for the FSM arcs:
909  *
910  * RUNNING_P2P -> STOP
911  * STOP_COPY -> STOP
912  *   While in STOP the device must stop the operation of the device. The device
913  *   must not generate interrupts, DMA, or any other change to external state.
914  *   It must not change its internal state. When stopped the device and kernel
915  *   migration driver must accept and respond to interaction to support external
916  *   subsystems in the STOP state, for example PCI MSI-X and PCI config space.
917  *   Failure by the user to restrict device access while in STOP must not result
918  *   in error conditions outside the user context (ex. host system faults).
919  *
920  *   The STOP_COPY arc will terminate a data transfer session.
921  *
922  * RESUMING -> STOP
923  *   Leaving RESUMING terminates a data transfer session and indicates the
924  *   device should complete processing of the data delivered by write(). The
925  *   kernel migration driver should complete the incorporation of data written
926  *   to the data transfer FD into the device internal state and perform
927  *   final validity and consistency checking of the new device state. If the
928  *   user provided data is found to be incomplete, inconsistent, or otherwise
929  *   invalid, the migration driver must fail the SET_STATE ioctl and
930  *   optionally go to the ERROR state as described below.
931  *
932  *   While in STOP the device has the same behavior as other STOP states
933  *   described above.
934  *
935  *   To abort a RESUMING session the device must be reset.
936  *
937  * PRE_COPY -> RUNNING
938  * RUNNING_P2P -> RUNNING
939  *   While in RUNNING the device is fully operational, the device may generate
940  *   interrupts, DMA, respond to MMIO, all vfio device regions are functional,
941  *   and the device may advance its internal state.
942  *
943  *   The PRE_COPY arc will terminate a data transfer session.
944  *
945  * PRE_COPY_P2P -> RUNNING_P2P
946  * RUNNING -> RUNNING_P2P
947  * STOP -> RUNNING_P2P
948  *   While in RUNNING_P2P the device is partially running in the P2P quiescent
949  *   state defined below.
950  *
951  *   The PRE_COPY_P2P arc will terminate a data transfer session.
952  *
953  * RUNNING -> PRE_COPY
954  * RUNNING_P2P -> PRE_COPY_P2P
955  * STOP -> STOP_COPY
956  *   PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states
957  *   which share a data transfer session. Moving between these states alters
958  *   what is streamed in session, but does not terminate or otherwise affect
959  *   the associated fd.
960  *
961  *   These arcs begin the process of saving the device state and will return a
962  *   new data_fd. The migration driver may perform actions such as enabling
963  *   dirty logging of device state when entering PRE_COPY or PER_COPY_P2P.
964  *
965  *   Each arc does not change the device operation, the device remains
966  *   RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below
967  *   in PRE_COPY_P2P -> STOP_COPY.
968  *
969  * PRE_COPY -> PRE_COPY_P2P
970  *   Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above.
971  *   However, while in the PRE_COPY_P2P state, the device is partially running
972  *   in the P2P quiescent state defined below, like RUNNING_P2P.
973  *
974  * PRE_COPY_P2P -> PRE_COPY
975  *   This arc allows returning the device to a full RUNNING behavior while
976  *   continuing all the behaviors of PRE_COPY.
977  *
978  * PRE_COPY_P2P -> STOP_COPY
979  *   While in the STOP_COPY state the device has the same behavior as STOP
980  *   with the addition that the data transfers session continues to stream the
981  *   migration state. End of stream on the FD indicates the entire device
982  *   state has been transferred.
983  *
984  *   The user should take steps to restrict access to vfio device regions while
985  *   the device is in STOP_COPY or risk corruption of the device migration data
986  *   stream.
987  *
988  * STOP -> RESUMING
989  *   Entering the RESUMING state starts a process of restoring the device state
990  *   and will return a new data_fd. The data stream fed into the data_fd should
991  *   be taken from the data transfer output of a single FD during saving from
992  *   a compatible device. The migration driver may alter/reset the internal
993  *   device state for this arc if required to prepare the device to receive the
994  *   migration data.
995  *
996  * STOP_COPY -> PRE_COPY
997  * STOP_COPY -> PRE_COPY_P2P
998  *   These arcs are not permitted and return error if requested. Future
999  *   revisions of this API may define behaviors for these arcs, in this case
1000  *   support will be discoverable by a new flag in
1001  *   VFIO_DEVICE_FEATURE_MIGRATION.
