xref: /linux-6.15/include/uapi/linux/perf_event.h (revision cd57dc5a)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _UAPI_LINUX_PERF_EVENT_H
15 #define _UAPI_LINUX_PERF_EVENT_H
16 
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20 
21 /*
22  * User-space ABI bits:
23  */
24 
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29 	PERF_TYPE_HARDWARE			= 0,
30 	PERF_TYPE_SOFTWARE			= 1,
31 	PERF_TYPE_TRACEPOINT			= 2,
32 	PERF_TYPE_HW_CACHE			= 3,
33 	PERF_TYPE_RAW				= 4,
34 	PERF_TYPE_BREAKPOINT			= 5,
35 
36 	PERF_TYPE_MAX,				/* non-ABI */
37 };
38 
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45 	/*
46 	 * Common hardware events, generalized by the kernel:
47 	 */
48 	PERF_COUNT_HW_CPU_CYCLES		= 0,
49 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
50 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
51 	PERF_COUNT_HW_CACHE_MISSES		= 3,
52 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
53 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
54 	PERF_COUNT_HW_BUS_CYCLES		= 6,
55 	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
56 	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
57 	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
58 
59 	PERF_COUNT_HW_MAX,			/* non-ABI */
60 };
61 
62 /*
63  * Generalized hardware cache events:
64  *
65  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66  *       { read, write, prefetch } x
67  *       { accesses, misses }
68  */
69 enum perf_hw_cache_id {
70 	PERF_COUNT_HW_CACHE_L1D			= 0,
71 	PERF_COUNT_HW_CACHE_L1I			= 1,
72 	PERF_COUNT_HW_CACHE_LL			= 2,
73 	PERF_COUNT_HW_CACHE_DTLB		= 3,
74 	PERF_COUNT_HW_CACHE_ITLB		= 4,
75 	PERF_COUNT_HW_CACHE_BPU			= 5,
76 	PERF_COUNT_HW_CACHE_NODE		= 6,
77 
78 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
79 };
80 
81 enum perf_hw_cache_op_id {
82 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
83 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
84 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
85 
86 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
87 };
88 
89 enum perf_hw_cache_op_result_id {
90 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
91 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
92 
93 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
94 };
95 
96 /*
97  * Special "software" events provided by the kernel, even if the hardware
98  * does not support performance events. These events measure various
99  * physical and sw events of the kernel (and allow the profiling of them as
100  * well):
101  */
102 enum perf_sw_ids {
103 	PERF_COUNT_SW_CPU_CLOCK			= 0,
104 	PERF_COUNT_SW_TASK_CLOCK		= 1,
105 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
106 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
107 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
108 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
109 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
110 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
111 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
112 	PERF_COUNT_SW_DUMMY			= 9,
113 	PERF_COUNT_SW_BPF_OUTPUT		= 10,
114 
115 	PERF_COUNT_SW_MAX,			/* non-ABI */
116 };
117 
118 /*
119  * Bits that can be set in attr.sample_type to request information
120  * in the overflow packets.
121  */
122 enum perf_event_sample_format {
123 	PERF_SAMPLE_IP				= 1U << 0,
124 	PERF_SAMPLE_TID				= 1U << 1,
125 	PERF_SAMPLE_TIME			= 1U << 2,
126 	PERF_SAMPLE_ADDR			= 1U << 3,
127 	PERF_SAMPLE_READ			= 1U << 4,
128 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
129 	PERF_SAMPLE_ID				= 1U << 6,
130 	PERF_SAMPLE_CPU				= 1U << 7,
131 	PERF_SAMPLE_PERIOD			= 1U << 8,
132 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
133 	PERF_SAMPLE_RAW				= 1U << 10,
134 	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
135 	PERF_SAMPLE_REGS_USER			= 1U << 12,
136 	PERF_SAMPLE_STACK_USER			= 1U << 13,
137 	PERF_SAMPLE_WEIGHT			= 1U << 14,
138 	PERF_SAMPLE_DATA_SRC			= 1U << 15,
139 	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
140 	PERF_SAMPLE_TRANSACTION			= 1U << 17,
141 	PERF_SAMPLE_REGS_INTR			= 1U << 18,
142 	PERF_SAMPLE_PHYS_ADDR			= 1U << 19,
143 
144 	PERF_SAMPLE_MAX = 1U << 20,		/* non-ABI */
145 };
146 
147 /*
148  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
149  *
150  * If the user does not pass priv level information via branch_sample_type,
151  * the kernel uses the event's priv level. Branch and event priv levels do
152  * not have to match. Branch priv level is checked for permissions.
153  *
154  * The branch types can be combined, however BRANCH_ANY covers all types
155  * of branches and therefore it supersedes all the other types.
