1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 #ifndef _BTRFS_CTREE_H_ 3 #define _BTRFS_CTREE_H_ 4 5 #include <linux/btrfs.h> 6 #include <linux/types.h> 7 #ifdef __KERNEL__ 8 #include <linux/stddef.h> 9 #else 10 #include <stddef.h> 11 #endif 12 13 /* 14 * This header contains the structure definitions and constants used 15 * by file system objects that can be retrieved using 16 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that 17 * is needed to describe a leaf node's key or item contents. 18 */ 19 20 /* holds pointers to all of the tree roots */ 21 #define BTRFS_ROOT_TREE_OBJECTID 1ULL 22 23 /* stores information about which extents are in use, and reference counts */ 24 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL 25 26 /* 27 * chunk tree stores translations from logical -> physical block numbering 28 * the super block points to the chunk tree 29 */ 30 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL 31 32 /* 33 * stores information about which areas of a given device are in use. 34 * one per device. The tree of tree roots points to the device tree 35 */ 36 #define BTRFS_DEV_TREE_OBJECTID 4ULL 37 38 /* one per subvolume, storing files and directories */ 39 #define BTRFS_FS_TREE_OBJECTID 5ULL 40 41 /* directory objectid inside the root tree */ 42 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL 43 44 /* holds checksums of all the data extents */ 45 #define BTRFS_CSUM_TREE_OBJECTID 7ULL 46 47 /* holds quota configuration and tracking */ 48 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL 49 50 /* for storing items that use the BTRFS_UUID_KEY* types */ 51 #define BTRFS_UUID_TREE_OBJECTID 9ULL 52 53 /* tracks free space in block groups. */ 54 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL 55 56 /* device stats in the device tree */ 57 #define BTRFS_DEV_STATS_OBJECTID 0ULL 58 59 /* for storing balance parameters in the root tree */ 60 #define BTRFS_BALANCE_OBJECTID -4ULL 61 62 /* orhpan objectid for tracking unlinked/truncated files */ 63 #define BTRFS_ORPHAN_OBJECTID -5ULL 64 65 /* does write ahead logging to speed up fsyncs */ 66 #define BTRFS_TREE_LOG_OBJECTID -6ULL 67 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL 68 69 /* for space balancing */ 70 #define BTRFS_TREE_RELOC_OBJECTID -8ULL 71 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL 72 73 /* 74 * extent checksums all have this objectid 75 * this allows them to share the logging tree 76 * for fsyncs 77 */ 78 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL 79 80 /* For storing free space cache */ 81 #define BTRFS_FREE_SPACE_OBJECTID -11ULL 82 83 /* 84 * The inode number assigned to the special inode for storing 85 * free ino cache 86 */ 87 #define BTRFS_FREE_INO_OBJECTID -12ULL 88 89 /* dummy objectid represents multiple objectids */ 90 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL 91 92 /* 93 * All files have objectids in this range. 94 */ 95 #define BTRFS_FIRST_FREE_OBJECTID 256ULL 96 #define BTRFS_LAST_FREE_OBJECTID -256ULL 97 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL 98 99 100 /* 101 * the device items go into the chunk tree. The key is in the form 102 * [ 1 BTRFS_DEV_ITEM_KEY device_id ] 103 */ 104 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL 105 106 #define BTRFS_BTREE_INODE_OBJECTID 1 107 108 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 109 110 #define BTRFS_DEV_REPLACE_DEVID 0ULL 111 112 /* 113 * inode items have the data typically returned from stat and store other 114 * info about object characteristics. There is one for every file and dir in 115 * the FS 116 */ 117 #define BTRFS_INODE_ITEM_KEY 1 118 #define BTRFS_INODE_REF_KEY 12 119 #define BTRFS_INODE_EXTREF_KEY 13 120 #define BTRFS_XATTR_ITEM_KEY 24 121 #define BTRFS_ORPHAN_ITEM_KEY 48 122 /* reserve 2-15 close to the inode for later flexibility */ 123 124 /* 125 * dir items are the name -> inode pointers in a directory. There is one 126 * for every name in a directory. 