1 /* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <[email protected]> 20 * Hank Janssen <[email protected]> 21 * K. Y. Srinivasan <[email protected]> 22 * 23 */ 24 25 #ifndef _UAPI_HYPERV_H 26 #define _UAPI_HYPERV_H 27 28 #include <linux/uuid.h> 29 30 /* 31 * Framework version for util services. 32 */ 33 #define UTIL_FW_MINOR 0 34 35 #define UTIL_WS2K8_FW_MAJOR 1 36 #define UTIL_WS2K8_FW_VERSION (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR) 37 38 #define UTIL_FW_MAJOR 3 39 #define UTIL_FW_VERSION (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR) 40 41 42 /* 43 * Implementation of host controlled snapshot of the guest. 44 */ 45 46 #define VSS_OP_REGISTER 128 47 48 /* 49 Daemon code with full handshake support. 50 */ 51 #define VSS_OP_REGISTER1 129 52 53 enum hv_vss_op { 54 VSS_OP_CREATE = 0, 55 VSS_OP_DELETE, 56 VSS_OP_HOT_BACKUP, 57 VSS_OP_GET_DM_INFO, 58 VSS_OP_BU_COMPLETE, 59 /* 60 * Following operations are only supported with IC version >= 5.0 61 */ 62 VSS_OP_FREEZE, /* Freeze the file systems in the VM */ 63 VSS_OP_THAW, /* Unfreeze the file systems */ 64 VSS_OP_AUTO_RECOVER, 65 VSS_OP_COUNT /* Number of operations, must be last */ 66 }; 67 68 69 /* 70 * Header for all VSS messages. 71 */ 72 struct hv_vss_hdr { 73 __u8 operation; 74 __u8 reserved[7]; 75 } __attribute__((packed)); 76 77 78 /* 79 * Flag values for the hv_vss_check_feature. Linux supports only 80 * one value. 81 */ 82 #define VSS_HBU_NO_AUTO_RECOVERY 0x00000005 83 84 struct hv_vss_check_feature { 85 __u32 flags; 86 } __attribute__((packed)); 87 88 struct hv_vss_check_dm_info { 89 __u32 flags; 90 } __attribute__((packed)); 91 92 struct hv_vss_msg { 93 union { 94 struct hv_vss_hdr vss_hdr; 95 int error; 96 }; 97 union { 98 struct hv_vss_check_feature vss_cf; 99 struct hv_vss_check_dm_info dm_info; 100 }; 101 } __attribute__((packed)); 102 103 /* 104 * Implementation of a host to guest copy facility. 105 */ 106 107 #define FCOPY_VERSION_0 0 108 #define FCOPY_CURRENT_VERSION FCOPY_VERSION_0 109 #define W_MAX_PATH 260 110 111 enum hv_fcopy_op { 112 START_FILE_COPY = 0, 113 WRITE_TO_FILE, 114 COMPLETE_FCOPY, 115 CANCEL_FCOPY, 116 }; 117 118 struct hv_fcopy_hdr { 119 __u32 operation; 120 uuid_le service_id0; /* currently unused */ 121 uuid_le service_id1; /* currently unused */ 122 } __attribute__((packed)); 123 124 #define OVER_WRITE 0x1 125 #define CREATE_PATH 0x2 126 127 struct hv_start_fcopy { 128 struct hv_fcopy_hdr hdr; 129 __u16 file_name[W_MAX_PATH]; 130 __u16 path_name[W_MAX_PATH]; 131 __u32 copy_flags; 132 __u64 file_size; 133 } __attribute__((packed)); 134 135 /* 136 * The file is chunked into fragments. 137 */ 138 #define DATA_FRAGMENT (6 * 1024) 139 140 struct hv_do_fcopy { 141 struct hv_fcopy_hdr hdr; 142 __u32 pad; 143 __u64 offset; 144 __u32 size; 145 __u8 data[DATA_FRAGMENT]; 146 } __attribute__((packed)); 147 148 /* 149 * An implementation of HyperV key value pair (KVP) functionality for Linux. 150 * 151 * 152 * Copyright (C) 2010, Novell, Inc. 153 * Author : K. Y. Srinivasan <[email protected]> 154 * 155 */ 156 157 /* 158 * Maximum value size - used for both key names and value data, and includes 159 * any applicable NULL terminators. 160 * 161 * Note: This limit is somewhat arbitrary, but falls easily within what is 162 * supported for all native guests (back to Win 2000) and what is reasonable 163 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are 164 * limited to 255 character key names. 165 * 166 * MSDN recommends not storing data values larger than 2048 bytes in the 167 * registry. 