156  */
157 enum perf_branch_sample_type_shift {
158 	PERF_SAMPLE_BRANCH_USER_SHIFT		= 0, /* user branches */
159 	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		= 1, /* kernel branches */
160 	PERF_SAMPLE_BRANCH_HV_SHIFT		= 2, /* hypervisor branches */
161 
162 	PERF_SAMPLE_BRANCH_ANY_SHIFT		= 3, /* any branch types */
163 	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	= 4, /* any call branch */
164 	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	= 5, /* any return branch */
165 	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	= 6, /* indirect calls */
166 	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	= 7, /* transaction aborts */
167 	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		= 8, /* in transaction */
168 	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		= 9, /* not in transaction */
169 	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
170 
171 	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* call/ret stack */
172 	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
173 	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
174 
175 	PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
176 	PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */
177 
178 	PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT	= 16, /* save branch type */
179 
180 	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
181 };
182 
183 enum perf_branch_sample_type {
184 	PERF_SAMPLE_BRANCH_USER		= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
185 	PERF_SAMPLE_BRANCH_KERNEL	= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
186 	PERF_SAMPLE_BRANCH_HV		= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
187 
188 	PERF_SAMPLE_BRANCH_ANY		= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
189 	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
190 	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
191 	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
192 	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
193 	PERF_SAMPLE_BRANCH_IN_TX	= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
194 	PERF_SAMPLE_BRANCH_NO_TX	= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
195 	PERF_SAMPLE_BRANCH_COND		= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
196 
197 	PERF_SAMPLE_BRANCH_CALL_STACK	= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
198 	PERF_SAMPLE_BRANCH_IND_JUMP	= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
199 	PERF_SAMPLE_BRANCH_CALL		= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
200 
201 	PERF_SAMPLE_BRANCH_NO_FLAGS	= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
202 	PERF_SAMPLE_BRANCH_NO_CYCLES	= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
203 
204 	PERF_SAMPLE_BRANCH_TYPE_SAVE	=
205 		1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
206 
207 	PERF_SAMPLE_BRANCH_MAX		= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
208 };
209 
210 /*
211  * Common flow change classification
212  */
213 enum {
214 	PERF_BR_UNKNOWN		= 0,	/* unknown */
215 	PERF_BR_COND		= 1,	/* conditional */
216 	PERF_BR_UNCOND		= 2,	/* unconditional  */
217 	PERF_BR_IND		= 3,	/* indirect */
218 	PERF_BR_CALL		= 4,	/* function call */
219 	PERF_BR_IND_CALL	= 5,	/* indirect function call */
220 	PERF_BR_RET		= 6,	/* function return */
221 	PERF_BR_SYSCALL		= 7,	/* syscall */
222 	PERF_BR_SYSRET		= 8,	/* syscall return */
223 	PERF_BR_COND_CALL	= 9,	/* conditional function call */
224 	PERF_BR_COND_RET	= 10,	/* conditional function return */
225 	PERF_BR_MAX,
226 };
227 
228 #define PERF_SAMPLE_BRANCH_PLM_ALL \
229 	(PERF_SAMPLE_BRANCH_USER|\
230 	 PERF_SAMPLE_BRANCH_KERNEL|\
231 	 PERF_SAMPLE_BRANCH_HV)
232 
233 /*
234  * Values to determine ABI of the registers dump.
235  */
236 enum perf_sample_regs_abi {
237 	PERF_SAMPLE_REGS_ABI_NONE	= 0,
238 	PERF_SAMPLE_REGS_ABI_32		= 1,
239 	PERF_SAMPLE_REGS_ABI_64		= 2,
240 };
241 
242 /*
243  * Values for the memory transaction event qualifier, mostly for
244  * abort events. Multiple bits can be set.
245  */
246 enum {
247 	PERF_TXN_ELISION        = (1 << 0), /* From elision */
248 	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
249 	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
250 	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
251 	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
252 	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
253 	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
254 	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
255 
256 	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
257 
258 	/* bits 32..63 are reserved for the abort code */
259 
260 	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
261 	PERF_TXN_ABORT_SHIFT = 32,
262 };
263 
264 /*
265  * The format of the data returned by read() on a perf event fd,
266  * as specified by attr.read_format:
267  *
268  * struct read_format {
269  *	{ u64		value;
270  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
271  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
272  *	  { u64		id;           } && PERF_FORMAT_ID
273  *	} && !PERF_FORMAT_GROUP
274  *
275  *	{ u64		nr;
276  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
277  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
278  *	  { u64		value;
279  *	    { u64	id;           } && PERF_FORMAT_ID
280  *	  }		cntr[nr];
281  *	} && PERF_FORMAT_GROUP
282  * };
283  */
284 enum perf_event_read_format {
285 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
286 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
287 	PERF_FORMAT_ID				= 1U << 2,
288 	PERF_FORMAT_GROUP			= 1U << 3,
289 
290 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
291 };
292 
293 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
294 #define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
295 #define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
296 #define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
297 					/* add: sample_stack_user */
298 #define PERF_ATTR_SIZE_VER4	104	/* add: sample_regs_intr */
299 #define PERF_ATTR_SIZE_VER5	112	/* add: aux_watermark */
300 
301 /*
302  * Hardware event_id to monitor via a performance monitoring event:
303  *
304  * @sample_max_stack: Max number of frame pointers in a callchain,
305  *		      should be < /proc/sys/kernel/perf_event_max_stack
306  */
307 struct perf_event_attr {
308 
309 	/*
310 	 * Major type: hardware/software/tracepoint/etc.
