xref: /linux-6.15/include/uapi/linux/btrfs_tree.h (revision ee129330)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 #ifndef _BTRFS_CTREE_H_
3 #define _BTRFS_CTREE_H_
4 
5 #include <linux/btrfs.h>
6 #include <linux/types.h>
7 #ifdef __KERNEL__
8 #include <linux/stddef.h>
9 #else
10 #include <stddef.h>
11 #endif
12 
13 /* ASCII for _BHRfS_M, no terminating nul */
14 #define BTRFS_MAGIC 0x4D5F53665248425FULL
15 
16 #define BTRFS_MAX_LEVEL 8
17 
18 /*
19  * We can actually store much bigger names, but lets not confuse the rest of
20  * linux.
21  */
22 #define BTRFS_NAME_LEN 255
23 
24 /*
25  * Theoretical limit is larger, but we keep this down to a sane value. That
26  * should limit greatly the possibility of collisions on inode ref items.
27  */
28 #define BTRFS_LINK_MAX 65535U
29 
30 /*
31  * This header contains the structure definitions and constants used
32  * by file system objects that can be retrieved using
33  * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
34  * is needed to describe a leaf node's key or item contents.
35  */
36 
37 /* holds pointers to all of the tree roots */
38 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
39 
40 /* stores information about which extents are in use, and reference counts */
41 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
42 
43 /*
44  * chunk tree stores translations from logical -> physical block numbering
45  * the super block points to the chunk tree
46  */
47 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
48 
49 /*
50  * stores information about which areas of a given device are in use.
51  * one per device.  The tree of tree roots points to the device tree
52  */
53 #define BTRFS_DEV_TREE_OBJECTID 4ULL
54 
55 /* one per subvolume, storing files and directories */
56 #define BTRFS_FS_TREE_OBJECTID 5ULL
57 
58 /* directory objectid inside the root tree */
59 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
60 
61 /* holds checksums of all the data extents */
62 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
63 
64 /* holds quota configuration and tracking */
65 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
66 
67 /* for storing items that use the BTRFS_UUID_KEY* types */
68 #define BTRFS_UUID_TREE_OBJECTID 9ULL
69 
70 /* tracks free space in block groups. */
71 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
72 
73 /* Holds the block group items for extent tree v2. */
74 #define BTRFS_BLOCK_GROUP_TREE_OBJECTID 11ULL
75 
76 /* Tracks RAID stripes in block groups. */
77 #define BTRFS_RAID_STRIPE_TREE_OBJECTID 12ULL
78 
79 /* device stats in the device tree */
80 #define BTRFS_DEV_STATS_OBJECTID 0ULL
81 
82 /* for storing balance parameters in the root tree */
83 #define BTRFS_BALANCE_OBJECTID -4ULL
84 
85 /* orphan objectid for tracking unlinked/truncated files */
86 #define BTRFS_ORPHAN_OBJECTID -5ULL
87 
88 /* does write ahead logging to speed up fsyncs */
89 #define BTRFS_TREE_LOG_OBJECTID -6ULL
90 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
91 
92 /* for space balancing */
93 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
94 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
95 
96 /*
97  * extent checksums all have this objectid
98  * this allows them to share the logging tree
99  * for fsyncs
100  */
101 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
102 
103 /* For storing free space cache */
104 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
105 
106 /*
107  * The inode number assigned to the special inode for storing
108  * free ino cache
109  */
110 #define BTRFS_FREE_INO_OBJECTID -12ULL
111 
112 /* dummy objectid represents multiple objectids */
113 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
114 
115 /*
116  * All files have objectids in this range.
117  */
118 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
119 #define BTRFS_LAST_FREE_OBJECTID -256ULL
120 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
121 
122 
123 /*
124  * the device items go into the chunk tree.  The key is in the form
125  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
126  */
127 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
128 
129 #define BTRFS_BTREE_INODE_OBJECTID 1
130 
131 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
132 
133 #define BTRFS_DEV_REPLACE_DEVID 0ULL
134 
135 /*
136  * inode items have the data typically returned from stat and store other
137  * info about object characteristics.  There is one for every file and dir in
138  * the FS
139  */
140 #define BTRFS_INODE_ITEM_KEY		1
141 #define BTRFS_INODE_REF_KEY		12
142 #define BTRFS_INODE_EXTREF_KEY		13
143 #define BTRFS_XATTR_ITEM_KEY		24
144 
145 /*
146  * fs verity items are stored under two different key types on disk.
147  * The descriptor items:
148  * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
149  *
150  * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size
151  * of the descriptor item and some extra data for encryption.
152  * Starting at offset 1, these hold the generic fs verity descriptor.  The
153  * latter are opaque to btrfs, we just read and write them as a blob for the
154  * higher level verity code.  The most common descriptor size is 256 bytes.
155  *
156  * The merkle tree items:
157  * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
158  *
159  * These also start at offset 0, and correspond to the merkle tree bytes.  When
160  * fsverity asks for page 0 of the merkle tree, we pull up one page starting at
161  * offset 0 for this key type.  These are also opaque to btrfs, we're blindly
162  * storing whatever fsverity sends down.