1002  *
1003  * any -> ERROR
1004  *   ERROR cannot be specified as a device state, however any transition request
1005  *   can be failed with an errno return and may then move the device_state into
1006  *   ERROR. In this case the device was unable to execute the requested arc and
1007  *   was also unable to restore the device to any valid device_state.
1008  *   To recover from ERROR VFIO_DEVICE_RESET must be used to return the
1009  *   device_state back to RUNNING.
1010  *
1011  * The optional peer to peer (P2P) quiescent state is intended to be a quiescent
1012  * state for the device for the purposes of managing multiple devices within a
1013  * user context where peer-to-peer DMA between devices may be active. The
1014  * RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating
1015  * any new P2P DMA transactions. If the device can identify P2P transactions
1016  * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration
1017  * driver must complete any such outstanding operations prior to completing the
1018  * FSM arc into a P2P state. For the purpose of specification the states
1019  * behave as though the device was fully running if not supported. Like while in
1020  * STOP or STOP_COPY the user must not touch the device, otherwise the state
1021  * can be exited.
1022  *
1023  * The remaining possible transitions are interpreted as combinations of the
1024  * above FSM arcs. As there are multiple paths through the FSM arcs the path
1025  * should be selected based on the following rules:
1026  *   - Select the shortest path.
1027  *   - The path cannot have saving group states as interior arcs, only
1028  *     starting/end states.
1029  * Refer to vfio_mig_get_next_state() for the result of the algorithm.
1030  *
1031  * The automatic transit through the FSM arcs that make up the combination
1032  * transition is invisible to the user. When working with combination arcs the
1033  * user may see any step along the path in the device_state if SET_STATE
1034  * fails. When handling these types of errors users should anticipate future
1035  * revisions of this protocol using new states and those states becoming
1036  * visible in this case.
1037  *
1038  * The optional states cannot be used with SET_STATE if the device does not
1039  * support them. The user can discover if these states are supported by using
1040  * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can
1041  * avoid knowing about these optional states if the kernel driver supports them.
1042  *
1043  * Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY
1044  * is not present.
1045  */
1046 enum vfio_device_mig_state {
1047 	VFIO_DEVICE_STATE_ERROR = 0,
1048 	VFIO_DEVICE_STATE_STOP = 1,
1049 	VFIO_DEVICE_STATE_RUNNING = 2,
1050 	VFIO_DEVICE_STATE_STOP_COPY = 3,
1051 	VFIO_DEVICE_STATE_RESUMING = 4,
1052 	VFIO_DEVICE_STATE_RUNNING_P2P = 5,
1053 	VFIO_DEVICE_STATE_PRE_COPY = 6,
1054 	VFIO_DEVICE_STATE_PRE_COPY_P2P = 7,
1055 };
1056 
1057 /**
1058  * VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21)
1059  *
1060  * This ioctl is used on the migration data FD in the precopy phase of the
1061  * migration data transfer. It returns an estimate of the current data sizes
1062  * remaining to be transferred. It allows the user to judge when it is
1063  * appropriate to leave PRE_COPY for STOP_COPY.
1064  *
1065  * This ioctl is valid only in PRE_COPY states and kernel driver should
1066  * return -EINVAL from any other migration state.
1067  *
1068  * The vfio_precopy_info data structure returned by this ioctl provides
1069  * estimates of data available from the device during the PRE_COPY states.
1070  * This estimate is split into two categories, initial_bytes and
1071  * dirty_bytes.
1072  *
1073  * The initial_bytes field indicates the amount of initial precopy
1074  * data available from the device. This field should have a non-zero initial
1075  * value and decrease as migration data is read from the device.
1076  * It is recommended to leave PRE_COPY for STOP_COPY only after this field
1077  * reaches zero. Leaving PRE_COPY earlier might make things slower.
1078  *
1079  * The dirty_bytes field tracks device state changes relative to data
1080  * previously retrieved.  This field starts at zero and may increase as
1081  * the internal device state is modified or decrease as that modified
1082  * state is read from the device.
1083  *
1084  * Userspace may use the combination of these fields to estimate the
1085  * potential data size available during the PRE_COPY phases, as well as
1086  * trends relative to the rate the device is dirtying its internal
1087  * state, but these fields are not required to have any bearing relative
1088  * to the data size available during the STOP_COPY phase.
