1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8 #ifndef _UAPI__LINUX_BPF_H__ 9 #define _UAPI__LINUX_BPF_H__ 10 11 #include <linux/types.h> 12 #include <linux/bpf_common.h> 13 14 /* Extended instruction set based on top of classic BPF */ 15 16 /* instruction classes */ 17 #define BPF_JMP32 0x06 /* jmp mode in word width */ 18 #define BPF_ALU64 0x07 /* alu mode in double word width */ 19 20 /* ld/ldx fields */ 21 #define BPF_DW 0x18 /* double word (64-bit) */ 22 #define BPF_XADD 0xc0 /* exclusive add */ 23 24 /* alu/jmp fields */ 25 #define BPF_MOV 0xb0 /* mov reg to reg */ 26 #define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */ 27 28 /* change endianness of a register */ 29 #define BPF_END 0xd0 /* flags for endianness conversion: */ 30 #define BPF_TO_LE 0x00 /* convert to little-endian */ 31 #define BPF_TO_BE 0x08 /* convert to big-endian */ 32 #define BPF_FROM_LE BPF_TO_LE 33 #define BPF_FROM_BE BPF_TO_BE 34 35 /* jmp encodings */ 36 #define BPF_JNE 0x50 /* jump != */ 37 #define BPF_JLT 0xa0 /* LT is unsigned, '<' */ 38 #define BPF_JLE 0xb0 /* LE is unsigned, '<=' */ 39 #define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */ 40 #define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */ 41 #define BPF_JSLT 0xc0 /* SLT is signed, '<' */ 42 #define BPF_JSLE 0xd0 /* SLE is signed, '<=' */ 43 #define BPF_CALL 0x80 /* function call */ 44 #define BPF_EXIT 0x90 /* function return */ 45 46 /* Register numbers */ 47 enum { 48 BPF_REG_0 = 0, 49 BPF_REG_1, 50 BPF_REG_2, 51 BPF_REG_3, 52 BPF_REG_4, 53 BPF_REG_5, 54 BPF_REG_6, 55 BPF_REG_7, 56 BPF_REG_8, 57 BPF_REG_9, 58 BPF_REG_10, 59 __MAX_BPF_REG, 60 }; 61 62 /* BPF has 10 general purpose 64-bit registers and stack frame. */ 63 #define MAX_BPF_REG __MAX_BPF_REG 64 65 struct bpf_insn { 66 __u8 code; /* opcode */ 67 __u8 dst_reg:4; /* dest register */ 68 __u8 src_reg:4; /* source register */ 69 __s16 off; /* signed offset */ 70 __s32 imm; /* signed immediate constant */ 71 }; 72 73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */ 74 struct bpf_lpm_trie_key { 75 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */ 76 __u8 data[0]; /* Arbitrary size */ 77 }; 78 79 struct bpf_cgroup_storage_key { 80 __u64 cgroup_inode_id; /* cgroup inode id */ 81 __u32 attach_type; /* program attach type */ 82 }; 83 84 /* BPF syscall commands, see bpf(2) man-page for details. */ 85 enum bpf_cmd { 86 BPF_MAP_CREATE, 87 BPF_MAP_LOOKUP_ELEM, 88 BPF_MAP_UPDATE_ELEM, 89 BPF_MAP_DELETE_ELEM, 90 BPF_MAP_GET_NEXT_KEY, 91 BPF_PROG_LOAD, 92 BPF_OBJ_PIN, 93 BPF_OBJ_GET, 94 BPF_PROG_ATTACH, 95 BPF_PROG_DETACH, 96 BPF_PROG_TEST_RUN, 97 BPF_PROG_GET_NEXT_ID, 98 BPF_MAP_GET_NEXT_ID, 99 BPF_PROG_GET_FD_BY_ID, 100 BPF_MAP_GET_FD_BY_ID, 101 BPF_OBJ_GET_INFO_BY_FD, 102 BPF_PROG_QUERY, 103 BPF_RAW_TRACEPOINT_OPEN, 104 BPF_BTF_LOAD, 105 BPF_BTF_GET_FD_BY_ID, 106 BPF_TASK_FD_QUERY, 107 BPF_MAP_LOOKUP_AND_DELETE_ELEM, 108 BPF_MAP_FREEZE, 109 }; 110 111 enum bpf_map_type { 112 BPF_MAP_TYPE_UNSPEC, 113 BPF_MAP_TYPE_HASH, 114 BPF_MAP_TYPE_ARRAY, 115 BPF_MAP_TYPE_PROG_ARRAY, 116 BPF_MAP_TYPE_PERF_EVENT_ARRAY, 117 BPF_MAP_TYPE_PERCPU_HASH, 118 BPF_MAP_TYPE_PERCPU_ARRAY, 119 BPF_MAP_TYPE_STACK_TRACE, 120 BPF_MAP_TYPE_CGROUP_ARRAY, 121 BPF_MAP_TYPE_LRU_HASH, 122 BPF_MAP_TYPE_LRU_PERCPU_HASH, 123 BPF_MAP_TYPE_LPM_TRIE, 124 BPF_MAP_TYPE_ARRAY_OF_MAPS, 125 BPF_MAP_TYPE_HASH_OF_MAPS, 126 BPF_MAP_TYPE_DEVMAP, 127 BPF_MAP_TYPE_SOCKMAP, 128 BPF_MAP_TYPE_CPUMAP, 129 BPF_MAP_TYPE_XSKMAP, 130 BPF_MAP_TYPE_SOCKHASH, 131 BPF_MAP_TYPE_CGROUP_STORAGE, 132 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 133 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE, 134 BPF_MAP_TYPE_QUEUE, 135 BPF_MAP_TYPE_STACK, 136 }; 137 138 /* Note that tracing related programs such as 139 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT} 140 * are not subject to a stable API since kernel internal data 141 * structures can change from release to release and may 142 * therefore break existing tracing BPF programs. Tracing BPF 143 * programs correspond to /a/ specific kernel which is to be 144 * analyzed, and not /a/ specific kernel /and/ all future ones. 145 */ 146 enum bpf_prog_type { 147 BPF_PROG_TYPE_UNSPEC, 148 BPF_PROG_TYPE_SOCKET_FILTER, 149 BPF_PROG_TYPE_KPROBE, 150 BPF_PROG_TYPE_SCHED_CLS, 151 BPF_PROG_TYPE_SCHED_ACT, 152 BPF_PROG_TYPE_TRACEPOINT, 153 BPF_PROG_TYPE_XDP, 154 BPF_PROG_TYPE_PERF_EVENT, 155 BPF_PROG_TYPE_CGROUP_SKB, 156 BPF_PROG_TYPE_CGROUP_SOCK, 157 BPF_PROG_TYPE_LWT_IN, 158 BPF_PROG_TYPE_LWT_OUT, 159 BPF_PROG_TYPE_LWT_XMIT, 160 BPF_PROG_TYPE_SOCK_OPS, 161 BPF_PROG_TYPE_SK_SKB, 162 BPF_PROG_TYPE_CGROUP_DEVICE, 163 BPF_PROG_TYPE_SK_MSG, 164 BPF_PROG_TYPE_RAW_TRACEPOINT, 165 BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 166 BPF_PROG_TYPE_LWT_SEG6LOCAL, 167 BPF_PROG_TYPE_LIRC_MODE2, 168 BPF_PROG_TYPE_SK_REUSEPORT, 169 BPF_PROG_TYPE_FLOW_DISSECTOR, 170 BPF_PROG_TYPE_CGROUP_SYSCTL, 171 }; 172 173 enum bpf_attach_type { 174 BPF_CGROUP_INET_INGRESS, 175 BPF_CGROUP_INET_EGRESS, 176 BPF_CGROUP_INET_SOCK_CREATE, 177 BPF_CGROUP_SOCK_OPS, 178 BPF_SK_SKB_STREAM_PARSER, 179 BPF_SK_SKB_STREAM_VERDICT, 180 BPF_CGROUP_DEVICE, 181 BPF_SK_MSG_VERDICT, 182 BPF_CGROUP_INET4_BIND, 183 BPF_CGROUP_INET6_BIND, 184 BPF_CGROUP_INET4_CONNECT, 185 BPF_CGROUP_INET6_CONNECT, 186 BPF_CGROUP_INET4_POST_BIND, 187 BPF_CGROUP_INET6_POST_BIND, 188 BPF_CGROUP_UDP4_SENDMSG, 189 BPF_CGROUP_UDP6_SENDMSG, 190 BPF_LIRC_MODE2, 191 BPF_FLOW_DISSECTOR, 192 BPF_CGROUP_SYSCTL, 193 __MAX_BPF_ATTACH_TYPE 194 }; 195 196 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE 197 198 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command 199 * 200 * NONE(default): No further bpf programs allowed in the subtree. 201 * 202 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, 203 * the program in this cgroup yields to sub-cgroup program. 204 * 205 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, 206 * that cgroup program gets run in addition to the program in this cgroup. 207 * 208 * Only one program is allowed to be attached to a cgroup with 209 * NONE or BPF_F_ALLOW_OVERRIDE flag. 210 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will 211 * release old program and attach the new one. Attach flags has to match. 212 * 213 * Multiple programs are allowed to be attached to a cgroup with 214 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order 215 * (those that were attached first, run first) 216 * The programs of sub-cgroup are executed first, then programs of 217 * this cgroup and then programs of parent cgroup. 218 * When children program makes decision (like picking TCP CA or sock bind) 219 * parent program has a chance to override it. 220 * 221 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups. 222 * A cgroup with NONE doesn't allow any programs in sub-cgroups. 223 * Ex1: 224 * cgrp1 (MULTI progs A, B) -> 225 * cgrp2 (OVERRIDE prog C) -> 226 * cgrp3 (MULTI prog D) -> 227 * cgrp4 (OVERRIDE prog E) -> 228 * cgrp5 (NONE prog F) 229 * the event in cgrp5 triggers execution of F,D,A,B in that order. 230 * if prog F is detached, the execution is E,D,A,B 231 * if prog F and D are detached, the execution is E,A,B 232 * if prog F, E and D are detached, the execution is C,A,B 233 * 234 * All eligible programs are executed regardless of return code from 235 * earlier programs. 236 */ 237 #define BPF_F_ALLOW_OVERRIDE (1U << 0) 238 #define BPF_F_ALLOW_MULTI (1U << 1) 239 240 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the 241 * verifier will perform strict alignment checking as if the kernel 242 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set, 243 * and NET_IP_ALIGN defined to 2. 244 */ 245 #define BPF_F_STRICT_ALIGNMENT (1U << 0) 246 247 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the 248 * verifier will allow any alignment whatsoever. On platforms 249 * with strict alignment requirements for loads ands stores (such 250 * as sparc and mips) the verifier validates that all loads and 251 * stores provably follow this requirement. This flag turns that 252 * checking and enforcement off. 253 * 254 * It is mostly used for testing when we want to validate the 255 * context and memory access aspects of the verifier, but because 256 * of an unaligned access the alignment check would trigger before 257 * the one we are interested in. 258 */ 259 #define BPF_F_ANY_ALIGNMENT (1U << 1) 260 261 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have 262 * two extensions: 263 * 264 * insn[0].src_reg: BPF_PSEUDO_MAP_FD BPF_PSEUDO_MAP_VALUE 265 * insn[0].imm: map fd map fd 266 * insn[1].imm: 0 offset into value 267 * insn[0].off: 0 0 268 * insn[1].off: 0 0 269 * ldimm64 rewrite: address of map address of map[0]+offset 270 * verifier type: CONST_PTR_TO_MAP PTR_TO_MAP_VALUE 271 */ 272 #define BPF_PSEUDO_MAP_FD 1 273 #define BPF_PSEUDO_MAP_VALUE 2 274 275 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative 276 * offset to another bpf function 277 */ 278 #define BPF_PSEUDO_CALL 1 279 280 /* flags for BPF_MAP_UPDATE_ELEM command */ 281 #define BPF_ANY 0 /* create new element or update existing */ 282 #define BPF_NOEXIST 1 /* create new element if it didn't exist */ 283 #define BPF_EXIST 2 /* update existing element */ 284 #define BPF_F_LOCK 4 /* spin_lock-ed map_lookup/map_update */ 285 286 /* flags for BPF_MAP_CREATE command */ 287 #define BPF_F_NO_PREALLOC (1U << 0) 288 /* Instead of having one common LRU list in the 289 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list 290 * which can scale and perform better. 291 * Note, the LRU nodes (including free nodes) cannot be moved 292 * across different LRU lists. 293 */ 294 #define BPF_F_NO_COMMON_LRU (1U << 1) 295 /* Specify numa node during map creation */ 296 #define BPF_F_NUMA_NODE (1U << 2) 297 298 #define BPF_OBJ_NAME_LEN 16U 299 300 /* Flags for accessing BPF object from syscall side. */ 301 #define BPF_F_RDONLY (1U << 3) 302 #define BPF_F_WRONLY (1U << 4) 303 304 /* Flag for stack_map, store build_id+offset instead of pointer */ 305 #define BPF_F_STACK_BUILD_ID (1U << 5) 306 307 /* Zero-initialize hash function seed. This should only be used for testing. */ 308 #define BPF_F_ZERO_SEED (1U << 6) 309 310 /* Flags for accessing BPF object from program side. */ 311 #define BPF_F_RDONLY_PROG (1U << 7) 312 #define BPF_F_WRONLY_PROG (1U << 8) 313 314 /* flags for BPF_PROG_QUERY */ 315 #define BPF_F_QUERY_EFFECTIVE (1U << 0) 316 317 enum bpf_stack_build_id_status { 318 /* user space need an empty entry to identify end of a trace */ 319 BPF_STACK_BUILD_ID_EMPTY = 0, 320 /* with valid build_id and offset */ 321 BPF_STACK_BUILD_ID_VALID = 1, 322 /* couldn't get build_id, fallback to ip */ 323 BPF_STACK_BUILD_ID_IP = 2, 324 }; 325 326 #define BPF_BUILD_ID_SIZE 20 327 struct bpf_stack_build_id { 328 __s32 status; 329 unsigned char build_id[BPF_BUILD_ID_SIZE]; 330 union { 331 __u64 offset; 332 __u64 ip; 333 }; 334 }; 335 336 union bpf_attr { 337 struct { /* anonymous struct used by BPF_MAP_CREATE command */ 338 __u32 map_type; /* one of enum bpf_map_type */ 339 __u32 key_size; /* size of key in bytes */ 340 __u32 value_size; /* size of value in bytes */ 341 __u32 max_entries; /* max number of entries in a map */ 342 __u32 map_flags; /* BPF_MAP_CREATE related 343 * flags defined above. 344 */ 345 __u32 inner_map_fd; /* fd pointing to the inner map */ 346 __u32 numa_node; /* numa node (effective only if 347 * BPF_F_NUMA_NODE is set). 348 */ 349 char map_name[BPF_OBJ_NAME_LEN]; 350 __u32 map_ifindex; /* ifindex of netdev to create on */ 351 __u32 btf_fd; /* fd pointing to a BTF type data */ 352 __u32 btf_key_type_id; /* BTF type_id of the key */ 353 __u32 btf_value_type_id; /* BTF type_id of the value */ 354 }; 355 356 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */ 357 __u32 map_fd; 358 __aligned_u64 key; 359 union { 360 __aligned_u64 value; 361 __aligned_u64 next_key; 362 }; 363 __u64 flags; 364 }; 365 366 struct { /* anonymous struct used by BPF_PROG_LOAD command */ 367 __u32 prog_type; /* one of enum bpf_prog_type */ 368 __u32 insn_cnt; 369 __aligned_u64 insns; 370 __aligned_u64 license; 371 __u32 log_level; /* verbosity level of verifier */ 372 __u32 log_size; /* size of user buffer */ 373 __aligned_u64 log_buf; /* user supplied buffer */ 374 __u32 kern_version; /* not used */ 375 __u32 prog_flags; 376 char prog_name[BPF_OBJ_NAME_LEN]; 377 __u32 prog_ifindex; /* ifindex of netdev to prep for */ 378 /* For some prog types expected attach type must be known at 379 * load time to verify attach type specific parts of prog 380 * (context accesses, allowed helpers, etc). 381 */ 382 __u32 expected_attach_type; 383 __u32 prog_btf_fd; /* fd pointing to BTF type data */ 384 __u32 func_info_rec_size; /* userspace bpf_func_info size */ 385 __aligned_u64 func_info; /* func info */ 386 __u32 func_info_cnt; /* number of bpf_func_info records */ 387 __u32 line_info_rec_size; /* userspace bpf_line_info size */ 388 __aligned_u64 line_info; /* line info */ 389 __u32 line_info_cnt; /* number of bpf_line_info records */ 390 }; 391 392 struct { /* anonymous struct used by BPF_OBJ_* commands */ 393 __aligned_u64 pathname; 394 __u32 bpf_fd; 395 __u32 file_flags; 396 }; 397 398 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */ 399 __u32 target_fd; /* container object to attach to */ 400 __u32 attach_bpf_fd; /* eBPF program to attach */ 401 __u32 attach_type; 402 __u32 attach_flags; 403 }; 404 405 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */ 406 __u32 prog_fd; 407 __u32 retval; 408 __u32 data_size_in; /* input: len of data_in */ 409 __u32 data_size_out; /* input/output: len of data_out 410 * returns ENOSPC if data_out 411 * is too small. 412 */ 413 __aligned_u64 data_in; 414 __aligned_u64 data_out; 415 __u32 repeat; 416 __u32 duration; 417 __u32 ctx_size_in; /* input: len of ctx_in */ 418 __u32 ctx_size_out; /* input/output: len of ctx_out 419 * returns ENOSPC if ctx_out 420 * is too small. 421 */ 422 __aligned_u64 ctx_in; 423 __aligned_u64 ctx_out; 424 } test; 425 426 struct { /* anonymous struct used by BPF_*_GET_*_ID */ 427 union { 428 __u32 start_id; 429 __u32 prog_id; 430 __u32 map_id; 431 __u32 btf_id; 432 }; 433 __u32 next_id; 434 __u32 open_flags; 435 }; 436 437 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */ 438 __u32 bpf_fd; 439 __u32 info_len; 440 __aligned_u64 info; 441 } info; 442 443 struct { /* anonymous struct used by BPF_PROG_QUERY command */ 444 __u32 target_fd; /* container object to query */ 445 __u32 attach_type; 446 __u32 query_flags; 447 __u32 attach_flags; 448 __aligned_u64 prog_ids; 449 __u32 prog_cnt; 450 } query; 451 452 struct { 453 __u64 name; 454 __u32 prog_fd; 455 } raw_tracepoint; 456 457 struct { /* anonymous struct for BPF_BTF_LOAD */ 458 __aligned_u64 btf; 459 __aligned_u64 btf_log_buf; 460 __u32 btf_size; 461 __u32 btf_log_size; 462 __u32 btf_log_level; 463 }; 464 465 struct { 466 __u32 pid; /* input: pid */ 467 __u32 fd; /* input: fd */ 468 __u32 flags; /* input: flags */ 469 __u32 buf_len; /* input/output: buf len */ 470 __aligned_u64 buf; /* input/output: 471 * tp_name for tracepoint 472 * symbol for kprobe 473 * filename for uprobe 474 */ 475 __u32 prog_id; /* output: prod_id */ 476 __u32 fd_type; /* output: BPF_FD_TYPE_* */ 477 __u64 probe_offset; /* output: probe_offset */ 478 __u64 probe_addr; /* output: probe_addr */ 479 } task_fd_query; 480 } __attribute__((aligned(8))); 481 482 /* The description below is an attempt at providing documentation to eBPF 483 * developers about the multiple available eBPF helper functions. It can be 484 * parsed and used to produce a manual page. The workflow is the following, 485 * and requires the rst2man utility: 486 * 487 * $ ./scripts/bpf_helpers_doc.py \ 488 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst 489 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7 490 * $ man /tmp/bpf-helpers.7 491 * 492 * Note that in order to produce this external documentation, some RST 493 * formatting is used in the descriptions to get "bold" and "italics" in 494 * manual pages. Also note that the few trailing white spaces are 495 * intentional, removing them would break paragraphs for rst2man. 496 * 497 * Start of BPF helper function descriptions: 498 * 499 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key) 500 * Description 501 * Perform a lookup in *map* for an entry associated to *key*. 502 * Return 503 * Map value associated to *key*, or **NULL** if no entry was 504 * found. 505 * 506 * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags) 507 * Description 508 * Add or update the value of the entry associated to *key* in 509 * *map* with *value*. *flags* is one of: 510 * 511 * **BPF_NOEXIST** 512 * The entry for *key* must not exist in the map. 513 * **BPF_EXIST** 514 * The entry for *key* must already exist in the map. 515 * **BPF_ANY** 516 * No condition on the existence of the entry for *key*. 517 * 518 * Flag value **BPF_NOEXIST** cannot be used for maps of types 519 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all 520 * elements always exist), the helper would return an error. 521 * Return 522 * 0 on success, or a negative error in case of failure. 523 * 524 * int bpf_map_delete_elem(struct bpf_map *map, const void *key) 525 * Description 526 * Delete entry with *key* from *map*. 