1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 #ifndef _BTRFS_CTREE_H_ 3 #define _BTRFS_CTREE_H_ 4 5 #include <linux/btrfs.h> 6 #include <linux/types.h> 7 #ifdef __KERNEL__ 8 #include <linux/stddef.h> 9 #else 10 #include <stddef.h> 11 #endif 12 13 /* 14 * This header contains the structure definitions and constants used 15 * by file system objects that can be retrieved using 16 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that 17 * is needed to describe a leaf node's key or item contents. 18 */ 19 20 /* holds pointers to all of the tree roots */ 21 #define BTRFS_ROOT_TREE_OBJECTID 1ULL 22 23 /* stores information about which extents are in use, and reference counts */ 24 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL 25 26 /* 27 * chunk tree stores translations from logical -> physical block numbering 28 * the super block points to the chunk tree 29 */ 30 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL 31 32 /* 33 * stores information about which areas of a given device are in use. 34 * one per device. The tree of tree roots points to the device tree 35 */ 36 #define BTRFS_DEV_TREE_OBJECTID 4ULL 37 38 /* one per subvolume, storing files and directories */ 39 #define BTRFS_FS_TREE_OBJECTID 5ULL 40 41 /* directory objectid inside the root tree */ 42 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL 43 44 /* holds checksums of all the data extents */ 45 #define BTRFS_CSUM_TREE_OBJECTID 7ULL 46 47 /* holds quota configuration and tracking */ 48 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL 49 50 /* for storing items that use the BTRFS_UUID_KEY* types */ 51 #define BTRFS_UUID_TREE_OBJECTID 9ULL 52 53 /* tracks free space in block groups. */ 54 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL 55 56 /* device stats in the device tree */ 57 #define BTRFS_DEV_STATS_OBJECTID 0ULL 58 59 /* for storing balance parameters in the root tree */ 60 #define BTRFS_BALANCE_OBJECTID -4ULL 61 62 /* orphan objectid for tracking unlinked/truncated files */ 63 #define BTRFS_ORPHAN_OBJECTID -5ULL 64 65 /* does write ahead logging to speed up fsyncs */ 66 #define BTRFS_TREE_LOG_OBJECTID -6ULL 67 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL 68 69 /* for space balancing */ 70 #define BTRFS_TREE_RELOC_OBJECTID -8ULL 71 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL 72 73 /* 74 * extent checksums all have this objectid 75 * this allows them to share the logging tree 76 * for fsyncs 77 */ 78 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL 79 80 /* For storing free space cache */ 81 #define BTRFS_FREE_SPACE_OBJECTID -11ULL 82 83 /* 84 * The inode number assigned to the special inode for storing 85 * free ino cache 86 */ 87 #define BTRFS_FREE_INO_OBJECTID -12ULL 88 89 /* dummy objectid represents multiple objectids */ 90 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL 91 92 /* 93 * All files have objectids in this range. 94 */ 95 #define BTRFS_FIRST_FREE_OBJECTID 256ULL 96 #define BTRFS_LAST_FREE_OBJECTID -256ULL 97 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL 98 99 100 /* 101 * the device items go into the chunk tree. The key is in the form 102 * [ 1 BTRFS_DEV_ITEM_KEY device_id ] 103 */ 104 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL 105 106 #define BTRFS_BTREE_INODE_OBJECTID 1 107 108 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 109 110 #define BTRFS_DEV_REPLACE_DEVID 0ULL 111 112 /* 113 * inode items have the data typically returned from stat and store other 114 * info about object characteristics. There is one for every file and dir in 115 * the FS 116 */ 117 #define BTRFS_INODE_ITEM_KEY 1 118 #define BTRFS_INODE_REF_KEY 12 119 #define BTRFS_INODE_EXTREF_KEY 13 120 #define BTRFS_XATTR_ITEM_KEY 24 121 122 /* 123 * fs verity items are stored under two different key types on disk. 124 * The descriptor items: 125 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ] 126 * 127 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size 128 * of the descriptor item and some extra data for encryption. 