1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* 3 * VFIO API definition 4 * 5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 6 * Author: Alex Williamson <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #ifndef _UAPIVFIO_H 13 #define _UAPIVFIO_H 14 15 #include <linux/types.h> 16 #include <linux/ioctl.h> 17 18 #define VFIO_API_VERSION 0 19 20 21 /* Kernel & User level defines for VFIO IOCTLs. */ 22 23 /* Extensions */ 24 25 #define VFIO_TYPE1_IOMMU 1 26 #define VFIO_SPAPR_TCE_IOMMU 2 27 #define VFIO_TYPE1v2_IOMMU 3 28 /* 29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping). This 30 * capability is subject to change as groups are added or removed. 31 */ 32 #define VFIO_DMA_CC_IOMMU 4 33 34 /* Check if EEH is supported */ 35 #define VFIO_EEH 5 36 37 /* Two-stage IOMMU */ 38 #define VFIO_TYPE1_NESTING_IOMMU 6 /* Implies v2 */ 39 40 #define VFIO_SPAPR_TCE_v2_IOMMU 7 41 42 /* 43 * The No-IOMMU IOMMU offers no translation or isolation for devices and 44 * supports no ioctls outside of VFIO_CHECK_EXTENSION. Use of VFIO's No-IOMMU 45 * code will taint the host kernel and should be used with extreme caution. 46 */ 47 #define VFIO_NOIOMMU_IOMMU 8 48 49 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */ 50 #define VFIO_UNMAP_ALL 9 51 52 /* 53 * Supports the vaddr flag for DMA map and unmap. Not supported for mediated 54 * devices, so this capability is subject to change as groups are added or 55 * removed. 56 */ 57 #define VFIO_UPDATE_VADDR 10 58 59 /* 60 * The IOCTL interface is designed for extensibility by embedding the 61 * structure length (argsz) and flags into structures passed between 62 * kernel and userspace. We therefore use the _IO() macro for these 63 * defines to avoid implicitly embedding a size into the ioctl request. 64 * As structure fields are added, argsz will increase to match and flag 65 * bits will be defined to indicate additional fields with valid data. 66 * It's *always* the caller's responsibility to indicate the size of 67 * the structure passed by setting argsz appropriately. 68 */ 69 70 #define VFIO_TYPE (';') 71 #define VFIO_BASE 100 72 73 /* 74 * For extension of INFO ioctls, VFIO makes use of a capability chain 75 * designed after PCI/e capabilities. A flag bit indicates whether 76 * this capability chain is supported and a field defined in the fixed 77 * structure defines the offset of the first capability in the chain. 78 * This field is only valid when the corresponding bit in the flags 79 * bitmap is set. This offset field is relative to the start of the 80 * INFO buffer, as is the next field within each capability header. 81 * The id within the header is a shared address space per INFO ioctl, 82 * while the version field is specific to the capability id. The 83 * contents following the header are specific to the capability id. 84 */ 85 struct vfio_info_cap_header { 86 __u16 id; /* Identifies capability */ 87 __u16 version; /* Version specific to the capability ID */ 88 __u32 next; /* Offset of next capability */ 89 }; 90 91 /* 92 * Callers of INFO ioctls passing insufficiently sized buffers will see 93 * the capability chain flag bit set, a zero value for the first capability 94 * offset (if available within the provided argsz), and argsz will be 95 * updated to report the necessary buffer size. For compatibility, the 96 * INFO ioctl will not report error in this case, but the capability chain 97 * will not be available. 98 */ 99 100 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */ 101 102 /** 103 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0) 104 * 105 * Report the version of the VFIO API. This allows us to bump the entire 106 * API version should we later need to add or change features in incompatible 107 * ways. 108 * Return: VFIO_API_VERSION 109 * Availability: Always 110 */ 111 #define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0) 112 113 /** 114 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32) 115 * 116 * Check whether an extension is supported. 117 * Return: 0 if not supported, 1 (or some other positive integer) if supported. 118 * Availability: Always 119 */ 120 #define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1) 121 122 /** 123 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32) 124 * 125 * Set the iommu to the given type. The type must be supported by an 126 * iommu driver as verified by calling CHECK_EXTENSION using the same 127 * type. A group must be set to this file descriptor before this 128 * ioctl is available. The IOMMU interfaces enabled by this call are 129 * specific to the value set. 130 * Return: 0 on success, -errno on failure 131 * Availability: When VFIO group attached 132 */ 133 #define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2) 134 135 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */ 136 137 /** 138 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3, 139 * struct vfio_group_status) 140 * 141 * Retrieve information about the group. Fills in provided 142 * struct vfio_group_info. Caller sets argsz. 143 * Return: 0 on succes, -errno on failure. 144 * Availability: Always 145 */ 146 struct vfio_group_status { 147 __u32 argsz; 148 __u32 flags; 149 #define VFIO_GROUP_FLAGS_VIABLE (1 << 0) 150 #define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1) 151 }; 152 #define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3) 153 154 /** 155 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32) 156 * 157 * Set the container for the VFIO group to the open VFIO file 158 * descriptor provided. Groups may only belong to a single 159 * container. Containers may, at their discretion, support multiple 160 * groups. Only when a container is set are all of the interfaces 161 * of the VFIO file descriptor and the VFIO group file descriptor 162 * available to the user. 163 * Return: 0 on success, -errno on failure. 164 * Availability: Always 165 */ 166 #define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4) 167 168 /** 169 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5) 170 * 171 * Remove the group from the attached container. This is the 172 * opposite of the SET_CONTAINER call and returns the group to 173 * an initial state. All device file descriptors must be released 174 * prior to calling this interface. When removing the last group 175 * from a container, the IOMMU will be disabled and all state lost, 176 * effectively also returning the VFIO file descriptor to an initial 177 * state. 178 * Return: 0 on success, -errno on failure. 179 * Availability: When attached to container 180 */ 181 #define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5) 182 183 /** 184 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char) 185 * 186 * Return a new file descriptor for the device object described by 187 * the provided string. The string should match a device listed in 188 * the devices subdirectory of the IOMMU group sysfs entry. The 189 * group containing the device must already be added to this context. 190 * Return: new file descriptor on success, -errno on failure. 191 * Availability: When attached to container 192 */ 193 #define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6) 194 195 /* --------------- IOCTLs for DEVICE file descriptors --------------- */ 196 197 /** 198 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7, 199 * struct vfio_device_info) 200 * 201 * Retrieve information about the device. Fills in provided 202 * struct vfio_device_info. Caller sets argsz. 203 * Return: 0 on success, -errno on failure. 204 */ 205 struct vfio_device_info { 206 __u32 argsz; 207 __u32 flags; 208 #define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */ 209 #define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */ 210 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2) /* vfio-platform device */ 211 #define VFIO_DEVICE_FLAGS_AMBA (1 << 3) /* vfio-amba device */ 212 #define VFIO_DEVICE_FLAGS_CCW (1 << 4) /* vfio-ccw device */ 213 #define VFIO_DEVICE_FLAGS_AP (1 << 5) /* vfio-ap device */ 214 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6) /* vfio-fsl-mc device */ 215 #define VFIO_DEVICE_FLAGS_CAPS (1 << 7) /* Info supports caps */ 216 __u32 num_regions; /* Max region index + 1 */ 217 __u32 num_irqs; /* Max IRQ index + 1 */ 218 __u32 cap_offset; /* Offset within info struct of first cap */ 219 }; 220 #define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7) 221 222 /* 223 * Vendor driver using Mediated device framework should provide device_api 224 * attribute in supported type attribute groups. Device API string should be one 225 * of the following corresponding to device flags in vfio_device_info structure. 