527 * Return 528 * 0 on success, or a negative error in case of failure. 529 * 530 * int bpf_probe_read(void *dst, u32 size, const void *src) 531 * Description 532 * For tracing programs, safely attempt to read *size* bytes from 533 * address *src* and store the data in *dst*. 534 * Return 535 * 0 on success, or a negative error in case of failure. 536 * 537 * u64 bpf_ktime_get_ns(void) 538 * Description 539 * Return the time elapsed since system boot, in nanoseconds. 540 * Return 541 * Current *ktime*. 542 * 543 * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...) 544 * Description 545 * This helper is a "printk()-like" facility for debugging. It 546 * prints a message defined by format *fmt* (of size *fmt_size*) 547 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if 548 * available. It can take up to three additional **u64** 549 * arguments (as an eBPF helpers, the total number of arguments is 550 * limited to five). 551 * 552 * Each time the helper is called, it appends a line to the trace. 553 * The format of the trace is customizable, and the exact output 554 * one will get depends on the options set in 555 * *\/sys/kernel/debug/tracing/trace_options* (see also the 556 * *README* file under the same directory). However, it usually 557 * defaults to something like: 558 * 559 * :: 560 * 561 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg> 562 * 563 * In the above: 564 * 565 * * ``telnet`` is the name of the current task. 566 * * ``470`` is the PID of the current task. 567 * * ``001`` is the CPU number on which the task is 568 * running. 569 * * In ``.N..``, each character refers to a set of 570 * options (whether irqs are enabled, scheduling 571 * options, whether hard/softirqs are running, level of 572 * preempt_disabled respectively). **N** means that 573 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED** 574 * are set. 575 * * ``419421.045894`` is a timestamp. 576 * * ``0x00000001`` is a fake value used by BPF for the 577 * instruction pointer register. 578 * * ``<formatted msg>`` is the message formatted with 579 * *fmt*. 580 * 581 * The conversion specifiers supported by *fmt* are similar, but 582 * more limited than for printk(). They are **%d**, **%i**, 583 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**, 584 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size 585 * of field, padding with zeroes, etc.) is available, and the 586 * helper will return **-EINVAL** (but print nothing) if it 587 * encounters an unknown specifier. 588 * 589 * Also, note that **bpf_trace_printk**\ () is slow, and should 590 * only be used for debugging purposes. For this reason, a notice 591 * bloc (spanning several lines) is printed to kernel logs and 592 * states that the helper should not be used "for production use" 593 * the first time this helper is used (or more precisely, when 594 * **trace_printk**\ () buffers are allocated). For passing values 595 * to user space, perf events should be preferred. 596 * Return 597 * The number of bytes written to the buffer, or a negative error 598 * in case of failure. 599 * 600 * u32 bpf_get_prandom_u32(void) 601 * Description 602 * Get a pseudo-random number. 603 * 604 * From a security point of view, this helper uses its own 605 * pseudo-random internal state, and cannot be used to infer the 606 * seed of other random functions in the kernel. However, it is 607 * essential to note that the generator used by the helper is not 608 * cryptographically secure. 609 * Return 610 * A random 32-bit unsigned value. 611 * 612 * u32 bpf_get_smp_processor_id(void) 613 * Description 614 * Get the SMP (symmetric multiprocessing) processor id. Note that 615 * all programs run with preemption disabled, which means that the 616 * SMP processor id is stable during all the execution of the 617 * program. 618 * Return 619 * The SMP id of the processor running the program. 620 * 621 * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags) 622 * Description 623 * Store *len* bytes from address *from* into the packet 624 * associated to *skb*, at *offset*. *flags* are a combination of 625 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the 626 * checksum for the packet after storing the bytes) and 627 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\ 628 * **->swhash** and *skb*\ **->l4hash** to 0). 629 * 630 * A call to this helper is susceptible to change the underlaying 631 * packet buffer. Therefore, at load time, all checks on pointers 632 * previously done by the verifier are invalidated and must be 633 * performed again, if the helper is used in combination with 634 * direct packet access. 635 * Return 636 * 0 on success, or a negative error in case of failure. 637 * 638 * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size) 639 * Description 640 * Recompute the layer 3 (e.g. IP) checksum for the packet 641 * associated to *skb*. Computation is incremental, so the helper 642 * must know the former value of the header field that was 643 * modified (*from*), the new value of this field (*to*), and the 644 * number of bytes (2 or 4) for this field, stored in *size*. 645 * Alternatively, it is possible to store the difference between 646 * the previous and the new values of the header field in *to*, by 647 * setting *from* and *size* to 0. For both methods, *offset* 648 * indicates the location of the IP checksum within the packet. 649 * 650 * This helper works in combination with **bpf_csum_diff**\ (), 651 * which does not update the checksum in-place, but offers more 652 * flexibility and can handle sizes larger than 2 or 4 for the 653 * checksum to update. 654 * 655 * A call to this helper is susceptible to change the underlaying 656 * packet buffer. Therefore, at load time, all checks on pointers 657 * previously done by the verifier are invalidated and must be 658 * performed again, if the helper is used in combination with 659 * direct packet access. 660 * Return 661 * 0 on success, or a negative error in case of failure. 662 * 663 * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags) 664 * Description 665 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the 666 * packet associated to *skb*. Computation is incremental, so the 667 * helper must know the former value of the header field that was 668 * modified (*from*), the new value of this field (*to*), and the 669 * number of bytes (2 or 4) for this field, stored on the lowest 670 * four bits of *flags*. Alternatively, it is possible to store 671 * the difference between the previous and the new values of the 672 * header field in *to*, by setting *from* and the four lowest 673 * bits of *flags* to 0. For both methods, *offset* indicates the 674 * location of the IP checksum within the packet. In addition to 675 * the size of the field, *flags* can be added (bitwise OR) actual 676 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left 677 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and 678 * for updates resulting in a null checksum the value is set to 679 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates 680 * the checksum is to be computed against a pseudo-header. 681 * 682 * This helper works in combination with **bpf_csum_diff**\ (), 683 * which does not update the checksum in-place, but offers more 684 * flexibility and can handle sizes larger than 2 or 4 for the 685 * checksum to update. 686 * 687 * A call to this helper is susceptible to change the underlaying 688 * packet buffer. Therefore, at load time, all checks on pointers 689 * previously done by the verifier are invalidated and must be 690 * performed again, if the helper is used in combination with 691 * direct packet access. 692 * Return 693 * 0 on success, or a negative error in case of failure. 694 * 695 * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index) 696 * Description 697 * This special helper is used to trigger a "tail call", or in 698 * other words, to jump into another eBPF program. The same stack 699 * frame is used (but values on stack and in registers for the 700 * caller are not accessible to the callee). This mechanism allows 701 * for program chaining, either for raising the maximum number of 702 * available eBPF instructions, or to execute given programs in 703 * conditional blocks. For security reasons, there is an upper 704 * limit to the number of successive tail calls that can be 705 * performed. 706 * 707 * Upon call of this helper, the program attempts to jump into a 708 * program referenced at index *index* in *prog_array_map*, a 709 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes 710 * *ctx*, a pointer to the context. 711 * 712 * If the call succeeds, the kernel immediately runs the first 713 * instruction of the new program. This is not a function call, 714 * and it never returns to the previous program. If the call 715 * fails, then the helper has no effect, and the caller continues 716 * to run its subsequent instructions. A call can fail if the 717 * destination program for the jump does not exist (i.e. *index* 718 * is superior to the number of entries in *prog_array_map*), or 719 * if the maximum number of tail calls has been reached for this 720 * chain of programs. This limit is defined in the kernel by the 721 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space), 722 * which is currently set to 32. 723 * Return 724 * 0 on success, or a negative error in case of failure. 725 * 726 * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags) 727 * Description 728 * Clone and redirect the packet associated to *skb* to another 729 * net device of index *ifindex*. Both ingress and egress 730 * interfaces can be used for redirection. The **BPF_F_INGRESS** 731 * value in *flags* is used to make the distinction (ingress path 732 * is selected if the flag is present, egress path otherwise). 733 * This is the only flag supported for now. 734 * 735 * In comparison with **bpf_redirect**\ () helper, 736 * **bpf_clone_redirect**\ () has the associated cost of 737 * duplicating the packet buffer, but this can be executed out of 738 * the eBPF program. Conversely, **bpf_redirect**\ () is more 739 * efficient, but it is handled through an action code where the 740 * redirection happens only after the eBPF program has returned. 741 * 742 * A call to this helper is susceptible to change the underlaying 743 * packet buffer. Therefore, at load time, all checks on pointers 744 * previously done by the verifier are invalidated and must be 745 * performed again, if the helper is used in combination with 746 * direct packet access. 747 * Return 748 * 0 on success, or a negative error in case of failure. 749 * 750 * u64 bpf_get_current_pid_tgid(void) 751 * Return 752 * A 64-bit integer containing the current tgid and pid, and 753 * created as such: 754 * *current_task*\ **->tgid << 32 \|** 755 * *current_task*\ **->pid**. 756 * 757 * u64 bpf_get_current_uid_gid(void) 758 * Return 759 * A 64-bit integer containing the current GID and UID, and 760 * created as such: *current_gid* **<< 32 \|** *current_uid*. 761 * 762 * int bpf_get_current_comm(char *buf, u32 size_of_buf) 763 * Description 764 * Copy the **comm** attribute of the current task into *buf* of 765 * *size_of_buf*. The **comm** attribute contains the name of 766 * the executable (excluding the path) for the current task. The 767 * *size_of_buf* must be strictly positive. On success, the 768 * helper makes sure that the *buf* is NUL-terminated. On failure, 769 * it is filled with zeroes. 770 * Return 771 * 0 on success, or a negative error in case of failure. 772 * 773 * u32 bpf_get_cgroup_classid(struct sk_buff *skb) 774 * Description 775 * Retrieve the classid for the current task, i.e. for the net_cls 776 * cgroup to which *skb* belongs. 777 * 778 * This helper can be used on TC egress path, but not on ingress. 779 * 780 * The net_cls cgroup provides an interface to tag network packets 781 * based on a user-provided identifier for all traffic coming from 782 * the tasks belonging to the related cgroup. See also the related 783 * kernel documentation, available from the Linux sources in file 784 * *Documentation/cgroup-v1/net_cls.txt*. 785 * 786 * The Linux kernel has two versions for cgroups: there are 787 * cgroups v1 and cgroups v2. Both are available to users, who can 788 * use a mixture of them, but note that the net_cls cgroup is for 789 * cgroup v1 only. This makes it incompatible with BPF programs 790 * run on cgroups, which is a cgroup-v2-only feature (a socket can 791 * only hold data for one version of cgroups at a time). 792 * 793 * This helper is only available is the kernel was compiled with 794 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to 795 * "**y**" or to "**m**". 796 * Return 797 * The classid, or 0 for the default unconfigured classid. 798 * 799 * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 800 * Description 801 * Push a *vlan_tci* (VLAN tag control information) of protocol 802 * *vlan_proto* to the packet associated to *skb*, then update 803 * the checksum. Note that if *vlan_proto* is different from 804 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to 805 * be **ETH_P_8021Q**. 806 * 807 * A call to this helper is susceptible to change the underlaying 808 * packet buffer. Therefore, at load time, all checks on pointers 809 * previously done by the verifier are invalidated and must be 810 * performed again, if the helper is used in combination with 811 * direct packet access. 812 * Return 813 * 0 on success, or a negative error in case of failure. 814 * 815 * int bpf_skb_vlan_pop(struct sk_buff *skb) 816 * Description 817 * Pop a VLAN header from the packet associated to *skb*. 818 * 819 * A call to this helper is susceptible to change the underlaying 820 * packet buffer. Therefore, at load time, all checks on pointers 821 * previously done by the verifier are invalidated and must be 822 * performed again, if the helper is used in combination with 823 * direct packet access. 824 * Return 825 * 0 on success, or a negative error in case of failure. 826 * 827 * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 828 * Description 829 * Get tunnel metadata. This helper takes a pointer *key* to an 830 * empty **struct bpf_tunnel_key** of **size**, that will be 831 * filled with tunnel metadata for the packet associated to *skb*. 832 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which 833 * indicates that the tunnel is based on IPv6 protocol instead of 834 * IPv4. 835 * 836 * The **struct bpf_tunnel_key** is an object that generalizes the 837 * principal parameters used by various tunneling protocols into a 838 * single struct. This way, it can be used to easily make a 839 * decision based on the contents of the encapsulation header, 840 * "summarized" in this struct. In particular, it holds the IP 841 * address of the remote end (IPv4 or IPv6, depending on the case) 842 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also, 843 * this struct exposes the *key*\ **->tunnel_id**, which is 844 * generally mapped to a VNI (Virtual Network Identifier), making 845 * it programmable together with the **bpf_skb_set_tunnel_key**\ 846 * () helper. 847 * 848 * Let's imagine that the following code is part of a program 849 * attached to the TC ingress interface, on one end of a GRE 850 * tunnel, and is supposed to filter out all messages coming from 851 * remote ends with IPv4 address other than 10.0.0.1: 852 * 853 * :: 854 * 855 * int ret; 856 * struct bpf_tunnel_key key = {}; 857 * 858 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0); 859 * if (ret < 0) 860 * return TC_ACT_SHOT; // drop packet 861 * 862 * if (key.remote_ipv4 != 0x0a000001) 863 * return TC_ACT_SHOT; // drop packet 864 * 865 * return TC_ACT_OK; // accept packet 866 * 867 * This interface can also be used with all encapsulation devices 868 * that can operate in "collect metadata" mode: instead of having 869 * one network device per specific configuration, the "collect 870 * metadata" mode only requires a single device where the 871 * configuration can be extracted from this helper. 872 * 873 * This can be used together with various tunnels such as VXLan, 874 * Geneve, GRE or IP in IP (IPIP). 875 * Return 876 * 0 on success, or a negative error in case of failure. 877 * 878 * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 879 * Description 880 * Populate tunnel metadata for packet associated to *skb.* The 881 * tunnel metadata is set to the contents of *key*, of *size*. The 882 * *flags* can be set to a combination of the following values: 883 * 884 * **BPF_F_TUNINFO_IPV6** 885 * Indicate that the tunnel is based on IPv6 protocol 886 * instead of IPv4. 887 * **BPF_F_ZERO_CSUM_TX** 888 * For IPv4 packets, add a flag to tunnel metadata 889 * indicating that checksum computation should be skipped 890 * and checksum set to zeroes. 891 * **BPF_F_DONT_FRAGMENT** 892 * Add a flag to tunnel metadata indicating that the 893 * packet should not be fragmented. 894 * **BPF_F_SEQ_NUMBER** 895 * Add a flag to tunnel metadata indicating that a 896 * sequence number should be added to tunnel header before 897 * sending the packet. This flag was added for GRE 898 * encapsulation, but might be used with other protocols 899 * as well in the future. 