xref: /linux-6.15/include/uapi/linux/btrfs_tree.h (revision 151f4e2b)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 #ifndef _BTRFS_CTREE_H_
3 #define _BTRFS_CTREE_H_
4 
5 #include <linux/btrfs.h>
6 #include <linux/types.h>
7 
8 /*
9  * This header contains the structure definitions and constants used
10  * by file system objects that can be retrieved using
11  * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
12  * is needed to describe a leaf node's key or item contents.
13  */
14 
15 /* holds pointers to all of the tree roots */
16 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
17 
18 /* stores information about which extents are in use, and reference counts */
19 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
20 
21 /*
22  * chunk tree stores translations from logical -> physical block numbering
23  * the super block points to the chunk tree
24  */
25 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
26 
27 /*
28  * stores information about which areas of a given device are in use.
29  * one per device.  The tree of tree roots points to the device tree
30  */
31 #define BTRFS_DEV_TREE_OBJECTID 4ULL
32 
33 /* one per subvolume, storing files and directories */
34 #define BTRFS_FS_TREE_OBJECTID 5ULL
35 
36 /* directory objectid inside the root tree */
37 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
38 
39 /* holds checksums of all the data extents */
40 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
41 
42 /* holds quota configuration and tracking */
43 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
44 
45 /* for storing items that use the BTRFS_UUID_KEY* types */
46 #define BTRFS_UUID_TREE_OBJECTID 9ULL
47 
48 /* tracks free space in block groups. */
49 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
50 
51 /* device stats in the device tree */
52 #define BTRFS_DEV_STATS_OBJECTID 0ULL
53 
54 /* for storing balance parameters in the root tree */
55 #define BTRFS_BALANCE_OBJECTID -4ULL
56 
57 /* orhpan objectid for tracking unlinked/truncated files */
58 #define BTRFS_ORPHAN_OBJECTID -5ULL
59 
60 /* does write ahead logging to speed up fsyncs */
61 #define BTRFS_TREE_LOG_OBJECTID -6ULL
62 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
63 
64 /* for space balancing */
65 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
66 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
67 
68 /*
69  * extent checksums all have this objectid
70  * this allows them to share the logging tree
71  * for fsyncs
72  */
73 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
74 
75 /* For storing free space cache */
76 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
77 
78 /*
79  * The inode number assigned to the special inode for storing
80  * free ino cache
81  */
82 #define BTRFS_FREE_INO_OBJECTID -12ULL
83 
84 /* dummy objectid represents multiple objectids */
85 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
86 
87 /*
88  * All files have objectids in this range.
89  */
90 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
91 #define BTRFS_LAST_FREE_OBJECTID -256ULL
92 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
93 
94 
95 /*
96  * the device items go into the chunk tree.  The key is in the form
97  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
98  */
99 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
100 
101 #define BTRFS_BTREE_INODE_OBJECTID 1
102 
103 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
104 
105 #define BTRFS_DEV_REPLACE_DEVID 0ULL
106 
107 /*
108  * inode items have the data typically returned from stat and store other
109  * info about object characteristics.  There is one for every file and dir in
110  * the FS
111  */
112 #define BTRFS_INODE_ITEM_KEY		1
113 #define BTRFS_INODE_REF_KEY		12
114 #define BTRFS_INODE_EXTREF_KEY		13
115 #define BTRFS_XATTR_ITEM_KEY		24
116 #define BTRFS_ORPHAN_ITEM_KEY		48
117 /* reserve 2-15 close to the inode for later flexibility */
118 
119 /*
120  * dir items are the name -> inode pointers in a directory.  There is one
121  * for every name in a directory.
122  */
123 #define BTRFS_DIR_LOG_ITEM_KEY  60
124 #define BTRFS_DIR_LOG_INDEX_KEY 72
125 #define BTRFS_DIR_ITEM_KEY	84
126 #define BTRFS_DIR_INDEX_KEY	96
127 /*
128  * extent data is for file data
129  */
130 #define BTRFS_EXTENT_DATA_KEY	108
131 
132 /*
133  * extent csums are stored in a separate tree and hold csums for
134  * an entire extent on disk.