311 	 */
312 	__u32			type;
313 
314 	/*
315 	 * Size of the attr structure, for fwd/bwd compat.
316 	 */
317 	__u32			size;
318 
319 	/*
320 	 * Type specific configuration information.
321 	 */
322 	__u64			config;
323 
324 	union {
325 		__u64		sample_period;
326 		__u64		sample_freq;
327 	};
328 
329 	__u64			sample_type;
330 	__u64			read_format;
331 
332 	__u64			disabled       :  1, /* off by default        */
333 				inherit	       :  1, /* children inherit it   */
334 				pinned	       :  1, /* must always be on PMU */
335 				exclusive      :  1, /* only group on PMU     */
336 				exclude_user   :  1, /* don't count user      */
337 				exclude_kernel :  1, /* ditto kernel          */
338 				exclude_hv     :  1, /* ditto hypervisor      */
339 				exclude_idle   :  1, /* don't count when idle */
340 				mmap           :  1, /* include mmap data     */
341 				comm	       :  1, /* include comm data     */
342 				freq           :  1, /* use freq, not period  */
343 				inherit_stat   :  1, /* per task counts       */
344 				enable_on_exec :  1, /* next exec enables     */
345 				task           :  1, /* trace fork/exit       */
346 				watermark      :  1, /* wakeup_watermark      */
347 				/*
348 				 * precise_ip:
349 				 *
350 				 *  0 - SAMPLE_IP can have arbitrary skid
351 				 *  1 - SAMPLE_IP must have constant skid
352 				 *  2 - SAMPLE_IP requested to have 0 skid
353 				 *  3 - SAMPLE_IP must have 0 skid
354 				 *
355 				 *  See also PERF_RECORD_MISC_EXACT_IP
356 				 */
357 				precise_ip     :  2, /* skid constraint       */
358 				mmap_data      :  1, /* non-exec mmap data    */
359 				sample_id_all  :  1, /* sample_type all events */
360 
361 				exclude_host   :  1, /* don't count in host   */
362 				exclude_guest  :  1, /* don't count in guest  */
363 
364 				exclude_callchain_kernel : 1, /* exclude kernel callchains */
365 				exclude_callchain_user   : 1, /* exclude user callchains */
366 				mmap2          :  1, /* include mmap with inode data     */
367 				comm_exec      :  1, /* flag comm events that are due to an exec */
368 				use_clockid    :  1, /* use @clockid for time fields */
369 				context_switch :  1, /* context switch data */
370 				write_backward :  1, /* Write ring buffer from end to beginning */
371 				namespaces     :  1, /* include namespaces data */
372 				__reserved_1   : 35;
373 
374 	union {
375 		__u32		wakeup_events;	  /* wakeup every n events */
376 		__u32		wakeup_watermark; /* bytes before wakeup   */
377 	};
378 
379 	__u32			bp_type;
380 	union {
381 		__u64		bp_addr;
382 		__u64		config1; /* extension of config */
383 	};
384 	union {
385 		__u64		bp_len;
386 		__u64		config2; /* extension of config1 */
387 	};
388 	__u64	branch_sample_type; /* enum perf_branch_sample_type */
389 
390 	/*
391 	 * Defines set of user regs to dump on samples.
392 	 * See asm/perf_regs.h for details.
393 	 */
394 	__u64	sample_regs_user;
395 
396 	/*
397 	 * Defines size of the user stack to dump on samples.
398 	 */
399 	__u32	sample_stack_user;
400 
401 	__s32	clockid;
402 	/*
403 	 * Defines set of regs to dump for each sample
404 	 * state captured on:
405 	 *  - precise = 0: PMU interrupt
406 	 *  - precise > 0: sampled instruction
407 	 *
408 	 * See asm/perf_regs.h for details.
