1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8 #ifndef _UAPI__LINUX_BPF_H__ 9 #define _UAPI__LINUX_BPF_H__ 10 11 #include <linux/types.h> 12 #include <linux/bpf_common.h> 13 14 /* Extended instruction set based on top of classic BPF */ 15 16 /* instruction classes */ 17 #define BPF_JMP32 0x06 /* jmp mode in word width */ 18 #define BPF_ALU64 0x07 /* alu mode in double word width */ 19 20 /* ld/ldx fields */ 21 #define BPF_DW 0x18 /* double word (64-bit) */ 22 #define BPF_XADD 0xc0 /* exclusive add */ 23 24 /* alu/jmp fields */ 25 #define BPF_MOV 0xb0 /* mov reg to reg */ 26 #define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */ 27 28 /* change endianness of a register */ 29 #define BPF_END 0xd0 /* flags for endianness conversion: */ 30 #define BPF_TO_LE 0x00 /* convert to little-endian */ 31 #define BPF_TO_BE 0x08 /* convert to big-endian */ 32 #define BPF_FROM_LE BPF_TO_LE 33 #define BPF_FROM_BE BPF_TO_BE 34 35 /* jmp encodings */ 36 #define BPF_JNE 0x50 /* jump != */ 37 #define BPF_JLT 0xa0 /* LT is unsigned, '<' */ 38 #define BPF_JLE 0xb0 /* LE is unsigned, '<=' */ 39 #define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */ 40 #define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */ 41 #define BPF_JSLT 0xc0 /* SLT is signed, '<' */ 42 #define BPF_JSLE 0xd0 /* SLE is signed, '<=' */ 43 #define BPF_CALL 0x80 /* function call */ 44 #define BPF_EXIT 0x90 /* function return */ 45 46 /* Register numbers */ 47 enum { 48 BPF_REG_0 = 0, 49 BPF_REG_1, 50 BPF_REG_2, 51 BPF_REG_3, 52 BPF_REG_4, 53 BPF_REG_5, 54 BPF_REG_6, 55 BPF_REG_7, 56 BPF_REG_8, 57 BPF_REG_9, 58 BPF_REG_10, 59 __MAX_BPF_REG, 60 }; 61 62 /* BPF has 10 general purpose 64-bit registers and stack frame. */ 63 #define MAX_BPF_REG __MAX_BPF_REG 64 65 struct bpf_insn { 66 __u8 code; /* opcode */ 67 __u8 dst_reg:4; /* dest register */ 68 __u8 src_reg:4; /* source register */ 69 __s16 off; /* signed offset */ 70 __s32 imm; /* signed immediate constant */ 71 }; 72 73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */ 74 struct bpf_lpm_trie_key { 75 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */ 76 __u8 data[0]; /* Arbitrary size */ 77 }; 78 79 struct bpf_cgroup_storage_key { 80 __u64 cgroup_inode_id; /* cgroup inode id */ 81 __u32 attach_type; /* program attach type */ 82 }; 83 84 union bpf_iter_link_info { 85 struct { 86 __u32 map_fd; 87 } map; 88 }; 89 90 /* BPF syscall commands, see bpf(2) man-page for details. */ 91 enum bpf_cmd { 92 BPF_MAP_CREATE, 93 BPF_MAP_LOOKUP_ELEM, 94 BPF_MAP_UPDATE_ELEM, 95 BPF_MAP_DELETE_ELEM, 96 BPF_MAP_GET_NEXT_KEY, 97 BPF_PROG_LOAD, 98 BPF_OBJ_PIN, 99 BPF_OBJ_GET, 100 BPF_PROG_ATTACH, 101 BPF_PROG_DETACH, 102 BPF_PROG_TEST_RUN, 103 BPF_PROG_GET_NEXT_ID, 104 BPF_MAP_GET_NEXT_ID, 105 BPF_PROG_GET_FD_BY_ID, 106 BPF_MAP_GET_FD_BY_ID, 107 BPF_OBJ_GET_INFO_BY_FD, 108 BPF_PROG_QUERY, 109 BPF_RAW_TRACEPOINT_OPEN, 110 BPF_BTF_LOAD, 111 BPF_BTF_GET_FD_BY_ID, 112 BPF_TASK_FD_QUERY, 113 BPF_MAP_LOOKUP_AND_DELETE_ELEM, 114 BPF_MAP_FREEZE, 115 BPF_BTF_GET_NEXT_ID, 116 BPF_MAP_LOOKUP_BATCH, 117 BPF_MAP_LOOKUP_AND_DELETE_BATCH, 118 BPF_MAP_UPDATE_BATCH, 119 BPF_MAP_DELETE_BATCH, 120 BPF_LINK_CREATE, 121 BPF_LINK_UPDATE, 122 BPF_LINK_GET_FD_BY_ID, 123 BPF_LINK_GET_NEXT_ID, 124 BPF_ENABLE_STATS, 125 BPF_ITER_CREATE, 126 BPF_LINK_DETACH, 127 BPF_PROG_BIND_MAP, 128 }; 129 130 enum bpf_map_type { 131 BPF_MAP_TYPE_UNSPEC, 132 BPF_MAP_TYPE_HASH, 133 BPF_MAP_TYPE_ARRAY, 134 BPF_MAP_TYPE_PROG_ARRAY, 135 BPF_MAP_TYPE_PERF_EVENT_ARRAY, 136 BPF_MAP_TYPE_PERCPU_HASH, 137 BPF_MAP_TYPE_PERCPU_ARRAY, 138 BPF_MAP_TYPE_STACK_TRACE, 139 BPF_MAP_TYPE_CGROUP_ARRAY, 140 BPF_MAP_TYPE_LRU_HASH, 141 BPF_MAP_TYPE_LRU_PERCPU_HASH, 142 BPF_MAP_TYPE_LPM_TRIE, 143 BPF_MAP_TYPE_ARRAY_OF_MAPS, 144 BPF_MAP_TYPE_HASH_OF_MAPS, 145 BPF_MAP_TYPE_DEVMAP, 146 BPF_MAP_TYPE_SOCKMAP, 147 BPF_MAP_TYPE_CPUMAP, 148 BPF_MAP_TYPE_XSKMAP, 149 BPF_MAP_TYPE_SOCKHASH, 150 BPF_MAP_TYPE_CGROUP_STORAGE, 151 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 152 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE, 153 BPF_MAP_TYPE_QUEUE, 154 BPF_MAP_TYPE_STACK, 155 BPF_MAP_TYPE_SK_STORAGE, 156 BPF_MAP_TYPE_DEVMAP_HASH, 157 BPF_MAP_TYPE_STRUCT_OPS, 158 BPF_MAP_TYPE_RINGBUF, 159 BPF_MAP_TYPE_INODE_STORAGE, 160 BPF_MAP_TYPE_TASK_STORAGE, 161 }; 162 163 /* Note that tracing related programs such as 164 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT} 165 * are not subject to a stable API since kernel internal data 166 * structures can change from release to release and may 167 * therefore break existing tracing BPF programs. Tracing BPF 168 * programs correspond to /a/ specific kernel which is to be 169 * analyzed, and not /a/ specific kernel /and/ all future ones. 170 */ 171 enum bpf_prog_type { 172 BPF_PROG_TYPE_UNSPEC, 173 BPF_PROG_TYPE_SOCKET_FILTER, 174 BPF_PROG_TYPE_KPROBE, 175 BPF_PROG_TYPE_SCHED_CLS, 176 BPF_PROG_TYPE_SCHED_ACT, 177 BPF_PROG_TYPE_TRACEPOINT, 178 BPF_PROG_TYPE_XDP, 179 BPF_PROG_TYPE_PERF_EVENT, 180 BPF_PROG_TYPE_CGROUP_SKB, 181 BPF_PROG_TYPE_CGROUP_SOCK, 182 BPF_PROG_TYPE_LWT_IN, 183 BPF_PROG_TYPE_LWT_OUT, 184 BPF_PROG_TYPE_LWT_XMIT, 185 BPF_PROG_TYPE_SOCK_OPS, 186 BPF_PROG_TYPE_SK_SKB, 187 BPF_PROG_TYPE_CGROUP_DEVICE, 188 BPF_PROG_TYPE_SK_MSG, 189 BPF_PROG_TYPE_RAW_TRACEPOINT, 190 BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 191 BPF_PROG_TYPE_LWT_SEG6LOCAL, 192 BPF_PROG_TYPE_LIRC_MODE2, 193 BPF_PROG_TYPE_SK_REUSEPORT, 194 BPF_PROG_TYPE_FLOW_DISSECTOR, 195 BPF_PROG_TYPE_CGROUP_SYSCTL, 196 BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, 197 BPF_PROG_TYPE_CGROUP_SOCKOPT, 198 BPF_PROG_TYPE_TRACING, 199 BPF_PROG_TYPE_STRUCT_OPS, 200 BPF_PROG_TYPE_EXT, 201 BPF_PROG_TYPE_LSM, 202 BPF_PROG_TYPE_SK_LOOKUP, 203 }; 204 205 enum bpf_attach_type { 206 BPF_CGROUP_INET_INGRESS, 207 BPF_CGROUP_INET_EGRESS, 208 BPF_CGROUP_INET_SOCK_CREATE, 209 BPF_CGROUP_SOCK_OPS, 210 BPF_SK_SKB_STREAM_PARSER, 211 BPF_SK_SKB_STREAM_VERDICT, 212 BPF_CGROUP_DEVICE, 213 BPF_SK_MSG_VERDICT, 214 BPF_CGROUP_INET4_BIND, 215 BPF_CGROUP_INET6_BIND, 216 BPF_CGROUP_INET4_CONNECT, 217 BPF_CGROUP_INET6_CONNECT, 218 BPF_CGROUP_INET4_POST_BIND, 219 BPF_CGROUP_INET6_POST_BIND, 220 BPF_CGROUP_UDP4_SENDMSG, 221 BPF_CGROUP_UDP6_SENDMSG, 222 BPF_LIRC_MODE2, 223 BPF_FLOW_DISSECTOR, 224 BPF_CGROUP_SYSCTL, 225 BPF_CGROUP_UDP4_RECVMSG, 226 BPF_CGROUP_UDP6_RECVMSG, 227 BPF_CGROUP_GETSOCKOPT, 228 BPF_CGROUP_SETSOCKOPT, 229 BPF_TRACE_RAW_TP, 230 BPF_TRACE_FENTRY, 231 BPF_TRACE_FEXIT, 232 BPF_MODIFY_RETURN, 233 BPF_LSM_MAC, 234 BPF_TRACE_ITER, 235 BPF_CGROUP_INET4_GETPEERNAME, 236 BPF_CGROUP_INET6_GETPEERNAME, 237 BPF_CGROUP_INET4_GETSOCKNAME, 238 BPF_CGROUP_INET6_GETSOCKNAME, 239 BPF_XDP_DEVMAP, 240 BPF_CGROUP_INET_SOCK_RELEASE, 241 BPF_XDP_CPUMAP, 242 BPF_SK_LOOKUP, 243 BPF_XDP, 244 __MAX_BPF_ATTACH_TYPE 245 }; 246 247 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE 248 249 enum bpf_link_type { 250 BPF_LINK_TYPE_UNSPEC = 0, 251 BPF_LINK_TYPE_RAW_TRACEPOINT = 1, 252 BPF_LINK_TYPE_TRACING = 2, 253 BPF_LINK_TYPE_CGROUP = 3, 254 BPF_LINK_TYPE_ITER = 4, 255 BPF_LINK_TYPE_NETNS = 5, 256 BPF_LINK_TYPE_XDP = 6, 257 258 MAX_BPF_LINK_TYPE, 259 }; 260 261 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command 262 * 263 * NONE(default): No further bpf programs allowed in the subtree. 264 * 265 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, 266 * the program in this cgroup yields to sub-cgroup program. 267 * 268 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, 269 * that cgroup program gets run in addition to the program in this cgroup. 270 * 271 * Only one program is allowed to be attached to a cgroup with 272 * NONE or BPF_F_ALLOW_OVERRIDE flag. 273 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will 274 * release old program and attach the new one. Attach flags has to match. 275 * 276 * Multiple programs are allowed to be attached to a cgroup with 277 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order 278 * (those that were attached first, run first) 279 * The programs of sub-cgroup are executed first, then programs of 280 * this cgroup and then programs of parent cgroup. 281 * When children program makes decision (like picking TCP CA or sock bind) 282 * parent program has a chance to override it. 283 * 284 * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of 285 * programs for a cgroup. Though it's possible to replace an old program at 286 * any position by also specifying BPF_F_REPLACE flag and position itself in 287 * replace_bpf_fd attribute. Old program at this position will be released. 288 * 289 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups. 290 * A cgroup with NONE doesn't allow any programs in sub-cgroups. 291 * Ex1: 292 * cgrp1 (MULTI progs A, B) -> 293 * cgrp2 (OVERRIDE prog C) -> 294 * cgrp3 (MULTI prog D) -> 295 * cgrp4 (OVERRIDE prog E) -> 296 * cgrp5 (NONE prog F) 297 * the event in cgrp5 triggers execution of F,D,A,B in that order. 298 * if prog F is detached, the execution is E,D,A,B 299 * if prog F and D are detached, the execution is E,A,B 300 * if prog F, E and D are detached, the execution is C,A,B 301 * 302 * All eligible programs are executed regardless of return code from 303 * earlier programs. 304 */ 305 #define BPF_F_ALLOW_OVERRIDE (1U << 0) 306 #define BPF_F_ALLOW_MULTI (1U << 1) 307 #define BPF_F_REPLACE (1U << 2) 308 309 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the 310 * verifier will perform strict alignment checking as if the kernel 311 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set, 312 * and NET_IP_ALIGN defined to 2. 313 */ 314 #define BPF_F_STRICT_ALIGNMENT (1U << 0) 315 316 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the 317 * verifier will allow any alignment whatsoever. On platforms 318 * with strict alignment requirements for loads ands stores (such 319 * as sparc and mips) the verifier validates that all loads and 320 * stores provably follow this requirement. This flag turns that 321 * checking and enforcement off. 322 * 323 * It is mostly used for testing when we want to validate the 324 * context and memory access aspects of the verifier, but because 325 * of an unaligned access the alignment check would trigger before 326 * the one we are interested in. 327 */ 328 #define BPF_F_ANY_ALIGNMENT (1U << 1) 329 330 /* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose. 331 * Verifier does sub-register def/use analysis and identifies instructions whose 332 * def only matters for low 32-bit, high 32-bit is never referenced later 333 * through implicit zero extension. Therefore verifier notifies JIT back-ends 334 * that it is safe to ignore clearing high 32-bit for these instructions. This 335 * saves some back-ends a lot of code-gen. However such optimization is not 336 * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends 337 * hence hasn't used verifier's analysis result. But, we really want to have a 338 * way to be able to verify the correctness of the described optimization on 339 * x86_64 on which testsuites are frequently exercised. 340 * 341 * So, this flag is introduced. Once it is set, verifier will randomize high 342 * 32-bit for those instructions who has been identified as safe to ignore them. 343 * Then, if verifier is not doing correct analysis, such randomization will 344 * regress tests to expose bugs. 345 */ 346 #define BPF_F_TEST_RND_HI32 (1U << 2) 347 348 /* The verifier internal test flag. Behavior is undefined */ 349 #define BPF_F_TEST_STATE_FREQ (1U << 3) 350 351 /* If BPF_F_SLEEPABLE is used in BPF_PROG_LOAD command, the verifier will 352 * restrict map and helper usage for such programs. Sleepable BPF programs can 353 * only be attached to hooks where kernel execution context allows sleeping. 354 * Such programs are allowed to use helpers that may sleep like 355 * bpf_copy_from_user(). 356 */ 357 #define BPF_F_SLEEPABLE (1U << 4) 358 359 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have 360 * the following extensions: 361 * 362 * insn[0].src_reg: BPF_PSEUDO_MAP_FD 363 * insn[0].imm: map fd 364 * insn[1].imm: 0 365 * insn[0].off: 0 366 * insn[1].off: 0 367 * ldimm64 rewrite: address of map 368 * verifier type: CONST_PTR_TO_MAP 369 */ 370 #define BPF_PSEUDO_MAP_FD 1 371 /* insn[0].src_reg: BPF_PSEUDO_MAP_VALUE 372 * insn[0].imm: map fd 373 * insn[1].imm: offset into value 374 * insn[0].off: 0 375 * insn[1].off: 0 376 * ldimm64 rewrite: address of map[0]+offset 377 * verifier type: PTR_TO_MAP_VALUE 378 */ 379 #define BPF_PSEUDO_MAP_VALUE 2 380 /* insn[0].src_reg: BPF_PSEUDO_BTF_ID 381 * insn[0].imm: kernel btd id of VAR 382 * insn[1].imm: 0 383 * insn[0].off: 0 384 * insn[1].off: 0 385 * ldimm64 rewrite: address of the kernel variable 386 * verifier type: PTR_TO_BTF_ID or PTR_TO_MEM, depending on whether the var 387 * is struct/union. 388 */ 389 #define BPF_PSEUDO_BTF_ID 3 390 391 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative 392 * offset to another bpf function 393 */ 394 #define BPF_PSEUDO_CALL 1 395 396 /* flags for BPF_MAP_UPDATE_ELEM command */ 397 enum { 398 BPF_ANY = 0, /* create new element or update existing */ 399 BPF_NOEXIST = 1, /* create new element if it didn't exist */ 400 BPF_EXIST = 2, /* update existing element */ 401 BPF_F_LOCK = 4, /* spin_lock-ed map_lookup/map_update */ 402 }; 403 404 /* flags for BPF_MAP_CREATE command */ 405 enum { 406 BPF_F_NO_PREALLOC = (1U << 0), 407 /* Instead of having one common LRU list in the 408 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list 409 * which can scale and perform better. 410 * Note, the LRU nodes (including free nodes) cannot be moved 411 * across different LRU lists. 412 */ 413 BPF_F_NO_COMMON_LRU = (1U << 1), 414 /* Specify numa node during map creation */ 415 BPF_F_NUMA_NODE = (1U << 2), 416 417 /* Flags for accessing BPF object from syscall side. */ 418 BPF_F_RDONLY = (1U << 3), 419 BPF_F_WRONLY = (1U << 4), 420 421 /* Flag for stack_map, store build_id+offset instead of pointer */ 422 BPF_F_STACK_BUILD_ID = (1U << 5), 423 424 /* Zero-initialize hash function seed. This should only be used for testing. */ 425 BPF_F_ZERO_SEED = (1U << 6), 426 427 /* Flags for accessing BPF object from program side. */ 428 BPF_F_RDONLY_PROG = (1U << 7), 429 BPF_F_WRONLY_PROG = (1U << 8), 430 431 /* Clone map from listener for newly accepted socket */ 432 BPF_F_CLONE = (1U << 9), 433 434 /* Enable memory-mapping BPF map */ 435 BPF_F_MMAPABLE = (1U << 10), 436 437 /* Share perf_event among processes */ 438 BPF_F_PRESERVE_ELEMS = (1U << 11), 439 440 /* Create a map that is suitable to be an inner map with dynamic max entries */ 441 BPF_F_INNER_MAP = (1U << 12), 442 }; 443 444 /* Flags for BPF_PROG_QUERY. */ 445 446 /* Query effective (directly attached + inherited from ancestor cgroups) 447 * programs that will be executed for events within a cgroup. 448 * attach_flags with this flag are returned only for directly attached programs. 449 */ 450 #define BPF_F_QUERY_EFFECTIVE (1U << 0) 451 452 /* Flags for BPF_PROG_TEST_RUN */ 453 454 /* If set, run the test on the cpu specified by bpf_attr.test.cpu */ 455 #define BPF_F_TEST_RUN_ON_CPU (1U << 0) 456 457 /* type for BPF_ENABLE_STATS */ 458 enum bpf_stats_type { 459 /* enabled run_time_ns and run_cnt */ 460 BPF_STATS_RUN_TIME = 0, 461 }; 462 463 enum bpf_stack_build_id_status { 464 /* user space need an empty entry to identify end of a trace */ 465 BPF_STACK_BUILD_ID_EMPTY = 0, 466 /* with valid build_id and offset */ 467 BPF_STACK_BUILD_ID_VALID = 1, 468 /* couldn't get build_id, fallback to ip */ 469 BPF_STACK_BUILD_ID_IP = 2, 470 }; 471 472 #define BPF_BUILD_ID_SIZE 20 473 struct bpf_stack_build_id { 474 __s32 status; 475 unsigned char build_id[BPF_BUILD_ID_SIZE]; 476 union { 477 __u64 offset; 478 __u64 ip; 479 }; 480 }; 481 482 #define BPF_OBJ_NAME_LEN 16U 483 484 union bpf_attr { 485 struct { /* anonymous struct used by BPF_MAP_CREATE command */ 486 __u32 map_type; /* one of enum bpf_map_type */ 487 __u32 key_size; /* size of key in bytes */ 488 __u32 value_size; /* size of value in bytes */ 489 __u32 max_entries; /* max number of entries in a map */ 490 __u32 map_flags; /* BPF_MAP_CREATE related 491 * flags defined above. 492 */ 493 __u32 inner_map_fd; /* fd pointing to the inner map */ 494 __u32 numa_node; /* numa node (effective only if 495 * BPF_F_NUMA_NODE is set). 496 */ 497 char map_name[BPF_OBJ_NAME_LEN]; 498 __u32 map_ifindex; /* ifindex of netdev to create on */ 499 __u32 btf_fd; /* fd pointing to a BTF type data */ 500 __u32 btf_key_type_id; /* BTF type_id of the key */ 501 __u32 btf_value_type_id; /* BTF type_id of the value */ 502 __u32 btf_vmlinux_value_type_id;/* BTF type_id of a kernel- 503 * struct stored as the 504 * map value 505 */ 506 }; 507 508 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */ 509 __u32 map_fd; 510 __aligned_u64 key; 511 union { 512 __aligned_u64 value; 513 __aligned_u64 next_key; 514 }; 515 __u64 flags; 516 }; 517 518 struct { /* struct used by BPF_MAP_*_BATCH commands */ 519 __aligned_u64 in_batch; /* start batch, 520 * NULL to start from beginning 521 */ 522 __aligned_u64 out_batch; /* output: next start batch */ 523 __aligned_u64 keys; 524 __aligned_u64 values; 525 __u32 count; /* input/output: 526 * input: # of key/value 527 * elements 528 * output: # of filled elements 529 */ 530 __u32 map_fd; 531 __u64 elem_flags; 532 __u64 flags; 533 } batch; 534 535 struct { /* anonymous struct used by BPF_PROG_LOAD command */ 536 __u32 prog_type; /* one of enum bpf_prog_type */ 537 __u32 insn_cnt; 538 __aligned_u64 insns; 539 __aligned_u64 license; 540 __u32 log_level; /* verbosity level of verifier */ 541 __u32 log_size; /* size of user buffer */ 542 __aligned_u64 log_buf; /* user supplied buffer */ 543 __u32 kern_version; /* not used */ 544 __u32 prog_flags; 545 char prog_name[BPF_OBJ_NAME_LEN]; 546 __u32 prog_ifindex; /* ifindex of netdev to prep for */ 547 /* For some prog types expected attach type must be known at 548 * load time to verify attach type specific parts of prog 549 * (context accesses, allowed helpers, etc). 550 */ 551 __u32 expected_attach_type; 552 __u32 prog_btf_fd; /* fd pointing to BTF type data */ 553 __u32 func_info_rec_size; /* userspace bpf_func_info size */ 554 __aligned_u64 func_info; /* func info */ 555 __u32 func_info_cnt; /* number of bpf_func_info records */ 556 __u32 line_info_rec_size; /* userspace bpf_line_info size */ 557 __aligned_u64 line_info; /* line info */ 558 __u32 line_info_cnt; /* number of bpf_line_info records */ 559 __u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 560 __u32 attach_prog_fd; /* 0 to attach to vmlinux */ 561 }; 562 563 struct { /* anonymous struct used by BPF_OBJ_* commands */ 564 __aligned_u64 pathname; 565 __u32 bpf_fd; 566 __u32 file_flags; 567 }; 568 569 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */ 570 __u32 target_fd; /* container object to attach to */ 571 __u32 attach_bpf_fd; /* eBPF program to attach */ 572 __u32 attach_type; 573 __u32 attach_flags; 574 __u32 replace_bpf_fd; /* previously attached eBPF 575 * program to replace if 576 * BPF_F_REPLACE is used 577 */ 578 }; 579 580 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */ 581 __u32 prog_fd; 582 __u32 retval; 583 __u32 data_size_in; /* input: len of data_in */ 584 __u32 data_size_out; /* input/output: len of data_out 585 * returns ENOSPC if data_out 586 * is too small. 587 */ 588 __aligned_u64 data_in; 589 __aligned_u64 data_out; 590 __u32 repeat; 591 __u32 duration; 592 __u32 ctx_size_in; /* input: len of ctx_in */ 593 __u32 ctx_size_out; /* input/output: len of ctx_out 594 * returns ENOSPC if ctx_out 595 * is too small. 596 */ 597 __aligned_u64 ctx_in; 598 __aligned_u64 ctx_out; 599 __u32 flags; 600 __u32 cpu; 601 } test; 602 603 struct { /* anonymous struct used by BPF_*_GET_*_ID */ 604 union { 605 __u32 start_id; 606 __u32 prog_id; 607 __u32 map_id; 608 __u32 btf_id; 609 __u32 link_id; 610 }; 611 __u32 next_id; 612 __u32 open_flags; 613 }; 614 615 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */ 616 __u32 bpf_fd; 617 __u32 info_len; 618 __aligned_u64 info; 619 } info; 620 621 struct { /* anonymous struct used by BPF_PROG_QUERY command */ 622 __u32 target_fd; /* container object to query */ 623 __u32 attach_type; 624 __u32 query_flags; 625 __u32 attach_flags; 626 __aligned_u64 prog_ids; 627 __u32 prog_cnt; 628 } query; 629 630 struct { /* anonymous struct used by BPF_RAW_TRACEPOINT_OPEN command */ 631 __u64 name; 632 __u32 prog_fd; 633 } raw_tracepoint; 634 635 struct { /* anonymous struct for BPF_BTF_LOAD */ 636 __aligned_u64 btf; 637 __aligned_u64 btf_log_buf; 638 __u32 btf_size; 639 __u32 btf_log_size; 640 __u32 btf_log_level; 641 }; 642 643 struct { 644 __u32 pid; /* input: pid */ 645 __u32 fd; /* input: fd */ 646 __u32 flags; /* input: flags */ 647 __u32 buf_len; /* input/output: buf len */ 648 __aligned_u64 buf; /* input/output: 649 * tp_name for tracepoint 650 * symbol for kprobe 651 * filename for uprobe 652 */ 653 __u32 prog_id; /* output: prod_id */ 654 __u32 fd_type; /* output: BPF_FD_TYPE_* */ 655 __u64 probe_offset; /* output: probe_offset */ 656 __u64 probe_addr; /* output: probe_addr */ 657 } task_fd_query; 658 659 struct { /* struct used by BPF_LINK_CREATE command */ 660 __u32 prog_fd; /* eBPF program to attach */ 661 union { 662 __u32 target_fd; /* object to attach to */ 663 __u32 target_ifindex; /* target ifindex */ 664 }; 665 __u32 attach_type; /* attach type */ 666 __u32 flags; /* extra flags */ 667 union { 668 __u32 target_btf_id; /* btf_id of target to attach to */ 669 struct { 670 __aligned_u64 iter_info; /* extra bpf_iter_link_info */ 671 __u32 iter_info_len; /* iter_info length */ 672 }; 673 }; 674 } link_create; 675 676 struct { /* struct used by BPF_LINK_UPDATE command */ 677 __u32 link_fd; /* link fd */ 678 /* new program fd to update link with */ 679 __u32 new_prog_fd; 680 __u32 flags; /* extra flags */ 681 /* expected link's program fd; is specified only if 682 * BPF_F_REPLACE flag is set in flags */ 683 __u32 old_prog_fd; 684 } link_update; 685 686 struct { 687 __u32 link_fd; 688 } link_detach; 689 690 struct { /* struct used by BPF_ENABLE_STATS command */ 691 __u32 type; 692 } enable_stats; 693 694 struct { /* struct used by BPF_ITER_CREATE command */ 695 __u32 link_fd; 696 __u32 flags; 697 } iter_create; 698 699 struct { /* struct used by BPF_PROG_BIND_MAP command */ 700 __u32 prog_fd; 701 __u32 map_fd; 702 __u32 flags; /* extra flags */ 703 } prog_bind_map; 704 705 } __attribute__((aligned(8))); 706 707 /* The description below is an attempt at providing documentation to eBPF 708 * developers about the multiple available eBPF helper functions. It can be 709 * parsed and used to produce a manual page. The workflow is the following, 710 * and requires the rst2man utility: 711 * 712 * $ ./scripts/bpf_helpers_doc.py \ 713 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst 714 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7 715 * $ man /tmp/bpf-helpers.7 716 * 717 * Note that in order to produce this external documentation, some RST 718 * formatting is used in the descriptions to get "bold" and "italics" in 719 * manual pages. Also note that the few trailing white spaces are 720 * intentional, removing them would break paragraphs for rst2man. 721 * 722 * Start of BPF helper function descriptions: 723 * 724 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key) 725 * Description 726 * Perform a lookup in *map* for an entry associated to *key*. 