135  */
136 #define BTRFS_EXTENT_CSUM_KEY	128
137 
138 /*
139  * root items point to tree roots.  They are typically in the root
140  * tree used by the super block to find all the other trees
141  */
142 #define BTRFS_ROOT_ITEM_KEY	132
143 
144 /*
145  * root backrefs tie subvols and snapshots to the directory entries that
146  * reference them
147  */
148 #define BTRFS_ROOT_BACKREF_KEY	144
149 
150 /*
151  * root refs make a fast index for listing all of the snapshots and
152  * subvolumes referenced by a given root.  They point directly to the
153  * directory item in the root that references the subvol
154  */
155 #define BTRFS_ROOT_REF_KEY	156
156 
157 /*
158  * extent items are in the extent map tree.  These record which blocks
159  * are used, and how many references there are to each block
160  */
161 #define BTRFS_EXTENT_ITEM_KEY	168
162 
163 /*
164  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
165  * the length, so we save the level in key->offset instead of the length.
166  */
167 #define BTRFS_METADATA_ITEM_KEY	169
168 
169 #define BTRFS_TREE_BLOCK_REF_KEY	176
170 
171 #define BTRFS_EXTENT_DATA_REF_KEY	178
172 
173 #define BTRFS_EXTENT_REF_V0_KEY		180
174 
175 #define BTRFS_SHARED_BLOCK_REF_KEY	182
176 
177 #define BTRFS_SHARED_DATA_REF_KEY	184
178 
179 /*
180  * block groups give us hints into the extent allocation trees.  Which
181  * blocks are free etc etc
182  */
183 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
184 
185 /*
186  * Every block group is represented in the free space tree by a free space info
187  * item, which stores some accounting information. It is keyed on
188  * (block_group_start, FREE_SPACE_INFO, block_group_length).
189  */
190 #define BTRFS_FREE_SPACE_INFO_KEY 198
191 
192 /*
193  * A free space extent tracks an extent of space that is free in a block group.
194  * It is keyed on (start, FREE_SPACE_EXTENT, length).
195  */
196 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
197 
198 /*
199  * When a block group becomes very fragmented, we convert it to use bitmaps
200  * instead of extents. A free space bitmap is keyed on
201  * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
202  * (length / sectorsize) bits.
203  */
204 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
205 
206 #define BTRFS_DEV_EXTENT_KEY	204
207 #define BTRFS_DEV_ITEM_KEY	216
208 #define BTRFS_CHUNK_ITEM_KEY	228
209 
210 /*
211  * Records the overall state of the qgroups.
212  * There's only one instance of this key present,
213  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
214  */
215 #define BTRFS_QGROUP_STATUS_KEY         240
216 /*
217  * Records the currently used space of the qgroup.
218  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
219  */
220 #define BTRFS_QGROUP_INFO_KEY           242
221 /*
222  * Contains the user configured limits for the qgroup.
223  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
224  */
225 #define BTRFS_QGROUP_LIMIT_KEY          244
226 /*
227  * Records the child-parent relationship of qgroups. For
228  * each relation, 2 keys are present:
229  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
230  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
231  */
232 #define BTRFS_QGROUP_RELATION_KEY       246
233 
234 /*
235  * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
236  */
237 #define BTRFS_BALANCE_ITEM_KEY	248
238 
239 /*
240  * The key type for tree items that are stored persistently, but do not need to
241  * exist for extended period of time. The items can exist in any tree.
242  *
243  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
244  *
245  * Existing items:
246  *
247  * - balance status item
248  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
249  */
250 #define BTRFS_TEMPORARY_ITEM_KEY	248
251 
252 /*
253  * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
254  */
255 #define BTRFS_DEV_STATS_KEY		249
256 
257 /*
258  * The key type for tree items that are stored persistently and usually exist
259  * for a long period, eg. filesystem lifetime. The item kinds can be status
260  * information, stats or preference values. The item can exist in any tree.
261  *
262  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
263  *
264  * Existing items:
265  *
266  * - device statistics, store IO stats in the device tree, one key for all
267  *   stats
268  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
269  */
270 #define BTRFS_PERSISTENT_ITEM_KEY	249
271 
272 /*
273  * Persistantly stores the device replace state in the device tree.
274  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
275  */
276 #define BTRFS_DEV_REPLACE_KEY	250
277 
278 /*
279  * Stores items that allow to quickly map UUIDs to something else.