409 	 */
410 	__u64	sample_regs_intr;
411 
412 	/*
413 	 * Wakeup watermark for AUX area
414 	 */
415 	__u32	aux_watermark;
416 	__u16	sample_max_stack;
417 	__u16	__reserved_2;	/* align to __u64 */
418 };
419 
420 #define perf_flags(attr)	(*(&(attr)->read_format + 1))
421 
422 /*
423  * Ioctls that can be done on a perf event fd:
424  */
425 #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
426 #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
427 #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
428 #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
429 #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
430 #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
431 #define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
432 #define PERF_EVENT_IOC_ID		_IOR('$', 7, __u64 *)
433 #define PERF_EVENT_IOC_SET_BPF		_IOW('$', 8, __u32)
434 #define PERF_EVENT_IOC_PAUSE_OUTPUT	_IOW('$', 9, __u32)
435 
436 enum perf_event_ioc_flags {
437 	PERF_IOC_FLAG_GROUP		= 1U << 0,
438 };
439 
440 /*
441  * Structure of the page that can be mapped via mmap
442  */
443 struct perf_event_mmap_page {
444 	__u32	version;		/* version number of this structure */
445 	__u32	compat_version;		/* lowest version this is compat with */
446 
447 	/*
448 	 * Bits needed to read the hw events in user-space.
449 	 *
450 	 *   u32 seq, time_mult, time_shift, index, width;
451 	 *   u64 count, enabled, running;
452 	 *   u64 cyc, time_offset;
453 	 *   s64 pmc = 0;
454 	 *
455 	 *   do {
456 	 *     seq = pc->lock;
457 	 *     barrier()
458 	 *
459 	 *     enabled = pc->time_enabled;
460 	 *     running = pc->time_running;
461 	 *
462 	 *     if (pc->cap_usr_time && enabled != running) {
463 	 *       cyc = rdtsc();
464 	 *       time_offset = pc->time_offset;
465 	 *       time_mult   = pc->time_mult;
466 	 *       time_shift  = pc->time_shift;
467 	 *     }
468 	 *
469 	 *     index = pc->index;
470 	 *     count = pc->offset;
471 	 *     if (pc->cap_user_rdpmc && index) {
472 	 *       width = pc->pmc_width;
473 	 *       pmc = rdpmc(index - 1);
474 	 *     }
475 	 *
476 	 *     barrier();
477 	 *   } while (pc->lock != seq);
478 	 *
479 	 * NOTE: for obvious reason this only works on self-monitoring
480 	 *       processes.
481 	 */
482 	__u32	lock;			/* seqlock for synchronization */
483 	__u32	index;			/* hardware event identifier */
484 	__s64	offset;			/* add to hardware event value */
485 	__u64	time_enabled;		/* time event active */
486 	__u64	time_running;		/* time event on cpu */
487 	union {
488 		__u64	capabilities;
489 		struct {
490 			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
491 				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
492 
493 				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
494 				cap_user_time		: 1, /* The time_* fields are used */
495 				cap_user_time_zero	: 1, /* The time_zero field is used */
496 				cap_____res		: 59;
497 		};
498 	};
499 
500 	/*
501 	 * If cap_user_rdpmc this field provides the bit-width of the value
502 	 * read using the rdpmc() or equivalent instruction. This can be used
503 	 * to sign extend the result like:
504 	 *
505 	 *   pmc <<= 64 - width;
506 	 *   pmc >>= 64 - width; // signed shift right
507 	 *   count += pmc;
508 	 */
509 	__u16	pmc_width;
510 
511 	/*
512 	 * If cap_usr_time the below fields can be used to compute the time
513 	 * delta since time_enabled (in ns) using rdtsc or similar.
514 	 *
515 	 *   u64 quot, rem;
516 	 *   u64 delta;
517 	 *
518 	 *   quot = (cyc >> time_shift);
519 	 *   rem = cyc & (((u64)1 << time_shift) - 1);
520 	 *   delta = time_offset + quot * time_mult +
521 	 *              ((rem * time_mult) >> time_shift);
522 	 *
523 	 * Where time_offset,time_mult,time_shift and cyc are read in the
524 	 * seqcount loop described above. This delta can then be added to
525 	 * enabled and possible running (if index), improving the scaling:
526 	 *
527 	 *   enabled += delta;
528 	 *   if (index)
529 	 *     running += delta;
530 	 *
531 	 *   quot = count / running;
532 	 *   rem  = count % running;
533 	 *   count = quot * enabled + (rem * enabled) / running;
534 	 */
535 	__u16	time_shift;
536 	__u32	time_mult;
537 	__u64	time_offset;
538 	/*
539 	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
540 	 * from sample timestamps.