900 * 901 * Here is a typical usage on the transmit path: 902 * 903 * :: 904 * 905 * struct bpf_tunnel_key key; 906 * populate key ... 907 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0); 908 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0); 909 * 910 * See also the description of the **bpf_skb_get_tunnel_key**\ () 911 * helper for additional information. 912 * Return 913 * 0 on success, or a negative error in case of failure. 914 * 915 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags) 916 * Description 917 * Read the value of a perf event counter. This helper relies on a 918 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of 919 * the perf event counter is selected when *map* is updated with 920 * perf event file descriptors. The *map* is an array whose size 921 * is the number of available CPUs, and each cell contains a value 922 * relative to one CPU. The value to retrieve is indicated by 923 * *flags*, that contains the index of the CPU to look up, masked 924 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 925 * **BPF_F_CURRENT_CPU** to indicate that the value for the 926 * current CPU should be retrieved. 927 * 928 * Note that before Linux 4.13, only hardware perf event can be 929 * retrieved. 930 * 931 * Also, be aware that the newer helper 932 * **bpf_perf_event_read_value**\ () is recommended over 933 * **bpf_perf_event_read**\ () in general. The latter has some ABI 934 * quirks where error and counter value are used as a return code 935 * (which is wrong to do since ranges may overlap). This issue is 936 * fixed with **bpf_perf_event_read_value**\ (), which at the same 937 * time provides more features over the **bpf_perf_event_read**\ 938 * () interface. Please refer to the description of 939 * **bpf_perf_event_read_value**\ () for details. 940 * Return 941 * The value of the perf event counter read from the map, or a 942 * negative error code in case of failure. 943 * 944 * int bpf_redirect(u32 ifindex, u64 flags) 945 * Description 946 * Redirect the packet to another net device of index *ifindex*. 947 * This helper is somewhat similar to **bpf_clone_redirect**\ 948 * (), except that the packet is not cloned, which provides 949 * increased performance. 950 * 951 * Except for XDP, both ingress and egress interfaces can be used 952 * for redirection. The **BPF_F_INGRESS** value in *flags* is used 953 * to make the distinction (ingress path is selected if the flag 954 * is present, egress path otherwise). Currently, XDP only 955 * supports redirection to the egress interface, and accepts no 956 * flag at all. 957 * 958 * The same effect can be attained with the more generic 959 * **bpf_redirect_map**\ (), which requires specific maps to be 960 * used but offers better performance. 961 * Return 962 * For XDP, the helper returns **XDP_REDIRECT** on success or 963 * **XDP_ABORTED** on error. For other program types, the values 964 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on 965 * error. 966 * 967 * u32 bpf_get_route_realm(struct sk_buff *skb) 968 * Description 969 * Retrieve the realm or the route, that is to say the 970 * **tclassid** field of the destination for the *skb*. The 971 * indentifier retrieved is a user-provided tag, similar to the 972 * one used with the net_cls cgroup (see description for 973 * **bpf_get_cgroup_classid**\ () helper), but here this tag is 974 * held by a route (a destination entry), not by a task. 975 * 976 * Retrieving this identifier works with the clsact TC egress hook 977 * (see also **tc-bpf(8)**), or alternatively on conventional 978 * classful egress qdiscs, but not on TC ingress path. In case of 979 * clsact TC egress hook, this has the advantage that, internally, 980 * the destination entry has not been dropped yet in the transmit 981 * path. Therefore, the destination entry does not need to be 982 * artificially held via **netif_keep_dst**\ () for a classful 983 * qdisc until the *skb* is freed. 984 * 985 * This helper is available only if the kernel was compiled with 986 * **CONFIG_IP_ROUTE_CLASSID** configuration option. 987 * Return 988 * The realm of the route for the packet associated to *skb*, or 0 989 * if none was found. 990 * 991 * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 992 * Description 993 * Write raw *data* blob into a special BPF perf event held by 994 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 995 * event must have the following attributes: **PERF_SAMPLE_RAW** 996 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 997 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 998 * 999 * The *flags* are used to indicate the index in *map* for which 1000 * the value must be put, masked with **BPF_F_INDEX_MASK**. 1001 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 1002 * to indicate that the index of the current CPU core should be 1003 * used. 1004 * 1005 * The value to write, of *size*, is passed through eBPF stack and 1006 * pointed by *data*. 1007 * 1008 * The context of the program *ctx* needs also be passed to the 1009 * helper. 1010 * 1011 * On user space, a program willing to read the values needs to 1012 * call **perf_event_open**\ () on the perf event (either for 1013 * one or for all CPUs) and to store the file descriptor into the 1014 * *map*. This must be done before the eBPF program can send data 1015 * into it. An example is available in file 1016 * *samples/bpf/trace_output_user.c* in the Linux kernel source 1017 * tree (the eBPF program counterpart is in 1018 * *samples/bpf/trace_output_kern.c*). 1019 * 1020 * **bpf_perf_event_output**\ () achieves better performance 1021 * than **bpf_trace_printk**\ () for sharing data with user 1022 * space, and is much better suitable for streaming data from eBPF 1023 * programs. 1024 * 1025 * Note that this helper is not restricted to tracing use cases 1026 * and can be used with programs attached to TC or XDP as well, 1027 * where it allows for passing data to user space listeners. Data 1028 * can be: 1029 * 1030 * * Only custom structs, 1031 * * Only the packet payload, or 1032 * * A combination of both. 1033 * Return 1034 * 0 on success, or a negative error in case of failure. 1035 * 1036 * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len) 1037 * Description 1038 * This helper was provided as an easy way to load data from a 1039 * packet. It can be used to load *len* bytes from *offset* from 1040 * the packet associated to *skb*, into the buffer pointed by 1041 * *to*. 1042 * 1043 * Since Linux 4.7, usage of this helper has mostly been replaced 1044 * by "direct packet access", enabling packet data to be 1045 * manipulated with *skb*\ **->data** and *skb*\ **->data_end** 1046 * pointing respectively to the first byte of packet data and to 1047 * the byte after the last byte of packet data. However, it 1048 * remains useful if one wishes to read large quantities of data 1049 * at once from a packet into the eBPF stack. 1050 * Return 1051 * 0 on success, or a negative error in case of failure. 1052 * 1053 * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags) 1054 * Description 1055 * Walk a user or a kernel stack and return its id. To achieve 1056 * this, the helper needs *ctx*, which is a pointer to the context 1057 * on which the tracing program is executed, and a pointer to a 1058 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**. 1059 * 1060 * The last argument, *flags*, holds the number of stack frames to 1061 * skip (from 0 to 255), masked with 1062 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1063 * a combination of the following flags: 1064 * 1065 * **BPF_F_USER_STACK** 1066 * Collect a user space stack instead of a kernel stack. 1067 * **BPF_F_FAST_STACK_CMP** 1068 * Compare stacks by hash only. 1069 * **BPF_F_REUSE_STACKID** 1070 * If two different stacks hash into the same *stackid*, 1071 * discard the old one. 1072 * 1073 * The stack id retrieved is a 32 bit long integer handle which 1074 * can be further combined with other data (including other stack 1075 * ids) and used as a key into maps. This can be useful for 1076 * generating a variety of graphs (such as flame graphs or off-cpu 1077 * graphs). 1078 * 1079 * For walking a stack, this helper is an improvement over 1080 * **bpf_probe_read**\ (), which can be used with unrolled loops 1081 * but is not efficient and consumes a lot of eBPF instructions. 1082 * Instead, **bpf_get_stackid**\ () can collect up to 1083 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that 1084 * this limit can be controlled with the **sysctl** program, and 1085 * that it should be manually increased in order to profile long 1086 * user stacks (such as stacks for Java programs). To do so, use: 1087 * 1088 * :: 1089 * 1090 * # sysctl kernel.perf_event_max_stack=<new value> 1091 * Return 1092 * The positive or null stack id on success, or a negative error 1093 * in case of failure. 1094 * 1095 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed) 1096 * Description 1097 * Compute a checksum difference, from the raw buffer pointed by 1098 * *from*, of length *from_size* (that must be a multiple of 4), 1099 * towards the raw buffer pointed by *to*, of size *to_size* 1100 * (same remark). An optional *seed* can be added to the value 1101 * (this can be cascaded, the seed may come from a previous call 1102 * to the helper). 1103 * 1104 * This is flexible enough to be used in several ways: 1105 * 1106 * * With *from_size* == 0, *to_size* > 0 and *seed* set to 1107 * checksum, it can be used when pushing new data. 1108 * * With *from_size* > 0, *to_size* == 0 and *seed* set to 1109 * checksum, it can be used when removing data from a packet. 1110 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it 1111 * can be used to compute a diff. Note that *from_size* and 1112 * *to_size* do not need to be equal. 1113 * 1114 * This helper can be used in combination with 1115 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to 1116 * which one can feed in the difference computed with 1117 * **bpf_csum_diff**\ (). 1118 * Return 1119 * The checksum result, or a negative error code in case of 1120 * failure. 1121 * 1122 * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1123 * Description 1124 * Retrieve tunnel options metadata for the packet associated to 1125 * *skb*, and store the raw tunnel option data to the buffer *opt* 1126 * of *size*. 1127 * 1128 * This helper can be used with encapsulation devices that can 1129 * operate in "collect metadata" mode (please refer to the related 1130 * note in the description of **bpf_skb_get_tunnel_key**\ () for 1131 * more details). A particular example where this can be used is 1132 * in combination with the Geneve encapsulation protocol, where it 1133 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper) 1134 * and retrieving arbitrary TLVs (Type-Length-Value headers) from 1135 * the eBPF program. This allows for full customization of these 1136 * headers. 1137 * Return 1138 * The size of the option data retrieved. 1139 * 1140 * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1141 * Description 1142 * Set tunnel options metadata for the packet associated to *skb* 1143 * to the option data contained in the raw buffer *opt* of *size*. 1144 * 1145 * See also the description of the **bpf_skb_get_tunnel_opt**\ () 1146 * helper for additional information. 1147 * Return 1148 * 0 on success, or a negative error in case of failure. 1149 * 1150 * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags) 1151 * Description 1152 * Change the protocol of the *skb* to *proto*. Currently 1153 * supported are transition from IPv4 to IPv6, and from IPv6 to 1154 * IPv4. The helper takes care of the groundwork for the 1155 * transition, including resizing the socket buffer. The eBPF 1156 * program is expected to fill the new headers, if any, via 1157 * **skb_store_bytes**\ () and to recompute the checksums with 1158 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ 1159 * (). The main case for this helper is to perform NAT64 1160 * operations out of an eBPF program. 1161 * 1162 * Internally, the GSO type is marked as dodgy so that headers are 1163 * checked and segments are recalculated by the GSO/GRO engine. 1164 * The size for GSO target is adapted as well. 1165 * 1166 * All values for *flags* are reserved for future usage, and must 1167 * be left at zero. 1168 * 1169 * A call to this helper is susceptible to change the underlaying 1170 * packet buffer. Therefore, at load time, all checks on pointers 1171 * previously done by the verifier are invalidated and must be 1172 * performed again, if the helper is used in combination with 1173 * direct packet access. 1174 * Return 1175 * 0 on success, or a negative error in case of failure. 1176 * 1177 * int bpf_skb_change_type(struct sk_buff *skb, u32 type) 1178 * Description 1179 * Change the packet type for the packet associated to *skb*. This 1180 * comes down to setting *skb*\ **->pkt_type** to *type*, except 1181 * the eBPF program does not have a write access to *skb*\ 1182 * **->pkt_type** beside this helper. Using a helper here allows 1183 * for graceful handling of errors. 1184 * 1185 * The major use case is to change incoming *skb*s to 1186 * **PACKET_HOST** in a programmatic way instead of having to 1187 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for 1188 * example. 1189 * 1190 * Note that *type* only allows certain values. At this time, they 1191 * are: 1192 * 1193 * **PACKET_HOST** 1194 * Packet is for us. 1195 * **PACKET_BROADCAST** 1196 * Send packet to all. 1197 * **PACKET_MULTICAST** 1198 * Send packet to group. 1199 * **PACKET_OTHERHOST** 1200 * Send packet to someone else. 1201 * Return 1202 * 0 on success, or a negative error in case of failure. 1203 * 1204 * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index) 1205 * Description 1206 * Check whether *skb* is a descendant of the cgroup2 held by 1207 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1208 * Return 1209 * The return value depends on the result of the test, and can be: 1210 * 1211 * * 0, if the *skb* failed the cgroup2 descendant test. 1212 * * 1, if the *skb* succeeded the cgroup2 descendant test. 1213 * * A negative error code, if an error occurred. 1214 * 1215 * u32 bpf_get_hash_recalc(struct sk_buff *skb) 1216 * Description 1217 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is 1218 * not set, in particular if the hash was cleared due to mangling, 1219 * recompute this hash. Later accesses to the hash can be done 1220 * directly with *skb*\ **->hash**. 1221 * 1222 * Calling **bpf_set_hash_invalid**\ (), changing a packet 1223 * prototype with **bpf_skb_change_proto**\ (), or calling 1224 * **bpf_skb_store_bytes**\ () with the 1225 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear 1226 * the hash and to trigger a new computation for the next call to 1227 * **bpf_get_hash_recalc**\ (). 1228 * Return 1229 * The 32-bit hash. 1230 * 1231 * u64 bpf_get_current_task(void) 1232 * Return 1233 * A pointer to the current task struct. 1234 * 1235 * int bpf_probe_write_user(void *dst, const void *src, u32 len) 1236 * Description 1237 * Attempt in a safe way to write *len* bytes from the buffer 1238 * *src* to *dst* in memory. It only works for threads that are in 1239 * user context, and *dst* must be a valid user space address. 1240 * 1241 * This helper should not be used to implement any kind of 1242 * security mechanism because of TOC-TOU attacks, but rather to 1243 * debug, divert, and manipulate execution of semi-cooperative 1244 * processes. 1245 * 1246 * Keep in mind that this feature is meant for experiments, and it 1247 * has a risk of crashing the system and running programs. 1248 * Therefore, when an eBPF program using this helper is attached, 1249 * a warning including PID and process name is printed to kernel 1250 * logs. 1251 * Return 1252 * 0 on success, or a negative error in case of failure. 1253 * 1254 * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index) 1255 * Description 1256 * Check whether the probe is being run is the context of a given 1257 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by 1258 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1259 * Return 1260 * The return value depends on the result of the test, and can be: 1261 * 1262 * * 0, if the *skb* task belongs to the cgroup2. 1263 * * 1, if the *skb* task does not belong to the cgroup2. 1264 * * A negative error code, if an error occurred. 1265 * 1266 * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags) 1267 * Description 1268 * Resize (trim or grow) the packet associated to *skb* to the 1269 * new *len*. The *flags* are reserved for future usage, and must 1270 * be left at zero. 1271 * 1272 * The basic idea is that the helper performs the needed work to 1273 * change the size of the packet, then the eBPF program rewrites 1274 * the rest via helpers like **bpf_skb_store_bytes**\ (), 1275 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ () 1276 * and others. This helper is a slow path utility intended for 1277 * replies with control messages. And because it is targeted for 1278 * slow path, the helper itself can afford to be slow: it 1279 * implicitly linearizes, unclones and drops offloads from the 1280 * *skb*. 