1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 #ifndef _BTRFS_CTREE_H_ 3 #define _BTRFS_CTREE_H_ 4 5 #include <linux/btrfs.h> 6 #include <linux/types.h> 7 #ifdef __KERNEL__ 8 #include <linux/stddef.h> 9 #else 10 #include <stddef.h> 11 #endif 12 13 /* 14 * This header contains the structure definitions and constants used 15 * by file system objects that can be retrieved using 16 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that 17 * is needed to describe a leaf node's key or item contents. 18 */ 19 20 /* holds pointers to all of the tree roots */ 21 #define BTRFS_ROOT_TREE_OBJECTID 1ULL 22 23 /* stores information about which extents are in use, and reference counts */ 24 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL 25 26 /* 27 * chunk tree stores translations from logical -> physical block numbering 28 * the super block points to the chunk tree 29 */ 30 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL 31 32 /* 33 * stores information about which areas of a given device are in use. 34 * one per device. The tree of tree roots points to the device tree 35 */ 36 #define BTRFS_DEV_TREE_OBJECTID 4ULL 37 38 /* one per subvolume, storing files and directories */ 39 #define BTRFS_FS_TREE_OBJECTID 5ULL 40 41 /* directory objectid inside the root tree */ 42 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL 43 44 /* holds checksums of all the data extents */ 45 #define BTRFS_CSUM_TREE_OBJECTID 7ULL 46 47 /* holds quota configuration and tracking */ 48 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL 49 50 /* for storing items that use the BTRFS_UUID_KEY* types */ 51 #define BTRFS_UUID_TREE_OBJECTID 9ULL 52 53 /* tracks free space in block groups. */ 54 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL 55 56 /* device stats in the device tree */ 57 #define BTRFS_DEV_STATS_OBJECTID 0ULL 58 59 /* for storing balance parameters in the root tree */ 60 #define BTRFS_BALANCE_OBJECTID -4ULL 61 62 /* orphan objectid for tracking unlinked/truncated files */ 63 #define BTRFS_ORPHAN_OBJECTID -5ULL 64 65 /* does write ahead logging to speed up fsyncs */ 66 #define BTRFS_TREE_LOG_OBJECTID -6ULL 67 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL 68 69 /* for space balancing */ 70 #define BTRFS_TREE_RELOC_OBJECTID -8ULL 71 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL 72 73 /* 74 * extent checksums all have this objectid 75 * this allows them to share the logging tree 76 * for fsyncs 77 */ 78 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL 79 80 /* For storing free space cache */ 81 #define BTRFS_FREE_SPACE_OBJECTID -11ULL 82 83 /* 84 * The inode number assigned to the special inode for storing 85 * free ino cache 86 */ 87 #define BTRFS_FREE_INO_OBJECTID -12ULL 88 89 /* dummy objectid represents multiple objectids */ 90 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL 91 92 /* 93 * All files have objectids in this range. 94 */ 95 #define BTRFS_FIRST_FREE_OBJECTID 256ULL 96 #define BTRFS_LAST_FREE_OBJECTID -256ULL 97 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL 98 99 100 /* 101 * the device items go into the chunk tree. The key is in the form 102 * [ 1 BTRFS_DEV_ITEM_KEY device_id ] 103 */ 104 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL 105 106 #define BTRFS_BTREE_INODE_OBJECTID 1 107 108 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 109 110 #define BTRFS_DEV_REPLACE_DEVID 0ULL 111 112 /* 113 * inode items have the data typically returned from stat and store other 114 * info about object characteristics. There is one for every file and dir in 115 * the FS 116 */ 117 #define BTRFS_INODE_ITEM_KEY 1 118 #define BTRFS_INODE_REF_KEY 12 119 #define BTRFS_INODE_EXTREF_KEY 13 120 #define BTRFS_XATTR_ITEM_KEY 24 121 122 /* 123 * fs verity items are stored under two different key types on disk. 124 * The descriptor items: 125 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ] 126 * 127 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size 128 * of the descriptor item and some extra data for encryption. 