226 */ 227 228 #define VFIO_DEVICE_API_PCI_STRING "vfio-pci" 229 #define VFIO_DEVICE_API_PLATFORM_STRING "vfio-platform" 230 #define VFIO_DEVICE_API_AMBA_STRING "vfio-amba" 231 #define VFIO_DEVICE_API_CCW_STRING "vfio-ccw" 232 #define VFIO_DEVICE_API_AP_STRING "vfio-ap" 233 234 /* 235 * The following capabilities are unique to s390 zPCI devices. Their contents 236 * are further-defined in vfio_zdev.h 237 */ 238 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE 1 239 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP 2 240 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL 3 241 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP 4 242 243 /* 244 * The following VFIO_DEVICE_INFO capability reports support for PCIe AtomicOp 245 * completion to the root bus with supported widths provided via flags. 246 */ 247 #define VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP 5 248 struct vfio_device_info_cap_pci_atomic_comp { 249 struct vfio_info_cap_header header; 250 __u32 flags; 251 #define VFIO_PCI_ATOMIC_COMP32 (1 << 0) 252 #define VFIO_PCI_ATOMIC_COMP64 (1 << 1) 253 #define VFIO_PCI_ATOMIC_COMP128 (1 << 2) 254 __u32 reserved; 255 }; 256 257 /** 258 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8, 259 * struct vfio_region_info) 260 * 261 * Retrieve information about a device region. Caller provides 262 * struct vfio_region_info with index value set. Caller sets argsz. 263 * Implementation of region mapping is bus driver specific. This is 264 * intended to describe MMIO, I/O port, as well as bus specific 265 * regions (ex. PCI config space). Zero sized regions may be used 266 * to describe unimplemented regions (ex. unimplemented PCI BARs). 267 * Return: 0 on success, -errno on failure. 268 */ 269 struct vfio_region_info { 270 __u32 argsz; 271 __u32 flags; 272 #define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */ 273 #define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */ 274 #define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */ 275 #define VFIO_REGION_INFO_FLAG_CAPS (1 << 3) /* Info supports caps */ 276 __u32 index; /* Region index */ 277 __u32 cap_offset; /* Offset within info struct of first cap */ 278 __u64 size; /* Region size (bytes) */ 279 __u64 offset; /* Region offset from start of device fd */ 280 }; 281 #define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8) 282 283 /* 284 * The sparse mmap capability allows finer granularity of specifying areas 285 * within a region with mmap support. When specified, the user should only 286 * mmap the offset ranges specified by the areas array. mmaps outside of the 287 * areas specified may fail (such as the range covering a PCI MSI-X table) or 288 * may result in improper device behavior. 289 * 290 * The structures below define version 1 of this capability. 291 */ 292 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP 1 293 294 struct vfio_region_sparse_mmap_area { 295 __u64 offset; /* Offset of mmap'able area within region */ 296 __u64 size; /* Size of mmap'able area */ 297 }; 298 299 struct vfio_region_info_cap_sparse_mmap { 300 struct vfio_info_cap_header header; 301 __u32 nr_areas; 302 __u32 reserved; 303 struct vfio_region_sparse_mmap_area areas[]; 304 }; 305 306 /* 307 * The device specific type capability allows regions unique to a specific 308 * device or class of devices to be exposed. This helps solve the problem for 309 * vfio bus drivers of defining which region indexes correspond to which region 310 * on the device, without needing to resort to static indexes, as done by 311 * vfio-pci. For instance, if we were to go back in time, we might remove 312 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes 313 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd 314 * make a "VGA" device specific type to describe the VGA access space. This 315 * means that non-VGA devices wouldn't need to waste this index, and thus the 316 * address space associated with it due to implementation of device file 317 * descriptor offsets in vfio-pci. 318 * 319 * The current implementation is now part of the user ABI, so we can't use this 320 * for VGA, but there are other upcoming use cases, such as opregions for Intel 321 * IGD devices and framebuffers for vGPU devices. We missed VGA, but we'll 322 * use this for future additions. 323 * 324 * The structure below defines version 1 of this capability. 325 */ 326 #define VFIO_REGION_INFO_CAP_TYPE 2 327 328 struct vfio_region_info_cap_type { 329 struct vfio_info_cap_header header; 330 __u32 type; /* global per bus driver */ 331 __u32 subtype; /* type specific */ 332 }; 333 334 /* 335 * List of region types, global per bus driver. 336 * If you introduce a new type, please add it here. 337 */ 338 339 /* PCI region type containing a PCI vendor part */ 340 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE (1 << 31) 341 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff) 342 #define VFIO_REGION_TYPE_GFX (1) 343 #define VFIO_REGION_TYPE_CCW (2) 344 #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED (3) 345 346 /* sub-types for VFIO_REGION_TYPE_PCI_* */ 347 348 /* 8086 vendor PCI sub-types */ 349 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION (1) 350 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG (2) 351 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG (3) 352 353 /* 10de vendor PCI sub-types */ 354 /* 355 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space. 356 * 357 * Deprecated, region no longer provided 358 */ 359 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM (1) 360 361 /* 1014 vendor PCI sub-types */ 362 /* 363 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU 364 * to do TLB invalidation on a GPU. 365 * 366 * Deprecated, region no longer provided 367 */ 368 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD (1) 369 370 /* sub-types for VFIO_REGION_TYPE_GFX */ 371 #define VFIO_REGION_SUBTYPE_GFX_EDID (1) 372 373 /** 374 * struct vfio_region_gfx_edid - EDID region layout. 375 * 376 * Set display link state and EDID blob. 377 * 378 * The EDID blob has monitor information such as brand, name, serial 379 * number, physical size, supported video modes and more. 380 * 381 * This special region allows userspace (typically qemu) set a virtual 382 * EDID for the virtual monitor, which allows a flexible display 383 * configuration. 384 * 385 * For the edid blob spec look here: 386 * https://en.wikipedia.org/wiki/Extended_Display_Identification_Data 387 * 388 * On linux systems you can find the EDID blob in sysfs: 389 * /sys/class/drm/${card}/${connector}/edid 390 * 391 * You can use the edid-decode ulility (comes with xorg-x11-utils) to 392 * decode the EDID blob. 393 * 394 * @edid_offset: location of the edid blob, relative to the 395 * start of the region (readonly). 396 * @edid_max_size: max size of the edid blob (readonly). 397 * @edid_size: actual edid size (read/write). 398 * @link_state: display link state (read/write). 399 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on. 400 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off. 401 * @max_xres: max display width (0 == no limitation, readonly). 402 * @max_yres: max display height (0 == no limitation, readonly). 403 * 404 * EDID update protocol: 405 * (1) set link-state to down. 406 * (2) update edid blob and size. 407 * (3) set link-state to up. 408 */ 409 struct vfio_region_gfx_edid { 410 __u32 edid_offset; 411 __u32 edid_max_size; 412 __u32 edid_size; 413 __u32 max_xres; 414 __u32 max_yres; 415 __u32 link_state; 416 #define VFIO_DEVICE_GFX_LINK_STATE_UP 1 417 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN 2 418 }; 419 420 /* sub-types for VFIO_REGION_TYPE_CCW */ 421 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1) 422 #define VFIO_REGION_SUBTYPE_CCW_SCHIB (2) 423 #define VFIO_REGION_SUBTYPE_CCW_CRW (3) 424 425 /* sub-types for VFIO_REGION_TYPE_MIGRATION */ 426 #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1) 427 428 struct vfio_device_migration_info { 429 __u32 device_state; /* VFIO device state */ 430 #define VFIO_DEVICE_STATE_V1_STOP (0) 431 #define VFIO_DEVICE_STATE_V1_RUNNING (1 << 0) 432 #define VFIO_DEVICE_STATE_V1_SAVING (1 << 1) 433 #define VFIO_DEVICE_STATE_V1_RESUMING (1 << 2) 434 #define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_V1_RUNNING | \ 435 VFIO_DEVICE_STATE_V1_SAVING | \ 436 VFIO_DEVICE_STATE_V1_RESUMING) 437 438 #define VFIO_DEVICE_STATE_VALID(state) \ 439 (state & VFIO_DEVICE_STATE_V1_RESUMING ? \ 440 (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1) 441 442 #define VFIO_DEVICE_STATE_IS_ERROR(state) \ 443 ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \ 444 VFIO_DEVICE_STATE_V1_RESUMING)) 445 446 #define VFIO_DEVICE_STATE_SET_ERROR(state) \ 447 ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \ 448 VFIO_DEVICE_STATE_V1_RESUMING) 449 450 __u32 reserved; 451 __u64 pending_bytes; 452 __u64 data_offset; 453 __u64 data_size; 454 }; 455 456 /* 457 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped 458 * which allows direct access to non-MSIX registers which happened to be within 459 * the same system page. 460 * 461 * Even though the userspace gets direct access to the MSIX data, the existing 462 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration. 