168 * 169 * Note: This value is used in defining the KVP exchange message - this value 170 * cannot be modified without affecting the message size and compatibility. 171 */ 172 173 /* 174 * bytes, including any null terminators 175 */ 176 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048) 177 178 179 /* 180 * Maximum key size - the registry limit for the length of an entry name 181 * is 256 characters, including the null terminator 182 */ 183 184 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512) 185 186 /* 187 * In Linux, we implement the KVP functionality in two components: 188 * 1) The kernel component which is packaged as part of the hv_utils driver 189 * is responsible for communicating with the host and responsible for 190 * implementing the host/guest protocol. 2) A user level daemon that is 191 * responsible for data gathering. 192 * 193 * Host/Guest Protocol: The host iterates over an index and expects the guest 194 * to assign a key name to the index and also return the value corresponding to 195 * the key. The host will have atmost one KVP transaction outstanding at any 196 * given point in time. The host side iteration stops when the guest returns 197 * an error. Microsoft has specified the following mapping of key names to 198 * host specified index: 199 * 200 * Index Key Name 201 * 0 FullyQualifiedDomainName 202 * 1 IntegrationServicesVersion 203 * 2 NetworkAddressIPv4 204 * 3 NetworkAddressIPv6 205 * 4 OSBuildNumber 206 * 5 OSName 207 * 6 OSMajorVersion 208 * 7 OSMinorVersion 209 * 8 OSVersion 210 * 9 ProcessorArchitecture 211 * 212 * The Windows host expects the Key Name and Key Value to be encoded in utf16. 213 * 214 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the 215 * data gathering functionality in a user mode daemon. The user level daemon 216 * is also responsible for binding the key name to the index as well. The 217 * kernel and user-level daemon communicate using a connector channel. 218 * 219 * The user mode component first registers with the 220 * the kernel component. Subsequently, the kernel component requests, data 221 * for the specified keys. In response to this message the user mode component 222 * fills in the value corresponding to the specified key. We overload the 223 * sequence field in the cn_msg header to define our KVP message types. 224 * 225 * 226 * The kernel component simply acts as a conduit for communication between the 227 * Windows host and the user-level daemon. The kernel component passes up the 228 * index received from the Host to the user-level daemon. If the index is 229 * valid (supported), the corresponding key as well as its 230 * value (both are strings) is returned. If the index is invalid 231 * (not supported), a NULL key string is returned. 232 */ 233 234 235 /* 236 * Registry value types. 237 */ 238 239 #define REG_SZ 1 240 #define REG_U32 4 241 #define REG_U64 8 242 243 /* 244 * As we look at expanding the KVP functionality to include 245 * IP injection functionality, we need to maintain binary 246 * compatibility with older daemons. 247 * 248 * The KVP opcodes are defined by the host and it was unfortunate 249 * that I chose to treat the registration operation as part of the 250 * KVP operations defined by the host. 251 * Here is the level of compatibility 252 * (between the user level daemon and the kernel KVP driver) that we 253 * will implement: 254 * 255 * An older daemon will always be supported on a newer driver. 256 * A given user level daemon will require a minimal version of the 257 * kernel driver. 258 * If we cannot handle the version differences, we will fail gracefully 259 * (this can happen when we have a user level daemon that is more 260 * advanced than the KVP driver. 