129 * Starting at offset 1, these hold the generic fs verity descriptor. The 130 * latter are opaque to btrfs, we just read and write them as a blob for the 131 * higher level verity code. The most common descriptor size is 256 bytes. 132 * 133 * The merkle tree items: 134 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ] 135 * 136 * These also start at offset 0, and correspond to the merkle tree bytes. When 137 * fsverity asks for page 0 of the merkle tree, we pull up one page starting at 138 * offset 0 for this key type. These are also opaque to btrfs, we're blindly 139 * storing whatever fsverity sends down. 140 */ 141 #define BTRFS_VERITY_DESC_ITEM_KEY 36 142 #define BTRFS_VERITY_MERKLE_ITEM_KEY 37 143 144 #define BTRFS_ORPHAN_ITEM_KEY 48 145 /* reserve 2-15 close to the inode for later flexibility */ 146 147 /* 148 * dir items are the name -> inode pointers in a directory. There is one 149 * for every name in a directory. 150 */ 151 #define BTRFS_DIR_LOG_ITEM_KEY 60 152 #define BTRFS_DIR_LOG_INDEX_KEY 72 153 #define BTRFS_DIR_ITEM_KEY 84 154 #define BTRFS_DIR_INDEX_KEY 96 155 /* 156 * extent data is for file data 157 */ 158 #define BTRFS_EXTENT_DATA_KEY 108 159 160 /* 161 * extent csums are stored in a separate tree and hold csums for 162 * an entire extent on disk. 163 */ 164 #define BTRFS_EXTENT_CSUM_KEY 128 165 166 /* 167 * root items point to tree roots. They are typically in the root 168 * tree used by the super block to find all the other trees 169 */ 170 #define BTRFS_ROOT_ITEM_KEY 132 171 172 /* 173 * root backrefs tie subvols and snapshots to the directory entries that 174 * reference them 175 */ 176 #define BTRFS_ROOT_BACKREF_KEY 144 177 178 /* 179 * root refs make a fast index for listing all of the snapshots and 180 * subvolumes referenced by a given root. They point directly to the 181 * directory item in the root that references the subvol 182 */ 183 #define BTRFS_ROOT_REF_KEY 156 184 185 /* 186 * extent items are in the extent map tree. These record which blocks 187 * are used, and how many references there are to each block 188 */ 189 #define BTRFS_EXTENT_ITEM_KEY 168 190 191 /* 192 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know 193 * the length, so we save the level in key->offset instead of the length. 194 */ 195 #define BTRFS_METADATA_ITEM_KEY 169 196 197 #define BTRFS_TREE_BLOCK_REF_KEY 176 198 199 #define BTRFS_EXTENT_DATA_REF_KEY 178 200 201 #define BTRFS_EXTENT_REF_V0_KEY 180 202 203 #define BTRFS_SHARED_BLOCK_REF_KEY 182 204 205 #define BTRFS_SHARED_DATA_REF_KEY 184 206 207 /* 208 * block groups give us hints into the extent allocation trees. Which 209 * blocks are free etc etc 210 */ 211 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 212 213 /* 214 * Every block group is represented in the free space tree by a free space info 215 * item, which stores some accounting information. It is keyed on 216 * (block_group_start, FREE_SPACE_INFO, block_group_length). 217 */ 218 #define BTRFS_FREE_SPACE_INFO_KEY 198 219 220 /* 221 * A free space extent tracks an extent of space that is free in a block group. 222 * It is keyed on (start, FREE_SPACE_EXTENT, length). 223 */ 224 #define BTRFS_FREE_SPACE_EXTENT_KEY 199 225 226 /* 227 * When a block group becomes very fragmented, we convert it to use bitmaps 228 * instead of extents. A free space bitmap is keyed on 229 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with 230 * (length / sectorsize) bits. 231 */ 232 #define BTRFS_FREE_SPACE_BITMAP_KEY 200 233 234 #define BTRFS_DEV_EXTENT_KEY 204 235 #define BTRFS_DEV_ITEM_KEY 216 236 #define BTRFS_CHUNK_ITEM_KEY 228 237 238 /* 239 * Records the overall state of the qgroups. 