xref: /linux-6.15/include/uapi/linux/btrfs_tree.h (revision bb1f9e39)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 #ifndef _BTRFS_CTREE_H_
3 #define _BTRFS_CTREE_H_
4 
5 #include <linux/btrfs.h>
6 #include <linux/types.h>
7 #ifdef __KERNEL__
8 #include <linux/stddef.h>
9 #else
10 #include <stddef.h>
11 #endif
12 
13 /* ASCII for _BHRfS_M, no terminating nul */
14 #define BTRFS_MAGIC 0x4D5F53665248425FULL
15 
16 #define BTRFS_MAX_LEVEL 8
17 
18 /*
19  * We can actually store much bigger names, but lets not confuse the rest of
20  * linux.
21  */
22 #define BTRFS_NAME_LEN 255
23 
24 /*
25  * Theoretical limit is larger, but we keep this down to a sane value. That
26  * should limit greatly the possibility of collisions on inode ref items.
27  */
28 #define BTRFS_LINK_MAX 65535U
29 
30 /*
31  * This header contains the structure definitions and constants used
32  * by file system objects that can be retrieved using
33  * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
34  * is needed to describe a leaf node's key or item contents.
35  */
36 
37 /* holds pointers to all of the tree roots */
38 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
39 
40 /* stores information about which extents are in use, and reference counts */
41 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
42 
43 /*
44  * chunk tree stores translations from logical -> physical block numbering
45  * the super block points to the chunk tree
46  */
47 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
48 
49 /*
50  * stores information about which areas of a given device are in use.
51  * one per device.  The tree of tree roots points to the device tree
52  */
53 #define BTRFS_DEV_TREE_OBJECTID 4ULL
54 
55 /* one per subvolume, storing files and directories */
56 #define BTRFS_FS_TREE_OBJECTID 5ULL
57 
58 /* directory objectid inside the root tree */
59 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
60 
61 /* holds checksums of all the data extents */
62 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
63 
64 /* holds quota configuration and tracking */
65 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
66 
67 /* for storing items that use the BTRFS_UUID_KEY* types */
68 #define BTRFS_UUID_TREE_OBJECTID 9ULL
69 
70 /* tracks free space in block groups. */
71 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
72 
73 /* Holds the block group items for extent tree v2. */
74 #define BTRFS_BLOCK_GROUP_TREE_OBJECTID 11ULL
75 
76 /* Tracks RAID stripes in block groups. */
77 #define BTRFS_RAID_STRIPE_TREE_OBJECTID 12ULL
78 
79 /* device stats in the device tree */
80 #define BTRFS_DEV_STATS_OBJECTID 0ULL
81 
82 /* for storing balance parameters in the root tree */
83 #define BTRFS_BALANCE_OBJECTID -4ULL
84 
85 /* orphan objectid for tracking unlinked/truncated files */
86 #define BTRFS_ORPHAN_OBJECTID -5ULL
87 
88 /* does write ahead logging to speed up fsyncs */
89 #define BTRFS_TREE_LOG_OBJECTID -6ULL
90 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
91 
92 /* for space balancing */
93 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
94 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
95 
96 /*
97  * extent checksums all have this objectid
98  * this allows them to share the logging tree
99  * for fsyncs
100  */
101 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
102 
103 /* For storing free space cache */
104 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
105 
106 /*
107  * The inode number assigned to the special inode for storing
108  * free ino cache
109  */
110 #define BTRFS_FREE_INO_OBJECTID -12ULL
111 
112 /* dummy objectid represents multiple objectids */
113 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
114 
115 /*
116  * All files have objectids in this range.
117  */
118 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
119 #define BTRFS_LAST_FREE_OBJECTID -256ULL
120 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
121 
122 
123 /*
124  * the device items go into the chunk tree.  The key is in the form
125  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
126  */
127 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
128 
129 #define BTRFS_BTREE_INODE_OBJECTID 1
130 
131 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
132 
133 #define BTRFS_DEV_REPLACE_DEVID 0ULL
134 
135 /*
136  * inode items have the data typically returned from stat and store other
137  * info about object characteristics.  There is one for every file and dir in
138  * the FS
139  */
140 #define BTRFS_INODE_ITEM_KEY		1
141 #define BTRFS_INODE_REF_KEY		12
142 #define BTRFS_INODE_EXTREF_KEY		13
143 #define BTRFS_XATTR_ITEM_KEY		24
144 
145 /*
146  * fs verity items are stored under two different key types on disk.
147  * The descriptor items:
148  * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
149  *
150  * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size
151  * of the descriptor item and some extra data for encryption.
152  * Starting at offset 1, these hold the generic fs verity descriptor.  The
153  * latter are opaque to btrfs, we just read and write them as a blob for the
154  * higher level verity code.  The most common descriptor size is 256 bytes.
155  *
156  * The merkle tree items:
157  * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
158  *
159  * These also start at offset 0, and correspond to the merkle tree bytes.  When
160  * fsverity asks for page 0 of the merkle tree, we pull up one page starting at
161  * offset 0 for this key type.  These are also opaque to btrfs, we're blindly
162  * storing whatever fsverity sends down.
163  */
164 #define BTRFS_VERITY_DESC_ITEM_KEY	36
165 #define BTRFS_VERITY_MERKLE_ITEM_KEY	37
166 
167 #define BTRFS_ORPHAN_ITEM_KEY		48
168 /* reserve 2-15 close to the inode for later flexibility */
169 
170 /*
171  * dir items are the name -> inode pointers in a directory.  There is one
172  * for every name in a directory.  BTRFS_DIR_LOG_ITEM_KEY is no longer used
173  * but it's still defined here for documentation purposes and to help avoid
174  * having its numerical value reused in the future.
