1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* 3 * VFIO API definition 4 * 5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 6 * Author: Alex Williamson <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #ifndef _UAPIVFIO_H 13 #define _UAPIVFIO_H 14 15 #include <linux/types.h> 16 #include <linux/ioctl.h> 17 18 #define VFIO_API_VERSION 0 19 20 21 /* Kernel & User level defines for VFIO IOCTLs. */ 22 23 /* Extensions */ 24 25 #define VFIO_TYPE1_IOMMU 1 26 #define VFIO_SPAPR_TCE_IOMMU 2 27 #define VFIO_TYPE1v2_IOMMU 3 28 /* 29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping). This 30 * capability is subject to change as groups are added or removed. 31 */ 32 #define VFIO_DMA_CC_IOMMU 4 33 34 /* Check if EEH is supported */ 35 #define VFIO_EEH 5 36 37 /* Two-stage IOMMU */ 38 #define VFIO_TYPE1_NESTING_IOMMU 6 /* Implies v2 */ 39 40 #define VFIO_SPAPR_TCE_v2_IOMMU 7 41 42 /* 43 * The No-IOMMU IOMMU offers no translation or isolation for devices and 44 * supports no ioctls outside of VFIO_CHECK_EXTENSION. Use of VFIO's No-IOMMU 45 * code will taint the host kernel and should be used with extreme caution. 46 */ 47 #define VFIO_NOIOMMU_IOMMU 8 48 49 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */ 50 #define VFIO_UNMAP_ALL 9 51 52 /* 53 * Supports the vaddr flag for DMA map and unmap. Not supported for mediated 54 * devices, so this capability is subject to change as groups are added or 55 * removed. 56 */ 57 #define VFIO_UPDATE_VADDR 10 58 59 /* 60 * The IOCTL interface is designed for extensibility by embedding the 61 * structure length (argsz) and flags into structures passed between 62 * kernel and userspace. We therefore use the _IO() macro for these 63 * defines to avoid implicitly embedding a size into the ioctl request. 64 * As structure fields are added, argsz will increase to match and flag 65 * bits will be defined to indicate additional fields with valid data. 66 * It's *always* the caller's responsibility to indicate the size of 67 * the structure passed by setting argsz appropriately. 68 */ 69 70 #define VFIO_TYPE (';') 71 #define VFIO_BASE 100 72 73 /* 74 * For extension of INFO ioctls, VFIO makes use of a capability chain 75 * designed after PCI/e capabilities. A flag bit indicates whether 76 * this capability chain is supported and a field defined in the fixed 77 * structure defines the offset of the first capability in the chain. 78 * This field is only valid when the corresponding bit in the flags 79 * bitmap is set. This offset field is relative to the start of the 80 * INFO buffer, as is the next field within each capability header. 81 * The id within the header is a shared address space per INFO ioctl, 82 * while the version field is specific to the capability id. The 83 * contents following the header are specific to the capability id. 84 */ 85 struct vfio_info_cap_header { 86 __u16 id; /* Identifies capability */ 87 __u16 version; /* Version specific to the capability ID */ 88 __u32 next; /* Offset of next capability */ 89 }; 90 91 /* 92 * Callers of INFO ioctls passing insufficiently sized buffers will see 93 * the capability chain flag bit set, a zero value for the first capability 94 * offset (if available within the provided argsz), and argsz will be 95 * updated to report the necessary buffer size. For compatibility, the 96 * INFO ioctl will not report error in this case, but the capability chain 97 * will not be available. 98 */ 99 100 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */ 101 102 /** 103 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0) 104 * 105 * Report the version of the VFIO API. This allows us to bump the entire 106 * API version should we later need to add or change features in incompatible 107 * ways. 108 * Return: VFIO_API_VERSION 109 * Availability: Always 110 */ 111 #define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0) 112 113 /** 114 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32) 115 * 116 * Check whether an extension is supported. 117 * Return: 0 if not supported, 1 (or some other positive integer) if supported. 118 * Availability: Always 119 */ 120 #define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1) 121 122 /** 123 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32) 124 * 125 * Set the iommu to the given type. The type must be supported by an 126 * iommu driver as verified by calling CHECK_EXTENSION using the same 127 * type. A group must be set to this file descriptor before this 128 * ioctl is available. The IOMMU interfaces enabled by this call are 129 * specific to the value set. 130 * Return: 0 on success, -errno on failure 131 * Availability: When VFIO group attached 132 */ 133 #define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2) 134 135 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */ 136 137 /** 138 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3, 139 * struct vfio_group_status) 140 * 141 * Retrieve information about the group. Fills in provided 142 * struct vfio_group_info. Caller sets argsz. 143 * Return: 0 on succes, -errno on failure. 144 * Availability: Always 145 */ 146 struct vfio_group_status { 147 __u32 argsz; 148 __u32 flags; 149 #define VFIO_GROUP_FLAGS_VIABLE (1 << 0) 150 #define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1) 151 }; 152 #define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3) 153 154 /** 155 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32) 156 * 157 * Set the container for the VFIO group to the open VFIO file 158 * descriptor provided. Groups may only belong to a single 159 * container. Containers may, at their discretion, support multiple 160 * groups. Only when a container is set are all of the interfaces 161 * of the VFIO file descriptor and the VFIO group file descriptor 162 * available to the user. 163 * Return: 0 on success, -errno on failure. 164 * Availability: Always 165 */ 166 #define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4) 167 168 /** 169 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5) 170 * 171 * Remove the group from the attached container. This is the 172 * opposite of the SET_CONTAINER call and returns the group to 173 * an initial state. All device file descriptors must be released 174 * prior to calling this interface. When removing the last group 175 * from a container, the IOMMU will be disabled and all state lost, 176 * effectively also returning the VFIO file descriptor to an initial 177 * state. 178 * Return: 0 on success, -errno on failure. 179 * Availability: When attached to container 180 */ 181 #define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5) 182 183 /** 184 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char) 185 * 186 * Return a new file descriptor for the device object described by 187 * the provided string. The string should match a device listed in 188 * the devices subdirectory of the IOMMU group sysfs entry. The 189 * group containing the device must already be added to this context. 190 * Return: new file descriptor on success, -errno on failure. 191 * Availability: When attached to container 192 */ 193 #define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6) 194 195 /* --------------- IOCTLs for DEVICE file descriptors --------------- */ 196 197 /** 198 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7, 199 * struct vfio_device_info) 200 * 201 * Retrieve information about the device. Fills in provided 202 * struct vfio_device_info. Caller sets argsz. 203 * Return: 0 on success, -errno on failure. 204 */ 205 struct vfio_device_info { 206 __u32 argsz; 207 __u32 flags; 208 #define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */ 209 #define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */ 210 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2) /* vfio-platform device */ 211 #define VFIO_DEVICE_FLAGS_AMBA (1 << 3) /* vfio-amba device */ 212 #define VFIO_DEVICE_FLAGS_CCW (1 << 4) /* vfio-ccw device */ 213 #define VFIO_DEVICE_FLAGS_AP (1 << 5) /* vfio-ap device */ 214 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6) /* vfio-fsl-mc device */ 215 #define VFIO_DEVICE_FLAGS_CAPS (1 << 7) /* Info supports caps */ 216 #define VFIO_DEVICE_FLAGS_CDX (1 << 8) /* vfio-cdx device */ 217 __u32 num_regions; /* Max region index + 1 */ 218 __u32 num_irqs; /* Max IRQ index + 1 */ 219 __u32 cap_offset; /* Offset within info struct of first cap */ 220 }; 221 #define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7) 222 223 /* 224 * Vendor driver using Mediated device framework should provide device_api 225 * attribute in supported type attribute groups. Device API string should be one 226 * of the following corresponding to device flags in vfio_device_info structure. 