240 * There's only one instance of this key present, 241 * (0, BTRFS_QGROUP_STATUS_KEY, 0) 242 */ 243 #define BTRFS_QGROUP_STATUS_KEY 240 244 /* 245 * Records the currently used space of the qgroup. 246 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). 247 */ 248 #define BTRFS_QGROUP_INFO_KEY 242 249 /* 250 * Contains the user configured limits for the qgroup. 251 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). 252 */ 253 #define BTRFS_QGROUP_LIMIT_KEY 244 254 /* 255 * Records the child-parent relationship of qgroups. For 256 * each relation, 2 keys are present: 257 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) 258 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) 259 */ 260 #define BTRFS_QGROUP_RELATION_KEY 246 261 262 /* 263 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. 264 */ 265 #define BTRFS_BALANCE_ITEM_KEY 248 266 267 /* 268 * The key type for tree items that are stored persistently, but do not need to 269 * exist for extended period of time. The items can exist in any tree. 270 * 271 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data] 272 * 273 * Existing items: 274 * 275 * - balance status item 276 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0) 277 */ 278 #define BTRFS_TEMPORARY_ITEM_KEY 248 279 280 /* 281 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY 282 */ 283 #define BTRFS_DEV_STATS_KEY 249 284 285 /* 286 * The key type for tree items that are stored persistently and usually exist 287 * for a long period, eg. filesystem lifetime. The item kinds can be status 288 * information, stats or preference values. The item can exist in any tree. 289 * 290 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data] 291 * 292 * Existing items: 293 * 294 * - device statistics, store IO stats in the device tree, one key for all 295 * stats 296 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0) 297 */ 298 #define BTRFS_PERSISTENT_ITEM_KEY 249 299 300 /* 301 * Persistently stores the device replace state in the device tree. 302 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). 303 */ 304 #define BTRFS_DEV_REPLACE_KEY 250 305 306 /* 307 * Stores items that allow to quickly map UUIDs to something else. 308 * These items are part of the filesystem UUID tree. 309 * The key is built like this: 310 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). 311 */ 312 #if BTRFS_UUID_SIZE != 16 313 #error "UUID items require BTRFS_UUID_SIZE == 16!" 314 #endif 315 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ 316 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to 317 * received subvols */ 318 319 /* 320 * string items are for debugging. They just store a short string of 321 * data in the FS 322 */ 323 #define BTRFS_STRING_ITEM_KEY 253 324 325 /* Maximum metadata block size (nodesize) */ 326 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536 327 328 /* 32 bytes in various csum fields */ 329 #define BTRFS_CSUM_SIZE 32 330 331 /* csum types */ 332 enum btrfs_csum_type { 333 BTRFS_CSUM_TYPE_CRC32 = 0, 334 BTRFS_CSUM_TYPE_XXHASH = 1, 335 BTRFS_CSUM_TYPE_SHA256 = 2, 336 BTRFS_CSUM_TYPE_BLAKE2 = 3, 337 }; 338 339 /* 340 * flags definitions for directory entry item type 341 * 342 * Used by: 343 * struct btrfs_dir_item.type 344 * 345 * Values 0..7 must match common file type values in fs_types.h. 346 */ 347 #define BTRFS_FT_UNKNOWN 0 348 #define BTRFS_FT_REG_FILE 1 349 #define BTRFS_FT_DIR 2 350 #define BTRFS_FT_CHRDEV 3 351 #define BTRFS_FT_BLKDEV 4 352 #define BTRFS_FT_FIFO 5 353 #define BTRFS_FT_SOCK 6 354 #define BTRFS_FT_SYMLINK 7 355 #define BTRFS_FT_XATTR 8 356 #define BTRFS_FT_MAX 9 357 358 /* 359 * The key defines the order in the tree, and so it also defines (optimal) 360 * block layout. 