463 */ 464 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE 3 465 466 /* 467 * Capability with compressed real address (aka SSA - small system address) 468 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing 469 * and by the userspace to associate a NVLink bridge with a GPU. 470 * 471 * Deprecated, capability no longer provided 472 */ 473 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT 4 474 475 struct vfio_region_info_cap_nvlink2_ssatgt { 476 struct vfio_info_cap_header header; 477 __u64 tgt; 478 }; 479 480 /* 481 * Capability with an NVLink link speed. The value is read by 482 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed" 483 * property in the device tree. The value is fixed in the hardware 484 * and failing to provide the correct value results in the link 485 * not working with no indication from the driver why. 486 * 487 * Deprecated, capability no longer provided 488 */ 489 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD 5 490 491 struct vfio_region_info_cap_nvlink2_lnkspd { 492 struct vfio_info_cap_header header; 493 __u32 link_speed; 494 __u32 __pad; 495 }; 496 497 /** 498 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9, 499 * struct vfio_irq_info) 500 * 501 * Retrieve information about a device IRQ. Caller provides 502 * struct vfio_irq_info with index value set. Caller sets argsz. 503 * Implementation of IRQ mapping is bus driver specific. Indexes 504 * using multiple IRQs are primarily intended to support MSI-like 505 * interrupt blocks. Zero count irq blocks may be used to describe 506 * unimplemented interrupt types. 507 * 508 * The EVENTFD flag indicates the interrupt index supports eventfd based 509 * signaling. 510 * 511 * The MASKABLE flags indicates the index supports MASK and UNMASK 512 * actions described below. 513 * 514 * AUTOMASKED indicates that after signaling, the interrupt line is 515 * automatically masked by VFIO and the user needs to unmask the line 516 * to receive new interrupts. This is primarily intended to distinguish 517 * level triggered interrupts. 518 * 519 * The NORESIZE flag indicates that the interrupt lines within the index 520 * are setup as a set and new subindexes cannot be enabled without first 521 * disabling the entire index. This is used for interrupts like PCI MSI 522 * and MSI-X where the driver may only use a subset of the available 523 * indexes, but VFIO needs to enable a specific number of vectors 524 * upfront. In the case of MSI-X, where the user can enable MSI-X and 525 * then add and unmask vectors, it's up to userspace to make the decision 526 * whether to allocate the maximum supported number of vectors or tear 527 * down setup and incrementally increase the vectors as each is enabled. 528 * Absence of the NORESIZE flag indicates that vectors can be enabled 529 * and disabled dynamically without impacting other vectors within the 530 * index. 531 */ 532 struct vfio_irq_info { 533 __u32 argsz; 534 __u32 flags; 535 #define VFIO_IRQ_INFO_EVENTFD (1 << 0) 536 #define VFIO_IRQ_INFO_MASKABLE (1 << 1) 537 #define VFIO_IRQ_INFO_AUTOMASKED (1 << 2) 538 #define VFIO_IRQ_INFO_NORESIZE (1 << 3) 539 __u32 index; /* IRQ index */ 540 __u32 count; /* Number of IRQs within this index */ 541 }; 542 #define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9) 543 544 /** 545 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set) 546 * 547 * Set signaling, masking, and unmasking of interrupts. Caller provides 548 * struct vfio_irq_set with all fields set. 'start' and 'count' indicate 549 * the range of subindexes being specified. 550 * 551 * The DATA flags specify the type of data provided. If DATA_NONE, the 552 * operation performs the specified action immediately on the specified 553 * interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]: 554 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1. 555 * 556 * DATA_BOOL allows sparse support for the same on arrays of interrupts. 557 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]): 558 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3, 559 * data = {1,0,1} 560 * 561 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd. 562 * A value of -1 can be used to either de-assign interrupts if already 563 * assigned or skip un-assigned interrupts. For example, to set an eventfd 564 * to be trigger for interrupts [0,0] and [0,2]: 565 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3, 566 * data = {fd1, -1, fd2} 567 * If index [0,1] is previously set, two count = 1 ioctls calls would be 568 * required to set [0,0] and [0,2] without changing [0,1]. 569 * 570 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used 571 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing 572 * from userspace (ie. simulate hardware triggering). 573 * 574 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER 575 * enables the interrupt index for the device. Individual subindex interrupts 576 * can be disabled using the -1 value for DATA_EVENTFD or the index can be 577 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0. 578 * 579 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while 580 * ACTION_TRIGGER specifies kernel->user signaling. 581 */ 582 struct vfio_irq_set { 583 __u32 argsz; 584 __u32 flags; 585 #define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */ 586 #define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */ 587 #define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */ 588 #define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */ 589 #define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */ 590 #define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */ 591 __u32 index; 592 __u32 start; 593 __u32 count; 594 __u8 data[]; 595 }; 596 #define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10) 597 598 #define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \ 599 VFIO_IRQ_SET_DATA_BOOL | \ 600 VFIO_IRQ_SET_DATA_EVENTFD) 601 #define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \ 602 VFIO_IRQ_SET_ACTION_UNMASK | \ 603 VFIO_IRQ_SET_ACTION_TRIGGER) 604 /** 605 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11) 606 * 607 * Reset a device. 608 */ 609 #define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11) 610 611 /* 612 * The VFIO-PCI bus driver makes use of the following fixed region and 613 * IRQ index mapping. Unimplemented regions return a size of zero. 614 * Unimplemented IRQ types return a count of zero. 615 */ 616 617 enum { 618 VFIO_PCI_BAR0_REGION_INDEX, 619 VFIO_PCI_BAR1_REGION_INDEX, 620 VFIO_PCI_BAR2_REGION_INDEX, 621 VFIO_PCI_BAR3_REGION_INDEX, 622 VFIO_PCI_BAR4_REGION_INDEX, 623 VFIO_PCI_BAR5_REGION_INDEX, 624 VFIO_PCI_ROM_REGION_INDEX, 625 VFIO_PCI_CONFIG_REGION_INDEX, 626 /* 627 * Expose VGA regions defined for PCI base class 03, subclass 00. 628 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df 629 * as well as the MMIO range 0xa0000 to 0xbffff. Each implemented 630 * range is found at it's identity mapped offset from the region 631 * offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas 632 * between described ranges are unimplemented. 