227 */ 228 229 #define VFIO_DEVICE_API_PCI_STRING "vfio-pci" 230 #define VFIO_DEVICE_API_PLATFORM_STRING "vfio-platform" 231 #define VFIO_DEVICE_API_AMBA_STRING "vfio-amba" 232 #define VFIO_DEVICE_API_CCW_STRING "vfio-ccw" 233 #define VFIO_DEVICE_API_AP_STRING "vfio-ap" 234 235 /* 236 * The following capabilities are unique to s390 zPCI devices. Their contents 237 * are further-defined in vfio_zdev.h 238 */ 239 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE 1 240 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP 2 241 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL 3 242 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP 4 243 244 /* 245 * The following VFIO_DEVICE_INFO capability reports support for PCIe AtomicOp 246 * completion to the root bus with supported widths provided via flags. 247 */ 248 #define VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP 5 249 struct vfio_device_info_cap_pci_atomic_comp { 250 struct vfio_info_cap_header header; 251 __u32 flags; 252 #define VFIO_PCI_ATOMIC_COMP32 (1 << 0) 253 #define VFIO_PCI_ATOMIC_COMP64 (1 << 1) 254 #define VFIO_PCI_ATOMIC_COMP128 (1 << 2) 255 __u32 reserved; 256 }; 257 258 /** 259 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8, 260 * struct vfio_region_info) 261 * 262 * Retrieve information about a device region. Caller provides 263 * struct vfio_region_info with index value set. Caller sets argsz. 264 * Implementation of region mapping is bus driver specific. This is 265 * intended to describe MMIO, I/O port, as well as bus specific 266 * regions (ex. PCI config space). Zero sized regions may be used 267 * to describe unimplemented regions (ex. unimplemented PCI BARs). 268 * Return: 0 on success, -errno on failure. 269 */ 270 struct vfio_region_info { 271 __u32 argsz; 272 __u32 flags; 273 #define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */ 274 #define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */ 275 #define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */ 276 #define VFIO_REGION_INFO_FLAG_CAPS (1 << 3) /* Info supports caps */ 277 __u32 index; /* Region index */ 278 __u32 cap_offset; /* Offset within info struct of first cap */ 279 __u64 size; /* Region size (bytes) */ 280 __u64 offset; /* Region offset from start of device fd */ 281 }; 282 #define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8) 283 284 /* 285 * The sparse mmap capability allows finer granularity of specifying areas 286 * within a region with mmap support. When specified, the user should only 287 * mmap the offset ranges specified by the areas array. mmaps outside of the 288 * areas specified may fail (such as the range covering a PCI MSI-X table) or 289 * may result in improper device behavior. 290 * 291 * The structures below define version 1 of this capability. 292 */ 293 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP 1 294 295 struct vfio_region_sparse_mmap_area { 296 __u64 offset; /* Offset of mmap'able area within region */ 297 __u64 size; /* Size of mmap'able area */ 298 }; 299 300 struct vfio_region_info_cap_sparse_mmap { 301 struct vfio_info_cap_header header; 302 __u32 nr_areas; 303 __u32 reserved; 304 struct vfio_region_sparse_mmap_area areas[]; 305 }; 306 307 /* 308 * The device specific type capability allows regions unique to a specific 309 * device or class of devices to be exposed. This helps solve the problem for 310 * vfio bus drivers of defining which region indexes correspond to which region 311 * on the device, without needing to resort to static indexes, as done by 312 * vfio-pci. For instance, if we were to go back in time, we might remove 313 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes 314 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd 315 * make a "VGA" device specific type to describe the VGA access space. This 316 * means that non-VGA devices wouldn't need to waste this index, and thus the 317 * address space associated with it due to implementation of device file 318 * descriptor offsets in vfio-pci. 319 * 320 * The current implementation is now part of the user ABI, so we can't use this 321 * for VGA, but there are other upcoming use cases, such as opregions for Intel 322 * IGD devices and framebuffers for vGPU devices. We missed VGA, but we'll 323 * use this for future additions. 324 * 325 * The structure below defines version 1 of this capability. 326 */ 327 #define VFIO_REGION_INFO_CAP_TYPE 2 328 329 struct vfio_region_info_cap_type { 330 struct vfio_info_cap_header header; 331 __u32 type; /* global per bus driver */ 332 __u32 subtype; /* type specific */ 333 }; 334 335 /* 336 * List of region types, global per bus driver. 337 * If you introduce a new type, please add it here. 338 */ 339 340 /* PCI region type containing a PCI vendor part */ 341 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE (1 << 31) 342 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff) 343 #define VFIO_REGION_TYPE_GFX (1) 344 #define VFIO_REGION_TYPE_CCW (2) 345 #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED (3) 346 347 /* sub-types for VFIO_REGION_TYPE_PCI_* */ 348 349 /* 8086 vendor PCI sub-types */ 350 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION (1) 351 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG (2) 352 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG (3) 353 354 /* 10de vendor PCI sub-types */ 355 /* 356 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space. 357 * 358 * Deprecated, region no longer provided 359 */ 360 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM (1) 361 362 /* 1014 vendor PCI sub-types */ 363 /* 364 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU 365 * to do TLB invalidation on a GPU. 366 * 367 * Deprecated, region no longer provided 368 */ 369 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD (1) 370 371 /* sub-types for VFIO_REGION_TYPE_GFX */ 372 #define VFIO_REGION_SUBTYPE_GFX_EDID (1) 373 374 /** 375 * struct vfio_region_gfx_edid - EDID region layout. 376 * 377 * Set display link state and EDID blob. 378 * 379 * The EDID blob has monitor information such as brand, name, serial 380 * number, physical size, supported video modes and more. 381 * 382 * This special region allows userspace (typically qemu) set a virtual 383 * EDID for the virtual monitor, which allows a flexible display 384 * configuration. 385 * 386 * For the edid blob spec look here: 387 * https://en.wikipedia.org/wiki/Extended_Display_Identification_Data 388 * 389 * On linux systems you can find the EDID blob in sysfs: 390 * /sys/class/drm/${card}/${connector}/edid 391 * 392 * You can use the edid-decode ulility (comes with xorg-x11-utils) to 393 * decode the EDID blob. 394 * 395 * @edid_offset: location of the edid blob, relative to the 396 * start of the region (readonly). 397 * @edid_max_size: max size of the edid blob (readonly). 398 * @edid_size: actual edid size (read/write). 399 * @link_state: display link state (read/write). 400 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on. 401 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off. 402 * @max_xres: max display width (0 == no limitation, readonly). 403 * @max_yres: max display height (0 == no limitation, readonly). 404 * 405 * EDID update protocol: 406 * (1) set link-state to down. 407 * (2) update edid blob and size. 408 * (3) set link-state to up. 409 */ 410 struct vfio_region_gfx_edid { 411 __u32 edid_offset; 412 __u32 edid_max_size; 413 __u32 edid_size; 414 __u32 max_xres; 415 __u32 max_yres; 416 __u32 link_state; 417 #define VFIO_DEVICE_GFX_LINK_STATE_UP 1 418 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN 2 419 }; 420 421 /* sub-types for VFIO_REGION_TYPE_CCW */ 422 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1) 423 #define VFIO_REGION_SUBTYPE_CCW_SCHIB (2) 424 #define VFIO_REGION_SUBTYPE_CCW_CRW (3) 425 426 /* sub-types for VFIO_REGION_TYPE_MIGRATION */ 427 #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1) 428 429 struct vfio_device_migration_info { 430 __u32 device_state; /* VFIO device state */ 431 #define VFIO_DEVICE_STATE_V1_STOP (0) 432 #define VFIO_DEVICE_STATE_V1_RUNNING (1 << 0) 433 #define VFIO_DEVICE_STATE_V1_SAVING (1 << 1) 434 #define VFIO_DEVICE_STATE_V1_RESUMING (1 << 2) 435 #define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_V1_RUNNING | \ 436 VFIO_DEVICE_STATE_V1_SAVING | \ 437 VFIO_DEVICE_STATE_V1_RESUMING) 438 439 #define VFIO_DEVICE_STATE_VALID(state) \ 440 (state & VFIO_DEVICE_STATE_V1_RESUMING ? \ 441 (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1) 442 443 #define VFIO_DEVICE_STATE_IS_ERROR(state) \ 444 ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \ 445 VFIO_DEVICE_STATE_V1_RESUMING)) 446 447 #define VFIO_DEVICE_STATE_SET_ERROR(state) \ 448 ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \ 449 VFIO_DEVICE_STATE_V1_RESUMING) 450 451 __u32 reserved; 452 __u64 pending_bytes; 453 __u64 data_offset; 454 __u64 data_size; 455 }; 456 457 /* 458 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped 459 * which allows direct access to non-MSIX registers which happened to be within 460 * the same system page. 461 * 462 * Even though the userspace gets direct access to the MSIX data, the existing 463 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration. 