175  */
176 #define BTRFS_DIR_LOG_ITEM_KEY  60
177 #define BTRFS_DIR_LOG_INDEX_KEY 72
178 #define BTRFS_DIR_ITEM_KEY	84
179 #define BTRFS_DIR_INDEX_KEY	96
180 /*
181  * extent data is for file data
182  */
183 #define BTRFS_EXTENT_DATA_KEY	108
184 
185 /*
186  * extent csums are stored in a separate tree and hold csums for
187  * an entire extent on disk.
188  */
189 #define BTRFS_EXTENT_CSUM_KEY	128
190 
191 /*
192  * root items point to tree roots.  They are typically in the root
193  * tree used by the super block to find all the other trees
194  */
195 #define BTRFS_ROOT_ITEM_KEY	132
196 
197 /*
198  * root backrefs tie subvols and snapshots to the directory entries that
199  * reference them
200  */
201 #define BTRFS_ROOT_BACKREF_KEY	144
202 
203 /*
204  * root refs make a fast index for listing all of the snapshots and
205  * subvolumes referenced by a given root.  They point directly to the
206  * directory item in the root that references the subvol
207  */
208 #define BTRFS_ROOT_REF_KEY	156
209 
210 /*
211  * extent items are in the extent map tree.  These record which blocks
212  * are used, and how many references there are to each block
213  */
214 #define BTRFS_EXTENT_ITEM_KEY	168
215 
216 /*
217  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
218  * the length, so we save the level in key->offset instead of the length.
219  */
220 #define BTRFS_METADATA_ITEM_KEY	169
221 
222 #define BTRFS_TREE_BLOCK_REF_KEY	176
223 
224 #define BTRFS_EXTENT_DATA_REF_KEY	178
225 
226 /*
227  * Obsolete key. Defintion removed in 6.6, value may be reused in the future.
228  *
229  * #define BTRFS_EXTENT_REF_V0_KEY	180
230  */
231 
232 #define BTRFS_SHARED_BLOCK_REF_KEY	182
233 
234 #define BTRFS_SHARED_DATA_REF_KEY	184
235 
236 /*
237  * Special inline ref key which stores the id of the subvolume which originally
238  * created the extent. This subvolume owns the extent permanently from the
239  * perspective of simple quotas. Needed to know which subvolume to free quota
240  * usage from when the extent is deleted.
241  */
242 #define BTRFS_EXTENT_OWNER_REF_KEY	188
243 
244 /*
245  * block groups give us hints into the extent allocation trees.  Which
246  * blocks are free etc etc
247  */
248 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
249 
250 /*
251  * Every block group is represented in the free space tree by a free space info
252  * item, which stores some accounting information. It is keyed on
253  * (block_group_start, FREE_SPACE_INFO, block_group_length).
254  */
255 #define BTRFS_FREE_SPACE_INFO_KEY 198
256 
257 /*
258  * A free space extent tracks an extent of space that is free in a block group.
259  * It is keyed on (start, FREE_SPACE_EXTENT, length).
260  */
261 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
262 
263 /*
264  * When a block group becomes very fragmented, we convert it to use bitmaps
265  * instead of extents. A free space bitmap is keyed on
266  * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
267  * (length / sectorsize) bits.
268  */
269 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
270 
271 #define BTRFS_DEV_EXTENT_KEY	204
272 #define BTRFS_DEV_ITEM_KEY	216
273 #define BTRFS_CHUNK_ITEM_KEY	228
274 
275 #define BTRFS_RAID_STRIPE_KEY	230
276 
277 /*
278  * Records the overall state of the qgroups.
279  * There's only one instance of this key present,
280  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
281  */
282 #define BTRFS_QGROUP_STATUS_KEY         240
283 /*
284  * Records the currently used space of the qgroup.
285  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
286  */
287 #define BTRFS_QGROUP_INFO_KEY           242
288 /*
289  * Contains the user configured limits for the qgroup.
290  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
291  */
292 #define BTRFS_QGROUP_LIMIT_KEY          244
293 /*
294  * Records the child-parent relationship of qgroups. For
295  * each relation, 2 keys are present:
296  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
297  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
298  */
299 #define BTRFS_QGROUP_RELATION_KEY       246
300 
301 /*
302  * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
303  */
304 #define BTRFS_BALANCE_ITEM_KEY	248
305 
306 /*
307  * The key type for tree items that are stored persistently, but do not need to
308  * exist for extended period of time. The items can exist in any tree.
309  *
310  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
311  *
312  * Existing items:
313  *
314  * - balance status item
315  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
316  */
317 #define BTRFS_TEMPORARY_ITEM_KEY	248
318 
319 /*
320  * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
321  */
322 #define BTRFS_DEV_STATS_KEY		249
323 
324 /*
325  * The key type for tree items that are stored persistently and usually exist
326  * for a long period, eg. filesystem lifetime. The item kinds can be status
327  * information, stats or preference values. The item can exist in any tree.
328  *
329  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
330  *
331  * Existing items:
332  *
333  * - device statistics, store IO stats in the device tree, one key for all
334  *   stats
335  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
336  */
337 #define BTRFS_PERSISTENT_ITEM_KEY	249
338 
339 /*
340  * Persistently stores the device replace state in the device tree.