633 */ 634 VFIO_PCI_VGA_REGION_INDEX, 635 VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */ 636 /* device specific cap to define content. */ 637 }; 638 639 enum { 640 VFIO_PCI_INTX_IRQ_INDEX, 641 VFIO_PCI_MSI_IRQ_INDEX, 642 VFIO_PCI_MSIX_IRQ_INDEX, 643 VFIO_PCI_ERR_IRQ_INDEX, 644 VFIO_PCI_REQ_IRQ_INDEX, 645 VFIO_PCI_NUM_IRQS 646 }; 647 648 /* 649 * The vfio-ccw bus driver makes use of the following fixed region and 650 * IRQ index mapping. Unimplemented regions return a size of zero. 651 * Unimplemented IRQ types return a count of zero. 652 */ 653 654 enum { 655 VFIO_CCW_CONFIG_REGION_INDEX, 656 VFIO_CCW_NUM_REGIONS 657 }; 658 659 enum { 660 VFIO_CCW_IO_IRQ_INDEX, 661 VFIO_CCW_CRW_IRQ_INDEX, 662 VFIO_CCW_REQ_IRQ_INDEX, 663 VFIO_CCW_NUM_IRQS 664 }; 665 666 /** 667 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12, 668 * struct vfio_pci_hot_reset_info) 669 * 670 * Return: 0 on success, -errno on failure: 671 * -enospc = insufficient buffer, -enodev = unsupported for device. 672 */ 673 struct vfio_pci_dependent_device { 674 __u32 group_id; 675 __u16 segment; 676 __u8 bus; 677 __u8 devfn; /* Use PCI_SLOT/PCI_FUNC */ 678 }; 679 680 struct vfio_pci_hot_reset_info { 681 __u32 argsz; 682 __u32 flags; 683 __u32 count; 684 struct vfio_pci_dependent_device devices[]; 685 }; 686 687 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 688 689 /** 690 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13, 691 * struct vfio_pci_hot_reset) 692 * 693 * Return: 0 on success, -errno on failure. 694 */ 695 struct vfio_pci_hot_reset { 696 __u32 argsz; 697 __u32 flags; 698 __u32 count; 699 __s32 group_fds[]; 700 }; 701 702 #define VFIO_DEVICE_PCI_HOT_RESET _IO(VFIO_TYPE, VFIO_BASE + 13) 703 704 /** 705 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14, 706 * struct vfio_device_query_gfx_plane) 707 * 708 * Set the drm_plane_type and flags, then retrieve the gfx plane info. 709 * 710 * flags supported: 711 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set 712 * to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no 713 * support for dma-buf. 714 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set 715 * to ask if the mdev supports region. 0 on support, -EINVAL on no 716 * support for region. 717 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set 718 * with each call to query the plane info. 719 * - Others are invalid and return -EINVAL. 720 * 721 * Note: 722 * 1. Plane could be disabled by guest. In that case, success will be 723 * returned with zero-initialized drm_format, size, width and height 724 * fields. 725 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available 726 * 727 * Return: 0 on success, -errno on other failure. 728 */ 729 struct vfio_device_gfx_plane_info { 730 __u32 argsz; 731 __u32 flags; 732 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0) 733 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1) 734 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2) 735 /* in */ 736 __u32 drm_plane_type; /* type of plane: DRM_PLANE_TYPE_* */ 737 /* out */ 738 __u32 drm_format; /* drm format of plane */ 739 __u64 drm_format_mod; /* tiled mode */ 740 __u32 width; /* width of plane */ 741 __u32 height; /* height of plane */ 742 __u32 stride; /* stride of plane */ 743 __u32 size; /* size of plane in bytes, align on page*/ 744 __u32 x_pos; /* horizontal position of cursor plane */ 745 __u32 y_pos; /* vertical position of cursor plane*/ 746 __u32 x_hot; /* horizontal position of cursor hotspot */ 747 __u32 y_hot; /* vertical position of cursor hotspot */ 748 union { 749 __u32 region_index; /* region index */ 750 __u32 dmabuf_id; /* dma-buf id */ 751 }; 752 }; 753 754 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14) 755 756 /** 757 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32) 758 * 759 * Return a new dma-buf file descriptor for an exposed guest framebuffer 760 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_ 761 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer. 762 */ 763 764 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15) 765 766 /** 767 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16, 768 * struct vfio_device_ioeventfd) 769 * 770 * Perform a write to the device at the specified device fd offset, with 771 * the specified data and width when the provided eventfd is triggered. 772 * vfio bus drivers may not support this for all regions, for all widths, 773 * or at all. vfio-pci currently only enables support for BAR regions, 774 * excluding the MSI-X vector table. 775 * 776 * Return: 0 on success, -errno on failure. 777 */ 778 struct vfio_device_ioeventfd { 779 __u32 argsz; 780 __u32 flags; 781 #define VFIO_DEVICE_IOEVENTFD_8 (1 << 0) /* 1-byte write */ 782 #define VFIO_DEVICE_IOEVENTFD_16 (1 << 1) /* 2-byte write */ 783 #define VFIO_DEVICE_IOEVENTFD_32 (1 << 2) /* 4-byte write */ 784 #define VFIO_DEVICE_IOEVENTFD_64 (1 << 3) /* 8-byte write */ 785 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf) 786 __u64 offset; /* device fd offset of write */ 787 __u64 data; /* data to be written */ 788 __s32 fd; /* -1 for de-assignment */ 789 }; 790 791 #define VFIO_DEVICE_IOEVENTFD _IO(VFIO_TYPE, VFIO_BASE + 16) 792 793 /** 794 * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17, 795 * struct vfio_device_feature) 796 * 797 * Get, set, or probe feature data of the device. The feature is selected 798 * using the FEATURE_MASK portion of the flags field. Support for a feature 799 * can be probed by setting both the FEATURE_MASK and PROBE bits. A probe 800 * may optionally include the GET and/or SET bits to determine read vs write 801 * access of the feature respectively. Probing a feature will return success 802 * if the feature is supported and all of the optionally indicated GET/SET 803 * methods are supported. The format of the data portion of the structure is 804 * specific to the given feature. The data portion is not required for 805 * probing. GET and SET are mutually exclusive, except for use with PROBE. 806 * 807 * Return 0 on success, -errno on failure. 808 */ 809 struct vfio_device_feature { 810 __u32 argsz; 811 __u32 flags; 812 #define VFIO_DEVICE_FEATURE_MASK (0xffff) /* 16-bit feature index */ 813 #define VFIO_DEVICE_FEATURE_GET (1 << 16) /* Get feature into data[] */ 814 #define VFIO_DEVICE_FEATURE_SET (1 << 17) /* Set feature from data[] */ 815 #define VFIO_DEVICE_FEATURE_PROBE (1 << 18) /* Probe feature support */ 816 __u8 data[]; 817 }; 818 819 #define VFIO_DEVICE_FEATURE _IO(VFIO_TYPE, VFIO_BASE + 17) 820 821 /* 822 * Provide support for setting a PCI VF Token, which is used as a shared 823 * secret between PF and VF drivers. This feature may only be set on a 824 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing 825 * open VFs. Data provided when setting this feature is a 16-byte array 826 * (__u8 b[16]), representing a UUID. 827 */ 828 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0) 829 830 /* 831 * Indicates the device can support the migration API through 832 * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and 833 * ERROR states are always supported. Support for additional states is 834 * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be 835 * set. 836 * 837 * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and 838 * RESUMING are supported. 839 * 840 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P 841 * is supported in addition to the STOP_COPY states. 842 * 843 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that 844 * PRE_COPY is supported in addition to the STOP_COPY states. 845 * 846 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY 847 * means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported 848 * in addition to the STOP_COPY states. 849 * 850 * Other combinations of flags have behavior to be defined in the future. 851 */ 852 struct vfio_device_feature_migration { 853 __aligned_u64 flags; 854 #define VFIO_MIGRATION_STOP_COPY (1 << 0) 855 #define VFIO_MIGRATION_P2P (1 << 1) 856 #define VFIO_MIGRATION_PRE_COPY (1 << 2) 857 }; 858 #define VFIO_DEVICE_FEATURE_MIGRATION 1 859 860 /* 861 * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO 862 * device. The new state is supplied in device_state, see enum 863 * vfio_device_mig_state for details 864 * 865 * The kernel migration driver must fully transition the device to the new state 866 * value before the operation returns to the user. 867 * 868 * The kernel migration driver must not generate asynchronous device state 869 * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET 870 * ioctl as described above. 