464 */ 465 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE 3 466 467 /* 468 * Capability with compressed real address (aka SSA - small system address) 469 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing 470 * and by the userspace to associate a NVLink bridge with a GPU. 471 * 472 * Deprecated, capability no longer provided 473 */ 474 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT 4 475 476 struct vfio_region_info_cap_nvlink2_ssatgt { 477 struct vfio_info_cap_header header; 478 __u64 tgt; 479 }; 480 481 /* 482 * Capability with an NVLink link speed. The value is read by 483 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed" 484 * property in the device tree. The value is fixed in the hardware 485 * and failing to provide the correct value results in the link 486 * not working with no indication from the driver why. 487 * 488 * Deprecated, capability no longer provided 489 */ 490 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD 5 491 492 struct vfio_region_info_cap_nvlink2_lnkspd { 493 struct vfio_info_cap_header header; 494 __u32 link_speed; 495 __u32 __pad; 496 }; 497 498 /** 499 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9, 500 * struct vfio_irq_info) 501 * 502 * Retrieve information about a device IRQ. Caller provides 503 * struct vfio_irq_info with index value set. Caller sets argsz. 504 * Implementation of IRQ mapping is bus driver specific. Indexes 505 * using multiple IRQs are primarily intended to support MSI-like 506 * interrupt blocks. Zero count irq blocks may be used to describe 507 * unimplemented interrupt types. 508 * 509 * The EVENTFD flag indicates the interrupt index supports eventfd based 510 * signaling. 511 * 512 * The MASKABLE flags indicates the index supports MASK and UNMASK 513 * actions described below. 514 * 515 * AUTOMASKED indicates that after signaling, the interrupt line is 516 * automatically masked by VFIO and the user needs to unmask the line 517 * to receive new interrupts. This is primarily intended to distinguish 518 * level triggered interrupts. 519 * 520 * The NORESIZE flag indicates that the interrupt lines within the index 521 * are setup as a set and new subindexes cannot be enabled without first 522 * disabling the entire index. This is used for interrupts like PCI MSI 523 * and MSI-X where the driver may only use a subset of the available 524 * indexes, but VFIO needs to enable a specific number of vectors 525 * upfront. In the case of MSI-X, where the user can enable MSI-X and 526 * then add and unmask vectors, it's up to userspace to make the decision 527 * whether to allocate the maximum supported number of vectors or tear 528 * down setup and incrementally increase the vectors as each is enabled. 529 * Absence of the NORESIZE flag indicates that vectors can be enabled 530 * and disabled dynamically without impacting other vectors within the 531 * index. 532 */ 533 struct vfio_irq_info { 534 __u32 argsz; 535 __u32 flags; 536 #define VFIO_IRQ_INFO_EVENTFD (1 << 0) 537 #define VFIO_IRQ_INFO_MASKABLE (1 << 1) 538 #define VFIO_IRQ_INFO_AUTOMASKED (1 << 2) 539 #define VFIO_IRQ_INFO_NORESIZE (1 << 3) 540 __u32 index; /* IRQ index */ 541 __u32 count; /* Number of IRQs within this index */ 542 }; 543 #define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9) 544 545 /** 546 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set) 547 * 548 * Set signaling, masking, and unmasking of interrupts. Caller provides 549 * struct vfio_irq_set with all fields set. 'start' and 'count' indicate 550 * the range of subindexes being specified. 551 * 552 * The DATA flags specify the type of data provided. If DATA_NONE, the 553 * operation performs the specified action immediately on the specified 554 * interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]: 555 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1. 556 * 557 * DATA_BOOL allows sparse support for the same on arrays of interrupts. 558 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]): 559 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3, 560 * data = {1,0,1} 561 * 562 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd. 563 * A value of -1 can be used to either de-assign interrupts if already 564 * assigned or skip un-assigned interrupts. For example, to set an eventfd 565 * to be trigger for interrupts [0,0] and [0,2]: 566 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3, 567 * data = {fd1, -1, fd2} 568 * If index [0,1] is previously set, two count = 1 ioctls calls would be 569 * required to set [0,0] and [0,2] without changing [0,1]. 570 * 571 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used 572 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing 573 * from userspace (ie. simulate hardware triggering). 574 * 575 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER 576 * enables the interrupt index for the device. Individual subindex interrupts 577 * can be disabled using the -1 value for DATA_EVENTFD or the index can be 578 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0. 579 * 580 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while 581 * ACTION_TRIGGER specifies kernel->user signaling. 582 */ 583 struct vfio_irq_set { 584 __u32 argsz; 585 __u32 flags; 586 #define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */ 587 #define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */ 588 #define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */ 589 #define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */ 590 #define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */ 591 #define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */ 592 __u32 index; 593 __u32 start; 594 __u32 count; 595 __u8 data[]; 596 }; 597 #define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10) 598 599 #define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \ 600 VFIO_IRQ_SET_DATA_BOOL | \ 601 VFIO_IRQ_SET_DATA_EVENTFD) 602 #define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \ 603 VFIO_IRQ_SET_ACTION_UNMASK | \ 604 VFIO_IRQ_SET_ACTION_TRIGGER) 605 /** 606 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11) 607 * 608 * Reset a device. 609 */ 610 #define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11) 611 612 /* 613 * The VFIO-PCI bus driver makes use of the following fixed region and 614 * IRQ index mapping. Unimplemented regions return a size of zero. 615 * Unimplemented IRQ types return a count of zero. 616 */ 617 618 enum { 619 VFIO_PCI_BAR0_REGION_INDEX, 620 VFIO_PCI_BAR1_REGION_INDEX, 621 VFIO_PCI_BAR2_REGION_INDEX, 622 VFIO_PCI_BAR3_REGION_INDEX, 623 VFIO_PCI_BAR4_REGION_INDEX, 624 VFIO_PCI_BAR5_REGION_INDEX, 625 VFIO_PCI_ROM_REGION_INDEX, 626 VFIO_PCI_CONFIG_REGION_INDEX, 627 /* 628 * Expose VGA regions defined for PCI base class 03, subclass 00. 629 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df 630 * as well as the MMIO range 0xa0000 to 0xbffff. Each implemented 631 * range is found at it's identity mapped offset from the region 632 * offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas 633 * between described ranges are unimplemented. 634 */ 635 VFIO_PCI_VGA_REGION_INDEX, 636 VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */ 637 /* device specific cap to define content. */ 638 }; 639 640 enum { 641 VFIO_PCI_INTX_IRQ_INDEX, 642 VFIO_PCI_MSI_IRQ_INDEX, 643 VFIO_PCI_MSIX_IRQ_INDEX, 644 VFIO_PCI_ERR_IRQ_INDEX, 645 VFIO_PCI_REQ_IRQ_INDEX, 646 VFIO_PCI_NUM_IRQS 647 }; 648 649 /* 650 * The vfio-ccw bus driver makes use of the following fixed region and 651 * IRQ index mapping. Unimplemented regions return a size of zero. 652 * Unimplemented IRQ types return a count of zero. 653 */ 654 655 enum { 656 VFIO_CCW_CONFIG_REGION_INDEX, 657 VFIO_CCW_NUM_REGIONS 658 }; 659 660 enum { 661 VFIO_CCW_IO_IRQ_INDEX, 662 VFIO_CCW_CRW_IRQ_INDEX, 663 VFIO_CCW_REQ_IRQ_INDEX, 664 VFIO_CCW_NUM_IRQS 665 }; 666 667 /* 668 * The vfio-ap bus driver makes use of the following IRQ index mapping. 669 * Unimplemented IRQ types return a count of zero. 670 */ 671 enum { 672 VFIO_AP_REQ_IRQ_INDEX, 673 VFIO_AP_NUM_IRQS 674 }; 675 676 /** 677 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12, 678 * struct vfio_pci_hot_reset_info) 679 * 680 * This command is used to query the affected devices in the hot reset for 681 * a given device. 682 * 683 * This command always reports the segment, bus, and devfn information for 684 * each affected device, and selectively reports the group_id or devid per 685 * the way how the calling device is opened. 