1089  *
1090  * Drivers have a lot of flexibility in when and what they transfer during the
1091  * PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO.
1092  *
1093  * During pre-copy the migration data FD has a temporary "end of stream" that is
1094  * reached when both initial_bytes and dirty_byte are zero. For instance, this
1095  * may indicate that the device is idle and not currently dirtying any internal
1096  * state. When read() is done on this temporary end of stream the kernel driver
1097  * should return ENOMSG from read(). Userspace can wait for more data (which may
1098  * never come) by using poll.
1099  *
1100  * Once in STOP_COPY the migration data FD has a permanent end of stream
1101  * signaled in the usual way by read() always returning 0 and poll always
1102  * returning readable. ENOMSG may not be returned in STOP_COPY.
1103  * Support for this ioctl is mandatory if a driver claims to support
1104  * VFIO_MIGRATION_PRE_COPY.
1105  *
1106  * Return: 0 on success, -1 and errno set on failure.
1107  */
1108 struct vfio_precopy_info {
1109 	__u32 argsz;
1110 	__u32 flags;
1111 	__aligned_u64 initial_bytes;
1112 	__aligned_u64 dirty_bytes;
1113 };
1114 
1115 #define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21)
1116 
1117 /*
1118  * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power
1119  * state with the platform-based power management.  Device use of lower power
1120  * states depends on factors managed by the runtime power management core,
1121  * including system level support and coordinating support among dependent
1122  * devices.  Enabling device low power entry does not guarantee lower power
1123  * usage by the device, nor is a mechanism provided through this feature to
1124  * know the current power state of the device.  If any device access happens
1125  * (either from the host or through the vfio uAPI) when the device is in the
1126  * low power state, then the host will move the device out of the low power
1127  * state as necessary prior to the access.  Once the access is completed, the
1128  * device may re-enter the low power state.  For single shot low power support
1129  * with wake-up notification, see
1130  * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below.  Access to mmap'd
1131  * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after
1132  * calling LOW_POWER_EXIT.
1133  */
1134 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3
1135 
1136 /*
1137  * This device feature has the same behavior as
1138  * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user
1139  * provides an eventfd for wake-up notification.  When the device moves out of
1140  * the low power state for the wake-up, the host will not allow the device to
1141  * re-enter a low power state without a subsequent user call to one of the low
1142  * power entry device feature IOCTLs.  Access to mmap'd device regions is
1143  * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the
1144  * low power exit.  The low power exit can happen either through LOW_POWER_EXIT
1145  * or through any other access (where the wake-up notification has been
1146  * generated).  The access to mmap'd device regions will not trigger low power
1147  * exit.
1148  *
1149  * The notification through the provided eventfd will be generated only when
1150  * the device has entered and is resumed from a low power state after
1151  * calling this device feature IOCTL.  A device that has not entered low power
1152  * state, as managed through the runtime power management core, will not
1153  * generate a notification through the provided eventfd on access.  Calling the
1154  * LOW_POWER_EXIT feature is optional in the case where notification has been
1155  * signaled on the provided eventfd that a resume from low power has occurred.
1156  */
1157 struct vfio_device_low_power_entry_with_wakeup {
1158 	__s32 wakeup_eventfd;
1159 	__u32 reserved;
1160 };
1161 
1162 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4
1163 
1164 /*
1165  * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as
1166  * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or
1167  * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features.
1168  * This device feature IOCTL may itself generate a wakeup eventfd notification
1169  * in the latter case if the device had previously entered a low power state.
1170  */
1171 #define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5
1172 
1173 /*
1174  * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging.
1175  * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports
1176  * DMA logging.
1177  *
1178  * DMA logging allows a device to internally record what DMAs the device is
1179  * initiating and report them back to userspace. It is part of the VFIO
1180  * migration infrastructure that allows implementing dirty page tracking
1181  * during the pre copy phase of live migration. Only DMA WRITEs are logged,
1182  * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE.
1183  *
1184  * When DMA logging is started a range of IOVAs to monitor is provided and the
1185  * device can optimize its logging to cover only the IOVA range given. Each
1186  * DMA that the device initiates inside the range will be logged by the device
1187  * for later retrieval.