541 	 *
542 	 *   time = timestamp - time_zero;
543 	 *   quot = time / time_mult;
544 	 *   rem  = time % time_mult;
545 	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
546 	 *
547 	 * And vice versa:
548 	 *
549 	 *   quot = cyc >> time_shift;
550 	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
551 	 *   timestamp = time_zero + quot * time_mult +
552 	 *               ((rem * time_mult) >> time_shift);
553 	 */
554 	__u64	time_zero;
555 	__u32	size;			/* Header size up to __reserved[] fields. */
556 
557 		/*
558 		 * Hole for extension of the self monitor capabilities
559 		 */
560 
561 	__u8	__reserved[118*8+4];	/* align to 1k. */
562 
563 	/*
564 	 * Control data for the mmap() data buffer.
565 	 *
566 	 * User-space reading the @data_head value should issue an smp_rmb(),
567 	 * after reading this value.
568 	 *
569 	 * When the mapping is PROT_WRITE the @data_tail value should be
570 	 * written by userspace to reflect the last read data, after issueing
571 	 * an smp_mb() to separate the data read from the ->data_tail store.
572 	 * In this case the kernel will not over-write unread data.
573 	 *
574 	 * See perf_output_put_handle() for the data ordering.
575 	 *
576 	 * data_{offset,size} indicate the location and size of the perf record
577 	 * buffer within the mmapped area.
578 	 */
579 	__u64   data_head;		/* head in the data section */
580 	__u64	data_tail;		/* user-space written tail */
581 	__u64	data_offset;		/* where the buffer starts */
582 	__u64	data_size;		/* data buffer size */
583 
584 	/*
585 	 * AUX area is defined by aux_{offset,size} fields that should be set
586 	 * by the userspace, so that
587 	 *
588 	 *   aux_offset >= data_offset + data_size
589 	 *
590 	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
591 	 *
592 	 * Ring buffer pointers aux_{head,tail} have the same semantics as
593 	 * data_{head,tail} and same ordering rules apply.
594 	 */
595 	__u64	aux_head;
596 	__u64	aux_tail;
597 	__u64	aux_offset;
598 	__u64	aux_size;
599 };
600 
601 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
602 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
603 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
604 #define PERF_RECORD_MISC_USER			(2 << 0)
605 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
606 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
607 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
608 
609 /*
610  * Indicates that /proc/PID/maps parsing are truncated by time out.
611  */
612 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
613 /*
614  * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
615  * different events so can reuse the same bit position.
616  * Ditto PERF_RECORD_MISC_SWITCH_OUT.
617  */
618 #define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
619 #define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
620 #define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
621 /*
622  * Indicates that the content of PERF_SAMPLE_IP points to
623  * the actual instruction that triggered the event. See also
624  * perf_event_attr::precise_ip.
625  */
626 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
627 /*
628  * Reserve the last bit to indicate some extended misc field
629  */
630 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
631 
632 struct perf_event_header {
633 	__u32	type;
634 	__u16	misc;
635 	__u16	size;
636 };
637 
638 struct perf_ns_link_info {
639 	__u64	dev;
640 	__u64	ino;
641 };
642 
643 enum {
644 	NET_NS_INDEX		= 0,
645 	UTS_NS_INDEX		= 1,
646 	IPC_NS_INDEX		= 2,
647 	PID_NS_INDEX		= 3,
648 	USER_NS_INDEX		= 4,
649 	MNT_NS_INDEX		= 5,
650 	CGROUP_NS_INDEX		= 6,
651 
652 	NR_NAMESPACES,		/* number of available namespaces */
653 };
654 
655 enum perf_event_type {
656 
657 	/*
658 	 * If perf_event_attr.sample_id_all is set then all event types will
659 	 * have the sample_type selected fields related to where/when
660 	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
661 	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
662 	 * just after the perf_event_header and the fields already present for
663 	 * the existing fields, i.e. at the end of the payload. That way a newer
664 	 * perf.data file will be supported by older perf tools, with these new
665 	 * optional fields being ignored.
666 	 *
667 	 * struct sample_id {
668 	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
669 	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
670 	 * 	{ u64			id;       } && PERF_SAMPLE_ID
671 	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
672 	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
673 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
674 	 * } && perf_event_attr::sample_id_all
675 	 *
676 	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
677 	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
678 	 * relative to header.size.
