xref: /linux-6.15/include/uapi/linux/perf_event.h (revision 1f330c32)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _UAPI_LINUX_PERF_EVENT_H
15 #define _UAPI_LINUX_PERF_EVENT_H
16 
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20 
21 /*
22  * User-space ABI bits:
23  */
24 
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29 	PERF_TYPE_HARDWARE			= 0,
30 	PERF_TYPE_SOFTWARE			= 1,
31 	PERF_TYPE_TRACEPOINT			= 2,
32 	PERF_TYPE_HW_CACHE			= 3,
33 	PERF_TYPE_RAW				= 4,
34 	PERF_TYPE_BREAKPOINT			= 5,
35 
36 	PERF_TYPE_MAX,				/* non-ABI */
37 };
38 
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45 	/*
46 	 * Common hardware events, generalized by the kernel:
47 	 */
48 	PERF_COUNT_HW_CPU_CYCLES		= 0,
49 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
50 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
51 	PERF_COUNT_HW_CACHE_MISSES		= 3,
52 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
53 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
54 	PERF_COUNT_HW_BUS_CYCLES		= 6,
55 	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
56 	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
57 	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
58 
59 	PERF_COUNT_HW_MAX,			/* non-ABI */
60 };
61 
62 /*
63  * Generalized hardware cache events:
64  *
65  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66  *       { read, write, prefetch } x
67  *       { accesses, misses }
68  */
69 enum perf_hw_cache_id {
70 	PERF_COUNT_HW_CACHE_L1D			= 0,
71 	PERF_COUNT_HW_CACHE_L1I			= 1,
72 	PERF_COUNT_HW_CACHE_LL			= 2,
73 	PERF_COUNT_HW_CACHE_DTLB		= 3,
74 	PERF_COUNT_HW_CACHE_ITLB		= 4,
75 	PERF_COUNT_HW_CACHE_BPU			= 5,
76 	PERF_COUNT_HW_CACHE_NODE		= 6,
77 
78 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
79 };
80 
81 enum perf_hw_cache_op_id {
82 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
83 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
84 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
85 
86 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
87 };
88 
89 enum perf_hw_cache_op_result_id {
90 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
91 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
92 
93 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
94 };
95 
96 /*
97  * Special "software" events provided by the kernel, even if the hardware
98  * does not support performance events. These events measure various
99  * physical and sw events of the kernel (and allow the profiling of them as
100  * well):
101  */
102 enum perf_sw_ids {
103 	PERF_COUNT_SW_CPU_CLOCK			= 0,
104 	PERF_COUNT_SW_TASK_CLOCK		= 1,
105 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
106 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
107 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
108 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
109 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
110 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
111 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
112 	PERF_COUNT_SW_DUMMY			= 9,
113 	PERF_COUNT_SW_BPF_OUTPUT		= 10,
114 
115 	PERF_COUNT_SW_MAX,			/* non-ABI */
116 };
117 
118 /*
119  * Bits that can be set in attr.sample_type to request information
120  * in the overflow packets.
121  */
122 enum perf_event_sample_format {
123 	PERF_SAMPLE_IP				= 1U << 0,
124 	PERF_SAMPLE_TID				= 1U << 1,
125 	PERF_SAMPLE_TIME			= 1U << 2,
126 	PERF_SAMPLE_ADDR			= 1U << 3,
127 	PERF_SAMPLE_READ			= 1U << 4,
128 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
129 	PERF_SAMPLE_ID				= 1U << 6,
130 	PERF_SAMPLE_CPU				= 1U << 7,
131 	PERF_SAMPLE_PERIOD			= 1U << 8,
132 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
133 	PERF_SAMPLE_RAW				= 1U << 10,
134 	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
135 	PERF_SAMPLE_REGS_USER			= 1U << 12,
136 	PERF_SAMPLE_STACK_USER			= 1U << 13,
137 	PERF_SAMPLE_WEIGHT			= 1U << 14,
138 	PERF_SAMPLE_DATA_SRC			= 1U << 15,
139 	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
140 	PERF_SAMPLE_TRANSACTION			= 1U << 17,
141 	PERF_SAMPLE_REGS_INTR			= 1U << 18,
142 
143 	PERF_SAMPLE_MAX = 1U << 19,		/* non-ABI */
144 };
145 
146 /*
147  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
148  *
149  * If the user does not pass priv level information via branch_sample_type,
150  * the kernel uses the event's priv level. Branch and event priv levels do
151  * not have to match. Branch priv level is checked for permissions.