871 * 872 * If this function fails then current device_state may be the original 873 * operating state or some other state along the combination transition path. 874 * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt 875 * to return to the original state, or attempt to return to some other state 876 * such as RUNNING or STOP. 877 * 878 * If the new_state starts a new data transfer session then the FD associated 879 * with that session is returned in data_fd. The user is responsible to close 880 * this FD when it is finished. The user must consider the migration data stream 881 * carried over the FD to be opaque and must preserve the byte order of the 882 * stream. The user is not required to preserve buffer segmentation when writing 883 * the data stream during the RESUMING operation. 884 * 885 * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO 886 * device, data_fd will be -1. 887 */ 888 struct vfio_device_feature_mig_state { 889 __u32 device_state; /* From enum vfio_device_mig_state */ 890 __s32 data_fd; 891 }; 892 #define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2 893 894 /* 895 * The device migration Finite State Machine is described by the enum 896 * vfio_device_mig_state. Some of the FSM arcs will create a migration data 897 * transfer session by returning a FD, in this case the migration data will 898 * flow over the FD using read() and write() as discussed below. 899 * 900 * There are 5 states to support VFIO_MIGRATION_STOP_COPY: 901 * RUNNING - The device is running normally 902 * STOP - The device does not change the internal or external state 903 * STOP_COPY - The device internal state can be read out 904 * RESUMING - The device is stopped and is loading a new internal state 905 * ERROR - The device has failed and must be reset 906 * 907 * And optional states to support VFIO_MIGRATION_P2P: 908 * RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA 909 * And VFIO_MIGRATION_PRE_COPY: 910 * PRE_COPY - The device is running normally but tracking internal state 911 * changes 912 * And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY: 913 * PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA 914 * 915 * The FSM takes actions on the arcs between FSM states. The driver implements 916 * the following behavior for the FSM arcs: 917 * 918 * RUNNING_P2P -> STOP 919 * STOP_COPY -> STOP 920 * While in STOP the device must stop the operation of the device. The device 921 * must not generate interrupts, DMA, or any other change to external state. 922 * It must not change its internal state. When stopped the device and kernel 923 * migration driver must accept and respond to interaction to support external 924 * subsystems in the STOP state, for example PCI MSI-X and PCI config space. 925 * Failure by the user to restrict device access while in STOP must not result 926 * in error conditions outside the user context (ex. host system faults). 927 * 928 * The STOP_COPY arc will terminate a data transfer session. 929 * 930 * RESUMING -> STOP 931 * Leaving RESUMING terminates a data transfer session and indicates the 932 * device should complete processing of the data delivered by write(). The 933 * kernel migration driver should complete the incorporation of data written 934 * to the data transfer FD into the device internal state and perform 935 * final validity and consistency checking of the new device state. If the 936 * user provided data is found to be incomplete, inconsistent, or otherwise 937 * invalid, the migration driver must fail the SET_STATE ioctl and 938 * optionally go to the ERROR state as described below. 939 * 940 * While in STOP the device has the same behavior as other STOP states 941 * described above. 942 * 943 * To abort a RESUMING session the device must be reset. 944 * 945 * PRE_COPY -> RUNNING 946 * RUNNING_P2P -> RUNNING 947 * While in RUNNING the device is fully operational, the device may generate 948 * interrupts, DMA, respond to MMIO, all vfio device regions are functional, 949 * and the device may advance its internal state. 950 * 951 * The PRE_COPY arc will terminate a data transfer session. 952 * 953 * PRE_COPY_P2P -> RUNNING_P2P 954 * RUNNING -> RUNNING_P2P 955 * STOP -> RUNNING_P2P 956 * While in RUNNING_P2P the device is partially running in the P2P quiescent 957 * state defined below. 958 * 959 * The PRE_COPY_P2P arc will terminate a data transfer session. 960 * 961 * RUNNING -> PRE_COPY 962 * RUNNING_P2P -> PRE_COPY_P2P 963 * STOP -> STOP_COPY 964 * PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states 965 * which share a data transfer session. Moving between these states alters 966 * what is streamed in session, but does not terminate or otherwise affect 967 * the associated fd. 968 * 969 * These arcs begin the process of saving the device state and will return a 970 * new data_fd. The migration driver may perform actions such as enabling 971 * dirty logging of device state when entering PRE_COPY or PER_COPY_P2P. 972 * 973 * Each arc does not change the device operation, the device remains 974 * RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below 975 * in PRE_COPY_P2P -> STOP_COPY. 976 * 977 * PRE_COPY -> PRE_COPY_P2P 978 * Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above. 979 * However, while in the PRE_COPY_P2P state, the device is partially running 980 * in the P2P quiescent state defined below, like RUNNING_P2P. 981 * 982 * PRE_COPY_P2P -> PRE_COPY 983 * This arc allows returning the device to a full RUNNING behavior while 984 * continuing all the behaviors of PRE_COPY. 985 * 986 * PRE_COPY_P2P -> STOP_COPY 987 * While in the STOP_COPY state the device has the same behavior as STOP 988 * with the addition that the data transfers session continues to stream the 989 * migration state. End of stream on the FD indicates the entire device 990 * state has been transferred. 991 * 992 * The user should take steps to restrict access to vfio device regions while 993 * the device is in STOP_COPY or risk corruption of the device migration data 994 * stream. 995 * 996 * STOP -> RESUMING 997 * Entering the RESUMING state starts a process of restoring the device state 998 * and will return a new data_fd. The data stream fed into the data_fd should 999 * be taken from the data transfer output of a single FD during saving from 1000 * a compatible device. The migration driver may alter/reset the internal 1001 * device state for this arc if required to prepare the device to receive the 1002 * migration data. 1003 * 1004 * STOP_COPY -> PRE_COPY 1005 * STOP_COPY -> PRE_COPY_P2P 1006 * These arcs are not permitted and return error if requested. Future 1007 * revisions of this API may define behaviors for these arcs, in this case 1008 * support will be discoverable by a new flag in 1009 * VFIO_DEVICE_FEATURE_MIGRATION. 1010 * 1011 * any -> ERROR 1012 * ERROR cannot be specified as a device state, however any transition request 1013 * can be failed with an errno return and may then move the device_state into 1014 * ERROR. In this case the device was unable to execute the requested arc and 1015 * was also unable to restore the device to any valid device_state. 1016 * To recover from ERROR VFIO_DEVICE_RESET must be used to return the 1017 * device_state back to RUNNING. 1018 * 1019 * The optional peer to peer (P2P) quiescent state is intended to be a quiescent 1020 * state for the device for the purposes of managing multiple devices within a 1021 * user context where peer-to-peer DMA between devices may be active. The 1022 * RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating 1023 * any new P2P DMA transactions. If the device can identify P2P transactions 1024 * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration 1025 * driver must complete any such outstanding operations prior to completing the 1026 * FSM arc into a P2P state. For the purpose of specification the states 1027 * behave as though the device was fully running if not supported. Like while in 1028 * STOP or STOP_COPY the user must not touch the device, otherwise the state 1029 * can be exited. 1030 * 1031 * The remaining possible transitions are interpreted as combinations of the 1032 * above FSM arcs. As there are multiple paths through the FSM arcs the path 1033 * should be selected based on the following rules: 1034 * - Select the shortest path. 1035 * - The path cannot have saving group states as interior arcs, only 1036 * starting/end states. 1037 * Refer to vfio_mig_get_next_state() for the result of the algorithm. 