129 * Starting at offset 1, these hold the generic fs verity descriptor. The 130 * latter are opaque to btrfs, we just read and write them as a blob for the 131 * higher level verity code. The most common descriptor size is 256 bytes. 132 * 133 * The merkle tree items: 134 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ] 135 * 136 * These also start at offset 0, and correspond to the merkle tree bytes. When 137 * fsverity asks for page 0 of the merkle tree, we pull up one page starting at 138 * offset 0 for this key type. These are also opaque to btrfs, we're blindly 139 * storing whatever fsverity sends down. 140 */ 141 #define BTRFS_VERITY_DESC_ITEM_KEY 36 142 #define BTRFS_VERITY_MERKLE_ITEM_KEY 37 143 144 #define BTRFS_ORPHAN_ITEM_KEY 48 145 /* reserve 2-15 close to the inode for later flexibility */ 146 147 /* 148 * dir items are the name -> inode pointers in a directory. There is one 149 * for every name in a directory. BTRFS_DIR_LOG_ITEM_KEY is no longer used 150 * but it's still defined here for documentation purposes and to help avoid 151 * having its numerical value reused in the future. 152 */ 153 #define BTRFS_DIR_LOG_ITEM_KEY 60 154 #define BTRFS_DIR_LOG_INDEX_KEY 72 155 #define BTRFS_DIR_ITEM_KEY 84 156 #define BTRFS_DIR_INDEX_KEY 96 157 /* 158 * extent data is for file data 159 */ 160 #define BTRFS_EXTENT_DATA_KEY 108 161 162 /* 163 * extent csums are stored in a separate tree and hold csums for 164 * an entire extent on disk. 165 */ 166 #define BTRFS_EXTENT_CSUM_KEY 128 167 168 /* 169 * root items point to tree roots. They are typically in the root 170 * tree used by the super block to find all the other trees 171 */ 172 #define BTRFS_ROOT_ITEM_KEY 132 173 174 /* 175 * root backrefs tie subvols and snapshots to the directory entries that 176 * reference them 177 */ 178 #define BTRFS_ROOT_BACKREF_KEY 144 179 180 /* 181 * root refs make a fast index for listing all of the snapshots and 182 * subvolumes referenced by a given root. They point directly to the 183 * directory item in the root that references the subvol 184 */ 185 #define BTRFS_ROOT_REF_KEY 156 186 187 /* 188 * extent items are in the extent map tree. These record which blocks 189 * are used, and how many references there are to each block 190 */ 191 #define BTRFS_EXTENT_ITEM_KEY 168 192 193 /* 194 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know 195 * the length, so we save the level in key->offset instead of the length. 196 */ 197 #define BTRFS_METADATA_ITEM_KEY 169 198 199 #define BTRFS_TREE_BLOCK_REF_KEY 176 200 201 #define BTRFS_EXTENT_DATA_REF_KEY 178 202 203 #define BTRFS_EXTENT_REF_V0_KEY 180 204 205 #define BTRFS_SHARED_BLOCK_REF_KEY 182 206 207 #define BTRFS_SHARED_DATA_REF_KEY 184 208 209 /* 210 * block groups give us hints into the extent allocation trees. Which 211 * blocks are free etc etc 212 */ 213 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 214 215 /* 216 * Every block group is represented in the free space tree by a free space info 217 * item, which stores some accounting information. It is keyed on 218 * (block_group_start, FREE_SPACE_INFO, block_group_length). 219 */ 220 #define BTRFS_FREE_SPACE_INFO_KEY 198 221 222 /* 223 * A free space extent tracks an extent of space that is free in a block group. 224 * It is keyed on (start, FREE_SPACE_EXTENT, length). 225 */ 226 #define BTRFS_FREE_SPACE_EXTENT_KEY 199 227 228 /* 229 * When a block group becomes very fragmented, we convert it to use bitmaps 230 * instead of extents. A free space bitmap is keyed on 231 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with 232 * (length / sectorsize) bits. 233 */ 234 #define BTRFS_FREE_SPACE_BITMAP_KEY 200 235 236 #define BTRFS_DEV_EXTENT_KEY 204 237 #define BTRFS_DEV_ITEM_KEY 216 238 #define BTRFS_CHUNK_ITEM_KEY 228 239 240 /* 241 * Records the overall state of the qgroups. 