152  *
153  * The branch types can be combined, however BRANCH_ANY covers all types
154  * of branches and therefore it supersedes all the other types.
155  */
156 enum perf_branch_sample_type_shift {
157 	PERF_SAMPLE_BRANCH_USER_SHIFT		= 0, /* user branches */
158 	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		= 1, /* kernel branches */
159 	PERF_SAMPLE_BRANCH_HV_SHIFT		= 2, /* hypervisor branches */
160 
161 	PERF_SAMPLE_BRANCH_ANY_SHIFT		= 3, /* any branch types */
162 	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	= 4, /* any call branch */
163 	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	= 5, /* any return branch */
164 	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	= 6, /* indirect calls */
165 	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	= 7, /* transaction aborts */
166 	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		= 8, /* in transaction */
167 	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		= 9, /* not in transaction */
168 	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
169 
170 	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* call/ret stack */
171 	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
172 	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
173 
174 	PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
175 	PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */
176 
177 	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
178 };
179 
180 enum perf_branch_sample_type {
181 	PERF_SAMPLE_BRANCH_USER		= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
182 	PERF_SAMPLE_BRANCH_KERNEL	= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
183 	PERF_SAMPLE_BRANCH_HV		= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
184 
185 	PERF_SAMPLE_BRANCH_ANY		= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
186 	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
187 	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
188 	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
189 	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
190 	PERF_SAMPLE_BRANCH_IN_TX	= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
191 	PERF_SAMPLE_BRANCH_NO_TX	= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
192 	PERF_SAMPLE_BRANCH_COND		= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
193 
194 	PERF_SAMPLE_BRANCH_CALL_STACK	= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
195 	PERF_SAMPLE_BRANCH_IND_JUMP	= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
196 	PERF_SAMPLE_BRANCH_CALL		= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
197 
198 	PERF_SAMPLE_BRANCH_NO_FLAGS	= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
199 	PERF_SAMPLE_BRANCH_NO_CYCLES	= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
200 
201 	PERF_SAMPLE_BRANCH_MAX		= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
202 };
203 
204 #define PERF_SAMPLE_BRANCH_PLM_ALL \
205 	(PERF_SAMPLE_BRANCH_USER|\
206 	 PERF_SAMPLE_BRANCH_KERNEL|\
207 	 PERF_SAMPLE_BRANCH_HV)
208 
209 /*
210  * Values to determine ABI of the registers dump.
211  */
212 enum perf_sample_regs_abi {
213 	PERF_SAMPLE_REGS_ABI_NONE	= 0,
214 	PERF_SAMPLE_REGS_ABI_32		= 1,
215 	PERF_SAMPLE_REGS_ABI_64		= 2,
216 };
217 
218 /*
219  * Values for the memory transaction event qualifier, mostly for
220  * abort events. Multiple bits can be set.