1188  *
1189  * page_size is an input that hints what tracking granularity the device
1190  * should try to achieve. If the device cannot do the hinted page size then
1191  * it's the driver choice which page size to pick based on its support.
1192  * On output the device will return the page size it selected.
1193  *
1194  * ranges is a pointer to an array of
1195  * struct vfio_device_feature_dma_logging_range.
1196  *
1197  * The core kernel code guarantees to support by minimum num_ranges that fit
1198  * into a single kernel page. User space can try higher values but should give
1199  * up if the above can't be achieved as of some driver limitations.
1200  *
1201  * A single call to start device DMA logging can be issued and a matching stop
1202  * should follow at the end. Another start is not allowed in the meantime.
1203  */
1204 struct vfio_device_feature_dma_logging_control {
1205 	__aligned_u64 page_size;
1206 	__u32 num_ranges;
1207 	__u32 __reserved;
1208 	__aligned_u64 ranges;
1209 };
1210 
1211 struct vfio_device_feature_dma_logging_range {
1212 	__aligned_u64 iova;
1213 	__aligned_u64 length;
1214 };
1215 
1216 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6
1217 
1218 /*
1219  * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started
1220  * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START
1221  */
1222 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7
1223 
1224 /*
1225  * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log
1226  *
1227  * Query the device's DMA log for written pages within the given IOVA range.
1228  * During querying the log is cleared for the IOVA range.
1229  *
1230  * bitmap is a pointer to an array of u64s that will hold the output bitmap
1231  * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits
1232  * is given by:
1233  *  bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64))
1234  *
1235  * The input page_size can be any power of two value and does not have to
1236  * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver
1237  * will format its internal logging to match the reporting page size, possibly
1238  * by replicating bits if the internal page size is lower than requested.
1239  *
1240  * The LOGGING_REPORT will only set bits in the bitmap and never clear or
1241  * perform any initialization of the user provided bitmap.
1242  *
1243  * If any error is returned userspace should assume that the dirty log is
1244  * corrupted. Error recovery is to consider all memory dirty and try to
1245  * restart the dirty tracking, or to abort/restart the whole migration.
1246  *
1247  * If DMA logging is not enabled, an error will be returned.
1248  *
1249  */
1250 struct vfio_device_feature_dma_logging_report {
1251 	__aligned_u64 iova;
1252 	__aligned_u64 length;
1253 	__aligned_u64 page_size;
1254 	__aligned_u64 bitmap;
1255 };
1256 
1257 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8
1258 
1259 /*
1260  * Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will
1261  * be required to complete stop copy.
1262  *
1263  * Note: Can be called on each device state.
1264  */
1265 
1266 struct vfio_device_feature_mig_data_size {
1267 	__aligned_u64 stop_copy_length;
1268 };
1269 
1270 #define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9
1271 
1272 /* -------- API for Type1 VFIO IOMMU -------- */
1273 
1274 /**
1275  * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
1276  *
1277  * Retrieve information about the IOMMU object. Fills in provided
1278  * struct vfio_iommu_info. Caller sets argsz.
1279  *
1280  * XXX Should we do these by CHECK_EXTENSION too?
1281  */
1282 struct vfio_iommu_type1_info {
1283 	__u32	argsz;
1284 	__u32	flags;
1285 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0)	/* supported page sizes info */
1286 #define VFIO_IOMMU_INFO_CAPS	(1 << 1)	/* Info supports caps */
1287 	__u64	iova_pgsizes;	/* Bitmap of supported page sizes */
1288 	__u32   cap_offset;	/* Offset within info struct of first cap */
1289 };
1290 
1291 /*
1292  * The IOVA capability allows to report the valid IOVA range(s)
1293  * excluding any non-relaxable reserved regions exposed by
1294  * devices attached to the container. Any DMA map attempt
1295  * outside the valid iova range will return error.
1296  *
1297  * The structures below define version 1 of this capability.
1298  */
1299 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE  1
1300 
1301 struct vfio_iova_range {
1302 	__u64	start;
1303 	__u64	end;
1304 };
1305 
1306 struct vfio_iommu_type1_info_cap_iova_range {
1307 	struct	vfio_info_cap_header header;
1308 	__u32	nr_iovas;
1309 	__u32	reserved;
1310 	struct	vfio_iova_range iova_ranges[];
1311 };
1312 
1313 /*
1314  * The migration capability allows to report supported features for migration.