242 * There's only one instance of this key present, 243 * (0, BTRFS_QGROUP_STATUS_KEY, 0) 244 */ 245 #define BTRFS_QGROUP_STATUS_KEY 240 246 /* 247 * Records the currently used space of the qgroup. 248 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). 249 */ 250 #define BTRFS_QGROUP_INFO_KEY 242 251 /* 252 * Contains the user configured limits for the qgroup. 253 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). 254 */ 255 #define BTRFS_QGROUP_LIMIT_KEY 244 256 /* 257 * Records the child-parent relationship of qgroups. For 258 * each relation, 2 keys are present: 259 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) 260 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) 261 */ 262 #define BTRFS_QGROUP_RELATION_KEY 246 263 264 /* 265 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. 266 */ 267 #define BTRFS_BALANCE_ITEM_KEY 248 268 269 /* 270 * The key type for tree items that are stored persistently, but do not need to 271 * exist for extended period of time. The items can exist in any tree. 272 * 273 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data] 274 * 275 * Existing items: 276 * 277 * - balance status item 278 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0) 279 */ 280 #define BTRFS_TEMPORARY_ITEM_KEY 248 281 282 /* 283 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY 284 */ 285 #define BTRFS_DEV_STATS_KEY 249 286 287 /* 288 * The key type for tree items that are stored persistently and usually exist 289 * for a long period, eg. filesystem lifetime. The item kinds can be status 290 * information, stats or preference values. The item can exist in any tree. 291 * 292 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data] 293 * 294 * Existing items: 295 * 296 * - device statistics, store IO stats in the device tree, one key for all 297 * stats 298 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0) 299 */ 300 #define BTRFS_PERSISTENT_ITEM_KEY 249 301 302 /* 303 * Persistently stores the device replace state in the device tree. 304 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). 305 */ 306 #define BTRFS_DEV_REPLACE_KEY 250 307 308 /* 309 * Stores items that allow to quickly map UUIDs to something else. 310 * These items are part of the filesystem UUID tree. 311 * The key is built like this: 312 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). 313 */ 314 #if BTRFS_UUID_SIZE != 16 315 #error "UUID items require BTRFS_UUID_SIZE == 16!" 316 #endif 317 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ 318 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to 319 * received subvols */ 320 321 /* 322 * string items are for debugging. They just store a short string of 323 * data in the FS 324 */ 325 #define BTRFS_STRING_ITEM_KEY 253 326 327 /* Maximum metadata block size (nodesize) */ 328 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536 329 330 /* 32 bytes in various csum fields */ 331 #define BTRFS_CSUM_SIZE 32 332 333 /* csum types */ 334 enum btrfs_csum_type { 335 BTRFS_CSUM_TYPE_CRC32 = 0, 336 BTRFS_CSUM_TYPE_XXHASH = 1, 337 BTRFS_CSUM_TYPE_SHA256 = 2, 338 BTRFS_CSUM_TYPE_BLAKE2 = 3, 339 }; 340 341 /* 342 * flags definitions for directory entry item type 343 * 344 * Used by: 345 * struct btrfs_dir_item.type 346 * 347 * Values 0..7 must match common file type values in fs_types.h. 348 */ 349 #define BTRFS_FT_UNKNOWN 0 350 #define BTRFS_FT_REG_FILE 1 351 #define BTRFS_FT_DIR 2 352 #define BTRFS_FT_CHRDEV 3 353 #define BTRFS_FT_BLKDEV 4 354 #define BTRFS_FT_FIFO 5 355 #define BTRFS_FT_SOCK 6 356 #define BTRFS_FT_SYMLINK 7 357 #define BTRFS_FT_XATTR 8 358 #define BTRFS_FT_MAX 9 359 360 /* 361 * The key defines the order in the tree, and so it also defines (optimal) 362 * block layout. 