361 * 362 * objectid corresponds to the inode number. 363 * 364 * type tells us things about the object, and is a kind of stream selector. 365 * so for a given inode, keys with type of 1 might refer to the inode data, 366 * type of 2 may point to file data in the btree and type == 3 may point to 367 * extents. 368 * 369 * offset is the starting byte offset for this key in the stream. 370 * 371 * btrfs_disk_key is in disk byte order. struct btrfs_key is always 372 * in cpu native order. Otherwise they are identical and their sizes 373 * should be the same (ie both packed) 374 */ 375 struct btrfs_disk_key { 376 __le64 objectid; 377 __u8 type; 378 __le64 offset; 379 } __attribute__ ((__packed__)); 380 381 struct btrfs_key { 382 __u64 objectid; 383 __u8 type; 384 __u64 offset; 385 } __attribute__ ((__packed__)); 386 387 struct btrfs_dev_item { 388 /* the internal btrfs device id */ 389 __le64 devid; 390 391 /* size of the device */ 392 __le64 total_bytes; 393 394 /* bytes used */ 395 __le64 bytes_used; 396 397 /* optimal io alignment for this device */ 398 __le32 io_align; 399 400 /* optimal io width for this device */ 401 __le32 io_width; 402 403 /* minimal io size for this device */ 404 __le32 sector_size; 405 406 /* type and info about this device */ 407 __le64 type; 408 409 /* expected generation for this device */ 410 __le64 generation; 411 412 /* 413 * starting byte of this partition on the device, 414 * to allow for stripe alignment in the future 415 */ 416 __le64 start_offset; 417 418 /* grouping information for allocation decisions */ 419 __le32 dev_group; 420 421 /* seek speed 0-100 where 100 is fastest */ 422 __u8 seek_speed; 423 424 /* bandwidth 0-100 where 100 is fastest */ 425 __u8 bandwidth; 426 427 /* btrfs generated uuid for this device */ 428 __u8 uuid[BTRFS_UUID_SIZE]; 429 430 /* uuid of FS who owns this device */ 431 __u8 fsid[BTRFS_UUID_SIZE]; 432 } __attribute__ ((__packed__)); 433 434 struct btrfs_stripe { 435 __le64 devid; 436 __le64 offset; 437 __u8 dev_uuid[BTRFS_UUID_SIZE]; 438 } __attribute__ ((__packed__)); 439 440 struct btrfs_chunk { 441 /* size of this chunk in bytes */ 442 __le64 length; 443 444 /* objectid of the root referencing this chunk */ 445 __le64 owner; 446 447 __le64 stripe_len; 448 __le64 type; 449 450 /* optimal io alignment for this chunk */ 451 __le32 io_align; 452 453 /* optimal io width for this chunk */ 454 __le32 io_width; 455 456 /* minimal io size for this chunk */ 457 __le32 sector_size; 458 459 /* 2^16 stripes is quite a lot, a second limit is the size of a single 460 * item in the btree 461 */ 462 __le16 num_stripes; 463 464 /* sub stripes only matter for raid10 */ 465 __le16 sub_stripes; 466 struct btrfs_stripe stripe; 467 /* additional stripes go here */ 468 } __attribute__ ((__packed__)); 469 470 #define BTRFS_FREE_SPACE_EXTENT 1 471 #define BTRFS_FREE_SPACE_BITMAP 2 472 473 struct btrfs_free_space_entry { 474 __le64 offset; 475 __le64 bytes; 476 __u8 type; 477 } __attribute__ ((__packed__)); 478 479 struct btrfs_free_space_header { 480 struct btrfs_disk_key location; 481 __le64 generation; 482 __le64 num_entries; 483 __le64 num_bitmaps; 484 } __attribute__ ((__packed__)); 485 486 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) 487 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) 488 489 /* Super block flags */ 490 /* Errors detected */ 491 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2) 492 493 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) 494 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) 495 #define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34) 496 #define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35) 497 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36) 498 499 500 /* 501 * items in the extent btree are used to record the objectid of the 