127 */ 128 #define BTRFS_DIR_LOG_ITEM_KEY 60 129 #define BTRFS_DIR_LOG_INDEX_KEY 72 130 #define BTRFS_DIR_ITEM_KEY 84 131 #define BTRFS_DIR_INDEX_KEY 96 132 /* 133 * extent data is for file data 134 */ 135 #define BTRFS_EXTENT_DATA_KEY 108 136 137 /* 138 * extent csums are stored in a separate tree and hold csums for 139 * an entire extent on disk. 140 */ 141 #define BTRFS_EXTENT_CSUM_KEY 128 142 143 /* 144 * root items point to tree roots. They are typically in the root 145 * tree used by the super block to find all the other trees 146 */ 147 #define BTRFS_ROOT_ITEM_KEY 132 148 149 /* 150 * root backrefs tie subvols and snapshots to the directory entries that 151 * reference them 152 */ 153 #define BTRFS_ROOT_BACKREF_KEY 144 154 155 /* 156 * root refs make a fast index for listing all of the snapshots and 157 * subvolumes referenced by a given root. They point directly to the 158 * directory item in the root that references the subvol 159 */ 160 #define BTRFS_ROOT_REF_KEY 156 161 162 /* 163 * extent items are in the extent map tree. These record which blocks 164 * are used, and how many references there are to each block 165 */ 166 #define BTRFS_EXTENT_ITEM_KEY 168 167 168 /* 169 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know 170 * the length, so we save the level in key->offset instead of the length. 171 */ 172 #define BTRFS_METADATA_ITEM_KEY 169 173 174 #define BTRFS_TREE_BLOCK_REF_KEY 176 175 176 #define BTRFS_EXTENT_DATA_REF_KEY 178 177 178 #define BTRFS_EXTENT_REF_V0_KEY 180 179 180 #define BTRFS_SHARED_BLOCK_REF_KEY 182 181 182 #define BTRFS_SHARED_DATA_REF_KEY 184 183 184 /* 185 * block groups give us hints into the extent allocation trees. Which 186 * blocks are free etc etc 187 */ 188 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 189 190 /* 191 * Every block group is represented in the free space tree by a free space info 192 * item, which stores some accounting information. It is keyed on 193 * (block_group_start, FREE_SPACE_INFO, block_group_length). 194 */ 195 #define BTRFS_FREE_SPACE_INFO_KEY 198 196 197 /* 198 * A free space extent tracks an extent of space that is free in a block group. 199 * It is keyed on (start, FREE_SPACE_EXTENT, length). 200 */ 201 #define BTRFS_FREE_SPACE_EXTENT_KEY 199 202 203 /* 204 * When a block group becomes very fragmented, we convert it to use bitmaps 205 * instead of extents. A free space bitmap is keyed on 206 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with 207 * (length / sectorsize) bits. 208 */ 209 #define BTRFS_FREE_SPACE_BITMAP_KEY 200 210 211 #define BTRFS_DEV_EXTENT_KEY 204 212 #define BTRFS_DEV_ITEM_KEY 216 213 #define BTRFS_CHUNK_ITEM_KEY 228 214 215 /* 216 * Records the overall state of the qgroups. 217 * There's only one instance of this key present, 218 * (0, BTRFS_QGROUP_STATUS_KEY, 0) 219 */ 220 #define BTRFS_QGROUP_STATUS_KEY 240 221 /* 222 * Records the currently used space of the qgroup. 223 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). 224 */ 225 #define BTRFS_QGROUP_INFO_KEY 242 226 /* 227 * Contains the user configured limits for the qgroup. 228 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). 229 */ 230 #define BTRFS_QGROUP_LIMIT_KEY 244 231 /* 232 * Records the child-parent relationship of qgroups. For 233 * each relation, 2 keys are present: 234 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) 235 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) 236 */ 237 #define BTRFS_QGROUP_RELATION_KEY 246 238 239 /* 240 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. 241 */ 242 #define BTRFS_BALANCE_ITEM_KEY 248 243 244 /* 245 * The key type for tree items that are stored persistently, but do not need to 246 * exist for extended period of time. The items can exist in any tree. 247 * 248 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data] 249 * 250 * Existing items: 251 * 252 * - balance status item 253 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0) 254 */ 255 #define BTRFS_TEMPORARY_ITEM_KEY 248 256 257 /* 258 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY 259 */ 260 #define BTRFS_DEV_STATS_KEY 249 261 262 /* 263 * The key type for tree items that are stored persistently and usually exist 264 * for a long period, eg. filesystem lifetime. The item kinds can be status 265 * information, stats or preference values. The item can exist in any tree. 266 * 267 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data] 268 * 269 * Existing items: 270 * 271 * - device statistics, store IO stats in the device tree, one key for all 272 * stats 273 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0) 274 */ 275 #define BTRFS_PERSISTENT_ITEM_KEY 249 276 277 /* 278 * Persistantly stores the device replace state in the device tree. 279 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). 