163  */
164 #define BTRFS_VERITY_DESC_ITEM_KEY	36
165 #define BTRFS_VERITY_MERKLE_ITEM_KEY	37
166 
167 #define BTRFS_ORPHAN_ITEM_KEY		48
168 /* reserve 2-15 close to the inode for later flexibility */
169 
170 /*
171  * dir items are the name -> inode pointers in a directory.  There is one
172  * for every name in a directory.  BTRFS_DIR_LOG_ITEM_KEY is no longer used
173  * but it's still defined here for documentation purposes and to help avoid
174  * having its numerical value reused in the future.
175  */
176 #define BTRFS_DIR_LOG_ITEM_KEY  60
177 #define BTRFS_DIR_LOG_INDEX_KEY 72
178 #define BTRFS_DIR_ITEM_KEY	84
179 #define BTRFS_DIR_INDEX_KEY	96
180 /*
181  * extent data is for file data
182  */
183 #define BTRFS_EXTENT_DATA_KEY	108
184 
185 /*
186  * extent csums are stored in a separate tree and hold csums for
187  * an entire extent on disk.
188  */
189 #define BTRFS_EXTENT_CSUM_KEY	128
190 
191 /*
192  * root items point to tree roots.  They are typically in the root
193  * tree used by the super block to find all the other trees
194  */
195 #define BTRFS_ROOT_ITEM_KEY	132
196 
197 /*
198  * root backrefs tie subvols and snapshots to the directory entries that
199  * reference them
200  */
201 #define BTRFS_ROOT_BACKREF_KEY	144
202 
203 /*
204  * root refs make a fast index for listing all of the snapshots and
205  * subvolumes referenced by a given root.  They point directly to the
206  * directory item in the root that references the subvol
207  */
208 #define BTRFS_ROOT_REF_KEY	156
209 
210 /*
211  * extent items are in the extent map tree.  These record which blocks
212  * are used, and how many references there are to each block
213  */
214 #define BTRFS_EXTENT_ITEM_KEY	168
215 
216 /*
217  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
218  * the length, so we save the level in key->offset instead of the length.
219  */
220 #define BTRFS_METADATA_ITEM_KEY	169
221 
222 #define BTRFS_TREE_BLOCK_REF_KEY	176
223 
224 #define BTRFS_EXTENT_DATA_REF_KEY	178
225 
226 /*
227  * Obsolete key. Defintion removed in 6.6, value may be reused in the future.
228  *
229  * #define BTRFS_EXTENT_REF_V0_KEY	180
230  */
231 
232 #define BTRFS_SHARED_BLOCK_REF_KEY	182
233 
234 #define BTRFS_SHARED_DATA_REF_KEY	184
235 
236 /*
237  * block groups give us hints into the extent allocation trees.  Which
238  * blocks are free etc etc
239  */
240 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
241 
242 /*
243  * Every block group is represented in the free space tree by a free space info
244  * item, which stores some accounting information. It is keyed on
245  * (block_group_start, FREE_SPACE_INFO, block_group_length).
246  */
247 #define BTRFS_FREE_SPACE_INFO_KEY 198
248 
249 /*
250  * A free space extent tracks an extent of space that is free in a block group.
251  * It is keyed on (start, FREE_SPACE_EXTENT, length).
252  */
253 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
254 
255 /*
256  * When a block group becomes very fragmented, we convert it to use bitmaps
257  * instead of extents. A free space bitmap is keyed on
258  * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
259  * (length / sectorsize) bits.
260  */
261 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
262 
263 #define BTRFS_DEV_EXTENT_KEY	204
264 #define BTRFS_DEV_ITEM_KEY	216
265 #define BTRFS_CHUNK_ITEM_KEY	228
266 
267 #define BTRFS_RAID_STRIPE_KEY	230
268 
269 /*
270  * Records the overall state of the qgroups.
271  * There's only one instance of this key present,
272  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
273  */
274 #define BTRFS_QGROUP_STATUS_KEY         240
275 /*
276  * Records the currently used space of the qgroup.
277  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
278  */
279 #define BTRFS_QGROUP_INFO_KEY           242
280 /*
281  * Contains the user configured limits for the qgroup.
282  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
283  */
284 #define BTRFS_QGROUP_LIMIT_KEY          244
285 /*
286  * Records the child-parent relationship of qgroups. For
287  * each relation, 2 keys are present:
288  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
289  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
290  */
291 #define BTRFS_QGROUP_RELATION_KEY       246
292 
293 /*
294  * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
295  */
296 #define BTRFS_BALANCE_ITEM_KEY	248
297 
298 /*
299  * The key type for tree items that are stored persistently, but do not need to
300  * exist for extended period of time. The items can exist in any tree.
301  *
302  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
303  *
304  * Existing items:
305  *
306  * - balance status item
307  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
308  */
309 #define BTRFS_TEMPORARY_ITEM_KEY	248
310 
311 /*
312  * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
313  */
314 #define BTRFS_DEV_STATS_KEY		249
315 
316 /*
317  * The key type for tree items that are stored persistently and usually exist
318  * for a long period, eg. filesystem lifetime. The item kinds can be status
319  * information, stats or preference values. The item can exist in any tree.
320  *
321  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
322  *
323  * Existing items:
324  *
325  * - device statistics, store IO stats in the device tree, one key for all
326  *   stats
327  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
328  */
329 #define BTRFS_PERSISTENT_ITEM_KEY	249
330 
331 /*
332  * Persistently stores the device replace state in the device tree.
333  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
334  */
335 #define BTRFS_DEV_REPLACE_KEY	250
336 
337 /*
338  * Stores items that allow to quickly map UUIDs to something else.