341  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
342  */
343 #define BTRFS_DEV_REPLACE_KEY	250
344 
345 /*
346  * Stores items that allow to quickly map UUIDs to something else.
347  * These items are part of the filesystem UUID tree.
348  * The key is built like this:
349  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
350  */
351 #if BTRFS_UUID_SIZE != 16
352 #error "UUID items require BTRFS_UUID_SIZE == 16!"
353 #endif
354 #define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
355 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
356 						 * received subvols */
357 
358 /*
359  * string items are for debugging.  They just store a short string of
360  * data in the FS
361  */
362 #define BTRFS_STRING_ITEM_KEY	253
363 
364 /* Maximum metadata block size (nodesize) */
365 #define BTRFS_MAX_METADATA_BLOCKSIZE			65536
366 
367 /* 32 bytes in various csum fields */
368 #define BTRFS_CSUM_SIZE 32
369 
370 /* csum types */
371 enum btrfs_csum_type {
372 	BTRFS_CSUM_TYPE_CRC32	= 0,
373 	BTRFS_CSUM_TYPE_XXHASH	= 1,
374 	BTRFS_CSUM_TYPE_SHA256	= 2,
375 	BTRFS_CSUM_TYPE_BLAKE2	= 3,
376 };
377 
378 /*
379  * flags definitions for directory entry item type
380  *
381  * Used by:
382  * struct btrfs_dir_item.type
383  *
384  * Values 0..7 must match common file type values in fs_types.h.
385  */
386 #define BTRFS_FT_UNKNOWN	0
387 #define BTRFS_FT_REG_FILE	1
388 #define BTRFS_FT_DIR		2
389 #define BTRFS_FT_CHRDEV		3
390 #define BTRFS_FT_BLKDEV		4
391 #define BTRFS_FT_FIFO		5
392 #define BTRFS_FT_SOCK		6
393 #define BTRFS_FT_SYMLINK	7
394 #define BTRFS_FT_XATTR		8
395 #define BTRFS_FT_MAX		9
396 /* Directory contains encrypted data */
397 #define BTRFS_FT_ENCRYPTED	0x80
398 
399 static inline __u8 btrfs_dir_flags_to_ftype(__u8 flags)
400 {
401 	return flags & ~BTRFS_FT_ENCRYPTED;
402 }
403 
404 /*
405  * Inode flags
406  */
407 #define BTRFS_INODE_NODATASUM		(1U << 0)
408 #define BTRFS_INODE_NODATACOW		(1U << 1)
409 #define BTRFS_INODE_READONLY		(1U << 2)
410 #define BTRFS_INODE_NOCOMPRESS		(1U << 3)
411 #define BTRFS_INODE_PREALLOC		(1U << 4)
412 #define BTRFS_INODE_SYNC		(1U << 5)
413 #define BTRFS_INODE_IMMUTABLE		(1U << 6)
414 #define BTRFS_INODE_APPEND		(1U << 7)
415 #define BTRFS_INODE_NODUMP		(1U << 8)
416 #define BTRFS_INODE_NOATIME		(1U << 9)
417 #define BTRFS_INODE_DIRSYNC		(1U << 10)
418 #define BTRFS_INODE_COMPRESS		(1U << 11)
419 
420 #define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
421 
422 #define BTRFS_INODE_FLAG_MASK						\
423 	(BTRFS_INODE_NODATASUM |					\
424 	 BTRFS_INODE_NODATACOW |					\
425 	 BTRFS_INODE_READONLY |						\
426 	 BTRFS_INODE_NOCOMPRESS |					\
427 	 BTRFS_INODE_PREALLOC |						\
428 	 BTRFS_INODE_SYNC |						\
429 	 BTRFS_INODE_IMMUTABLE |					\
430 	 BTRFS_INODE_APPEND |						\
431 	 BTRFS_INODE_NODUMP |						\
432 	 BTRFS_INODE_NOATIME |						\
433 	 BTRFS_INODE_DIRSYNC |						\
434 	 BTRFS_INODE_COMPRESS |						\
435 	 BTRFS_INODE_ROOT_ITEM_INIT)
436 
437 #define BTRFS_INODE_RO_VERITY		(1U << 0)
438 
439 #define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
440 
441 /*
442  * The key defines the order in the tree, and so it also defines (optimal)
443  * block layout.
444  *
445  * objectid corresponds to the inode number.
446  *
447  * type tells us things about the object, and is a kind of stream selector.
448  * so for a given inode, keys with type of 1 might refer to the inode data,
449  * type of 2 may point to file data in the btree and type == 3 may point to
450  * extents.
451  *
452  * offset is the starting byte offset for this key in the stream.
453  *
454  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
455  * in cpu native order.  Otherwise they are identical and their sizes
456  * should be the same (ie both packed)
457  */
458 struct btrfs_disk_key {
459 	__le64 objectid;
460 	__u8 type;
461 	__le64 offset;
462 } __attribute__ ((__packed__));
463 
464 struct btrfs_key {
465 	__u64 objectid;
466 	__u8 type;
467 	__u64 offset;
468 } __attribute__ ((__packed__));
469 
470 /*
471  * Every tree block (leaf or node) starts with this header.
472  */
473 struct btrfs_header {
474 	/* These first four must match the super block */
475 	__u8 csum[BTRFS_CSUM_SIZE];
476 	/* FS specific uuid */
477 	__u8 fsid[BTRFS_FSID_SIZE];
478 	/* Which block this node is supposed to live in */
479 	__le64 bytenr;
480 	__le64 flags;
481 
482 	/* Allowed to be different from the super from here on down */
483 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
484 	__le64 generation;
485 	__le64 owner;
486 	__le32 nritems;
487 	__u8 level;
488 } __attribute__ ((__packed__));
489 
490 /*
491  * This is a very generous portion of the super block, giving us room to
492  * translate 14 chunks with 3 stripes each.