1281 * 1282 * A call to this helper is susceptible to change the underlaying 1283 * packet buffer. Therefore, at load time, all checks on pointers 1284 * previously done by the verifier are invalidated and must be 1285 * performed again, if the helper is used in combination with 1286 * direct packet access. 1287 * Return 1288 * 0 on success, or a negative error in case of failure. 1289 * 1290 * int bpf_skb_pull_data(struct sk_buff *skb, u32 len) 1291 * Description 1292 * Pull in non-linear data in case the *skb* is non-linear and not 1293 * all of *len* are part of the linear section. Make *len* bytes 1294 * from *skb* readable and writable. If a zero value is passed for 1295 * *len*, then the whole length of the *skb* is pulled. 1296 * 1297 * This helper is only needed for reading and writing with direct 1298 * packet access. 1299 * 1300 * For direct packet access, testing that offsets to access 1301 * are within packet boundaries (test on *skb*\ **->data_end**) is 1302 * susceptible to fail if offsets are invalid, or if the requested 1303 * data is in non-linear parts of the *skb*. On failure the 1304 * program can just bail out, or in the case of a non-linear 1305 * buffer, use a helper to make the data available. The 1306 * **bpf_skb_load_bytes**\ () helper is a first solution to access 1307 * the data. Another one consists in using **bpf_skb_pull_data** 1308 * to pull in once the non-linear parts, then retesting and 1309 * eventually access the data. 1310 * 1311 * At the same time, this also makes sure the *skb* is uncloned, 1312 * which is a necessary condition for direct write. As this needs 1313 * to be an invariant for the write part only, the verifier 1314 * detects writes and adds a prologue that is calling 1315 * **bpf_skb_pull_data()** to effectively unclone the *skb* from 1316 * the very beginning in case it is indeed cloned. 1317 * 1318 * A call to this helper is susceptible to change the underlaying 1319 * packet buffer. Therefore, at load time, all checks on pointers 1320 * previously done by the verifier are invalidated and must be 1321 * performed again, if the helper is used in combination with 1322 * direct packet access. 1323 * Return 1324 * 0 on success, or a negative error in case of failure. 1325 * 1326 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum) 1327 * Description 1328 * Add the checksum *csum* into *skb*\ **->csum** in case the 1329 * driver has supplied a checksum for the entire packet into that 1330 * field. Return an error otherwise. This helper is intended to be 1331 * used in combination with **bpf_csum_diff**\ (), in particular 1332 * when the checksum needs to be updated after data has been 1333 * written into the packet through direct packet access. 1334 * Return 1335 * The checksum on success, or a negative error code in case of 1336 * failure. 1337 * 1338 * void bpf_set_hash_invalid(struct sk_buff *skb) 1339 * Description 1340 * Invalidate the current *skb*\ **->hash**. It can be used after 1341 * mangling on headers through direct packet access, in order to 1342 * indicate that the hash is outdated and to trigger a 1343 * recalculation the next time the kernel tries to access this 1344 * hash or when the **bpf_get_hash_recalc**\ () helper is called. 1345 * 1346 * int bpf_get_numa_node_id(void) 1347 * Description 1348 * Return the id of the current NUMA node. The primary use case 1349 * for this helper is the selection of sockets for the local NUMA 1350 * node, when the program is attached to sockets using the 1351 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**), 1352 * but the helper is also available to other eBPF program types, 1353 * similarly to **bpf_get_smp_processor_id**\ (). 1354 * Return 1355 * The id of current NUMA node. 1356 * 1357 * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags) 1358 * Description 1359 * Grows headroom of packet associated to *skb* and adjusts the 1360 * offset of the MAC header accordingly, adding *len* bytes of 1361 * space. It automatically extends and reallocates memory as 1362 * required. 1363 * 1364 * This helper can be used on a layer 3 *skb* to push a MAC header 1365 * for redirection into a layer 2 device. 1366 * 1367 * All values for *flags* are reserved for future usage, and must 1368 * be left at zero. 1369 * 1370 * A call to this helper is susceptible to change the underlaying 1371 * packet buffer. Therefore, at load time, all checks on pointers 1372 * previously done by the verifier are invalidated and must be 1373 * performed again, if the helper is used in combination with 1374 * direct packet access. 1375 * Return 1376 * 0 on success, or a negative error in case of failure. 1377 * 1378 * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta) 1379 * Description 1380 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that 1381 * it is possible to use a negative value for *delta*. This helper 1382 * can be used to prepare the packet for pushing or popping 1383 * headers. 1384 * 1385 * A call to this helper is susceptible to change the underlaying 1386 * packet buffer. Therefore, at load time, all checks on pointers 1387 * previously done by the verifier are invalidated and must be 1388 * performed again, if the helper is used in combination with 1389 * direct packet access. 1390 * Return 1391 * 0 on success, or a negative error in case of failure. 1392 * 1393 * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr) 1394 * Description 1395 * Copy a NUL terminated string from an unsafe address 1396 * *unsafe_ptr* to *dst*. The *size* should include the 1397 * terminating NUL byte. In case the string length is smaller than 1398 * *size*, the target is not padded with further NUL bytes. If the 1399 * string length is larger than *size*, just *size*-1 bytes are 1400 * copied and the last byte is set to NUL. 1401 * 1402 * On success, the length of the copied string is returned. This 1403 * makes this helper useful in tracing programs for reading 1404 * strings, and more importantly to get its length at runtime. See 1405 * the following snippet: 1406 * 1407 * :: 1408 * 1409 * SEC("kprobe/sys_open") 1410 * void bpf_sys_open(struct pt_regs *ctx) 1411 * { 1412 * char buf[PATHLEN]; // PATHLEN is defined to 256 1413 * int res = bpf_probe_read_str(buf, sizeof(buf), 1414 * ctx->di); 1415 * 1416 * // Consume buf, for example push it to 1417 * // userspace via bpf_perf_event_output(); we 1418 * // can use res (the string length) as event 1419 * // size, after checking its boundaries. 1420 * } 1421 * 1422 * In comparison, using **bpf_probe_read()** helper here instead 1423 * to read the string would require to estimate the length at 1424 * compile time, and would often result in copying more memory 1425 * than necessary. 1426 * 1427 * Another useful use case is when parsing individual process 1428 * arguments or individual environment variables navigating 1429 * *current*\ **->mm->arg_start** and *current*\ 1430 * **->mm->env_start**: using this helper and the return value, 1431 * one can quickly iterate at the right offset of the memory area. 1432 * Return 1433 * On success, the strictly positive length of the string, 1434 * including the trailing NUL character. On error, a negative 1435 * value. 1436 * 1437 * u64 bpf_get_socket_cookie(struct sk_buff *skb) 1438 * Description 1439 * If the **struct sk_buff** pointed by *skb* has a known socket, 1440 * retrieve the cookie (generated by the kernel) of this socket. 1441 * If no cookie has been set yet, generate a new cookie. Once 1442 * generated, the socket cookie remains stable for the life of the 1443 * socket. This helper can be useful for monitoring per socket 1444 * networking traffic statistics as it provides a unique socket 1445 * identifier per namespace. 1446 * Return 1447 * A 8-byte long non-decreasing number on success, or 0 if the 1448 * socket field is missing inside *skb*. 1449 * 1450 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx) 1451 * Description 1452 * Equivalent to bpf_get_socket_cookie() helper that accepts 1453 * *skb*, but gets socket from **struct bpf_sock_addr** context. 1454 * Return 1455 * A 8-byte long non-decreasing number. 1456 * 1457 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx) 1458 * Description 1459 * Equivalent to bpf_get_socket_cookie() helper that accepts 1460 * *skb*, but gets socket from **struct bpf_sock_ops** context. 1461 * Return 1462 * A 8-byte long non-decreasing number. 1463 * 1464 * u32 bpf_get_socket_uid(struct sk_buff *skb) 1465 * Return 1466 * The owner UID of the socket associated to *skb*. If the socket 1467 * is **NULL**, or if it is not a full socket (i.e. if it is a 1468 * time-wait or a request socket instead), **overflowuid** value 1469 * is returned (note that **overflowuid** might also be the actual 1470 * UID value for the socket). 1471 * 1472 * u32 bpf_set_hash(struct sk_buff *skb, u32 hash) 1473 * Description 1474 * Set the full hash for *skb* (set the field *skb*\ **->hash**) 1475 * to value *hash*. 1476 * Return 1477 * 0 1478 * 1479 * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1480 * Description 1481 * Emulate a call to **setsockopt()** on the socket associated to 1482 * *bpf_socket*, which must be a full socket. The *level* at 1483 * which the option resides and the name *optname* of the option 1484 * must be specified, see **setsockopt(2)** for more information. 1485 * The option value of length *optlen* is pointed by *optval*. 1486 * 1487 * This helper actually implements a subset of **setsockopt()**. 1488 * It supports the following *level*\ s: 1489 * 1490 * * **SOL_SOCKET**, which supports the following *optname*\ s: 1491 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**, 1492 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**. 1493 * * **IPPROTO_TCP**, which supports the following *optname*\ s: 1494 * **TCP_CONGESTION**, **TCP_BPF_IW**, 1495 * **TCP_BPF_SNDCWND_CLAMP**. 1496 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1497 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1498 * Return 1499 * 0 on success, or a negative error in case of failure. 1500 * 1501 * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags) 1502 * Description 1503 * Grow or shrink the room for data in the packet associated to 1504 * *skb* by *len_diff*, and according to the selected *mode*. 1505 * 1506 * There are two supported modes at this time: 1507 * 1508 * * **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer 1509 * (room space is added or removed below the layer 2 header). 1510 * 1511 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer 1512 * (room space is added or removed below the layer 3 header). 1513 * 1514 * The following flags are supported at this time: 1515 * 1516 * * **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size. 1517 * Adjusting mss in this way is not allowed for datagrams. 1518 * 1519 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 **: 1520 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 **: 1521 * Any new space is reserved to hold a tunnel header. 1522 * Configure skb offsets and other fields accordingly. 1523 * 1524 * * **BPF_F_ADJ_ROOM_ENCAP_L4_GRE **: 1525 * * **BPF_F_ADJ_ROOM_ENCAP_L4_UDP **: 1526 * Use with ENCAP_L3 flags to further specify the tunnel type. 1527 * 1528 * * **BPF_F_ADJ_ROOM_ENCAP_L2(len) **: 1529 * Use with ENCAP_L3/L4 flags to further specify the tunnel 1530 * type; **len** is the length of the inner MAC header. 1531 * 1532 * A call to this helper is susceptible to change the underlaying 1533 * packet buffer. Therefore, at load time, all checks on pointers 1534 * previously done by the verifier are invalidated and must be 1535 * performed again, if the helper is used in combination with 1536 * direct packet access. 1537 * Return 1538 * 0 on success, or a negative error in case of failure. 1539 * 1540 * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1541 * Description 1542 * Redirect the packet to the endpoint referenced by *map* at 1543 * index *key*. Depending on its type, this *map* can contain 1544 * references to net devices (for forwarding packets through other 1545 * ports), or to CPUs (for redirecting XDP frames to another CPU; 1546 * but this is only implemented for native XDP (with driver 1547 * support) as of this writing). 1548 * 1549 * All values for *flags* are reserved for future usage, and must 1550 * be left at zero. 1551 * 1552 * When used to redirect packets to net devices, this helper 1553 * provides a high performance increase over **bpf_redirect**\ (). 1554 * This is due to various implementation details of the underlying 1555 * mechanisms, one of which is the fact that **bpf_redirect_map**\ 1556 * () tries to send packet as a "bulk" to the device. 1557 * Return 1558 * **XDP_REDIRECT** on success, or **XDP_ABORTED** on error. 1559 * 1560 * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1561 * Description 1562 * Redirect the packet to the socket referenced by *map* (of type 1563 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1564 * egress interfaces can be used for redirection. The 1565 * **BPF_F_INGRESS** value in *flags* is used to make the 1566 * distinction (ingress path is selected if the flag is present, 1567 * egress path otherwise). This is the only flag supported for now. 1568 * Return 1569 * **SK_PASS** on success, or **SK_DROP** on error. 1570 * 1571 * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags) 1572 * Description 1573 * Add an entry to, or update a *map* referencing sockets. The 1574 * *skops* is used as a new value for the entry associated to 1575 * *key*. *flags* is one of: 1576 * 1577 * **BPF_NOEXIST** 1578 * The entry for *key* must not exist in the map. 1579 * **BPF_EXIST** 1580 * The entry for *key* must already exist in the map. 1581 * **BPF_ANY** 1582 * No condition on the existence of the entry for *key*. 1583 * 1584 * If the *map* has eBPF programs (parser and verdict), those will 1585 * be inherited by the socket being added. If the socket is 1586 * already attached to eBPF programs, this results in an error. 1587 * Return 1588 * 0 on success, or a negative error in case of failure. 1589 * 1590 * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta) 1591 * Description 1592 * Adjust the address pointed by *xdp_md*\ **->data_meta** by 1593 * *delta* (which can be positive or negative). Note that this 1594 * operation modifies the address stored in *xdp_md*\ **->data**, 1595 * so the latter must be loaded only after the helper has been 1596 * called. 1597 * 1598 * The use of *xdp_md*\ **->data_meta** is optional and programs 1599 * are not required to use it. The rationale is that when the 1600 * packet is processed with XDP (e.g. as DoS filter), it is 1601 * possible to push further meta data along with it before passing 1602 * to the stack, and to give the guarantee that an ingress eBPF 1603 * program attached as a TC classifier on the same device can pick 1604 * this up for further post-processing. Since TC works with socket 1605 * buffers, it remains possible to set from XDP the **mark** or 1606 * **priority** pointers, or other pointers for the socket buffer. 1607 * Having this scratch space generic and programmable allows for 1608 * more flexibility as the user is free to store whatever meta 1609 * data they need. 1610 * 1611 * A call to this helper is susceptible to change the underlaying 1612 * packet buffer. Therefore, at load time, all checks on pointers 1613 * previously done by the verifier are invalidated and must be 1614 * performed again, if the helper is used in combination with 1615 * direct packet access. 1616 * Return 1617 * 0 on success, or a negative error in case of failure. 1618 * 1619 * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size) 1620 * Description 1621 * Read the value of a perf event counter, and store it into *buf* 1622 * of size *buf_size*. This helper relies on a *map* of type 1623 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event 1624 * counter is selected when *map* is updated with perf event file 1625 * descriptors. The *map* is an array whose size is the number of 1626 * available CPUs, and each cell contains a value relative to one 1627 * CPU. The value to retrieve is indicated by *flags*, that 1628 * contains the index of the CPU to look up, masked with 1629 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 1630 * **BPF_F_CURRENT_CPU** to indicate that the value for the 1631 * current CPU should be retrieved. 1632 * 1633 * This helper behaves in a way close to 1634 * **bpf_perf_event_read**\ () helper, save that instead of 1635 * just returning the value observed, it fills the *buf* 1636 * structure. This allows for additional data to be retrieved: in 1637 * particular, the enabled and running times (in *buf*\ 1638 * **->enabled** and *buf*\ **->running**, respectively) are 1639 * copied. In general, **bpf_perf_event_read_value**\ () is 1640 * recommended over **bpf_perf_event_read**\ (), which has some 1641 * ABI issues and provides fewer functionalities. 1642 * 1643 * These values are interesting, because hardware PMU (Performance 1644 * Monitoring Unit) counters are limited resources. When there are 1645 * more PMU based perf events opened than available counters, 1646 * kernel will multiplex these events so each event gets certain 1647 * percentage (but not all) of the PMU time. In case that 1648 * multiplexing happens, the number of samples or counter value 1649 * will not reflect the case compared to when no multiplexing 1650 * occurs. This makes comparison between different runs difficult. 