339  * These items are part of the filesystem UUID tree.
340  * The key is built like this:
341  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
342  */
343 #if BTRFS_UUID_SIZE != 16
344 #error "UUID items require BTRFS_UUID_SIZE == 16!"
345 #endif
346 #define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
347 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
348 						 * received subvols */
349 
350 /*
351  * string items are for debugging.  They just store a short string of
352  * data in the FS
353  */
354 #define BTRFS_STRING_ITEM_KEY	253
355 
356 /* Maximum metadata block size (nodesize) */
357 #define BTRFS_MAX_METADATA_BLOCKSIZE			65536
358 
359 /* 32 bytes in various csum fields */
360 #define BTRFS_CSUM_SIZE 32
361 
362 /* csum types */
363 enum btrfs_csum_type {
364 	BTRFS_CSUM_TYPE_CRC32	= 0,
365 	BTRFS_CSUM_TYPE_XXHASH	= 1,
366 	BTRFS_CSUM_TYPE_SHA256	= 2,
367 	BTRFS_CSUM_TYPE_BLAKE2	= 3,
368 };
369 
370 /*
371  * flags definitions for directory entry item type
372  *
373  * Used by:
374  * struct btrfs_dir_item.type
375  *
376  * Values 0..7 must match common file type values in fs_types.h.
377  */
378 #define BTRFS_FT_UNKNOWN	0
379 #define BTRFS_FT_REG_FILE	1
380 #define BTRFS_FT_DIR		2
381 #define BTRFS_FT_CHRDEV		3
382 #define BTRFS_FT_BLKDEV		4
383 #define BTRFS_FT_FIFO		5
384 #define BTRFS_FT_SOCK		6
385 #define BTRFS_FT_SYMLINK	7
386 #define BTRFS_FT_XATTR		8
387 #define BTRFS_FT_MAX		9
388 /* Directory contains encrypted data */
389 #define BTRFS_FT_ENCRYPTED	0x80
390 
391 static inline __u8 btrfs_dir_flags_to_ftype(__u8 flags)
392 {
393 	return flags & ~BTRFS_FT_ENCRYPTED;
394 }
395 
396 /*
397  * Inode flags
398  */
399 #define BTRFS_INODE_NODATASUM		(1U << 0)
400 #define BTRFS_INODE_NODATACOW		(1U << 1)
401 #define BTRFS_INODE_READONLY		(1U << 2)
402 #define BTRFS_INODE_NOCOMPRESS		(1U << 3)
403 #define BTRFS_INODE_PREALLOC		(1U << 4)
404 #define BTRFS_INODE_SYNC		(1U << 5)
405 #define BTRFS_INODE_IMMUTABLE		(1U << 6)
406 #define BTRFS_INODE_APPEND		(1U << 7)
407 #define BTRFS_INODE_NODUMP		(1U << 8)
408 #define BTRFS_INODE_NOATIME		(1U << 9)
409 #define BTRFS_INODE_DIRSYNC		(1U << 10)
410 #define BTRFS_INODE_COMPRESS		(1U << 11)
411 
412 #define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
413 
414 #define BTRFS_INODE_FLAG_MASK						\
415 	(BTRFS_INODE_NODATASUM |					\
416 	 BTRFS_INODE_NODATACOW |					\
417 	 BTRFS_INODE_READONLY |						\
418 	 BTRFS_INODE_NOCOMPRESS |					\
419 	 BTRFS_INODE_PREALLOC |						\
420 	 BTRFS_INODE_SYNC |						\
421 	 BTRFS_INODE_IMMUTABLE |					\
422 	 BTRFS_INODE_APPEND |						\
423 	 BTRFS_INODE_NODUMP |						\
424 	 BTRFS_INODE_NOATIME |						\
425 	 BTRFS_INODE_DIRSYNC |						\
426 	 BTRFS_INODE_COMPRESS |						\
427 	 BTRFS_INODE_ROOT_ITEM_INIT)
428 
429 #define BTRFS_INODE_RO_VERITY		(1U << 0)
430 
431 #define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
432 
433 /*
434  * The key defines the order in the tree, and so it also defines (optimal)
435  * block layout.
436  *
437  * objectid corresponds to the inode number.
438  *
439  * type tells us things about the object, and is a kind of stream selector.
440  * so for a given inode, keys with type of 1 might refer to the inode data,
441  * type of 2 may point to file data in the btree and type == 3 may point to
442  * extents.
443  *
444  * offset is the starting byte offset for this key in the stream.
445  *
446  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
447  * in cpu native order.  Otherwise they are identical and their sizes
448  * should be the same (ie both packed)
449  */
450 struct btrfs_disk_key {
451 	__le64 objectid;
452 	__u8 type;
453 	__le64 offset;
454 } __attribute__ ((__packed__));
455 
456 struct btrfs_key {
457 	__u64 objectid;
458 	__u8 type;
459 	__u64 offset;
460 } __attribute__ ((__packed__));
461 
462 /*
463  * Every tree block (leaf or node) starts with this header.