493  */
494 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
495 
496 /*
497  * Just in case we somehow lose the roots and are not able to mount, we store
498  * an array of the roots from previous transactions in the super.
499  */
500 #define BTRFS_NUM_BACKUP_ROOTS 4
501 struct btrfs_root_backup {
502 	__le64 tree_root;
503 	__le64 tree_root_gen;
504 
505 	__le64 chunk_root;
506 	__le64 chunk_root_gen;
507 
508 	__le64 extent_root;
509 	__le64 extent_root_gen;
510 
511 	__le64 fs_root;
512 	__le64 fs_root_gen;
513 
514 	__le64 dev_root;
515 	__le64 dev_root_gen;
516 
517 	__le64 csum_root;
518 	__le64 csum_root_gen;
519 
520 	__le64 total_bytes;
521 	__le64 bytes_used;
522 	__le64 num_devices;
523 	/* future */
524 	__le64 unused_64[4];
525 
526 	__u8 tree_root_level;
527 	__u8 chunk_root_level;
528 	__u8 extent_root_level;
529 	__u8 fs_root_level;
530 	__u8 dev_root_level;
531 	__u8 csum_root_level;
532 	/* future and to align */
533 	__u8 unused_8[10];
534 } __attribute__ ((__packed__));
535 
536 /*
537  * A leaf is full of items. offset and size tell us where to find the item in
538  * the leaf (relative to the start of the data area)
539  */
540 struct btrfs_item {
541 	struct btrfs_disk_key key;
542 	__le32 offset;
543 	__le32 size;
544 } __attribute__ ((__packed__));
545 
546 /*
547  * Leaves have an item area and a data area:
548  * [item0, item1....itemN] [free space] [dataN...data1, data0]
549  *
550  * The data is separate from the items to get the keys closer together during
551  * searches.
552  */
553 struct btrfs_leaf {
554 	struct btrfs_header header;
555 	struct btrfs_item items[];
556 } __attribute__ ((__packed__));
557 
558 /*
559  * All non-leaf blocks are nodes, they hold only keys and pointers to other
560  * blocks.
561  */
562 struct btrfs_key_ptr {
563 	struct btrfs_disk_key key;
564 	__le64 blockptr;
565 	__le64 generation;
566 } __attribute__ ((__packed__));
567 
568 struct btrfs_node {
569 	struct btrfs_header header;
570 	struct btrfs_key_ptr ptrs[];
571 } __attribute__ ((__packed__));
572 
573 struct btrfs_dev_item {
574 	/* the internal btrfs device id */
575 	__le64 devid;
576 
577 	/* size of the device */
578 	__le64 total_bytes;
579 
580 	/* bytes used */
581 	__le64 bytes_used;
582 
583 	/* optimal io alignment for this device */
584 	__le32 io_align;
585 
586 	/* optimal io width for this device */
587 	__le32 io_width;
588 
589 	/* minimal io size for this device */
590 	__le32 sector_size;
591 
592 	/* type and info about this device */
593 	__le64 type;
594 
595 	/* expected generation for this device */
596 	__le64 generation;
597 
598 	/*
599 	 * starting byte of this partition on the device,
600 	 * to allow for stripe alignment in the future
601 	 */
602 	__le64 start_offset;
603 
604 	/* grouping information for allocation decisions */
605 	__le32 dev_group;
606 
607 	/* seek speed 0-100 where 100 is fastest */
608 	__u8 seek_speed;
609 
610 	/* bandwidth 0-100 where 100 is fastest */
611 	__u8 bandwidth;
612 
613 	/* btrfs generated uuid for this device */
614 	__u8 uuid[BTRFS_UUID_SIZE];
615 
616 	/* uuid of FS who owns this device */
617 	__u8 fsid[BTRFS_UUID_SIZE];
618 } __attribute__ ((__packed__));
619 
620 struct btrfs_stripe {
621 	__le64 devid;
622 	__le64 offset;
623 	__u8 dev_uuid[BTRFS_UUID_SIZE];
624 } __attribute__ ((__packed__));
625 
626 struct btrfs_chunk {
627 	/* size of this chunk in bytes */
628 	__le64 length;
629 
630 	/* objectid of the root referencing this chunk */
631 	__le64 owner;
632 
633 	__le64 stripe_len;
634 	__le64 type;
635 
636 	/* optimal io alignment for this chunk */
637 	__le32 io_align;
638 
639 	/* optimal io width for this chunk */
640 	__le32 io_width;
641 
642 	/* minimal io size for this chunk */
643 	__le32 sector_size;
644 
645 	/* 2^16 stripes is quite a lot, a second limit is the size of a single
646 	 * item in the btree
647 	 */
648 	__le16 num_stripes;
649 
650 	/* sub stripes only matter for raid10 */
651 	__le16 sub_stripes;
652 	struct btrfs_stripe stripe;
653 	/* additional stripes go here */
654 } __attribute__ ((__packed__));
655 
656 /*
657  * The super block basically lists the main trees of the FS.