363 * 364 * objectid corresponds to the inode number. 365 * 366 * type tells us things about the object, and is a kind of stream selector. 367 * so for a given inode, keys with type of 1 might refer to the inode data, 368 * type of 2 may point to file data in the btree and type == 3 may point to 369 * extents. 370 * 371 * offset is the starting byte offset for this key in the stream. 372 * 373 * btrfs_disk_key is in disk byte order. struct btrfs_key is always 374 * in cpu native order. Otherwise they are identical and their sizes 375 * should be the same (ie both packed) 376 */ 377 struct btrfs_disk_key { 378 __le64 objectid; 379 __u8 type; 380 __le64 offset; 381 } __attribute__ ((__packed__)); 382 383 struct btrfs_key { 384 __u64 objectid; 385 __u8 type; 386 __u64 offset; 387 } __attribute__ ((__packed__)); 388 389 struct btrfs_dev_item { 390 /* the internal btrfs device id */ 391 __le64 devid; 392 393 /* size of the device */ 394 __le64 total_bytes; 395 396 /* bytes used */ 397 __le64 bytes_used; 398 399 /* optimal io alignment for this device */ 400 __le32 io_align; 401 402 /* optimal io width for this device */ 403 __le32 io_width; 404 405 /* minimal io size for this device */ 406 __le32 sector_size; 407 408 /* type and info about this device */ 409 __le64 type; 410 411 /* expected generation for this device */ 412 __le64 generation; 413 414 /* 415 * starting byte of this partition on the device, 416 * to allow for stripe alignment in the future 417 */ 418 __le64 start_offset; 419 420 /* grouping information for allocation decisions */ 421 __le32 dev_group; 422 423 /* seek speed 0-100 where 100 is fastest */ 424 __u8 seek_speed; 425 426 /* bandwidth 0-100 where 100 is fastest */ 427 __u8 bandwidth; 428 429 /* btrfs generated uuid for this device */ 430 __u8 uuid[BTRFS_UUID_SIZE]; 431 432 /* uuid of FS who owns this device */ 433 __u8 fsid[BTRFS_UUID_SIZE]; 434 } __attribute__ ((__packed__)); 435 436 struct btrfs_stripe { 437 __le64 devid; 438 __le64 offset; 439 __u8 dev_uuid[BTRFS_UUID_SIZE]; 440 } __attribute__ ((__packed__)); 441 442 struct btrfs_chunk { 443 /* size of this chunk in bytes */ 444 __le64 length; 445 446 /* objectid of the root referencing this chunk */ 447 __le64 owner; 448 449 __le64 stripe_len; 450 __le64 type; 451 452 /* optimal io alignment for this chunk */ 453 __le32 io_align; 454 455 /* optimal io width for this chunk */ 456 __le32 io_width; 457 458 /* minimal io size for this chunk */ 459 __le32 sector_size; 460 461 /* 2^16 stripes is quite a lot, a second limit is the size of a single 462 * item in the btree 463 */ 464 __le16 num_stripes; 465 466 /* sub stripes only matter for raid10 */ 467 __le16 sub_stripes; 468 struct btrfs_stripe stripe; 469 /* additional stripes go here */ 470 } __attribute__ ((__packed__)); 471 472 #define BTRFS_FREE_SPACE_EXTENT 1 473 #define BTRFS_FREE_SPACE_BITMAP 2 474 475 struct btrfs_free_space_entry { 476 __le64 offset; 477 __le64 bytes; 478 __u8 type; 479 } __attribute__ ((__packed__)); 480 481 struct btrfs_free_space_header { 482 struct btrfs_disk_key location; 483 __le64 generation; 484 __le64 num_entries; 485 __le64 num_bitmaps; 486 } __attribute__ ((__packed__)); 487 488 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) 489 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) 490 491 /* Super block flags */ 492 /* Errors detected */ 493 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2) 494 495 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) 496 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) 497 #define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34) 498 #define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35) 499 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36) 