280  * These items are part of the filesystem UUID tree.
281  * The key is built like this:
282  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
283  */
284 #if BTRFS_UUID_SIZE != 16
285 #error "UUID items require BTRFS_UUID_SIZE == 16!"
286 #endif
287 #define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
288 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
289 						 * received subvols */
290 
291 /*
292  * string items are for debugging.  They just store a short string of
293  * data in the FS
294  */
295 #define BTRFS_STRING_ITEM_KEY	253
296 
297 
298 
299 /* 32 bytes in various csum fields */
300 #define BTRFS_CSUM_SIZE 32
301 
302 /* csum types */
303 #define BTRFS_CSUM_TYPE_CRC32	0
304 
305 /*
306  * flags definitions for directory entry item type
307  *
308  * Used by:
309  * struct btrfs_dir_item.type
310  *
311  * Values 0..7 must match common file type values in fs_types.h.
312  */
313 #define BTRFS_FT_UNKNOWN	0
314 #define BTRFS_FT_REG_FILE	1
315 #define BTRFS_FT_DIR		2
316 #define BTRFS_FT_CHRDEV		3
317 #define BTRFS_FT_BLKDEV		4
318 #define BTRFS_FT_FIFO		5
319 #define BTRFS_FT_SOCK		6
320 #define BTRFS_FT_SYMLINK	7
321 #define BTRFS_FT_XATTR		8
322 #define BTRFS_FT_MAX		9
323 
324 /*
325  * The key defines the order in the tree, and so it also defines (optimal)
326  * block layout.
327  *
328  * objectid corresponds to the inode number.
329  *
330  * type tells us things about the object, and is a kind of stream selector.
331  * so for a given inode, keys with type of 1 might refer to the inode data,
332  * type of 2 may point to file data in the btree and type == 3 may point to
333  * extents.
334  *
335  * offset is the starting byte offset for this key in the stream.
336  *
337  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
338  * in cpu native order.  Otherwise they are identical and their sizes
339  * should be the same (ie both packed)
340  */
341 struct btrfs_disk_key {
342 	__le64 objectid;
343 	__u8 type;
344 	__le64 offset;
345 } __attribute__ ((__packed__));
346 
347 struct btrfs_key {
348 	__u64 objectid;
349 	__u8 type;
350 	__u64 offset;
351 } __attribute__ ((__packed__));
352 
353 struct btrfs_dev_item {
354 	/* the internal btrfs device id */
355 	__le64 devid;
356 
357 	/* size of the device */
358 	__le64 total_bytes;
359 
360 	/* bytes used */
361 	__le64 bytes_used;
362 
363 	/* optimal io alignment for this device */
364 	__le32 io_align;
365 
366 	/* optimal io width for this device */
367 	__le32 io_width;
368 
369 	/* minimal io size for this device */
370 	__le32 sector_size;
371 
372 	/* type and info about this device */
373 	__le64 type;
374 
375 	/* expected generation for this device */
376 	__le64 generation;
377 
378 	/*
379 	 * starting byte of this partition on the device,
380 	 * to allow for stripe alignment in the future
381 	 */
382 	__le64 start_offset;
383 
384 	/* grouping information for allocation decisions */
385 	__le32 dev_group;
386 
387 	/* seek speed 0-100 where 100 is fastest */
388 	__u8 seek_speed;
389 
390 	/* bandwidth 0-100 where 100 is fastest */
391 	__u8 bandwidth;
392 
393 	/* btrfs generated uuid for this device */
394 	__u8 uuid[BTRFS_UUID_SIZE];
395 
396 	/* uuid of FS who owns this device */
397 	__u8 fsid[BTRFS_UUID_SIZE];
398 } __attribute__ ((__packed__));
399 
400 struct btrfs_stripe {
401 	__le64 devid;
402 	__le64 offset;
403 	__u8 dev_uuid[BTRFS_UUID_SIZE];
404 } __attribute__ ((__packed__));
405 
406 struct btrfs_chunk {
407 	/* size of this chunk in bytes */
408 	__le64 length;
409 
410 	/* objectid of the root referencing this chunk */
411 	__le64 owner;