221  */
222 enum {
223 	PERF_TXN_ELISION        = (1 << 0), /* From elision */
224 	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
225 	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
226 	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
227 	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
228 	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
229 	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
230 	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
231 
232 	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
233 
234 	/* bits 32..63 are reserved for the abort code */
235 
236 	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
237 	PERF_TXN_ABORT_SHIFT = 32,
238 };
239 
240 /*
241  * The format of the data returned by read() on a perf event fd,
242  * as specified by attr.read_format:
243  *
244  * struct read_format {
245  *	{ u64		value;
246  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
247  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
248  *	  { u64		id;           } && PERF_FORMAT_ID
249  *	} && !PERF_FORMAT_GROUP
250  *
251  *	{ u64		nr;
252  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
253  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
254  *	  { u64		value;
255  *	    { u64	id;           } && PERF_FORMAT_ID
256  *	  }		cntr[nr];
257  *	} && PERF_FORMAT_GROUP
258  * };
259  */
260 enum perf_event_read_format {
261 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
262 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
263 	PERF_FORMAT_ID				= 1U << 2,
264 	PERF_FORMAT_GROUP			= 1U << 3,
265 
266 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
267 };
268 
269 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
270 #define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
271 #define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
272 #define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
273 					/* add: sample_stack_user */
274 #define PERF_ATTR_SIZE_VER4	104	/* add: sample_regs_intr */
275 #define PERF_ATTR_SIZE_VER5	112	/* add: aux_watermark */
276 
277 /*
278  * Hardware event_id to monitor via a performance monitoring event:
279  */
280 struct perf_event_attr {
281 
282 	/*
283 	 * Major type: hardware/software/tracepoint/etc.
284 	 */
285 	__u32			type;
286 
287 	/*
288 	 * Size of the attr structure, for fwd/bwd compat.
289 	 */
290 	__u32			size;
291 
292 	/*
293 	 * Type specific configuration information.
294 	 */
295 	__u64			config;
296 
297 	union {
298 		__u64		sample_period;
299 		__u64		sample_freq;
300 	};
301 
302 	__u64			sample_type;
303 	__u64			read_format;
304 
305 	__u64			disabled       :  1, /* off by default        */
306 				inherit	       :  1, /* children inherit it   */
307 				pinned	       :  1, /* must always be on PMU */
308 				exclusive      :  1, /* only group on PMU     */
309 				exclude_user   :  1, /* don't count user      */
310 				exclude_kernel :  1, /* ditto kernel          */
311 				exclude_hv     :  1, /* ditto hypervisor      */
312 				exclude_idle   :  1, /* don't count when idle */
313 				mmap           :  1, /* include mmap data     */
314 				comm	       :  1, /* include comm data     */
315 				freq           :  1, /* use freq, not period  */
316 				inherit_stat   :  1, /* per task counts       */
317 				enable_on_exec :  1, /* next exec enables     */
318 				task           :  1, /* trace fork/exit       */
319 				watermark      :  1, /* wakeup_watermark      */
320 				/*
321 				 * precise_ip:
322 				 *
323 				 *  0 - SAMPLE_IP can have arbitrary skid
324 				 *  1 - SAMPLE_IP must have constant skid
325 				 *  2 - SAMPLE_IP requested to have 0 skid
326 				 *  3 - SAMPLE_IP must have 0 skid
327 				 *
328 				 *  See also PERF_RECORD_MISC_EXACT_IP
329 				 */
330 				precise_ip     :  2, /* skid constraint       */
331 				mmap_data      :  1, /* non-exec mmap data    */
332 				sample_id_all  :  1, /* sample_type all events */
333 
334 				exclude_host   :  1, /* don't count in host   */
335 				exclude_guest  :  1, /* don't count in guest  */
336 
337 				exclude_callchain_kernel : 1, /* exclude kernel callchains */
338 				exclude_callchain_user   : 1, /* exclude user callchains */
339 				mmap2          :  1, /* include mmap with inode data     */
340 				comm_exec      :  1, /* flag comm events that are due to an exec */
341 				use_clockid    :  1, /* use @clockid for time fields */
342 				context_switch :  1, /* context switch data */
343 				__reserved_1   : 37;
344 
345 	union {
346 		__u32		wakeup_events;	  /* wakeup every n events */
347 		__u32		wakeup_watermark; /* bytes before wakeup   */
348 	};
349 
350 	__u32			bp_type;
351 	union {
352 		__u64		bp_addr;
353 		__u64		config1; /* extension of config */
354 	};
355 	union {
356 		__u64		bp_len;
357 		__u64		config2; /* extension of config1 */
358 	};
359 	__u64	branch_sample_type; /* enum perf_branch_sample_type */
360 
361 	/*
362 	 * Defines set of user regs to dump on samples.
363 	 * See asm/perf_regs.h for details.