500 501 502 /* 503 * items in the extent btree are used to record the objectid of the 504 * owner of the block and the number of references 505 */ 506 507 struct btrfs_extent_item { 508 __le64 refs; 509 __le64 generation; 510 __le64 flags; 511 } __attribute__ ((__packed__)); 512 513 struct btrfs_extent_item_v0 { 514 __le32 refs; 515 } __attribute__ ((__packed__)); 516 517 518 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) 519 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) 520 521 /* following flags only apply to tree blocks */ 522 523 /* use full backrefs for extent pointers in the block */ 524 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) 525 526 /* 527 * this flag is only used internally by scrub and may be changed at any time 528 * it is only declared here to avoid collisions 529 */ 530 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48) 531 532 struct btrfs_tree_block_info { 533 struct btrfs_disk_key key; 534 __u8 level; 535 } __attribute__ ((__packed__)); 536 537 struct btrfs_extent_data_ref { 538 __le64 root; 539 __le64 objectid; 540 __le64 offset; 541 __le32 count; 542 } __attribute__ ((__packed__)); 543 544 struct btrfs_shared_data_ref { 545 __le32 count; 546 } __attribute__ ((__packed__)); 547 548 struct btrfs_extent_inline_ref { 549 __u8 type; 550 __le64 offset; 551 } __attribute__ ((__packed__)); 552 553 /* dev extents record free space on individual devices. The owner 554 * field points back to the chunk allocation mapping tree that allocated 555 * the extent. The chunk tree uuid field is a way to double check the owner 556 */ 557 struct btrfs_dev_extent { 558 __le64 chunk_tree; 559 __le64 chunk_objectid; 560 __le64 chunk_offset; 561 __le64 length; 562 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 563 } __attribute__ ((__packed__)); 564 565 struct btrfs_inode_ref { 566 __le64 index; 567 __le16 name_len; 568 /* name goes here */ 569 } __attribute__ ((__packed__)); 570 571 struct btrfs_inode_extref { 572 __le64 parent_objectid; 573 __le64 index; 574 __le16 name_len; 575 __u8 name[0]; 576 /* name goes here */ 577 } __attribute__ ((__packed__)); 578 579 struct btrfs_timespec { 580 __le64 sec; 581 __le32 nsec; 582 } __attribute__ ((__packed__)); 583 584 struct btrfs_inode_item { 585 /* nfs style generation number */ 586 __le64 generation; 587 /* transid that last touched this inode */ 588 __le64 transid; 589 __le64 size; 590 __le64 nbytes; 591 __le64 block_group; 592 __le32 nlink; 593 __le32 uid; 594 __le32 gid; 595 __le32 mode; 596 __le64 rdev; 597 __le64 flags; 598 599 /* modification sequence number for NFS */ 600 __le64 sequence; 601 602 /* 603 * a little future expansion, for more than this we can 604 * just grow the inode item and version it 605 */ 606 __le64 reserved[4]; 607 struct btrfs_timespec atime; 608 struct btrfs_timespec ctime; 609 struct btrfs_timespec mtime; 610 struct btrfs_timespec otime; 611 } __attribute__ ((__packed__)); 612 613 struct btrfs_dir_log_item { 614 __le64 end; 615 } __attribute__ ((__packed__)); 616 617 struct btrfs_dir_item { 618 struct btrfs_disk_key location; 619 __le64 transid; 620 __le16 data_len; 621 __le16 name_len; 622 __u8 type; 623 } __attribute__ ((__packed__)); 624 625 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0) 626 627 /* 628 * Internal in-memory flag that a subvolume has been marked for deletion but 629 * still visible as a directory 630 */ 631 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48) 632 633 struct btrfs_root_item { 634 struct btrfs_inode_item inode; 635 __le64 generation; 636 __le64 root_dirid; 637 __le64 bytenr; 638 __le64 byte_limit; 639 __le64 bytes_used; 640 __le64 last_snapshot; 641 __le64 flags; 642 __le32 refs; 643 struct btrfs_disk_key drop_progress; 644 __u8 drop_level; 645 __u8 level; 646 647 /* 648 * The following fields appear after subvol_uuids+subvol_times 649 * were introduced. 