686 * 687 * - If the calling device is opened via the traditional group/container 688 * API, group_id is reported. User should check if it has owned all 689 * the affected devices and provides a set of group fds to prove the 690 * ownership in VFIO_DEVICE_PCI_HOT_RESET ioctl. 691 * 692 * - If the calling device is opened as a cdev, devid is reported. 693 * Flag VFIO_PCI_HOT_RESET_FLAG_DEV_ID is set to indicate this 694 * data type. All the affected devices should be represented in 695 * the dev_set, ex. bound to a vfio driver, and also be owned by 696 * this interface which is determined by the following conditions: 697 * 1) Has a valid devid within the iommufd_ctx of the calling device. 698 * Ownership cannot be determined across separate iommufd_ctx and 699 * the cdev calling conventions do not support a proof-of-ownership 700 * model as provided in the legacy group interface. In this case 701 * valid devid with value greater than zero is provided in the return 702 * structure. 703 * 2) Does not have a valid devid within the iommufd_ctx of the calling 704 * device, but belongs to the same IOMMU group as the calling device 705 * or another opened device that has a valid devid within the 706 * iommufd_ctx of the calling device. This provides implicit ownership 707 * for devices within the same DMA isolation context. In this case 708 * the devid value of VFIO_PCI_DEVID_OWNED is provided in the return 709 * structure. 710 * 711 * A devid value of VFIO_PCI_DEVID_NOT_OWNED is provided in the return 712 * structure for affected devices where device is NOT represented in the 713 * dev_set or ownership is not available. Such devices prevent the use 714 * of VFIO_DEVICE_PCI_HOT_RESET ioctl outside of the proof-of-ownership 715 * calling conventions (ie. via legacy group accessed devices). Flag 716 * VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED would be set when all the 717 * affected devices are represented in the dev_set and also owned by 718 * the user. This flag is available only when 719 * flag VFIO_PCI_HOT_RESET_FLAG_DEV_ID is set, otherwise reserved. 720 * 721 * Return: 0 on success, -errno on failure: 722 * -enospc = insufficient buffer, -enodev = unsupported for device. 723 */ 724 struct vfio_pci_dependent_device { 725 union { 726 __u32 group_id; 727 __u32 devid; 728 #define VFIO_PCI_DEVID_OWNED 0 729 #define VFIO_PCI_DEVID_NOT_OWNED -1 730 }; 731 __u16 segment; 732 __u8 bus; 733 __u8 devfn; /* Use PCI_SLOT/PCI_FUNC */ 734 }; 735 736 struct vfio_pci_hot_reset_info { 737 __u32 argsz; 738 __u32 flags; 739 #define VFIO_PCI_HOT_RESET_FLAG_DEV_ID (1 << 0) 740 #define VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED (1 << 1) 741 __u32 count; 742 struct vfio_pci_dependent_device devices[]; 743 }; 744 745 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 746 747 /** 748 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13, 749 * struct vfio_pci_hot_reset) 750 * 751 * Return: 0 on success, -errno on failure. 752 */ 753 struct vfio_pci_hot_reset { 754 __u32 argsz; 755 __u32 flags; 756 __u32 count; 757 __s32 group_fds[]; 758 }; 759 760 #define VFIO_DEVICE_PCI_HOT_RESET _IO(VFIO_TYPE, VFIO_BASE + 13) 761 762 /** 763 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14, 764 * struct vfio_device_query_gfx_plane) 765 * 766 * Set the drm_plane_type and flags, then retrieve the gfx plane info. 767 * 768 * flags supported: 769 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set 770 * to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no 771 * support for dma-buf. 772 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set 773 * to ask if the mdev supports region. 0 on support, -EINVAL on no 774 * support for region. 775 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set 776 * with each call to query the plane info. 777 * - Others are invalid and return -EINVAL. 778 * 779 * Note: 780 * 1. Plane could be disabled by guest. In that case, success will be 781 * returned with zero-initialized drm_format, size, width and height 782 * fields. 783 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available 784 * 785 * Return: 0 on success, -errno on other failure. 786 */ 787 struct vfio_device_gfx_plane_info { 788 __u32 argsz; 789 __u32 flags; 790 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0) 791 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1) 792 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2) 793 /* in */ 794 __u32 drm_plane_type; /* type of plane: DRM_PLANE_TYPE_* */ 795 /* out */ 796 __u32 drm_format; /* drm format of plane */ 797 __u64 drm_format_mod; /* tiled mode */ 798 __u32 width; /* width of plane */ 799 __u32 height; /* height of plane */ 800 __u32 stride; /* stride of plane */ 801 __u32 size; /* size of plane in bytes, align on page*/ 802 __u32 x_pos; /* horizontal position of cursor plane */ 803 __u32 y_pos; /* vertical position of cursor plane*/ 804 __u32 x_hot; /* horizontal position of cursor hotspot */ 805 __u32 y_hot; /* vertical position of cursor hotspot */ 806 union { 807 __u32 region_index; /* region index */ 808 __u32 dmabuf_id; /* dma-buf id */ 809 }; 810 }; 811 812 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14) 813 814 /** 815 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32) 816 * 817 * Return a new dma-buf file descriptor for an exposed guest framebuffer 818 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_ 819 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer. 820 */ 821 822 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15) 823 824 /** 825 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16, 826 * struct vfio_device_ioeventfd) 827 * 828 * Perform a write to the device at the specified device fd offset, with 829 * the specified data and width when the provided eventfd is triggered. 830 * vfio bus drivers may not support this for all regions, for all widths, 831 * or at all. vfio-pci currently only enables support for BAR regions, 832 * excluding the MSI-X vector table. 833 * 834 * Return: 0 on success, -errno on failure. 835 */ 836 struct vfio_device_ioeventfd { 837 __u32 argsz; 838 __u32 flags; 839 #define VFIO_DEVICE_IOEVENTFD_8 (1 << 0) /* 1-byte write */ 840 #define VFIO_DEVICE_IOEVENTFD_16 (1 << 1) /* 2-byte write */ 841 #define VFIO_DEVICE_IOEVENTFD_32 (1 << 2) /* 4-byte write */ 842 #define VFIO_DEVICE_IOEVENTFD_64 (1 << 3) /* 8-byte write */ 843 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf) 844 __u64 offset; /* device fd offset of write */ 845 __u64 data; /* data to be written */ 846 __s32 fd; /* -1 for de-assignment */ 847 }; 848 849 #define VFIO_DEVICE_IOEVENTFD _IO(VFIO_TYPE, VFIO_BASE + 16) 850 851 /** 852 * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17, 853 * struct vfio_device_feature) 854 * 855 * Get, set, or probe feature data of the device. The feature is selected 856 * using the FEATURE_MASK portion of the flags field. Support for a feature 857 * can be probed by setting both the FEATURE_MASK and PROBE bits. A probe 858 * may optionally include the GET and/or SET bits to determine read vs write 859 * access of the feature respectively. Probing a feature will return success 860 * if the feature is supported and all of the optionally indicated GET/SET 861 * methods are supported. The format of the data portion of the structure is 862 * specific to the given feature. The data portion is not required for 863 * probing. GET and SET are mutually exclusive, except for use with PROBE. 864 * 865 * Return 0 on success, -errno on failure. 866 */ 867 struct vfio_device_feature { 868 __u32 argsz; 869 __u32 flags; 870 #define VFIO_DEVICE_FEATURE_MASK (0xffff) /* 16-bit feature index */ 871 #define VFIO_DEVICE_FEATURE_GET (1 << 16) /* Get feature into data[] */ 872 #define VFIO_DEVICE_FEATURE_SET (1 << 17) /* Set feature from data[] */ 873 #define VFIO_DEVICE_FEATURE_PROBE (1 << 18) /* Probe feature support */ 874 __u8 data[]; 875 }; 876 877 #define VFIO_DEVICE_FEATURE _IO(VFIO_TYPE, VFIO_BASE + 17) 878 879 /* 880 * Provide support for setting a PCI VF Token, which is used as a shared 881 * secret between PF and VF drivers. This feature may only be set on a 882 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing 883 * open VFs. Data provided when setting this feature is a 16-byte array 884 * (__u8 b[16]), representing a UUID. 885 */ 886 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0) 887 888 /* 889 * Indicates the device can support the migration API through 890 * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and 891 * ERROR states are always supported. Support for additional states is 892 * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be 893 * set. 894 * 895 * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and 896 * RESUMING are supported. 897 * 898 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P 899 * is supported in addition to the STOP_COPY states. 