xref: /linux-6.15/include/uapi/linux/hyperv.h (revision 5267cf02)
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <[email protected]>
20  *   Hank Janssen  <[email protected]>
21  *   K. Y. Srinivasan <[email protected]>
22  *
23  */
24 
25 #ifndef _UAPI_HYPERV_H
26 #define _UAPI_HYPERV_H
27 
28 /*
29  * Framework version for util services.
30  */
31 #define UTIL_FW_MINOR  0
32 
33 #define UTIL_WS2K8_FW_MAJOR  1
34 #define UTIL_WS2K8_FW_VERSION     (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
35 
36 #define UTIL_FW_MAJOR  3
37 #define UTIL_FW_VERSION     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
38 
39 
40 /*
41  * Implementation of host controlled snapshot of the guest.
42  */
43 
44 #define VSS_OP_REGISTER 128
45 
46 enum hv_vss_op {
47 	VSS_OP_CREATE = 0,
48 	VSS_OP_DELETE,
49 	VSS_OP_HOT_BACKUP,
50 	VSS_OP_GET_DM_INFO,
51 	VSS_OP_BU_COMPLETE,
52 	/*
53 	 * Following operations are only supported with IC version >= 5.0
54 	 */
55 	VSS_OP_FREEZE, /* Freeze the file systems in the VM */
56 	VSS_OP_THAW, /* Unfreeze the file systems */
57 	VSS_OP_AUTO_RECOVER,
58 	VSS_OP_COUNT /* Number of operations, must be last */
59 };
60 
61 
62 /*
63  * Header for all VSS messages.
64  */
65 struct hv_vss_hdr {
66 	__u8 operation;
67 	__u8 reserved[7];
68 } __attribute__((packed));
69 
70 
71 /*
72  * Flag values for the hv_vss_check_feature. Linux supports only
73  * one value.
74  */
75 #define VSS_HBU_NO_AUTO_RECOVERY	0x00000005
76 
77 struct hv_vss_check_feature {
78 	__u32 flags;
79 } __attribute__((packed));
80 
81 struct hv_vss_check_dm_info {
82 	__u32 flags;
83 } __attribute__((packed));
84 
85 struct hv_vss_msg {
86 	union {
87 		struct hv_vss_hdr vss_hdr;
88 		int error;
89 	};
90 	union {
91 		struct hv_vss_check_feature vss_cf;
92 		struct hv_vss_check_dm_info dm_info;
93 	};
94 } __attribute__((packed));
95 
96 /*
97  * An implementation of HyperV key value pair (KVP) functionality for Linux.
98  *
99  *
100  * Copyright (C) 2010, Novell, Inc.
101  * Author : K. Y. Srinivasan <[email protected]>
102  *
103  */
104 
105 /*
106  * Maximum value size - used for both key names and value data, and includes
107  * any applicable NULL terminators.
108  *
109  * Note:  This limit is somewhat arbitrary, but falls easily within what is
110  * supported for all native guests (back to Win 2000) and what is reasonable
111  * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
112  * limited to 255 character key names.
113  *
114  * MSDN recommends not storing data values larger than 2048 bytes in the
115  * registry.
116  *
117  * Note:  This value is used in defining the KVP exchange message - this value
118  * cannot be modified without affecting the message size and compatibility.
119  */
120 
121 /*
122  * bytes, including any null terminators
123  */
124 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
125 
126 
127 /*
128  * Maximum key size - the registry limit for the length of an entry name
129  * is 256 characters, including the null terminator
130  */
131 
132 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
133 
134 /*
135  * In Linux, we implement the KVP functionality in two components:
136  * 1) The kernel component which is packaged as part of the hv_utils driver
137  * is responsible for communicating with the host and responsible for
138  * implementing the host/guest protocol. 2) A user level daemon that is
139  * responsible for data gathering.
140  *
141  * Host/Guest Protocol: The host iterates over an index and expects the guest
142  * to assign a key name to the index and also return the value corresponding to
143  * the key. The host will have atmost one KVP transaction outstanding at any
144  * given point in time. The host side iteration stops when the guest returns
145  * an error. Microsoft has specified the following mapping of key names to
146  * host specified index:
147  *
148  *	Index		Key Name
149  *	0		FullyQualifiedDomainName
150  *	1		IntegrationServicesVersion
151  *	2		NetworkAddressIPv4
152  *	3		NetworkAddressIPv6
153  *	4		OSBuildNumber
154  *	5		OSName
155  *	6		OSMajorVersion
156  *	7		OSMinorVersion
157  *	8		OSVersion
158  *	9		ProcessorArchitecture
159  *
160  * The Windows host expects the Key Name and Key Value to be encoded in utf16.
161  *
162  * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
163  * data gathering functionality in a user mode daemon. The user level daemon
164  * is also responsible for binding the key name to the index as well. The
165  * kernel and user-level daemon communicate using a connector channel.
166  *
167  * The user mode component first registers with the
168  * the kernel component. Subsequently, the kernel component requests, data
169  * for the specified keys. In response to this message the user mode component
170  * fills in the value corresponding to the specified key. We overload the
171  * sequence field in the cn_msg header to define our KVP message types.
172  *
173  *
174  * The kernel component simply acts as a conduit for communication between the
175  * Windows host and the user-level daemon. The kernel component passes up the
176  * index received from the Host to the user-level daemon. If the index is
177  * valid (supported), the corresponding key as well as its
178  * value (both are strings) is returned. If the index is invalid
179  * (not supported), a NULL key string is returned.
180  */
181 
182 
183 /*
184  * Registry value types.