650 */ 651 652 /* 653 * This generation number is used to test if the new fields are valid 654 * and up to date while reading the root item. Every time the root item 655 * is written out, the "generation" field is copied into this field. If 656 * anyone ever mounted the fs with an older kernel, we will have 657 * mismatching generation values here and thus must invalidate the 658 * new fields. See btrfs_update_root and btrfs_find_last_root for 659 * details. 660 * the offset of generation_v2 is also used as the start for the memset 661 * when invalidating the fields. 662 */ 663 __le64 generation_v2; 664 __u8 uuid[BTRFS_UUID_SIZE]; 665 __u8 parent_uuid[BTRFS_UUID_SIZE]; 666 __u8 received_uuid[BTRFS_UUID_SIZE]; 667 __le64 ctransid; /* updated when an inode changes */ 668 __le64 otransid; /* trans when created */ 669 __le64 stransid; /* trans when sent. non-zero for received subvol */ 670 __le64 rtransid; /* trans when received. non-zero for received subvol */ 671 struct btrfs_timespec ctime; 672 struct btrfs_timespec otime; 673 struct btrfs_timespec stime; 674 struct btrfs_timespec rtime; 675 __le64 reserved[8]; /* for future */ 676 } __attribute__ ((__packed__)); 677 678 /* 679 * Btrfs root item used to be smaller than current size. The old format ends 680 * at where member generation_v2 is. 681 */ 682 static inline __u32 btrfs_legacy_root_item_size(void) 683 { 684 return offsetof(struct btrfs_root_item, generation_v2); 685 } 686 687 /* 688 * this is used for both forward and backward root refs 689 */ 690 struct btrfs_root_ref { 691 __le64 dirid; 692 __le64 sequence; 693 __le16 name_len; 694 } __attribute__ ((__packed__)); 695 696 struct btrfs_disk_balance_args { 697 /* 698 * profiles to operate on, single is denoted by 699 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 700 */ 701 __le64 profiles; 702 703 /* 704 * usage filter 705 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N' 706 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max 707 */ 708 union { 709 __le64 usage; 710 struct { 711 __le32 usage_min; 712 __le32 usage_max; 713 }; 714 }; 715 716 /* devid filter */ 717 __le64 devid; 718 719 /* devid subset filter [pstart..pend) */ 720 __le64 pstart; 721 __le64 pend; 722 723 /* btrfs virtual address space subset filter [vstart..vend) */ 724 __le64 vstart; 725 __le64 vend; 726 727 /* 728 * profile to convert to, single is denoted by 729 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 730 */ 731 __le64 target; 732 733 /* BTRFS_BALANCE_ARGS_* */ 734 __le64 flags; 735 736 /* 737 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit' 738 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum 739 * and maximum 740 */ 741 union { 742 __le64 limit; 743 struct { 744 __le32 limit_min; 745 __le32 limit_max; 746 }; 747 }; 748 749 /* 750 * Process chunks that cross stripes_min..stripes_max devices, 751 * BTRFS_BALANCE_ARGS_STRIPES_RANGE 752 */ 753 __le32 stripes_min; 754 __le32 stripes_max; 755 756 __le64 unused[6]; 757 } __attribute__ ((__packed__)); 758 759 /* 760 * store balance parameters to disk so that balance can be properly 761 * resumed after crash or unmount 762 */ 763 struct btrfs_balance_item { 764 /* BTRFS_BALANCE_* */ 765 __le64 flags; 766 767 struct btrfs_disk_balance_args data; 768 struct btrfs_disk_balance_args meta; 769 struct btrfs_disk_balance_args sys; 770 771 __le64 unused[4]; 772 } __attribute__ ((__packed__)); 773 774 enum { 775 BTRFS_FILE_EXTENT_INLINE = 0, 776 BTRFS_FILE_EXTENT_REG = 1, 777 BTRFS_FILE_EXTENT_PREALLOC = 2, 778 BTRFS_NR_FILE_EXTENT_TYPES = 3, 779 }; 780 781 struct btrfs_file_extent_item { 782 /* 783 * transaction id that created this extent 784 */ 785 __le64 generation; 786 /* 787 * max number of bytes to hold this extent in ram 788 * when we split a compressed extent we can't know how big 789 * each of the resulting pieces will be. So, this is 790 * an upper limit on the size of the extent in ram instead of 791 * an exact limit. 