364 	 */
365 	__u64	sample_regs_user;
366 
367 	/*
368 	 * Defines size of the user stack to dump on samples.
369 	 */
370 	__u32	sample_stack_user;
371 
372 	__s32	clockid;
373 	/*
374 	 * Defines set of regs to dump for each sample
375 	 * state captured on:
376 	 *  - precise = 0: PMU interrupt
377 	 *  - precise > 0: sampled instruction
378 	 *
379 	 * See asm/perf_regs.h for details.
380 	 */
381 	__u64	sample_regs_intr;
382 
383 	/*
384 	 * Wakeup watermark for AUX area
385 	 */
386 	__u32	aux_watermark;
387 	__u32	__reserved_2;	/* align to __u64 */
388 };
389 
390 #define perf_flags(attr)	(*(&(attr)->read_format + 1))
391 
392 /*
393  * Ioctls that can be done on a perf event fd:
394  */
395 #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
396 #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
397 #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
398 #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
399 #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
400 #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
401 #define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
402 #define PERF_EVENT_IOC_ID		_IOR('$', 7, __u64 *)
403 #define PERF_EVENT_IOC_SET_BPF		_IOW('$', 8, __u32)
404 
405 enum perf_event_ioc_flags {
406 	PERF_IOC_FLAG_GROUP		= 1U << 0,
407 };
408 
409 /*
410  * Structure of the page that can be mapped via mmap
411  */
412 struct perf_event_mmap_page {
413 	__u32	version;		/* version number of this structure */
414 	__u32	compat_version;		/* lowest version this is compat with */
415 
416 	/*
417 	 * Bits needed to read the hw events in user-space.
418 	 *
419 	 *   u32 seq, time_mult, time_shift, index, width;
420 	 *   u64 count, enabled, running;
421 	 *   u64 cyc, time_offset;
422 	 *   s64 pmc = 0;
423 	 *
424 	 *   do {
425 	 *     seq = pc->lock;
426 	 *     barrier()
427 	 *
428 	 *     enabled = pc->time_enabled;
429 	 *     running = pc->time_running;
430 	 *
431 	 *     if (pc->cap_usr_time && enabled != running) {
432 	 *       cyc = rdtsc();
433 	 *       time_offset = pc->time_offset;
434 	 *       time_mult   = pc->time_mult;
435 	 *       time_shift  = pc->time_shift;
436 	 *     }
437 	 *
438 	 *     index = pc->index;
439 	 *     count = pc->offset;
440 	 *     if (pc->cap_user_rdpmc && index) {
441 	 *       width = pc->pmc_width;
442 	 *       pmc = rdpmc(index - 1);
443 	 *     }
444 	 *
445 	 *     barrier();
446 	 *   } while (pc->lock != seq);
447 	 *
448 	 * NOTE: for obvious reason this only works on self-monitoring
449 	 *       processes.
450 	 */
451 	__u32	lock;			/* seqlock for synchronization */
452 	__u32	index;			/* hardware event identifier */
453 	__s64	offset;			/* add to hardware event value */
454 	__u64	time_enabled;		/* time event active */
455 	__u64	time_running;		/* time event on cpu */
456 	union {
457 		__u64	capabilities;
458 		struct {
459 			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
460 				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
461 
462 				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
463 				cap_user_time		: 1, /* The time_* fields are used */
464 				cap_user_time_zero	: 1, /* The time_zero field is used */
465 				cap_____res		: 59;
466 		};
467 	};
468 
469 	/*
470 	 * If cap_user_rdpmc this field provides the bit-width of the value
471 	 * read using the rdpmc() or equivalent instruction. This can be used
472 	 * to sign extend the result like:
473 	 *
474 	 *   pmc <<= 64 - width;
475 	 *   pmc >>= 64 - width; // signed shift right
476 	 *   count += pmc;
477 	 */
478 	__u16	pmc_width;
479 
480 	/*
481 	 * If cap_usr_time the below fields can be used to compute the time
482 	 * delta since time_enabled (in ns) using rdtsc or similar.