1651 * Typically, the counter value should be normalized before 1652 * comparing to other experiments. The usual normalization is done 1653 * as follows. 1654 * 1655 * :: 1656 * 1657 * normalized_counter = counter * t_enabled / t_running 1658 * 1659 * Where t_enabled is the time enabled for event and t_running is 1660 * the time running for event since last normalization. The 1661 * enabled and running times are accumulated since the perf event 1662 * open. To achieve scaling factor between two invocations of an 1663 * eBPF program, users can can use CPU id as the key (which is 1664 * typical for perf array usage model) to remember the previous 1665 * value and do the calculation inside the eBPF program. 1666 * Return 1667 * 0 on success, or a negative error in case of failure. 1668 * 1669 * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size) 1670 * Description 1671 * For en eBPF program attached to a perf event, retrieve the 1672 * value of the event counter associated to *ctx* and store it in 1673 * the structure pointed by *buf* and of size *buf_size*. Enabled 1674 * and running times are also stored in the structure (see 1675 * description of helper **bpf_perf_event_read_value**\ () for 1676 * more details). 1677 * Return 1678 * 0 on success, or a negative error in case of failure. 1679 * 1680 * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1681 * Description 1682 * Emulate a call to **getsockopt()** on the socket associated to 1683 * *bpf_socket*, which must be a full socket. The *level* at 1684 * which the option resides and the name *optname* of the option 1685 * must be specified, see **getsockopt(2)** for more information. 1686 * The retrieved value is stored in the structure pointed by 1687 * *opval* and of length *optlen*. 1688 * 1689 * This helper actually implements a subset of **getsockopt()**. 1690 * It supports the following *level*\ s: 1691 * 1692 * * **IPPROTO_TCP**, which supports *optname* 1693 * **TCP_CONGESTION**. 1694 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1695 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1696 * Return 1697 * 0 on success, or a negative error in case of failure. 1698 * 1699 * int bpf_override_return(struct pt_reg *regs, u64 rc) 1700 * Description 1701 * Used for error injection, this helper uses kprobes to override 1702 * the return value of the probed function, and to set it to *rc*. 1703 * The first argument is the context *regs* on which the kprobe 1704 * works. 1705 * 1706 * This helper works by setting setting the PC (program counter) 1707 * to an override function which is run in place of the original 1708 * probed function. This means the probed function is not run at 1709 * all. The replacement function just returns with the required 1710 * value. 1711 * 1712 * This helper has security implications, and thus is subject to 1713 * restrictions. It is only available if the kernel was compiled 1714 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration 1715 * option, and in this case it only works on functions tagged with 1716 * **ALLOW_ERROR_INJECTION** in the kernel code. 1717 * 1718 * Also, the helper is only available for the architectures having 1719 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing, 1720 * x86 architecture is the only one to support this feature. 1721 * Return 1722 * 0 1723 * 1724 * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval) 1725 * Description 1726 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field 1727 * for the full TCP socket associated to *bpf_sock_ops* to 1728 * *argval*. 1729 * 1730 * The primary use of this field is to determine if there should 1731 * be calls to eBPF programs of type 1732 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP 1733 * code. A program of the same type can change its value, per 1734 * connection and as necessary, when the connection is 1735 * established. This field is directly accessible for reading, but 1736 * this helper must be used for updates in order to return an 1737 * error if an eBPF program tries to set a callback that is not 1738 * supported in the current kernel. 1739 * 1740 * *argval* is a flag array which can combine these flags: 1741 * 1742 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out) 1743 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission) 1744 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change) 1745 * 1746 * Therefore, this function can be used to clear a callback flag by 1747 * setting the appropriate bit to zero. e.g. to disable the RTO 1748 * callback: 1749 * 1750 * **bpf_sock_ops_cb_flags_set(bpf_sock,** 1751 * **bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)** 1752 * 1753 * Here are some examples of where one could call such eBPF 1754 * program: 1755 * 1756 * * When RTO fires. 1757 * * When a packet is retransmitted. 1758 * * When the connection terminates. 1759 * * When a packet is sent. 1760 * * When a packet is received. 1761 * Return 1762 * Code **-EINVAL** if the socket is not a full TCP socket; 1763 * otherwise, a positive number containing the bits that could not 1764 * be set is returned (which comes down to 0 if all bits were set 1765 * as required). 1766 * 1767 * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags) 1768 * Description 1769 * This helper is used in programs implementing policies at the 1770 * socket level. If the message *msg* is allowed to pass (i.e. if 1771 * the verdict eBPF program returns **SK_PASS**), redirect it to 1772 * the socket referenced by *map* (of type 1773 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1774 * egress interfaces can be used for redirection. The 1775 * **BPF_F_INGRESS** value in *flags* is used to make the 1776 * distinction (ingress path is selected if the flag is present, 1777 * egress path otherwise). This is the only flag supported for now. 1778 * Return 1779 * **SK_PASS** on success, or **SK_DROP** on error. 1780 * 1781 * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes) 1782 * Description 1783 * For socket policies, apply the verdict of the eBPF program to 1784 * the next *bytes* (number of bytes) of message *msg*. 1785 * 1786 * For example, this helper can be used in the following cases: 1787 * 1788 * * A single **sendmsg**\ () or **sendfile**\ () system call 1789 * contains multiple logical messages that the eBPF program is 1790 * supposed to read and for which it should apply a verdict. 1791 * * An eBPF program only cares to read the first *bytes* of a 1792 * *msg*. If the message has a large payload, then setting up 1793 * and calling the eBPF program repeatedly for all bytes, even 1794 * though the verdict is already known, would create unnecessary 1795 * overhead. 1796 * 1797 * When called from within an eBPF program, the helper sets a 1798 * counter internal to the BPF infrastructure, that is used to 1799 * apply the last verdict to the next *bytes*. If *bytes* is 1800 * smaller than the current data being processed from a 1801 * **sendmsg**\ () or **sendfile**\ () system call, the first 1802 * *bytes* will be sent and the eBPF program will be re-run with 1803 * the pointer for start of data pointing to byte number *bytes* 1804 * **+ 1**. If *bytes* is larger than the current data being 1805 * processed, then the eBPF verdict will be applied to multiple 1806 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are 1807 * consumed. 1808 * 1809 * Note that if a socket closes with the internal counter holding 1810 * a non-zero value, this is not a problem because data is not 1811 * being buffered for *bytes* and is sent as it is received. 1812 * Return 1813 * 0 1814 * 1815 * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes) 1816 * Description 1817 * For socket policies, prevent the execution of the verdict eBPF 1818 * program for message *msg* until *bytes* (byte number) have been 1819 * accumulated. 1820 * 1821 * This can be used when one needs a specific number of bytes 1822 * before a verdict can be assigned, even if the data spans 1823 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme 1824 * case would be a user calling **sendmsg**\ () repeatedly with 1825 * 1-byte long message segments. Obviously, this is bad for 1826 * performance, but it is still valid. If the eBPF program needs 1827 * *bytes* bytes to validate a header, this helper can be used to 1828 * prevent the eBPF program to be called again until *bytes* have 1829 * been accumulated. 1830 * Return 1831 * 0 1832 * 1833 * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags) 1834 * Description 1835 * For socket policies, pull in non-linear data from user space 1836 * for *msg* and set pointers *msg*\ **->data** and *msg*\ 1837 * **->data_end** to *start* and *end* bytes offsets into *msg*, 1838 * respectively. 1839 * 1840 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 1841 * *msg* it can only parse data that the (**data**, **data_end**) 1842 * pointers have already consumed. For **sendmsg**\ () hooks this 1843 * is likely the first scatterlist element. But for calls relying 1844 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will 1845 * be the range (**0**, **0**) because the data is shared with 1846 * user space and by default the objective is to avoid allowing 1847 * user space to modify data while (or after) eBPF verdict is 1848 * being decided. This helper can be used to pull in data and to 1849 * set the start and end pointer to given values. Data will be 1850 * copied if necessary (i.e. if data was not linear and if start 1851 * and end pointers do not point to the same chunk). 1852 * 1853 * A call to this helper is susceptible to change the underlaying 1854 * packet buffer. Therefore, at load time, all checks on pointers 1855 * previously done by the verifier are invalidated and must be 1856 * performed again, if the helper is used in combination with 1857 * direct packet access. 1858 * 1859 * All values for *flags* are reserved for future usage, and must 1860 * be left at zero. 1861 * Return 1862 * 0 on success, or a negative error in case of failure. 1863 * 1864 * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len) 1865 * Description 1866 * Bind the socket associated to *ctx* to the address pointed by 1867 * *addr*, of length *addr_len*. This allows for making outgoing 1868 * connection from the desired IP address, which can be useful for 1869 * example when all processes inside a cgroup should use one 1870 * single IP address on a host that has multiple IP configured. 1871 * 1872 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The 1873 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or 1874 * **AF_INET6**). Looking for a free port to bind to can be 1875 * expensive, therefore binding to port is not permitted by the 1876 * helper: *addr*\ **->sin_port** (or **sin6_port**, respectively) 1877 * must be set to zero. 1878 * Return 1879 * 0 on success, or a negative error in case of failure. 1880 * 1881 * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta) 1882 * Description 1883 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is 1884 * only possible to shrink the packet as of this writing, 1885 * therefore *delta* must be a negative integer. 1886 * 1887 * A call to this helper is susceptible to change the underlaying 1888 * packet buffer. Therefore, at load time, all checks on pointers 1889 * previously done by the verifier are invalidated and must be 1890 * performed again, if the helper is used in combination with 1891 * direct packet access. 1892 * Return 1893 * 0 on success, or a negative error in case of failure. 1894 * 1895 * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags) 1896 * Description 1897 * Retrieve the XFRM state (IP transform framework, see also 1898 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*. 1899 * 1900 * The retrieved value is stored in the **struct bpf_xfrm_state** 1901 * pointed by *xfrm_state* and of length *size*. 1902 * 1903 * All values for *flags* are reserved for future usage, and must 1904 * be left at zero. 1905 * 1906 * This helper is available only if the kernel was compiled with 1907 * **CONFIG_XFRM** configuration option. 1908 * Return 1909 * 0 on success, or a negative error in case of failure. 1910 * 1911 * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags) 1912 * Description 1913 * Return a user or a kernel stack in bpf program provided buffer. 1914 * To achieve this, the helper needs *ctx*, which is a pointer 1915 * to the context on which the tracing program is executed. 1916 * To store the stacktrace, the bpf program provides *buf* with 1917 * a nonnegative *size*. 1918 * 1919 * The last argument, *flags*, holds the number of stack frames to 1920 * skip (from 0 to 255), masked with 1921 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1922 * the following flags: 1923 * 1924 * **BPF_F_USER_STACK** 1925 * Collect a user space stack instead of a kernel stack. 1926 * **BPF_F_USER_BUILD_ID** 1927 * Collect buildid+offset instead of ips for user stack, 1928 * only valid if **BPF_F_USER_STACK** is also specified. 1929 * 1930 * **bpf_get_stack**\ () can collect up to 1931 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject 1932 * to sufficient large buffer size. Note that 1933 * this limit can be controlled with the **sysctl** program, and 1934 * that it should be manually increased in order to profile long 1935 * user stacks (such as stacks for Java programs). To do so, use: 1936 * 1937 * :: 1938 * 1939 * # sysctl kernel.perf_event_max_stack=<new value> 1940 * Return 1941 * A non-negative value equal to or less than *size* on success, 1942 * or a negative error in case of failure. 1943 * 1944 * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header) 1945 * Description 1946 * This helper is similar to **bpf_skb_load_bytes**\ () in that 1947 * it provides an easy way to load *len* bytes from *offset* 1948 * from the packet associated to *skb*, into the buffer pointed 1949 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that 1950 * a fifth argument *start_header* exists in order to select a 1951 * base offset to start from. *start_header* can be one of: 1952 * 1953 * **BPF_HDR_START_MAC** 1954 * Base offset to load data from is *skb*'s mac header. 1955 * **BPF_HDR_START_NET** 1956 * Base offset to load data from is *skb*'s network header. 1957 * 1958 * In general, "direct packet access" is the preferred method to 1959 * access packet data, however, this helper is in particular useful 1960 * in socket filters where *skb*\ **->data** does not always point 1961 * to the start of the mac header and where "direct packet access" 1962 * is not available. 1963 * Return 1964 * 0 on success, or a negative error in case of failure. 1965 * 1966 * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags) 1967 * Description 1968 * Do FIB lookup in kernel tables using parameters in *params*. 1969 * If lookup is successful and result shows packet is to be 1970 * forwarded, the neighbor tables are searched for the nexthop. 1971 * If successful (ie., FIB lookup shows forwarding and nexthop 1972 * is resolved), the nexthop address is returned in ipv4_dst 1973 * or ipv6_dst based on family, smac is set to mac address of 1974 * egress device, dmac is set to nexthop mac address, rt_metric 1975 * is set to metric from route (IPv4/IPv6 only), and ifindex 1976 * is set to the device index of the nexthop from the FIB lookup. 1977 * 1978 * *plen* argument is the size of the passed in struct. 1979 * *flags* argument can be a combination of one or more of the 1980 * following values: 1981 * 1982 * **BPF_FIB_LOOKUP_DIRECT** 1983 * Do a direct table lookup vs full lookup using FIB 1984 * rules. 1985 * **BPF_FIB_LOOKUP_OUTPUT** 1986 * Perform lookup from an egress perspective (default is 1987 * ingress). 1988 * 1989 * *ctx* is either **struct xdp_md** for XDP programs or 1990 * **struct sk_buff** tc cls_act programs. 1991 * Return 1992 * * < 0 if any input argument is invalid 1993 * * 0 on success (packet is forwarded, nexthop neighbor exists) 1994 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the 1995 * packet is not forwarded or needs assist from full stack 1996 * 1997 * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags) 1998 * Description 1999 * Add an entry to, or update a sockhash *map* referencing sockets. 2000 * The *skops* is used as a new value for the entry associated to 2001 * *key*. *flags* is one of: 2002 * 2003 * **BPF_NOEXIST** 2004 * The entry for *key* must not exist in the map. 2005 * **BPF_EXIST** 2006 * The entry for *key* must already exist in the map. 2007 * **BPF_ANY** 2008 * No condition on the existence of the entry for *key*. 2009 * 2010 * If the *map* has eBPF programs (parser and verdict), those will 2011 * be inherited by the socket being added. If the socket is 2012 * already attached to eBPF programs, this results in an error. 2013 * Return 2014 * 0 on success, or a negative error in case of failure. 