658  */
659 struct btrfs_super_block {
660 	/* The first 4 fields must match struct btrfs_header */
661 	__u8 csum[BTRFS_CSUM_SIZE];
662 	/* FS specific UUID, visible to user */
663 	__u8 fsid[BTRFS_FSID_SIZE];
664 	/* This block number */
665 	__le64 bytenr;
666 	__le64 flags;
667 
668 	/* Allowed to be different from the btrfs_header from here own down */
669 	__le64 magic;
670 	__le64 generation;
671 	__le64 root;
672 	__le64 chunk_root;
673 	__le64 log_root;
674 
675 	/*
676 	 * This member has never been utilized since the very beginning, thus
677 	 * it's always 0 regardless of kernel version.  We always use
678 	 * generation + 1 to read log tree root.  So here we mark it deprecated.
679 	 */
680 	__le64 __unused_log_root_transid;
681 	__le64 total_bytes;
682 	__le64 bytes_used;
683 	__le64 root_dir_objectid;
684 	__le64 num_devices;
685 	__le32 sectorsize;
686 	__le32 nodesize;
687 	__le32 __unused_leafsize;
688 	__le32 stripesize;
689 	__le32 sys_chunk_array_size;
690 	__le64 chunk_root_generation;
691 	__le64 compat_flags;
692 	__le64 compat_ro_flags;
693 	__le64 incompat_flags;
694 	__le16 csum_type;
695 	__u8 root_level;
696 	__u8 chunk_root_level;
697 	__u8 log_root_level;
698 	struct btrfs_dev_item dev_item;
699 
700 	char label[BTRFS_LABEL_SIZE];
701 
702 	__le64 cache_generation;
703 	__le64 uuid_tree_generation;
704 
705 	/* The UUID written into btree blocks */
706 	__u8 metadata_uuid[BTRFS_FSID_SIZE];
707 
708 	__u64 nr_global_roots;
709 
710 	/* Future expansion */
711 	__le64 reserved[27];
712 	__u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
713 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
714 
715 	/* Padded to 4096 bytes */
716 	__u8 padding[565];
717 } __attribute__ ((__packed__));
718 
719 #define BTRFS_FREE_SPACE_EXTENT	1
720 #define BTRFS_FREE_SPACE_BITMAP	2
721 
722 struct btrfs_free_space_entry {
723 	__le64 offset;
724 	__le64 bytes;
725 	__u8 type;
726 } __attribute__ ((__packed__));
727 
728 struct btrfs_free_space_header {
729 	struct btrfs_disk_key location;
730 	__le64 generation;
731 	__le64 num_entries;
732 	__le64 num_bitmaps;
733 } __attribute__ ((__packed__));
734 
735 struct btrfs_raid_stride {
736 	/* The id of device this raid extent lives on. */
737 	__le64 devid;
738 	/* The physical location on disk. */
739 	__le64 physical;
740 } __attribute__ ((__packed__));
741 
742 /* The stripe_extent::encoding, 1:1 mapping of enum btrfs_raid_types. */
743 #define BTRFS_STRIPE_RAID0	1
744 #define BTRFS_STRIPE_RAID1	2
745 #define BTRFS_STRIPE_DUP	3
746 #define BTRFS_STRIPE_RAID10	4
747 #define BTRFS_STRIPE_RAID5	5
748 #define BTRFS_STRIPE_RAID6	6
749 #define BTRFS_STRIPE_RAID1C3	7
750 #define BTRFS_STRIPE_RAID1C4	8
751 
752 struct btrfs_stripe_extent {
753 	__u8 encoding;
754 	__u8 reserved[7];
755 	/* An array of raid strides this stripe is composed of. */
756 	struct btrfs_raid_stride strides[];
757 } __attribute__ ((__packed__));
758 
759 #define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
760 #define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
761 
762 /* Super block flags */
763 /* Errors detected */
764 #define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
765 
766 #define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
767 #define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
768 #define BTRFS_SUPER_FLAG_METADUMP_V2	(1ULL << 34)
769 #define BTRFS_SUPER_FLAG_CHANGING_FSID	(1ULL << 35)
770 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
771 
772 
773 /*
774  * items in the extent btree are used to record the objectid of the
775  * owner of the block and the number of references
776  */
777 
778 struct btrfs_extent_item {
779 	__le64 refs;
780 	__le64 generation;
781 	__le64 flags;
782 } __attribute__ ((__packed__));
783 
784 struct btrfs_extent_item_v0 {
785 	__le32 refs;
786 } __attribute__ ((__packed__));
787 
788 
789 #define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
790 #define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
791 
792 /* following flags only apply to tree blocks */
793 
794 /* use full backrefs for extent pointers in the block */
795 #define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
796 
797 #define BTRFS_BACKREF_REV_MAX		256
798 #define BTRFS_BACKREF_REV_SHIFT		56
799 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
800 					 BTRFS_BACKREF_REV_SHIFT)
801 
802 #define BTRFS_OLD_BACKREF_REV		0
803 #define BTRFS_MIXED_BACKREF_REV		1
804 
805 /*
806  * this flag is only used internally by scrub and may be changed at any time
807  * it is only declared here to avoid collisions
808  */