483 	 *
484 	 *   u64 quot, rem;
485 	 *   u64 delta;
486 	 *
487 	 *   quot = (cyc >> time_shift);
488 	 *   rem = cyc & (((u64)1 << time_shift) - 1);
489 	 *   delta = time_offset + quot * time_mult +
490 	 *              ((rem * time_mult) >> time_shift);
491 	 *
492 	 * Where time_offset,time_mult,time_shift and cyc are read in the
493 	 * seqcount loop described above. This delta can then be added to
494 	 * enabled and possible running (if index), improving the scaling:
495 	 *
496 	 *   enabled += delta;
497 	 *   if (index)
498 	 *     running += delta;
499 	 *
500 	 *   quot = count / running;
501 	 *   rem  = count % running;
502 	 *   count = quot * enabled + (rem * enabled) / running;
503 	 */
504 	__u16	time_shift;
505 	__u32	time_mult;
506 	__u64	time_offset;
507 	/*
508 	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
509 	 * from sample timestamps.
510 	 *
511 	 *   time = timestamp - time_zero;
512 	 *   quot = time / time_mult;
513 	 *   rem  = time % time_mult;
514 	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
515 	 *
516 	 * And vice versa:
517 	 *
518 	 *   quot = cyc >> time_shift;
519 	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
520 	 *   timestamp = time_zero + quot * time_mult +
521 	 *               ((rem * time_mult) >> time_shift);
522 	 */
523 	__u64	time_zero;
524 	__u32	size;			/* Header size up to __reserved[] fields. */
525 
526 		/*
527 		 * Hole for extension of the self monitor capabilities
528 		 */
529 
530 	__u8	__reserved[118*8+4];	/* align to 1k. */
531 
532 	/*
533 	 * Control data for the mmap() data buffer.
534 	 *
535 	 * User-space reading the @data_head value should issue an smp_rmb(),
536 	 * after reading this value.
537 	 *
538 	 * When the mapping is PROT_WRITE the @data_tail value should be
539 	 * written by userspace to reflect the last read data, after issueing
540 	 * an smp_mb() to separate the data read from the ->data_tail store.
541 	 * In this case the kernel will not over-write unread data.
542 	 *
543 	 * See perf_output_put_handle() for the data ordering.
544 	 *
545 	 * data_{offset,size} indicate the location and size of the perf record
546 	 * buffer within the mmapped area.
547 	 */
548 	__u64   data_head;		/* head in the data section */
549 	__u64	data_tail;		/* user-space written tail */
550 	__u64	data_offset;		/* where the buffer starts */
551 	__u64	data_size;		/* data buffer size */
552 
553 	/*
554 	 * AUX area is defined by aux_{offset,size} fields that should be set
555 	 * by the userspace, so that
556 	 *
557 	 *   aux_offset >= data_offset + data_size
558 	 *
559 	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
560 	 *
561 	 * Ring buffer pointers aux_{head,tail} have the same semantics as
562 	 * data_{head,tail} and same ordering rules apply.
563 	 */
564 	__u64	aux_head;
565 	__u64	aux_tail;
566 	__u64	aux_offset;
567 	__u64	aux_size;
568 };
569 
570 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
571 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
572 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
573 #define PERF_RECORD_MISC_USER			(2 << 0)
574 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
575 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
576 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
577 
578 /*
579  * Indicates that /proc/PID/maps parsing are truncated by time out.
580  */
581 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
582 /*
583  * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
584  * different events so can reuse the same bit position.
585  * Ditto PERF_RECORD_MISC_SWITCH_OUT.
586  */
587 #define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
588 #define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
589 #define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
590 /*
591  * Indicates that the content of PERF_SAMPLE_IP points to
592  * the actual instruction that triggered the event. See also
593  * perf_event_attr::precise_ip.
594  */
595 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
596 /*
597  * Reserve the last bit to indicate some extended misc field
598  */
599 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
600 
601 struct perf_event_header {
602 	__u32	type;
603 	__u16	misc;
604 	__u16	size;
605 };
606 
607 enum perf_event_type {
608 
609 	/*
610 	 * If perf_event_attr.sample_id_all is set then all event types will
611 	 * have the sample_type selected fields related to where/when
612 	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
613 	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
614 	 * just after the perf_event_header and the fields already present for
615 	 * the existing fields, i.e. at the end of the payload. That way a newer
616 	 * perf.data file will be supported by older perf tools, with these new
617 	 * optional fields being ignored.