2015 * 2016 * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags) 2017 * Description 2018 * This helper is used in programs implementing policies at the 2019 * socket level. If the message *msg* is allowed to pass (i.e. if 2020 * the verdict eBPF program returns **SK_PASS**), redirect it to 2021 * the socket referenced by *map* (of type 2022 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 2023 * egress interfaces can be used for redirection. The 2024 * **BPF_F_INGRESS** value in *flags* is used to make the 2025 * distinction (ingress path is selected if the flag is present, 2026 * egress path otherwise). This is the only flag supported for now. 2027 * Return 2028 * **SK_PASS** on success, or **SK_DROP** on error. 2029 * 2030 * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags) 2031 * Description 2032 * This helper is used in programs implementing policies at the 2033 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e. 2034 * if the verdeict eBPF program returns **SK_PASS**), redirect it 2035 * to the socket referenced by *map* (of type 2036 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 2037 * egress interfaces can be used for redirection. The 2038 * **BPF_F_INGRESS** value in *flags* is used to make the 2039 * distinction (ingress path is selected if the flag is present, 2040 * egress otherwise). This is the only flag supported for now. 2041 * Return 2042 * **SK_PASS** on success, or **SK_DROP** on error. 2043 * 2044 * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) 2045 * Description 2046 * Encapsulate the packet associated to *skb* within a Layer 3 2047 * protocol header. This header is provided in the buffer at 2048 * address *hdr*, with *len* its size in bytes. *type* indicates 2049 * the protocol of the header and can be one of: 2050 * 2051 * **BPF_LWT_ENCAP_SEG6** 2052 * IPv6 encapsulation with Segment Routing Header 2053 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH, 2054 * the IPv6 header is computed by the kernel. 2055 * **BPF_LWT_ENCAP_SEG6_INLINE** 2056 * Only works if *skb* contains an IPv6 packet. Insert a 2057 * Segment Routing Header (**struct ipv6_sr_hdr**) inside 2058 * the IPv6 header. 2059 * **BPF_LWT_ENCAP_IP** 2060 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header 2061 * must be IPv4 or IPv6, followed by zero or more 2062 * additional headers, up to LWT_BPF_MAX_HEADROOM total 2063 * bytes in all prepended headers. Please note that 2064 * if skb_is_gso(skb) is true, no more than two headers 2065 * can be prepended, and the inner header, if present, 2066 * should be either GRE or UDP/GUE. 2067 * 2068 * BPF_LWT_ENCAP_SEG6*** types can be called by bpf programs of 2069 * type BPF_PROG_TYPE_LWT_IN; BPF_LWT_ENCAP_IP type can be called 2070 * by bpf programs of types BPF_PROG_TYPE_LWT_IN and 2071 * BPF_PROG_TYPE_LWT_XMIT. 2072 * 2073 * A call to this helper is susceptible to change the underlaying 2074 * packet buffer. Therefore, at load time, all checks on pointers 2075 * previously done by the verifier are invalidated and must be 2076 * performed again, if the helper is used in combination with 2077 * direct packet access. 2078 * Return 2079 * 0 on success, or a negative error in case of failure. 2080 * 2081 * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len) 2082 * Description 2083 * Store *len* bytes from address *from* into the packet 2084 * associated to *skb*, at *offset*. Only the flags, tag and TLVs 2085 * inside the outermost IPv6 Segment Routing Header can be 2086 * modified through this helper. 2087 * 2088 * A call to this helper is susceptible to change the underlaying 2089 * packet buffer. Therefore, at load time, all checks on pointers 2090 * previously done by the verifier are invalidated and must be 2091 * performed again, if the helper is used in combination with 2092 * direct packet access. 2093 * Return 2094 * 0 on success, or a negative error in case of failure. 2095 * 2096 * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta) 2097 * Description 2098 * Adjust the size allocated to TLVs in the outermost IPv6 2099 * Segment Routing Header contained in the packet associated to 2100 * *skb*, at position *offset* by *delta* bytes. Only offsets 2101 * after the segments are accepted. *delta* can be as well 2102 * positive (growing) as negative (shrinking). 2103 * 2104 * A call to this helper is susceptible to change the underlaying 2105 * packet buffer. Therefore, at load time, all checks on pointers 2106 * previously done by the verifier are invalidated and must be 2107 * performed again, if the helper is used in combination with 2108 * direct packet access. 2109 * Return 2110 * 0 on success, or a negative error in case of failure. 2111 * 2112 * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len) 2113 * Description 2114 * Apply an IPv6 Segment Routing action of type *action* to the 2115 * packet associated to *skb*. Each action takes a parameter 2116 * contained at address *param*, and of length *param_len* bytes. 2117 * *action* can be one of: 2118 * 2119 * **SEG6_LOCAL_ACTION_END_X** 2120 * End.X action: Endpoint with Layer-3 cross-connect. 2121 * Type of *param*: **struct in6_addr**. 2122 * **SEG6_LOCAL_ACTION_END_T** 2123 * End.T action: Endpoint with specific IPv6 table lookup. 2124 * Type of *param*: **int**. 2125 * **SEG6_LOCAL_ACTION_END_B6** 2126 * End.B6 action: Endpoint bound to an SRv6 policy. 2127 * Type of param: **struct ipv6_sr_hdr**. 2128 * **SEG6_LOCAL_ACTION_END_B6_ENCAP** 2129 * End.B6.Encap action: Endpoint bound to an SRv6 2130 * encapsulation policy. 2131 * Type of param: **struct ipv6_sr_hdr**. 2132 * 2133 * A call to this helper is susceptible to change the underlaying 2134 * packet buffer. Therefore, at load time, all checks on pointers 2135 * previously done by the verifier are invalidated and must be 2136 * performed again, if the helper is used in combination with 2137 * direct packet access. 2138 * Return 2139 * 0 on success, or a negative error in case of failure. 2140 * 2141 * int bpf_rc_repeat(void *ctx) 2142 * Description 2143 * This helper is used in programs implementing IR decoding, to 2144 * report a successfully decoded repeat key message. This delays 2145 * the generation of a key up event for previously generated 2146 * key down event. 2147 * 2148 * Some IR protocols like NEC have a special IR message for 2149 * repeating last button, for when a button is held down. 2150 * 2151 * The *ctx* should point to the lirc sample as passed into 2152 * the program. 2153 * 2154 * This helper is only available is the kernel was compiled with 2155 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2156 * "**y**". 2157 * Return 2158 * 0 2159 * 2160 * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle) 2161 * Description 2162 * This helper is used in programs implementing IR decoding, to 2163 * report a successfully decoded key press with *scancode*, 2164 * *toggle* value in the given *protocol*. The scancode will be 2165 * translated to a keycode using the rc keymap, and reported as 2166 * an input key down event. After a period a key up event is 2167 * generated. This period can be extended by calling either 2168 * **bpf_rc_keydown**\ () again with the same values, or calling 2169 * **bpf_rc_repeat**\ (). 2170 * 2171 * Some protocols include a toggle bit, in case the button was 2172 * released and pressed again between consecutive scancodes. 2173 * 2174 * The *ctx* should point to the lirc sample as passed into 2175 * the program. 2176 * 2177 * The *protocol* is the decoded protocol number (see 2178 * **enum rc_proto** for some predefined values). 2179 * 2180 * This helper is only available is the kernel was compiled with 2181 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2182 * "**y**". 2183 * Return 2184 * 0 2185 * 2186 * u64 bpf_skb_cgroup_id(struct sk_buff *skb) 2187 * Description 2188 * Return the cgroup v2 id of the socket associated with the *skb*. 2189 * This is roughly similar to the **bpf_get_cgroup_classid**\ () 2190 * helper for cgroup v1 by providing a tag resp. identifier that 2191 * can be matched on or used for map lookups e.g. to implement 2192 * policy. The cgroup v2 id of a given path in the hierarchy is 2193 * exposed in user space through the f_handle API in order to get 2194 * to the same 64-bit id. 2195 * 2196 * This helper can be used on TC egress path, but not on ingress, 2197 * and is available only if the kernel was compiled with the 2198 * **CONFIG_SOCK_CGROUP_DATA** configuration option. 2199 * Return 2200 * The id is returned or 0 in case the id could not be retrieved. 2201 * 2202 * u64 bpf_get_current_cgroup_id(void) 2203 * Return 2204 * A 64-bit integer containing the current cgroup id based 2205 * on the cgroup within which the current task is running. 2206 * 2207 * void *bpf_get_local_storage(void *map, u64 flags) 2208 * Description 2209 * Get the pointer to the local storage area. 2210 * The type and the size of the local storage is defined 2211 * by the *map* argument. 2212 * The *flags* meaning is specific for each map type, 2213 * and has to be 0 for cgroup local storage. 2214 * 2215 * Depending on the BPF program type, a local storage area 2216 * can be shared between multiple instances of the BPF program, 2217 * running simultaneously. 2218 * 2219 * A user should care about the synchronization by himself. 2220 * For example, by using the **BPF_STX_XADD** instruction to alter 2221 * the shared data. 2222 * Return 2223 * A pointer to the local storage area. 2224 * 2225 * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags) 2226 * Description 2227 * Select a **SO_REUSEPORT** socket from a 2228 * **BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*. 2229 * It checks the selected socket is matching the incoming 2230 * request in the socket buffer. 2231 * Return 2232 * 0 on success, or a negative error in case of failure. 2233 * 2234 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level) 2235 * Description 2236 * Return id of cgroup v2 that is ancestor of cgroup associated 2237 * with the *skb* at the *ancestor_level*. The root cgroup is at 2238 * *ancestor_level* zero and each step down the hierarchy 2239 * increments the level. If *ancestor_level* == level of cgroup 2240 * associated with *skb*, then return value will be same as that 2241 * of **bpf_skb_cgroup_id**\ (). 2242 * 2243 * The helper is useful to implement policies based on cgroups 2244 * that are upper in hierarchy than immediate cgroup associated 2245 * with *skb*. 2246 * 2247 * The format of returned id and helper limitations are same as in 2248 * **bpf_skb_cgroup_id**\ (). 2249 * Return 2250 * The id is returned or 0 in case the id could not be retrieved. 2251 * 2252 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2253 * Description 2254 * Look for TCP socket matching *tuple*, optionally in a child 2255 * network namespace *netns*. The return value must be checked, 2256 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2257 * 2258 * The *ctx* should point to the context of the program, such as 2259 * the skb or socket (depending on the hook in use). This is used 2260 * to determine the base network namespace for the lookup. 2261 * 2262 * *tuple_size* must be one of: 2263 * 2264 * **sizeof**\ (*tuple*\ **->ipv4**) 2265 * Look for an IPv4 socket. 2266 * **sizeof**\ (*tuple*\ **->ipv6**) 2267 * Look for an IPv6 socket. 2268 * 2269 * If the *netns* is a negative signed 32-bit integer, then the 2270 * socket lookup table in the netns associated with the *ctx* will 2271 * will be used. For the TC hooks, this is the netns of the device 2272 * in the skb. For socket hooks, this is the netns of the socket. 2273 * If *netns* is any other signed 32-bit value greater than or 2274 * equal to zero then it specifies the ID of the netns relative to 2275 * the netns associated with the *ctx*. *netns* values beyond the 2276 * range of 32-bit integers are reserved for future use. 2277 * 2278 * All values for *flags* are reserved for future usage, and must 2279 * be left at zero. 2280 * 2281 * This helper is available only if the kernel was compiled with 2282 * **CONFIG_NET** configuration option. 2283 * Return 2284 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2285 * For sockets with reuseport option, the **struct bpf_sock** 2286 * result is from **reuse->socks**\ [] using the hash of the tuple. 2287 * 2288 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2289 * Description 2290 * Look for UDP socket matching *tuple*, optionally in a child 2291 * network namespace *netns*. The return value must be checked, 2292 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2293 * 2294 * The *ctx* should point to the context of the program, such as 2295 * the skb or socket (depending on the hook in use). This is used 2296 * to determine the base network namespace for the lookup. 2297 * 2298 * *tuple_size* must be one of: 2299 * 2300 * **sizeof**\ (*tuple*\ **->ipv4**) 2301 * Look for an IPv4 socket. 2302 * **sizeof**\ (*tuple*\ **->ipv6**) 2303 * Look for an IPv6 socket. 2304 * 2305 * If the *netns* is a negative signed 32-bit integer, then the 2306 * socket lookup table in the netns associated with the *ctx* will 2307 * will be used. For the TC hooks, this is the netns of the device 2308 * in the skb. For socket hooks, this is the netns of the socket. 2309 * If *netns* is any other signed 32-bit value greater than or 2310 * equal to zero then it specifies the ID of the netns relative to 2311 * the netns associated with the *ctx*. *netns* values beyond the 2312 * range of 32-bit integers are reserved for future use. 2313 * 2314 * All values for *flags* are reserved for future usage, and must 2315 * be left at zero. 2316 * 2317 * This helper is available only if the kernel was compiled with 2318 * **CONFIG_NET** configuration option. 2319 * Return 2320 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2321 * For sockets with reuseport option, the **struct bpf_sock** 2322 * result is from **reuse->socks**\ [] using the hash of the tuple. 2323 * 2324 * int bpf_sk_release(struct bpf_sock *sock) 2325 * Description 2326 * Release the reference held by *sock*. *sock* must be a 2327 * non-**NULL** pointer that was returned from 2328 * **bpf_sk_lookup_xxx**\ (). 2329 * Return 2330 * 0 on success, or a negative error in case of failure. 2331 * 2332 * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags) 2333 * Description 2334 * Push an element *value* in *map*. *flags* is one of: 2335 * 2336 * **BPF_EXIST** 2337 * If the queue/stack is full, the oldest element is 2338 * removed to make room for this. 2339 * Return 2340 * 0 on success, or a negative error in case of failure. 2341 * 2342 * int bpf_map_pop_elem(struct bpf_map *map, void *value) 2343 * Description 2344 * Pop an element from *map*. 2345 * Return 2346 * 0 on success, or a negative error in case of failure. 2347 * 2348 * int bpf_map_peek_elem(struct bpf_map *map, void *value) 2349 * Description 2350 * Get an element from *map* without removing it. 2351 * Return 2352 * 0 on success, or a negative error in case of failure. 2353 * 2354 * int bpf_msg_push_data(struct sk_buff *skb, u32 start, u32 len, u64 flags) 2355 * Description 2356 * For socket policies, insert *len* bytes into *msg* at offset 2357 * *start*. 2358 * 2359 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 2360 * *msg* it may want to insert metadata or options into the *msg*. 2361 * This can later be read and used by any of the lower layer BPF 2362 * hooks. 2363 * 2364 * This helper may fail if under memory pressure (a malloc 2365 * fails) in these cases BPF programs will get an appropriate 2366 * error and BPF programs will need to handle them. 2367 * Return 2368 * 0 on success, or a negative error in case of failure. 2369 * 2370 * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 pop, u64 flags) 2371 * Description 2372 * Will remove *pop* bytes from a *msg* starting at byte *start*. 2373 * This may result in **ENOMEM** errors under certain situations if 2374 * an allocation and copy are required due to a full ring buffer. 2375 * However, the helper will try to avoid doing the allocation 2376 * if possible. Other errors can occur if input parameters are 2377 * invalid either due to *start* byte not being valid part of *msg* 2378 * payload and/or *pop* value being to large. 2379 * Return 2380 * 0 on success, or a negative error in case of failure. 2381 * 2382 * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y) 2383 * Description 2384 * This helper is used in programs implementing IR decoding, to 2385 * report a successfully decoded pointer movement. 2386 * 2387 * The *ctx* should point to the lirc sample as passed into 2388 * the program. 2389 * 2390 * This helper is only available is the kernel was compiled with 2391 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2392 * "**y**". 2393 * Return 2394 * 0 2395 * 2396 * int bpf_spin_lock(struct bpf_spin_lock *lock) 2397 * Description 2398 * Acquire a spinlock represented by the pointer *lock*, which is 2399 * stored as part of a value of a map. Taking the lock allows to 2400 * safely update the rest of the fields in that value. The 2401 * spinlock can (and must) later be released with a call to 2402 * **bpf_spin_unlock**\ (\ *lock*\ ). 2403 * 2404 * Spinlocks in BPF programs come with a number of restrictions 2405 * and constraints: 2406 * 2407 * * **bpf_spin_lock** objects are only allowed inside maps of 2408 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this 2409 * list could be extended in the future). 