727 * Return 728 * Map value associated to *key*, or **NULL** if no entry was 729 * found. 730 * 731 * long bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags) 732 * Description 733 * Add or update the value of the entry associated to *key* in 734 * *map* with *value*. *flags* is one of: 735 * 736 * **BPF_NOEXIST** 737 * The entry for *key* must not exist in the map. 738 * **BPF_EXIST** 739 * The entry for *key* must already exist in the map. 740 * **BPF_ANY** 741 * No condition on the existence of the entry for *key*. 742 * 743 * Flag value **BPF_NOEXIST** cannot be used for maps of types 744 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all 745 * elements always exist), the helper would return an error. 746 * Return 747 * 0 on success, or a negative error in case of failure. 748 * 749 * long bpf_map_delete_elem(struct bpf_map *map, const void *key) 750 * Description 751 * Delete entry with *key* from *map*. 752 * Return 753 * 0 on success, or a negative error in case of failure. 754 * 755 * long bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr) 756 * Description 757 * For tracing programs, safely attempt to read *size* bytes from 758 * kernel space address *unsafe_ptr* and store the data in *dst*. 759 * 760 * Generally, use **bpf_probe_read_user**\ () or 761 * **bpf_probe_read_kernel**\ () instead. 762 * Return 763 * 0 on success, or a negative error in case of failure. 764 * 765 * u64 bpf_ktime_get_ns(void) 766 * Description 767 * Return the time elapsed since system boot, in nanoseconds. 768 * Does not include time the system was suspended. 769 * See: **clock_gettime**\ (**CLOCK_MONOTONIC**) 770 * Return 771 * Current *ktime*. 772 * 773 * long bpf_trace_printk(const char *fmt, u32 fmt_size, ...) 774 * Description 775 * This helper is a "printk()-like" facility for debugging. It 776 * prints a message defined by format *fmt* (of size *fmt_size*) 777 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if 778 * available. It can take up to three additional **u64** 779 * arguments (as an eBPF helpers, the total number of arguments is 780 * limited to five). 781 * 782 * Each time the helper is called, it appends a line to the trace. 783 * Lines are discarded while *\/sys/kernel/debug/tracing/trace* is 784 * open, use *\/sys/kernel/debug/tracing/trace_pipe* to avoid this. 785 * The format of the trace is customizable, and the exact output 786 * one will get depends on the options set in 787 * *\/sys/kernel/debug/tracing/trace_options* (see also the 788 * *README* file under the same directory). However, it usually 789 * defaults to something like: 790 * 791 * :: 792 * 793 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg> 794 * 795 * In the above: 796 * 797 * * ``telnet`` is the name of the current task. 798 * * ``470`` is the PID of the current task. 799 * * ``001`` is the CPU number on which the task is 800 * running. 801 * * In ``.N..``, each character refers to a set of 802 * options (whether irqs are enabled, scheduling 803 * options, whether hard/softirqs are running, level of 804 * preempt_disabled respectively). **N** means that 805 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED** 806 * are set. 807 * * ``419421.045894`` is a timestamp. 808 * * ``0x00000001`` is a fake value used by BPF for the 809 * instruction pointer register. 810 * * ``<formatted msg>`` is the message formatted with 811 * *fmt*. 812 * 813 * The conversion specifiers supported by *fmt* are similar, but 814 * more limited than for printk(). They are **%d**, **%i**, 815 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**, 816 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size 817 * of field, padding with zeroes, etc.) is available, and the 818 * helper will return **-EINVAL** (but print nothing) if it 819 * encounters an unknown specifier. 820 * 821 * Also, note that **bpf_trace_printk**\ () is slow, and should 822 * only be used for debugging purposes. For this reason, a notice 823 * block (spanning several lines) is printed to kernel logs and 824 * states that the helper should not be used "for production use" 825 * the first time this helper is used (or more precisely, when 826 * **trace_printk**\ () buffers are allocated). For passing values 827 * to user space, perf events should be preferred. 828 * Return 829 * The number of bytes written to the buffer, or a negative error 830 * in case of failure. 831 * 832 * u32 bpf_get_prandom_u32(void) 833 * Description 834 * Get a pseudo-random number. 835 * 836 * From a security point of view, this helper uses its own 837 * pseudo-random internal state, and cannot be used to infer the 838 * seed of other random functions in the kernel. However, it is 839 * essential to note that the generator used by the helper is not 840 * cryptographically secure. 841 * Return 842 * A random 32-bit unsigned value. 843 * 844 * u32 bpf_get_smp_processor_id(void) 845 * Description 846 * Get the SMP (symmetric multiprocessing) processor id. Note that 847 * all programs run with preemption disabled, which means that the 848 * SMP processor id is stable during all the execution of the 849 * program. 850 * Return 851 * The SMP id of the processor running the program. 852 * 853 * long bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags) 854 * Description 855 * Store *len* bytes from address *from* into the packet 856 * associated to *skb*, at *offset*. *flags* are a combination of 857 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the 858 * checksum for the packet after storing the bytes) and 859 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\ 860 * **->swhash** and *skb*\ **->l4hash** to 0). 861 * 862 * A call to this helper is susceptible to change the underlying 863 * packet buffer. Therefore, at load time, all checks on pointers 864 * previously done by the verifier are invalidated and must be 865 * performed again, if the helper is used in combination with 866 * direct packet access. 867 * Return 868 * 0 on success, or a negative error in case of failure. 869 * 870 * long bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size) 871 * Description 872 * Recompute the layer 3 (e.g. IP) checksum for the packet 873 * associated to *skb*. Computation is incremental, so the helper 874 * must know the former value of the header field that was 875 * modified (*from*), the new value of this field (*to*), and the 876 * number of bytes (2 or 4) for this field, stored in *size*. 877 * Alternatively, it is possible to store the difference between 878 * the previous and the new values of the header field in *to*, by 879 * setting *from* and *size* to 0. For both methods, *offset* 880 * indicates the location of the IP checksum within the packet. 881 * 882 * This helper works in combination with **bpf_csum_diff**\ (), 883 * which does not update the checksum in-place, but offers more 884 * flexibility and can handle sizes larger than 2 or 4 for the 885 * checksum to update. 886 * 887 * A call to this helper is susceptible to change the underlying 888 * packet buffer. Therefore, at load time, all checks on pointers 889 * previously done by the verifier are invalidated and must be 890 * performed again, if the helper is used in combination with 891 * direct packet access. 892 * Return 893 * 0 on success, or a negative error in case of failure. 894 * 895 * long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags) 896 * Description 897 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the 898 * packet associated to *skb*. Computation is incremental, so the 899 * helper must know the former value of the header field that was 900 * modified (*from*), the new value of this field (*to*), and the 901 * number of bytes (2 or 4) for this field, stored on the lowest 902 * four bits of *flags*. Alternatively, it is possible to store 903 * the difference between the previous and the new values of the 904 * header field in *to*, by setting *from* and the four lowest 905 * bits of *flags* to 0. For both methods, *offset* indicates the 906 * location of the IP checksum within the packet. In addition to 907 * the size of the field, *flags* can be added (bitwise OR) actual 908 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left 909 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and 910 * for updates resulting in a null checksum the value is set to 911 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates 912 * the checksum is to be computed against a pseudo-header. 913 * 914 * This helper works in combination with **bpf_csum_diff**\ (), 915 * which does not update the checksum in-place, but offers more 916 * flexibility and can handle sizes larger than 2 or 4 for the 917 * checksum to update. 918 * 919 * A call to this helper is susceptible to change the underlying 920 * packet buffer. Therefore, at load time, all checks on pointers 921 * previously done by the verifier are invalidated and must be 922 * performed again, if the helper is used in combination with 923 * direct packet access. 924 * Return 925 * 0 on success, or a negative error in case of failure. 926 * 927 * long bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index) 928 * Description 929 * This special helper is used to trigger a "tail call", or in 930 * other words, to jump into another eBPF program. The same stack 931 * frame is used (but values on stack and in registers for the 932 * caller are not accessible to the callee). This mechanism allows 933 * for program chaining, either for raising the maximum number of 934 * available eBPF instructions, or to execute given programs in 935 * conditional blocks. For security reasons, there is an upper 936 * limit to the number of successive tail calls that can be 937 * performed. 938 * 939 * Upon call of this helper, the program attempts to jump into a 940 * program referenced at index *index* in *prog_array_map*, a 941 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes 942 * *ctx*, a pointer to the context. 943 * 944 * If the call succeeds, the kernel immediately runs the first 945 * instruction of the new program. This is not a function call, 946 * and it never returns to the previous program. If the call 947 * fails, then the helper has no effect, and the caller continues 948 * to run its subsequent instructions. A call can fail if the 949 * destination program for the jump does not exist (i.e. *index* 950 * is superior to the number of entries in *prog_array_map*), or 951 * if the maximum number of tail calls has been reached for this 952 * chain of programs. This limit is defined in the kernel by the 953 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space), 954 * which is currently set to 32. 955 * Return 956 * 0 on success, or a negative error in case of failure. 957 * 958 * long bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags) 959 * Description 960 * Clone and redirect the packet associated to *skb* to another 961 * net device of index *ifindex*. Both ingress and egress 962 * interfaces can be used for redirection. The **BPF_F_INGRESS** 963 * value in *flags* is used to make the distinction (ingress path 964 * is selected if the flag is present, egress path otherwise). 965 * This is the only flag supported for now. 966 * 967 * In comparison with **bpf_redirect**\ () helper, 968 * **bpf_clone_redirect**\ () has the associated cost of 969 * duplicating the packet buffer, but this can be executed out of 970 * the eBPF program. Conversely, **bpf_redirect**\ () is more 971 * efficient, but it is handled through an action code where the 972 * redirection happens only after the eBPF program has returned. 973 * 974 * A call to this helper is susceptible to change the underlying 975 * packet buffer. Therefore, at load time, all checks on pointers 976 * previously done by the verifier are invalidated and must be 977 * performed again, if the helper is used in combination with 978 * direct packet access. 979 * Return 980 * 0 on success, or a negative error in case of failure. 981 * 982 * u64 bpf_get_current_pid_tgid(void) 983 * Return 984 * A 64-bit integer containing the current tgid and pid, and 985 * created as such: 986 * *current_task*\ **->tgid << 32 \|** 987 * *current_task*\ **->pid**. 988 * 989 * u64 bpf_get_current_uid_gid(void) 990 * Return 991 * A 64-bit integer containing the current GID and UID, and 992 * created as such: *current_gid* **<< 32 \|** *current_uid*. 993 * 994 * long bpf_get_current_comm(void *buf, u32 size_of_buf) 995 * Description 996 * Copy the **comm** attribute of the current task into *buf* of 997 * *size_of_buf*. The **comm** attribute contains the name of 998 * the executable (excluding the path) for the current task. The 999 * *size_of_buf* must be strictly positive. On success, the 1000 * helper makes sure that the *buf* is NUL-terminated. On failure, 1001 * it is filled with zeroes. 1002 * Return 1003 * 0 on success, or a negative error in case of failure. 1004 * 1005 * u32 bpf_get_cgroup_classid(struct sk_buff *skb) 1006 * Description 1007 * Retrieve the classid for the current task, i.e. for the net_cls 1008 * cgroup to which *skb* belongs. 1009 * 1010 * This helper can be used on TC egress path, but not on ingress. 1011 * 1012 * The net_cls cgroup provides an interface to tag network packets 1013 * based on a user-provided identifier for all traffic coming from 1014 * the tasks belonging to the related cgroup. See also the related 1015 * kernel documentation, available from the Linux sources in file 1016 * *Documentation/admin-guide/cgroup-v1/net_cls.rst*. 1017 * 1018 * The Linux kernel has two versions for cgroups: there are 1019 * cgroups v1 and cgroups v2. Both are available to users, who can 1020 * use a mixture of them, but note that the net_cls cgroup is for 1021 * cgroup v1 only. This makes it incompatible with BPF programs 1022 * run on cgroups, which is a cgroup-v2-only feature (a socket can 1023 * only hold data for one version of cgroups at a time). 1024 * 1025 * This helper is only available is the kernel was compiled with 1026 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to 1027 * "**y**" or to "**m**". 1028 * Return 1029 * The classid, or 0 for the default unconfigured classid. 1030 * 1031 * long bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 1032 * Description 1033 * Push a *vlan_tci* (VLAN tag control information) of protocol 1034 * *vlan_proto* to the packet associated to *skb*, then update 1035 * the checksum. Note that if *vlan_proto* is different from 1036 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to 1037 * be **ETH_P_8021Q**. 1038 * 1039 * A call to this helper is susceptible to change the underlying 1040 * packet buffer. Therefore, at load time, all checks on pointers 1041 * previously done by the verifier are invalidated and must be 1042 * performed again, if the helper is used in combination with 1043 * direct packet access. 1044 * Return 1045 * 0 on success, or a negative error in case of failure. 1046 * 1047 * long bpf_skb_vlan_pop(struct sk_buff *skb) 1048 * Description 1049 * Pop a VLAN header from the packet associated to *skb*. 1050 * 1051 * A call to this helper is susceptible to change the underlying 1052 * packet buffer. Therefore, at load time, all checks on pointers 1053 * previously done by the verifier are invalidated and must be 1054 * performed again, if the helper is used in combination with 1055 * direct packet access. 1056 * Return 1057 * 0 on success, or a negative error in case of failure. 1058 * 1059 * long bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 1060 * Description 1061 * Get tunnel metadata. This helper takes a pointer *key* to an 1062 * empty **struct bpf_tunnel_key** of **size**, that will be 1063 * filled with tunnel metadata for the packet associated to *skb*. 1064 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which 1065 * indicates that the tunnel is based on IPv6 protocol instead of 1066 * IPv4. 1067 * 1068 * The **struct bpf_tunnel_key** is an object that generalizes the 1069 * principal parameters used by various tunneling protocols into a 1070 * single struct. This way, it can be used to easily make a 1071 * decision based on the contents of the encapsulation header, 1072 * "summarized" in this struct. In particular, it holds the IP 1073 * address of the remote end (IPv4 or IPv6, depending on the case) 1074 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also, 1075 * this struct exposes the *key*\ **->tunnel_id**, which is 1076 * generally mapped to a VNI (Virtual Network Identifier), making 1077 * it programmable together with the **bpf_skb_set_tunnel_key**\ 1078 * () helper. 1079 * 1080 * Let's imagine that the following code is part of a program 1081 * attached to the TC ingress interface, on one end of a GRE 1082 * tunnel, and is supposed to filter out all messages coming from 1083 * remote ends with IPv4 address other than 10.0.0.1: 1084 * 1085 * :: 1086 * 1087 * int ret; 1088 * struct bpf_tunnel_key key = {}; 1089 * 1090 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0); 1091 * if (ret < 0) 1092 * return TC_ACT_SHOT; // drop packet 1093 * 1094 * if (key.remote_ipv4 != 0x0a000001) 1095 * return TC_ACT_SHOT; // drop packet 1096 * 1097 * return TC_ACT_OK; // accept packet 1098 * 1099 * This interface can also be used with all encapsulation devices 1100 * that can operate in "collect metadata" mode: instead of having 1101 * one network device per specific configuration, the "collect 1102 * metadata" mode only requires a single device where the 1103 * configuration can be extracted from this helper. 1104 * 1105 * This can be used together with various tunnels such as VXLan, 1106 * Geneve, GRE or IP in IP (IPIP). 1107 * Return 1108 * 0 on success, or a negative error in case of failure. 1109 * 1110 * long bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 1111 * Description 1112 * Populate tunnel metadata for packet associated to *skb.* The 1113 * tunnel metadata is set to the contents of *key*, of *size*. The 1114 * *flags* can be set to a combination of the following values: 1115 * 1116 * **BPF_F_TUNINFO_IPV6** 1117 * Indicate that the tunnel is based on IPv6 protocol 1118 * instead of IPv4. 1119 * **BPF_F_ZERO_CSUM_TX** 1120 * For IPv4 packets, add a flag to tunnel metadata 1121 * indicating that checksum computation should be skipped 1122 * and checksum set to zeroes. 1123 * **BPF_F_DONT_FRAGMENT** 1124 * Add a flag to tunnel metadata indicating that the 1125 * packet should not be fragmented. 1126 * **BPF_F_SEQ_NUMBER** 1127 * Add a flag to tunnel metadata indicating that a 1128 * sequence number should be added to tunnel header before 1129 * sending the packet. This flag was added for GRE 1130 * encapsulation, but might be used with other protocols 1131 * as well in the future. 1132 * 1133 * Here is a typical usage on the transmit path: 1134 * 1135 * :: 1136 * 1137 * struct bpf_tunnel_key key; 1138 * populate key ... 1139 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0); 1140 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0); 1141 * 1142 * See also the description of the **bpf_skb_get_tunnel_key**\ () 1143 * helper for additional information. 1144 * Return 1145 * 0 on success, or a negative error in case of failure. 1146 * 1147 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags) 1148 * Description 1149 * Read the value of a perf event counter. This helper relies on a 1150 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of 1151 * the perf event counter is selected when *map* is updated with 1152 * perf event file descriptors. The *map* is an array whose size 1153 * is the number of available CPUs, and each cell contains a value 1154 * relative to one CPU. The value to retrieve is indicated by 1155 * *flags*, that contains the index of the CPU to look up, masked 1156 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 1157 * **BPF_F_CURRENT_CPU** to indicate that the value for the 1158 * current CPU should be retrieved. 1159 * 1160 * Note that before Linux 4.13, only hardware perf event can be 1161 * retrieved. 1162 * 1163 * Also, be aware that the newer helper 1164 * **bpf_perf_event_read_value**\ () is recommended over 1165 * **bpf_perf_event_read**\ () in general. The latter has some ABI 1166 * quirks where error and counter value are used as a return code 1167 * (which is wrong to do since ranges may overlap). This issue is 1168 * fixed with **bpf_perf_event_read_value**\ (), which at the same 1169 * time provides more features over the **bpf_perf_event_read**\ 1170 * () interface. Please refer to the description of 1171 * **bpf_perf_event_read_value**\ () for details. 1172 * Return 1173 * The value of the perf event counter read from the map, or a 1174 * negative error code in case of failure. 1175 * 1176 * long bpf_redirect(u32 ifindex, u64 flags) 1177 * Description 1178 * Redirect the packet to another net device of index *ifindex*. 1179 * This helper is somewhat similar to **bpf_clone_redirect**\ 1180 * (), except that the packet is not cloned, which provides 1181 * increased performance. 1182 * 1183 * Except for XDP, both ingress and egress interfaces can be used 1184 * for redirection. The **BPF_F_INGRESS** value in *flags* is used 1185 * to make the distinction (ingress path is selected if the flag 1186 * is present, egress path otherwise). Currently, XDP only 1187 * supports redirection to the egress interface, and accepts no 1188 * flag at all. 1189 * 1190 * The same effect can also be attained with the more generic 1191 * **bpf_redirect_map**\ (), which uses a BPF map to store the 1192 * redirect target instead of providing it directly to the helper. 1193 * Return 1194 * For XDP, the helper returns **XDP_REDIRECT** on success or 1195 * **XDP_ABORTED** on error. For other program types, the values 1196 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on 1197 * error. 