900 * 901 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that 902 * PRE_COPY is supported in addition to the STOP_COPY states. 903 * 904 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY 905 * means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported 906 * in addition to the STOP_COPY states. 907 * 908 * Other combinations of flags have behavior to be defined in the future. 909 */ 910 struct vfio_device_feature_migration { 911 __aligned_u64 flags; 912 #define VFIO_MIGRATION_STOP_COPY (1 << 0) 913 #define VFIO_MIGRATION_P2P (1 << 1) 914 #define VFIO_MIGRATION_PRE_COPY (1 << 2) 915 }; 916 #define VFIO_DEVICE_FEATURE_MIGRATION 1 917 918 /* 919 * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO 920 * device. The new state is supplied in device_state, see enum 921 * vfio_device_mig_state for details 922 * 923 * The kernel migration driver must fully transition the device to the new state 924 * value before the operation returns to the user. 925 * 926 * The kernel migration driver must not generate asynchronous device state 927 * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET 928 * ioctl as described above. 929 * 930 * If this function fails then current device_state may be the original 931 * operating state or some other state along the combination transition path. 932 * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt 933 * to return to the original state, or attempt to return to some other state 934 * such as RUNNING or STOP. 935 * 936 * If the new_state starts a new data transfer session then the FD associated 937 * with that session is returned in data_fd. The user is responsible to close 938 * this FD when it is finished. The user must consider the migration data stream 939 * carried over the FD to be opaque and must preserve the byte order of the 940 * stream. The user is not required to preserve buffer segmentation when writing 941 * the data stream during the RESUMING operation. 942 * 943 * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO 944 * device, data_fd will be -1. 945 */ 946 struct vfio_device_feature_mig_state { 947 __u32 device_state; /* From enum vfio_device_mig_state */ 948 __s32 data_fd; 949 }; 950 #define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2 951 952 /* 953 * The device migration Finite State Machine is described by the enum 954 * vfio_device_mig_state. Some of the FSM arcs will create a migration data 955 * transfer session by returning a FD, in this case the migration data will 956 * flow over the FD using read() and write() as discussed below. 957 * 958 * There are 5 states to support VFIO_MIGRATION_STOP_COPY: 959 * RUNNING - The device is running normally 960 * STOP - The device does not change the internal or external state 961 * STOP_COPY - The device internal state can be read out 962 * RESUMING - The device is stopped and is loading a new internal state 963 * ERROR - The device has failed and must be reset 964 * 965 * And optional states to support VFIO_MIGRATION_P2P: 966 * RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA 967 * And VFIO_MIGRATION_PRE_COPY: 968 * PRE_COPY - The device is running normally but tracking internal state 969 * changes 970 * And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY: 971 * PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA 972 * 973 * The FSM takes actions on the arcs between FSM states. The driver implements 974 * the following behavior for the FSM arcs: 975 * 976 * RUNNING_P2P -> STOP 977 * STOP_COPY -> STOP 978 * While in STOP the device must stop the operation of the device. The device 979 * must not generate interrupts, DMA, or any other change to external state. 980 * It must not change its internal state. When stopped the device and kernel 981 * migration driver must accept and respond to interaction to support external 982 * subsystems in the STOP state, for example PCI MSI-X and PCI config space. 983 * Failure by the user to restrict device access while in STOP must not result 984 * in error conditions outside the user context (ex. host system faults). 985 * 986 * The STOP_COPY arc will terminate a data transfer session. 987 * 988 * RESUMING -> STOP 989 * Leaving RESUMING terminates a data transfer session and indicates the 990 * device should complete processing of the data delivered by write(). The 991 * kernel migration driver should complete the incorporation of data written 992 * to the data transfer FD into the device internal state and perform 993 * final validity and consistency checking of the new device state. If the 994 * user provided data is found to be incomplete, inconsistent, or otherwise 995 * invalid, the migration driver must fail the SET_STATE ioctl and 996 * optionally go to the ERROR state as described below. 997 * 998 * While in STOP the device has the same behavior as other STOP states 999 * described above. 1000 * 1001 * To abort a RESUMING session the device must be reset. 1002 * 1003 * PRE_COPY -> RUNNING 1004 * RUNNING_P2P -> RUNNING 1005 * While in RUNNING the device is fully operational, the device may generate 1006 * interrupts, DMA, respond to MMIO, all vfio device regions are functional, 1007 * and the device may advance its internal state. 1008 * 1009 * The PRE_COPY arc will terminate a data transfer session. 1010 * 1011 * PRE_COPY_P2P -> RUNNING_P2P 1012 * RUNNING -> RUNNING_P2P 1013 * STOP -> RUNNING_P2P 1014 * While in RUNNING_P2P the device is partially running in the P2P quiescent 1015 * state defined below. 1016 * 1017 * The PRE_COPY_P2P arc will terminate a data transfer session. 1018 * 1019 * RUNNING -> PRE_COPY 1020 * RUNNING_P2P -> PRE_COPY_P2P 1021 * STOP -> STOP_COPY 1022 * PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states 1023 * which share a data transfer session. Moving between these states alters 1024 * what is streamed in session, but does not terminate or otherwise affect 1025 * the associated fd. 1026 * 1027 * These arcs begin the process of saving the device state and will return a 1028 * new data_fd. The migration driver may perform actions such as enabling 1029 * dirty logging of device state when entering PRE_COPY or PER_COPY_P2P. 1030 * 1031 * Each arc does not change the device operation, the device remains 1032 * RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below 1033 * in PRE_COPY_P2P -> STOP_COPY. 1034 * 1035 * PRE_COPY -> PRE_COPY_P2P 1036 * Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above. 1037 * However, while in the PRE_COPY_P2P state, the device is partially running 1038 * in the P2P quiescent state defined below, like RUNNING_P2P. 1039 * 1040 * PRE_COPY_P2P -> PRE_COPY 1041 * This arc allows returning the device to a full RUNNING behavior while 1042 * continuing all the behaviors of PRE_COPY. 1043 * 1044 * PRE_COPY_P2P -> STOP_COPY 1045 * While in the STOP_COPY state the device has the same behavior as STOP 1046 * with the addition that the data transfers session continues to stream the 1047 * migration state. End of stream on the FD indicates the entire device 1048 * state has been transferred. 1049 * 1050 * The user should take steps to restrict access to vfio device regions while 1051 * the device is in STOP_COPY or risk corruption of the device migration data 1052 * stream. 1053 * 1054 * STOP -> RESUMING 1055 * Entering the RESUMING state starts a process of restoring the device state 1056 * and will return a new data_fd. The data stream fed into the data_fd should 1057 * be taken from the data transfer output of a single FD during saving from 1058 * a compatible device. The migration driver may alter/reset the internal 1059 * device state for this arc if required to prepare the device to receive the 1060 * migration data. 1061 * 1062 * STOP_COPY -> PRE_COPY 1063 * STOP_COPY -> PRE_COPY_P2P 1064 * These arcs are not permitted and return error if requested. Future 1065 * revisions of this API may define behaviors for these arcs, in this case 1066 * support will be discoverable by a new flag in 1067 * VFIO_DEVICE_FEATURE_MIGRATION. 1068 * 1069 * any -> ERROR 1070 * ERROR cannot be specified as a device state, however any transition request 1071 * can be failed with an errno return and may then move the device_state into 1072 * ERROR. In this case the device was unable to execute the requested arc and 1073 * was also unable to restore the device to any valid device_state. 1074 * To recover from ERROR VFIO_DEVICE_RESET must be used to return the 1075 * device_state back to RUNNING. 