1038 * 1039 * The automatic transit through the FSM arcs that make up the combination 1040 * transition is invisible to the user. When working with combination arcs the 1041 * user may see any step along the path in the device_state if SET_STATE 1042 * fails. When handling these types of errors users should anticipate future 1043 * revisions of this protocol using new states and those states becoming 1044 * visible in this case. 1045 * 1046 * The optional states cannot be used with SET_STATE if the device does not 1047 * support them. The user can discover if these states are supported by using 1048 * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can 1049 * avoid knowing about these optional states if the kernel driver supports them. 1050 * 1051 * Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY 1052 * is not present. 1053 */ 1054 enum vfio_device_mig_state { 1055 VFIO_DEVICE_STATE_ERROR = 0, 1056 VFIO_DEVICE_STATE_STOP = 1, 1057 VFIO_DEVICE_STATE_RUNNING = 2, 1058 VFIO_DEVICE_STATE_STOP_COPY = 3, 1059 VFIO_DEVICE_STATE_RESUMING = 4, 1060 VFIO_DEVICE_STATE_RUNNING_P2P = 5, 1061 VFIO_DEVICE_STATE_PRE_COPY = 6, 1062 VFIO_DEVICE_STATE_PRE_COPY_P2P = 7, 1063 }; 1064 1065 /** 1066 * VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21) 1067 * 1068 * This ioctl is used on the migration data FD in the precopy phase of the 1069 * migration data transfer. It returns an estimate of the current data sizes 1070 * remaining to be transferred. It allows the user to judge when it is 1071 * appropriate to leave PRE_COPY for STOP_COPY. 1072 * 1073 * This ioctl is valid only in PRE_COPY states and kernel driver should 1074 * return -EINVAL from any other migration state. 1075 * 1076 * The vfio_precopy_info data structure returned by this ioctl provides 1077 * estimates of data available from the device during the PRE_COPY states. 1078 * This estimate is split into two categories, initial_bytes and 1079 * dirty_bytes. 1080 * 1081 * The initial_bytes field indicates the amount of initial precopy 1082 * data available from the device. This field should have a non-zero initial 1083 * value and decrease as migration data is read from the device. 1084 * It is recommended to leave PRE_COPY for STOP_COPY only after this field 1085 * reaches zero. Leaving PRE_COPY earlier might make things slower. 1086 * 1087 * The dirty_bytes field tracks device state changes relative to data 1088 * previously retrieved. This field starts at zero and may increase as 1089 * the internal device state is modified or decrease as that modified 1090 * state is read from the device. 1091 * 1092 * Userspace may use the combination of these fields to estimate the 1093 * potential data size available during the PRE_COPY phases, as well as 1094 * trends relative to the rate the device is dirtying its internal 1095 * state, but these fields are not required to have any bearing relative 1096 * to the data size available during the STOP_COPY phase. 1097 * 1098 * Drivers have a lot of flexibility in when and what they transfer during the 1099 * PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO. 1100 * 1101 * During pre-copy the migration data FD has a temporary "end of stream" that is 1102 * reached when both initial_bytes and dirty_byte are zero. For instance, this 1103 * may indicate that the device is idle and not currently dirtying any internal 1104 * state. When read() is done on this temporary end of stream the kernel driver 1105 * should return ENOMSG from read(). Userspace can wait for more data (which may 1106 * never come) by using poll. 1107 * 1108 * Once in STOP_COPY the migration data FD has a permanent end of stream 1109 * signaled in the usual way by read() always returning 0 and poll always 1110 * returning readable. ENOMSG may not be returned in STOP_COPY. 1111 * Support for this ioctl is mandatory if a driver claims to support 1112 * VFIO_MIGRATION_PRE_COPY. 1113 * 1114 * Return: 0 on success, -1 and errno set on failure. 1115 */ 1116 struct vfio_precopy_info { 1117 __u32 argsz; 1118 __u32 flags; 1119 __aligned_u64 initial_bytes; 1120 __aligned_u64 dirty_bytes; 1121 }; 1122 1123 #define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21) 1124 1125 /* 1126 * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power 1127 * state with the platform-based power management. Device use of lower power 1128 * states depends on factors managed by the runtime power management core, 1129 * including system level support and coordinating support among dependent 1130 * devices. Enabling device low power entry does not guarantee lower power 1131 * usage by the device, nor is a mechanism provided through this feature to 1132 * know the current power state of the device. If any device access happens 1133 * (either from the host or through the vfio uAPI) when the device is in the 1134 * low power state, then the host will move the device out of the low power 1135 * state as necessary prior to the access. Once the access is completed, the 1136 * device may re-enter the low power state. For single shot low power support 1137 * with wake-up notification, see 1138 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below. Access to mmap'd 1139 * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after 1140 * calling LOW_POWER_EXIT. 1141 */ 1142 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3 1143 1144 /* 1145 * This device feature has the same behavior as 1146 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user 1147 * provides an eventfd for wake-up notification. When the device moves out of 1148 * the low power state for the wake-up, the host will not allow the device to 1149 * re-enter a low power state without a subsequent user call to one of the low 1150 * power entry device feature IOCTLs. Access to mmap'd device regions is 1151 * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the 1152 * low power exit. The low power exit can happen either through LOW_POWER_EXIT 1153 * or through any other access (where the wake-up notification has been 1154 * generated). The access to mmap'd device regions will not trigger low power 1155 * exit. 1156 * 1157 * The notification through the provided eventfd will be generated only when 1158 * the device has entered and is resumed from a low power state after 1159 * calling this device feature IOCTL. A device that has not entered low power 1160 * state, as managed through the runtime power management core, will not 1161 * generate a notification through the provided eventfd on access. Calling the 1162 * LOW_POWER_EXIT feature is optional in the case where notification has been 1163 * signaled on the provided eventfd that a resume from low power has occurred. 1164 */ 1165 struct vfio_device_low_power_entry_with_wakeup { 1166 __s32 wakeup_eventfd; 1167 __u32 reserved; 1168 }; 1169 1170 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4 1171 1172 /* 1173 * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as 1174 * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or 1175 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features. 1176 * This device feature IOCTL may itself generate a wakeup eventfd notification 1177 * in the latter case if the device had previously entered a low power state. 1178 */ 1179 #define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5 1180 1181 /* 1182 * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging. 1183 * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports 1184 * DMA logging. 1185 * 1186 * DMA logging allows a device to internally record what DMAs the device is 1187 * initiating and report them back to userspace. It is part of the VFIO 1188 * migration infrastructure that allows implementing dirty page tracking 1189 * during the pre copy phase of live migration. Only DMA WRITEs are logged, 1190 * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. 1191 * 1192 * When DMA logging is started a range of IOVAs to monitor is provided and the 1193 * device can optimize its logging to cover only the IOVA range given. Each 1194 * DMA that the device initiates inside the range will be logged by the device 1195 * for later retrieval. 1196 * 1197 * page_size is an input that hints what tracking granularity the device 1198 * should try to achieve. If the device cannot do the hinted page size then 1199 * it's the driver choice which page size to pick based on its support. 1200 * On output the device will return the page size it selected. 1201 * 1202 * ranges is a pointer to an array of 1203 * struct vfio_device_feature_dma_logging_range. 