412 
413 	__le64 stripe_len;
414 	__le64 type;
415 
416 	/* optimal io alignment for this chunk */
417 	__le32 io_align;
418 
419 	/* optimal io width for this chunk */
420 	__le32 io_width;
421 
422 	/* minimal io size for this chunk */
423 	__le32 sector_size;
424 
425 	/* 2^16 stripes is quite a lot, a second limit is the size of a single
426 	 * item in the btree
427 	 */
428 	__le16 num_stripes;
429 
430 	/* sub stripes only matter for raid10 */
431 	__le16 sub_stripes;
432 	struct btrfs_stripe stripe;
433 	/* additional stripes go here */
434 } __attribute__ ((__packed__));
435 
436 #define BTRFS_FREE_SPACE_EXTENT	1
437 #define BTRFS_FREE_SPACE_BITMAP	2
438 
439 struct btrfs_free_space_entry {
440 	__le64 offset;
441 	__le64 bytes;
442 	__u8 type;
443 } __attribute__ ((__packed__));
444 
445 struct btrfs_free_space_header {
446 	struct btrfs_disk_key location;
447 	__le64 generation;
448 	__le64 num_entries;
449 	__le64 num_bitmaps;
450 } __attribute__ ((__packed__));
451 
452 #define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
453 #define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
454 
455 /* Super block flags */
456 /* Errors detected */
457 #define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
458 
459 #define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
460 #define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
461 #define BTRFS_SUPER_FLAG_METADUMP_V2	(1ULL << 34)
462 #define BTRFS_SUPER_FLAG_CHANGING_FSID	(1ULL << 35)
463 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
464 
465 
466 /*
467  * items in the extent btree are used to record the objectid of the
468  * owner of the block and the number of references
469  */
470 
471 struct btrfs_extent_item {
472 	__le64 refs;
473 	__le64 generation;
474 	__le64 flags;
475 } __attribute__ ((__packed__));
476 
477 struct btrfs_extent_item_v0 {
478 	__le32 refs;
479 } __attribute__ ((__packed__));
480 
481 
482 #define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
483 #define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
484 
485 /* following flags only apply to tree blocks */
486 
487 /* use full backrefs for extent pointers in the block */
488 #define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
489 
490 /*
491  * this flag is only used internally by scrub and may be changed at any time
492  * it is only declared here to avoid collisions
493  */
494 #define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
495 
496 struct btrfs_tree_block_info {
497 	struct btrfs_disk_key key;
498 	__u8 level;
499 } __attribute__ ((__packed__));
500 
501 struct btrfs_extent_data_ref {
502 	__le64 root;
503 	__le64 objectid;
504 	__le64 offset;
505 	__le32 count;
506 } __attribute__ ((__packed__));
507 
508 struct btrfs_shared_data_ref {
509 	__le32 count;
510 } __attribute__ ((__packed__));
511 
512 struct btrfs_extent_inline_ref {
513 	__u8 type;
514 	__le64 offset;
515 } __attribute__ ((__packed__));
516 
517 /* old style backrefs item */
518 struct btrfs_extent_ref_v0 {
519 	__le64 root;
520 	__le64 generation;
521 	__le64 objectid;
522 	__le32 count;
523 } __attribute__ ((__packed__));
524 
525 
526 /* dev extents record free space on individual devices.  The owner
527  * field points back to the chunk allocation mapping tree that allocated
528  * the extent.  The chunk tree uuid field is a way to double check the owner
529  */
530 struct btrfs_dev_extent {
531 	__le64 chunk_tree;
532 	__le64 chunk_objectid;
533 	__le64 chunk_offset;
534 	__le64 length;
535 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
536 } __attribute__ ((__packed__));