1076 * 1077 * The optional peer to peer (P2P) quiescent state is intended to be a quiescent 1078 * state for the device for the purposes of managing multiple devices within a 1079 * user context where peer-to-peer DMA between devices may be active. The 1080 * RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating 1081 * any new P2P DMA transactions. If the device can identify P2P transactions 1082 * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration 1083 * driver must complete any such outstanding operations prior to completing the 1084 * FSM arc into a P2P state. For the purpose of specification the states 1085 * behave as though the device was fully running if not supported. Like while in 1086 * STOP or STOP_COPY the user must not touch the device, otherwise the state 1087 * can be exited. 1088 * 1089 * The remaining possible transitions are interpreted as combinations of the 1090 * above FSM arcs. As there are multiple paths through the FSM arcs the path 1091 * should be selected based on the following rules: 1092 * - Select the shortest path. 1093 * - The path cannot have saving group states as interior arcs, only 1094 * starting/end states. 1095 * Refer to vfio_mig_get_next_state() for the result of the algorithm. 1096 * 1097 * The automatic transit through the FSM arcs that make up the combination 1098 * transition is invisible to the user. When working with combination arcs the 1099 * user may see any step along the path in the device_state if SET_STATE 1100 * fails. When handling these types of errors users should anticipate future 1101 * revisions of this protocol using new states and those states becoming 1102 * visible in this case. 1103 * 1104 * The optional states cannot be used with SET_STATE if the device does not 1105 * support them. The user can discover if these states are supported by using 1106 * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can 1107 * avoid knowing about these optional states if the kernel driver supports them. 1108 * 1109 * Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY 1110 * is not present. 1111 */ 1112 enum vfio_device_mig_state { 1113 VFIO_DEVICE_STATE_ERROR = 0, 1114 VFIO_DEVICE_STATE_STOP = 1, 1115 VFIO_DEVICE_STATE_RUNNING = 2, 1116 VFIO_DEVICE_STATE_STOP_COPY = 3, 1117 VFIO_DEVICE_STATE_RESUMING = 4, 1118 VFIO_DEVICE_STATE_RUNNING_P2P = 5, 1119 VFIO_DEVICE_STATE_PRE_COPY = 6, 1120 VFIO_DEVICE_STATE_PRE_COPY_P2P = 7, 1121 }; 1122 1123 /** 1124 * VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21) 1125 * 1126 * This ioctl is used on the migration data FD in the precopy phase of the 1127 * migration data transfer. It returns an estimate of the current data sizes 1128 * remaining to be transferred. It allows the user to judge when it is 1129 * appropriate to leave PRE_COPY for STOP_COPY. 1130 * 1131 * This ioctl is valid only in PRE_COPY states and kernel driver should 1132 * return -EINVAL from any other migration state. 1133 * 1134 * The vfio_precopy_info data structure returned by this ioctl provides 1135 * estimates of data available from the device during the PRE_COPY states. 1136 * This estimate is split into two categories, initial_bytes and 1137 * dirty_bytes. 1138 * 1139 * The initial_bytes field indicates the amount of initial precopy 1140 * data available from the device. This field should have a non-zero initial 1141 * value and decrease as migration data is read from the device. 1142 * It is recommended to leave PRE_COPY for STOP_COPY only after this field 1143 * reaches zero. Leaving PRE_COPY earlier might make things slower. 1144 * 1145 * The dirty_bytes field tracks device state changes relative to data 1146 * previously retrieved. This field starts at zero and may increase as 1147 * the internal device state is modified or decrease as that modified 1148 * state is read from the device. 1149 * 1150 * Userspace may use the combination of these fields to estimate the 1151 * potential data size available during the PRE_COPY phases, as well as 1152 * trends relative to the rate the device is dirtying its internal 1153 * state, but these fields are not required to have any bearing relative 1154 * to the data size available during the STOP_COPY phase. 1155 * 1156 * Drivers have a lot of flexibility in when and what they transfer during the 1157 * PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO. 1158 * 1159 * During pre-copy the migration data FD has a temporary "end of stream" that is 1160 * reached when both initial_bytes and dirty_byte are zero. For instance, this 1161 * may indicate that the device is idle and not currently dirtying any internal 1162 * state. When read() is done on this temporary end of stream the kernel driver 1163 * should return ENOMSG from read(). Userspace can wait for more data (which may 1164 * never come) by using poll. 1165 * 1166 * Once in STOP_COPY the migration data FD has a permanent end of stream 1167 * signaled in the usual way by read() always returning 0 and poll always 1168 * returning readable. ENOMSG may not be returned in STOP_COPY. 1169 * Support for this ioctl is mandatory if a driver claims to support 1170 * VFIO_MIGRATION_PRE_COPY. 1171 * 1172 * Return: 0 on success, -1 and errno set on failure. 1173 */ 1174 struct vfio_precopy_info { 1175 __u32 argsz; 1176 __u32 flags; 1177 __aligned_u64 initial_bytes; 1178 __aligned_u64 dirty_bytes; 1179 }; 1180 1181 #define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21) 1182 1183 /* 1184 * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power 1185 * state with the platform-based power management. Device use of lower power 1186 * states depends on factors managed by the runtime power management core, 1187 * including system level support and coordinating support among dependent 1188 * devices. Enabling device low power entry does not guarantee lower power 1189 * usage by the device, nor is a mechanism provided through this feature to 1190 * know the current power state of the device. If any device access happens 1191 * (either from the host or through the vfio uAPI) when the device is in the 1192 * low power state, then the host will move the device out of the low power 1193 * state as necessary prior to the access. Once the access is completed, the 1194 * device may re-enter the low power state. For single shot low power support 1195 * with wake-up notification, see 1196 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below. Access to mmap'd 1197 * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after 1198 * calling LOW_POWER_EXIT. 1199 */ 1200 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3 1201 1202 /* 1203 * This device feature has the same behavior as 1204 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user 1205 * provides an eventfd for wake-up notification. When the device moves out of 1206 * the low power state for the wake-up, the host will not allow the device to 1207 * re-enter a low power state without a subsequent user call to one of the low 1208 * power entry device feature IOCTLs. Access to mmap'd device regions is 1209 * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the 1210 * low power exit. The low power exit can happen either through LOW_POWER_EXIT 1211 * or through any other access (where the wake-up notification has been 1212 * generated). The access to mmap'd device regions will not trigger low power 1213 * exit. 1214 * 1215 * The notification through the provided eventfd will be generated only when 1216 * the device has entered and is resumed from a low power state after 1217 * calling this device feature IOCTL. A device that has not entered low power 1218 * state, as managed through the runtime power management core, will not 1219 * generate a notification through the provided eventfd on access. Calling the 1220 * LOW_POWER_EXIT feature is optional in the case where notification has been 1221 * signaled on the provided eventfd that a resume from low power has occurred. 1222 */ 1223 struct vfio_device_low_power_entry_with_wakeup { 1224 __s32 wakeup_eventfd; 1225 __u32 reserved; 1226 }; 1227 1228 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4 1229 1230 /* 1231 * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as 1232 * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or 1233 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features. 1234 * This device feature IOCTL may itself generate a wakeup eventfd notification 1235 * in the latter case if the device had previously entered a low power state. 1236 */ 1237 #define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5 1238 1239 /* 1240 * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging. 1241 * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports 1242 * DMA logging. 1243 * 1244 * DMA logging allows a device to internally record what DMAs the device is 1245 * initiating and report them back to userspace. It is part of the VFIO 1246 * migration infrastructure that allows implementing dirty page tracking 1247 * during the pre copy phase of live migration. Only DMA WRITEs are logged, 1248 * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. 