464  */
465 struct btrfs_header {
466 	/* These first four must match the super block */
467 	__u8 csum[BTRFS_CSUM_SIZE];
468 	/* FS specific uuid */
469 	__u8 fsid[BTRFS_FSID_SIZE];
470 	/* Which block this node is supposed to live in */
471 	__le64 bytenr;
472 	__le64 flags;
473 
474 	/* Allowed to be different from the super from here on down */
475 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
476 	__le64 generation;
477 	__le64 owner;
478 	__le32 nritems;
479 	__u8 level;
480 } __attribute__ ((__packed__));
481 
482 /*
483  * This is a very generous portion of the super block, giving us room to
484  * translate 14 chunks with 3 stripes each.
485  */
486 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
487 
488 /*
489  * Just in case we somehow lose the roots and are not able to mount, we store
490  * an array of the roots from previous transactions in the super.
491  */
492 #define BTRFS_NUM_BACKUP_ROOTS 4
493 struct btrfs_root_backup {
494 	__le64 tree_root;
495 	__le64 tree_root_gen;
496 
497 	__le64 chunk_root;
498 	__le64 chunk_root_gen;
499 
500 	__le64 extent_root;
501 	__le64 extent_root_gen;
502 
503 	__le64 fs_root;
504 	__le64 fs_root_gen;
505 
506 	__le64 dev_root;
507 	__le64 dev_root_gen;
508 
509 	__le64 csum_root;
510 	__le64 csum_root_gen;
511 
512 	__le64 total_bytes;
513 	__le64 bytes_used;
514 	__le64 num_devices;
515 	/* future */
516 	__le64 unused_64[4];
517 
518 	__u8 tree_root_level;
519 	__u8 chunk_root_level;
520 	__u8 extent_root_level;
521 	__u8 fs_root_level;
522 	__u8 dev_root_level;
523 	__u8 csum_root_level;
524 	/* future and to align */
525 	__u8 unused_8[10];
526 } __attribute__ ((__packed__));
527 
528 /*
529  * A leaf is full of items. offset and size tell us where to find the item in
530  * the leaf (relative to the start of the data area)
531  */
532 struct btrfs_item {
533 	struct btrfs_disk_key key;
534 	__le32 offset;
535 	__le32 size;
536 } __attribute__ ((__packed__));
537 
538 /*
539  * Leaves have an item area and a data area:
540  * [item0, item1....itemN] [free space] [dataN...data1, data0]
541  *
542  * The data is separate from the items to get the keys closer together during
543  * searches.
544  */
545 struct btrfs_leaf {
546 	struct btrfs_header header;
547 	struct btrfs_item items[];
548 } __attribute__ ((__packed__));
549 
550 /*
551  * All non-leaf blocks are nodes, they hold only keys and pointers to other
552  * blocks.
553  */
554 struct btrfs_key_ptr {
555 	struct btrfs_disk_key key;
556 	__le64 blockptr;
557 	__le64 generation;
558 } __attribute__ ((__packed__));
559 
560 struct btrfs_node {
561 	struct btrfs_header header;
562 	struct btrfs_key_ptr ptrs[];
563 } __attribute__ ((__packed__));
564 
565 struct btrfs_dev_item {
566 	/* the internal btrfs device id */
567 	__le64 devid;
568 
569 	/* size of the device */
570 	__le64 total_bytes;
571 
572 	/* bytes used */
573 	__le64 bytes_used;
574 
575 	/* optimal io alignment for this device */
576 	__le32 io_align;
577 
578 	/* optimal io width for this device */
579 	__le32 io_width;
580 
581 	/* minimal io size for this device */
582 	__le32 sector_size;
583 
584 	/* type and info about this device */
585 	__le64 type;
586 
587 	/* expected generation for this device */
588 	__le64 generation;
589 
590 	/*
591 	 * starting byte of this partition on the device,
592 	 * to allow for stripe alignment in the future
593 	 */
594 	__le64 start_offset;
595 
596 	/* grouping information for allocation decisions */
597 	__le32 dev_group;
598 
599 	/* seek speed 0-100 where 100 is fastest */
600 	__u8 seek_speed;
601 
602 	/* bandwidth 0-100 where 100 is fastest */
603 	__u8 bandwidth;
604 
605 	/* btrfs generated uuid for this device */
606 	__u8 uuid[BTRFS_UUID_SIZE];
607 
608 	/* uuid of FS who owns this device */
609 	__u8 fsid[BTRFS_UUID_SIZE];
610 } __attribute__ ((__packed__));
611 
612 struct btrfs_stripe {
613 	__le64 devid;
614 	__le64 offset;
615 	__u8 dev_uuid[BTRFS_UUID_SIZE];
616 } __attribute__ ((__packed__));
617 
618 struct btrfs_chunk {
619 	/* size of this chunk in bytes */
620 	__le64 length;
621 
622 	/* objectid of the root referencing this chunk */
623 	__le64 owner;
624 
625 	__le64 stripe_len;
626 	__le64 type;
627 
628 	/* optimal io alignment for this chunk */
629 	__le32 io_align;
630 
631 	/* optimal io width for this chunk */
632 	__le32 io_width;
633 
634 	/* minimal io size for this chunk */
635 	__le32 sector_size;
636 
637 	/* 2^16 stripes is quite a lot, a second limit is the size of a single
638 	 * item in the btree
639 	 */
640 	__le16 num_stripes;
641 
642 	/* sub stripes only matter for raid10 */
643 	__le16 sub_stripes;
644 	struct btrfs_stripe stripe;
645 	/* additional stripes go here */
646 } __attribute__ ((__packed__));
647 
648 /*
649  * The super block basically lists the main trees of the FS.