1198 * 1199 * u32 bpf_get_route_realm(struct sk_buff *skb) 1200 * Description 1201 * Retrieve the realm or the route, that is to say the 1202 * **tclassid** field of the destination for the *skb*. The 1203 * identifier retrieved is a user-provided tag, similar to the 1204 * one used with the net_cls cgroup (see description for 1205 * **bpf_get_cgroup_classid**\ () helper), but here this tag is 1206 * held by a route (a destination entry), not by a task. 1207 * 1208 * Retrieving this identifier works with the clsact TC egress hook 1209 * (see also **tc-bpf(8)**), or alternatively on conventional 1210 * classful egress qdiscs, but not on TC ingress path. In case of 1211 * clsact TC egress hook, this has the advantage that, internally, 1212 * the destination entry has not been dropped yet in the transmit 1213 * path. Therefore, the destination entry does not need to be 1214 * artificially held via **netif_keep_dst**\ () for a classful 1215 * qdisc until the *skb* is freed. 1216 * 1217 * This helper is available only if the kernel was compiled with 1218 * **CONFIG_IP_ROUTE_CLASSID** configuration option. 1219 * Return 1220 * The realm of the route for the packet associated to *skb*, or 0 1221 * if none was found. 1222 * 1223 * long bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 1224 * Description 1225 * Write raw *data* blob into a special BPF perf event held by 1226 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 1227 * event must have the following attributes: **PERF_SAMPLE_RAW** 1228 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 1229 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 1230 * 1231 * The *flags* are used to indicate the index in *map* for which 1232 * the value must be put, masked with **BPF_F_INDEX_MASK**. 1233 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 1234 * to indicate that the index of the current CPU core should be 1235 * used. 1236 * 1237 * The value to write, of *size*, is passed through eBPF stack and 1238 * pointed by *data*. 1239 * 1240 * The context of the program *ctx* needs also be passed to the 1241 * helper. 1242 * 1243 * On user space, a program willing to read the values needs to 1244 * call **perf_event_open**\ () on the perf event (either for 1245 * one or for all CPUs) and to store the file descriptor into the 1246 * *map*. This must be done before the eBPF program can send data 1247 * into it. An example is available in file 1248 * *samples/bpf/trace_output_user.c* in the Linux kernel source 1249 * tree (the eBPF program counterpart is in 1250 * *samples/bpf/trace_output_kern.c*). 1251 * 1252 * **bpf_perf_event_output**\ () achieves better performance 1253 * than **bpf_trace_printk**\ () for sharing data with user 1254 * space, and is much better suitable for streaming data from eBPF 1255 * programs. 1256 * 1257 * Note that this helper is not restricted to tracing use cases 1258 * and can be used with programs attached to TC or XDP as well, 1259 * where it allows for passing data to user space listeners. Data 1260 * can be: 1261 * 1262 * * Only custom structs, 1263 * * Only the packet payload, or 1264 * * A combination of both. 1265 * Return 1266 * 0 on success, or a negative error in case of failure. 1267 * 1268 * long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len) 1269 * Description 1270 * This helper was provided as an easy way to load data from a 1271 * packet. It can be used to load *len* bytes from *offset* from 1272 * the packet associated to *skb*, into the buffer pointed by 1273 * *to*. 1274 * 1275 * Since Linux 4.7, usage of this helper has mostly been replaced 1276 * by "direct packet access", enabling packet data to be 1277 * manipulated with *skb*\ **->data** and *skb*\ **->data_end** 1278 * pointing respectively to the first byte of packet data and to 1279 * the byte after the last byte of packet data. However, it 1280 * remains useful if one wishes to read large quantities of data 1281 * at once from a packet into the eBPF stack. 1282 * Return 1283 * 0 on success, or a negative error in case of failure. 1284 * 1285 * long bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags) 1286 * Description 1287 * Walk a user or a kernel stack and return its id. To achieve 1288 * this, the helper needs *ctx*, which is a pointer to the context 1289 * on which the tracing program is executed, and a pointer to a 1290 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**. 1291 * 1292 * The last argument, *flags*, holds the number of stack frames to 1293 * skip (from 0 to 255), masked with 1294 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1295 * a combination of the following flags: 1296 * 1297 * **BPF_F_USER_STACK** 1298 * Collect a user space stack instead of a kernel stack. 1299 * **BPF_F_FAST_STACK_CMP** 1300 * Compare stacks by hash only. 1301 * **BPF_F_REUSE_STACKID** 1302 * If two different stacks hash into the same *stackid*, 1303 * discard the old one. 1304 * 1305 * The stack id retrieved is a 32 bit long integer handle which 1306 * can be further combined with other data (including other stack 1307 * ids) and used as a key into maps. This can be useful for 1308 * generating a variety of graphs (such as flame graphs or off-cpu 1309 * graphs). 1310 * 1311 * For walking a stack, this helper is an improvement over 1312 * **bpf_probe_read**\ (), which can be used with unrolled loops 1313 * but is not efficient and consumes a lot of eBPF instructions. 1314 * Instead, **bpf_get_stackid**\ () can collect up to 1315 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that 1316 * this limit can be controlled with the **sysctl** program, and 1317 * that it should be manually increased in order to profile long 1318 * user stacks (such as stacks for Java programs). To do so, use: 1319 * 1320 * :: 1321 * 1322 * # sysctl kernel.perf_event_max_stack=<new value> 1323 * Return 1324 * The positive or null stack id on success, or a negative error 1325 * in case of failure. 1326 * 1327 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed) 1328 * Description 1329 * Compute a checksum difference, from the raw buffer pointed by 1330 * *from*, of length *from_size* (that must be a multiple of 4), 1331 * towards the raw buffer pointed by *to*, of size *to_size* 1332 * (same remark). An optional *seed* can be added to the value 1333 * (this can be cascaded, the seed may come from a previous call 1334 * to the helper). 1335 * 1336 * This is flexible enough to be used in several ways: 1337 * 1338 * * With *from_size* == 0, *to_size* > 0 and *seed* set to 1339 * checksum, it can be used when pushing new data. 1340 * * With *from_size* > 0, *to_size* == 0 and *seed* set to 1341 * checksum, it can be used when removing data from a packet. 1342 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it 1343 * can be used to compute a diff. Note that *from_size* and 1344 * *to_size* do not need to be equal. 1345 * 1346 * This helper can be used in combination with 1347 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to 1348 * which one can feed in the difference computed with 1349 * **bpf_csum_diff**\ (). 1350 * Return 1351 * The checksum result, or a negative error code in case of 1352 * failure. 1353 * 1354 * long bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size) 1355 * Description 1356 * Retrieve tunnel options metadata for the packet associated to 1357 * *skb*, and store the raw tunnel option data to the buffer *opt* 1358 * of *size*. 1359 * 1360 * This helper can be used with encapsulation devices that can 1361 * operate in "collect metadata" mode (please refer to the related 1362 * note in the description of **bpf_skb_get_tunnel_key**\ () for 1363 * more details). A particular example where this can be used is 1364 * in combination with the Geneve encapsulation protocol, where it 1365 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper) 1366 * and retrieving arbitrary TLVs (Type-Length-Value headers) from 1367 * the eBPF program. This allows for full customization of these 1368 * headers. 1369 * Return 1370 * The size of the option data retrieved. 1371 * 1372 * long bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size) 1373 * Description 1374 * Set tunnel options metadata for the packet associated to *skb* 1375 * to the option data contained in the raw buffer *opt* of *size*. 1376 * 1377 * See also the description of the **bpf_skb_get_tunnel_opt**\ () 1378 * helper for additional information. 1379 * Return 1380 * 0 on success, or a negative error in case of failure. 1381 * 1382 * long bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags) 1383 * Description 1384 * Change the protocol of the *skb* to *proto*. Currently 1385 * supported are transition from IPv4 to IPv6, and from IPv6 to 1386 * IPv4. The helper takes care of the groundwork for the 1387 * transition, including resizing the socket buffer. The eBPF 1388 * program is expected to fill the new headers, if any, via 1389 * **skb_store_bytes**\ () and to recompute the checksums with 1390 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ 1391 * (). The main case for this helper is to perform NAT64 1392 * operations out of an eBPF program. 1393 * 1394 * Internally, the GSO type is marked as dodgy so that headers are 1395 * checked and segments are recalculated by the GSO/GRO engine. 1396 * The size for GSO target is adapted as well. 1397 * 1398 * All values for *flags* are reserved for future usage, and must 1399 * be left at zero. 1400 * 1401 * A call to this helper is susceptible to change the underlying 1402 * packet buffer. Therefore, at load time, all checks on pointers 1403 * previously done by the verifier are invalidated and must be 1404 * performed again, if the helper is used in combination with 1405 * direct packet access. 1406 * Return 1407 * 0 on success, or a negative error in case of failure. 1408 * 1409 * long bpf_skb_change_type(struct sk_buff *skb, u32 type) 1410 * Description 1411 * Change the packet type for the packet associated to *skb*. This 1412 * comes down to setting *skb*\ **->pkt_type** to *type*, except 1413 * the eBPF program does not have a write access to *skb*\ 1414 * **->pkt_type** beside this helper. Using a helper here allows 1415 * for graceful handling of errors. 1416 * 1417 * The major use case is to change incoming *skb*s to 1418 * **PACKET_HOST** in a programmatic way instead of having to 1419 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for 1420 * example. 1421 * 1422 * Note that *type* only allows certain values. At this time, they 1423 * are: 1424 * 1425 * **PACKET_HOST** 1426 * Packet is for us. 1427 * **PACKET_BROADCAST** 1428 * Send packet to all. 1429 * **PACKET_MULTICAST** 1430 * Send packet to group. 1431 * **PACKET_OTHERHOST** 1432 * Send packet to someone else. 1433 * Return 1434 * 0 on success, or a negative error in case of failure. 1435 * 1436 * long bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index) 1437 * Description 1438 * Check whether *skb* is a descendant of the cgroup2 held by 1439 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1440 * Return 1441 * The return value depends on the result of the test, and can be: 1442 * 1443 * * 0, if the *skb* failed the cgroup2 descendant test. 1444 * * 1, if the *skb* succeeded the cgroup2 descendant test. 1445 * * A negative error code, if an error occurred. 1446 * 1447 * u32 bpf_get_hash_recalc(struct sk_buff *skb) 1448 * Description 1449 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is 1450 * not set, in particular if the hash was cleared due to mangling, 1451 * recompute this hash. Later accesses to the hash can be done 1452 * directly with *skb*\ **->hash**. 1453 * 1454 * Calling **bpf_set_hash_invalid**\ (), changing a packet 1455 * prototype with **bpf_skb_change_proto**\ (), or calling 1456 * **bpf_skb_store_bytes**\ () with the 1457 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear 1458 * the hash and to trigger a new computation for the next call to 1459 * **bpf_get_hash_recalc**\ (). 1460 * Return 1461 * The 32-bit hash. 1462 * 1463 * u64 bpf_get_current_task(void) 1464 * Return 1465 * A pointer to the current task struct. 1466 * 1467 * long bpf_probe_write_user(void *dst, const void *src, u32 len) 1468 * Description 1469 * Attempt in a safe way to write *len* bytes from the buffer 1470 * *src* to *dst* in memory. It only works for threads that are in 1471 * user context, and *dst* must be a valid user space address. 1472 * 1473 * This helper should not be used to implement any kind of 1474 * security mechanism because of TOC-TOU attacks, but rather to 1475 * debug, divert, and manipulate execution of semi-cooperative 1476 * processes. 1477 * 1478 * Keep in mind that this feature is meant for experiments, and it 1479 * has a risk of crashing the system and running programs. 1480 * Therefore, when an eBPF program using this helper is attached, 1481 * a warning including PID and process name is printed to kernel 1482 * logs. 1483 * Return 1484 * 0 on success, or a negative error in case of failure. 1485 * 1486 * long bpf_current_task_under_cgroup(struct bpf_map *map, u32 index) 1487 * Description 1488 * Check whether the probe is being run is the context of a given 1489 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by 1490 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1491 * Return 1492 * The return value depends on the result of the test, and can be: 1493 * 1494 * * 0, if current task belongs to the cgroup2. 1495 * * 1, if current task does not belong to the cgroup2. 1496 * * A negative error code, if an error occurred. 1497 * 1498 * long bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags) 1499 * Description 1500 * Resize (trim or grow) the packet associated to *skb* to the 1501 * new *len*. The *flags* are reserved for future usage, and must 1502 * be left at zero. 1503 * 1504 * The basic idea is that the helper performs the needed work to 1505 * change the size of the packet, then the eBPF program rewrites 1506 * the rest via helpers like **bpf_skb_store_bytes**\ (), 1507 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ () 1508 * and others. This helper is a slow path utility intended for 1509 * replies with control messages. And because it is targeted for 1510 * slow path, the helper itself can afford to be slow: it 1511 * implicitly linearizes, unclones and drops offloads from the 1512 * *skb*. 1513 * 1514 * A call to this helper is susceptible to change the underlying 1515 * packet buffer. Therefore, at load time, all checks on pointers 1516 * previously done by the verifier are invalidated and must be 1517 * performed again, if the helper is used in combination with 1518 * direct packet access. 1519 * Return 1520 * 0 on success, or a negative error in case of failure. 1521 * 1522 * long bpf_skb_pull_data(struct sk_buff *skb, u32 len) 1523 * Description 1524 * Pull in non-linear data in case the *skb* is non-linear and not 1525 * all of *len* are part of the linear section. Make *len* bytes 1526 * from *skb* readable and writable. If a zero value is passed for 1527 * *len*, then the whole length of the *skb* is pulled. 1528 * 1529 * This helper is only needed for reading and writing with direct 1530 * packet access. 1531 * 1532 * For direct packet access, testing that offsets to access 1533 * are within packet boundaries (test on *skb*\ **->data_end**) is 1534 * susceptible to fail if offsets are invalid, or if the requested 1535 * data is in non-linear parts of the *skb*. On failure the 1536 * program can just bail out, or in the case of a non-linear 1537 * buffer, use a helper to make the data available. The 1538 * **bpf_skb_load_bytes**\ () helper is a first solution to access 1539 * the data. Another one consists in using **bpf_skb_pull_data** 1540 * to pull in once the non-linear parts, then retesting and 1541 * eventually access the data. 1542 * 1543 * At the same time, this also makes sure the *skb* is uncloned, 1544 * which is a necessary condition for direct write. As this needs 1545 * to be an invariant for the write part only, the verifier 1546 * detects writes and adds a prologue that is calling 1547 * **bpf_skb_pull_data()** to effectively unclone the *skb* from 1548 * the very beginning in case it is indeed cloned. 1549 * 1550 * A call to this helper is susceptible to change the underlying 1551 * packet buffer. Therefore, at load time, all checks on pointers 1552 * previously done by the verifier are invalidated and must be 1553 * performed again, if the helper is used in combination with 1554 * direct packet access. 1555 * Return 1556 * 0 on success, or a negative error in case of failure. 1557 * 1558 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum) 1559 * Description 1560 * Add the checksum *csum* into *skb*\ **->csum** in case the 1561 * driver has supplied a checksum for the entire packet into that 1562 * field. Return an error otherwise. This helper is intended to be 1563 * used in combination with **bpf_csum_diff**\ (), in particular 1564 * when the checksum needs to be updated after data has been 1565 * written into the packet through direct packet access. 1566 * Return 1567 * The checksum on success, or a negative error code in case of 1568 * failure. 1569 * 1570 * void bpf_set_hash_invalid(struct sk_buff *skb) 1571 * Description 1572 * Invalidate the current *skb*\ **->hash**. It can be used after 1573 * mangling on headers through direct packet access, in order to 1574 * indicate that the hash is outdated and to trigger a 1575 * recalculation the next time the kernel tries to access this 1576 * hash or when the **bpf_get_hash_recalc**\ () helper is called. 1577 * 1578 * long bpf_get_numa_node_id(void) 1579 * Description 1580 * Return the id of the current NUMA node. The primary use case 1581 * for this helper is the selection of sockets for the local NUMA 1582 * node, when the program is attached to sockets using the 1583 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**), 1584 * but the helper is also available to other eBPF program types, 1585 * similarly to **bpf_get_smp_processor_id**\ (). 1586 * Return 1587 * The id of current NUMA node. 1588 * 1589 * long bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags) 1590 * Description 1591 * Grows headroom of packet associated to *skb* and adjusts the 1592 * offset of the MAC header accordingly, adding *len* bytes of 1593 * space. It automatically extends and reallocates memory as 1594 * required. 1595 * 1596 * This helper can be used on a layer 3 *skb* to push a MAC header 1597 * for redirection into a layer 2 device. 1598 * 1599 * All values for *flags* are reserved for future usage, and must 1600 * be left at zero. 1601 * 1602 * A call to this helper is susceptible to change the underlying 1603 * packet buffer. Therefore, at load time, all checks on pointers 1604 * previously done by the verifier are invalidated and must be 1605 * performed again, if the helper is used in combination with 1606 * direct packet access. 1607 * Return 1608 * 0 on success, or a negative error in case of failure. 1609 * 1610 * long bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta) 1611 * Description 1612 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that 1613 * it is possible to use a negative value for *delta*. This helper 1614 * can be used to prepare the packet for pushing or popping 1615 * headers. 1616 * 1617 * A call to this helper is susceptible to change the underlying 1618 * packet buffer. Therefore, at load time, all checks on pointers 1619 * previously done by the verifier are invalidated and must be 1620 * performed again, if the helper is used in combination with 1621 * direct packet access. 1622 * Return 1623 * 0 on success, or a negative error in case of failure. 1624 * 1625 * long bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr) 1626 * Description 1627 * Copy a NUL terminated string from an unsafe kernel address 1628 * *unsafe_ptr* to *dst*. See **bpf_probe_read_kernel_str**\ () for 1629 * more details. 1630 * 1631 * Generally, use **bpf_probe_read_user_str**\ () or 1632 * **bpf_probe_read_kernel_str**\ () instead. 1633 * Return 1634 * On success, the strictly positive length of the string, 1635 * including the trailing NUL character. On error, a negative 1636 * value. 1637 * 1638 * u64 bpf_get_socket_cookie(struct sk_buff *skb) 1639 * Description 1640 * If the **struct sk_buff** pointed by *skb* has a known socket, 1641 * retrieve the cookie (generated by the kernel) of this socket. 1642 * If no cookie has been set yet, generate a new cookie. Once 1643 * generated, the socket cookie remains stable for the life of the 1644 * socket. This helper can be useful for monitoring per socket 1645 * networking traffic statistics as it provides a global socket 1646 * identifier that can be assumed unique. 1647 * Return 1648 * A 8-byte long non-decreasing number on success, or 0 if the 1649 * socket field is missing inside *skb*. 1650 * 1651 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx) 1652 * Description 1653 * Equivalent to bpf_get_socket_cookie() helper that accepts 1654 * *skb*, but gets socket from **struct bpf_sock_addr** context. 1655 * Return 1656 * A 8-byte long non-decreasing number. 1657 * 1658 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx) 1659 * Description 1660 * Equivalent to **bpf_get_socket_cookie**\ () helper that accepts 1661 * *skb*, but gets socket from **struct bpf_sock_ops** context. 1662 * Return 1663 * A 8-byte long non-decreasing number. 1664 * 1665 * u32 bpf_get_socket_uid(struct sk_buff *skb) 1666 * Return 1667 * The owner UID of the socket associated to *skb*. If the socket 1668 * is **NULL**, or if it is not a full socket (i.e. if it is a 1669 * time-wait or a request socket instead), **overflowuid** value 1670 * is returned (note that **overflowuid** might also be the actual 1671 * UID value for the socket). 1672 * 1673 * long bpf_set_hash(struct sk_buff *skb, u32 hash) 1674 * Description 1675 * Set the full hash for *skb* (set the field *skb*\ **->hash**) 1676 * to value *hash*. 1677 * Return 1678 * 0 1679 * 1680 * long bpf_setsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen) 1681 * Description 1682 * Emulate a call to **setsockopt()** on the socket associated to 1683 * *bpf_socket*, which must be a full socket. The *level* at 1684 * which the option resides and the name *optname* of the option 1685 * must be specified, see **setsockopt(2)** for more information. 1686 * The option value of length *optlen* is pointed by *optval*. 1687 * 1688 * *bpf_socket* should be one of the following: 1689 * 1690 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**. 1691 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT** 1692 * and **BPF_CGROUP_INET6_CONNECT**. 1693 * 1694 * This helper actually implements a subset of **setsockopt()**. 1695 * It supports the following *level*\ s: 1696 * 1697 * * **SOL_SOCKET**, which supports the following *optname*\ s: 1698 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**, 1699 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**, 1700 * **SO_BINDTODEVICE**, **SO_KEEPALIVE**. 