618 	 *
619 	 * struct sample_id {
620 	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
621 	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
622 	 * 	{ u64			id;       } && PERF_SAMPLE_ID
623 	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
624 	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
625 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
626 	 * } && perf_event_attr::sample_id_all
627 	 *
628 	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
629 	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
630 	 * relative to header.size.
631 	 */
632 
633 	/*
634 	 * The MMAP events record the PROT_EXEC mappings so that we can
635 	 * correlate userspace IPs to code. They have the following structure:
636 	 *
637 	 * struct {
638 	 *	struct perf_event_header	header;
639 	 *
640 	 *	u32				pid, tid;
641 	 *	u64				addr;
642 	 *	u64				len;
643 	 *	u64				pgoff;
644 	 *	char				filename[];
645 	 * 	struct sample_id		sample_id;
646 	 * };
647 	 */
648 	PERF_RECORD_MMAP			= 1,
649 
650 	/*
651 	 * struct {
652 	 *	struct perf_event_header	header;
653 	 *	u64				id;
654 	 *	u64				lost;
655 	 * 	struct sample_id		sample_id;
656 	 * };
657 	 */
658 	PERF_RECORD_LOST			= 2,
659 
660 	/*
661 	 * struct {
662 	 *	struct perf_event_header	header;
663 	 *
664 	 *	u32				pid, tid;
665 	 *	char				comm[];
666 	 * 	struct sample_id		sample_id;
667 	 * };
668 	 */
669 	PERF_RECORD_COMM			= 3,
670 
671 	/*
672 	 * struct {
673 	 *	struct perf_event_header	header;
674 	 *	u32				pid, ppid;
675 	 *	u32				tid, ptid;
676 	 *	u64				time;
677 	 * 	struct sample_id		sample_id;
678 	 * };
679 	 */
680 	PERF_RECORD_EXIT			= 4,
681 
682 	/*
683 	 * struct {
684 	 *	struct perf_event_header	header;
685 	 *	u64				time;
686 	 *	u64				id;
687 	 *	u64				stream_id;
688 	 * 	struct sample_id		sample_id;
689 	 * };
690 	 */
691 	PERF_RECORD_THROTTLE			= 5,
692 	PERF_RECORD_UNTHROTTLE			= 6,
693 
694 	/*
695 	 * struct {
696 	 *	struct perf_event_header	header;
697 	 *	u32				pid, ppid;
698 	 *	u32				tid, ptid;
699 	 *	u64				time;
700 	 * 	struct sample_id		sample_id;
701 	 * };
702 	 */
703 	PERF_RECORD_FORK			= 7,
704 
705 	/*
706 	 * struct {
707 	 *	struct perf_event_header	header;
708 	 *	u32				pid, tid;
709 	 *
710 	 *	struct read_format		values;
711 	 * 	struct sample_id		sample_id;
712 	 * };
713 	 */
714 	PERF_RECORD_READ			= 8,
715 
716 	/*
717 	 * struct {
718 	 *	struct perf_event_header	header;
719 	 *
720 	 *	#
721 	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
722 	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
723 	 *	# is fixed relative to header.
724 	 *	#
725 	 *
726 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
727 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
728 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
729 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
730 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
731 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
732 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
733 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
734 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
735 	 *
736 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
737 	 *
738 	 *	{ u64			nr,
739 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
740 	 *
741 	 *	#
742 	 *	# The RAW record below is opaque data wrt the ABI
743 	 *	#
744 	 *	# That is, the ABI doesn't make any promises wrt to
745 	 *	# the stability of its content, it may vary depending
746 	 *	# on event, hardware, kernel version and phase of
747 	 *	# the moon.