679 	 */
680 
681 	/*
682 	 * The MMAP events record the PROT_EXEC mappings so that we can
683 	 * correlate userspace IPs to code. They have the following structure:
684 	 *
685 	 * struct {
686 	 *	struct perf_event_header	header;
687 	 *
688 	 *	u32				pid, tid;
689 	 *	u64				addr;
690 	 *	u64				len;
691 	 *	u64				pgoff;
692 	 *	char				filename[];
693 	 * 	struct sample_id		sample_id;
694 	 * };
695 	 */
696 	PERF_RECORD_MMAP			= 1,
697 
698 	/*
699 	 * struct {
700 	 *	struct perf_event_header	header;
701 	 *	u64				id;
702 	 *	u64				lost;
703 	 * 	struct sample_id		sample_id;
704 	 * };
705 	 */
706 	PERF_RECORD_LOST			= 2,
707 
708 	/*
709 	 * struct {
710 	 *	struct perf_event_header	header;
711 	 *
712 	 *	u32				pid, tid;
713 	 *	char				comm[];
714 	 * 	struct sample_id		sample_id;
715 	 * };
716 	 */
717 	PERF_RECORD_COMM			= 3,
718 
719 	/*
720 	 * struct {
721 	 *	struct perf_event_header	header;
722 	 *	u32				pid, ppid;
723 	 *	u32				tid, ptid;
724 	 *	u64				time;
725 	 * 	struct sample_id		sample_id;
726 	 * };
727 	 */
728 	PERF_RECORD_EXIT			= 4,
729 
730 	/*
731 	 * struct {
732 	 *	struct perf_event_header	header;
733 	 *	u64				time;
734 	 *	u64				id;
735 	 *	u64				stream_id;
736 	 * 	struct sample_id		sample_id;
737 	 * };
738 	 */
739 	PERF_RECORD_THROTTLE			= 5,
740 	PERF_RECORD_UNTHROTTLE			= 6,
741 
742 	/*
743 	 * struct {
744 	 *	struct perf_event_header	header;
745 	 *	u32				pid, ppid;
746 	 *	u32				tid, ptid;
747 	 *	u64				time;
748 	 * 	struct sample_id		sample_id;
749 	 * };
750 	 */
751 	PERF_RECORD_FORK			= 7,
752 
753 	/*
754 	 * struct {
755 	 *	struct perf_event_header	header;
756 	 *	u32				pid, tid;
757 	 *
758 	 *	struct read_format		values;
759 	 * 	struct sample_id		sample_id;
760 	 * };
761 	 */
762 	PERF_RECORD_READ			= 8,
763 
764 	/*
765 	 * struct {
766 	 *	struct perf_event_header	header;
767 	 *
768 	 *	#
769 	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
770 	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
771 	 *	# is fixed relative to header.
772 	 *	#
773 	 *
774 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
775 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
776 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
777 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
778 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
779 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
780 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
781 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
782 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
783 	 *
784 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
785 	 *
786 	 *	{ u64			nr,
787 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
788 	 *
789 	 *	#
790 	 *	# The RAW record below is opaque data wrt the ABI
791 	 *	#
792 	 *	# That is, the ABI doesn't make any promises wrt to
793 	 *	# the stability of its content, it may vary depending
794 	 *	# on event, hardware, kernel version and phase of
795 	 *	# the moon.
796 	 *	#
797 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
798 	 *	#
799 	 *
800 	 *	{ u32			size;
801 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
802 	 *
803 	 *	{ u64                   nr;
804 	 *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
805 	 *
806 	 * 	{ u64			abi; # enum perf_sample_regs_abi
807 	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
808 	 *
809 	 * 	{ u64			size;
810 	 * 	  char			data[size];
811 	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
812 	 *
813 	 *	{ u64			weight;   } && PERF_SAMPLE_WEIGHT
814 	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
815 	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
816 	 *	{ u64			abi; # enum perf_sample_regs_abi
817 	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
818 	 *	{ u64			phys_addr;} && PERF_SAMPLE_PHYS_ADDR
819 	 * };
820 	 */
821 	PERF_RECORD_SAMPLE			= 9,
822 
823 	/*
824 	 * The MMAP2 records are an augmented version of MMAP, they add
825 	 * maj, min, ino numbers to be used to uniquely identify each mapping
826 	 *
827 	 * struct {
828 	 *	struct perf_event_header	header;
829 	 *
830 	 *	u32				pid, tid;
831 	 *	u64				addr;
832 	 *	u64				len;
833 	 *	u64				pgoff;
834 	 *	u32				maj;
835 	 *	u32				min;
836 	 *	u64				ino;
837 	 *	u64				ino_generation;
838 	 *	u32				prot, flags;
839 	 *	char				filename[];
840 	 * 	struct sample_id		sample_id;
841 	 * };
842 	 */
843 	PERF_RECORD_MMAP2			= 10,
844 
845 	/*
846 	 * Records that new data landed in the AUX buffer part.