1204 * 1205 * The core kernel code guarantees to support by minimum num_ranges that fit 1206 * into a single kernel page. User space can try higher values but should give 1207 * up if the above can't be achieved as of some driver limitations. 1208 * 1209 * A single call to start device DMA logging can be issued and a matching stop 1210 * should follow at the end. Another start is not allowed in the meantime. 1211 */ 1212 struct vfio_device_feature_dma_logging_control { 1213 __aligned_u64 page_size; 1214 __u32 num_ranges; 1215 __u32 __reserved; 1216 __aligned_u64 ranges; 1217 }; 1218 1219 struct vfio_device_feature_dma_logging_range { 1220 __aligned_u64 iova; 1221 __aligned_u64 length; 1222 }; 1223 1224 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6 1225 1226 /* 1227 * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started 1228 * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START 1229 */ 1230 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7 1231 1232 /* 1233 * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log 1234 * 1235 * Query the device's DMA log for written pages within the given IOVA range. 1236 * During querying the log is cleared for the IOVA range. 1237 * 1238 * bitmap is a pointer to an array of u64s that will hold the output bitmap 1239 * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits 1240 * is given by: 1241 * bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64)) 1242 * 1243 * The input page_size can be any power of two value and does not have to 1244 * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver 1245 * will format its internal logging to match the reporting page size, possibly 1246 * by replicating bits if the internal page size is lower than requested. 1247 * 1248 * The LOGGING_REPORT will only set bits in the bitmap and never clear or 1249 * perform any initialization of the user provided bitmap. 1250 * 1251 * If any error is returned userspace should assume that the dirty log is 1252 * corrupted. Error recovery is to consider all memory dirty and try to 1253 * restart the dirty tracking, or to abort/restart the whole migration. 1254 * 1255 * If DMA logging is not enabled, an error will be returned. 1256 * 1257 */ 1258 struct vfio_device_feature_dma_logging_report { 1259 __aligned_u64 iova; 1260 __aligned_u64 length; 1261 __aligned_u64 page_size; 1262 __aligned_u64 bitmap; 1263 }; 1264 1265 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8 1266 1267 /* 1268 * Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will 1269 * be required to complete stop copy. 1270 * 1271 * Note: Can be called on each device state. 1272 */ 1273 1274 struct vfio_device_feature_mig_data_size { 1275 __aligned_u64 stop_copy_length; 1276 }; 1277 1278 #define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9 1279 1280 /* -------- API for Type1 VFIO IOMMU -------- */ 1281 1282 /** 1283 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info) 1284 * 1285 * Retrieve information about the IOMMU object. Fills in provided 1286 * struct vfio_iommu_info. Caller sets argsz. 1287 * 1288 * XXX Should we do these by CHECK_EXTENSION too? 1289 */ 1290 struct vfio_iommu_type1_info { 1291 __u32 argsz; 1292 __u32 flags; 1293 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */ 1294 #define VFIO_IOMMU_INFO_CAPS (1 << 1) /* Info supports caps */ 1295 __u64 iova_pgsizes; /* Bitmap of supported page sizes */ 1296 __u32 cap_offset; /* Offset within info struct of first cap */ 1297 }; 1298 1299 /* 1300 * The IOVA capability allows to report the valid IOVA range(s) 1301 * excluding any non-relaxable reserved regions exposed by 1302 * devices attached to the container. Any DMA map attempt 1303 * outside the valid iova range will return error. 1304 * 1305 * The structures below define version 1 of this capability. 1306 */ 1307 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 1 1308 1309 struct vfio_iova_range { 1310 __u64 start; 1311 __u64 end; 1312 }; 1313 1314 struct vfio_iommu_type1_info_cap_iova_range { 1315 struct vfio_info_cap_header header; 1316 __u32 nr_iovas; 1317 __u32 reserved; 1318 struct vfio_iova_range iova_ranges[]; 1319 }; 1320 1321 /* 1322 * The migration capability allows to report supported features for migration. 1323 * 1324 * The structures below define version 1 of this capability. 1325 * 1326 * The existence of this capability indicates that IOMMU kernel driver supports 1327 * dirty page logging. 1328 * 1329 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty 1330 * page logging. 1331 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap 1332 * size in bytes that can be used by user applications when getting the dirty 1333 * bitmap. 1334 */ 1335 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 2 1336 1337 struct vfio_iommu_type1_info_cap_migration { 1338 struct vfio_info_cap_header header; 1339 __u32 flags; 1340 __u64 pgsize_bitmap; 1341 __u64 max_dirty_bitmap_size; /* in bytes */ 1342 }; 1343 1344 /* 1345 * The DMA available capability allows to report the current number of 1346 * simultaneously outstanding DMA mappings that are allowed. 1347 * 1348 * The structure below defines version 1 of this capability. 1349 * 1350 * avail: specifies the current number of outstanding DMA mappings allowed. 1351 */ 1352 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3 1353 1354 struct vfio_iommu_type1_info_dma_avail { 1355 struct vfio_info_cap_header header; 1356 __u32 avail; 1357 }; 1358 1359 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1360 1361 /** 1362 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map) 1363 * 1364 * Map process virtual addresses to IO virtual addresses using the 1365 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required. 1366 * 1367 * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova. The vaddr 1368 * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR. To 1369 * maintain memory consistency within the user application, the updated vaddr 1370 * must address the same memory object as originally mapped. Failure to do so 1371 * will result in user memory corruption and/or device misbehavior. iova and 1372 * size must match those in the original MAP_DMA call. Protection is not 1373 * changed, and the READ & WRITE flags must be 0. 1374 */ 1375 struct vfio_iommu_type1_dma_map { 1376 __u32 argsz; 1377 __u32 flags; 1378 #define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */ 1379 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */ 1380 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2) 1381 __u64 vaddr; /* Process virtual address */ 1382 __u64 iova; /* IO virtual address */ 1383 __u64 size; /* Size of mapping (bytes) */ 1384 }; 1385 1386 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13) 1387 1388 struct vfio_bitmap { 1389 __u64 pgsize; /* page size for bitmap in bytes */ 1390 __u64 size; /* in bytes */ 1391 __u64 __user *data; /* one bit per page */ 1392 }; 1393 1394 /** 1395 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14, 1396 * struct vfio_dma_unmap) 1397 * 1398 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap. 1399 * Caller sets argsz. The actual unmapped size is returned in the size 1400 * field. No guarantee is made to the user that arbitrary unmaps of iova 1401 * or size different from those used in the original mapping call will 1402 * succeed. 1403 * 1404 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap 1405 * before unmapping IO virtual addresses. When this flag is set, the user must 1406 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated 1407 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field. 1408 * A bit in the bitmap represents one page, of user provided page size in 1409 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set 1410 * indicates that the page at that offset from iova is dirty. A Bitmap of the 1411 * pages in the range of unmapped size is returned in the user-provided 1412 * vfio_bitmap.data. 1413 * 1414 * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses. iova and size 1415 * must be 0. This cannot be combined with the get-dirty-bitmap flag. 1416 * 1417 * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host 1418 * virtual addresses in the iova range. DMA to already-mapped pages continues. 1419 * Groups may not be added to the container while any addresses are invalid. 