502 * owner of the block and the number of references 503 */ 504 505 struct btrfs_extent_item { 506 __le64 refs; 507 __le64 generation; 508 __le64 flags; 509 } __attribute__ ((__packed__)); 510 511 struct btrfs_extent_item_v0 { 512 __le32 refs; 513 } __attribute__ ((__packed__)); 514 515 516 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) 517 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) 518 519 /* following flags only apply to tree blocks */ 520 521 /* use full backrefs for extent pointers in the block */ 522 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) 523 524 /* 525 * this flag is only used internally by scrub and may be changed at any time 526 * it is only declared here to avoid collisions 527 */ 528 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48) 529 530 struct btrfs_tree_block_info { 531 struct btrfs_disk_key key; 532 __u8 level; 533 } __attribute__ ((__packed__)); 534 535 struct btrfs_extent_data_ref { 536 __le64 root; 537 __le64 objectid; 538 __le64 offset; 539 __le32 count; 540 } __attribute__ ((__packed__)); 541 542 struct btrfs_shared_data_ref { 543 __le32 count; 544 } __attribute__ ((__packed__)); 545 546 struct btrfs_extent_inline_ref { 547 __u8 type; 548 __le64 offset; 549 } __attribute__ ((__packed__)); 550 551 /* dev extents record free space on individual devices. The owner 552 * field points back to the chunk allocation mapping tree that allocated 553 * the extent. The chunk tree uuid field is a way to double check the owner 554 */ 555 struct btrfs_dev_extent { 556 __le64 chunk_tree; 557 __le64 chunk_objectid; 558 __le64 chunk_offset; 559 __le64 length; 560 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 561 } __attribute__ ((__packed__)); 562 563 struct btrfs_inode_ref { 564 __le64 index; 565 __le16 name_len; 566 /* name goes here */ 567 } __attribute__ ((__packed__)); 568 569 struct btrfs_inode_extref { 570 __le64 parent_objectid; 571 __le64 index; 572 __le16 name_len; 573 __u8 name[0]; 574 /* name goes here */ 575 } __attribute__ ((__packed__)); 576 577 struct btrfs_timespec { 578 __le64 sec; 579 __le32 nsec; 580 } __attribute__ ((__packed__)); 581 582 struct btrfs_inode_item { 583 /* nfs style generation number */ 584 __le64 generation; 585 /* transid that last touched this inode */ 586 __le64 transid; 587 __le64 size; 588 __le64 nbytes; 589 __le64 block_group; 590 __le32 nlink; 591 __le32 uid; 592 __le32 gid; 593 __le32 mode; 594 __le64 rdev; 595 __le64 flags; 596 597 /* modification sequence number for NFS */ 598 __le64 sequence; 599 600 /* 601 * a little future expansion, for more than this we can 602 * just grow the inode item and version it 603 */ 604 __le64 reserved[4]; 605 struct btrfs_timespec atime; 606 struct btrfs_timespec ctime; 607 struct btrfs_timespec mtime; 608 struct btrfs_timespec otime; 609 } __attribute__ ((__packed__)); 610 611 struct btrfs_dir_log_item { 612 __le64 end; 613 } __attribute__ ((__packed__)); 614 615 struct btrfs_dir_item { 616 struct btrfs_disk_key location; 617 __le64 transid; 618 __le16 data_len; 619 __le16 name_len; 620 __u8 type; 621 } __attribute__ ((__packed__)); 622 623 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0) 624 625 /* 626 * Internal in-memory flag that a subvolume has been marked for deletion but 627 * still visible as a directory 628 */ 629 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48) 630 631 struct btrfs_root_item { 632 struct btrfs_inode_item inode; 633 __le64 generation; 634 __le64 root_dirid; 635 __le64 bytenr; 636 __le64 byte_limit; 637 __le64 bytes_used; 638 __le64 last_snapshot; 639 __le64 flags; 640 __le32 refs; 641 struct btrfs_disk_key drop_progress; 642 __u8 drop_level; 643 __u8 level; 644 645 /* 646 * The following fields appear after subvol_uuids+subvol_times 647 * were introduced. 