1701 * * **IPPROTO_TCP**, which supports the following *optname*\ s: 1702 * **TCP_CONGESTION**, **TCP_BPF_IW**, 1703 * **TCP_BPF_SNDCWND_CLAMP**, **TCP_SAVE_SYN**, 1704 * **TCP_KEEPIDLE**, **TCP_KEEPINTVL**, **TCP_KEEPCNT**, 1705 * **TCP_SYNCNT**, **TCP_USER_TIMEOUT**, **TCP_NOTSENT_LOWAT**. 1706 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1707 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1708 * Return 1709 * 0 on success, or a negative error in case of failure. 1710 * 1711 * long bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags) 1712 * Description 1713 * Grow or shrink the room for data in the packet associated to 1714 * *skb* by *len_diff*, and according to the selected *mode*. 1715 * 1716 * By default, the helper will reset any offloaded checksum 1717 * indicator of the skb to CHECKSUM_NONE. This can be avoided 1718 * by the following flag: 1719 * 1720 * * **BPF_F_ADJ_ROOM_NO_CSUM_RESET**: Do not reset offloaded 1721 * checksum data of the skb to CHECKSUM_NONE. 1722 * 1723 * There are two supported modes at this time: 1724 * 1725 * * **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer 1726 * (room space is added or removed below the layer 2 header). 1727 * 1728 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer 1729 * (room space is added or removed below the layer 3 header). 1730 * 1731 * The following flags are supported at this time: 1732 * 1733 * * **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size. 1734 * Adjusting mss in this way is not allowed for datagrams. 1735 * 1736 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**, 1737 * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**: 1738 * Any new space is reserved to hold a tunnel header. 1739 * Configure skb offsets and other fields accordingly. 1740 * 1741 * * **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**, 1742 * **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**: 1743 * Use with ENCAP_L3 flags to further specify the tunnel type. 1744 * 1745 * * **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*): 1746 * Use with ENCAP_L3/L4 flags to further specify the tunnel 1747 * type; *len* is the length of the inner MAC header. 1748 * 1749 * A call to this helper is susceptible to change the underlying 1750 * packet buffer. Therefore, at load time, all checks on pointers 1751 * previously done by the verifier are invalidated and must be 1752 * performed again, if the helper is used in combination with 1753 * direct packet access. 1754 * Return 1755 * 0 on success, or a negative error in case of failure. 1756 * 1757 * long bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1758 * Description 1759 * Redirect the packet to the endpoint referenced by *map* at 1760 * index *key*. Depending on its type, this *map* can contain 1761 * references to net devices (for forwarding packets through other 1762 * ports), or to CPUs (for redirecting XDP frames to another CPU; 1763 * but this is only implemented for native XDP (with driver 1764 * support) as of this writing). 1765 * 1766 * The lower two bits of *flags* are used as the return code if 1767 * the map lookup fails. This is so that the return value can be 1768 * one of the XDP program return codes up to **XDP_TX**, as chosen 1769 * by the caller. Any higher bits in the *flags* argument must be 1770 * unset. 1771 * 1772 * See also **bpf_redirect**\ (), which only supports redirecting 1773 * to an ifindex, but doesn't require a map to do so. 1774 * Return 1775 * **XDP_REDIRECT** on success, or the value of the two lower bits 1776 * of the *flags* argument on error. 1777 * 1778 * long bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags) 1779 * Description 1780 * Redirect the packet to the socket referenced by *map* (of type 1781 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1782 * egress interfaces can be used for redirection. The 1783 * **BPF_F_INGRESS** value in *flags* is used to make the 1784 * distinction (ingress path is selected if the flag is present, 1785 * egress path otherwise). This is the only flag supported for now. 1786 * Return 1787 * **SK_PASS** on success, or **SK_DROP** on error. 1788 * 1789 * long bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags) 1790 * Description 1791 * Add an entry to, or update a *map* referencing sockets. The 1792 * *skops* is used as a new value for the entry associated to 1793 * *key*. *flags* is one of: 1794 * 1795 * **BPF_NOEXIST** 1796 * The entry for *key* must not exist in the map. 1797 * **BPF_EXIST** 1798 * The entry for *key* must already exist in the map. 1799 * **BPF_ANY** 1800 * No condition on the existence of the entry for *key*. 1801 * 1802 * If the *map* has eBPF programs (parser and verdict), those will 1803 * be inherited by the socket being added. If the socket is 1804 * already attached to eBPF programs, this results in an error. 1805 * Return 1806 * 0 on success, or a negative error in case of failure. 1807 * 1808 * long bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta) 1809 * Description 1810 * Adjust the address pointed by *xdp_md*\ **->data_meta** by 1811 * *delta* (which can be positive or negative). Note that this 1812 * operation modifies the address stored in *xdp_md*\ **->data**, 1813 * so the latter must be loaded only after the helper has been 1814 * called. 1815 * 1816 * The use of *xdp_md*\ **->data_meta** is optional and programs 1817 * are not required to use it. The rationale is that when the 1818 * packet is processed with XDP (e.g. as DoS filter), it is 1819 * possible to push further meta data along with it before passing 1820 * to the stack, and to give the guarantee that an ingress eBPF 1821 * program attached as a TC classifier on the same device can pick 1822 * this up for further post-processing. Since TC works with socket 1823 * buffers, it remains possible to set from XDP the **mark** or 1824 * **priority** pointers, or other pointers for the socket buffer. 1825 * Having this scratch space generic and programmable allows for 1826 * more flexibility as the user is free to store whatever meta 1827 * data they need. 1828 * 1829 * A call to this helper is susceptible to change the underlying 1830 * packet buffer. Therefore, at load time, all checks on pointers 1831 * previously done by the verifier are invalidated and must be 1832 * performed again, if the helper is used in combination with 1833 * direct packet access. 1834 * Return 1835 * 0 on success, or a negative error in case of failure. 1836 * 1837 * long bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size) 1838 * Description 1839 * Read the value of a perf event counter, and store it into *buf* 1840 * of size *buf_size*. This helper relies on a *map* of type 1841 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event 1842 * counter is selected when *map* is updated with perf event file 1843 * descriptors. The *map* is an array whose size is the number of 1844 * available CPUs, and each cell contains a value relative to one 1845 * CPU. The value to retrieve is indicated by *flags*, that 1846 * contains the index of the CPU to look up, masked with 1847 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 1848 * **BPF_F_CURRENT_CPU** to indicate that the value for the 1849 * current CPU should be retrieved. 1850 * 1851 * This helper behaves in a way close to 1852 * **bpf_perf_event_read**\ () helper, save that instead of 1853 * just returning the value observed, it fills the *buf* 1854 * structure. This allows for additional data to be retrieved: in 1855 * particular, the enabled and running times (in *buf*\ 1856 * **->enabled** and *buf*\ **->running**, respectively) are 1857 * copied. In general, **bpf_perf_event_read_value**\ () is 1858 * recommended over **bpf_perf_event_read**\ (), which has some 1859 * ABI issues and provides fewer functionalities. 1860 * 1861 * These values are interesting, because hardware PMU (Performance 1862 * Monitoring Unit) counters are limited resources. When there are 1863 * more PMU based perf events opened than available counters, 1864 * kernel will multiplex these events so each event gets certain 1865 * percentage (but not all) of the PMU time. In case that 1866 * multiplexing happens, the number of samples or counter value 1867 * will not reflect the case compared to when no multiplexing 1868 * occurs. This makes comparison between different runs difficult. 1869 * Typically, the counter value should be normalized before 1870 * comparing to other experiments. The usual normalization is done 1871 * as follows. 1872 * 1873 * :: 1874 * 1875 * normalized_counter = counter * t_enabled / t_running 1876 * 1877 * Where t_enabled is the time enabled for event and t_running is 1878 * the time running for event since last normalization. The 1879 * enabled and running times are accumulated since the perf event 1880 * open. To achieve scaling factor between two invocations of an 1881 * eBPF program, users can use CPU id as the key (which is 1882 * typical for perf array usage model) to remember the previous 1883 * value and do the calculation inside the eBPF program. 1884 * Return 1885 * 0 on success, or a negative error in case of failure. 1886 * 1887 * long bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size) 1888 * Description 1889 * For en eBPF program attached to a perf event, retrieve the 1890 * value of the event counter associated to *ctx* and store it in 1891 * the structure pointed by *buf* and of size *buf_size*. Enabled 1892 * and running times are also stored in the structure (see 1893 * description of helper **bpf_perf_event_read_value**\ () for 1894 * more details). 1895 * Return 1896 * 0 on success, or a negative error in case of failure. 1897 * 1898 * long bpf_getsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen) 1899 * Description 1900 * Emulate a call to **getsockopt()** on the socket associated to 1901 * *bpf_socket*, which must be a full socket. The *level* at 1902 * which the option resides and the name *optname* of the option 1903 * must be specified, see **getsockopt(2)** for more information. 1904 * The retrieved value is stored in the structure pointed by 1905 * *opval* and of length *optlen*. 1906 * 1907 * *bpf_socket* should be one of the following: 1908 * 1909 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**. 1910 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT** 1911 * and **BPF_CGROUP_INET6_CONNECT**. 1912 * 1913 * This helper actually implements a subset of **getsockopt()**. 1914 * It supports the following *level*\ s: 1915 * 1916 * * **IPPROTO_TCP**, which supports *optname* 1917 * **TCP_CONGESTION**. 1918 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1919 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1920 * Return 1921 * 0 on success, or a negative error in case of failure. 1922 * 1923 * long bpf_override_return(struct pt_regs *regs, u64 rc) 1924 * Description 1925 * Used for error injection, this helper uses kprobes to override 1926 * the return value of the probed function, and to set it to *rc*. 1927 * The first argument is the context *regs* on which the kprobe 1928 * works. 1929 * 1930 * This helper works by setting the PC (program counter) 1931 * to an override function which is run in place of the original 1932 * probed function. This means the probed function is not run at 1933 * all. The replacement function just returns with the required 1934 * value. 1935 * 1936 * This helper has security implications, and thus is subject to 1937 * restrictions. It is only available if the kernel was compiled 1938 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration 1939 * option, and in this case it only works on functions tagged with 1940 * **ALLOW_ERROR_INJECTION** in the kernel code. 1941 * 1942 * Also, the helper is only available for the architectures having 1943 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing, 1944 * x86 architecture is the only one to support this feature. 1945 * Return 1946 * 0 1947 * 1948 * long bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval) 1949 * Description 1950 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field 1951 * for the full TCP socket associated to *bpf_sock_ops* to 1952 * *argval*. 1953 * 1954 * The primary use of this field is to determine if there should 1955 * be calls to eBPF programs of type 1956 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP 1957 * code. A program of the same type can change its value, per 1958 * connection and as necessary, when the connection is 1959 * established. This field is directly accessible for reading, but 1960 * this helper must be used for updates in order to return an 1961 * error if an eBPF program tries to set a callback that is not 1962 * supported in the current kernel. 1963 * 1964 * *argval* is a flag array which can combine these flags: 1965 * 1966 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out) 1967 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission) 1968 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change) 1969 * * **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT) 1970 * 1971 * Therefore, this function can be used to clear a callback flag by 1972 * setting the appropriate bit to zero. e.g. to disable the RTO 1973 * callback: 1974 * 1975 * **bpf_sock_ops_cb_flags_set(bpf_sock,** 1976 * **bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)** 1977 * 1978 * Here are some examples of where one could call such eBPF 1979 * program: 1980 * 1981 * * When RTO fires. 1982 * * When a packet is retransmitted. 1983 * * When the connection terminates. 1984 * * When a packet is sent. 1985 * * When a packet is received. 1986 * Return 1987 * Code **-EINVAL** if the socket is not a full TCP socket; 1988 * otherwise, a positive number containing the bits that could not 1989 * be set is returned (which comes down to 0 if all bits were set 1990 * as required). 1991 * 1992 * long bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags) 1993 * Description 1994 * This helper is used in programs implementing policies at the 1995 * socket level. If the message *msg* is allowed to pass (i.e. if 1996 * the verdict eBPF program returns **SK_PASS**), redirect it to 1997 * the socket referenced by *map* (of type 1998 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1999 * egress interfaces can be used for redirection. The 2000 * **BPF_F_INGRESS** value in *flags* is used to make the 2001 * distinction (ingress path is selected if the flag is present, 2002 * egress path otherwise). This is the only flag supported for now. 2003 * Return 2004 * **SK_PASS** on success, or **SK_DROP** on error. 2005 * 2006 * long bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes) 2007 * Description 2008 * For socket policies, apply the verdict of the eBPF program to 2009 * the next *bytes* (number of bytes) of message *msg*. 2010 * 2011 * For example, this helper can be used in the following cases: 2012 * 2013 * * A single **sendmsg**\ () or **sendfile**\ () system call 2014 * contains multiple logical messages that the eBPF program is 2015 * supposed to read and for which it should apply a verdict. 2016 * * An eBPF program only cares to read the first *bytes* of a 2017 * *msg*. If the message has a large payload, then setting up 2018 * and calling the eBPF program repeatedly for all bytes, even 2019 * though the verdict is already known, would create unnecessary 2020 * overhead. 2021 * 2022 * When called from within an eBPF program, the helper sets a 2023 * counter internal to the BPF infrastructure, that is used to 2024 * apply the last verdict to the next *bytes*. If *bytes* is 2025 * smaller than the current data being processed from a 2026 * **sendmsg**\ () or **sendfile**\ () system call, the first 2027 * *bytes* will be sent and the eBPF program will be re-run with 2028 * the pointer for start of data pointing to byte number *bytes* 2029 * **+ 1**. If *bytes* is larger than the current data being 2030 * processed, then the eBPF verdict will be applied to multiple 2031 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are 2032 * consumed. 2033 * 2034 * Note that if a socket closes with the internal counter holding 2035 * a non-zero value, this is not a problem because data is not 2036 * being buffered for *bytes* and is sent as it is received. 2037 * Return 2038 * 0 2039 * 2040 * long bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes) 2041 * Description 2042 * For socket policies, prevent the execution of the verdict eBPF 2043 * program for message *msg* until *bytes* (byte number) have been 2044 * accumulated. 2045 * 2046 * This can be used when one needs a specific number of bytes 2047 * before a verdict can be assigned, even if the data spans 2048 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme 2049 * case would be a user calling **sendmsg**\ () repeatedly with 2050 * 1-byte long message segments. Obviously, this is bad for 2051 * performance, but it is still valid. If the eBPF program needs 2052 * *bytes* bytes to validate a header, this helper can be used to 2053 * prevent the eBPF program to be called again until *bytes* have 2054 * been accumulated. 2055 * Return 2056 * 0 2057 * 2058 * long bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags) 2059 * Description 2060 * For socket policies, pull in non-linear data from user space 2061 * for *msg* and set pointers *msg*\ **->data** and *msg*\ 2062 * **->data_end** to *start* and *end* bytes offsets into *msg*, 2063 * respectively. 2064 * 2065 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 2066 * *msg* it can only parse data that the (**data**, **data_end**) 2067 * pointers have already consumed. For **sendmsg**\ () hooks this 2068 * is likely the first scatterlist element. But for calls relying 2069 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will 2070 * be the range (**0**, **0**) because the data is shared with 2071 * user space and by default the objective is to avoid allowing 2072 * user space to modify data while (or after) eBPF verdict is 2073 * being decided. This helper can be used to pull in data and to 2074 * set the start and end pointer to given values. Data will be 2075 * copied if necessary (i.e. if data was not linear and if start 2076 * and end pointers do not point to the same chunk). 2077 * 2078 * A call to this helper is susceptible to change the underlying 2079 * packet buffer. Therefore, at load time, all checks on pointers 2080 * previously done by the verifier are invalidated and must be 2081 * performed again, if the helper is used in combination with 2082 * direct packet access. 2083 * 2084 * All values for *flags* are reserved for future usage, and must 2085 * be left at zero. 2086 * Return 2087 * 0 on success, or a negative error in case of failure. 2088 * 2089 * long bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len) 2090 * Description 2091 * Bind the socket associated to *ctx* to the address pointed by 2092 * *addr*, of length *addr_len*. This allows for making outgoing 2093 * connection from the desired IP address, which can be useful for 2094 * example when all processes inside a cgroup should use one 2095 * single IP address on a host that has multiple IP configured. 2096 * 2097 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The 2098 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or 2099 * **AF_INET6**). It's advised to pass zero port (**sin_port** 2100 * or **sin6_port**) which triggers IP_BIND_ADDRESS_NO_PORT-like 2101 * behavior and lets the kernel efficiently pick up an unused 2102 * port as long as 4-tuple is unique. Passing non-zero port might 2103 * lead to degraded performance. 2104 * Return 2105 * 0 on success, or a negative error in case of failure. 2106 * 2107 * long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta) 2108 * Description 2109 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is 2110 * possible to both shrink and grow the packet tail. 2111 * Shrink done via *delta* being a negative integer. 2112 * 2113 * A call to this helper is susceptible to change the underlying 2114 * packet buffer. Therefore, at load time, all checks on pointers 2115 * previously done by the verifier are invalidated and must be 2116 * performed again, if the helper is used in combination with 2117 * direct packet access. 2118 * Return 2119 * 0 on success, or a negative error in case of failure. 2120 * 2121 * long bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags) 2122 * Description 2123 * Retrieve the XFRM state (IP transform framework, see also 2124 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*. 2125 * 2126 * The retrieved value is stored in the **struct bpf_xfrm_state** 2127 * pointed by *xfrm_state* and of length *size*. 2128 * 2129 * All values for *flags* are reserved for future usage, and must 2130 * be left at zero. 2131 * 2132 * This helper is available only if the kernel was compiled with 2133 * **CONFIG_XFRM** configuration option. 2134 * Return 2135 * 0 on success, or a negative error in case of failure. 2136 * 2137 * long bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags) 2138 * Description 2139 * Return a user or a kernel stack in bpf program provided buffer. 2140 * To achieve this, the helper needs *ctx*, which is a pointer 2141 * to the context on which the tracing program is executed. 2142 * To store the stacktrace, the bpf program provides *buf* with 2143 * a nonnegative *size*. 2144 * 2145 * The last argument, *flags*, holds the number of stack frames to 2146 * skip (from 0 to 255), masked with 2147 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 2148 * the following flags: 2149 * 2150 * **BPF_F_USER_STACK** 2151 * Collect a user space stack instead of a kernel stack. 2152 * **BPF_F_USER_BUILD_ID** 2153 * Collect buildid+offset instead of ips for user stack, 2154 * only valid if **BPF_F_USER_STACK** is also specified. 2155 * 2156 * **bpf_get_stack**\ () can collect up to 2157 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject 2158 * to sufficient large buffer size. Note that 2159 * this limit can be controlled with the **sysctl** program, and 2160 * that it should be manually increased in order to profile long 2161 * user stacks (such as stacks for Java programs). To do so, use: 2162 * 2163 * :: 2164 * 2165 * # sysctl kernel.perf_event_max_stack=<new value> 2166 * Return 2167 * A non-negative value equal to or less than *size* on success, 2168 * or a negative error in case of failure. 