1420 * This cannot be combined with the get-dirty-bitmap flag. 1421 */ 1422 struct vfio_iommu_type1_dma_unmap { 1423 __u32 argsz; 1424 __u32 flags; 1425 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0) 1426 #define VFIO_DMA_UNMAP_FLAG_ALL (1 << 1) 1427 #define VFIO_DMA_UNMAP_FLAG_VADDR (1 << 2) 1428 __u64 iova; /* IO virtual address */ 1429 __u64 size; /* Size of mapping (bytes) */ 1430 __u8 data[]; 1431 }; 1432 1433 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14) 1434 1435 /* 1436 * IOCTLs to enable/disable IOMMU container usage. 1437 * No parameters are supported. 1438 */ 1439 #define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15) 1440 #define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16) 1441 1442 /** 1443 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17, 1444 * struct vfio_iommu_type1_dirty_bitmap) 1445 * IOCTL is used for dirty pages logging. 1446 * Caller should set flag depending on which operation to perform, details as 1447 * below: 1448 * 1449 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs 1450 * the IOMMU driver to log pages that are dirtied or potentially dirtied by 1451 * the device; designed to be used when a migration is in progress. Dirty pages 1452 * are logged until logging is disabled by user application by calling the IOCTL 1453 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag. 1454 * 1455 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs 1456 * the IOMMU driver to stop logging dirtied pages. 1457 * 1458 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set 1459 * returns the dirty pages bitmap for IOMMU container for a given IOVA range. 1460 * The user must specify the IOVA range and the pgsize through the structure 1461 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface 1462 * supports getting a bitmap of the smallest supported pgsize only and can be 1463 * modified in future to get a bitmap of any specified supported pgsize. The 1464 * user must provide a zeroed memory area for the bitmap memory and specify its 1465 * size in bitmap.size. One bit is used to represent one page consecutively 1466 * starting from iova offset. The user should provide page size in bitmap.pgsize 1467 * field. A bit set in the bitmap indicates that the page at that offset from 1468 * iova is dirty. The caller must set argsz to a value including the size of 1469 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the 1470 * actual bitmap. If dirty pages logging is not enabled, an error will be 1471 * returned. 1472 * 1473 * Only one of the flags _START, _STOP and _GET may be specified at a time. 1474 * 1475 */ 1476 struct vfio_iommu_type1_dirty_bitmap { 1477 __u32 argsz; 1478 __u32 flags; 1479 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0) 1480 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1) 1481 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2) 1482 __u8 data[]; 1483 }; 1484 1485 struct vfio_iommu_type1_dirty_bitmap_get { 1486 __u64 iova; /* IO virtual address */ 1487 __u64 size; /* Size of iova range */ 1488 struct vfio_bitmap bitmap; 1489 }; 1490 1491 #define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17) 1492 1493 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */ 1494 1495 /* 1496 * The SPAPR TCE DDW info struct provides the information about 1497 * the details of Dynamic DMA window capability. 1498 * 1499 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported. 1500 * @max_dynamic_windows_supported tells the maximum number of windows 1501 * which the platform can create. 1502 * @levels tells the maximum number of levels in multi-level IOMMU tables; 1503 * this allows splitting a table into smaller chunks which reduces 1504 * the amount of physically contiguous memory required for the table. 1505 */ 1506 struct vfio_iommu_spapr_tce_ddw_info { 1507 __u64 pgsizes; /* Bitmap of supported page sizes */ 1508 __u32 max_dynamic_windows_supported; 1509 __u32 levels; 1510 }; 1511 1512 /* 1513 * The SPAPR TCE info struct provides the information about the PCI bus 1514 * address ranges available for DMA, these values are programmed into 1515 * the hardware so the guest has to know that information. 1516 * 1517 * The DMA 32 bit window start is an absolute PCI bus address. 1518 * The IOVA address passed via map/unmap ioctls are absolute PCI bus 1519 * addresses too so the window works as a filter rather than an offset 1520 * for IOVA addresses. 1521 * 1522 * Flags supported: 1523 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows 1524 * (DDW) support is present. @ddw is only supported when DDW is present. 1525 */ 1526 struct vfio_iommu_spapr_tce_info { 1527 __u32 argsz; 1528 __u32 flags; 1529 #define VFIO_IOMMU_SPAPR_INFO_DDW (1 << 0) /* DDW supported */ 1530 __u32 dma32_window_start; /* 32 bit window start (bytes) */ 1531 __u32 dma32_window_size; /* 32 bit window size (bytes) */ 1532 struct vfio_iommu_spapr_tce_ddw_info ddw; 1533 }; 1534 1535 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1536 1537 /* 1538 * EEH PE operation struct provides ways to: 1539 * - enable/disable EEH functionality; 1540 * - unfreeze IO/DMA for frozen PE; 1541 * - read PE state; 1542 * - reset PE; 1543 * - configure PE; 1544 * - inject EEH error. 1545 */ 1546 struct vfio_eeh_pe_err { 1547 __u32 type; 1548 __u32 func; 1549 __u64 addr; 1550 __u64 mask; 1551 }; 1552 1553 struct vfio_eeh_pe_op { 1554 __u32 argsz; 1555 __u32 flags; 1556 __u32 op; 1557 union { 1558 struct vfio_eeh_pe_err err; 1559 }; 1560 }; 1561 1562 #define VFIO_EEH_PE_DISABLE 0 /* Disable EEH functionality */ 1563 #define VFIO_EEH_PE_ENABLE 1 /* Enable EEH functionality */ 1564 #define VFIO_EEH_PE_UNFREEZE_IO 2 /* Enable IO for frozen PE */ 1565 #define VFIO_EEH_PE_UNFREEZE_DMA 3 /* Enable DMA for frozen PE */ 1566 #define VFIO_EEH_PE_GET_STATE 4 /* PE state retrieval */ 1567 #define VFIO_EEH_PE_STATE_NORMAL 0 /* PE in functional state */ 1568 #define VFIO_EEH_PE_STATE_RESET 1 /* PE reset in progress */ 1569 #define VFIO_EEH_PE_STATE_STOPPED 2 /* Stopped DMA and IO */ 1570 #define VFIO_EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA only */ 1571 #define VFIO_EEH_PE_STATE_UNAVAIL 5 /* State unavailable */ 1572 #define VFIO_EEH_PE_RESET_DEACTIVATE 5 /* Deassert PE reset */ 1573 #define VFIO_EEH_PE_RESET_HOT 6 /* Assert hot reset */ 1574 #define VFIO_EEH_PE_RESET_FUNDAMENTAL 7 /* Assert fundamental reset */ 1575 #define VFIO_EEH_PE_CONFIGURE 8 /* PE configuration */ 1576 #define VFIO_EEH_PE_INJECT_ERR 9 /* Inject EEH error */ 1577 1578 #define VFIO_EEH_PE_OP _IO(VFIO_TYPE, VFIO_BASE + 21) 1579 1580 /** 1581 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory) 1582 * 1583 * Registers user space memory where DMA is allowed. It pins 1584 * user pages and does the locked memory accounting so 1585 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls 1586 * get faster. 1587 */ 1588 struct vfio_iommu_spapr_register_memory { 1589 __u32 argsz; 1590 __u32 flags; 1591 __u64 vaddr; /* Process virtual address */ 1592 __u64 size; /* Size of mapping (bytes) */ 1593 }; 1594 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 17) 1595 1596 /** 1597 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory) 1598 * 1599 * Unregisters user space memory registered with 1600 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY. 1601 * Uses vfio_iommu_spapr_register_memory for parameters. 1602 */ 1603 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 18) 1604 1605 /** 1606 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create) 1607 * 1608 * Creates an additional TCE table and programs it (sets a new DMA window) 1609 * to every IOMMU group in the container. It receives page shift, window 1610 * size and number of levels in the TCE table being created. 1611 * 1612 * It allocates and returns an offset on a PCI bus of the new DMA window. 1613 */ 1614 struct vfio_iommu_spapr_tce_create { 1615 __u32 argsz; 1616 __u32 flags; 1617 /* in */ 1618 __u32 page_shift; 1619 __u32 __resv1; 1620 __u64 window_size; 1621 __u32 levels; 1622 __u32 __resv2; 1623 /* out */ 1624 __u64 start_addr; 1625 }; 1626 #define VFIO_IOMMU_SPAPR_TCE_CREATE _IO(VFIO_TYPE, VFIO_BASE + 19) 1627 1628 /** 1629 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove) 1630 * 1631 * Unprograms a TCE table from all groups in the container and destroys it. 1632 * It receives a PCI bus offset as a window id. 1633 */ 1634 struct vfio_iommu_spapr_tce_remove { 1635 __u32 argsz; 1636 __u32 flags; 1637 /* in */ 1638 __u64 start_addr; 1639 }; 1640 #define VFIO_IOMMU_SPAPR_TCE_REMOVE _IO(VFIO_TYPE, VFIO_BASE + 20) 1641 1642 /* ***************************************************************** */ 1643 1644 #endif /* _UAPIVFIO_H */ 1645