537 
538 struct btrfs_inode_ref {
539 	__le64 index;
540 	__le16 name_len;
541 	/* name goes here */
542 } __attribute__ ((__packed__));
543 
544 struct btrfs_inode_extref {
545 	__le64 parent_objectid;
546 	__le64 index;
547 	__le16 name_len;
548 	__u8   name[0];
549 	/* name goes here */
550 } __attribute__ ((__packed__));
551 
552 struct btrfs_timespec {
553 	__le64 sec;
554 	__le32 nsec;
555 } __attribute__ ((__packed__));
556 
557 struct btrfs_inode_item {
558 	/* nfs style generation number */
559 	__le64 generation;
560 	/* transid that last touched this inode */
561 	__le64 transid;
562 	__le64 size;
563 	__le64 nbytes;
564 	__le64 block_group;
565 	__le32 nlink;
566 	__le32 uid;
567 	__le32 gid;
568 	__le32 mode;
569 	__le64 rdev;
570 	__le64 flags;
571 
572 	/* modification sequence number for NFS */
573 	__le64 sequence;
574 
575 	/*
576 	 * a little future expansion, for more than this we can
577 	 * just grow the inode item and version it
578 	 */
579 	__le64 reserved[4];
580 	struct btrfs_timespec atime;
581 	struct btrfs_timespec ctime;
582 	struct btrfs_timespec mtime;
583 	struct btrfs_timespec otime;
584 } __attribute__ ((__packed__));
585 
586 struct btrfs_dir_log_item {
587 	__le64 end;
588 } __attribute__ ((__packed__));
589 
590 struct btrfs_dir_item {
591 	struct btrfs_disk_key location;
592 	__le64 transid;
593 	__le16 data_len;
594 	__le16 name_len;
595 	__u8 type;
596 } __attribute__ ((__packed__));
597 
598 #define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
599 
600 /*
601  * Internal in-memory flag that a subvolume has been marked for deletion but
602  * still visible as a directory
603  */
604 #define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
605 
606 struct btrfs_root_item {
607 	struct btrfs_inode_item inode;
608 	__le64 generation;
609 	__le64 root_dirid;
610 	__le64 bytenr;
611 	__le64 byte_limit;
612 	__le64 bytes_used;
613 	__le64 last_snapshot;
614 	__le64 flags;
615 	__le32 refs;
616 	struct btrfs_disk_key drop_progress;
617 	__u8 drop_level;
618 	__u8 level;
619 
620 	/*
621 	 * The following fields appear after subvol_uuids+subvol_times
622 	 * were introduced.
623 	 */
624 
625 	/*
626 	 * This generation number is used to test if the new fields are valid
627 	 * and up to date while reading the root item. Every time the root item
628 	 * is written out, the "generation" field is copied into this field. If
629 	 * anyone ever mounted the fs with an older kernel, we will have
630 	 * mismatching generation values here and thus must invalidate the
631 	 * new fields. See btrfs_update_root and btrfs_find_last_root for
632 	 * details.
633 	 * the offset of generation_v2 is also used as the start for the memset
634 	 * when invalidating the fields.
635 	 */
636 	__le64 generation_v2;
637 	__u8 uuid[BTRFS_UUID_SIZE];
638 	__u8 parent_uuid[BTRFS_UUID_SIZE];
639 	__u8 received_uuid[BTRFS_UUID_SIZE];
640 	__le64 ctransid; /* updated when an inode changes */
641 	__le64 otransid; /* trans when created */
642 	__le64 stransid; /* trans when sent. non-zero for received subvol */
643 	__le64 rtransid; /* trans when received. non-zero for received subvol */
644 	struct btrfs_timespec ctime;
645 	struct btrfs_timespec otime;
646 	struct btrfs_timespec stime;
647 	struct btrfs_timespec rtime;
648 	__le64 reserved[8]; /* for future */
649 } __attribute__ ((__packed__));
650 
651 /*
652  * this is used for both forward and backward root refs
653  */
654 struct btrfs_root_ref {
655 	__le64 dirid;
656 	__le64 sequence;
657 	__le16 name_len;
658 } __attribute__ ((__packed__));
659 
660 struct btrfs_disk_balance_args {