1315  *
1316  * The structures below define version 1 of this capability.
1317  *
1318  * The existence of this capability indicates that IOMMU kernel driver supports
1319  * dirty page logging.
1320  *
1321  * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1322  * page logging.
1323  * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1324  * size in bytes that can be used by user applications when getting the dirty
1325  * bitmap.
1326  */
1327 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION  2
1328 
1329 struct vfio_iommu_type1_info_cap_migration {
1330 	struct	vfio_info_cap_header header;
1331 	__u32	flags;
1332 	__u64	pgsize_bitmap;
1333 	__u64	max_dirty_bitmap_size;		/* in bytes */
1334 };
1335 
1336 /*
1337  * The DMA available capability allows to report the current number of
1338  * simultaneously outstanding DMA mappings that are allowed.
1339  *
1340  * The structure below defines version 1 of this capability.
1341  *
1342  * avail: specifies the current number of outstanding DMA mappings allowed.
1343  */
1344 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
1345 
1346 struct vfio_iommu_type1_info_dma_avail {
1347 	struct	vfio_info_cap_header header;
1348 	__u32	avail;
1349 };
1350 
1351 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1352 
1353 /**
1354  * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1355  *
1356  * Map process virtual addresses to IO virtual addresses using the
1357  * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
1358  *
1359  * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova. The vaddr
1360  * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR.  To
1361  * maintain memory consistency within the user application, the updated vaddr
1362  * must address the same memory object as originally mapped.  Failure to do so
1363  * will result in user memory corruption and/or device misbehavior.  iova and
1364  * size must match those in the original MAP_DMA call.  Protection is not
1365  * changed, and the READ & WRITE flags must be 0.
1366  */
1367 struct vfio_iommu_type1_dma_map {
1368 	__u32	argsz;
1369 	__u32	flags;
1370 #define VFIO_DMA_MAP_FLAG_READ (1 << 0)		/* readable from device */
1371 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1)	/* writable from device */
1372 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2)
1373 	__u64	vaddr;				/* Process virtual address */
1374 	__u64	iova;				/* IO virtual address */
1375 	__u64	size;				/* Size of mapping (bytes) */
1376 };
1377 
1378 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1379 
1380 struct vfio_bitmap {
1381 	__u64        pgsize;	/* page size for bitmap in bytes */
1382 	__u64        size;	/* in bytes */
1383 	__u64 __user *data;	/* one bit per page */
1384 };
1385 
1386 /**
1387  * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1388  *							struct vfio_dma_unmap)
1389  *
1390  * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
1391  * Caller sets argsz.  The actual unmapped size is returned in the size
1392  * field.  No guarantee is made to the user that arbitrary unmaps of iova
1393  * or size different from those used in the original mapping call will
1394  * succeed.
1395  *
1396  * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1397  * before unmapping IO virtual addresses. When this flag is set, the user must
1398  * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1399  * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1400  * A bit in the bitmap represents one page, of user provided page size in
1401  * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1402  * indicates that the page at that offset from iova is dirty. A Bitmap of the
1403  * pages in the range of unmapped size is returned in the user-provided
1404  * vfio_bitmap.data.
1405  *
1406  * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses.  iova and size
1407  * must be 0.  This cannot be combined with the get-dirty-bitmap flag.
1408  *
1409  * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host
1410  * virtual addresses in the iova range.  DMA to already-mapped pages continues.
1411  * Groups may not be added to the container while any addresses are invalid.
1412  * This cannot be combined with the get-dirty-bitmap flag.
1413  */
1414 struct vfio_iommu_type1_dma_unmap {
1415 	__u32	argsz;
1416 	__u32	flags;
1417 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
1418 #define VFIO_DMA_UNMAP_FLAG_ALL		     (1 << 1)
1419 #define VFIO_DMA_UNMAP_FLAG_VADDR	     (1 << 2)
1420 	__u64	iova;				/* IO virtual address */
1421 	__u64	size;				/* Size of mapping (bytes) */
1422 	__u8    data[];
1423 };
1424 
1425 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1426 
1427 /*
1428  * IOCTLs to enable/disable IOMMU container usage.
1429  * No parameters are supported.