792 */ 793 __le64 ram_bytes; 794 795 /* 796 * 32 bits for the various ways we might encode the data, 797 * including compression and encryption. If any of these 798 * are set to something a given disk format doesn't understand 799 * it is treated like an incompat flag for reading and writing, 800 * but not for stat. 801 */ 802 __u8 compression; 803 __u8 encryption; 804 __le16 other_encoding; /* spare for later use */ 805 806 /* are we inline data or a real extent? */ 807 __u8 type; 808 809 /* 810 * disk space consumed by the extent, checksum blocks are included 811 * in these numbers 812 * 813 * At this offset in the structure, the inline extent data start. 814 */ 815 __le64 disk_bytenr; 816 __le64 disk_num_bytes; 817 /* 818 * the logical offset in file blocks (no csums) 819 * this extent record is for. This allows a file extent to point 820 * into the middle of an existing extent on disk, sharing it 821 * between two snapshots (useful if some bytes in the middle of the 822 * extent have changed 823 */ 824 __le64 offset; 825 /* 826 * the logical number of file blocks (no csums included). This 827 * always reflects the size uncompressed and without encoding. 828 */ 829 __le64 num_bytes; 830 831 } __attribute__ ((__packed__)); 832 833 struct btrfs_csum_item { 834 __u8 csum; 835 } __attribute__ ((__packed__)); 836 837 struct btrfs_dev_stats_item { 838 /* 839 * grow this item struct at the end for future enhancements and keep 840 * the existing values unchanged 841 */ 842 __le64 values[BTRFS_DEV_STAT_VALUES_MAX]; 843 } __attribute__ ((__packed__)); 844 845 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0 846 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1 847 848 struct btrfs_dev_replace_item { 849 /* 850 * grow this item struct at the end for future enhancements and keep 851 * the existing values unchanged 852 */ 853 __le64 src_devid; 854 __le64 cursor_left; 855 __le64 cursor_right; 856 __le64 cont_reading_from_srcdev_mode; 857 858 __le64 replace_state; 859 __le64 time_started; 860 __le64 time_stopped; 861 __le64 num_write_errors; 862 __le64 num_uncorrectable_read_errors; 863 } __attribute__ ((__packed__)); 864 865 /* different types of block groups (and chunks) */ 866 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) 867 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) 868 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) 869 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) 870 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) 871 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) 872 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) 873 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) 874 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) 875 #define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9) 876 #define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10) 877 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ 878 BTRFS_SPACE_INFO_GLOBAL_RSV) 879 880 enum btrfs_raid_types { 881 BTRFS_RAID_RAID10, 882 BTRFS_RAID_RAID1, 883 BTRFS_RAID_DUP, 884 BTRFS_RAID_RAID0, 885 BTRFS_RAID_SINGLE, 886 BTRFS_RAID_RAID5, 887 BTRFS_RAID_RAID6, 888 BTRFS_RAID_RAID1C3, 889 BTRFS_RAID_RAID1C4, 890 BTRFS_NR_RAID_TYPES 891 }; 892 893 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ 894 BTRFS_BLOCK_GROUP_SYSTEM | \ 895 BTRFS_BLOCK_GROUP_METADATA) 896 897 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 898 BTRFS_BLOCK_GROUP_RAID1 | \ 899 BTRFS_BLOCK_GROUP_RAID1C3 | \ 900 BTRFS_BLOCK_GROUP_RAID1C4 | \ 901 BTRFS_BLOCK_GROUP_RAID5 | \ 902 BTRFS_BLOCK_GROUP_RAID6 | \ 903 BTRFS_BLOCK_GROUP_DUP | \ 904 BTRFS_BLOCK_GROUP_RAID10) 905 #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \ 906 BTRFS_BLOCK_GROUP_RAID6) 907 908 #define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \ 909 BTRFS_BLOCK_GROUP_RAID1C3 | \ 910 BTRFS_BLOCK_GROUP_RAID1C4) 911 912 /* 913 * We need a bit for restriper to be able to tell when chunks of type 914 * SINGLE are available. This "extended" profile format is used in 915 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields 916 * (on-disk). The corresponding on-disk bit in chunk.type is reserved 917 * to avoid remappings between two formats in future. 