2169 * 2170 * long bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header) 2171 * Description 2172 * This helper is similar to **bpf_skb_load_bytes**\ () in that 2173 * it provides an easy way to load *len* bytes from *offset* 2174 * from the packet associated to *skb*, into the buffer pointed 2175 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that 2176 * a fifth argument *start_header* exists in order to select a 2177 * base offset to start from. *start_header* can be one of: 2178 * 2179 * **BPF_HDR_START_MAC** 2180 * Base offset to load data from is *skb*'s mac header. 2181 * **BPF_HDR_START_NET** 2182 * Base offset to load data from is *skb*'s network header. 2183 * 2184 * In general, "direct packet access" is the preferred method to 2185 * access packet data, however, this helper is in particular useful 2186 * in socket filters where *skb*\ **->data** does not always point 2187 * to the start of the mac header and where "direct packet access" 2188 * is not available. 2189 * Return 2190 * 0 on success, or a negative error in case of failure. 2191 * 2192 * long bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags) 2193 * Description 2194 * Do FIB lookup in kernel tables using parameters in *params*. 2195 * If lookup is successful and result shows packet is to be 2196 * forwarded, the neighbor tables are searched for the nexthop. 2197 * If successful (ie., FIB lookup shows forwarding and nexthop 2198 * is resolved), the nexthop address is returned in ipv4_dst 2199 * or ipv6_dst based on family, smac is set to mac address of 2200 * egress device, dmac is set to nexthop mac address, rt_metric 2201 * is set to metric from route (IPv4/IPv6 only), and ifindex 2202 * is set to the device index of the nexthop from the FIB lookup. 2203 * 2204 * *plen* argument is the size of the passed in struct. 2205 * *flags* argument can be a combination of one or more of the 2206 * following values: 2207 * 2208 * **BPF_FIB_LOOKUP_DIRECT** 2209 * Do a direct table lookup vs full lookup using FIB 2210 * rules. 2211 * **BPF_FIB_LOOKUP_OUTPUT** 2212 * Perform lookup from an egress perspective (default is 2213 * ingress). 2214 * 2215 * *ctx* is either **struct xdp_md** for XDP programs or 2216 * **struct sk_buff** tc cls_act programs. 2217 * Return 2218 * * < 0 if any input argument is invalid 2219 * * 0 on success (packet is forwarded, nexthop neighbor exists) 2220 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the 2221 * packet is not forwarded or needs assist from full stack 2222 * 2223 * long bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags) 2224 * Description 2225 * Add an entry to, or update a sockhash *map* referencing sockets. 2226 * The *skops* is used as a new value for the entry associated to 2227 * *key*. *flags* is one of: 2228 * 2229 * **BPF_NOEXIST** 2230 * The entry for *key* must not exist in the map. 2231 * **BPF_EXIST** 2232 * The entry for *key* must already exist in the map. 2233 * **BPF_ANY** 2234 * No condition on the existence of the entry for *key*. 2235 * 2236 * If the *map* has eBPF programs (parser and verdict), those will 2237 * be inherited by the socket being added. If the socket is 2238 * already attached to eBPF programs, this results in an error. 2239 * Return 2240 * 0 on success, or a negative error in case of failure. 2241 * 2242 * long bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags) 2243 * Description 2244 * This helper is used in programs implementing policies at the 2245 * socket level. If the message *msg* is allowed to pass (i.e. if 2246 * the verdict eBPF program returns **SK_PASS**), redirect it to 2247 * the socket referenced by *map* (of type 2248 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 2249 * egress interfaces can be used for redirection. The 2250 * **BPF_F_INGRESS** value in *flags* is used to make the 2251 * distinction (ingress path is selected if the flag is present, 2252 * egress path otherwise). This is the only flag supported for now. 2253 * Return 2254 * **SK_PASS** on success, or **SK_DROP** on error. 2255 * 2256 * long bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags) 2257 * Description 2258 * This helper is used in programs implementing policies at the 2259 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e. 2260 * if the verdict eBPF program returns **SK_PASS**), redirect it 2261 * to the socket referenced by *map* (of type 2262 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 2263 * egress interfaces can be used for redirection. The 2264 * **BPF_F_INGRESS** value in *flags* is used to make the 2265 * distinction (ingress path is selected if the flag is present, 2266 * egress otherwise). This is the only flag supported for now. 2267 * Return 2268 * **SK_PASS** on success, or **SK_DROP** on error. 2269 * 2270 * long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) 2271 * Description 2272 * Encapsulate the packet associated to *skb* within a Layer 3 2273 * protocol header. This header is provided in the buffer at 2274 * address *hdr*, with *len* its size in bytes. *type* indicates 2275 * the protocol of the header and can be one of: 2276 * 2277 * **BPF_LWT_ENCAP_SEG6** 2278 * IPv6 encapsulation with Segment Routing Header 2279 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH, 2280 * the IPv6 header is computed by the kernel. 2281 * **BPF_LWT_ENCAP_SEG6_INLINE** 2282 * Only works if *skb* contains an IPv6 packet. Insert a 2283 * Segment Routing Header (**struct ipv6_sr_hdr**) inside 2284 * the IPv6 header. 2285 * **BPF_LWT_ENCAP_IP** 2286 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header 2287 * must be IPv4 or IPv6, followed by zero or more 2288 * additional headers, up to **LWT_BPF_MAX_HEADROOM** 2289 * total bytes in all prepended headers. Please note that 2290 * if **skb_is_gso**\ (*skb*) is true, no more than two 2291 * headers can be prepended, and the inner header, if 2292 * present, should be either GRE or UDP/GUE. 2293 * 2294 * **BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs 2295 * of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can 2296 * be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and 2297 * **BPF_PROG_TYPE_LWT_XMIT**. 2298 * 2299 * A call to this helper is susceptible to change the underlying 2300 * packet buffer. Therefore, at load time, all checks on pointers 2301 * previously done by the verifier are invalidated and must be 2302 * performed again, if the helper is used in combination with 2303 * direct packet access. 2304 * Return 2305 * 0 on success, or a negative error in case of failure. 2306 * 2307 * long bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len) 2308 * Description 2309 * Store *len* bytes from address *from* into the packet 2310 * associated to *skb*, at *offset*. Only the flags, tag and TLVs 2311 * inside the outermost IPv6 Segment Routing Header can be 2312 * modified through this helper. 2313 * 2314 * A call to this helper is susceptible to change the underlying 2315 * packet buffer. Therefore, at load time, all checks on pointers 2316 * previously done by the verifier are invalidated and must be 2317 * performed again, if the helper is used in combination with 2318 * direct packet access. 2319 * Return 2320 * 0 on success, or a negative error in case of failure. 2321 * 2322 * long bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta) 2323 * Description 2324 * Adjust the size allocated to TLVs in the outermost IPv6 2325 * Segment Routing Header contained in the packet associated to 2326 * *skb*, at position *offset* by *delta* bytes. Only offsets 2327 * after the segments are accepted. *delta* can be as well 2328 * positive (growing) as negative (shrinking). 2329 * 2330 * A call to this helper is susceptible to change the underlying 2331 * packet buffer. Therefore, at load time, all checks on pointers 2332 * previously done by the verifier are invalidated and must be 2333 * performed again, if the helper is used in combination with 2334 * direct packet access. 2335 * Return 2336 * 0 on success, or a negative error in case of failure. 2337 * 2338 * long bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len) 2339 * Description 2340 * Apply an IPv6 Segment Routing action of type *action* to the 2341 * packet associated to *skb*. Each action takes a parameter 2342 * contained at address *param*, and of length *param_len* bytes. 2343 * *action* can be one of: 2344 * 2345 * **SEG6_LOCAL_ACTION_END_X** 2346 * End.X action: Endpoint with Layer-3 cross-connect. 2347 * Type of *param*: **struct in6_addr**. 2348 * **SEG6_LOCAL_ACTION_END_T** 2349 * End.T action: Endpoint with specific IPv6 table lookup. 2350 * Type of *param*: **int**. 2351 * **SEG6_LOCAL_ACTION_END_B6** 2352 * End.B6 action: Endpoint bound to an SRv6 policy. 2353 * Type of *param*: **struct ipv6_sr_hdr**. 2354 * **SEG6_LOCAL_ACTION_END_B6_ENCAP** 2355 * End.B6.Encap action: Endpoint bound to an SRv6 2356 * encapsulation policy. 2357 * Type of *param*: **struct ipv6_sr_hdr**. 2358 * 2359 * A call to this helper is susceptible to change the underlying 2360 * packet buffer. Therefore, at load time, all checks on pointers 2361 * previously done by the verifier are invalidated and must be 2362 * performed again, if the helper is used in combination with 2363 * direct packet access. 2364 * Return 2365 * 0 on success, or a negative error in case of failure. 2366 * 2367 * long bpf_rc_repeat(void *ctx) 2368 * Description 2369 * This helper is used in programs implementing IR decoding, to 2370 * report a successfully decoded repeat key message. This delays 2371 * the generation of a key up event for previously generated 2372 * key down event. 2373 * 2374 * Some IR protocols like NEC have a special IR message for 2375 * repeating last button, for when a button is held down. 2376 * 2377 * The *ctx* should point to the lirc sample as passed into 2378 * the program. 2379 * 2380 * This helper is only available is the kernel was compiled with 2381 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2382 * "**y**". 2383 * Return 2384 * 0 2385 * 2386 * long bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle) 2387 * Description 2388 * This helper is used in programs implementing IR decoding, to 2389 * report a successfully decoded key press with *scancode*, 2390 * *toggle* value in the given *protocol*. The scancode will be 2391 * translated to a keycode using the rc keymap, and reported as 2392 * an input key down event. After a period a key up event is 2393 * generated. This period can be extended by calling either 2394 * **bpf_rc_keydown**\ () again with the same values, or calling 2395 * **bpf_rc_repeat**\ (). 2396 * 2397 * Some protocols include a toggle bit, in case the button was 2398 * released and pressed again between consecutive scancodes. 2399 * 2400 * The *ctx* should point to the lirc sample as passed into 2401 * the program. 2402 * 2403 * The *protocol* is the decoded protocol number (see 2404 * **enum rc_proto** for some predefined values). 2405 * 2406 * This helper is only available is the kernel was compiled with 2407 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2408 * "**y**". 2409 * Return 2410 * 0 2411 * 2412 * u64 bpf_skb_cgroup_id(struct sk_buff *skb) 2413 * Description 2414 * Return the cgroup v2 id of the socket associated with the *skb*. 2415 * This is roughly similar to the **bpf_get_cgroup_classid**\ () 2416 * helper for cgroup v1 by providing a tag resp. identifier that 2417 * can be matched on or used for map lookups e.g. to implement 2418 * policy. The cgroup v2 id of a given path in the hierarchy is 2419 * exposed in user space through the f_handle API in order to get 2420 * to the same 64-bit id. 2421 * 2422 * This helper can be used on TC egress path, but not on ingress, 2423 * and is available only if the kernel was compiled with the 2424 * **CONFIG_SOCK_CGROUP_DATA** configuration option. 2425 * Return 2426 * The id is returned or 0 in case the id could not be retrieved. 2427 * 2428 * u64 bpf_get_current_cgroup_id(void) 2429 * Return 2430 * A 64-bit integer containing the current cgroup id based 2431 * on the cgroup within which the current task is running. 2432 * 2433 * void *bpf_get_local_storage(void *map, u64 flags) 2434 * Description 2435 * Get the pointer to the local storage area. 2436 * The type and the size of the local storage is defined 2437 * by the *map* argument. 2438 * The *flags* meaning is specific for each map type, 2439 * and has to be 0 for cgroup local storage. 2440 * 2441 * Depending on the BPF program type, a local storage area 2442 * can be shared between multiple instances of the BPF program, 2443 * running simultaneously. 2444 * 2445 * A user should care about the synchronization by himself. 2446 * For example, by using the **BPF_STX_XADD** instruction to alter 2447 * the shared data. 2448 * Return 2449 * A pointer to the local storage area. 2450 * 2451 * long bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags) 2452 * Description 2453 * Select a **SO_REUSEPORT** socket from a 2454 * **BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*. 2455 * It checks the selected socket is matching the incoming 2456 * request in the socket buffer. 2457 * Return 2458 * 0 on success, or a negative error in case of failure. 2459 * 2460 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level) 2461 * Description 2462 * Return id of cgroup v2 that is ancestor of cgroup associated 2463 * with the *skb* at the *ancestor_level*. The root cgroup is at 2464 * *ancestor_level* zero and each step down the hierarchy 2465 * increments the level. If *ancestor_level* == level of cgroup 2466 * associated with *skb*, then return value will be same as that 2467 * of **bpf_skb_cgroup_id**\ (). 2468 * 2469 * The helper is useful to implement policies based on cgroups 2470 * that are upper in hierarchy than immediate cgroup associated 2471 * with *skb*. 2472 * 2473 * The format of returned id and helper limitations are same as in 2474 * **bpf_skb_cgroup_id**\ (). 2475 * Return 2476 * The id is returned or 0 in case the id could not be retrieved. 2477 * 2478 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2479 * Description 2480 * Look for TCP socket matching *tuple*, optionally in a child 2481 * network namespace *netns*. The return value must be checked, 2482 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2483 * 2484 * The *ctx* should point to the context of the program, such as 2485 * the skb or socket (depending on the hook in use). This is used 2486 * to determine the base network namespace for the lookup. 2487 * 2488 * *tuple_size* must be one of: 2489 * 2490 * **sizeof**\ (*tuple*\ **->ipv4**) 2491 * Look for an IPv4 socket. 2492 * **sizeof**\ (*tuple*\ **->ipv6**) 2493 * Look for an IPv6 socket. 2494 * 2495 * If the *netns* is a negative signed 32-bit integer, then the 2496 * socket lookup table in the netns associated with the *ctx* 2497 * will be used. For the TC hooks, this is the netns of the device 2498 * in the skb. For socket hooks, this is the netns of the socket. 2499 * If *netns* is any other signed 32-bit value greater than or 2500 * equal to zero then it specifies the ID of the netns relative to 2501 * the netns associated with the *ctx*. *netns* values beyond the 2502 * range of 32-bit integers are reserved for future use. 2503 * 2504 * All values for *flags* are reserved for future usage, and must 2505 * be left at zero. 2506 * 2507 * This helper is available only if the kernel was compiled with 2508 * **CONFIG_NET** configuration option. 2509 * Return 2510 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2511 * For sockets with reuseport option, the **struct bpf_sock** 2512 * result is from *reuse*\ **->socks**\ [] using the hash of the 2513 * tuple. 2514 * 2515 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2516 * Description 2517 * Look for UDP socket matching *tuple*, optionally in a child 2518 * network namespace *netns*. The return value must be checked, 2519 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2520 * 2521 * The *ctx* should point to the context of the program, such as 2522 * the skb or socket (depending on the hook in use). This is used 2523 * to determine the base network namespace for the lookup. 2524 * 2525 * *tuple_size* must be one of: 2526 * 2527 * **sizeof**\ (*tuple*\ **->ipv4**) 2528 * Look for an IPv4 socket. 2529 * **sizeof**\ (*tuple*\ **->ipv6**) 2530 * Look for an IPv6 socket. 2531 * 2532 * If the *netns* is a negative signed 32-bit integer, then the 2533 * socket lookup table in the netns associated with the *ctx* 2534 * will be used. For the TC hooks, this is the netns of the device 2535 * in the skb. For socket hooks, this is the netns of the socket. 2536 * If *netns* is any other signed 32-bit value greater than or 2537 * equal to zero then it specifies the ID of the netns relative to 2538 * the netns associated with the *ctx*. *netns* values beyond the 2539 * range of 32-bit integers are reserved for future use. 2540 * 2541 * All values for *flags* are reserved for future usage, and must 2542 * be left at zero. 2543 * 2544 * This helper is available only if the kernel was compiled with 2545 * **CONFIG_NET** configuration option. 2546 * Return 2547 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2548 * For sockets with reuseport option, the **struct bpf_sock** 2549 * result is from *reuse*\ **->socks**\ [] using the hash of the 2550 * tuple. 2551 * 2552 * long bpf_sk_release(void *sock) 2553 * Description 2554 * Release the reference held by *sock*. *sock* must be a 2555 * non-**NULL** pointer that was returned from 2556 * **bpf_sk_lookup_xxx**\ (). 2557 * Return 2558 * 0 on success, or a negative error in case of failure. 2559 * 2560 * long bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags) 2561 * Description 2562 * Push an element *value* in *map*. *flags* is one of: 2563 * 2564 * **BPF_EXIST** 2565 * If the queue/stack is full, the oldest element is 2566 * removed to make room for this. 2567 * Return 2568 * 0 on success, or a negative error in case of failure. 2569 * 2570 * long bpf_map_pop_elem(struct bpf_map *map, void *value) 2571 * Description 2572 * Pop an element from *map*. 2573 * Return 2574 * 0 on success, or a negative error in case of failure. 2575 * 2576 * long bpf_map_peek_elem(struct bpf_map *map, void *value) 2577 * Description 2578 * Get an element from *map* without removing it. 2579 * Return 2580 * 0 on success, or a negative error in case of failure. 2581 * 2582 * long bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags) 2583 * Description 2584 * For socket policies, insert *len* bytes into *msg* at offset 2585 * *start*. 2586 * 2587 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 2588 * *msg* it may want to insert metadata or options into the *msg*. 2589 * This can later be read and used by any of the lower layer BPF 2590 * hooks. 2591 * 2592 * This helper may fail if under memory pressure (a malloc 2593 * fails) in these cases BPF programs will get an appropriate 2594 * error and BPF programs will need to handle them. 2595 * Return 2596 * 0 on success, or a negative error in case of failure. 2597 * 2598 * long bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags) 2599 * Description 2600 * Will remove *len* bytes from a *msg* starting at byte *start*. 2601 * This may result in **ENOMEM** errors under certain situations if 2602 * an allocation and copy are required due to a full ring buffer. 2603 * However, the helper will try to avoid doing the allocation 2604 * if possible. Other errors can occur if input parameters are 2605 * invalid either due to *start* byte not being valid part of *msg* 2606 * payload and/or *pop* value being to large. 2607 * Return 2608 * 0 on success, or a negative error in case of failure. 2609 * 2610 * long bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y) 2611 * Description 2612 * This helper is used in programs implementing IR decoding, to 2613 * report a successfully decoded pointer movement. 2614 * 2615 * The *ctx* should point to the lirc sample as passed into 2616 * the program. 2617 * 2618 * This helper is only available is the kernel was compiled with 2619 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2620 * "**y**". 2621 * Return 2622 * 0 2623 * 2624 * long bpf_spin_lock(struct bpf_spin_lock *lock) 2625 * Description 2626 * Acquire a spinlock represented by the pointer *lock*, which is 2627 * stored as part of a value of a map. Taking the lock allows to 2628 * safely update the rest of the fields in that value. The 2629 * spinlock can (and must) later be released with a call to 2630 * **bpf_spin_unlock**\ (\ *lock*\ ). 2631 * 2632 * Spinlocks in BPF programs come with a number of restrictions 2633 * and constraints: 2634 * 2635 * * **bpf_spin_lock** objects are only allowed inside maps of 2636 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this 2637 * list could be extended in the future). 2638 * * BTF description of the map is mandatory. 2639 * * The BPF program can take ONE lock at a time, since taking two 2640 * or more could cause dead locks. 2641 * * Only one **struct bpf_spin_lock** is allowed per map element. 2642 * * When the lock is taken, calls (either BPF to BPF or helpers) 2643 * are not allowed. 2644 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not 2645 * allowed inside a spinlock-ed region. 2646 * * The BPF program MUST call **bpf_spin_unlock**\ () to release 2647 * the lock, on all execution paths, before it returns. 2648 * * The BPF program can access **struct bpf_spin_lock** only via 2649 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ () 2650 * helpers. Loading or storing data into the **struct 2651 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed. 2652 * * To use the **bpf_spin_lock**\ () helper, the BTF description 2653 * of the map value must be a struct and have **struct 2654 * bpf_spin_lock** *anyname*\ **;** field at the top level. 2655 * Nested lock inside another struct is not allowed. 2656 * * The **struct bpf_spin_lock** *lock* field in a map value must 2657 * be aligned on a multiple of 4 bytes in that value. 2658 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy 2659 * the **bpf_spin_lock** field to user space. 2660 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from 2661 * a BPF program, do not update the **bpf_spin_lock** field. 2662 * * **bpf_spin_lock** cannot be on the stack or inside a 2663 * networking packet (it can only be inside of a map values). 2664 * * **bpf_spin_lock** is available to root only. 2665 * * Tracing programs and socket filter programs cannot use 2666 * **bpf_spin_lock**\ () due to insufficient preemption checks 2667 * (but this may change in the future). 2668 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map. 2669 * Return 2670 * 0 2671 * 2672 * long bpf_spin_unlock(struct bpf_spin_lock *lock) 2673 * Description 2674 * Release the *lock* previously locked by a call to 2675 * **bpf_spin_lock**\ (\ *lock*\ ). 