650  */
651 struct btrfs_super_block {
652 	/* The first 4 fields must match struct btrfs_header */
653 	__u8 csum[BTRFS_CSUM_SIZE];
654 	/* FS specific UUID, visible to user */
655 	__u8 fsid[BTRFS_FSID_SIZE];
656 	/* This block number */
657 	__le64 bytenr;
658 	__le64 flags;
659 
660 	/* Allowed to be different from the btrfs_header from here own down */
661 	__le64 magic;
662 	__le64 generation;
663 	__le64 root;
664 	__le64 chunk_root;
665 	__le64 log_root;
666 
667 	/*
668 	 * This member has never been utilized since the very beginning, thus
669 	 * it's always 0 regardless of kernel version.  We always use
670 	 * generation + 1 to read log tree root.  So here we mark it deprecated.
671 	 */
672 	__le64 __unused_log_root_transid;
673 	__le64 total_bytes;
674 	__le64 bytes_used;
675 	__le64 root_dir_objectid;
676 	__le64 num_devices;
677 	__le32 sectorsize;
678 	__le32 nodesize;
679 	__le32 __unused_leafsize;
680 	__le32 stripesize;
681 	__le32 sys_chunk_array_size;
682 	__le64 chunk_root_generation;
683 	__le64 compat_flags;
684 	__le64 compat_ro_flags;
685 	__le64 incompat_flags;
686 	__le16 csum_type;
687 	__u8 root_level;
688 	__u8 chunk_root_level;
689 	__u8 log_root_level;
690 	struct btrfs_dev_item dev_item;
691 
692 	char label[BTRFS_LABEL_SIZE];
693 
694 	__le64 cache_generation;
695 	__le64 uuid_tree_generation;
696 
697 	/* The UUID written into btree blocks */
698 	__u8 metadata_uuid[BTRFS_FSID_SIZE];
699 
700 	__u64 nr_global_roots;
701 
702 	/* Future expansion */
703 	__le64 reserved[27];
704 	__u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
705 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
706 
707 	/* Padded to 4096 bytes */
708 	__u8 padding[565];
709 } __attribute__ ((__packed__));
710 
711 #define BTRFS_FREE_SPACE_EXTENT	1
712 #define BTRFS_FREE_SPACE_BITMAP	2
713 
714 struct btrfs_free_space_entry {
715 	__le64 offset;
716 	__le64 bytes;
717 	__u8 type;
718 } __attribute__ ((__packed__));
719 
720 struct btrfs_free_space_header {
721 	struct btrfs_disk_key location;
722 	__le64 generation;
723 	__le64 num_entries;
724 	__le64 num_bitmaps;
725 } __attribute__ ((__packed__));
726 
727 struct btrfs_raid_stride {
728 	/* The id of device this raid extent lives on. */
729 	__le64 devid;
730 	/* The physical location on disk. */
731 	__le64 physical;
732 } __attribute__ ((__packed__));
733 
734 /* The stripe_extent::encoding, 1:1 mapping of enum btrfs_raid_types. */
735 #define BTRFS_STRIPE_RAID0	1
736 #define BTRFS_STRIPE_RAID1	2
737 #define BTRFS_STRIPE_DUP	3
738 #define BTRFS_STRIPE_RAID10	4
739 #define BTRFS_STRIPE_RAID5	5
740 #define BTRFS_STRIPE_RAID6	6
741 #define BTRFS_STRIPE_RAID1C3	7
742 #define BTRFS_STRIPE_RAID1C4	8
743 
744 struct btrfs_stripe_extent {
745 	__u8 encoding;
746 	__u8 reserved[7];
747 	/* An array of raid strides this stripe is composed of. */
748 	struct btrfs_raid_stride strides[];
749 } __attribute__ ((__packed__));
750 
751 #define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
752 #define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
753 
754 /* Super block flags */
755 /* Errors detected */
756 #define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
757 
758 #define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
759 #define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
760 #define BTRFS_SUPER_FLAG_METADUMP_V2	(1ULL << 34)
761 #define BTRFS_SUPER_FLAG_CHANGING_FSID	(1ULL << 35)
762 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
763 
764 
765 /*
766  * items in the extent btree are used to record the objectid of the
767  * owner of the block and the number of references
768  */
769 
770 struct btrfs_extent_item {
771 	__le64 refs;
772 	__le64 generation;
773 	__le64 flags;
774 } __attribute__ ((__packed__));
775 
776 struct btrfs_extent_item_v0 {
777 	__le32 refs;
778 } __attribute__ ((__packed__));
779 
780 
781 #define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
782 #define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
783 
784 /* following flags only apply to tree blocks */
785 
786 /* use full backrefs for extent pointers in the block */
787 #define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
788 
789 #define BTRFS_BACKREF_REV_MAX		256
790 #define BTRFS_BACKREF_REV_SHIFT		56
791 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
792 					 BTRFS_BACKREF_REV_SHIFT)
793 
794 #define BTRFS_OLD_BACKREF_REV		0
795 #define BTRFS_MIXED_BACKREF_REV		1
796 
797 /*
798  * this flag is only used internally by scrub and may be changed at any time