847 	 *
848 	 * struct {
849 	 * 	struct perf_event_header	header;
850 	 *
851 	 * 	u64				aux_offset;
852 	 * 	u64				aux_size;
853 	 *	u64				flags;
854 	 * 	struct sample_id		sample_id;
855 	 * };
856 	 */
857 	PERF_RECORD_AUX				= 11,
858 
859 	/*
860 	 * Indicates that instruction trace has started
861 	 *
862 	 * struct {
863 	 *	struct perf_event_header	header;
864 	 *	u32				pid;
865 	 *	u32				tid;
866 	 * };
867 	 */
868 	PERF_RECORD_ITRACE_START		= 12,
869 
870 	/*
871 	 * Records the dropped/lost sample number.
872 	 *
873 	 * struct {
874 	 *	struct perf_event_header	header;
875 	 *
876 	 *	u64				lost;
877 	 *	struct sample_id		sample_id;
878 	 * };
879 	 */
880 	PERF_RECORD_LOST_SAMPLES		= 13,
881 
882 	/*
883 	 * Records a context switch in or out (flagged by
884 	 * PERF_RECORD_MISC_SWITCH_OUT). See also
885 	 * PERF_RECORD_SWITCH_CPU_WIDE.
886 	 *
887 	 * struct {
888 	 *	struct perf_event_header	header;
889 	 *	struct sample_id		sample_id;
890 	 * };
891 	 */
892 	PERF_RECORD_SWITCH			= 14,
893 
894 	/*
895 	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
896 	 * next_prev_tid that are the next (switching out) or previous
897 	 * (switching in) pid/tid.
898 	 *
899 	 * struct {
900 	 *	struct perf_event_header	header;
901 	 *	u32				next_prev_pid;
902 	 *	u32				next_prev_tid;
903 	 *	struct sample_id		sample_id;
904 	 * };
905 	 */
906 	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
907 
908 	/*
909 	 * struct {
910 	 *	struct perf_event_header	header;
911 	 *	u32				pid;
912 	 *	u32				tid;
913 	 *	u64				nr_namespaces;
914 	 *	{ u64				dev, inode; } [nr_namespaces];
915 	 *	struct sample_id		sample_id;
916 	 * };
917 	 */
918 	PERF_RECORD_NAMESPACES			= 16,
919 
920 	PERF_RECORD_MAX,			/* non-ABI */
921 };
922 
923 #define PERF_MAX_STACK_DEPTH		127
924 #define PERF_MAX_CONTEXTS_PER_STACK	  8
925 
926 enum perf_callchain_context {
927 	PERF_CONTEXT_HV			= (__u64)-32,
928 	PERF_CONTEXT_KERNEL		= (__u64)-128,
929 	PERF_CONTEXT_USER		= (__u64)-512,
930 
931 	PERF_CONTEXT_GUEST		= (__u64)-2048,
932 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
933 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
934 
935 	PERF_CONTEXT_MAX		= (__u64)-4095,
936 };
937 
938 /**
939  * PERF_RECORD_AUX::flags bits
940  */
941 #define PERF_AUX_FLAG_TRUNCATED		0x01	/* record was truncated to fit */
942 #define PERF_AUX_FLAG_OVERWRITE		0x02	/* snapshot from overwrite mode */
943 #define PERF_AUX_FLAG_PARTIAL		0x04	/* record contains gaps */
944 
945 #define PERF_FLAG_FD_NO_GROUP		(1UL << 0)
946 #define PERF_FLAG_FD_OUTPUT		(1UL << 1)
947 #define PERF_FLAG_PID_CGROUP		(1UL << 2) /* pid=cgroup id, per-cpu mode only */
948 #define PERF_FLAG_FD_CLOEXEC		(1UL << 3) /* O_CLOEXEC */
949 
950 #if defined(__LITTLE_ENDIAN_BITFIELD)
951 union perf_mem_data_src {
952 	__u64 val;
953 	struct {
954 		__u64   mem_op:5,	/* type of opcode */
955 			mem_lvl:14,	/* memory hierarchy level */
956 			mem_snoop:5,	/* snoop mode */
957 			mem_lock:2,	/* lock instr */
958 			mem_dtlb:7,	/* tlb access */
959 			mem_lvl_num:4,	/* memory hierarchy level number */
960 			mem_remote:1,   /* remote */
961 			mem_snoopx:2,	/* snoop mode, ext */
962 			mem_rsvd:24;
963 	};
964 };
965 #elif defined(__BIG_ENDIAN_BITFIELD)
966 union perf_mem_data_src {
967 	__u64 val;
968 	struct {
969 		__u64	mem_rsvd:24,
970 			mem_snoopx:2,	/* snoop mode, ext */
971 			mem_remote:1,   /* remote */
972 			mem_lvl_num:4,	/* memory hierarchy level number */
973 			mem_dtlb:7,	/* tlb access */
974 			mem_lock:2,	/* lock instr */
975 			mem_snoop:5,	/* snoop mode */
976 			mem_lvl:14,	/* memory hierarchy level */
977 			mem_op:5;	/* type of opcode */
978 	};
979 };
980 #else
981 #error "Unknown endianness"
982 #endif
983 
984 /* type of opcode (load/store/prefetch,code) */
985 #define PERF_MEM_OP_NA		0x01 /* not available */
986 #define PERF_MEM_OP_LOAD	0x02 /* load instruction */
987 #define PERF_MEM_OP_STORE	0x04 /* store instruction */