1430  */
1431 #define VFIO_IOMMU_ENABLE	_IO(VFIO_TYPE, VFIO_BASE + 15)
1432 #define VFIO_IOMMU_DISABLE	_IO(VFIO_TYPE, VFIO_BASE + 16)
1433 
1434 /**
1435  * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1436  *                                     struct vfio_iommu_type1_dirty_bitmap)
1437  * IOCTL is used for dirty pages logging.
1438  * Caller should set flag depending on which operation to perform, details as
1439  * below:
1440  *
1441  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1442  * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1443  * the device; designed to be used when a migration is in progress. Dirty pages
1444  * are logged until logging is disabled by user application by calling the IOCTL
1445  * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1446  *
1447  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1448  * the IOMMU driver to stop logging dirtied pages.
1449  *
1450  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1451  * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1452  * The user must specify the IOVA range and the pgsize through the structure
1453  * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1454  * supports getting a bitmap of the smallest supported pgsize only and can be
1455  * modified in future to get a bitmap of any specified supported pgsize. The
1456  * user must provide a zeroed memory area for the bitmap memory and specify its
1457  * size in bitmap.size. One bit is used to represent one page consecutively
1458  * starting from iova offset. The user should provide page size in bitmap.pgsize
1459  * field. A bit set in the bitmap indicates that the page at that offset from
1460  * iova is dirty. The caller must set argsz to a value including the size of
1461  * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1462  * actual bitmap. If dirty pages logging is not enabled, an error will be
1463  * returned.
1464  *
1465  * Only one of the flags _START, _STOP and _GET may be specified at a time.
1466  *
1467  */
1468 struct vfio_iommu_type1_dirty_bitmap {
1469 	__u32        argsz;
1470 	__u32        flags;
1471 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START	(1 << 0)
1472 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP	(1 << 1)
1473 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP	(1 << 2)
1474 	__u8         data[];
1475 };
1476 
1477 struct vfio_iommu_type1_dirty_bitmap_get {
1478 	__u64              iova;	/* IO virtual address */
1479 	__u64              size;	/* Size of iova range */
1480 	struct vfio_bitmap bitmap;
1481 };
1482 
1483 #define VFIO_IOMMU_DIRTY_PAGES             _IO(VFIO_TYPE, VFIO_BASE + 17)
1484 
1485 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1486 
1487 /*
1488  * The SPAPR TCE DDW info struct provides the information about
1489  * the details of Dynamic DMA window capability.
1490  *
1491  * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1492  * @max_dynamic_windows_supported tells the maximum number of windows
1493  * which the platform can create.
1494  * @levels tells the maximum number of levels in multi-level IOMMU tables;
1495  * this allows splitting a table into smaller chunks which reduces
1496  * the amount of physically contiguous memory required for the table.
1497  */
1498 struct vfio_iommu_spapr_tce_ddw_info {
1499 	__u64 pgsizes;			/* Bitmap of supported page sizes */
1500 	__u32 max_dynamic_windows_supported;
1501 	__u32 levels;
1502 };
1503 
1504 /*
1505  * The SPAPR TCE info struct provides the information about the PCI bus
1506  * address ranges available for DMA, these values are programmed into
1507  * the hardware so the guest has to know that information.
1508  *
1509  * The DMA 32 bit window start is an absolute PCI bus address.
1510  * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1511  * addresses too so the window works as a filter rather than an offset
1512  * for IOVA addresses.
1513  *
1514  * Flags supported:
1515  * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1516  *   (DDW) support is present. @ddw is only supported when DDW is present.
1517  */
1518 struct vfio_iommu_spapr_tce_info {
1519 	__u32 argsz;
1520 	__u32 flags;
1521 #define VFIO_IOMMU_SPAPR_INFO_DDW	(1 << 0)	/* DDW supported */
1522 	__u32 dma32_window_start;	/* 32 bit window start (bytes) */
1523 	__u32 dma32_window_size;	/* 32 bit window size (bytes) */
1524 	struct vfio_iommu_spapr_tce_ddw_info ddw;
1525 };
1526 
1527 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
1528 
1529 /*
1530  * EEH PE operation struct provides ways to:
1531  * - enable/disable EEH functionality;
1532  * - unfreeze IO/DMA for frozen PE;
1533  * - read PE state;
1534  * - reset PE;
1535  * - configure PE;
1536  * - inject EEH error.