809 #define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
810 
811 struct btrfs_tree_block_info {
812 	struct btrfs_disk_key key;
813 	__u8 level;
814 } __attribute__ ((__packed__));
815 
816 struct btrfs_extent_data_ref {
817 	__le64 root;
818 	__le64 objectid;
819 	__le64 offset;
820 	__le32 count;
821 } __attribute__ ((__packed__));
822 
823 struct btrfs_shared_data_ref {
824 	__le32 count;
825 } __attribute__ ((__packed__));
826 
827 struct btrfs_extent_owner_ref {
828 	__le64 root_id;
829 } __attribute__ ((__packed__));
830 
831 struct btrfs_extent_inline_ref {
832 	__u8 type;
833 	__le64 offset;
834 } __attribute__ ((__packed__));
835 
836 /* dev extents record free space on individual devices.  The owner
837  * field points back to the chunk allocation mapping tree that allocated
838  * the extent.  The chunk tree uuid field is a way to double check the owner
839  */
840 struct btrfs_dev_extent {
841 	__le64 chunk_tree;
842 	__le64 chunk_objectid;
843 	__le64 chunk_offset;
844 	__le64 length;
845 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
846 } __attribute__ ((__packed__));
847 
848 struct btrfs_inode_ref {
849 	__le64 index;
850 	__le16 name_len;
851 	/* name goes here */
852 } __attribute__ ((__packed__));
853 
854 struct btrfs_inode_extref {
855 	__le64 parent_objectid;
856 	__le64 index;
857 	__le16 name_len;
858 	__u8   name[];
859 	/* name goes here */
860 } __attribute__ ((__packed__));
861 
862 struct btrfs_timespec {
863 	__le64 sec;
864 	__le32 nsec;
865 } __attribute__ ((__packed__));
866 
867 struct btrfs_inode_item {
868 	/* nfs style generation number */
869 	__le64 generation;
870 	/* transid that last touched this inode */
871 	__le64 transid;
872 	__le64 size;
873 	__le64 nbytes;
874 	__le64 block_group;
875 	__le32 nlink;
876 	__le32 uid;
877 	__le32 gid;
878 	__le32 mode;
879 	__le64 rdev;
880 	__le64 flags;
881 
882 	/* modification sequence number for NFS */
883 	__le64 sequence;
884 
885 	/*
886 	 * a little future expansion, for more than this we can
887 	 * just grow the inode item and version it
888 	 */
889 	__le64 reserved[4];
890 	struct btrfs_timespec atime;
891 	struct btrfs_timespec ctime;
892 	struct btrfs_timespec mtime;
893 	struct btrfs_timespec otime;
894 } __attribute__ ((__packed__));
895 
896 struct btrfs_dir_log_item {
897 	__le64 end;
898 } __attribute__ ((__packed__));
899 
900 struct btrfs_dir_item {
901 	struct btrfs_disk_key location;
902 	__le64 transid;
903 	__le16 data_len;
904 	__le16 name_len;
905 	__u8 type;
906 } __attribute__ ((__packed__));
907 
908 #define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
909 
910 /*
911  * Internal in-memory flag that a subvolume has been marked for deletion but
912  * still visible as a directory
913  */
914 #define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
915 
916 struct btrfs_root_item {
917 	struct btrfs_inode_item inode;
918 	__le64 generation;
919 	__le64 root_dirid;
920 	__le64 bytenr;
921 	__le64 byte_limit;
922 	__le64 bytes_used;
923 	__le64 last_snapshot;
924 	__le64 flags;
925 	__le32 refs;
926 	struct btrfs_disk_key drop_progress;
927 	__u8 drop_level;
928 	__u8 level;
929 
930 	/*
931 	 * The following fields appear after subvol_uuids+subvol_times
932 	 * were introduced.
933 	 */
934 
935 	/*
936 	 * This generation number is used to test if the new fields are valid
937 	 * and up to date while reading the root item. Every time the root item
938 	 * is written out, the "generation" field is copied into this field. If
939 	 * anyone ever mounted the fs with an older kernel, we will have
940 	 * mismatching generation values here and thus must invalidate the
941 	 * new fields. See btrfs_update_root and btrfs_find_last_root for
942 	 * details.
943 	 * the offset of generation_v2 is also used as the start for the memset
944 	 * when invalidating the fields.
945 	 */
946 	__le64 generation_v2;
947 	__u8 uuid[BTRFS_UUID_SIZE];
948 	__u8 parent_uuid[BTRFS_UUID_SIZE];
949 	__u8 received_uuid[BTRFS_UUID_SIZE];
950 	__le64 ctransid; /* updated when an inode changes */
951 	__le64 otransid; /* trans when created */
952 	__le64 stransid; /* trans when sent. non-zero for received subvol */
953 	__le64 rtransid; /* trans when received. non-zero for received subvol */
954 	struct btrfs_timespec ctime;
955 	struct btrfs_timespec otime;
956 	struct btrfs_timespec stime;
957 	struct btrfs_timespec rtime;
958 	__le64 reserved[8]; /* for future */
959 } __attribute__ ((__packed__));
960 
961 /*
962  * Btrfs root item used to be smaller than current size.  The old format ends
963  * at where member generation_v2 is.