799  * it is only declared here to avoid collisions
800  */
801 #define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
802 
803 struct btrfs_tree_block_info {
804 	struct btrfs_disk_key key;
805 	__u8 level;
806 } __attribute__ ((__packed__));
807 
808 struct btrfs_extent_data_ref {
809 	__le64 root;
810 	__le64 objectid;
811 	__le64 offset;
812 	__le32 count;
813 } __attribute__ ((__packed__));
814 
815 struct btrfs_shared_data_ref {
816 	__le32 count;
817 } __attribute__ ((__packed__));
818 
819 struct btrfs_extent_inline_ref {
820 	__u8 type;
821 	__le64 offset;
822 } __attribute__ ((__packed__));
823 
824 /* dev extents record free space on individual devices.  The owner
825  * field points back to the chunk allocation mapping tree that allocated
826  * the extent.  The chunk tree uuid field is a way to double check the owner
827  */
828 struct btrfs_dev_extent {
829 	__le64 chunk_tree;
830 	__le64 chunk_objectid;
831 	__le64 chunk_offset;
832 	__le64 length;
833 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
834 } __attribute__ ((__packed__));
835 
836 struct btrfs_inode_ref {
837 	__le64 index;
838 	__le16 name_len;
839 	/* name goes here */
840 } __attribute__ ((__packed__));
841 
842 struct btrfs_inode_extref {
843 	__le64 parent_objectid;
844 	__le64 index;
845 	__le16 name_len;
846 	__u8   name[];
847 	/* name goes here */
848 } __attribute__ ((__packed__));
849 
850 struct btrfs_timespec {
851 	__le64 sec;
852 	__le32 nsec;
853 } __attribute__ ((__packed__));
854 
855 struct btrfs_inode_item {
856 	/* nfs style generation number */
857 	__le64 generation;
858 	/* transid that last touched this inode */
859 	__le64 transid;
860 	__le64 size;
861 	__le64 nbytes;
862 	__le64 block_group;
863 	__le32 nlink;
864 	__le32 uid;
865 	__le32 gid;
866 	__le32 mode;
867 	__le64 rdev;
868 	__le64 flags;
869 
870 	/* modification sequence number for NFS */
871 	__le64 sequence;
872 
873 	/*
874 	 * a little future expansion, for more than this we can
875 	 * just grow the inode item and version it
876 	 */
877 	__le64 reserved[4];
878 	struct btrfs_timespec atime;
879 	struct btrfs_timespec ctime;
880 	struct btrfs_timespec mtime;
881 	struct btrfs_timespec otime;
882 } __attribute__ ((__packed__));
883 
884 struct btrfs_dir_log_item {
885 	__le64 end;
886 } __attribute__ ((__packed__));
887 
888 struct btrfs_dir_item {
889 	struct btrfs_disk_key location;
890 	__le64 transid;
891 	__le16 data_len;
892 	__le16 name_len;
893 	__u8 type;
894 } __attribute__ ((__packed__));
895 
896 #define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
897 
898 /*
899  * Internal in-memory flag that a subvolume has been marked for deletion but
900  * still visible as a directory
901  */
902 #define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
903 
904 struct btrfs_root_item {
905 	struct btrfs_inode_item inode;
906 	__le64 generation;
907 	__le64 root_dirid;
908 	__le64 bytenr;
909 	__le64 byte_limit;
910 	__le64 bytes_used;
911 	__le64 last_snapshot;
912 	__le64 flags;
913 	__le32 refs;
914 	struct btrfs_disk_key drop_progress;
915 	__u8 drop_level;
916 	__u8 level;
917 
918 	/*
919 	 * The following fields appear after subvol_uuids+subvol_times
920 	 * were introduced.
921 	 */
922 
923 	/*
924 	 * This generation number is used to test if the new fields are valid
925 	 * and up to date while reading the root item. Every time the root item
926 	 * is written out, the "generation" field is copied into this field. If
927 	 * anyone ever mounted the fs with an older kernel, we will have
928 	 * mismatching generation values here and thus must invalidate the
929 	 * new fields. See btrfs_update_root and btrfs_find_last_root for
930 	 * details.
931 	 * the offset of generation_v2 is also used as the start for the memset
932 	 * when invalidating the fields.
933 	 */
934 	__le64 generation_v2;
935 	__u8 uuid[BTRFS_UUID_SIZE];
936 	__u8 parent_uuid[BTRFS_UUID_SIZE];
937 	__u8 received_uuid[BTRFS_UUID_SIZE];
938 	__le64 ctransid; /* updated when an inode changes */
939 	__le64 otransid; /* trans when created */
940 	__le64 stransid; /* trans when sent. non-zero for received subvol */
941 	__le64 rtransid; /* trans when received. non-zero for received subvol */
942 	struct btrfs_timespec ctime;
943 	struct btrfs_timespec otime;
944 	struct btrfs_timespec stime;
945 	struct btrfs_timespec rtime;
946 	__le64 reserved[8]; /* for future */
947 } __attribute__ ((__packed__));
948 
949 /*
950  * Btrfs root item used to be smaller than current size.  The old format ends
951  * at where member generation_v2 is.