261 * 262 * We will use values used in this handshake for determining if we have 263 * workable user level daemon and the kernel driver. We begin by taking the 264 * registration opcode out of the KVP opcode namespace. We will however, 265 * maintain compatibility with the existing user-level daemon code. 266 */ 267 268 /* 269 * Daemon code not supporting IP injection (legacy daemon). 270 */ 271 272 #define KVP_OP_REGISTER 4 273 274 /* 275 * Daemon code supporting IP injection. 276 * The KVP opcode field is used to communicate the 277 * registration information; so define a namespace that 278 * will be distinct from the host defined KVP opcode. 279 */ 280 281 #define KVP_OP_REGISTER1 100 282 283 enum hv_kvp_exchg_op { 284 KVP_OP_GET = 0, 285 KVP_OP_SET, 286 KVP_OP_DELETE, 287 KVP_OP_ENUMERATE, 288 KVP_OP_GET_IP_INFO, 289 KVP_OP_SET_IP_INFO, 290 KVP_OP_COUNT /* Number of operations, must be last. */ 291 }; 292 293 enum hv_kvp_exchg_pool { 294 KVP_POOL_EXTERNAL = 0, 295 KVP_POOL_GUEST, 296 KVP_POOL_AUTO, 297 KVP_POOL_AUTO_EXTERNAL, 298 KVP_POOL_AUTO_INTERNAL, 299 KVP_POOL_COUNT /* Number of pools, must be last. */ 300 }; 301 302 /* 303 * Some Hyper-V status codes. 304 */ 305 306 #define HV_S_OK 0x00000000 307 #define HV_E_FAIL 0x80004005 308 #define HV_S_CONT 0x80070103 309 #define HV_ERROR_NOT_SUPPORTED 0x80070032 310 #define HV_ERROR_MACHINE_LOCKED 0x800704F7 311 #define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F 312 #define HV_INVALIDARG 0x80070057 313 #define HV_GUID_NOTFOUND 0x80041002 314 #define HV_ERROR_ALREADY_EXISTS 0x80070050 315 316 #define ADDR_FAMILY_NONE 0x00 317 #define ADDR_FAMILY_IPV4 0x01 318 #define ADDR_FAMILY_IPV6 0x02 319 320 #define MAX_ADAPTER_ID_SIZE 128 321 #define MAX_IP_ADDR_SIZE 1024 322 #define MAX_GATEWAY_SIZE 512 323 324 325 struct hv_kvp_ipaddr_value { 326 __u16 adapter_id[MAX_ADAPTER_ID_SIZE]; 327 __u8 addr_family; 328 __u8 dhcp_enabled; 329 __u16 ip_addr[MAX_IP_ADDR_SIZE]; 330 __u16 sub_net[MAX_IP_ADDR_SIZE]; 331 __u16 gate_way[MAX_GATEWAY_SIZE]; 332 __u16 dns_addr[MAX_IP_ADDR_SIZE]; 333 } __attribute__((packed)); 334 335 336 struct hv_kvp_hdr { 337 __u8 operation; 338 __u8 pool; 339 __u16 pad; 340 } __attribute__((packed)); 341 342 struct hv_kvp_exchg_msg_value { 343 __u32 value_type; 344 __u32 key_size; 345 __u32 value_size; 346 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 347 union { 348 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE]; 349 __u32 value_u32; 350 __u64 value_u64; 351 }; 352 } __attribute__((packed)); 353 354 struct hv_kvp_msg_enumerate { 355 __u32 index; 356 struct hv_kvp_exchg_msg_value data; 357 } __attribute__((packed)); 358 359 struct hv_kvp_msg_get { 360 struct hv_kvp_exchg_msg_value data; 361 }; 362 363 struct hv_kvp_msg_set { 364 struct hv_kvp_exchg_msg_value data; 365 }; 366 367 struct hv_kvp_msg_delete { 368 __u32 key_size; 369 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 370 }; 371 372 struct hv_kvp_register { 373 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 374 }; 375 376 struct hv_kvp_msg { 377 union { 378 struct hv_kvp_hdr kvp_hdr; 379 int error; 380 }; 381 union { 382 struct hv_kvp_msg_get kvp_get; 383 struct hv_kvp_msg_set kvp_set; 384 struct hv_kvp_msg_delete kvp_delete; 385 struct hv_kvp_msg_enumerate kvp_enum_data; 386 struct hv_kvp_ipaddr_value kvp_ip_val; 387 struct hv_kvp_register kvp_register; 388 } body; 389 } __attribute__((packed)); 390 391 struct hv_kvp_ip_msg { 392 __u8 operation; 393 __u8 pool; 394 struct hv_kvp_ipaddr_value kvp_ip_val; 395 } __attribute__((packed)); 396 397 #endif /* _UAPI_HYPERV_H */ 398