964  */
965 static inline __u32 btrfs_legacy_root_item_size(void)
966 {
967 	return offsetof(struct btrfs_root_item, generation_v2);
968 }
969 
970 /*
971  * this is used for both forward and backward root refs
972  */
973 struct btrfs_root_ref {
974 	__le64 dirid;
975 	__le64 sequence;
976 	__le16 name_len;
977 } __attribute__ ((__packed__));
978 
979 struct btrfs_disk_balance_args {
980 	/*
981 	 * profiles to operate on, single is denoted by
982 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
983 	 */
984 	__le64 profiles;
985 
986 	/*
987 	 * usage filter
988 	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
989 	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
990 	 */
991 	union {
992 		__le64 usage;
993 		struct {
994 			__le32 usage_min;
995 			__le32 usage_max;
996 		};
997 	};
998 
999 	/* devid filter */
1000 	__le64 devid;
1001 
1002 	/* devid subset filter [pstart..pend) */
1003 	__le64 pstart;
1004 	__le64 pend;
1005 
1006 	/* btrfs virtual address space subset filter [vstart..vend) */
1007 	__le64 vstart;
1008 	__le64 vend;
1009 
1010 	/*
1011 	 * profile to convert to, single is denoted by
1012 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
1013 	 */
1014 	__le64 target;
1015 
1016 	/* BTRFS_BALANCE_ARGS_* */
1017 	__le64 flags;
1018 
1019 	/*
1020 	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
1021 	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
1022 	 * and maximum
1023 	 */
1024 	union {
1025 		__le64 limit;
1026 		struct {
1027 			__le32 limit_min;
1028 			__le32 limit_max;
1029 		};
1030 	};
1031 
1032 	/*
1033 	 * Process chunks that cross stripes_min..stripes_max devices,
1034 	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
1035 	 */
1036 	__le32 stripes_min;
1037 	__le32 stripes_max;
1038 
1039 	__le64 unused[6];
1040 } __attribute__ ((__packed__));
1041 
1042 /*
1043  * store balance parameters to disk so that balance can be properly
1044  * resumed after crash or unmount
1045  */
1046 struct btrfs_balance_item {
1047 	/* BTRFS_BALANCE_* */
1048 	__le64 flags;
1049 
1050 	struct btrfs_disk_balance_args data;
1051 	struct btrfs_disk_balance_args meta;
1052 	struct btrfs_disk_balance_args sys;
1053 
1054 	__le64 unused[4];
1055 } __attribute__ ((__packed__));
1056 
1057 enum {
1058 	BTRFS_FILE_EXTENT_INLINE   = 0,
1059 	BTRFS_FILE_EXTENT_REG      = 1,
1060 	BTRFS_FILE_EXTENT_PREALLOC = 2,
1061 	BTRFS_NR_FILE_EXTENT_TYPES = 3,
1062 };
1063 
1064 struct btrfs_file_extent_item {
1065 	/*
1066 	 * transaction id that created this extent
1067 	 */
1068 	__le64 generation;
1069 	/*
1070 	 * max number of bytes to hold this extent in ram
1071 	 * when we split a compressed extent we can't know how big
1072 	 * each of the resulting pieces will be.  So, this is
1073 	 * an upper limit on the size of the extent in ram instead of
1074 	 * an exact limit.
1075 	 */
1076 	__le64 ram_bytes;
1077 
1078 	/*
1079 	 * 32 bits for the various ways we might encode the data,
1080 	 * including compression and encryption.  If any of these
1081 	 * are set to something a given disk format doesn't understand
1082 	 * it is treated like an incompat flag for reading and writing,
1083 	 * but not for stat.
1084 	 */
1085 	__u8 compression;
1086 	__u8 encryption;
1087 	__le16 other_encoding; /* spare for later use */
1088 
1089 	/* are we inline data or a real extent? */
1090 	__u8 type;
1091 
1092 	/*
1093 	 * disk space consumed by the extent, checksum blocks are included
1094 	 * in these numbers
1095 	 *
1096 	 * At this offset in the structure, the inline extent data start.
1097 	 */
1098 	__le64 disk_bytenr;
1099 	__le64 disk_num_bytes;
1100 	/*
1101 	 * the logical offset in file blocks (no csums)
1102 	 * this extent record is for.  This allows a file extent to point
1103 	 * into the middle of an existing extent on disk, sharing it
1104 	 * between two snapshots (useful if some bytes in the middle of the
1105 	 * extent have changed
1106 	 */
1107 	__le64 offset;
1108 	/*
1109 	 * the logical number of file blocks (no csums included).  This
1110 	 * always reflects the size uncompressed and without encoding.
1111 	 */
1112 	__le64 num_bytes;
1113 
1114 } __attribute__ ((__packed__));
1115 
1116 struct btrfs_csum_item {
1117 	__u8 csum;
1118 } __attribute__ ((__packed__));
1119 
1120 struct btrfs_dev_stats_item {
1121 	/*
1122 	 * grow this item struct at the end for future enhancements and keep
1123 	 * the existing values unchanged
1124 	 */
1125 	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
1126 } __attribute__ ((__packed__));
1127 
1128 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
1129 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
1130 
1131 struct btrfs_dev_replace_item {
1132 	/*
1133 	 * grow this item struct at the end for future enhancements and keep
1134 	 * the existing values unchanged
1135 	 */
1136 	__le64 src_devid;
1137 	__le64 cursor_left;
1138 	__le64 cursor_right;
1139 	__le64 cont_reading_from_srcdev_mode;
1140 
1141 	__le64 replace_state;
1142 	__le64 time_started;
1143 	__le64 time_stopped;
1144 	__le64 num_write_errors;
1145 	__le64 num_uncorrectable_read_errors;
1146 } __attribute__ ((__packed__));
1147 
1148 /* different types of block groups (and chunks) */
1149 #define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
1150 #define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
1151 #define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
1152 #define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
1153 #define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
1154 #define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
1155 #define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
1156 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
1157 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
1158 #define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
1159 #define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10)
1160 #define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
1161 					 BTRFS_SPACE_INFO_GLOBAL_RSV)
1162 
1163 #define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
1164 					 BTRFS_BLOCK_GROUP_SYSTEM |  \
1165 					 BTRFS_BLOCK_GROUP_METADATA)
1166 
1167 #define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
1168 					 BTRFS_BLOCK_GROUP_RAID1 |   \
1169 					 BTRFS_BLOCK_GROUP_RAID1C3 | \
1170 					 BTRFS_BLOCK_GROUP_RAID1C4 | \
1171 					 BTRFS_BLOCK_GROUP_RAID5 |   \
1172 					 BTRFS_BLOCK_GROUP_RAID6 |   \
1173 					 BTRFS_BLOCK_GROUP_DUP |     \
1174 					 BTRFS_BLOCK_GROUP_RAID10)
1175 #define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
1176 					 BTRFS_BLOCK_GROUP_RAID6)
1177 
1178 #define BTRFS_BLOCK_GROUP_RAID1_MASK	(BTRFS_BLOCK_GROUP_RAID1 |   \
1179 					 BTRFS_BLOCK_GROUP_RAID1C3 | \
1180 					 BTRFS_BLOCK_GROUP_RAID1C4)
1181 
1182 /*
1183  * We need a bit for restriper to be able to tell when chunks of type
1184  * SINGLE are available.  This "extended" profile format is used in
1185  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1186  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
1187  * to avoid remappings between two formats in future.