1537  */
1538 struct vfio_eeh_pe_err {
1539 	__u32 type;
1540 	__u32 func;
1541 	__u64 addr;
1542 	__u64 mask;
1543 };
1544 
1545 struct vfio_eeh_pe_op {
1546 	__u32 argsz;
1547 	__u32 flags;
1548 	__u32 op;
1549 	union {
1550 		struct vfio_eeh_pe_err err;
1551 	};
1552 };
1553 
1554 #define VFIO_EEH_PE_DISABLE		0	/* Disable EEH functionality */
1555 #define VFIO_EEH_PE_ENABLE		1	/* Enable EEH functionality  */
1556 #define VFIO_EEH_PE_UNFREEZE_IO		2	/* Enable IO for frozen PE   */
1557 #define VFIO_EEH_PE_UNFREEZE_DMA	3	/* Enable DMA for frozen PE  */
1558 #define VFIO_EEH_PE_GET_STATE		4	/* PE state retrieval        */
1559 #define  VFIO_EEH_PE_STATE_NORMAL	0	/* PE in functional state    */
1560 #define  VFIO_EEH_PE_STATE_RESET	1	/* PE reset in progress      */
1561 #define  VFIO_EEH_PE_STATE_STOPPED	2	/* Stopped DMA and IO        */
1562 #define  VFIO_EEH_PE_STATE_STOPPED_DMA	4	/* Stopped DMA only          */
1563 #define  VFIO_EEH_PE_STATE_UNAVAIL	5	/* State unavailable         */
1564 #define VFIO_EEH_PE_RESET_DEACTIVATE	5	/* Deassert PE reset         */
1565 #define VFIO_EEH_PE_RESET_HOT		6	/* Assert hot reset          */
1566 #define VFIO_EEH_PE_RESET_FUNDAMENTAL	7	/* Assert fundamental reset  */
1567 #define VFIO_EEH_PE_CONFIGURE		8	/* PE configuration          */
1568 #define VFIO_EEH_PE_INJECT_ERR		9	/* Inject EEH error          */
1569 
1570 #define VFIO_EEH_PE_OP			_IO(VFIO_TYPE, VFIO_BASE + 21)
1571 
1572 /**
1573  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1574  *
1575  * Registers user space memory where DMA is allowed. It pins
1576  * user pages and does the locked memory accounting so
1577  * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1578  * get faster.
1579  */
1580 struct vfio_iommu_spapr_register_memory {
1581 	__u32	argsz;
1582 	__u32	flags;
1583 	__u64	vaddr;				/* Process virtual address */
1584 	__u64	size;				/* Size of mapping (bytes) */
1585 };
1586 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 17)
1587 
1588 /**
1589  * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1590  *
1591  * Unregisters user space memory registered with
1592  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1593  * Uses vfio_iommu_spapr_register_memory for parameters.
1594  */
1595 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 18)
1596 
1597 /**
1598  * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1599  *
1600  * Creates an additional TCE table and programs it (sets a new DMA window)
1601  * to every IOMMU group in the container. It receives page shift, window
1602  * size and number of levels in the TCE table being created.
1603  *
1604  * It allocates and returns an offset on a PCI bus of the new DMA window.
1605  */
1606 struct vfio_iommu_spapr_tce_create {
1607 	__u32 argsz;
1608 	__u32 flags;
1609 	/* in */
1610 	__u32 page_shift;
1611 	__u32 __resv1;
1612 	__u64 window_size;
1613 	__u32 levels;
1614 	__u32 __resv2;
1615 	/* out */
1616 	__u64 start_addr;
1617 };
1618 #define VFIO_IOMMU_SPAPR_TCE_CREATE	_IO(VFIO_TYPE, VFIO_BASE + 19)
1619 
1620 /**
1621  * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1622  *
1623  * Unprograms a TCE table from all groups in the container and destroys it.
1624  * It receives a PCI bus offset as a window id.
1625  */
1626 struct vfio_iommu_spapr_tce_remove {
1627 	__u32 argsz;
1628 	__u32 flags;
1629 	/* in */
1630 	__u64 start_addr;
1631 };
1632 #define VFIO_IOMMU_SPAPR_TCE_REMOVE	_IO(VFIO_TYPE, VFIO_BASE + 20)
1633 
1634 /* ***************************************************************** */
1635 
1636 #endif /* _UAPIVFIO_H */
1637