748 	 *	#
749 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
750 	 *	#
751 	 *
752 	 *	{ u32			size;
753 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
754 	 *
755 	 *	{ u64                   nr;
756 	 *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
757 	 *
758 	 * 	{ u64			abi; # enum perf_sample_regs_abi
759 	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
760 	 *
761 	 * 	{ u64			size;
762 	 * 	  char			data[size];
763 	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
764 	 *
765 	 *	{ u64			weight;   } && PERF_SAMPLE_WEIGHT
766 	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
767 	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
768 	 *	{ u64			abi; # enum perf_sample_regs_abi
769 	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
770 	 * };
771 	 */
772 	PERF_RECORD_SAMPLE			= 9,
773 
774 	/*
775 	 * The MMAP2 records are an augmented version of MMAP, they add
776 	 * maj, min, ino numbers to be used to uniquely identify each mapping
777 	 *
778 	 * struct {
779 	 *	struct perf_event_header	header;
780 	 *
781 	 *	u32				pid, tid;
782 	 *	u64				addr;
783 	 *	u64				len;
784 	 *	u64				pgoff;
785 	 *	u32				maj;
786 	 *	u32				min;
787 	 *	u64				ino;
788 	 *	u64				ino_generation;
789 	 *	u32				prot, flags;
790 	 *	char				filename[];
791 	 * 	struct sample_id		sample_id;
792 	 * };
793 	 */
794 	PERF_RECORD_MMAP2			= 10,
795 
796 	/*
797 	 * Records that new data landed in the AUX buffer part.
798 	 *
799 	 * struct {
800 	 * 	struct perf_event_header	header;
801 	 *
802 	 * 	u64				aux_offset;
803 	 * 	u64				aux_size;
804 	 *	u64				flags;
805 	 * 	struct sample_id		sample_id;
806 	 * };
807 	 */
808 	PERF_RECORD_AUX				= 11,
809 
810 	/*
811 	 * Indicates that instruction trace has started
812 	 *
813 	 * struct {
814 	 *	struct perf_event_header	header;
815 	 *	u32				pid;
816 	 *	u32				tid;
817 	 * };
818 	 */
819 	PERF_RECORD_ITRACE_START		= 12,
820 
821 	/*
822 	 * Records the dropped/lost sample number.
823 	 *
824 	 * struct {
825 	 *	struct perf_event_header	header;
826 	 *
827 	 *	u64				lost;
828 	 *	struct sample_id		sample_id;
829 	 * };
830 	 */
831 	PERF_RECORD_LOST_SAMPLES		= 13,
832 
833 	/*
834 	 * Records a context switch in or out (flagged by
835 	 * PERF_RECORD_MISC_SWITCH_OUT). See also
836 	 * PERF_RECORD_SWITCH_CPU_WIDE.
837 	 *
838 	 * struct {
839 	 *	struct perf_event_header	header;
840 	 *	struct sample_id		sample_id;
841 	 * };
842 	 */
843 	PERF_RECORD_SWITCH			= 14,
844 
845 	/*
846 	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
847 	 * next_prev_tid that are the next (switching out) or previous
848 	 * (switching in) pid/tid.