2676 * Return 2677 * 0 2678 * 2679 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk) 2680 * Description 2681 * This helper gets a **struct bpf_sock** pointer such 2682 * that all the fields in this **bpf_sock** can be accessed. 2683 * Return 2684 * A **struct bpf_sock** pointer on success, or **NULL** in 2685 * case of failure. 2686 * 2687 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk) 2688 * Description 2689 * This helper gets a **struct bpf_tcp_sock** pointer from a 2690 * **struct bpf_sock** pointer. 2691 * Return 2692 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in 2693 * case of failure. 2694 * 2695 * long bpf_skb_ecn_set_ce(struct sk_buff *skb) 2696 * Description 2697 * Set ECN (Explicit Congestion Notification) field of IP header 2698 * to **CE** (Congestion Encountered) if current value is **ECT** 2699 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6 2700 * and IPv4. 2701 * Return 2702 * 1 if the **CE** flag is set (either by the current helper call 2703 * or because it was already present), 0 if it is not set. 2704 * 2705 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk) 2706 * Description 2707 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state. 2708 * **bpf_sk_release**\ () is unnecessary and not allowed. 2709 * Return 2710 * A **struct bpf_sock** pointer on success, or **NULL** in 2711 * case of failure. 2712 * 2713 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2714 * Description 2715 * Look for TCP socket matching *tuple*, optionally in a child 2716 * network namespace *netns*. The return value must be checked, 2717 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2718 * 2719 * This function is identical to **bpf_sk_lookup_tcp**\ (), except 2720 * that it also returns timewait or request sockets. Use 2721 * **bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the 2722 * full structure. 2723 * 2724 * This helper is available only if the kernel was compiled with 2725 * **CONFIG_NET** configuration option. 2726 * Return 2727 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2728 * For sockets with reuseport option, the **struct bpf_sock** 2729 * result is from *reuse*\ **->socks**\ [] using the hash of the 2730 * tuple. 2731 * 2732 * long bpf_tcp_check_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len) 2733 * Description 2734 * Check whether *iph* and *th* contain a valid SYN cookie ACK for 2735 * the listening socket in *sk*. 2736 * 2737 * *iph* points to the start of the IPv4 or IPv6 header, while 2738 * *iph_len* contains **sizeof**\ (**struct iphdr**) or 2739 * **sizeof**\ (**struct ip6hdr**). 2740 * 2741 * *th* points to the start of the TCP header, while *th_len* 2742 * contains **sizeof**\ (**struct tcphdr**). 2743 * Return 2744 * 0 if *iph* and *th* are a valid SYN cookie ACK, or a negative 2745 * error otherwise. 2746 * 2747 * long bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags) 2748 * Description 2749 * Get name of sysctl in /proc/sys/ and copy it into provided by 2750 * program buffer *buf* of size *buf_len*. 2751 * 2752 * The buffer is always NUL terminated, unless it's zero-sized. 2753 * 2754 * If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is 2755 * copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name 2756 * only (e.g. "tcp_mem"). 2757 * Return 2758 * Number of character copied (not including the trailing NUL). 2759 * 2760 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2761 * truncated name in this case). 2762 * 2763 * long bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len) 2764 * Description 2765 * Get current value of sysctl as it is presented in /proc/sys 2766 * (incl. newline, etc), and copy it as a string into provided 2767 * by program buffer *buf* of size *buf_len*. 2768 * 2769 * The whole value is copied, no matter what file position user 2770 * space issued e.g. sys_read at. 2771 * 2772 * The buffer is always NUL terminated, unless it's zero-sized. 2773 * Return 2774 * Number of character copied (not including the trailing NUL). 2775 * 2776 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2777 * truncated name in this case). 2778 * 2779 * **-EINVAL** if current value was unavailable, e.g. because 2780 * sysctl is uninitialized and read returns -EIO for it. 2781 * 2782 * long bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len) 2783 * Description 2784 * Get new value being written by user space to sysctl (before 2785 * the actual write happens) and copy it as a string into 2786 * provided by program buffer *buf* of size *buf_len*. 2787 * 2788 * User space may write new value at file position > 0. 2789 * 2790 * The buffer is always NUL terminated, unless it's zero-sized. 2791 * Return 2792 * Number of character copied (not including the trailing NUL). 2793 * 2794 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2795 * truncated name in this case). 2796 * 2797 * **-EINVAL** if sysctl is being read. 2798 * 2799 * long bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len) 2800 * Description 2801 * Override new value being written by user space to sysctl with 2802 * value provided by program in buffer *buf* of size *buf_len*. 2803 * 2804 * *buf* should contain a string in same form as provided by user 2805 * space on sysctl write. 2806 * 2807 * User space may write new value at file position > 0. To override 2808 * the whole sysctl value file position should be set to zero. 2809 * Return 2810 * 0 on success. 2811 * 2812 * **-E2BIG** if the *buf_len* is too big. 2813 * 2814 * **-EINVAL** if sysctl is being read. 2815 * 2816 * long bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res) 2817 * Description 2818 * Convert the initial part of the string from buffer *buf* of 2819 * size *buf_len* to a long integer according to the given base 2820 * and save the result in *res*. 2821 * 2822 * The string may begin with an arbitrary amount of white space 2823 * (as determined by **isspace**\ (3)) followed by a single 2824 * optional '**-**' sign. 2825 * 2826 * Five least significant bits of *flags* encode base, other bits 2827 * are currently unused. 2828 * 2829 * Base must be either 8, 10, 16 or 0 to detect it automatically 2830 * similar to user space **strtol**\ (3). 2831 * Return 2832 * Number of characters consumed on success. Must be positive but 2833 * no more than *buf_len*. 2834 * 2835 * **-EINVAL** if no valid digits were found or unsupported base 2836 * was provided. 2837 * 2838 * **-ERANGE** if resulting value was out of range. 2839 * 2840 * long bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res) 2841 * Description 2842 * Convert the initial part of the string from buffer *buf* of 2843 * size *buf_len* to an unsigned long integer according to the 2844 * given base and save the result in *res*. 2845 * 2846 * The string may begin with an arbitrary amount of white space 2847 * (as determined by **isspace**\ (3)). 2848 * 2849 * Five least significant bits of *flags* encode base, other bits 2850 * are currently unused. 2851 * 2852 * Base must be either 8, 10, 16 or 0 to detect it automatically 2853 * similar to user space **strtoul**\ (3). 2854 * Return 2855 * Number of characters consumed on success. Must be positive but 2856 * no more than *buf_len*. 2857 * 2858 * **-EINVAL** if no valid digits were found or unsupported base 2859 * was provided. 2860 * 2861 * **-ERANGE** if resulting value was out of range. 2862 * 2863 * void *bpf_sk_storage_get(struct bpf_map *map, void *sk, void *value, u64 flags) 2864 * Description 2865 * Get a bpf-local-storage from a *sk*. 2866 * 2867 * Logically, it could be thought of getting the value from 2868 * a *map* with *sk* as the **key**. From this 2869 * perspective, the usage is not much different from 2870 * **bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this 2871 * helper enforces the key must be a full socket and the map must 2872 * be a **BPF_MAP_TYPE_SK_STORAGE** also. 2873 * 2874 * Underneath, the value is stored locally at *sk* instead of 2875 * the *map*. The *map* is used as the bpf-local-storage 2876 * "type". The bpf-local-storage "type" (i.e. the *map*) is 2877 * searched against all bpf-local-storages residing at *sk*. 2878 * 2879 * *sk* is a kernel **struct sock** pointer for LSM program. 2880 * *sk* is a **struct bpf_sock** pointer for other program types. 2881 * 2882 * An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be 2883 * used such that a new bpf-local-storage will be 2884 * created if one does not exist. *value* can be used 2885 * together with **BPF_SK_STORAGE_GET_F_CREATE** to specify 2886 * the initial value of a bpf-local-storage. If *value* is 2887 * **NULL**, the new bpf-local-storage will be zero initialized. 2888 * Return 2889 * A bpf-local-storage pointer is returned on success. 2890 * 2891 * **NULL** if not found or there was an error in adding 2892 * a new bpf-local-storage. 2893 * 2894 * long bpf_sk_storage_delete(struct bpf_map *map, void *sk) 2895 * Description 2896 * Delete a bpf-local-storage from a *sk*. 2897 * Return 2898 * 0 on success. 2899 * 2900 * **-ENOENT** if the bpf-local-storage cannot be found. 2901 * **-EINVAL** if sk is not a fullsock (e.g. a request_sock). 2902 * 2903 * long bpf_send_signal(u32 sig) 2904 * Description 2905 * Send signal *sig* to the process of the current task. 2906 * The signal may be delivered to any of this process's threads. 2907 * Return 2908 * 0 on success or successfully queued. 2909 * 2910 * **-EBUSY** if work queue under nmi is full. 2911 * 2912 * **-EINVAL** if *sig* is invalid. 2913 * 2914 * **-EPERM** if no permission to send the *sig*. 2915 * 2916 * **-EAGAIN** if bpf program can try again. 2917 * 2918 * s64 bpf_tcp_gen_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len) 2919 * Description 2920 * Try to issue a SYN cookie for the packet with corresponding 2921 * IP/TCP headers, *iph* and *th*, on the listening socket in *sk*. 2922 * 2923 * *iph* points to the start of the IPv4 or IPv6 header, while 2924 * *iph_len* contains **sizeof**\ (**struct iphdr**) or 2925 * **sizeof**\ (**struct ip6hdr**). 2926 * 2927 * *th* points to the start of the TCP header, while *th_len* 2928 * contains the length of the TCP header. 2929 * Return 2930 * On success, lower 32 bits hold the generated SYN cookie in 2931 * followed by 16 bits which hold the MSS value for that cookie, 2932 * and the top 16 bits are unused. 2933 * 2934 * On failure, the returned value is one of the following: 2935 * 2936 * **-EINVAL** SYN cookie cannot be issued due to error 2937 * 2938 * **-ENOENT** SYN cookie should not be issued (no SYN flood) 2939 * 2940 * **-EOPNOTSUPP** kernel configuration does not enable SYN cookies 2941 * 2942 * **-EPROTONOSUPPORT** IP packet version is not 4 or 6 2943 * 2944 * long bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 2945 * Description 2946 * Write raw *data* blob into a special BPF perf event held by 2947 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 2948 * event must have the following attributes: **PERF_SAMPLE_RAW** 2949 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 2950 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 2951 * 2952 * The *flags* are used to indicate the index in *map* for which 2953 * the value must be put, masked with **BPF_F_INDEX_MASK**. 2954 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 2955 * to indicate that the index of the current CPU core should be 2956 * used. 2957 * 2958 * The value to write, of *size*, is passed through eBPF stack and 2959 * pointed by *data*. 2960 * 2961 * *ctx* is a pointer to in-kernel struct sk_buff. 2962 * 2963 * This helper is similar to **bpf_perf_event_output**\ () but 2964 * restricted to raw_tracepoint bpf programs. 2965 * Return 2966 * 0 on success, or a negative error in case of failure. 2967 * 2968 * long bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr) 2969 * Description 2970 * Safely attempt to read *size* bytes from user space address 2971 * *unsafe_ptr* and store the data in *dst*. 2972 * Return 2973 * 0 on success, or a negative error in case of failure. 2974 * 2975 * long bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr) 2976 * Description 2977 * Safely attempt to read *size* bytes from kernel space address 2978 * *unsafe_ptr* and store the data in *dst*. 2979 * Return 2980 * 0 on success, or a negative error in case of failure. 2981 * 2982 * long bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr) 2983 * Description 2984 * Copy a NUL terminated string from an unsafe user address 2985 * *unsafe_ptr* to *dst*. The *size* should include the 2986 * terminating NUL byte. In case the string length is smaller than 2987 * *size*, the target is not padded with further NUL bytes. If the 2988 * string length is larger than *size*, just *size*-1 bytes are 2989 * copied and the last byte is set to NUL. 2990 * 2991 * On success, the length of the copied string is returned. This 2992 * makes this helper useful in tracing programs for reading 2993 * strings, and more importantly to get its length at runtime. See 2994 * the following snippet: 2995 * 2996 * :: 2997 * 2998 * SEC("kprobe/sys_open") 2999 * void bpf_sys_open(struct pt_regs *ctx) 3000 * { 3001 * char buf[PATHLEN]; // PATHLEN is defined to 256 3002 * int res = bpf_probe_read_user_str(buf, sizeof(buf), 3003 * ctx->di); 3004 * 3005 * // Consume buf, for example push it to 3006 * // userspace via bpf_perf_event_output(); we 3007 * // can use res (the string length) as event 3008 * // size, after checking its boundaries. 3009 * } 3010 * 3011 * In comparison, using **bpf_probe_read_user**\ () helper here 3012 * instead to read the string would require to estimate the length 3013 * at compile time, and would often result in copying more memory 3014 * than necessary. 3015 * 3016 * Another useful use case is when parsing individual process 3017 * arguments or individual environment variables navigating 3018 * *current*\ **->mm->arg_start** and *current*\ 3019 * **->mm->env_start**: using this helper and the return value, 3020 * one can quickly iterate at the right offset of the memory area. 3021 * Return 3022 * On success, the strictly positive length of the string, 3023 * including the trailing NUL character. On error, a negative 3024 * value. 3025 * 3026 * long bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr) 3027 * Description 3028 * Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr* 3029 * to *dst*. Same semantics as with **bpf_probe_read_user_str**\ () apply. 3030 * Return 3031 * On success, the strictly positive length of the string, including 3032 * the trailing NUL character. On error, a negative value. 3033 * 3034 * long bpf_tcp_send_ack(void *tp, u32 rcv_nxt) 3035 * Description 3036 * Send out a tcp-ack. *tp* is the in-kernel struct **tcp_sock**. 3037 * *rcv_nxt* is the ack_seq to be sent out. 3038 * Return 3039 * 0 on success, or a negative error in case of failure. 3040 * 3041 * long bpf_send_signal_thread(u32 sig) 3042 * Description 3043 * Send signal *sig* to the thread corresponding to the current task. 3044 * Return 3045 * 0 on success or successfully queued. 3046 * 3047 * **-EBUSY** if work queue under nmi is full. 3048 * 3049 * **-EINVAL** if *sig* is invalid. 3050 * 3051 * **-EPERM** if no permission to send the *sig*. 3052 * 3053 * **-EAGAIN** if bpf program can try again. 3054 * 3055 * u64 bpf_jiffies64(void) 3056 * Description 3057 * Obtain the 64bit jiffies 3058 * Return 3059 * The 64 bit jiffies 3060 * 3061 * long bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32 size, u64 flags) 3062 * Description 3063 * For an eBPF program attached to a perf event, retrieve the 3064 * branch records (**struct perf_branch_entry**) associated to *ctx* 3065 * and store it in the buffer pointed by *buf* up to size 3066 * *size* bytes. 3067 * Return 3068 * On success, number of bytes written to *buf*. On error, a 3069 * negative value. 3070 * 3071 * The *flags* can be set to **BPF_F_GET_BRANCH_RECORDS_SIZE** to 3072 * instead return the number of bytes required to store all the 3073 * branch entries. If this flag is set, *buf* may be NULL. 3074 * 3075 * **-EINVAL** if arguments invalid or **size** not a multiple 3076 * of **sizeof**\ (**struct perf_branch_entry**\ ). 3077 * 3078 * **-ENOENT** if architecture does not support branch records. 3079 * 3080 * long bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *nsdata, u32 size) 3081 * Description 3082 * Returns 0 on success, values for *pid* and *tgid* as seen from the current 3083 * *namespace* will be returned in *nsdata*. 3084 * Return 3085 * 0 on success, or one of the following in case of failure: 3086 * 3087 * **-EINVAL** if dev and inum supplied don't match dev_t and inode number 3088 * with nsfs of current task, or if dev conversion to dev_t lost high bits. 3089 * 3090 * **-ENOENT** if pidns does not exists for the current task. 3091 * 3092 * long bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 3093 * Description 3094 * Write raw *data* blob into a special BPF perf event held by 3095 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 3096 * event must have the following attributes: **PERF_SAMPLE_RAW** 3097 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 3098 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 3099 * 3100 * The *flags* are used to indicate the index in *map* for which 3101 * the value must be put, masked with **BPF_F_INDEX_MASK**. 3102 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 3103 * to indicate that the index of the current CPU core should be 3104 * used. 3105 * 3106 * The value to write, of *size*, is passed through eBPF stack and 3107 * pointed by *data*. 3108 * 3109 * *ctx* is a pointer to in-kernel struct xdp_buff. 3110 * 3111 * This helper is similar to **bpf_perf_eventoutput**\ () but 3112 * restricted to raw_tracepoint bpf programs. 3113 * Return 3114 * 0 on success, or a negative error in case of failure. 3115 * 3116 * u64 bpf_get_netns_cookie(void *ctx) 3117 * Description 3118 * Retrieve the cookie (generated by the kernel) of the network 3119 * namespace the input *ctx* is associated with. The network 3120 * namespace cookie remains stable for its lifetime and provides 3121 * a global identifier that can be assumed unique. If *ctx* is 3122 * NULL, then the helper returns the cookie for the initial 3123 * network namespace. The cookie itself is very similar to that 3124 * of **bpf_get_socket_cookie**\ () helper, but for network 3125 * namespaces instead of sockets. 3126 * Return 3127 * A 8-byte long opaque number. 3128 * 3129 * u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level) 3130 * Description 3131 * Return id of cgroup v2 that is ancestor of the cgroup associated 3132 * with the current task at the *ancestor_level*. The root cgroup 3133 * is at *ancestor_level* zero and each step down the hierarchy 3134 * increments the level. If *ancestor_level* == level of cgroup 3135 * associated with the current task, then return value will be the 3136 * same as that of **bpf_get_current_cgroup_id**\ (). 3137 * 3138 * The helper is useful to implement policies based on cgroups 3139 * that are upper in hierarchy than immediate cgroup associated 3140 * with the current task. 3141 * 3142 * The format of returned id and helper limitations are same as in 3143 * **bpf_get_current_cgroup_id**\ (). 3144 * Return 3145 * The id is returned or 0 in case the id could not be retrieved. 3146 * 3147 * long bpf_sk_assign(struct sk_buff *skb, void *sk, u64 flags) 3148 * Description 3149 * Helper is overloaded depending on BPF program type. This 3150 * description applies to **BPF_PROG_TYPE_SCHED_CLS** and 3151 * **BPF_PROG_TYPE_SCHED_ACT** programs. 3152 * 3153 * Assign the *sk* to the *skb*. When combined with appropriate 3154 * routing configuration to receive the packet towards the socket, 3155 * will cause *skb* to be delivered to the specified socket. 3156 * Subsequent redirection of *skb* via **bpf_redirect**\ (), 3157 * **bpf_clone_redirect**\ () or other methods outside of BPF may 3158 * interfere with successful delivery to the socket. 3159 * 3160 * This operation is only valid from TC ingress path. 3161 * 3162 * The *flags* argument must be zero. 3163 * Return 3164 * 0 on success, or a negative error in case of failure: 3165 * 3166 * **-EINVAL** if specified *flags* are not supported. 3167 * 3168 * **-ENOENT** if the socket is unavailable for assignment. 3169 * 3170 * **-ENETUNREACH** if the socket is unreachable (wrong netns). 3171 * 3172 * **-EOPNOTSUPP** if the operation is not supported, for example 3173 * a call from outside of TC ingress. 3174 * 3175 * **-ESOCKTNOSUPPORT** if the socket type is not supported 3176 * (reuseport). 3177 * 3178 * long bpf_sk_assign(struct bpf_sk_lookup *ctx, struct bpf_sock *sk, u64 flags) 3179 * Description 3180 * Helper is overloaded depending on BPF program type. This 3181 * description applies to **BPF_PROG_TYPE_SK_LOOKUP** programs. 3182 * 3183 * Select the *sk* as a result of a socket lookup. 3184 * 3185 * For the operation to succeed passed socket must be compatible 3186 * with the packet description provided by the *ctx* object. 3187 * 3188 * L4 protocol (**IPPROTO_TCP** or **IPPROTO_UDP**) must 3189 * be an exact match. While IP family (**AF_INET** or 3190 * **AF_INET6**) must be compatible, that is IPv6 sockets 3191 * that are not v6-only can be selected for IPv4 packets. 3192 * 3193 * Only TCP listeners and UDP unconnected sockets can be 3194 * selected. *sk* can also be NULL to reset any previous 3195 * selection. 3196 * 3197 * *flags* argument can combination of following values: 3198 * 3199 * * **BPF_SK_LOOKUP_F_REPLACE** to override the previous 3200 * socket selection, potentially done by a BPF program 3201 * that ran before us. 3202 * 3203 * * **BPF_SK_LOOKUP_F_NO_REUSEPORT** to skip 3204 * load-balancing within reuseport group for the socket 3205 * being selected. 3206 * 3207 * On success *ctx->sk* will point to the selected socket. 3208 * 3209 * Return 3210 * 0 on success, or a negative errno in case of failure. 3211 * 3212 * * **-EAFNOSUPPORT** if socket family (*sk->family*) is 3213 * not compatible with packet family (*ctx->family*). 3214 * 3215 * * **-EEXIST** if socket has been already selected, 3216 * potentially by another program, and 3217 * **BPF_SK_LOOKUP_F_REPLACE** flag was not specified. 3218 * 3219 * * **-EINVAL** if unsupported flags were specified. 3220 * 3221 * * **-EPROTOTYPE** if socket L4 protocol 3222 * (*sk->protocol*) doesn't match packet protocol 3223 * (*ctx->protocol*). 3224 * 3225 * * **-ESOCKTNOSUPPORT** if socket is not in allowed 3226 * state (TCP listening or UDP unconnected). 