280 */ 281 #define BTRFS_DEV_REPLACE_KEY 250 282 283 /* 284 * Stores items that allow to quickly map UUIDs to something else. 285 * These items are part of the filesystem UUID tree. 286 * The key is built like this: 287 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). 288 */ 289 #if BTRFS_UUID_SIZE != 16 290 #error "UUID items require BTRFS_UUID_SIZE == 16!" 291 #endif 292 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ 293 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to 294 * received subvols */ 295 296 /* 297 * string items are for debugging. They just store a short string of 298 * data in the FS 299 */ 300 #define BTRFS_STRING_ITEM_KEY 253 301 302 303 304 /* 32 bytes in various csum fields */ 305 #define BTRFS_CSUM_SIZE 32 306 307 /* csum types */ 308 enum btrfs_csum_type { 309 BTRFS_CSUM_TYPE_CRC32 = 0, 310 BTRFS_CSUM_TYPE_XXHASH = 1, 311 BTRFS_CSUM_TYPE_SHA256 = 2, 312 BTRFS_CSUM_TYPE_BLAKE2 = 3, 313 }; 314 315 /* 316 * flags definitions for directory entry item type 317 * 318 * Used by: 319 * struct btrfs_dir_item.type 320 * 321 * Values 0..7 must match common file type values in fs_types.h. 322 */ 323 #define BTRFS_FT_UNKNOWN 0 324 #define BTRFS_FT_REG_FILE 1 325 #define BTRFS_FT_DIR 2 326 #define BTRFS_FT_CHRDEV 3 327 #define BTRFS_FT_BLKDEV 4 328 #define BTRFS_FT_FIFO 5 329 #define BTRFS_FT_SOCK 6 330 #define BTRFS_FT_SYMLINK 7 331 #define BTRFS_FT_XATTR 8 332 #define BTRFS_FT_MAX 9 333 334 /* 335 * The key defines the order in the tree, and so it also defines (optimal) 336 * block layout. 337 * 338 * objectid corresponds to the inode number. 339 * 340 * type tells us things about the object, and is a kind of stream selector. 341 * so for a given inode, keys with type of 1 might refer to the inode data, 342 * type of 2 may point to file data in the btree and type == 3 may point to 343 * extents. 344 * 345 * offset is the starting byte offset for this key in the stream. 346 * 347 * btrfs_disk_key is in disk byte order. struct btrfs_key is always 348 * in cpu native order. Otherwise they are identical and their sizes 349 * should be the same (ie both packed) 350 */ 351 struct btrfs_disk_key { 352 __le64 objectid; 353 __u8 type; 354 __le64 offset; 355 } __attribute__ ((__packed__)); 356 357 struct btrfs_key { 358 __u64 objectid; 359 __u8 type; 360 __u64 offset; 361 } __attribute__ ((__packed__)); 362 363 struct btrfs_dev_item { 364 /* the internal btrfs device id */ 365 __le64 devid; 366 367 /* size of the device */ 368 __le64 total_bytes; 369 370 /* bytes used */ 371 __le64 bytes_used; 372 373 /* optimal io alignment for this device */ 374 __le32 io_align; 375 376 /* optimal io width for this device */ 377 __le32 io_width; 378 379 /* minimal io size for this device */ 380 __le32 sector_size; 381 382 /* type and info about this device */ 383 __le64 type; 384 385 /* expected generation for this device */ 386 __le64 generation; 387 388 /* 389 * starting byte of this partition on the device, 390 * to allow for stripe alignment in the future 391 */ 392 __le64 start_offset; 393 394 /* grouping information for allocation decisions */ 395 __le32 dev_group; 396 397 /* seek speed 0-100 where 100 is fastest */ 398 __u8 seek_speed; 399 400 /* bandwidth 0-100 where 100 is fastest */ 401 __u8 bandwidth; 402 403 /* btrfs generated uuid for this device */ 404 __u8 uuid[BTRFS_UUID_SIZE]; 405 406 /* uuid of FS who owns this device */ 407 __u8 fsid[BTRFS_UUID_SIZE]; 408 } __attribute__ ((__packed__)); 409 410 struct btrfs_stripe { 411 __le64 devid; 412 __le64 offset; 413 __u8 dev_uuid[BTRFS_UUID_SIZE]; 414 } __attribute__ ((__packed__)); 415 416 struct btrfs_chunk { 417 /* size of this chunk in bytes */ 418 __le64 length; 419 420 /* objectid of the root referencing this chunk */ 421 __le64 owner; 422 423 __le64 stripe_len; 424 __le64 type; 425 426 /* optimal io alignment for this chunk */ 427 __le32 io_align; 428 429 /* optimal io width for this chunk */ 430 __le32 io_width; 431 432 /* minimal io size for this chunk */ 433 __le32 sector_size; 434 435 /* 2^16 stripes is quite a lot, a second limit is the size of a single 436 * item in the btree 437 */ 438 __le16 num_stripes; 439 440 /* sub stripes only matter for raid10 */ 441 __le16 sub_stripes; 442 struct btrfs_stripe stripe; 443 /* additional stripes go here */ 444 } __attribute__ ((__packed__)); 445 446 #define BTRFS_FREE_SPACE_EXTENT 1 447 #define BTRFS_FREE_SPACE_BITMAP 2 448 449 struct btrfs_free_space_entry { 450 __le64 offset; 451 __le64 bytes; 452 __u8 type; 453 } __attribute__ ((__packed__)); 454 455 struct btrfs_free_space_header { 456 struct btrfs_disk_key location; 457 __le64 generation; 458 __le64 num_entries; 459 __le64 num_bitmaps; 460 } __attribute__ ((__packed__)); 461 462 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) 463 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) 464 465 /* Super block flags */ 466 /* Errors detected */ 467 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2) 468 469 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) 470 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) 471 #define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34) 472 #define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35) 473 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36) 474 475 476 /* 477 * items in the extent btree are used to record the objectid of the 478 * owner of the block and the number of references 479 */ 480 481 struct btrfs_extent_item { 482 __le64 refs; 483 __le64 generation; 484 __le64 flags; 485 } __attribute__ ((__packed__)); 486 487 struct btrfs_extent_item_v0 { 488 __le32 refs; 489 } __attribute__ ((__packed__)); 490 491 492 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) 493 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) 494 495 /* following flags only apply to tree blocks */ 496 497 /* use full backrefs for extent pointers in the block */ 498 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) 499 500 /* 501 * this flag is only used internally by scrub and may be changed at any time 502 * it is only declared here to avoid collisions 503 */ 504 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48) 505 506 struct btrfs_tree_block_info { 507 struct btrfs_disk_key key; 508 __u8 level; 509 } __attribute__ ((__packed__)); 510 511 struct btrfs_extent_data_ref { 512 __le64 root; 513 __le64 objectid; 514 __le64 offset; 515 __le32 count; 516 } __attribute__ ((__packed__)); 517 518 struct btrfs_shared_data_ref { 519 __le32 count; 520 } __attribute__ ((__packed__)); 521 522 struct btrfs_extent_inline_ref { 523 __u8 type; 524 __le64 offset; 525 } __attribute__ ((__packed__)); 526 527 /* dev extents record free space on individual devices. The owner 528 * field points back to the chunk allocation mapping tree that allocated 529 * the extent. The chunk tree uuid field is a way to double check the owner 530 */ 531 struct btrfs_dev_extent { 532 __le64 chunk_tree; 533 __le64 chunk_objectid; 534 __le64 chunk_offset; 535 __le64 length; 536 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 537 } __attribute__ ((__packed__)); 538 539 struct btrfs_inode_ref { 540 __le64 index; 541 __le16 name_len; 542 /* name goes here */ 543 } __attribute__ ((__packed__)); 544 545 struct btrfs_inode_extref { 546 __le64 parent_objectid; 547 __le64 index; 548 __le16 name_len; 549 __u8 name[0]; 550 /* name goes here */ 551 } __attribute__ ((__packed__)); 552 553 struct btrfs_timespec { 554 __le64 sec; 555 __le32 nsec; 556 } __attribute__ ((__packed__)); 557 558 struct btrfs_inode_item { 559 /* nfs style generation number */ 560 __le64 generation; 561 /* transid that last touched this inode */ 562 __le64 transid; 563 __le64 size; 564 __le64 nbytes; 565 __le64 block_group; 566 __le32 nlink; 567 __le32 uid; 568 __le32 gid; 