185  */
186 
187 #define REG_SZ 1
188 #define REG_U32 4
189 #define REG_U64 8
190 
191 /*
192  * As we look at expanding the KVP functionality to include
193  * IP injection functionality, we need to maintain binary
194  * compatibility with older daemons.
195  *
196  * The KVP opcodes are defined by the host and it was unfortunate
197  * that I chose to treat the registration operation as part of the
198  * KVP operations defined by the host.
199  * Here is the level of compatibility
200  * (between the user level daemon and the kernel KVP driver) that we
201  * will implement:
202  *
203  * An older daemon will always be supported on a newer driver.
204  * A given user level daemon will require a minimal version of the
205  * kernel driver.
206  * If we cannot handle the version differences, we will fail gracefully
207  * (this can happen when we have a user level daemon that is more
208  * advanced than the KVP driver.
209  *
210  * We will use values used in this handshake for determining if we have
211  * workable user level daemon and the kernel driver. We begin by taking the
212  * registration opcode out of the KVP opcode namespace. We will however,
213  * maintain compatibility with the existing user-level daemon code.
214  */
215 
216 /*
217  * Daemon code not supporting IP injection (legacy daemon).
218  */
219 
220 #define KVP_OP_REGISTER	4
221 
222 /*
223  * Daemon code supporting IP injection.
224  * The KVP opcode field is used to communicate the
225  * registration information; so define a namespace that
226  * will be distinct from the host defined KVP opcode.
227  */
228 
229 #define KVP_OP_REGISTER1 100
230 
231 enum hv_kvp_exchg_op {
232 	KVP_OP_GET = 0,
233 	KVP_OP_SET,
234 	KVP_OP_DELETE,
235 	KVP_OP_ENUMERATE,
236 	KVP_OP_GET_IP_INFO,
237 	KVP_OP_SET_IP_INFO,
238 	KVP_OP_COUNT /* Number of operations, must be last. */
239 };
240 
241 enum hv_kvp_exchg_pool {
242 	KVP_POOL_EXTERNAL = 0,
243 	KVP_POOL_GUEST,
244 	KVP_POOL_AUTO,
245 	KVP_POOL_AUTO_EXTERNAL,
246 	KVP_POOL_AUTO_INTERNAL,
247 	KVP_POOL_COUNT /* Number of pools, must be last. */
248 };
249 
250 /*
251  * Some Hyper-V status codes.
252  */
253 
254 #define HV_S_OK				0x00000000
255 #define HV_E_FAIL			0x80004005
256 #define HV_S_CONT			0x80070103
257 #define HV_ERROR_NOT_SUPPORTED		0x80070032
258 #define HV_ERROR_MACHINE_LOCKED		0x800704F7
259 #define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
260 #define HV_INVALIDARG			0x80070057
261 #define HV_GUID_NOTFOUND		0x80041002
262 
263 #define ADDR_FAMILY_NONE	0x00
264 #define ADDR_FAMILY_IPV4	0x01
265 #define ADDR_FAMILY_IPV6	0x02
266 
267 #define MAX_ADAPTER_ID_SIZE	128
268 #define MAX_IP_ADDR_SIZE	1024
269 #define MAX_GATEWAY_SIZE	512
270 
271 
272 struct hv_kvp_ipaddr_value {
273 	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
274 	__u8	addr_family;
275 	__u8	dhcp_enabled;
276 	__u16	ip_addr[MAX_IP_ADDR_SIZE];
277 	__u16	sub_net[MAX_IP_ADDR_SIZE];
278 	__u16	gate_way[MAX_GATEWAY_SIZE];
279 	__u16	dns_addr[MAX_IP_ADDR_SIZE];
280 } __attribute__((packed));
281 
282 
283 struct hv_kvp_hdr {
284 	__u8 operation;
285 	__u8 pool;
286 	__u16 pad;
287 } __attribute__((packed));
288 
289 struct hv_kvp_exchg_msg_value {
290 	__u32 value_type;
291 	__u32 key_size;
292 	__u32 value_size;
293 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
294 	union {
295 		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
296 		__u32 value_u32;
297 		__u64 value_u64;
298 	};
299 } __attribute__((packed));
300 
301 struct hv_kvp_msg_enumerate {
302 	__u32 index;
303 	struct hv_kvp_exchg_msg_value data;
304 } __attribute__((packed));
305 
306 struct hv_kvp_msg_get {
307 	struct hv_kvp_exchg_msg_value data;
308 };
309 
310 struct hv_kvp_msg_set {
311 	struct hv_kvp_exchg_msg_value data;
312 };
313 
314 struct hv_kvp_msg_delete {
315 	__u32 key_size;
316 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
317 };
318 
319 struct hv_kvp_register {
320 	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
321 };
322 
323 struct hv_kvp_msg {
324 	union {
325 		struct hv_kvp_hdr	kvp_hdr;
326 		int error;
327 	};
328 	union {
329 		struct hv_kvp_msg_get		kvp_get;
330 		struct hv_kvp_msg_set		kvp_set;
331 		struct hv_kvp_msg_delete	kvp_delete;
332 		struct hv_kvp_msg_enumerate	kvp_enum_data;
333 		struct hv_kvp_ipaddr_value      kvp_ip_val;
334 		struct hv_kvp_register		kvp_register;
335 	} body;
336 } __attribute__((packed));
337 
338 struct hv_kvp_ip_msg {
339 	__u8 operation;
340 	__u8 pool;
341 	struct hv_kvp_ipaddr_value      kvp_ip_val;
342 } __attribute__((packed));
343 
344 #endif /* _UAPI_HYPERV_H */
345