952  */
953 static inline __u32 btrfs_legacy_root_item_size(void)
954 {
955 	return offsetof(struct btrfs_root_item, generation_v2);
956 }
957 
958 /*
959  * this is used for both forward and backward root refs
960  */
961 struct btrfs_root_ref {
962 	__le64 dirid;
963 	__le64 sequence;
964 	__le16 name_len;
965 } __attribute__ ((__packed__));
966 
967 struct btrfs_disk_balance_args {
968 	/*
969 	 * profiles to operate on, single is denoted by
970 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
971 	 */
972 	__le64 profiles;
973 
974 	/*
975 	 * usage filter
976 	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
977 	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
978 	 */
979 	union {
980 		__le64 usage;
981 		struct {
982 			__le32 usage_min;
983 			__le32 usage_max;
984 		};
985 	};
986 
987 	/* devid filter */
988 	__le64 devid;
989 
990 	/* devid subset filter [pstart..pend) */
991 	__le64 pstart;
992 	__le64 pend;
993 
994 	/* btrfs virtual address space subset filter [vstart..vend) */
995 	__le64 vstart;
996 	__le64 vend;
997 
998 	/*
999 	 * profile to convert to, single is denoted by
1000 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
1001 	 */
1002 	__le64 target;
1003 
1004 	/* BTRFS_BALANCE_ARGS_* */
1005 	__le64 flags;
1006 
1007 	/*
1008 	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
1009 	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
1010 	 * and maximum
1011 	 */
1012 	union {
1013 		__le64 limit;
1014 		struct {
1015 			__le32 limit_min;
1016 			__le32 limit_max;
1017 		};
1018 	};
1019 
1020 	/*
1021 	 * Process chunks that cross stripes_min..stripes_max devices,
1022 	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
1023 	 */
1024 	__le32 stripes_min;
1025 	__le32 stripes_max;
1026 
1027 	__le64 unused[6];
1028 } __attribute__ ((__packed__));
1029 
1030 /*
1031  * store balance parameters to disk so that balance can be properly
1032  * resumed after crash or unmount
1033  */
1034 struct btrfs_balance_item {
1035 	/* BTRFS_BALANCE_* */
1036 	__le64 flags;
1037 
1038 	struct btrfs_disk_balance_args data;
1039 	struct btrfs_disk_balance_args meta;
1040 	struct btrfs_disk_balance_args sys;
1041 
1042 	__le64 unused[4];
1043 } __attribute__ ((__packed__));
1044 
1045 enum {
1046 	BTRFS_FILE_EXTENT_INLINE   = 0,
1047 	BTRFS_FILE_EXTENT_REG      = 1,
1048 	BTRFS_FILE_EXTENT_PREALLOC = 2,
1049 	BTRFS_NR_FILE_EXTENT_TYPES = 3,
1050 };
1051 
1052 struct btrfs_file_extent_item {
1053 	/*
1054 	 * transaction id that created this extent
1055 	 */
1056 	__le64 generation;
1057 	/*
1058 	 * max number of bytes to hold this extent in ram
1059 	 * when we split a compressed extent we can't know how big
1060 	 * each of the resulting pieces will be.  So, this is
1061 	 * an upper limit on the size of the extent in ram instead of
1062 	 * an exact limit.
1063 	 */
1064 	__le64 ram_bytes;
1065 
1066 	/*
1067 	 * 32 bits for the various ways we might encode the data,
1068 	 * including compression and encryption.  If any of these
1069 	 * are set to something a given disk format doesn't understand
1070 	 * it is treated like an incompat flag for reading and writing,
1071 	 * but not for stat.
1072 	 */
1073 	__u8 compression;
1074 	__u8 encryption;
1075 	__le16 other_encoding; /* spare for later use */
1076 
1077 	/* are we inline data or a real extent? */
1078 	__u8 type;
1079 
1080 	/*
1081 	 * disk space consumed by the extent, checksum blocks are included
1082 	 * in these numbers
1083 	 *
1084 	 * At this offset in the structure, the inline extent data start.
1085 	 */
1086 	__le64 disk_bytenr;
1087 	__le64 disk_num_bytes;
1088 	/*
1089 	 * the logical offset in file blocks (no csums)
1090 	 * this extent record is for.  This allows a file extent to point
1091 	 * into the middle of an existing extent on disk, sharing it
1092 	 * between two snapshots (useful if some bytes in the middle of the
1093 	 * extent have changed
1094 	 */
1095 	__le64 offset;
1096 	/*
1097 	 * the logical number of file blocks (no csums included).  This
1098 	 * always reflects the size uncompressed and without encoding.