569 __le32 mode; 570 __le64 rdev; 571 __le64 flags; 572 573 /* modification sequence number for NFS */ 574 __le64 sequence; 575 576 /* 577 * a little future expansion, for more than this we can 578 * just grow the inode item and version it 579 */ 580 __le64 reserved[4]; 581 struct btrfs_timespec atime; 582 struct btrfs_timespec ctime; 583 struct btrfs_timespec mtime; 584 struct btrfs_timespec otime; 585 } __attribute__ ((__packed__)); 586 587 struct btrfs_dir_log_item { 588 __le64 end; 589 } __attribute__ ((__packed__)); 590 591 struct btrfs_dir_item { 592 struct btrfs_disk_key location; 593 __le64 transid; 594 __le16 data_len; 595 __le16 name_len; 596 __u8 type; 597 } __attribute__ ((__packed__)); 598 599 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0) 600 601 /* 602 * Internal in-memory flag that a subvolume has been marked for deletion but 603 * still visible as a directory 604 */ 605 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48) 606 607 struct btrfs_root_item { 608 struct btrfs_inode_item inode; 609 __le64 generation; 610 __le64 root_dirid; 611 __le64 bytenr; 612 __le64 byte_limit; 613 __le64 bytes_used; 614 __le64 last_snapshot; 615 __le64 flags; 616 __le32 refs; 617 struct btrfs_disk_key drop_progress; 618 __u8 drop_level; 619 __u8 level; 620 621 /* 622 * The following fields appear after subvol_uuids+subvol_times 623 * were introduced. 624 */ 625 626 /* 627 * This generation number is used to test if the new fields are valid 628 * and up to date while reading the root item. Every time the root item 629 * is written out, the "generation" field is copied into this field. If 630 * anyone ever mounted the fs with an older kernel, we will have 631 * mismatching generation values here and thus must invalidate the 632 * new fields. See btrfs_update_root and btrfs_find_last_root for 633 * details. 634 * the offset of generation_v2 is also used as the start for the memset 635 * when invalidating the fields. 636 */ 637 __le64 generation_v2; 638 __u8 uuid[BTRFS_UUID_SIZE]; 639 __u8 parent_uuid[BTRFS_UUID_SIZE]; 640 __u8 received_uuid[BTRFS_UUID_SIZE]; 641 __le64 ctransid; /* updated when an inode changes */ 642 __le64 otransid; /* trans when created */ 643 __le64 stransid; /* trans when sent. non-zero for received subvol */ 644 __le64 rtransid; /* trans when received. non-zero for received subvol */ 645 struct btrfs_timespec ctime; 646 struct btrfs_timespec otime; 647 struct btrfs_timespec stime; 648 struct btrfs_timespec rtime; 649 __le64 reserved[8]; /* for future */ 650 } __attribute__ ((__packed__)); 651 652 /* 653 * Btrfs root item used to be smaller than current size. The old format ends 654 * at where member generation_v2 is. 655 */ 656 static inline __u32 btrfs_legacy_root_item_size(void) 657 { 658 return offsetof(struct btrfs_root_item, generation_v2); 659 } 660 661 /* 662 * this is used for both forward and backward root refs 663 */ 664 struct btrfs_root_ref { 665 __le64 dirid; 666 __le64 sequence; 667 __le16 name_len; 668 } __attribute__ ((__packed__)); 669 670 struct btrfs_disk_balance_args { 671 /* 672 * profiles to operate on, single is denoted by 673 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 674 */ 675 __le64 profiles; 676 677 /* 678 * usage filter 679 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N' 680 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max 681 */ 682 union { 683 __le64 usage; 684 struct { 685 __le32 usage_min; 686 __le32 usage_max; 687 }; 688 }; 689 690 /* devid filter */ 691 __le64 devid; 692 693 /* devid subset filter [pstart..pend) */ 694 __le64 pstart; 695 __le64 pend; 696 697 /* btrfs virtual address space subset filter [vstart..vend) */ 698 __le64 vstart; 699 __le64 vend; 700 701 /* 702 * profile to convert to, single is denoted by 703 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 704 */ 705 __le64 target; 706 707 /* BTRFS_BALANCE_ARGS_* */ 708 __le64 flags; 709 710 /* 711 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit' 712 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum 713 * and maximum 714 */ 715 union { 716 __le64 limit; 717 struct { 718 __le32 limit_min; 719 __le32 