988 #define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
989 #define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
990 #define PERF_MEM_OP_SHIFT	0
991 
992 /* memory hierarchy (memory level, hit or miss) */
993 #define PERF_MEM_LVL_NA		0x01  /* not available */
994 #define PERF_MEM_LVL_HIT	0x02  /* hit level */
995 #define PERF_MEM_LVL_MISS	0x04  /* miss level  */
996 #define PERF_MEM_LVL_L1		0x08  /* L1 */
997 #define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
998 #define PERF_MEM_LVL_L2		0x20  /* L2 */
999 #define PERF_MEM_LVL_L3		0x40  /* L3 */
1000 #define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
1001 #define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
1002 #define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
1003 #define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
1004 #define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
1005 #define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
1006 #define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
1007 #define PERF_MEM_LVL_SHIFT	5
1008 
1009 #define PERF_MEM_REMOTE_REMOTE	0x01  /* Remote */
1010 #define PERF_MEM_REMOTE_SHIFT	37
1011 
1012 #define PERF_MEM_LVLNUM_L1	0x01 /* L1 */
1013 #define PERF_MEM_LVLNUM_L2	0x02 /* L2 */
1014 #define PERF_MEM_LVLNUM_L3	0x03 /* L3 */
1015 #define PERF_MEM_LVLNUM_L4	0x04 /* L4 */
1016 /* 5-0xa available */
1017 #define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1018 #define PERF_MEM_LVLNUM_LFB	0x0c /* LFB */
1019 #define PERF_MEM_LVLNUM_RAM	0x0d /* RAM */
1020 #define PERF_MEM_LVLNUM_PMEM	0x0e /* PMEM */
1021 #define PERF_MEM_LVLNUM_NA	0x0f /* N/A */
1022 
1023 #define PERF_MEM_LVLNUM_SHIFT	33
1024 
1025 /* snoop mode */
1026 #define PERF_MEM_SNOOP_NA	0x01 /* not available */
1027 #define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
1028 #define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
1029 #define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
1030 #define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
1031 #define PERF_MEM_SNOOP_SHIFT	19
1032 
1033 #define PERF_MEM_SNOOPX_FWD	0x01 /* forward */
1034 /* 1 free */
1035 #define PERF_MEM_SNOOPX_SHIFT	37
1036 
1037 /* locked instruction */
1038 #define PERF_MEM_LOCK_NA	0x01 /* not available */
1039 #define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
1040 #define PERF_MEM_LOCK_SHIFT	24
1041 
1042 /* TLB access */
1043 #define PERF_MEM_TLB_NA		0x01 /* not available */
1044 #define PERF_MEM_TLB_HIT	0x02 /* hit level */
1045 #define PERF_MEM_TLB_MISS	0x04 /* miss level */
1046 #define PERF_MEM_TLB_L1		0x08 /* L1 */
1047 #define PERF_MEM_TLB_L2		0x10 /* L2 */
1048 #define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
1049 #define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
1050 #define PERF_MEM_TLB_SHIFT	26
1051 
1052 #define PERF_MEM_S(a, s) \
1053 	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1054 
1055 /*
1056  * single taken branch record layout:
1057  *
1058  *      from: source instruction (may not always be a branch insn)
1059  *        to: branch target
1060  *   mispred: branch target was mispredicted
1061  * predicted: branch target was predicted
1062  *
1063  * support for mispred, predicted is optional. In case it
1064  * is not supported mispred = predicted = 0.
1065  *
1066  *     in_tx: running in a hardware transaction
1067  *     abort: aborting a hardware transaction
1068  *    cycles: cycles from last branch (or 0 if not supported)
1069  *      type: branch type
1070  */
1071 struct perf_branch_entry {
1072 	__u64	from;
1073 	__u64	to;
1074 	__u64	mispred:1,  /* target mispredicted */
1075 		predicted:1,/* target predicted */
1076 		in_tx:1,    /* in transaction */
1077 		abort:1,    /* transaction abort */
1078 		cycles:16,  /* cycle count to last branch */
1079 		type:4,     /* branch type */
1080 		reserved:40;
1081 };
1082 
1083 #endif /* _UAPI_LINUX_PERF_EVENT_H */
1084