2410 * * BTF description of the map is mandatory. 2411 * * The BPF program can take ONE lock at a time, since taking two 2412 * or more could cause dead locks. 2413 * * Only one **struct bpf_spin_lock** is allowed per map element. 2414 * * When the lock is taken, calls (either BPF to BPF or helpers) 2415 * are not allowed. 2416 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not 2417 * allowed inside a spinlock-ed region. 2418 * * The BPF program MUST call **bpf_spin_unlock**\ () to release 2419 * the lock, on all execution paths, before it returns. 2420 * * The BPF program can access **struct bpf_spin_lock** only via 2421 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ () 2422 * helpers. Loading or storing data into the **struct 2423 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed. 2424 * * To use the **bpf_spin_lock**\ () helper, the BTF description 2425 * of the map value must be a struct and have **struct 2426 * bpf_spin_lock** *anyname*\ **;** field at the top level. 2427 * Nested lock inside another struct is not allowed. 2428 * * The **struct bpf_spin_lock** *lock* field in a map value must 2429 * be aligned on a multiple of 4 bytes in that value. 2430 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy 2431 * the **bpf_spin_lock** field to user space. 2432 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from 2433 * a BPF program, do not update the **bpf_spin_lock** field. 2434 * * **bpf_spin_lock** cannot be on the stack or inside a 2435 * networking packet (it can only be inside of a map values). 2436 * * **bpf_spin_lock** is available to root only. 2437 * * Tracing programs and socket filter programs cannot use 2438 * **bpf_spin_lock**\ () due to insufficient preemption checks 2439 * (but this may change in the future). 2440 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map. 2441 * Return 2442 * 0 2443 * 2444 * int bpf_spin_unlock(struct bpf_spin_lock *lock) 2445 * Description 2446 * Release the *lock* previously locked by a call to 2447 * **bpf_spin_lock**\ (\ *lock*\ ). 2448 * Return 2449 * 0 2450 * 2451 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk) 2452 * Description 2453 * This helper gets a **struct bpf_sock** pointer such 2454 * that all the fields in this **bpf_sock** can be accessed. 2455 * Return 2456 * A **struct bpf_sock** pointer on success, or **NULL** in 2457 * case of failure. 2458 * 2459 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk) 2460 * Description 2461 * This helper gets a **struct bpf_tcp_sock** pointer from a 2462 * **struct bpf_sock** pointer. 2463 * Return 2464 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in 2465 * case of failure. 2466 * 2467 * int bpf_skb_ecn_set_ce(struct sk_buf *skb) 2468 * Description 2469 * Set ECN (Explicit Congestion Notification) field of IP header 2470 * to **CE** (Congestion Encountered) if current value is **ECT** 2471 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6 2472 * and IPv4. 2473 * Return 2474 * 1 if the **CE** flag is set (either by the current helper call 2475 * or because it was already present), 0 if it is not set. 2476 * 2477 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk) 2478 * Description 2479 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state. 2480 * **bpf_sk_release**\ () is unnecessary and not allowed. 2481 * Return 2482 * A **struct bpf_sock** pointer on success, or **NULL** in 2483 * case of failure. 2484 * 2485 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2486 * Description 2487 * Look for TCP socket matching *tuple*, optionally in a child 2488 * network namespace *netns*. The return value must be checked, 2489 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2490 * 2491 * This function is identical to bpf_sk_lookup_tcp, except that it 2492 * also returns timewait or request sockets. Use bpf_sk_fullsock 2493 * or bpf_tcp_socket to access the full structure. 2494 * 2495 * This helper is available only if the kernel was compiled with 2496 * **CONFIG_NET** configuration option. 2497 * Return 2498 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2499 * For sockets with reuseport option, the **struct bpf_sock** 2500 * result is from **reuse->socks**\ [] using the hash of the tuple. 2501 * 2502 * int bpf_tcp_check_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len) 2503 * Description 2504 * Check whether iph and th contain a valid SYN cookie ACK for 2505 * the listening socket in sk. 2506 * 2507 * iph points to the start of the IPv4 or IPv6 header, while 2508 * iph_len contains sizeof(struct iphdr) or sizeof(struct ip6hdr). 2509 * 2510 * th points to the start of the TCP header, while th_len contains 2511 * sizeof(struct tcphdr). 2512 * 2513 * Return 2514 * 0 if iph and th are a valid SYN cookie ACK, or a negative error 2515 * otherwise. 2516 * 2517 * int bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags) 2518 * Description 2519 * Get name of sysctl in /proc/sys/ and copy it into provided by 2520 * program buffer *buf* of size *buf_len*. 2521 * 2522 * The buffer is always NUL terminated, unless it's zero-sized. 2523 * 2524 * If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is 2525 * copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name 2526 * only (e.g. "tcp_mem"). 2527 * Return 2528 * Number of character copied (not including the trailing NUL). 2529 * 2530 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2531 * truncated name in this case). 2532 * 2533 * int bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len) 2534 * Description 2535 * Get current value of sysctl as it is presented in /proc/sys 2536 * (incl. newline, etc), and copy it as a string into provided 2537 * by program buffer *buf* of size *buf_len*. 2538 * 2539 * The whole value is copied, no matter what file position user 2540 * space issued e.g. sys_read at. 2541 * 2542 * The buffer is always NUL terminated, unless it's zero-sized. 2543 * Return 2544 * Number of character copied (not including the trailing NUL). 2545 * 2546 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2547 * truncated name in this case). 2548 * 2549 * **-EINVAL** if current value was unavailable, e.g. because 2550 * sysctl is uninitialized and read returns -EIO for it. 2551 * 2552 * int bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len) 2553 * Description 2554 * Get new value being written by user space to sysctl (before 2555 * the actual write happens) and copy it as a string into 2556 * provided by program buffer *buf* of size *buf_len*. 2557 * 2558 * User space may write new value at file position > 0. 2559 * 2560 * The buffer is always NUL terminated, unless it's zero-sized. 2561 * Return 2562 * Number of character copied (not including the trailing NUL). 2563 * 2564 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2565 * truncated name in this case). 2566 * 2567 * **-EINVAL** if sysctl is being read. 2568 * 2569 * int bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len) 2570 * Description 2571 * Override new value being written by user space to sysctl with 2572 * value provided by program in buffer *buf* of size *buf_len*. 2573 * 2574 * *buf* should contain a string in same form as provided by user 2575 * space on sysctl write. 2576 * 2577 * User space may write new value at file position > 0. To override 2578 * the whole sysctl value file position should be set to zero. 2579 * Return 2580 * 0 on success. 2581 * 2582 * **-E2BIG** if the *buf_len* is too big. 2583 * 2584 * **-EINVAL** if sysctl is being read. 2585 * 2586 * int bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res) 2587 * Description 2588 * Convert the initial part of the string from buffer *buf* of 2589 * size *buf_len* to a long integer according to the given base 2590 * and save the result in *res*. 2591 * 2592 * The string may begin with an arbitrary amount of white space 2593 * (as determined by isspace(3)) followed by a single optional '-' 2594 * sign. 2595 * 2596 * Five least significant bits of *flags* encode base, other bits 2597 * are currently unused. 2598 * 2599 * Base must be either 8, 10, 16 or 0 to detect it automatically 2600 * similar to user space strtol(3). 2601 * Return 2602 * Number of characters consumed on success. Must be positive but 2603 * no more than buf_len. 2604 * 2605 * **-EINVAL** if no valid digits were found or unsupported base 2606 * was provided. 2607 * 2608 * **-ERANGE** if resulting value was out of range. 2609 * 2610 * int bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res) 2611 * Description 2612 * Convert the initial part of the string from buffer *buf* of 2613 * size *buf_len* to an unsigned long integer according to the 2614 * given base and save the result in *res*. 2615 * 2616 * The string may begin with an arbitrary amount of white space 2617 * (as determined by isspace(3)). 2618 * 2619 * Five least significant bits of *flags* encode base, other bits 2620 * are currently unused. 2621 * 2622 * Base must be either 8, 10, 16 or 0 to detect it automatically 2623 * similar to user space strtoul(3). 2624 * Return 2625 * Number of characters consumed on success. Must be positive but 2626 * no more than buf_len. 2627 * 2628 * **-EINVAL** if no valid digits were found or unsupported base 2629 * was provided. 2630 * 2631 * **-ERANGE** if resulting value was out of range. 2632 */ 2633 #define __BPF_FUNC_MAPPER(FN) \ 2634 FN(unspec), \ 2635 FN(map_lookup_elem), \ 2636 FN(map_update_elem), \ 2637 FN(map_delete_elem), \ 2638 FN(probe_read), \ 2639 FN(ktime_get_ns), \ 2640 FN(trace_printk), \ 2641 FN(get_prandom_u32), \ 2642 FN(get_smp_processor_id), \ 2643 FN(skb_store_bytes), \ 2644 FN(l3_csum_replace), \ 2645 FN(l4_csum_replace), \ 2646 FN(tail_call), \ 2647 FN(clone_redirect), \ 2648 FN(get_current_pid_tgid), \ 2649 FN(get_current_uid_gid), \ 2650 FN(get_current_comm), \ 2651 FN(get_cgroup_classid), \ 2652 FN(skb_vlan_push), \ 2653 FN(skb_vlan_pop), \ 2654 FN(skb_get_tunnel_key), \ 2655 FN(skb_set_tunnel_key), \ 2656 FN(perf_event_read), \ 2657 FN(redirect), \ 2658 FN(get_route_realm), \ 2659 FN(perf_event_output), \ 2660 FN(skb_load_bytes), \ 2661 FN(get_stackid), \ 2662 FN(csum_diff), \ 2663 FN(skb_get_tunnel_opt), \ 2664 FN(skb_set_tunnel_opt), \ 2665 FN(skb_change_proto), \ 2666 FN(skb_change_type), \ 2667 FN(skb_under_cgroup), \ 2668 FN(get_hash_recalc), \ 2669 FN(get_current_task), \ 2670 FN(probe_write_user), \ 2671 FN(current_task_under_cgroup), \ 2672 FN(skb_change_tail), \ 2673 FN(skb_pull_data), \ 2674 FN(csum_update), \ 2675 FN(set_hash_invalid), \ 2676 FN(get_numa_node_id), \ 2677 FN(skb_change_head), \ 2678 FN(xdp_adjust_head), \ 2679 FN(probe_read_str), \ 2680 FN(get_socket_cookie), \ 2681 FN(get_socket_uid), \ 2682 FN(set_hash), \ 2683 FN(setsockopt), \ 2684 FN(skb_adjust_room), \ 2685 FN(redirect_map), \ 2686 FN(sk_redirect_map), \ 2687 FN(sock_map_update), \ 2688 FN(xdp_adjust_meta), \ 2689 FN(perf_event_read_value), \ 2690 FN(perf_prog_read_value), \ 2691 FN(getsockopt), \ 2692 FN(override_return), \ 2693 FN(sock_ops_cb_flags_set), \ 2694 FN(msg_redirect_map), \ 2695 FN(msg_apply_bytes), \ 2696 FN(msg_cork_bytes), \ 2697 FN(msg_pull_data), \ 2698 FN(bind), \ 2699 FN(xdp_adjust_tail), \ 2700 FN(skb_get_xfrm_state), \ 2701 FN(get_stack), \ 2702 FN(skb_load_bytes_relative), \ 2703 FN(fib_lookup), \ 2704 FN(sock_hash_update), \ 2705 FN(msg_redirect_hash), \ 2706 FN(sk_redirect_hash), \ 2707 FN(lwt_push_encap), \ 2708 FN(lwt_seg6_store_bytes), \ 2709 FN(lwt_seg6_adjust_srh), \ 2710 FN(lwt_seg6_action), \ 2711 FN(rc_repeat), \ 2712 FN(rc_keydown), \ 2713 FN(skb_cgroup_id), \ 2714 FN(get_current_cgroup_id), \ 2715 FN(get_local_storage), \ 2716 FN(sk_select_reuseport), \ 2717 FN(skb_ancestor_cgroup_id), \ 2718 FN(sk_lookup_tcp), \ 2719 FN(sk_lookup_udp), \ 2720 FN(sk_release), \ 2721 FN(map_push_elem), \ 2722 FN(map_pop_elem), \ 2723 FN(map_peek_elem), \ 2724 FN(msg_push_data), \ 2725 FN(msg_pop_data), \ 2726 FN(rc_pointer_rel), \ 2727 FN(spin_lock), \ 2728 FN(spin_unlock), \ 2729 FN(sk_fullsock), \ 2730 FN(tcp_sock), \ 2731 FN(skb_ecn_set_ce), \ 2732 FN(get_listener_sock), \ 2733 FN(skc_lookup_tcp), \ 2734 FN(tcp_check_syncookie), \ 2735 FN(sysctl_get_name), \ 2736 FN(sysctl_get_current_value), \ 2737 FN(sysctl_get_new_value), \ 2738 FN(sysctl_set_new_value), \ 2739 FN(strtol), \ 2740 FN(strtoul), 2741 2742 /* integer value in 'imm' field of BPF_CALL instruction selects which helper 2743 * function eBPF program intends to call 2744 */ 2745 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x 2746 enum bpf_func_id { 2747 __BPF_FUNC_MAPPER(__BPF_ENUM_FN) 2748 __BPF_FUNC_MAX_ID, 2749 }; 2750 #undef __BPF_ENUM_FN 2751 2752 /* All flags used by eBPF helper functions, placed here. */ 2753 2754 /* BPF_FUNC_skb_store_bytes flags. */ 2755 #define BPF_F_RECOMPUTE_CSUM (1ULL << 0) 2756 #define BPF_F_INVALIDATE_HASH (1ULL << 1) 2757 2758 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags. 2759 * First 4 bits are for passing the header field size. 2760 */ 2761 #define BPF_F_HDR_FIELD_MASK 0xfULL 2762 2763 /* BPF_FUNC_l4_csum_replace flags. */ 2764 #define BPF_F_PSEUDO_HDR (1ULL << 4) 2765 #define BPF_F_MARK_MANGLED_0 (1ULL << 5) 2766 #define BPF_F_MARK_ENFORCE (1ULL << 6) 2767 2768 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */ 2769 #define BPF_F_INGRESS (1ULL << 0) 2770 2771 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */ 2772 #define BPF_F_TUNINFO_IPV6 (1ULL << 0) 2773 2774 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */ 2775 #define BPF_F_SKIP_FIELD_MASK 0xffULL 2776 #define BPF_F_USER_STACK (1ULL << 8) 2777 /* flags used by BPF_FUNC_get_stackid only. */ 2778 #define BPF_F_FAST_STACK_CMP (1ULL << 9) 2779 #define BPF_F_REUSE_STACKID (1ULL << 10) 2780 /* flags used by BPF_FUNC_get_stack only. */ 2781 #define BPF_F_USER_BUILD_ID (1ULL << 11) 2782 2783 /* BPF_FUNC_skb_set_tunnel_key flags. */ 2784 #define BPF_F_ZERO_CSUM_TX (1ULL << 1) 2785 #define BPF_F_DONT_FRAGMENT (1ULL << 2) 2786 #define BPF_F_SEQ_NUMBER (1ULL << 3) 2787 2788 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and 2789 * BPF_FUNC_perf_event_read_value flags. 2790 */ 2791 #define BPF_F_INDEX_MASK 0xffffffffULL 2792 #define BPF_F_CURRENT_CPU BPF_F_INDEX_MASK 2793 /* BPF_FUNC_perf_event_output for sk_buff input context. */ 2794 #define BPF_F_CTXLEN_MASK (0xfffffULL << 32) 2795 2796 /* Current network namespace */ 2797 #define BPF_F_CURRENT_NETNS (-1L) 2798 2799 /* BPF_FUNC_skb_adjust_room flags. */ 2800 #define BPF_F_ADJ_ROOM_FIXED_GSO (1ULL << 0) 2801 2802 #define BPF_ADJ_ROOM_ENCAP_L2_MASK 0xff 2803 #define BPF_ADJ_ROOM_ENCAP_L2_SHIFT 56 2804 2805 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 (1ULL << 1) 2806 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 (1ULL << 2) 2807 #define BPF_F_ADJ_ROOM_ENCAP_L4_GRE (1ULL << 3) 2808 #define BPF_F_ADJ_ROOM_ENCAP_L4_UDP (1ULL << 4) 2809 #define BPF_F_ADJ_ROOM_ENCAP_L2(len) (((__u64)len & \ 2810 BPF_ADJ_ROOM_ENCAP_L2_MASK) \ 2811 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT) 2812 2813 /* BPF_FUNC_sysctl_get_name flags. */ 2814 #define BPF_F_SYSCTL_BASE_NAME (1ULL << 0) 2815 2816 /* Mode for BPF_FUNC_skb_adjust_room helper. */ 2817 enum bpf_adj_room_mode { 2818 BPF_ADJ_ROOM_NET, 2819 BPF_ADJ_ROOM_MAC, 2820 }; 2821 2822 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */ 2823 enum bpf_hdr_start_off { 2824 BPF_HDR_START_MAC, 2825 BPF_HDR_START_NET, 2826 }; 2827 2828 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */ 2829 enum bpf_lwt_encap_mode { 2830 BPF_LWT_ENCAP_SEG6, 2831 BPF_LWT_ENCAP_SEG6_INLINE, 2832 BPF_LWT_ENCAP_IP, 2833 }; 2834 2835 #define __bpf_md_ptr(type, name) \ 2836 union { \ 2837 type name; \ 2838 __u64 :64; \ 2839 } __attribute__((aligned(8))) 2840 2841 /* user accessible mirror of in-kernel sk_buff. 2842 * new fields can only be added to the end of this structure 2843 */ 2844 struct __sk_buff { 2845 __u32 len; 2846 __u32 pkt_type; 2847 __u32 mark; 2848 __u32 queue_mapping; 2849 __u32 protocol; 2850 __u32 vlan_present; 2851 __u32 vlan_tci; 2852 __u32 vlan_proto; 2853 __u32 priority; 2854 __u32 ingress_ifindex; 2855 __u32 ifindex; 2856 __u32 tc_index; 2857 __u32 cb[5]; 2858 __u32 hash; 2859 __u32 tc_classid; 2860 __u32 data; 2861 __u32 data_end; 2862 __u32 napi_id; 2863 2864 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */ 2865 __u32 family; 2866 __u32 remote_ip4; /* Stored in network byte order */ 2867 __u32 local_ip4; /* Stored in network byte order */ 2868 __u32 remote_ip6[4]; /* Stored in network byte order */ 2869 __u32 local_ip6[4]; /* Stored in network byte order */ 2870 __u32 remote_port; /* Stored in network byte order */ 2871 __u32 local_port; /* stored in host byte order */ 2872 /* ... here. */ 2873 2874 __u32 data_meta; 2875 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys); 2876 __u64 tstamp; 2877 __u32 wire_len; 2878 __u32 gso_segs; 2879 __bpf_md_ptr(struct bpf_sock *, sk); 2880 }; 2881 2882 struct bpf_tunnel_key { 2883 __u32 tunnel_id; 2884 union { 2885 __u32 remote_ipv4; 2886 __u32 remote_ipv6[4]; 2887 }; 2888 __u8 tunnel_tos; 2889 __u8 tunnel_ttl; 2890 __u16 tunnel_ext; /* Padding, future use. */ 2891 __u32 tunnel_label; 2892 }; 2893 2894 /* user accessible mirror of in-kernel xfrm_state. 