1249 * 1250 * When DMA logging is started a range of IOVAs to monitor is provided and the 1251 * device can optimize its logging to cover only the IOVA range given. Each 1252 * DMA that the device initiates inside the range will be logged by the device 1253 * for later retrieval. 1254 * 1255 * page_size is an input that hints what tracking granularity the device 1256 * should try to achieve. If the device cannot do the hinted page size then 1257 * it's the driver choice which page size to pick based on its support. 1258 * On output the device will return the page size it selected. 1259 * 1260 * ranges is a pointer to an array of 1261 * struct vfio_device_feature_dma_logging_range. 1262 * 1263 * The core kernel code guarantees to support by minimum num_ranges that fit 1264 * into a single kernel page. User space can try higher values but should give 1265 * up if the above can't be achieved as of some driver limitations. 1266 * 1267 * A single call to start device DMA logging can be issued and a matching stop 1268 * should follow at the end. Another start is not allowed in the meantime. 1269 */ 1270 struct vfio_device_feature_dma_logging_control { 1271 __aligned_u64 page_size; 1272 __u32 num_ranges; 1273 __u32 __reserved; 1274 __aligned_u64 ranges; 1275 }; 1276 1277 struct vfio_device_feature_dma_logging_range { 1278 __aligned_u64 iova; 1279 __aligned_u64 length; 1280 }; 1281 1282 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6 1283 1284 /* 1285 * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started 1286 * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START 1287 */ 1288 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7 1289 1290 /* 1291 * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log 1292 * 1293 * Query the device's DMA log for written pages within the given IOVA range. 1294 * During querying the log is cleared for the IOVA range. 1295 * 1296 * bitmap is a pointer to an array of u64s that will hold the output bitmap 1297 * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits 1298 * is given by: 1299 * bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64)) 1300 * 1301 * The input page_size can be any power of two value and does not have to 1302 * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver 1303 * will format its internal logging to match the reporting page size, possibly 1304 * by replicating bits if the internal page size is lower than requested. 1305 * 1306 * The LOGGING_REPORT will only set bits in the bitmap and never clear or 1307 * perform any initialization of the user provided bitmap. 1308 * 1309 * If any error is returned userspace should assume that the dirty log is 1310 * corrupted. Error recovery is to consider all memory dirty and try to 1311 * restart the dirty tracking, or to abort/restart the whole migration. 1312 * 1313 * If DMA logging is not enabled, an error will be returned. 1314 * 1315 */ 1316 struct vfio_device_feature_dma_logging_report { 1317 __aligned_u64 iova; 1318 __aligned_u64 length; 1319 __aligned_u64 page_size; 1320 __aligned_u64 bitmap; 1321 }; 1322 1323 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8 1324 1325 /* 1326 * Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will 1327 * be required to complete stop copy. 1328 * 1329 * Note: Can be called on each device state. 1330 */ 1331 1332 struct vfio_device_feature_mig_data_size { 1333 __aligned_u64 stop_copy_length; 1334 }; 1335 1336 #define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9 1337 1338 /* -------- API for Type1 VFIO IOMMU -------- */ 1339 1340 /** 1341 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info) 1342 * 1343 * Retrieve information about the IOMMU object. Fills in provided 1344 * struct vfio_iommu_info. Caller sets argsz. 1345 * 1346 * XXX Should we do these by CHECK_EXTENSION too? 1347 */ 1348 struct vfio_iommu_type1_info { 1349 __u32 argsz; 1350 __u32 flags; 1351 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */ 1352 #define VFIO_IOMMU_INFO_CAPS (1 << 1) /* Info supports caps */ 1353 __u64 iova_pgsizes; /* Bitmap of supported page sizes */ 1354 __u32 cap_offset; /* Offset within info struct of first cap */ 1355 }; 1356 1357 /* 1358 * The IOVA capability allows to report the valid IOVA range(s) 1359 * excluding any non-relaxable reserved regions exposed by 1360 * devices attached to the container. Any DMA map attempt 1361 * outside the valid iova range will return error. 1362 * 1363 * The structures below define version 1 of this capability. 1364 */ 1365 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 1 1366 1367 struct vfio_iova_range { 1368 __u64 start; 1369 __u64 end; 1370 }; 1371 1372 struct vfio_iommu_type1_info_cap_iova_range { 1373 struct vfio_info_cap_header header; 1374 __u32 nr_iovas; 1375 __u32 reserved; 1376 struct vfio_iova_range iova_ranges[]; 1377 }; 1378 1379 /* 1380 * The migration capability allows to report supported features for migration. 1381 * 1382 * The structures below define version 1 of this capability. 1383 * 1384 * The existence of this capability indicates that IOMMU kernel driver supports 1385 * dirty page logging. 1386 * 1387 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty 1388 * page logging. 1389 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap 1390 * size in bytes that can be used by user applications when getting the dirty 1391 * bitmap. 1392 */ 1393 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 2 1394 1395 struct vfio_iommu_type1_info_cap_migration { 1396 struct vfio_info_cap_header header; 1397 __u32 flags; 1398 __u64 pgsize_bitmap; 1399 __u64 max_dirty_bitmap_size; /* in bytes */ 1400 }; 1401 1402 /* 1403 * The DMA available capability allows to report the current number of 1404 * simultaneously outstanding DMA mappings that are allowed. 1405 * 1406 * The structure below defines version 1 of this capability. 1407 * 1408 * avail: specifies the current number of outstanding DMA mappings allowed. 1409 */ 1410 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3 1411 1412 struct vfio_iommu_type1_info_dma_avail { 1413 struct vfio_info_cap_header header; 1414 __u32 avail; 1415 }; 1416 1417 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1418 1419 /** 1420 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map) 1421 * 1422 * Map process virtual addresses to IO virtual addresses using the 1423 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required. 1424 * 1425 * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova. The vaddr 1426 * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR. To 1427 * maintain memory consistency within the user application, the updated vaddr 1428 * must address the same memory object as originally mapped. Failure to do so 1429 * will result in user memory corruption and/or device misbehavior. iova and 1430 * size must match those in the original MAP_DMA call. Protection is not 1431 * changed, and the READ & WRITE flags must be 0. 1432 */ 1433 struct vfio_iommu_type1_dma_map { 1434 __u32 argsz; 1435 __u32 flags; 1436 #define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */ 1437 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */ 1438 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2) 1439 __u64 vaddr; /* Process virtual address */ 1440 __u64 iova; /* IO virtual address */ 1441 __u64 size; /* Size of mapping (bytes) */ 1442 }; 1443 1444 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13) 1445 1446 struct vfio_bitmap { 1447 __u64 pgsize; /* page size for bitmap in bytes */ 1448 __u64 size; /* in bytes */ 1449 __u64 __user *data; /* one bit per page */ 1450 }; 1451 1452 /** 1453 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14, 1454 * struct vfio_dma_unmap) 1455 * 1456 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap. 1457 * Caller sets argsz. The actual unmapped size is returned in the size 1458 * field. No guarantee is made to the user that arbitrary unmaps of iova 1459 * or size different from those used in the original mapping call will 1460 * succeed. 1461 * 1462 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap 1463 * before unmapping IO virtual addresses. When this flag is set, the user must 1464 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated 1465 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field. 1466 * A bit in the bitmap represents one page, of user provided page size in 1467 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set 1468 * indicates that the page at that offset from iova is dirty. A Bitmap of the 1469 * pages in the range of unmapped size is returned in the user-provided 1470 * vfio_bitmap.data. 1471 * 1472 * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses. iova and size 1473 * must be 0. This cannot be combined with the get-dirty-bitmap flag. 1474 * 1475 * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host 1476 * virtual addresses in the iova range. DMA to already-mapped pages continues. 