1188  */
1189 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
1190 
1191 /*
1192  * A fake block group type that is used to communicate global block reserve
1193  * size to userspace via the SPACE_INFO ioctl.
1194  */
1195 #define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
1196 
1197 #define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1198 					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1199 
1200 static inline __u64 chunk_to_extended(__u64 flags)
1201 {
1202 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1203 		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1204 
1205 	return flags;
1206 }
1207 static inline __u64 extended_to_chunk(__u64 flags)
1208 {
1209 	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1210 }
1211 
1212 struct btrfs_block_group_item {
1213 	__le64 used;
1214 	__le64 chunk_objectid;
1215 	__le64 flags;
1216 } __attribute__ ((__packed__));
1217 
1218 struct btrfs_free_space_info {
1219 	__le32 extent_count;
1220 	__le32 flags;
1221 } __attribute__ ((__packed__));
1222 
1223 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
1224 
1225 #define BTRFS_QGROUP_LEVEL_SHIFT		48
1226 static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
1227 {
1228 	return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
1229 }
1230 
1231 /*
1232  * is subvolume quota turned on?
1233  */
1234 #define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
1235 /*
1236  * RESCAN is set during the initialization phase
1237  */
1238 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
1239 /*
1240  * Some qgroup entries are known to be out of date,
1241  * either because the configuration has changed in a way that
1242  * makes a rescan necessary, or because the fs has been mounted
1243  * with a non-qgroup-aware version.
1244  * Turning qouta off and on again makes it inconsistent, too.
1245  */
1246 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
1247 
1248 /*
1249  * Whether or not this filesystem is using simple quotas.  Not exactly the
1250  * incompat bit, because we support using simple quotas, disabling it, then
1251  * going back to full qgroup quotas.
1252  */
1253 #define BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE	(1ULL << 3)
1254 
1255 #define BTRFS_QGROUP_STATUS_FLAGS_MASK	(BTRFS_QGROUP_STATUS_FLAG_ON |		\
1256 					 BTRFS_QGROUP_STATUS_FLAG_RESCAN |	\
1257 					 BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT | \
1258 					 BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE)
1259 
1260 #define BTRFS_QGROUP_STATUS_VERSION        1
1261 
1262 struct btrfs_qgroup_status_item {
1263 	__le64 version;
1264 	/*
1265 	 * the generation is updated during every commit. As older
1266 	 * versions of btrfs are not aware of qgroups, it will be
1267 	 * possible to detect inconsistencies by checking the
1268 	 * generation on mount time
1269 	 */
1270 	__le64 generation;
1271 
1272 	/* flag definitions see above */
1273 	__le64 flags;
1274 
1275 	/*
1276 	 * only used during scanning to record the progress
1277 	 * of the scan. It contains a logical address
1278 	 */
1279 	__le64 rescan;
1280 
1281 	/*
1282 	 * The generation when quotas were last enabled. Used by simple quotas to
1283 	 * avoid decrementing when freeing an extent that was written before
1284 	 * enable.
1285 	 *
1286 	 * Set only if flags contain BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE.
1287 	 */
1288 	__le64 enable_gen;
1289 } __attribute__ ((__packed__));
1290 
1291 struct btrfs_qgroup_info_item {
1292 	__le64 generation;
1293 	__le64 rfer;
1294 	__le64 rfer_cmpr;
1295 	__le64 excl;
1296 	__le64 excl_cmpr;
1297 } __attribute__ ((__packed__));
1298 
1299 struct btrfs_qgroup_limit_item {
1300 	/*
1301 	 * only updated when any of the other values change
1302 	 */
1303 	__le64 flags;
1304 	__le64 max_rfer;
1305 	__le64 max_excl;
1306 	__le64 rsv_rfer;
1307 	__le64 rsv_excl;
1308 } __attribute__ ((__packed__));
1309 
1310 struct btrfs_verity_descriptor_item {
1311 	/* Size of the verity descriptor in bytes */
1312 	__le64 size;
1313 	/*
1314 	 * When we implement support for fscrypt, we will need to encrypt the
1315 	 * Merkle tree for encrypted verity files. These 128 bits are for the
1316 	 * eventual storage of an fscrypt initialization vector.
1317 	 */
1318 	__le64 reserved[2];
1319 	__u8 encryption;
1320 } __attribute__ ((__packed__));
1321 
1322 #endif /* _BTRFS_CTREE_H_ */
1323