2895 * new fields can only be added to the end of this structure 2896 */ 2897 struct bpf_xfrm_state { 2898 __u32 reqid; 2899 __u32 spi; /* Stored in network byte order */ 2900 __u16 family; 2901 __u16 ext; /* Padding, future use. */ 2902 union { 2903 __u32 remote_ipv4; /* Stored in network byte order */ 2904 __u32 remote_ipv6[4]; /* Stored in network byte order */ 2905 }; 2906 }; 2907 2908 /* Generic BPF return codes which all BPF program types may support. 2909 * The values are binary compatible with their TC_ACT_* counter-part to 2910 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT 2911 * programs. 2912 * 2913 * XDP is handled seprately, see XDP_*. 2914 */ 2915 enum bpf_ret_code { 2916 BPF_OK = 0, 2917 /* 1 reserved */ 2918 BPF_DROP = 2, 2919 /* 3-6 reserved */ 2920 BPF_REDIRECT = 7, 2921 /* >127 are reserved for prog type specific return codes. 2922 * 2923 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and 2924 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been 2925 * changed and should be routed based on its new L3 header. 2926 * (This is an L3 redirect, as opposed to L2 redirect 2927 * represented by BPF_REDIRECT above). 2928 */ 2929 BPF_LWT_REROUTE = 128, 2930 }; 2931 2932 struct bpf_sock { 2933 __u32 bound_dev_if; 2934 __u32 family; 2935 __u32 type; 2936 __u32 protocol; 2937 __u32 mark; 2938 __u32 priority; 2939 /* IP address also allows 1 and 2 bytes access */ 2940 __u32 src_ip4; 2941 __u32 src_ip6[4]; 2942 __u32 src_port; /* host byte order */ 2943 __u32 dst_port; /* network byte order */ 2944 __u32 dst_ip4; 2945 __u32 dst_ip6[4]; 2946 __u32 state; 2947 }; 2948 2949 struct bpf_tcp_sock { 2950 __u32 snd_cwnd; /* Sending congestion window */ 2951 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */ 2952 __u32 rtt_min; 2953 __u32 snd_ssthresh; /* Slow start size threshold */ 2954 __u32 rcv_nxt; /* What we want to receive next */ 2955 __u32 snd_nxt; /* Next sequence we send */ 2956 __u32 snd_una; /* First byte we want an ack for */ 2957 __u32 mss_cache; /* Cached effective mss, not including SACKS */ 2958 __u32 ecn_flags; /* ECN status bits. */ 2959 __u32 rate_delivered; /* saved rate sample: packets delivered */ 2960 __u32 rate_interval_us; /* saved rate sample: time elapsed */ 2961 __u32 packets_out; /* Packets which are "in flight" */ 2962 __u32 retrans_out; /* Retransmitted packets out */ 2963 __u32 total_retrans; /* Total retransmits for entire connection */ 2964 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn 2965 * total number of segments in. 2966 */ 2967 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn 2968 * total number of data segments in. 2969 */ 2970 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut 2971 * The total number of segments sent. 2972 */ 2973 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut 2974 * total number of data segments sent. 2975 */ 2976 __u32 lost_out; /* Lost packets */ 2977 __u32 sacked_out; /* SACK'd packets */ 2978 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived 2979 * sum(delta(rcv_nxt)), or how many bytes 2980 * were acked. 2981 */ 2982 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked 2983 * sum(delta(snd_una)), or how many bytes 2984 * were acked. 2985 */ 2986 }; 2987 2988 struct bpf_sock_tuple { 2989 union { 2990 struct { 2991 __be32 saddr; 2992 __be32 daddr; 2993 __be16 sport; 2994 __be16 dport; 2995 } ipv4; 2996 struct { 2997 __be32 saddr[4]; 2998 __be32 daddr[4]; 2999 __be16 sport; 3000 __be16 dport; 3001 } ipv6; 3002 }; 3003 }; 3004 3005 #define XDP_PACKET_HEADROOM 256 3006 3007 /* User return codes for XDP prog type. 3008 * A valid XDP program must return one of these defined values. All other 3009 * return codes are reserved for future use. Unknown return codes will 3010 * result in packet drops and a warning via bpf_warn_invalid_xdp_action(). 3011 */ 3012 enum xdp_action { 3013 XDP_ABORTED = 0, 3014 XDP_DROP, 3015 XDP_PASS, 3016 XDP_TX, 3017 XDP_REDIRECT, 3018 }; 3019 3020 /* user accessible metadata for XDP packet hook 3021 * new fields must be added to the end of this structure 3022 */ 3023 struct xdp_md { 3024 __u32 data; 3025 __u32 data_end; 3026 __u32 data_meta; 3027 /* Below access go through struct xdp_rxq_info */ 3028 __u32 ingress_ifindex; /* rxq->dev->ifindex */ 3029 __u32 rx_queue_index; /* rxq->queue_index */ 3030 }; 3031 3032 enum sk_action { 3033 SK_DROP = 0, 3034 SK_PASS, 3035 }; 3036 3037 /* user accessible metadata for SK_MSG packet hook, new fields must 3038 * be added to the end of this structure 3039 */ 3040 struct sk_msg_md { 3041 __bpf_md_ptr(void *, data); 3042 __bpf_md_ptr(void *, data_end); 3043 3044 __u32 family; 3045 __u32 remote_ip4; /* Stored in network byte order */ 3046 __u32 local_ip4; /* Stored in network byte order */ 3047 __u32 remote_ip6[4]; /* Stored in network byte order */ 3048 __u32 local_ip6[4]; /* Stored in network byte order */ 3049 __u32 remote_port; /* Stored in network byte order */ 3050 __u32 local_port; /* stored in host byte order */ 3051 __u32 size; /* Total size of sk_msg */ 3052 }; 3053 3054 struct sk_reuseport_md { 3055 /* 3056 * Start of directly accessible data. It begins from 3057 * the tcp/udp header. 3058 */ 3059 __bpf_md_ptr(void *, data); 3060 /* End of directly accessible data */ 3061 __bpf_md_ptr(void *, data_end); 3062 /* 3063 * Total length of packet (starting from the tcp/udp header). 3064 * Note that the directly accessible bytes (data_end - data) 3065 * could be less than this "len". Those bytes could be 3066 * indirectly read by a helper "bpf_skb_load_bytes()". 3067 */ 3068 __u32 len; 3069 /* 3070 * Eth protocol in the mac header (network byte order). e.g. 3071 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD) 3072 */ 3073 __u32 eth_protocol; 3074 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */ 3075 __u32 bind_inany; /* Is sock bound to an INANY address? */ 3076 __u32 hash; /* A hash of the packet 4 tuples */ 3077 }; 3078 3079 #define BPF_TAG_SIZE 8 3080 3081 struct bpf_prog_info { 3082 __u32 type; 3083 __u32 id; 3084 __u8 tag[BPF_TAG_SIZE]; 3085 __u32 jited_prog_len; 3086 __u32 xlated_prog_len; 3087 __aligned_u64 jited_prog_insns; 3088 __aligned_u64 xlated_prog_insns; 3089 __u64 load_time; /* ns since boottime */ 3090 __u32 created_by_uid; 3091 __u32 nr_map_ids; 3092 __aligned_u64 map_ids; 3093 char name[BPF_OBJ_NAME_LEN]; 3094 __u32 ifindex; 3095 __u32 gpl_compatible:1; 3096 __u64 netns_dev; 3097 __u64 netns_ino; 3098 __u32 nr_jited_ksyms; 3099 __u32 nr_jited_func_lens; 3100 __aligned_u64 jited_ksyms; 3101 __aligned_u64 jited_func_lens; 3102 __u32 btf_id; 3103 __u32 func_info_rec_size; 3104 __aligned_u64 func_info; 3105 __u32 nr_func_info; 3106 __u32 nr_line_info; 3107 __aligned_u64 line_info; 3108 __aligned_u64 jited_line_info; 3109 __u32 nr_jited_line_info; 3110 __u32 line_info_rec_size; 3111 __u32 jited_line_info_rec_size; 3112 __u32 nr_prog_tags; 3113 __aligned_u64 prog_tags; 3114 __u64 run_time_ns; 3115 __u64 run_cnt; 3116 } __attribute__((aligned(8))); 3117 3118 struct bpf_map_info { 3119 __u32 type; 3120 __u32 id; 3121 __u32 key_size; 3122 __u32 value_size; 3123 __u32 max_entries; 3124 __u32 map_flags; 3125 char name[BPF_OBJ_NAME_LEN]; 3126 __u32 ifindex; 3127 __u32 :32; 3128 __u64 netns_dev; 3129 __u64 netns_ino; 3130 __u32 btf_id; 3131 __u32 btf_key_type_id; 3132 __u32 btf_value_type_id; 3133 } __attribute__((aligned(8))); 3134 3135 struct bpf_btf_info { 3136 __aligned_u64 btf; 3137 __u32 btf_size; 3138 __u32 id; 3139 } __attribute__((aligned(8))); 3140 3141 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed 3142 * by user and intended to be used by socket (e.g. to bind to, depends on 3143 * attach attach type). 3144 */ 3145 struct bpf_sock_addr { 3146 __u32 user_family; /* Allows 4-byte read, but no write. */ 3147 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write. 3148 * Stored in network byte order. 3149 */ 3150 __u32 user_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 3151 * Stored in network byte order. 3152 */ 3153 __u32 user_port; /* Allows 4-byte read and write. 3154 * Stored in network byte order 3155 */ 3156 __u32 family; /* Allows 4-byte read, but no write */ 3157 __u32 type; /* Allows 4-byte read, but no write */ 3158 __u32 protocol; /* Allows 4-byte read, but no write */ 3159 __u32 msg_src_ip4; /* Allows 1,2,4-byte read an 4-byte write. 3160 * Stored in network byte order. 3161 */ 3162 __u32 msg_src_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 3163 * Stored in network byte order. 3164 */ 3165 }; 3166 3167 /* User bpf_sock_ops struct to access socket values and specify request ops 3168 * and their replies. 3169 * Some of this fields are in network (bigendian) byte order and may need 3170 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h). 3171 * New fields can only be added at the end of this structure 3172 */ 3173 struct bpf_sock_ops { 3174 __u32 op; 3175 union { 3176 __u32 args[4]; /* Optionally passed to bpf program */ 3177 __u32 reply; /* Returned by bpf program */ 3178 __u32 replylong[4]; /* Optionally returned by bpf prog */ 3179 }; 3180 __u32 family; 3181 __u32 remote_ip4; /* Stored in network byte order */ 3182 __u32 local_ip4; /* Stored in network byte order */ 3183 __u32 remote_ip6[4]; /* Stored in network byte order */ 3184 __u32 local_ip6[4]; /* Stored in network byte order */ 3185 __u32 remote_port; /* Stored in network byte order */ 3186 __u32 local_port; /* stored in host byte order */ 3187 __u32 is_fullsock; /* Some TCP fields are only valid if 3188 * there is a full socket. If not, the 3189 * fields read as zero. 3190 */ 3191 __u32 snd_cwnd; 3192 __u32 srtt_us; /* Averaged RTT << 3 in usecs */ 3193 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */ 3194 __u32 state; 3195 __u32 rtt_min; 3196 __u32 snd_ssthresh; 3197 __u32 rcv_nxt; 3198 __u32 snd_nxt; 3199 __u32 snd_una; 3200 __u32 mss_cache; 3201 __u32 ecn_flags; 3202 __u32 rate_delivered; 3203 __u32 rate_interval_us; 3204 __u32 packets_out; 3205 __u32 retrans_out; 3206 __u32 total_retrans; 3207 __u32 segs_in; 3208 __u32 data_segs_in; 3209 __u32 segs_out; 3210 __u32 data_segs_out; 3211 __u32 lost_out; 3212 __u32 sacked_out; 3213 __u32 sk_txhash; 3214 __u64 bytes_received; 3215 __u64 bytes_acked; 3216 }; 3217 3218 /* Definitions for bpf_sock_ops_cb_flags */ 3219 #define BPF_SOCK_OPS_RTO_CB_FLAG (1<<0) 3220 #define BPF_SOCK_OPS_RETRANS_CB_FLAG (1<<1) 3221 #define BPF_SOCK_OPS_STATE_CB_FLAG (1<<2) 3222 #define BPF_SOCK_OPS_ALL_CB_FLAGS 0x7 /* Mask of all currently 3223 * supported cb flags 3224 */ 3225 3226 /* List of known BPF sock_ops operators. 3227 * New entries can only be added at the end 3228 */ 3229 enum { 3230 BPF_SOCK_OPS_VOID, 3231 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or 3232 * -1 if default value should be used 3233 */ 3234 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized 3235 * window (in packets) or -1 if default 3236 * value should be used 3237 */ 3238 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an 3239 * active connection is initialized 3240 */ 3241 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an 3242 * active connection is 3243 * established 3244 */ 3245 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a 3246 * passive connection is 3247 * established 3248 */ 3249 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control 3250 * needs ECN 3251 */ 3252 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is 3253 * based on the path and may be 3254 * dependent on the congestion control 3255 * algorithm. In general it indicates 3256 * a congestion threshold. RTTs above 3257 * this indicate congestion 3258 */ 3259 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered. 3260 * Arg1: value of icsk_retransmits 3261 * Arg2: value of icsk_rto 3262 * Arg3: whether RTO has expired 3263 */ 3264 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted. 3265 * Arg1: sequence number of 1st byte 3266 * Arg2: # segments 3267 * Arg3: return value of 3268 * tcp_transmit_skb (0 => success) 3269 */ 3270 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state. 3271 * Arg1: old_state 3272 * Arg2: new_state 3273 */ 3274 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after 3275 * socket transition to LISTEN state. 3276 */ 3277 }; 3278 3279 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect 3280 * changes between the TCP and BPF versions. Ideally this should never happen. 3281 * If it does, we need to add code to convert them before calling 3282 * the BPF sock_ops function. 3283 */ 3284 enum { 3285 BPF_TCP_ESTABLISHED = 1, 3286 BPF_TCP_SYN_SENT, 3287 BPF_TCP_SYN_RECV, 3288 BPF_TCP_FIN_WAIT1, 3289 BPF_TCP_FIN_WAIT2, 3290 BPF_TCP_TIME_WAIT, 3291 BPF_TCP_CLOSE, 3292 BPF_TCP_CLOSE_WAIT, 3293 BPF_TCP_LAST_ACK, 3294 BPF_TCP_LISTEN, 3295 BPF_TCP_CLOSING, /* Now a valid state */ 3296 BPF_TCP_NEW_SYN_RECV, 3297 3298 BPF_TCP_MAX_STATES /* Leave at the end! */ 3299 }; 3300 3301 #define TCP_BPF_IW 1001 /* Set TCP initial congestion window */ 3302 #define TCP_BPF_SNDCWND_CLAMP 1002 /* Set sndcwnd_clamp */ 3303 3304 struct bpf_perf_event_value { 3305 __u64 counter; 3306 __u64 enabled; 3307 __u64 running; 3308 }; 3309 3310 #define BPF_DEVCG_ACC_MKNOD (1ULL << 0) 3311 #define BPF_DEVCG_ACC_READ (1ULL << 1) 3312 #define BPF_DEVCG_ACC_WRITE (1ULL << 2) 3313 3314 #define BPF_DEVCG_DEV_BLOCK (1ULL << 0) 3315 #define BPF_DEVCG_DEV_CHAR (1ULL << 1) 3316 3317 struct bpf_cgroup_dev_ctx { 3318 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */ 3319 __u32 access_type; 3320 __u32 major; 3321 __u32 minor; 3322 }; 3323 3324 struct bpf_raw_tracepoint_args { 3325 __u64 args[0]; 3326 }; 3327 3328 /* DIRECT: Skip the FIB rules and go to FIB table associated with device 3329 * OUTPUT: Do lookup from egress perspective; default is ingress 3330 */ 3331 #define BPF_FIB_LOOKUP_DIRECT BIT(0) 3332 #define BPF_FIB_LOOKUP_OUTPUT BIT(1) 3333 3334 enum { 3335 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */ 3336 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */ 3337 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */ 3338 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */ 3339 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */ 3340 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */ 3341 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */ 3342 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */ 3343 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */ 3344 }; 3345 3346 struct bpf_fib_lookup { 3347 /* input: network family for lookup (AF_INET, AF_INET6) 3348 * output: network family of egress nexthop 3349 */ 3350 __u8 family; 3351 3352 /* set if lookup is to consider L4 data - e.g., FIB rules */ 3353 __u8 l4_protocol; 3354 __be16 sport; 3355 __be16 dport; 3356 3357 /* total length of packet from network header - used for MTU check */ 3358 __u16 tot_len; 3359 3360 /* input: L3 device index for lookup 3361 * output: device index from FIB lookup 3362 */ 3363 __u32 ifindex; 3364 3365 union { 3366 /* inputs to lookup */ 3367 __u8 tos; /* AF_INET */ 3368 __be32 flowinfo; /* AF_INET6, flow_label + priority */ 3369 3370 /* output: metric of fib result (IPv4/IPv6 only) */ 3371 __u32 rt_metric; 3372 }; 3373 3374 union { 3375 __be32 ipv4_src; 3376 __u32 ipv6_src[4]; /* in6_addr; network order */ 3377 }; 3378 3379 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in 3380 * network header. output: bpf_fib_lookup sets to gateway address 3381 * if FIB lookup returns gateway route 3382 */ 3383 union { 3384 __be32 ipv4_dst; 3385 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3386 }; 3387 3388 /* output */ 3389 __be16 h_vlan_proto; 3390 __be16 h_vlan_TCI; 3391 __u8 smac[6]; /* ETH_ALEN */ 3392 __u8 dmac[6]; /* ETH_ALEN */ 3393 }; 3394 3395 enum bpf_task_fd_type { 3396 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */ 3397 BPF_FD_TYPE_TRACEPOINT, /* tp name */ 3398 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */ 3399 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */ 3400 BPF_FD_TYPE_UPROBE, /* filename + offset */ 3401 BPF_FD_TYPE_URETPROBE, /* filename + offset */ 3402 }; 3403 3404 struct bpf_flow_keys { 3405 __u16 nhoff; 3406 __u16 thoff; 3407 __u16 addr_proto; /* ETH_P_* of valid addrs */ 3408 __u8 is_frag; 3409 __u8 is_first_frag; 3410 __u8 is_encap; 3411 __u8 ip_proto; 3412 __be16 n_proto; 3413 __be16 sport; 3414 __be16 dport; 3415 union { 3416 struct { 3417 __be32 ipv4_src; 3418 __be32 ipv4_dst; 3419 }; 3420 struct { 3421 __u32 ipv6_src[4]; /* in6_addr; network order */ 3422 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3423 }; 3424 }; 3425 }; 3426 3427 struct bpf_func_info { 3428 __u32 insn_off; 3429 __u32 type_id; 3430 }; 3431 3432 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10) 3433 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff) 3434 3435 struct bpf_line_info { 3436 __u32 insn_off; 3437 __u32 file_name_off; 3438 __u32 line_off; 3439 __u32 line_col; 3440 }; 3441 3442 struct bpf_spin_lock { 3443 __u32 val; 3444 }; 3445 3446 struct bpf_sysctl { 3447 __u32 write; /* Sysctl is being read (= 0) or written (= 1). 3448 * Allows 1,2,4-byte read, but no write. 3449 */ 3450 __u32 file_pos; /* Sysctl file position to read from, write to. 3451 * Allows 1,2,4-byte read an 4-byte write. 3452 */ 3453 }; 3454 3455 #endif /* _UAPI__LINUX_BPF_H__ */ 3456