1477 * Groups may not be added to the container while any addresses are invalid. 1478 * This cannot be combined with the get-dirty-bitmap flag. 1479 */ 1480 struct vfio_iommu_type1_dma_unmap { 1481 __u32 argsz; 1482 __u32 flags; 1483 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0) 1484 #define VFIO_DMA_UNMAP_FLAG_ALL (1 << 1) 1485 #define VFIO_DMA_UNMAP_FLAG_VADDR (1 << 2) 1486 __u64 iova; /* IO virtual address */ 1487 __u64 size; /* Size of mapping (bytes) */ 1488 __u8 data[]; 1489 }; 1490 1491 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14) 1492 1493 /* 1494 * IOCTLs to enable/disable IOMMU container usage. 1495 * No parameters are supported. 1496 */ 1497 #define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15) 1498 #define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16) 1499 1500 /** 1501 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17, 1502 * struct vfio_iommu_type1_dirty_bitmap) 1503 * IOCTL is used for dirty pages logging. 1504 * Caller should set flag depending on which operation to perform, details as 1505 * below: 1506 * 1507 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs 1508 * the IOMMU driver to log pages that are dirtied or potentially dirtied by 1509 * the device; designed to be used when a migration is in progress. Dirty pages 1510 * are logged until logging is disabled by user application by calling the IOCTL 1511 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag. 1512 * 1513 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs 1514 * the IOMMU driver to stop logging dirtied pages. 1515 * 1516 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set 1517 * returns the dirty pages bitmap for IOMMU container for a given IOVA range. 1518 * The user must specify the IOVA range and the pgsize through the structure 1519 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface 1520 * supports getting a bitmap of the smallest supported pgsize only and can be 1521 * modified in future to get a bitmap of any specified supported pgsize. The 1522 * user must provide a zeroed memory area for the bitmap memory and specify its 1523 * size in bitmap.size. One bit is used to represent one page consecutively 1524 * starting from iova offset. The user should provide page size in bitmap.pgsize 1525 * field. A bit set in the bitmap indicates that the page at that offset from 1526 * iova is dirty. The caller must set argsz to a value including the size of 1527 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the 1528 * actual bitmap. If dirty pages logging is not enabled, an error will be 1529 * returned. 1530 * 1531 * Only one of the flags _START, _STOP and _GET may be specified at a time. 1532 * 1533 */ 1534 struct vfio_iommu_type1_dirty_bitmap { 1535 __u32 argsz; 1536 __u32 flags; 1537 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0) 1538 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1) 1539 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2) 1540 __u8 data[]; 1541 }; 1542 1543 struct vfio_iommu_type1_dirty_bitmap_get { 1544 __u64 iova; /* IO virtual address */ 1545 __u64 size; /* Size of iova range */ 1546 struct vfio_bitmap bitmap; 1547 }; 1548 1549 #define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17) 1550 1551 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */ 1552 1553 /* 1554 * The SPAPR TCE DDW info struct provides the information about 1555 * the details of Dynamic DMA window capability. 1556 * 1557 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported. 1558 * @max_dynamic_windows_supported tells the maximum number of windows 1559 * which the platform can create. 1560 * @levels tells the maximum number of levels in multi-level IOMMU tables; 1561 * this allows splitting a table into smaller chunks which reduces 1562 * the amount of physically contiguous memory required for the table. 1563 */ 1564 struct vfio_iommu_spapr_tce_ddw_info { 1565 __u64 pgsizes; /* Bitmap of supported page sizes */ 1566 __u32 max_dynamic_windows_supported; 1567 __u32 levels; 1568 }; 1569 1570 /* 1571 * The SPAPR TCE info struct provides the information about the PCI bus 1572 * address ranges available for DMA, these values are programmed into 1573 * the hardware so the guest has to know that information. 1574 * 1575 * The DMA 32 bit window start is an absolute PCI bus address. 1576 * The IOVA address passed via map/unmap ioctls are absolute PCI bus 1577 * addresses too so the window works as a filter rather than an offset 1578 * for IOVA addresses. 1579 * 1580 * Flags supported: 1581 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows 1582 * (DDW) support is present. @ddw is only supported when DDW is present. 1583 */ 1584 struct vfio_iommu_spapr_tce_info { 1585 __u32 argsz; 1586 __u32 flags; 1587 #define VFIO_IOMMU_SPAPR_INFO_DDW (1 << 0) /* DDW supported */ 1588 __u32 dma32_window_start; /* 32 bit window start (bytes) */ 1589 __u32 dma32_window_size; /* 32 bit window size (bytes) */ 1590 struct vfio_iommu_spapr_tce_ddw_info ddw; 1591 }; 1592 1593 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1594 1595 /* 1596 * EEH PE operation struct provides ways to: 1597 * - enable/disable EEH functionality; 1598 * - unfreeze IO/DMA for frozen PE; 1599 * - read PE state; 1600 * - reset PE; 1601 * - configure PE; 1602 * - inject EEH error. 1603 */ 1604 struct vfio_eeh_pe_err { 1605 __u32 type; 1606 __u32 func; 1607 __u64 addr; 1608 __u64 mask; 1609 }; 1610 1611 struct vfio_eeh_pe_op { 1612 __u32 argsz; 1613 __u32 flags; 1614 __u32 op; 1615 union { 1616 struct vfio_eeh_pe_err err; 1617 }; 1618 }; 1619 1620 #define VFIO_EEH_PE_DISABLE 0 /* Disable EEH functionality */ 1621 #define VFIO_EEH_PE_ENABLE 1 /* Enable EEH functionality */ 1622 #define VFIO_EEH_PE_UNFREEZE_IO 2 /* Enable IO for frozen PE */ 1623 #define VFIO_EEH_PE_UNFREEZE_DMA 3 /* Enable DMA for frozen PE */ 1624 #define VFIO_EEH_PE_GET_STATE 4 /* PE state retrieval */ 1625 #define VFIO_EEH_PE_STATE_NORMAL 0 /* PE in functional state */ 1626 #define VFIO_EEH_PE_STATE_RESET 1 /* PE reset in progress */ 1627 #define VFIO_EEH_PE_STATE_STOPPED 2 /* Stopped DMA and IO */ 1628 #define VFIO_EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA only */ 1629 #define VFIO_EEH_PE_STATE_UNAVAIL 5 /* State unavailable */ 1630 #define VFIO_EEH_PE_RESET_DEACTIVATE 5 /* Deassert PE reset */ 1631 #define VFIO_EEH_PE_RESET_HOT 6 /* Assert hot reset */ 1632 #define VFIO_EEH_PE_RESET_FUNDAMENTAL 7 /* Assert fundamental reset */ 1633 #define VFIO_EEH_PE_CONFIGURE 8 /* PE configuration */ 1634 #define VFIO_EEH_PE_INJECT_ERR 9 /* Inject EEH error */ 1635 1636 #define VFIO_EEH_PE_OP _IO(VFIO_TYPE, VFIO_BASE + 21) 1637 1638 /** 1639 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory) 1640 * 1641 * Registers user space memory where DMA is allowed. It pins 1642 * user pages and does the locked memory accounting so 1643 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls 1644 * get faster. 1645 */ 1646 struct vfio_iommu_spapr_register_memory { 1647 __u32 argsz; 1648 __u32 flags; 1649 __u64 vaddr; /* Process virtual address */ 1650 __u64 size; /* Size of mapping (bytes) */ 1651 }; 1652 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 17) 1653 1654 /** 1655 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory) 1656 * 1657 * Unregisters user space memory registered with 1658 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY. 1659 * Uses vfio_iommu_spapr_register_memory for parameters. 1660 */ 1661 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 18) 1662 1663 /** 1664 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create) 1665 * 1666 * Creates an additional TCE table and programs it (sets a new DMA window) 1667 * to every IOMMU group in the container. It receives page shift, window 1668 * size and number of levels in the TCE table being created. 1669 * 1670 * It allocates and returns an offset on a PCI bus of the new DMA window. 1671 */ 1672 struct vfio_iommu_spapr_tce_create { 1673 __u32 argsz; 1674 __u32 flags; 1675 /* in */ 1676 __u32 page_shift; 1677 __u32 __resv1; 1678 __u64 window_size; 1679 __u32 levels; 1680 __u32 __resv2; 1681 /* out */ 1682 __u64 start_addr; 1683 }; 1684 #define VFIO_IOMMU_SPAPR_TCE_CREATE _IO(VFIO_TYPE, VFIO_BASE + 19) 1685 1686 /** 1687 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove) 1688 * 1689 * Unprograms a TCE table from all groups in the container and destroys it. 1690 * It receives a PCI bus offset as a window id. 1691 */ 1692 struct vfio_iommu_spapr_tce_remove { 1693 __u32 argsz; 1694 __u32 flags; 1695 /* in */ 1696 __u64 start_addr; 1697 }; 1698 #define VFIO_IOMMU_SPAPR_TCE_REMOVE _IO(VFIO_TYPE, VFIO_BASE + 20) 1699 1700 /* ***************************************************************** */ 1701 1702 #endif /* _UAPIVFIO_H */ 1703