3227 * 3228 * u64 bpf_ktime_get_boot_ns(void) 3229 * Description 3230 * Return the time elapsed since system boot, in nanoseconds. 3231 * Does include the time the system was suspended. 3232 * See: **clock_gettime**\ (**CLOCK_BOOTTIME**) 3233 * Return 3234 * Current *ktime*. 3235 * 3236 * long bpf_seq_printf(struct seq_file *m, const char *fmt, u32 fmt_size, const void *data, u32 data_len) 3237 * Description 3238 * **bpf_seq_printf**\ () uses seq_file **seq_printf**\ () to print 3239 * out the format string. 3240 * The *m* represents the seq_file. The *fmt* and *fmt_size* are for 3241 * the format string itself. The *data* and *data_len* are format string 3242 * arguments. The *data* are a **u64** array and corresponding format string 3243 * values are stored in the array. For strings and pointers where pointees 3244 * are accessed, only the pointer values are stored in the *data* array. 3245 * The *data_len* is the size of *data* in bytes. 3246 * 3247 * Formats **%s**, **%p{i,I}{4,6}** requires to read kernel memory. 3248 * Reading kernel memory may fail due to either invalid address or 3249 * valid address but requiring a major memory fault. If reading kernel memory 3250 * fails, the string for **%s** will be an empty string, and the ip 3251 * address for **%p{i,I}{4,6}** will be 0. Not returning error to 3252 * bpf program is consistent with what **bpf_trace_printk**\ () does for now. 3253 * Return 3254 * 0 on success, or a negative error in case of failure: 3255 * 3256 * **-EBUSY** if per-CPU memory copy buffer is busy, can try again 3257 * by returning 1 from bpf program. 3258 * 3259 * **-EINVAL** if arguments are invalid, or if *fmt* is invalid/unsupported. 3260 * 3261 * **-E2BIG** if *fmt* contains too many format specifiers. 3262 * 3263 * **-EOVERFLOW** if an overflow happened: The same object will be tried again. 3264 * 3265 * long bpf_seq_write(struct seq_file *m, const void *data, u32 len) 3266 * Description 3267 * **bpf_seq_write**\ () uses seq_file **seq_write**\ () to write the data. 3268 * The *m* represents the seq_file. The *data* and *len* represent the 3269 * data to write in bytes. 3270 * Return 3271 * 0 on success, or a negative error in case of failure: 3272 * 3273 * **-EOVERFLOW** if an overflow happened: The same object will be tried again. 3274 * 3275 * u64 bpf_sk_cgroup_id(void *sk) 3276 * Description 3277 * Return the cgroup v2 id of the socket *sk*. 3278 * 3279 * *sk* must be a non-**NULL** pointer to a socket, e.g. one 3280 * returned from **bpf_sk_lookup_xxx**\ (), 3281 * **bpf_sk_fullsock**\ (), etc. The format of returned id is 3282 * same as in **bpf_skb_cgroup_id**\ (). 3283 * 3284 * This helper is available only if the kernel was compiled with 3285 * the **CONFIG_SOCK_CGROUP_DATA** configuration option. 3286 * Return 3287 * The id is returned or 0 in case the id could not be retrieved. 3288 * 3289 * u64 bpf_sk_ancestor_cgroup_id(void *sk, int ancestor_level) 3290 * Description 3291 * Return id of cgroup v2 that is ancestor of cgroup associated 3292 * with the *sk* at the *ancestor_level*. The root cgroup is at 3293 * *ancestor_level* zero and each step down the hierarchy 3294 * increments the level. If *ancestor_level* == level of cgroup 3295 * associated with *sk*, then return value will be same as that 3296 * of **bpf_sk_cgroup_id**\ (). 3297 * 3298 * The helper is useful to implement policies based on cgroups 3299 * that are upper in hierarchy than immediate cgroup associated 3300 * with *sk*. 3301 * 3302 * The format of returned id and helper limitations are same as in 3303 * **bpf_sk_cgroup_id**\ (). 3304 * Return 3305 * The id is returned or 0 in case the id could not be retrieved. 3306 * 3307 * long bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags) 3308 * Description 3309 * Copy *size* bytes from *data* into a ring buffer *ringbuf*. 3310 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification 3311 * of new data availability is sent. 3312 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification 3313 * of new data availability is sent unconditionally. 3314 * Return 3315 * 0 on success, or a negative error in case of failure. 3316 * 3317 * void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags) 3318 * Description 3319 * Reserve *size* bytes of payload in a ring buffer *ringbuf*. 3320 * Return 3321 * Valid pointer with *size* bytes of memory available; NULL, 3322 * otherwise. 3323 * 3324 * void bpf_ringbuf_submit(void *data, u64 flags) 3325 * Description 3326 * Submit reserved ring buffer sample, pointed to by *data*. 3327 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification 3328 * of new data availability is sent. 3329 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification 3330 * of new data availability is sent unconditionally. 3331 * Return 3332 * Nothing. Always succeeds. 3333 * 3334 * void bpf_ringbuf_discard(void *data, u64 flags) 3335 * Description 3336 * Discard reserved ring buffer sample, pointed to by *data*. 3337 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification 3338 * of new data availability is sent. 3339 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification 3340 * of new data availability is sent unconditionally. 3341 * Return 3342 * Nothing. Always succeeds. 3343 * 3344 * u64 bpf_ringbuf_query(void *ringbuf, u64 flags) 3345 * Description 3346 * Query various characteristics of provided ring buffer. What 3347 * exactly is queries is determined by *flags*: 3348 * 3349 * * **BPF_RB_AVAIL_DATA**: Amount of data not yet consumed. 3350 * * **BPF_RB_RING_SIZE**: The size of ring buffer. 3351 * * **BPF_RB_CONS_POS**: Consumer position (can wrap around). 3352 * * **BPF_RB_PROD_POS**: Producer(s) position (can wrap around). 3353 * 3354 * Data returned is just a momentary snapshot of actual values 3355 * and could be inaccurate, so this facility should be used to 3356 * power heuristics and for reporting, not to make 100% correct 3357 * calculation. 3358 * Return 3359 * Requested value, or 0, if *flags* are not recognized. 3360 * 3361 * long bpf_csum_level(struct sk_buff *skb, u64 level) 3362 * Description 3363 * Change the skbs checksum level by one layer up or down, or 3364 * reset it entirely to none in order to have the stack perform 3365 * checksum validation. The level is applicable to the following 3366 * protocols: TCP, UDP, GRE, SCTP, FCOE. For example, a decap of 3367 * | ETH | IP | UDP | GUE | IP | TCP | into | ETH | IP | TCP | 3368 * through **bpf_skb_adjust_room**\ () helper with passing in 3369 * **BPF_F_ADJ_ROOM_NO_CSUM_RESET** flag would require one call 3370 * to **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_DEC** since 3371 * the UDP header is removed. Similarly, an encap of the latter 3372 * into the former could be accompanied by a helper call to 3373 * **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_INC** if the 3374 * skb is still intended to be processed in higher layers of the 3375 * stack instead of just egressing at tc. 3376 * 3377 * There are three supported level settings at this time: 3378 * 3379 * * **BPF_CSUM_LEVEL_INC**: Increases skb->csum_level for skbs 3380 * with CHECKSUM_UNNECESSARY. 3381 * * **BPF_CSUM_LEVEL_DEC**: Decreases skb->csum_level for skbs 3382 * with CHECKSUM_UNNECESSARY. 3383 * * **BPF_CSUM_LEVEL_RESET**: Resets skb->csum_level to 0 and 3384 * sets CHECKSUM_NONE to force checksum validation by the stack. 3385 * * **BPF_CSUM_LEVEL_QUERY**: No-op, returns the current 3386 * skb->csum_level. 3387 * Return 3388 * 0 on success, or a negative error in case of failure. In the 3389 * case of **BPF_CSUM_LEVEL_QUERY**, the current skb->csum_level 3390 * is returned or the error code -EACCES in case the skb is not 3391 * subject to CHECKSUM_UNNECESSARY. 3392 * 3393 * struct tcp6_sock *bpf_skc_to_tcp6_sock(void *sk) 3394 * Description 3395 * Dynamically cast a *sk* pointer to a *tcp6_sock* pointer. 3396 * Return 3397 * *sk* if casting is valid, or **NULL** otherwise. 3398 * 3399 * struct tcp_sock *bpf_skc_to_tcp_sock(void *sk) 3400 * Description 3401 * Dynamically cast a *sk* pointer to a *tcp_sock* pointer. 3402 * Return 3403 * *sk* if casting is valid, or **NULL** otherwise. 3404 * 3405 * struct tcp_timewait_sock *bpf_skc_to_tcp_timewait_sock(void *sk) 3406 * Description 3407 * Dynamically cast a *sk* pointer to a *tcp_timewait_sock* pointer. 3408 * Return 3409 * *sk* if casting is valid, or **NULL** otherwise. 3410 * 3411 * struct tcp_request_sock *bpf_skc_to_tcp_request_sock(void *sk) 3412 * Description 3413 * Dynamically cast a *sk* pointer to a *tcp_request_sock* pointer. 3414 * Return 3415 * *sk* if casting is valid, or **NULL** otherwise. 3416 * 3417 * struct udp6_sock *bpf_skc_to_udp6_sock(void *sk) 3418 * Description 3419 * Dynamically cast a *sk* pointer to a *udp6_sock* pointer. 3420 * Return 3421 * *sk* if casting is valid, or **NULL** otherwise. 3422 * 3423 * long bpf_get_task_stack(struct task_struct *task, void *buf, u32 size, u64 flags) 3424 * Description 3425 * Return a user or a kernel stack in bpf program provided buffer. 3426 * To achieve this, the helper needs *task*, which is a valid 3427 * pointer to **struct task_struct**. To store the stacktrace, the 3428 * bpf program provides *buf* with a nonnegative *size*. 3429 * 3430 * The last argument, *flags*, holds the number of stack frames to 3431 * skip (from 0 to 255), masked with 3432 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 3433 * the following flags: 3434 * 3435 * **BPF_F_USER_STACK** 3436 * Collect a user space stack instead of a kernel stack. 3437 * **BPF_F_USER_BUILD_ID** 3438 * Collect buildid+offset instead of ips for user stack, 3439 * only valid if **BPF_F_USER_STACK** is also specified. 3440 * 3441 * **bpf_get_task_stack**\ () can collect up to 3442 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject 3443 * to sufficient large buffer size. Note that 3444 * this limit can be controlled with the **sysctl** program, and 3445 * that it should be manually increased in order to profile long 3446 * user stacks (such as stacks for Java programs). To do so, use: 3447 * 3448 * :: 3449 * 3450 * # sysctl kernel.perf_event_max_stack=<new value> 3451 * Return 3452 * A non-negative value equal to or less than *size* on success, 3453 * or a negative error in case of failure. 3454 * 3455 * long bpf_load_hdr_opt(struct bpf_sock_ops *skops, void *searchby_res, u32 len, u64 flags) 3456 * Description 3457 * Load header option. Support reading a particular TCP header 3458 * option for bpf program (**BPF_PROG_TYPE_SOCK_OPS**). 3459 * 3460 * If *flags* is 0, it will search the option from the 3461 * *skops*\ **->skb_data**. The comment in **struct bpf_sock_ops** 3462 * has details on what skb_data contains under different 3463 * *skops*\ **->op**. 3464 * 3465 * The first byte of the *searchby_res* specifies the 3466 * kind that it wants to search. 3467 * 3468 * If the searching kind is an experimental kind 3469 * (i.e. 253 or 254 according to RFC6994). It also 3470 * needs to specify the "magic" which is either 3471 * 2 bytes or 4 bytes. It then also needs to 3472 * specify the size of the magic by using 3473 * the 2nd byte which is "kind-length" of a TCP 3474 * header option and the "kind-length" also 3475 * includes the first 2 bytes "kind" and "kind-length" 3476 * itself as a normal TCP header option also does. 3477 * 3478 * For example, to search experimental kind 254 with 3479 * 2 byte magic 0xeB9F, the searchby_res should be 3480 * [ 254, 4, 0xeB, 0x9F, 0, 0, .... 0 ]. 3481 * 3482 * To search for the standard window scale option (3), 3483 * the *searchby_res* should be [ 3, 0, 0, .... 0 ]. 3484 * Note, kind-length must be 0 for regular option. 3485 * 3486 * Searching for No-Op (0) and End-of-Option-List (1) are 3487 * not supported. 3488 * 3489 * *len* must be at least 2 bytes which is the minimal size 3490 * of a header option. 3491 * 3492 * Supported flags: 3493 * 3494 * * **BPF_LOAD_HDR_OPT_TCP_SYN** to search from the 3495 * saved_syn packet or the just-received syn packet. 3496 * 3497 * Return 3498 * > 0 when found, the header option is copied to *searchby_res*. 3499 * The return value is the total length copied. On failure, a 3500 * negative error code is returned: 3501 * 3502 * **-EINVAL** if a parameter is invalid. 3503 * 3504 * **-ENOMSG** if the option is not found. 3505 * 3506 * **-ENOENT** if no syn packet is available when 3507 * **BPF_LOAD_HDR_OPT_TCP_SYN** is used. 3508 * 3509 * **-ENOSPC** if there is not enough space. Only *len* number of 3510 * bytes are copied. 3511 * 3512 * **-EFAULT** on failure to parse the header options in the 3513 * packet. 3514 * 3515 * **-EPERM** if the helper cannot be used under the current 3516 * *skops*\ **->op**. 3517 * 3518 * long bpf_store_hdr_opt(struct bpf_sock_ops *skops, const void *from, u32 len, u64 flags) 3519 * Description 3520 * Store header option. The data will be copied 3521 * from buffer *from* with length *len* to the TCP header. 3522 * 3523 * The buffer *from* should have the whole option that 3524 * includes the kind, kind-length, and the actual 3525 * option data. The *len* must be at least kind-length 3526 * long. The kind-length does not have to be 4 byte 3527 * aligned. The kernel will take care of the padding 3528 * and setting the 4 bytes aligned value to th->doff. 3529 * 3530 * This helper will check for duplicated option 3531 * by searching the same option in the outgoing skb. 3532 * 3533 * This helper can only be called during 3534 * **BPF_SOCK_OPS_WRITE_HDR_OPT_CB**. 3535 * 3536 * Return 3537 * 0 on success, or negative error in case of failure: 3538 * 3539 * **-EINVAL** If param is invalid. 3540 * 3541 * **-ENOSPC** if there is not enough space in the header. 3542 * Nothing has been written 3543 * 3544 * **-EEXIST** if the option already exists. 3545 * 3546 * **-EFAULT** on failrue to parse the existing header options. 3547 * 3548 * **-EPERM** if the helper cannot be used under the current 3549 * *skops*\ **->op**. 3550 * 3551 * long bpf_reserve_hdr_opt(struct bpf_sock_ops *skops, u32 len, u64 flags) 3552 * Description 3553 * Reserve *len* bytes for the bpf header option. The 3554 * space will be used by **bpf_store_hdr_opt**\ () later in 3555 * **BPF_SOCK_OPS_WRITE_HDR_OPT_CB**. 3556 * 3557 * If **bpf_reserve_hdr_opt**\ () is called multiple times, 3558 * the total number of bytes will be reserved. 3559 * 3560 * This helper can only be called during 3561 * **BPF_SOCK_OPS_HDR_OPT_LEN_CB**. 3562 * 3563 * Return 3564 * 0 on success, or negative error in case of failure: 3565 * 3566 * **-EINVAL** if a parameter is invalid. 3567 * 3568 * **-ENOSPC** if there is not enough space in the header. 3569 * 3570 * **-EPERM** if the helper cannot be used under the current 3571 * *skops*\ **->op**. 3572 * 3573 * void *bpf_inode_storage_get(struct bpf_map *map, void *inode, void *value, u64 flags) 3574 * Description 3575 * Get a bpf_local_storage from an *inode*. 3576 * 3577 * Logically, it could be thought of as getting the value from 3578 * a *map* with *inode* as the **key**. From this 3579 * perspective, the usage is not much different from 3580 * **bpf_map_lookup_elem**\ (*map*, **&**\ *inode*) except this 3581 * helper enforces the key must be an inode and the map must also 3582 * be a **BPF_MAP_TYPE_INODE_STORAGE**. 3583 * 3584 * Underneath, the value is stored locally at *inode* instead of 3585 * the *map*. The *map* is used as the bpf-local-storage 3586 * "type". The bpf-local-storage "type" (i.e. the *map*) is 3587 * searched against all bpf_local_storage residing at *inode*. 3588 * 3589 * An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be 3590 * used such that a new bpf_local_storage will be 3591 * created if one does not exist. *value* can be used 3592 * together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify 3593 * the initial value of a bpf_local_storage. If *value* is 3594 * **NULL**, the new bpf_local_storage will be zero initialized. 3595 * Return 3596 * A bpf_local_storage pointer is returned on success. 3597 * 3598 * **NULL** if not found or there was an error in adding 3599 * a new bpf_local_storage. 3600 * 3601 * int bpf_inode_storage_delete(struct bpf_map *map, void *inode) 3602 * Description 3603 * Delete a bpf_local_storage from an *inode*. 3604 * Return 3605 * 0 on success. 3606 * 3607 * **-ENOENT** if the bpf_local_storage cannot be found. 3608 * 3609 * long bpf_d_path(struct path *path, char *buf, u32 sz) 3610 * Description 3611 * Return full path for given **struct path** object, which 3612 * needs to be the kernel BTF *path* object. The path is 3613 * returned in the provided buffer *buf* of size *sz* and 3614 * is zero terminated. 3615 * 3616 * Return 3617 * On success, the strictly positive length of the string, 3618 * including the trailing NUL character. On error, a negative 3619 * value. 3620 * 3621 * long bpf_copy_from_user(void *dst, u32 size, const void *user_ptr) 3622 * Description 3623 * Read *size* bytes from user space address *user_ptr* and store 3624 * the data in *dst*. This is a wrapper of **copy_from_user**\ (). 3625 * Return 3626 * 0 on success, or a negative error in case of failure. 3627 * 3628 * long bpf_snprintf_btf(char *str, u32 str_size, struct btf_ptr *ptr, u32 btf_ptr_size, u64 flags) 3629 * Description 3630 * Use BTF to store a string representation of *ptr*->ptr in *str*, 3631 * using *ptr*->type_id. This value should specify the type 3632 * that *ptr*->ptr points to. LLVM __builtin_btf_type_id(type, 1) 3633 * can be used to look up vmlinux BTF type ids. Traversing the 3634 * data structure using BTF, the type information and values are 3635 * stored in the first *str_size* - 1 bytes of *str*. Safe copy of 3636 * the pointer data is carried out to avoid kernel crashes during 3637 * operation. Smaller types can use string space on the stack; 3638 * larger programs can use map data to store the string 3639 * representation. 3640 * 3641 * The string can be subsequently shared with userspace via 3642 * bpf_perf_event_output() or ring buffer interfaces. 3643 * bpf_trace_printk() is to be avoided as it places too small 3644 * a limit on string size to be useful. 3645 * 3646 * *flags* is a combination of 3647 * 3648 * **BTF_F_COMPACT** 3649 * no formatting around type information 3650 * **BTF_F_NONAME** 3651 * no struct/union member names/types 3652 * **BTF_F_PTR_RAW** 3653 * show raw (unobfuscated) pointer values; 3654 * equivalent to printk specifier %px. 3655 * **BTF_F_ZERO** 3656 * show zero-valued struct/union members; they 3657 * are not displayed by default 3658 * 3659 * Return 3660 * The number of bytes that were written (or would have been 3661 * written if output had to be truncated due to string size), 3662 * or a negative error in cases of failure. 3663 * 3664 * long bpf_seq_printf_btf(struct seq_file *m, struct btf_ptr *ptr, u32 ptr_size, u64 flags) 3665 * Description 3666 * Use BTF to write to seq_write a string representation of 3667 * *ptr*->ptr, using *ptr*->type_id as per bpf_snprintf_btf(). 3668 * *flags* are identical to those used for bpf_snprintf_btf. 3669 * Return 3670 * 0 on success or a negative error in case of failure. 3671 * 3672 * u64 bpf_skb_cgroup_classid(struct sk_buff *skb) 3673 * Description 3674 * See **bpf_get_cgroup_classid**\ () for the main description. 3675 * This helper differs from **bpf_get_cgroup_classid**\ () in that 3676 * the cgroup v1 net_cls class is retrieved only from the *skb*'s 3677 * associated socket instead of the current process. 3678 * Return 3679 * The id is returned or 0 in case the id could not be retrieved. 3680 * 3681 * long bpf_redirect_neigh(u32 ifindex, struct bpf_redir_neigh *params, int plen, u64 flags) 3682 * Description 3683 * Redirect the packet to another net device of index *ifindex* 3684 * and fill in L2 addresses from neighboring subsystem. This helper 3685 * is somewhat similar to **bpf_redirect**\ (), except that it 3686 * populates L2 addresses as well, meaning, internally, the helper 3687 * relies on the neighbor lookup for the L2 address of the nexthop. 3688 * 3689 * The helper will perform a FIB lookup based on the skb's 3690 * networking header to get the address of the next hop, unless 3691 * this is supplied by the caller in the *params* argument. The 3692 * *plen* argument indicates the len of *params* and should be set 3693 * to 0 if *params* is NULL. 3694 * 3695 * The *flags* argument is reserved and must be 0. The helper is 3696 * currently only supported for tc BPF program types, and enabled 3697 * for IPv4 and IPv6 protocols. 3698 * Return 3699 * The helper returns **TC_ACT_REDIRECT** on success or 3700 * **TC_ACT_SHOT** on error. 3701 * 3702 * void *bpf_per_cpu_ptr(const void *percpu_ptr, u32 cpu) 3703 * Description 3704 * Take a pointer to a percpu ksym, *percpu_ptr*, and return a 3705 * pointer to the percpu kernel variable on *cpu*. A ksym is an 3706 * extern variable decorated with '__ksym'. For ksym, there is a 3707 * global var (either static or global) defined of the same name 3708 * in the kernel. The ksym is percpu if the global var is percpu. 3709 * The returned pointer points to the global percpu var on *cpu*. 3710 * 3711 * bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the 3712 * kernel, except that bpf_per_cpu_ptr() may return NULL. This 3713 * happens if *cpu* is larger than nr_cpu_ids. The caller of 3714 * bpf_per_cpu_ptr() must check the returned value. 3715 * Return 3716 * A pointer pointing to the kernel percpu variable on *cpu*, or 3717 * NULL, if *cpu* is invalid. 3718 * 3719 * void *bpf_this_cpu_ptr(const void *percpu_ptr) 3720 * Description 3721 * Take a pointer to a percpu ksym, *percpu_ptr*, and return a 3722 * pointer to the percpu kernel variable on this cpu. See the 3723 * description of 'ksym' in **bpf_per_cpu_ptr**\ (). 3724 * 3725 * bpf_this_cpu_ptr() has the same semantic as this_cpu_ptr() in 3726 * the kernel. Different from **bpf_per_cpu_ptr**\ (), it would 3727 * never return NULL. 3728 * Return 3729 * A pointer pointing to the kernel percpu variable on this cpu. 3730 * 3731 * long bpf_redirect_peer(u32 ifindex, u64 flags) 3732 * Description 3733 * Redirect the packet to another net device of index *ifindex*. 3734 * This helper is somewhat similar to **bpf_redirect**\ (), except 3735 * that the redirection happens to the *ifindex*' peer device and 3736 * the netns switch takes place from ingress to ingress without 3737 * going through the CPU's backlog queue. 3738 * 3739 * The *flags* argument is reserved and must be 0. The helper is 3740 * currently only supported for tc BPF program types at the ingress 3741 * hook and for veth device types. The peer device must reside in a 3742 * different network namespace. 3743 * Return 3744 * The helper returns **TC_ACT_REDIRECT** on success or 3745 * **TC_ACT_SHOT** on error. 