648 */ 649 650 /* 651 * This generation number is used to test if the new fields are valid 652 * and up to date while reading the root item. Every time the root item 653 * is written out, the "generation" field is copied into this field. If 654 * anyone ever mounted the fs with an older kernel, we will have 655 * mismatching generation values here and thus must invalidate the 656 * new fields. See btrfs_update_root and btrfs_find_last_root for 657 * details. 658 * the offset of generation_v2 is also used as the start for the memset 659 * when invalidating the fields. 660 */ 661 __le64 generation_v2; 662 __u8 uuid[BTRFS_UUID_SIZE]; 663 __u8 parent_uuid[BTRFS_UUID_SIZE]; 664 __u8 received_uuid[BTRFS_UUID_SIZE]; 665 __le64 ctransid; /* updated when an inode changes */ 666 __le64 otransid; /* trans when created */ 667 __le64 stransid; /* trans when sent. non-zero for received subvol */ 668 __le64 rtransid; /* trans when received. non-zero for received subvol */ 669 struct btrfs_timespec ctime; 670 struct btrfs_timespec otime; 671 struct btrfs_timespec stime; 672 struct btrfs_timespec rtime; 673 __le64 reserved[8]; /* for future */ 674 } __attribute__ ((__packed__)); 675 676 /* 677 * Btrfs root item used to be smaller than current size. The old format ends 678 * at where member generation_v2 is. 679 */ 680 static inline __u32 btrfs_legacy_root_item_size(void) 681 { 682 return offsetof(struct btrfs_root_item, generation_v2); 683 } 684 685 /* 686 * this is used for both forward and backward root refs 687 */ 688 struct btrfs_root_ref { 689 __le64 dirid; 690 __le64 sequence; 691 __le16 name_len; 692 } __attribute__ ((__packed__)); 693 694 struct btrfs_disk_balance_args { 695 /* 696 * profiles to operate on, single is denoted by 697 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 698 */ 699 __le64 profiles; 700 701 /* 702 * usage filter 703 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N' 704 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max 705 */ 706 union { 707 __le64 usage; 708 struct { 709 __le32 usage_min; 710 __le32 usage_max; 711 }; 712 }; 713 714 /* devid filter */ 715 __le64 devid; 716 717 /* devid subset filter [pstart..pend) */ 718 __le64 pstart; 719 __le64 pend; 720 721 /* btrfs virtual address space subset filter [vstart..vend) */ 722 __le64 vstart; 723 __le64 vend; 724 725 /* 726 * profile to convert to, single is denoted by 727 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 728 */ 729 __le64 target; 730 731 /* BTRFS_BALANCE_ARGS_* */ 732 __le64 flags; 733 734 /* 735 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit' 736 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum 737 * and maximum 738 */ 739 union { 740 __le64 limit; 741 struct { 742 __le32 limit_min; 743 __le32 limit_max; 744 }; 745 }; 746 747 /* 748 * Process chunks that cross stripes_min..stripes_max devices, 749 * BTRFS_BALANCE_ARGS_STRIPES_RANGE 750 */ 751 __le32 stripes_min; 752 __le32 stripes_max; 753 754 __le64 unused[6]; 755 } __attribute__ ((__packed__)); 756 757 /* 758 * store balance parameters to disk so that balance can be properly 759 * resumed after crash or unmount 760 */ 761 struct btrfs_balance_item { 762 /* BTRFS_BALANCE_* */ 763 __le64 flags; 764 765 struct btrfs_disk_balance_args data; 766 struct btrfs_disk_balance_args meta; 767 struct btrfs_disk_balance_args sys; 768 769 __le64 unused[4]; 770 } __attribute__ ((__packed__)); 771 772 enum { 773 BTRFS_FILE_EXTENT_INLINE = 0, 774 BTRFS_FILE_EXTENT_REG = 1, 775 BTRFS_FILE_EXTENT_PREALLOC = 2, 776 BTRFS_NR_FILE_EXTENT_TYPES = 3, 777 }; 778 779 struct btrfs_file_extent_item { 780 /* 781 * transaction id that created this extent 782 */ 783 __le64 generation; 784 /* 785 * max number of bytes to hold this extent in ram 786 * when we split a compressed extent we can't know how big 787 * each of the resulting pieces will be. So, this is 788 * an upper limit on the size of the extent in ram instead of 789 * an exact limit. 