limit_max; 720 }; 721 }; 722 723 /* 724 * Process chunks that cross stripes_min..stripes_max devices, 725 * BTRFS_BALANCE_ARGS_STRIPES_RANGE 726 */ 727 __le32 stripes_min; 728 __le32 stripes_max; 729 730 __le64 unused[6]; 731 } __attribute__ ((__packed__)); 732 733 /* 734 * store balance parameters to disk so that balance can be properly 735 * resumed after crash or unmount 736 */ 737 struct btrfs_balance_item { 738 /* BTRFS_BALANCE_* */ 739 __le64 flags; 740 741 struct btrfs_disk_balance_args data; 742 struct btrfs_disk_balance_args meta; 743 struct btrfs_disk_balance_args sys; 744 745 __le64 unused[4]; 746 } __attribute__ ((__packed__)); 747 748 enum { 749 BTRFS_FILE_EXTENT_INLINE = 0, 750 BTRFS_FILE_EXTENT_REG = 1, 751 BTRFS_FILE_EXTENT_PREALLOC = 2, 752 BTRFS_NR_FILE_EXTENT_TYPES = 3, 753 }; 754 755 struct btrfs_file_extent_item { 756 /* 757 * transaction id that created this extent 758 */ 759 __le64 generation; 760 /* 761 * max number of bytes to hold this extent in ram 762 * when we split a compressed extent we can't know how big 763 * each of the resulting pieces will be. So, this is 764 * an upper limit on the size of the extent in ram instead of 765 * an exact limit. 766 */ 767 __le64 ram_bytes; 768 769 /* 770 * 32 bits for the various ways we might encode the data, 771 * including compression and encryption. If any of these 772 * are set to something a given disk format doesn't understand 773 * it is treated like an incompat flag for reading and writing, 774 * but not for stat. 775 */ 776 __u8 compression; 777 __u8 encryption; 778 __le16 other_encoding; /* spare for later use */ 779 780 /* are we inline data or a real extent? */ 781 __u8 type; 782 783 /* 784 * disk space consumed by the extent, checksum blocks are included 785 * in these numbers 786 * 787 * At this offset in the structure, the inline extent data start. 788 */ 789 __le64 disk_bytenr; 790 __le64 disk_num_bytes; 791 /* 792 * the logical offset in file blocks (no csums) 793 * this extent record is for. This allows a file extent to point 794 * into the middle of an existing extent on disk, sharing it 795 * between two snapshots (useful if some bytes in the middle of the 796 * extent have changed 797 */ 798 __le64 offset; 799 /* 800 * the logical number of file blocks (no csums included). This 801 * always reflects the size uncompressed and without encoding. 802 */ 803 __le64 num_bytes; 804 805 } __attribute__ ((__packed__)); 806 807 struct btrfs_csum_item { 808 __u8 csum; 809 } __attribute__ ((__packed__)); 810 811 struct btrfs_dev_stats_item { 812 /* 813 * grow this item struct at the end for future enhancements and keep 814 * the existing values unchanged 815 */ 816 __le64 values[BTRFS_DEV_STAT_VALUES_MAX]; 817 } __attribute__ ((__packed__)); 818 819 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0 820 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1 821 822 struct btrfs_dev_replace_item { 823 /* 824 * grow this item struct at the end for future enhancements and keep 825 * the existing values unchanged 826 */ 827 __le64 src_devid; 828 __le64 cursor_left; 829 __le64 cursor_right; 830 __le64 cont_reading_from_srcdev_mode; 831 832 __le64 replace_state; 833 __le64 time_started; 834 __le64 time_stopped; 835 __le64 num_write_errors; 836 __le64 num_uncorrectable_read_errors; 837 } __attribute__ ((__packed__)); 838 839 /* different types of block groups (and chunks) */ 840 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) 841 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) 842 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) 843 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) 844 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) 845 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) 846 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) 847 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) 848 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) 849 #define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9) 850 #define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10) 851 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ 852 