1099 	 */
1100 	__le64 num_bytes;
1101 
1102 } __attribute__ ((__packed__));
1103 
1104 struct btrfs_csum_item {
1105 	__u8 csum;
1106 } __attribute__ ((__packed__));
1107 
1108 struct btrfs_dev_stats_item {
1109 	/*
1110 	 * grow this item struct at the end for future enhancements and keep
1111 	 * the existing values unchanged
1112 	 */
1113 	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
1114 } __attribute__ ((__packed__));
1115 
1116 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
1117 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
1118 
1119 struct btrfs_dev_replace_item {
1120 	/*
1121 	 * grow this item struct at the end for future enhancements and keep
1122 	 * the existing values unchanged
1123 	 */
1124 	__le64 src_devid;
1125 	__le64 cursor_left;
1126 	__le64 cursor_right;
1127 	__le64 cont_reading_from_srcdev_mode;
1128 
1129 	__le64 replace_state;
1130 	__le64 time_started;
1131 	__le64 time_stopped;
1132 	__le64 num_write_errors;
1133 	__le64 num_uncorrectable_read_errors;
1134 } __attribute__ ((__packed__));
1135 
1136 /* different types of block groups (and chunks) */
1137 #define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
1138 #define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
1139 #define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
1140 #define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
1141 #define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
1142 #define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
1143 #define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
1144 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
1145 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
1146 #define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
1147 #define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10)
1148 #define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
1149 					 BTRFS_SPACE_INFO_GLOBAL_RSV)
1150 
1151 #define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
1152 					 BTRFS_BLOCK_GROUP_SYSTEM |  \
1153 					 BTRFS_BLOCK_GROUP_METADATA)
1154 
1155 #define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
1156 					 BTRFS_BLOCK_GROUP_RAID1 |   \
1157 					 BTRFS_BLOCK_GROUP_RAID1C3 | \
1158 					 BTRFS_BLOCK_GROUP_RAID1C4 | \
1159 					 BTRFS_BLOCK_GROUP_RAID5 |   \
1160 					 BTRFS_BLOCK_GROUP_RAID6 |   \
1161 					 BTRFS_BLOCK_GROUP_DUP |     \
1162 					 BTRFS_BLOCK_GROUP_RAID10)
1163 #define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
1164 					 BTRFS_BLOCK_GROUP_RAID6)
1165 
1166 #define BTRFS_BLOCK_GROUP_RAID1_MASK	(BTRFS_BLOCK_GROUP_RAID1 |   \
1167 					 BTRFS_BLOCK_GROUP_RAID1C3 | \
1168 					 BTRFS_BLOCK_GROUP_RAID1C4)
1169 
1170 /*
1171  * We need a bit for restriper to be able to tell when chunks of type
1172  * SINGLE are available.  This "extended" profile format is used in
1173  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1174  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
1175  * to avoid remappings between two formats in future.
1176  */
1177 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
1178 
1179 /*
1180  * A fake block group type that is used to communicate global block reserve
1181  * size to userspace via the SPACE_INFO ioctl.
1182  */
1183 #define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
1184 
1185 #define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1186 					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1187 
1188 static inline __u64 chunk_to_extended(__u64 flags)
1189 {
1190 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1191 		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1192 
1193 	return flags;
1194 }
1195 static inline __u64 extended_to_chunk(__u64 flags)
1196 {
1197 	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1198 }
1199 
1200 struct btrfs_block_group_item {
1201 	__le64 used;
1202 	__le64 chunk_objectid;
1203 	__le64 flags;
1204 } __attribute__ ((__packed__));
1205 
1206 struct btrfs_free_space_info {
1207 	__le32 extent_count;
1208 	__le32 flags;
1209 } __attribute__ ((__packed__));
1210 
1211 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
1212 
1213 #define BTRFS_QGROUP_LEVEL_SHIFT		48
1214 static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
1215 {
1216 	return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
1217 }
1218 
1219 /*
1220  * is subvolume quota turned on?
1221  */
1222 #define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
1223 /*
1224  * RESCAN is set during the initialization phase
1225  */
1226 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
1227 /*
1228  * Some qgroup entries are known to be out of date,
1229  * either because the configuration has changed in a way that
1230  * makes a rescan necessary, or because the fs has been mounted
1231  * with a non-qgroup-aware version.
1232  * Turning qouta off and on again makes it inconsistent, too.
1233  */
1234 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
1235 
1236 #define BTRFS_QGROUP_STATUS_FLAGS_MASK	(BTRFS_QGROUP_STATUS_FLAG_ON |		\
1237 					 BTRFS_QGROUP_STATUS_FLAG_RESCAN |	\
1238 					 BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT)
1239 
1240 #define BTRFS_QGROUP_STATUS_VERSION        1
1241 
1242 struct btrfs_qgroup_status_item {
1243 	__le64 version;
1244 	/*
1245 	 * the generation is updated during every commit. As older
1246 	 * versions of btrfs are not aware of qgroups, it will be
1247 	 * possible to detect inconsistencies by checking the
1248 	 * generation on mount time
1249 	 */
1250 	__le64 generation;
1251 
1252 	/* flag definitions see above */
1253 	__le64 flags;
1254 
1255 	/*
1256 	 * only used during scanning to record the progress
1257 	 * of the scan. It contains a logical address
1258 	 */
1259 	__le64 rescan;
1260 } __attribute__ ((__packed__));
1261 
1262 struct btrfs_qgroup_info_item {
1263 	__le64 generation;
1264 	__le64 rfer;
1265 	__le64 rfer_cmpr;
1266 	__le64 excl;
1267 	__le64 excl_cmpr;
1268 } __attribute__ ((__packed__));
1269 
1270 struct btrfs_qgroup_limit_item {
1271 	/*
1272 	 * only updated when any of the other values change
1273 	 */
1274 	__le64 flags;
1275 	__le64 max_rfer;
1276 	__le64 max_excl;
1277 	__le64 rsv_rfer;
1278 	__le64 rsv_excl;
1279 } __attribute__ ((__packed__));
1280 
1281 struct btrfs_verity_descriptor_item {
1282 	/* Size of the verity descriptor in bytes */
1283 	__le64 size;
1284 	/*
1285 	 * When we implement support for fscrypt, we will need to encrypt the
1286 	 * Merkle tree for encrypted verity files. These 128 bits are for the
1287 	 * eventual storage of an fscrypt initialization vector.
1288 	 */
1289 	__le64 reserved[2];
1290 	__u8 encryption;
1291 } __attribute__ ((__packed__));
1292 
1293 #endif /* _BTRFS_CTREE_H_ */
1294