661 	/*
662 	 * profiles to operate on, single is denoted by
663 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
664 	 */
665 	__le64 profiles;
666 
667 	/*
668 	 * usage filter
669 	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
670 	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
671 	 */
672 	union {
673 		__le64 usage;
674 		struct {
675 			__le32 usage_min;
676 			__le32 usage_max;
677 		};
678 	};
679 
680 	/* devid filter */
681 	__le64 devid;
682 
683 	/* devid subset filter [pstart..pend) */
684 	__le64 pstart;
685 	__le64 pend;
686 
687 	/* btrfs virtual address space subset filter [vstart..vend) */
688 	__le64 vstart;
689 	__le64 vend;
690 
691 	/*
692 	 * profile to convert to, single is denoted by
693 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
694 	 */
695 	__le64 target;
696 
697 	/* BTRFS_BALANCE_ARGS_* */
698 	__le64 flags;
699 
700 	/*
701 	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
702 	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
703 	 * and maximum
704 	 */
705 	union {
706 		__le64 limit;
707 		struct {
708 			__le32 limit_min;
709 			__le32 limit_max;
710 		};
711 	};
712 
713 	/*
714 	 * Process chunks that cross stripes_min..stripes_max devices,
715 	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
716 	 */
717 	__le32 stripes_min;
718 	__le32 stripes_max;
719 
720 	__le64 unused[6];
721 } __attribute__ ((__packed__));
722 
723 /*
724  * store balance parameters to disk so that balance can be properly
725  * resumed after crash or unmount
726  */
727 struct btrfs_balance_item {
728 	/* BTRFS_BALANCE_* */
729 	__le64 flags;
730 
731 	struct btrfs_disk_balance_args data;
732 	struct btrfs_disk_balance_args meta;
733 	struct btrfs_disk_balance_args sys;
734 
735 	__le64 unused[4];
736 } __attribute__ ((__packed__));
737 
738 #define BTRFS_FILE_EXTENT_INLINE 0
739 #define BTRFS_FILE_EXTENT_REG 1
740 #define BTRFS_FILE_EXTENT_PREALLOC 2
741 #define BTRFS_FILE_EXTENT_TYPES	2
742 
743 struct btrfs_file_extent_item {
744 	/*
745 	 * transaction id that created this extent
746 	 */
747 	__le64 generation;
748 	/*
749 	 * max number of bytes to hold this extent in ram
750 	 * when we split a compressed extent we can't know how big
751 	 * each of the resulting pieces will be.  So, this is
752 	 * an upper limit on the size of the extent in ram instead of
753 	 * an exact limit.
754 	 */
755 	__le64 ram_bytes;
756 
757 	/*
758 	 * 32 bits for the various ways we might encode the data,
759 	 * including compression and encryption.  If any of these
760 	 * are set to something a given disk format doesn't understand
761 	 * it is treated like an incompat flag for reading and writing,
762 	 * but not for stat.
763 	 */
764 	__u8 compression;
765 	__u8 encryption;
766 	__le16 other_encoding; /* spare for later use */
767 
768 	/* are we inline data or a real extent? */
769 	__u8 type;
770 
771 	/*
772 	 * disk space consumed by the extent, checksum blocks are included
773 	 * in these numbers
774 	 *
775 	 * At this offset in the structure, the inline extent data start.
776 	 */
777 	__le64 disk_bytenr;
778 	__le64 disk_num_bytes;
779 	/*
780 	 * the logical offset in file blocks (no csums)
781 	 * this extent record is for.  This allows a file extent to point
782 	 * into the middle of an existing extent on disk, sharing it
783 	 * between two snapshots (useful if some bytes in the middle of the
784 	 * extent have changed
785 	 */
786 	__le64 offset;
787 	/*
788 	 * the logical number of file blocks (no csums included).  This
789 	 * always reflects the size uncompressed and without encoding.