BTRFS_SPACE_INFO_GLOBAL_RSV) 853 854 enum btrfs_raid_types { 855 BTRFS_RAID_RAID10, 856 BTRFS_RAID_RAID1, 857 BTRFS_RAID_DUP, 858 BTRFS_RAID_RAID0, 859 BTRFS_RAID_SINGLE, 860 BTRFS_RAID_RAID5, 861 BTRFS_RAID_RAID6, 862 BTRFS_RAID_RAID1C3, 863 BTRFS_RAID_RAID1C4, 864 BTRFS_NR_RAID_TYPES 865 }; 866 867 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ 868 BTRFS_BLOCK_GROUP_SYSTEM | \ 869 BTRFS_BLOCK_GROUP_METADATA) 870 871 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 872 BTRFS_BLOCK_GROUP_RAID1 | \ 873 BTRFS_BLOCK_GROUP_RAID1C3 | \ 874 BTRFS_BLOCK_GROUP_RAID1C4 | \ 875 BTRFS_BLOCK_GROUP_RAID5 | \ 876 BTRFS_BLOCK_GROUP_RAID6 | \ 877 BTRFS_BLOCK_GROUP_DUP | \ 878 BTRFS_BLOCK_GROUP_RAID10) 879 #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \ 880 BTRFS_BLOCK_GROUP_RAID6) 881 882 #define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \ 883 BTRFS_BLOCK_GROUP_RAID1C3 | \ 884 BTRFS_BLOCK_GROUP_RAID1C4) 885 886 /* 887 * We need a bit for restriper to be able to tell when chunks of type 888 * SINGLE are available. This "extended" profile format is used in 889 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields 890 * (on-disk). The corresponding on-disk bit in chunk.type is reserved 891 * to avoid remappings between two formats in future. 892 */ 893 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48) 894 895 /* 896 * A fake block group type that is used to communicate global block reserve 897 * size to userspace via the SPACE_INFO ioctl. 898 */ 899 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49) 900 901 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ 902 BTRFS_AVAIL_ALLOC_BIT_SINGLE) 903 904 static inline __u64 chunk_to_extended(__u64 flags) 905 { 906 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0) 907 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE; 908 909 return flags; 910 } 911 static inline __u64 extended_to_chunk(__u64 flags) 912 { 913 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; 914 } 915 916 struct btrfs_block_group_item { 917 __le64 used; 918 __le64 chunk_objectid; 919 __le64 flags; 920 } __attribute__ ((__packed__)); 921 922 struct btrfs_free_space_info { 923 __le32 extent_count; 924 __le32 flags; 925 } __attribute__ ((__packed__)); 926 927 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0) 928 929 #define BTRFS_QGROUP_LEVEL_SHIFT 48 930 static inline __u16 btrfs_qgroup_level(__u64 qgroupid) 931 { 932 return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT); 933 } 934 935 /* 936 * is subvolume quota turned on? 937 */ 938 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0) 939 /* 940 * RESCAN is set during the initialization phase 941 */ 942 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1) 943 /* 944 * Some qgroup entries are known to be out of date, 945 * either because the configuration has changed in a way that 946 * makes a rescan necessary, or because the fs has been mounted 947 * with a non-qgroup-aware version. 948 * Turning qouta off and on again makes it inconsistent, too. 949 */ 950 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2) 951 952 #define BTRFS_QGROUP_STATUS_VERSION 1 953 954 struct btrfs_qgroup_status_item { 955 __le64 version; 956 /* 957 * the generation is updated during every commit. As older 958 * versions of btrfs are not aware of qgroups, it will be 959 * possible to detect inconsistencies by checking the 960 * generation on mount time 961 */ 962 __le64 generation; 963 964 /* flag definitions see above */ 965 __le64 flags; 966 967 /* 968 * only used during scanning to record the progress 969 * of the scan. It contains a logical address 970 */ 971 __le64 rescan; 972 } __attribute__ ((__packed__)); 973 974 struct btrfs_qgroup_info_item { 975 __le64 generation; 976 __le64 rfer; 977 __le64 rfer_cmpr; 978 __le64 excl; 979 __le64 excl_cmpr; 980 } __attribute__ ((__packed__)); 981 982 struct btrfs_qgroup_limit_item { 983 /* 984 * only updated when any of the other values change 985 */ 986 __le64 flags; 987 __le64 max_rfer; 988 __le64 max_excl; 989 __le64 rsv_rfer; 990 __le64 rsv_excl; 991 } __attribute__ ((__packed__)); 992 993 #endif /* _BTRFS_CTREE_H_ */ 994