790 */ 791 __le64 ram_bytes; 792 793 /* 794 * 32 bits for the various ways we might encode the data, 795 * including compression and encryption. If any of these 796 * are set to something a given disk format doesn't understand 797 * it is treated like an incompat flag for reading and writing, 798 * but not for stat. 799 */ 800 __u8 compression; 801 __u8 encryption; 802 __le16 other_encoding; /* spare for later use */ 803 804 /* are we inline data or a real extent? */ 805 __u8 type; 806 807 /* 808 * disk space consumed by the extent, checksum blocks are included 809 * in these numbers 810 * 811 * At this offset in the structure, the inline extent data start. 812 */ 813 __le64 disk_bytenr; 814 __le64 disk_num_bytes; 815 /* 816 * the logical offset in file blocks (no csums) 817 * this extent record is for. This allows a file extent to point 818 * into the middle of an existing extent on disk, sharing it 819 * between two snapshots (useful if some bytes in the middle of the 820 * extent have changed 821 */ 822 __le64 offset; 823 /* 824 * the logical number of file blocks (no csums included). This 825 * always reflects the size uncompressed and without encoding. 826 */ 827 __le64 num_bytes; 828 829 } __attribute__ ((__packed__)); 830 831 struct btrfs_csum_item { 832 __u8 csum; 833 } __attribute__ ((__packed__)); 834 835 struct btrfs_dev_stats_item { 836 /* 837 * grow this item struct at the end for future enhancements and keep 838 * the existing values unchanged 839 */ 840 __le64 values[BTRFS_DEV_STAT_VALUES_MAX]; 841 } __attribute__ ((__packed__)); 842 843 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0 844 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1 845 846 struct btrfs_dev_replace_item { 847 /* 848 * grow this item struct at the end for future enhancements and keep 849 * the existing values unchanged 850 */ 851 __le64 src_devid; 852 __le64 cursor_left; 853 __le64 cursor_right; 854 __le64 cont_reading_from_srcdev_mode; 855 856 __le64 replace_state; 857 __le64 time_started; 858 __le64 time_stopped; 859 __le64 num_write_errors; 860 __le64 num_uncorrectable_read_errors; 861 } __attribute__ ((__packed__)); 862 863 /* different types of block groups (and chunks) */ 864 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) 865 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) 866 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) 867 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) 868 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) 869 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) 870 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) 871 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) 872 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) 873 #define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9) 874 #define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10) 875 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ 876 BTRFS_SPACE_INFO_GLOBAL_RSV) 877 878 enum btrfs_raid_types { 879 BTRFS_RAID_RAID10, 880 BTRFS_RAID_RAID1, 881 BTRFS_RAID_DUP, 882 BTRFS_RAID_RAID0, 883 BTRFS_RAID_SINGLE, 884 BTRFS_RAID_RAID5, 885 BTRFS_RAID_RAID6, 886 BTRFS_RAID_RAID1C3, 887 BTRFS_RAID_RAID1C4, 888 BTRFS_NR_RAID_TYPES 889 }; 890 891 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ 892 BTRFS_BLOCK_GROUP_SYSTEM | \ 893 BTRFS_BLOCK_GROUP_METADATA) 894 895 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 896 BTRFS_BLOCK_GROUP_RAID1 | \ 897 BTRFS_BLOCK_GROUP_RAID1C3 | \ 898 BTRFS_BLOCK_GROUP_RAID1C4 | \ 899 BTRFS_BLOCK_GROUP_RAID5 | \ 900 BTRFS_BLOCK_GROUP_RAID6 | \ 901 BTRFS_BLOCK_GROUP_DUP | \ 902 BTRFS_BLOCK_GROUP_RAID10) 903 #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \ 904 BTRFS_BLOCK_GROUP_RAID6) 905 906 #define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \ 907 BTRFS_BLOCK_GROUP_RAID1C3 | \ 908 BTRFS_BLOCK_GROUP_RAID1C4) 909 910 /* 911 * We need a bit for restriper to be able to tell when chunks of type 912 * SINGLE are available. This "extended" profile format is used in 913 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields 914 * (on-disk). The corresponding on-disk bit in chunk.type is reserved 915 * to avoid remappings between two formats in future. 