918 */ 919 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48) 920 921 /* 922 * A fake block group type that is used to communicate global block reserve 923 * size to userspace via the SPACE_INFO ioctl. 924 */ 925 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49) 926 927 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ 928 BTRFS_AVAIL_ALLOC_BIT_SINGLE) 929 930 static inline __u64 chunk_to_extended(__u64 flags) 931 { 932 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0) 933 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE; 934 935 return flags; 936 } 937 static inline __u64 extended_to_chunk(__u64 flags) 938 { 939 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; 940 } 941 942 struct btrfs_block_group_item { 943 __le64 used; 944 __le64 chunk_objectid; 945 __le64 flags; 946 } __attribute__ ((__packed__)); 947 948 struct btrfs_free_space_info { 949 __le32 extent_count; 950 __le32 flags; 951 } __attribute__ ((__packed__)); 952 953 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0) 954 955 #define BTRFS_QGROUP_LEVEL_SHIFT 48 956 static inline __u16 btrfs_qgroup_level(__u64 qgroupid) 957 { 958 return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT); 959 } 960 961 /* 962 * is subvolume quota turned on? 963 */ 964 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0) 965 /* 966 * RESCAN is set during the initialization phase 967 */ 968 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1) 969 /* 970 * Some qgroup entries are known to be out of date, 971 * either because the configuration has changed in a way that 972 * makes a rescan necessary, or because the fs has been mounted 973 * with a non-qgroup-aware version. 974 * Turning qouta off and on again makes it inconsistent, too. 975 */ 976 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2) 977 978 #define BTRFS_QGROUP_STATUS_VERSION 1 979 980 struct btrfs_qgroup_status_item { 981 __le64 version; 982 /* 983 * the generation is updated during every commit. As older 984 * versions of btrfs are not aware of qgroups, it will be 985 * possible to detect inconsistencies by checking the 986 * generation on mount time 987 */ 988 __le64 generation; 989 990 /* flag definitions see above */ 991 __le64 flags; 992 993 /* 994 * only used during scanning to record the progress 995 * of the scan. It contains a logical address 996 */ 997 __le64 rescan; 998 } __attribute__ ((__packed__)); 999 1000 struct btrfs_qgroup_info_item { 1001 __le64 generation; 1002 __le64 rfer; 1003 __le64 rfer_cmpr; 1004 __le64 excl; 1005 __le64 excl_cmpr; 1006 } __attribute__ ((__packed__)); 1007 1008 struct btrfs_qgroup_limit_item { 1009 /* 1010 * only updated when any of the other values change 1011 */ 1012 __le64 flags; 1013 __le64 max_rfer; 1014 __le64 max_excl; 1015 __le64 rsv_rfer; 1016 __le64 rsv_excl; 1017 } __attribute__ ((__packed__)); 1018 1019 struct btrfs_verity_descriptor_item { 1020 /* Size of the verity descriptor in bytes */ 1021 __le64 size; 1022 /* 1023 * When we implement support for fscrypt, we will need to encrypt the 1024 * Merkle tree for encrypted verity files. These 128 bits are for the 1025 * eventual storage of an fscrypt initialization vector. 1026 */ 1027 __le64 reserved[2]; 1028 __u8 encryption; 1029 } __attribute__ ((__packed__)); 1030 1031 #endif /* _BTRFS_CTREE_H_ */ 1032