849 	 *
850 	 * struct {
851 	 *	struct perf_event_header	header;
852 	 *	u32				next_prev_pid;
853 	 *	u32				next_prev_tid;
854 	 *	struct sample_id		sample_id;
855 	 * };
856 	 */
857 	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
858 
859 	PERF_RECORD_MAX,			/* non-ABI */
860 };
861 
862 #define PERF_MAX_STACK_DEPTH		127
863 
864 enum perf_callchain_context {
865 	PERF_CONTEXT_HV			= (__u64)-32,
866 	PERF_CONTEXT_KERNEL		= (__u64)-128,
867 	PERF_CONTEXT_USER		= (__u64)-512,
868 
869 	PERF_CONTEXT_GUEST		= (__u64)-2048,
870 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
871 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
872 
873 	PERF_CONTEXT_MAX		= (__u64)-4095,
874 };
875 
876 /**
877  * PERF_RECORD_AUX::flags bits
878  */
879 #define PERF_AUX_FLAG_TRUNCATED		0x01	/* record was truncated to fit */
880 #define PERF_AUX_FLAG_OVERWRITE		0x02	/* snapshot from overwrite mode */
881 
882 #define PERF_FLAG_FD_NO_GROUP		(1UL << 0)
883 #define PERF_FLAG_FD_OUTPUT		(1UL << 1)
884 #define PERF_FLAG_PID_CGROUP		(1UL << 2) /* pid=cgroup id, per-cpu mode only */
885 #define PERF_FLAG_FD_CLOEXEC		(1UL << 3) /* O_CLOEXEC */
886 
887 union perf_mem_data_src {
888 	__u64 val;
889 	struct {
890 		__u64   mem_op:5,	/* type of opcode */
891 			mem_lvl:14,	/* memory hierarchy level */
892 			mem_snoop:5,	/* snoop mode */
893 			mem_lock:2,	/* lock instr */
894 			mem_dtlb:7,	/* tlb access */
895 			mem_rsvd:31;
896 	};
897 };
898 
899 /* type of opcode (load/store/prefetch,code) */
900 #define PERF_MEM_OP_NA		0x01 /* not available */
901 #define PERF_MEM_OP_LOAD	0x02 /* load instruction */
902 #define PERF_MEM_OP_STORE	0x04 /* store instruction */
903 #define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
904 #define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
905 #define PERF_MEM_OP_SHIFT	0
906 
907 /* memory hierarchy (memory level, hit or miss) */
908 #define PERF_MEM_LVL_NA		0x01  /* not available */
909 #define PERF_MEM_LVL_HIT	0x02  /* hit level */
910 #define PERF_MEM_LVL_MISS	0x04  /* miss level  */
911 #define PERF_MEM_LVL_L1		0x08  /* L1 */
912 #define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
913 #define PERF_MEM_LVL_L2		0x20  /* L2 */
914 #define PERF_MEM_LVL_L3		0x40  /* L3 */
915 #define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
916 #define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
917 #define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
918 #define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
919 #define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
920 #define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
921 #define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
922 #define PERF_MEM_LVL_SHIFT	5
923 
924 /* snoop mode */
925 #define PERF_MEM_SNOOP_NA	0x01 /* not available */
926 #define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
927 #define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
928 #define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
929 #define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
930 #define PERF_MEM_SNOOP_SHIFT	19
931 
932 /* locked instruction */
933 #define PERF_MEM_LOCK_NA	0x01 /* not available */
934 #define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
935 #define PERF_MEM_LOCK_SHIFT	24
936 
937 /* TLB access */
938 #define PERF_MEM_TLB_NA		0x01 /* not available */
939 #define PERF_MEM_TLB_HIT	0x02 /* hit level */
940 #define PERF_MEM_TLB_MISS	0x04 /* miss level */
941 #define PERF_MEM_TLB_L1		0x08 /* L1 */
942 #define PERF_MEM_TLB_L2		0x10 /* L2 */
943 #define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
944 #define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
945 #define PERF_MEM_TLB_SHIFT	26
946 
947 #define PERF_MEM_S(a, s) \
948 	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
949 
950 /*
951  * single taken branch record layout:
952  *
953  *      from: source instruction (may not always be a branch insn)
954  *        to: branch target
955  *   mispred: branch target was mispredicted
956  * predicted: branch target was predicted
957  *
958  * support for mispred, predicted is optional. In case it
959  * is not supported mispred = predicted = 0.
960  *
961  *     in_tx: running in a hardware transaction
962  *     abort: aborting a hardware transaction
963  *    cycles: cycles from last branch (or 0 if not supported)
964  */
965 struct perf_branch_entry {
966 	__u64	from;
967 	__u64	to;
968 	__u64	mispred:1,  /* target mispredicted */
969 		predicted:1,/* target predicted */
970 		in_tx:1,    /* in transaction */
971 		abort:1,    /* transaction abort */
972 		cycles:16,  /* cycle count to last branch */
973 		reserved:44;
974 };
975 
976 #endif /* _UAPI_LINUX_PERF_EVENT_H */
977