916 */ 917 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48) 918 919 /* 920 * A fake block group type that is used to communicate global block reserve 921 * size to userspace via the SPACE_INFO ioctl. 922 */ 923 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49) 924 925 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ 926 BTRFS_AVAIL_ALLOC_BIT_SINGLE) 927 928 static inline __u64 chunk_to_extended(__u64 flags) 929 { 930 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0) 931 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE; 932 933 return flags; 934 } 935 static inline __u64 extended_to_chunk(__u64 flags) 936 { 937 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; 938 } 939 940 struct btrfs_block_group_item { 941 __le64 used; 942 __le64 chunk_objectid; 943 __le64 flags; 944 } __attribute__ ((__packed__)); 945 946 struct btrfs_free_space_info { 947 __le32 extent_count; 948 __le32 flags; 949 } __attribute__ ((__packed__)); 950 951 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0) 952 953 #define BTRFS_QGROUP_LEVEL_SHIFT 48 954 static inline __u16 btrfs_qgroup_level(__u64 qgroupid) 955 { 956 return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT); 957 } 958 959 /* 960 * is subvolume quota turned on? 961 */ 962 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0) 963 /* 964 * RESCAN is set during the initialization phase 965 */ 966 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1) 967 /* 968 * Some qgroup entries are known to be out of date, 969 * either because the configuration has changed in a way that 970 * makes a rescan necessary, or because the fs has been mounted 971 * with a non-qgroup-aware version. 972 * Turning qouta off and on again makes it inconsistent, too. 973 */ 974 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2) 975 976 #define BTRFS_QGROUP_STATUS_VERSION 1 977 978 struct btrfs_qgroup_status_item { 979 __le64 version; 980 /* 981 * the generation is updated during every commit. As older 982 * versions of btrfs are not aware of qgroups, it will be 983 * possible to detect inconsistencies by checking the 984 * generation on mount time 985 */ 986 __le64 generation; 987 988 /* flag definitions see above */ 989 __le64 flags; 990 991 /* 992 * only used during scanning to record the progress 993 * of the scan. It contains a logical address 994 */ 995 __le64 rescan; 996 } __attribute__ ((__packed__)); 997 998 struct btrfs_qgroup_info_item { 999 __le64 generation; 1000 __le64 rfer; 1001 __le64 rfer_cmpr; 1002 __le64 excl; 1003 __le64 excl_cmpr; 1004 } __attribute__ ((__packed__)); 1005 1006 struct btrfs_qgroup_limit_item { 1007 /* 1008 * only updated when any of the other values change 1009 */ 1010 __le64 flags; 1011 __le64 max_rfer; 1012 __le64 max_excl; 1013 __le64 rsv_rfer; 1014 __le64 rsv_excl; 1015 } __attribute__ ((__packed__)); 1016 1017 struct btrfs_verity_descriptor_item { 1018 /* Size of the verity descriptor in bytes */ 1019 __le64 size; 1020 /* 1021 * When we implement support for fscrypt, we will need to encrypt the 1022 * Merkle tree for encrypted verity files. These 128 bits are for the 1023 * eventual storage of an fscrypt initialization vector. 1024 */ 1025 __le64 reserved[2]; 1026 __u8 encryption; 1027 } __attribute__ ((__packed__)); 1028 1029 #endif /* _BTRFS_CTREE_H_ */ 1030