790 	 */
791 	__le64 num_bytes;
792 
793 } __attribute__ ((__packed__));
794 
795 struct btrfs_csum_item {
796 	__u8 csum;
797 } __attribute__ ((__packed__));
798 
799 struct btrfs_dev_stats_item {
800 	/*
801 	 * grow this item struct at the end for future enhancements and keep
802 	 * the existing values unchanged
803 	 */
804 	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
805 } __attribute__ ((__packed__));
806 
807 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
808 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
809 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED	0
810 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED		1
811 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED		2
812 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED		3
813 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED		4
814 
815 struct btrfs_dev_replace_item {
816 	/*
817 	 * grow this item struct at the end for future enhancements and keep
818 	 * the existing values unchanged
819 	 */
820 	__le64 src_devid;
821 	__le64 cursor_left;
822 	__le64 cursor_right;
823 	__le64 cont_reading_from_srcdev_mode;
824 
825 	__le64 replace_state;
826 	__le64 time_started;
827 	__le64 time_stopped;
828 	__le64 num_write_errors;
829 	__le64 num_uncorrectable_read_errors;
830 } __attribute__ ((__packed__));
831 
832 /* different types of block groups (and chunks) */
833 #define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
834 #define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
835 #define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
836 #define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
837 #define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
838 #define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
839 #define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
840 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
841 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
842 #define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
843 					 BTRFS_SPACE_INFO_GLOBAL_RSV)
844 
845 enum btrfs_raid_types {
846 	BTRFS_RAID_RAID10,
847 	BTRFS_RAID_RAID1,
848 	BTRFS_RAID_DUP,
849 	BTRFS_RAID_RAID0,
850 	BTRFS_RAID_SINGLE,
851 	BTRFS_RAID_RAID5,
852 	BTRFS_RAID_RAID6,
853 	BTRFS_NR_RAID_TYPES
854 };
855 
856 #define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
857 					 BTRFS_BLOCK_GROUP_SYSTEM |  \
858 					 BTRFS_BLOCK_GROUP_METADATA)
859 
860 #define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
861 					 BTRFS_BLOCK_GROUP_RAID1 |   \
862 					 BTRFS_BLOCK_GROUP_RAID5 |   \
863 					 BTRFS_BLOCK_GROUP_RAID6 |   \
864 					 BTRFS_BLOCK_GROUP_DUP |     \
865 					 BTRFS_BLOCK_GROUP_RAID10)
866 #define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
867 					 BTRFS_BLOCK_GROUP_RAID6)
868 
869 /*
870  * We need a bit for restriper to be able to tell when chunks of type
871  * SINGLE are available.  This "extended" profile format is used in
872  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
873  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
874  * to avoid remappings between two formats in future.
875  */
876 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
877 
878 /*
879  * A fake block group type that is used to communicate global block reserve
880  * size to userspace via the SPACE_INFO ioctl.
881  */
882 #define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
883 
884 #define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
885 					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
886 
887 static inline __u64 chunk_to_extended(__u64 flags)
888 {
889 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
890 		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
891 
892 	return flags;
893 }
894 static inline __u64 extended_to_chunk(__u64 flags)
895 {
896 	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
897 }
898 
899 struct btrfs_block_group_item {
900 	__le64 used;
901 	__le64 chunk_objectid;
902 	__le64 flags;
903 } __attribute__ ((__packed__));
904 
905 struct btrfs_free_space_info {
906 	__le32 extent_count;
907 	__le32 flags;
908 } __attribute__ ((__packed__));
909 
910 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
911 
912 #define BTRFS_QGROUP_LEVEL_SHIFT		48
913 static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
914 {
915 	return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
916 }
917 
918 /*
919  * is subvolume quota turned on?
920  */
921 #define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
922 /*
923  * RESCAN is set during the initialization phase
924  */
925 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
926 /*
927  * Some qgroup entries are known to be out of date,
928  * either because the configuration has changed in a way that
929  * makes a rescan necessary, or because the fs has been mounted
930  * with a non-qgroup-aware version.
931  * Turning qouta off and on again makes it inconsistent, too.
932  */
933 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
934 
935 #define BTRFS_QGROUP_STATUS_VERSION        1
936 
937 struct btrfs_qgroup_status_item {
938 	__le64 version;
939 	/*
940 	 * the generation is updated during every commit. As older
941 	 * versions of btrfs are not aware of qgroups, it will be
942 	 * possible to detect inconsistencies by checking the
943 	 * generation on mount time
944 	 */
945 	__le64 generation;
946 
947 	/* flag definitions see above */
948 	__le64 flags;
949 
950 	/*
951 	 * only used during scanning to record the progress
952 	 * of the scan. It contains a logical address
953 	 */
954 	__le64 rescan;
955 } __attribute__ ((__packed__));
956 
957 struct btrfs_qgroup_info_item {
958 	__le64 generation;
959 	__le64 rfer;
960 	__le64 rfer_cmpr;
961 	__le64 excl;
962 	__le64 excl_cmpr;
963 } __attribute__ ((__packed__));
964 
965 struct btrfs_qgroup_limit_item {
966 	/*
967 	 * only updated when any of the other values change
968 	 */
969 	__le64 flags;
970 	__le64 max_rfer;
971 	__le64 max_excl;
972 	__le64 rsv_rfer;
973 	__le64 rsv_excl;
974 } __attribute__ ((__packed__));
975 
976 #endif /* _BTRFS_CTREE_H_ */
977