3746 * 3747 * void *bpf_task_storage_get(struct bpf_map *map, struct task_struct *task, void *value, u64 flags) 3748 * Description 3749 * Get a bpf_local_storage from the *task*. 3750 * 3751 * Logically, it could be thought of as getting the value from 3752 * a *map* with *task* as the **key**. From this 3753 * perspective, the usage is not much different from 3754 * **bpf_map_lookup_elem**\ (*map*, **&**\ *task*) except this 3755 * helper enforces the key must be an task_struct and the map must also 3756 * be a **BPF_MAP_TYPE_TASK_STORAGE**. 3757 * 3758 * Underneath, the value is stored locally at *task* instead of 3759 * the *map*. The *map* is used as the bpf-local-storage 3760 * "type". The bpf-local-storage "type" (i.e. the *map*) is 3761 * searched against all bpf_local_storage residing at *task*. 3762 * 3763 * An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be 3764 * used such that a new bpf_local_storage will be 3765 * created if one does not exist. *value* can be used 3766 * together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify 3767 * the initial value of a bpf_local_storage. If *value* is 3768 * **NULL**, the new bpf_local_storage will be zero initialized. 3769 * Return 3770 * A bpf_local_storage pointer is returned on success. 3771 * 3772 * **NULL** if not found or there was an error in adding 3773 * a new bpf_local_storage. 3774 * 3775 * long bpf_task_storage_delete(struct bpf_map *map, struct task_struct *task) 3776 * Description 3777 * Delete a bpf_local_storage from a *task*. 3778 * Return 3779 * 0 on success. 3780 * 3781 * **-ENOENT** if the bpf_local_storage cannot be found. 3782 * 3783 * struct task_struct *bpf_get_current_task_btf(void) 3784 * Description 3785 * Return a BTF pointer to the "current" task. 3786 * This pointer can also be used in helpers that accept an 3787 * *ARG_PTR_TO_BTF_ID* of type *task_struct*. 3788 * Return 3789 * Pointer to the current task. 3790 */ 3791 #define __BPF_FUNC_MAPPER(FN) \ 3792 FN(unspec), \ 3793 FN(map_lookup_elem), \ 3794 FN(map_update_elem), \ 3795 FN(map_delete_elem), \ 3796 FN(probe_read), \ 3797 FN(ktime_get_ns), \ 3798 FN(trace_printk), \ 3799 FN(get_prandom_u32), \ 3800 FN(get_smp_processor_id), \ 3801 FN(skb_store_bytes), \ 3802 FN(l3_csum_replace), \ 3803 FN(l4_csum_replace), \ 3804 FN(tail_call), \ 3805 FN(clone_redirect), \ 3806 FN(get_current_pid_tgid), \ 3807 FN(get_current_uid_gid), \ 3808 FN(get_current_comm), \ 3809 FN(get_cgroup_classid), \ 3810 FN(skb_vlan_push), \ 3811 FN(skb_vlan_pop), \ 3812 FN(skb_get_tunnel_key), \ 3813 FN(skb_set_tunnel_key), \ 3814 FN(perf_event_read), \ 3815 FN(redirect), \ 3816 FN(get_route_realm), \ 3817 FN(perf_event_output), \ 3818 FN(skb_load_bytes), \ 3819 FN(get_stackid), \ 3820 FN(csum_diff), \ 3821 FN(skb_get_tunnel_opt), \ 3822 FN(skb_set_tunnel_opt), \ 3823 FN(skb_change_proto), \ 3824 FN(skb_change_type), \ 3825 FN(skb_under_cgroup), \ 3826 FN(get_hash_recalc), \ 3827 FN(get_current_task), \ 3828 FN(probe_write_user), \ 3829 FN(current_task_under_cgroup), \ 3830 FN(skb_change_tail), \ 3831 FN(skb_pull_data), \ 3832 FN(csum_update), \ 3833 FN(set_hash_invalid), \ 3834 FN(get_numa_node_id), \ 3835 FN(skb_change_head), \ 3836 FN(xdp_adjust_head), \ 3837 FN(probe_read_str), \ 3838 FN(get_socket_cookie), \ 3839 FN(get_socket_uid), \ 3840 FN(set_hash), \ 3841 FN(setsockopt), \ 3842 FN(skb_adjust_room), \ 3843 FN(redirect_map), \ 3844 FN(sk_redirect_map), \ 3845 FN(sock_map_update), \ 3846 FN(xdp_adjust_meta), \ 3847 FN(perf_event_read_value), \ 3848 FN(perf_prog_read_value), \ 3849 FN(getsockopt), \ 3850 FN(override_return), \ 3851 FN(sock_ops_cb_flags_set), \ 3852 FN(msg_redirect_map), \ 3853 FN(msg_apply_bytes), \ 3854 FN(msg_cork_bytes), \ 3855 FN(msg_pull_data), \ 3856 FN(bind), \ 3857 FN(xdp_adjust_tail), \ 3858 FN(skb_get_xfrm_state), \ 3859 FN(get_stack), \ 3860 FN(skb_load_bytes_relative), \ 3861 FN(fib_lookup), \ 3862 FN(sock_hash_update), \ 3863 FN(msg_redirect_hash), \ 3864 FN(sk_redirect_hash), \ 3865 FN(lwt_push_encap), \ 3866 FN(lwt_seg6_store_bytes), \ 3867 FN(lwt_seg6_adjust_srh), \ 3868 FN(lwt_seg6_action), \ 3869 FN(rc_repeat), \ 3870 FN(rc_keydown), \ 3871 FN(skb_cgroup_id), \ 3872 FN(get_current_cgroup_id), \ 3873 FN(get_local_storage), \ 3874 FN(sk_select_reuseport), \ 3875 FN(skb_ancestor_cgroup_id), \ 3876 FN(sk_lookup_tcp), \ 3877 FN(sk_lookup_udp), \ 3878 FN(sk_release), \ 3879 FN(map_push_elem), \ 3880 FN(map_pop_elem), \ 3881 FN(map_peek_elem), \ 3882 FN(msg_push_data), \ 3883 FN(msg_pop_data), \ 3884 FN(rc_pointer_rel), \ 3885 FN(spin_lock), \ 3886 FN(spin_unlock), \ 3887 FN(sk_fullsock), \ 3888 FN(tcp_sock), \ 3889 FN(skb_ecn_set_ce), \ 3890 FN(get_listener_sock), \ 3891 FN(skc_lookup_tcp), \ 3892 FN(tcp_check_syncookie), \ 3893 FN(sysctl_get_name), \ 3894 FN(sysctl_get_current_value), \ 3895 FN(sysctl_get_new_value), \ 3896 FN(sysctl_set_new_value), \ 3897 FN(strtol), \ 3898 FN(strtoul), \ 3899 FN(sk_storage_get), \ 3900 FN(sk_storage_delete), \ 3901 FN(send_signal), \ 3902 FN(tcp_gen_syncookie), \ 3903 FN(skb_output), \ 3904 FN(probe_read_user), \ 3905 FN(probe_read_kernel), \ 3906 FN(probe_read_user_str), \ 3907 FN(probe_read_kernel_str), \ 3908 FN(tcp_send_ack), \ 3909 FN(send_signal_thread), \ 3910 FN(jiffies64), \ 3911 FN(read_branch_records), \ 3912 FN(get_ns_current_pid_tgid), \ 3913 FN(xdp_output), \ 3914 FN(get_netns_cookie), \ 3915 FN(get_current_ancestor_cgroup_id), \ 3916 FN(sk_assign), \ 3917 FN(ktime_get_boot_ns), \ 3918 FN(seq_printf), \ 3919 FN(seq_write), \ 3920 FN(sk_cgroup_id), \ 3921 FN(sk_ancestor_cgroup_id), \ 3922 FN(ringbuf_output), \ 3923 FN(ringbuf_reserve), \ 3924 FN(ringbuf_submit), \ 3925 FN(ringbuf_discard), \ 3926 FN(ringbuf_query), \ 3927 FN(csum_level), \ 3928 FN(skc_to_tcp6_sock), \ 3929 FN(skc_to_tcp_sock), \ 3930 FN(skc_to_tcp_timewait_sock), \ 3931 FN(skc_to_tcp_request_sock), \ 3932 FN(skc_to_udp6_sock), \ 3933 FN(get_task_stack), \ 3934 FN(load_hdr_opt), \ 3935 FN(store_hdr_opt), \ 3936 FN(reserve_hdr_opt), \ 3937 FN(inode_storage_get), \ 3938 FN(inode_storage_delete), \ 3939 FN(d_path), \ 3940 FN(copy_from_user), \ 3941 FN(snprintf_btf), \ 3942 FN(seq_printf_btf), \ 3943 FN(skb_cgroup_classid), \ 3944 FN(redirect_neigh), \ 3945 FN(bpf_per_cpu_ptr), \ 3946 FN(bpf_this_cpu_ptr), \ 3947 FN(redirect_peer), \ 3948 FN(task_storage_get), \ 3949 FN(task_storage_delete), \ 3950 FN(get_current_task_btf), \ 3951 /* */ 3952 3953 /* integer value in 'imm' field of BPF_CALL instruction selects which helper 3954 * function eBPF program intends to call 3955 */ 3956 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x 3957 enum bpf_func_id { 3958 __BPF_FUNC_MAPPER(__BPF_ENUM_FN) 3959 __BPF_FUNC_MAX_ID, 3960 }; 3961 #undef __BPF_ENUM_FN 3962 3963 /* All flags used by eBPF helper functions, placed here. */ 3964 3965 /* BPF_FUNC_skb_store_bytes flags. */ 3966 enum { 3967 BPF_F_RECOMPUTE_CSUM = (1ULL << 0), 3968 BPF_F_INVALIDATE_HASH = (1ULL << 1), 3969 }; 3970 3971 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags. 3972 * First 4 bits are for passing the header field size. 3973 */ 3974 enum { 3975 BPF_F_HDR_FIELD_MASK = 0xfULL, 3976 }; 3977 3978 /* BPF_FUNC_l4_csum_replace flags. */ 3979 enum { 3980 BPF_F_PSEUDO_HDR = (1ULL << 4), 3981 BPF_F_MARK_MANGLED_0 = (1ULL << 5), 3982 BPF_F_MARK_ENFORCE = (1ULL << 6), 3983 }; 3984 3985 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */ 3986 enum { 3987 BPF_F_INGRESS = (1ULL << 0), 3988 }; 3989 3990 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */ 3991 enum { 3992 BPF_F_TUNINFO_IPV6 = (1ULL << 0), 3993 }; 3994 3995 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */ 3996 enum { 3997 BPF_F_SKIP_FIELD_MASK = 0xffULL, 3998 BPF_F_USER_STACK = (1ULL << 8), 3999 /* flags used by BPF_FUNC_get_stackid only. */ 4000 BPF_F_FAST_STACK_CMP = (1ULL << 9), 4001 BPF_F_REUSE_STACKID = (1ULL << 10), 4002 /* flags used by BPF_FUNC_get_stack only. */ 4003 BPF_F_USER_BUILD_ID = (1ULL << 11), 4004 }; 4005 4006 /* BPF_FUNC_skb_set_tunnel_key flags. */ 4007 enum { 4008 BPF_F_ZERO_CSUM_TX = (1ULL << 1), 4009 BPF_F_DONT_FRAGMENT = (1ULL << 2), 4010 BPF_F_SEQ_NUMBER = (1ULL << 3), 4011 }; 4012 4013 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and 4014 * BPF_FUNC_perf_event_read_value flags. 4015 */ 4016 enum { 4017 BPF_F_INDEX_MASK = 0xffffffffULL, 4018 BPF_F_CURRENT_CPU = BPF_F_INDEX_MASK, 4019 /* BPF_FUNC_perf_event_output for sk_buff input context. */ 4020 BPF_F_CTXLEN_MASK = (0xfffffULL << 32), 4021 }; 4022 4023 /* Current network namespace */ 4024 enum { 4025 BPF_F_CURRENT_NETNS = (-1L), 4026 }; 4027 4028 /* BPF_FUNC_csum_level level values. */ 4029 enum { 4030 BPF_CSUM_LEVEL_QUERY, 4031 BPF_CSUM_LEVEL_INC, 4032 BPF_CSUM_LEVEL_DEC, 4033 BPF_CSUM_LEVEL_RESET, 4034 }; 4035 4036 /* BPF_FUNC_skb_adjust_room flags. */ 4037 enum { 4038 BPF_F_ADJ_ROOM_FIXED_GSO = (1ULL << 0), 4039 BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 = (1ULL << 1), 4040 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 = (1ULL << 2), 4041 BPF_F_ADJ_ROOM_ENCAP_L4_GRE = (1ULL << 3), 4042 BPF_F_ADJ_ROOM_ENCAP_L4_UDP = (1ULL << 4), 4043 BPF_F_ADJ_ROOM_NO_CSUM_RESET = (1ULL << 5), 4044 }; 4045 4046 enum { 4047 BPF_ADJ_ROOM_ENCAP_L2_MASK = 0xff, 4048 BPF_ADJ_ROOM_ENCAP_L2_SHIFT = 56, 4049 }; 4050 4051 #define BPF_F_ADJ_ROOM_ENCAP_L2(len) (((__u64)len & \ 4052 BPF_ADJ_ROOM_ENCAP_L2_MASK) \ 4053 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT) 4054 4055 /* BPF_FUNC_sysctl_get_name flags. */ 4056 enum { 4057 BPF_F_SYSCTL_BASE_NAME = (1ULL << 0), 4058 }; 4059 4060 /* BPF_FUNC_<kernel_obj>_storage_get flags */ 4061 enum { 4062 BPF_LOCAL_STORAGE_GET_F_CREATE = (1ULL << 0), 4063 /* BPF_SK_STORAGE_GET_F_CREATE is only kept for backward compatibility 4064 * and BPF_LOCAL_STORAGE_GET_F_CREATE must be used instead. 4065 */ 4066 BPF_SK_STORAGE_GET_F_CREATE = BPF_LOCAL_STORAGE_GET_F_CREATE, 4067 }; 4068 4069 /* BPF_FUNC_read_branch_records flags. */ 4070 enum { 4071 BPF_F_GET_BRANCH_RECORDS_SIZE = (1ULL << 0), 4072 }; 4073 4074 /* BPF_FUNC_bpf_ringbuf_commit, BPF_FUNC_bpf_ringbuf_discard, and 4075 * BPF_FUNC_bpf_ringbuf_output flags. 4076 */ 4077 enum { 4078 BPF_RB_NO_WAKEUP = (1ULL << 0), 4079 BPF_RB_FORCE_WAKEUP = (1ULL << 1), 4080 }; 4081 4082 /* BPF_FUNC_bpf_ringbuf_query flags */ 4083 enum { 4084 BPF_RB_AVAIL_DATA = 0, 4085 BPF_RB_RING_SIZE = 1, 4086 BPF_RB_CONS_POS = 2, 4087 BPF_RB_PROD_POS = 3, 4088 }; 4089 4090 /* BPF ring buffer constants */ 4091 enum { 4092 BPF_RINGBUF_BUSY_BIT = (1U << 31), 4093 BPF_RINGBUF_DISCARD_BIT = (1U << 30), 4094 BPF_RINGBUF_HDR_SZ = 8, 4095 }; 4096 4097 /* BPF_FUNC_sk_assign flags in bpf_sk_lookup context. */ 4098 enum { 4099 BPF_SK_LOOKUP_F_REPLACE = (1ULL << 0), 4100 BPF_SK_LOOKUP_F_NO_REUSEPORT = (1ULL << 1), 4101 }; 4102 4103 /* Mode for BPF_FUNC_skb_adjust_room helper. */ 4104 enum bpf_adj_room_mode { 4105 BPF_ADJ_ROOM_NET, 4106 BPF_ADJ_ROOM_MAC, 4107 }; 4108 4109 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */ 4110 enum bpf_hdr_start_off { 4111 BPF_HDR_START_MAC, 4112 BPF_HDR_START_NET, 4113 }; 4114 4115 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */ 4116 enum bpf_lwt_encap_mode { 4117 BPF_LWT_ENCAP_SEG6, 4118 BPF_LWT_ENCAP_SEG6_INLINE, 4119 BPF_LWT_ENCAP_IP, 4120 }; 4121 4122 #define __bpf_md_ptr(type, name) \ 4123 union { \ 4124 type name; \ 4125 __u64 :64; \ 4126 } __attribute__((aligned(8))) 4127 4128 /* user accessible mirror of in-kernel sk_buff. 4129 * new fields can only be added to the end of this structure 4130 */ 4131 struct __sk_buff { 4132 __u32 len; 4133 __u32 pkt_type; 4134 __u32 mark; 4135 __u32 queue_mapping; 4136 __u32 protocol; 4137 __u32 vlan_present; 4138 __u32 vlan_tci; 4139 __u32 vlan_proto; 4140 __u32 priority; 4141 __u32 ingress_ifindex; 4142 __u32 ifindex; 4143 __u32 tc_index; 4144 __u32 cb[5]; 4145 __u32 hash; 4146 __u32 tc_classid; 4147 __u32 data; 4148 __u32 data_end; 4149 __u32 napi_id; 4150 4151 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */ 4152 __u32 family; 4153 __u32 remote_ip4; /* Stored in network byte order */ 4154 __u32 local_ip4; /* Stored in network byte order */ 4155 __u32 remote_ip6[4]; /* Stored in network byte order */ 4156 __u32 local_ip6[4]; /* Stored in network byte order */ 4157 __u32 remote_port; /* Stored in network byte order */ 4158 __u32 local_port; /* stored in host byte order */ 4159 /* ... here. */ 4160 4161 __u32 data_meta; 4162 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys); 4163 __u64 tstamp; 4164 __u32 wire_len; 4165 __u32 gso_segs; 4166 __bpf_md_ptr(struct bpf_sock *, sk); 4167 __u32 gso_size; 4168 }; 4169 4170 struct bpf_tunnel_key { 4171 __u32 tunnel_id; 4172 union { 4173 __u32 remote_ipv4; 4174 __u32 remote_ipv6[4]; 4175 }; 4176 __u8 tunnel_tos; 4177 __u8 tunnel_ttl; 4178 __u16 tunnel_ext; /* Padding, future use. */ 4179 __u32 tunnel_label; 4180 }; 4181 4182 /* user accessible mirror of in-kernel xfrm_state. 4183 * new fields can only be added to the end of this structure 4184 */ 4185 struct bpf_xfrm_state { 4186 __u32 reqid; 4187 __u32 spi; /* Stored in network byte order */ 4188 __u16 family; 4189 __u16 ext; /* Padding, future use. */ 4190 union { 4191 __u32 remote_ipv4; /* Stored in network byte order */ 4192 __u32 remote_ipv6[4]; /* Stored in network byte order */ 4193 }; 4194 }; 4195 4196 /* Generic BPF return codes which all BPF program types may support. 4197 * The values are binary compatible with their TC_ACT_* counter-part to 4198 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT 4199 * programs. 4200 * 4201 * XDP is handled seprately, see XDP_*. 4202 */ 4203 enum bpf_ret_code { 4204 BPF_OK = 0, 4205 /* 1 reserved */ 4206 BPF_DROP = 2, 4207 /* 3-6 reserved */ 4208 BPF_REDIRECT = 7, 4209 /* >127 are reserved for prog type specific return codes. 4210 * 4211 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and 4212 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been 4213 * changed and should be routed based on its new L3 header. 4214 * (This is an L3 redirect, as opposed to L2 redirect 4215 * represented by BPF_REDIRECT above). 4216 */ 4217 BPF_LWT_REROUTE = 128, 4218 }; 4219 4220 struct bpf_sock { 4221 __u32 bound_dev_if; 4222 __u32 family; 4223 __u32 type; 4224 __u32 protocol; 4225 __u32 mark; 4226 __u32 priority; 4227 /* IP address also allows 1 and 2 bytes access */ 4228 __u32 src_ip4; 4229 __u32 src_ip6[4]; 4230 __u32 src_port; /* host byte order */ 4231 __u32 dst_port; /* network byte order */ 4232 __u32 dst_ip4; 4233 __u32 dst_ip6[4]; 4234 __u32 state; 4235 __s32 rx_queue_mapping; 4236 }; 4237 4238 struct bpf_tcp_sock { 4239 __u32 snd_cwnd; /* Sending congestion window */ 4240 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */ 4241 __u32 rtt_min; 4242 __u32 snd_ssthresh; /* Slow start size threshold */ 4243 __u32 rcv_nxt; /* What we want to receive next */ 4244 __u32 snd_nxt; /* Next sequence we send */ 4245 __u32 snd_una; /* First byte we want an ack for */ 4246 __u32 mss_cache; /* Cached effective mss, not including SACKS */ 4247 __u32 ecn_flags; /* ECN status bits. */ 4248 __u32 rate_delivered; /* saved rate sample: packets delivered */ 4249 __u32 rate_interval_us; /* saved rate sample: time elapsed */ 4250 __u32 packets_out; /* Packets which are "in flight" */ 4251 __u32 retrans_out; /* Retransmitted packets out */ 4252 __u32 total_retrans; /* Total retransmits for entire connection */ 4253 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn 4254 * total number of segments in. 4255 */ 4256 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn 4257 * total number of data segments in. 4258 */ 4259 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut 4260 * The total number of segments sent. 4261 */ 4262 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut 4263 * total number of data segments sent. 4264 */ 4265 __u32 lost_out; /* Lost packets */ 4266 __u32 sacked_out; /* SACK'd packets */ 4267 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived 4268 * sum(delta(rcv_nxt)), or how many bytes 4269 * were acked. 4270 */ 4271 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked 4272 * sum(delta(snd_una)), or how many bytes 4273 * were acked. 4274 */ 4275 __u32 dsack_dups; /* RFC4898 tcpEStatsStackDSACKDups 4276 * total number of DSACK blocks received 4277 */ 4278 __u32 delivered; /* Total data packets delivered incl. rexmits */ 4279 __u32 delivered_ce; /* Like the above but only ECE marked packets */ 4280 __u32 icsk_retransmits; /* Number of unrecovered [RTO] timeouts */ 4281 }; 4282 4283 struct bpf_sock_tuple { 4284 union { 4285 struct { 4286 __be32 saddr; 4287 __be32 daddr; 4288 __be16 sport; 4289 __be16 dport; 4290 } ipv4; 4291 struct { 4292 __be32 saddr[4]; 4293 __be32 daddr[4]; 4294 __be16 sport; 4295 __be16 dport; 4296 } ipv6; 4297 }; 4298 }; 4299 4300 struct bpf_xdp_sock { 4301 __u32 queue_id; 4302 }; 4303 4304 #define XDP_PACKET_HEADROOM 256 4305 4306 /* User return codes for XDP prog type. 4307 * A valid XDP program must return one of these defined values. All other 4308 * return codes are reserved for future use. Unknown return codes will 4309 * result in packet drops and a warning via bpf_warn_invalid_xdp_action(). 4310 */ 4311 enum xdp_action { 4312 XDP_ABORTED = 0, 4313 XDP_DROP, 4314 XDP_PASS, 4315 XDP_TX, 4316 XDP_REDIRECT, 4317 }; 4318 4319 /* user accessible metadata for XDP packet hook 4320 * new fields must be added to the end of this structure 4321 */ 4322 struct xdp_md { 4323 __u32 data; 4324 __u32 data_end; 4325 __u32 data_meta; 4326 /* Below access go through struct xdp_rxq_info */ 4327 __u32 ingress_ifindex; /* rxq->dev->ifindex */ 4328 __u32 rx_queue_index; /* rxq->queue_index */ 4329 4330 __u32 egress_ifindex; /* txq->dev->ifindex */ 4331 }; 4332 4333 /* DEVMAP map-value layout 4334 * 4335 * The struct data-layout of map-value is a configuration interface. 4336 * New members can only be added to the end of this structure. 4337 */ 4338 struct bpf_devmap_val { 4339 __u32 ifindex; /* device index */ 4340 union { 4341 int fd; /* prog fd on map write */ 4342 __u32 id; /* prog id on map read */ 4343 } bpf_prog; 4344 }; 4345 4346 /* CPUMAP map-value layout 4347 * 4348 * The struct data-layout of map-value is a configuration interface. 4349 * New members can only be added to the end of this structure. 4350 */ 4351 struct bpf_cpumap_val { 4352 __u32 qsize; /* queue size to remote target CPU */ 4353 union { 4354 int fd; /* prog fd on map write */ 4355 __u32 id; /* prog id on map read */ 4356 } bpf_prog; 4357 }; 4358 4359 enum sk_action { 4360 SK_DROP = 0, 4361 SK_PASS, 4362 }; 4363 4364 /* user accessible metadata for SK_MSG packet hook, new fields must 4365 * be added to the end of this structure 4366 */ 4367 struct sk_msg_md { 4368 __bpf_md_ptr(void *, data); 4369 __bpf_md_ptr(void *, data_end); 4370 4371 __u32 family; 4372 __u32 remote_ip4; /* Stored in network byte order */ 4373 __u32 local_ip4; /* Stored in network byte order */ 4374 __u32 remote_ip6[4]; /* Stored in network byte order */ 4375 __u32 local_ip6[4]; /* Stored in network byte order */ 4376 __u32 remote_port; /* Stored in network byte order */ 4377 __u32 local_port; /* stored in host byte order */ 4378 __u32 size; /* Total size of sk_msg */ 4379 4380 __bpf_md_ptr(struct bpf_sock *, sk); /* current socket */ 4381 }; 4382 4383 struct sk_reuseport_md { 4384 /* 4385 * Start of directly accessible data. It begins from 4386 * the tcp/udp header. 4387 */ 4388 __bpf_md_ptr(void *, data); 4389 /* End of directly accessible data */ 4390 __bpf_md_ptr(void *, data_end); 4391 /* 4392 * Total length of packet (starting from the tcp/udp header). 4393 * Note that the directly accessible bytes (data_end - data) 4394 * could be less than this "len". Those bytes could be 4395 * indirectly read by a helper "bpf_skb_load_bytes()". 4396 */ 4397 __u32 len; 4398 /* 4399 * Eth protocol in the mac header (network byte order). e.g. 4400 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD) 4401 */ 4402 __u32 eth_protocol; 4403 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */ 4404 __u32 bind_inany; /* Is sock bound to an INANY address? */ 4405 __u32 hash; /* A hash of the packet 4 tuples */ 4406 }; 4407 4408 #define BPF_TAG_SIZE 8 4409 4410 struct bpf_prog_info { 4411 __u32 type; 4412 __u32 id; 4413 __u8 tag[BPF_TAG_SIZE]; 4414 __u32 jited_prog_len; 4415 __u32 xlated_prog_len; 4416 __aligned_u64 jited_prog_insns; 4417 __aligned_u64 xlated_prog_insns; 4418 __u64 load_time; /* ns since boottime */ 4419 __u32 created_by_uid; 4420 __u32 nr_map_ids; 4421 __aligned_u64 map_ids; 4422 char name[BPF_OBJ_NAME_LEN]; 4423 __u32 ifindex; 4424 __u32 gpl_compatible:1; 4425 __u32 :31; /* alignment pad */ 4426 __u64 netns_dev; 4427 __u64 netns_ino; 4428 __u32 nr_jited_ksyms; 4429 __u32 nr_jited_func_lens; 4430 __aligned_u64 jited_ksyms; 4431 __aligned_u64 jited_func_lens; 4432 __u32 btf_id; 4433 __u32 func_info_rec_size; 4434 __aligned_u64 func_info; 4435 __u32 nr_func_info; 4436 __u32 nr_line_info; 4437 __aligned_u64 line_info; 4438 __aligned_u64 jited_line_info; 4439 __u32 nr_jited_line_info; 4440 __u32 line_info_rec_size; 4441 __u32 jited_line_info_rec_size; 4442 __u32 nr_prog_tags; 4443 __aligned_u64 prog_tags; 4444 __u64 run_time_ns; 4445 __u64 run_cnt; 4446 } __attribute__((aligned(8))); 4447 4448 struct bpf_map_info { 4449 __u32 type; 4450 __u32 id; 4451 __u32 key_size; 4452 __u32 value_size; 4453 __u32 max_entries; 4454 __u32 map_flags; 4455 char name[BPF_OBJ_NAME_LEN]; 4456 __u32 ifindex; 4457 __u32 btf_vmlinux_value_type_id; 4458 __u64 netns_dev; 4459 __u64 netns_ino; 4460 __u32 btf_id; 4461 __u32 btf_key_type_id; 4462 __u32 btf_value_type_id; 4463 } __attribute__((aligned(8))); 4464 4465 struct bpf_btf_info { 4466 __aligned_u64 btf; 4467 __u32 btf_size; 4468 __u32 id; 4469 __aligned_u64 name; 4470 __u32 name_len; 4471 __u32 kernel_btf; 4472 } __attribute__((aligned(8))); 4473 4474 struct bpf_link_info { 4475 __u32 type; 4476 __u32 id; 4477 __u32 prog_id; 4478 union { 4479 struct { 4480 __aligned_u64 tp_name; /* in/out: tp_name buffer ptr */ 4481 __u32 tp_name_len; /* in/out: tp_name buffer len */ 4482 } raw_tracepoint; 4483 struct { 4484 __u32 attach_type; 4485 } tracing; 4486 struct { 4487 __u64 cgroup_id; 4488 __u32 attach_type; 4489 } cgroup; 4490 struct { 4491 __aligned_u64 target_name; /* in/out: target_name buffer ptr */ 4492 __u32 target_name_len; /* in/out: target_name buffer len */ 4493 union { 4494 struct { 4495 __u32 map_id; 4496 } map; 4497 }; 4498 } iter; 4499 struct { 4500 __u32 netns_ino; 4501 __u32 attach_type; 4502 } netns; 4503 struct { 4504 __u32 ifindex; 4505 } xdp; 4506 }; 4507 } __attribute__((aligned(8))); 4508 4509 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed 4510 * by user and intended to be used by socket (e.g. to bind to, depends on 4511 * attach type). 4512 */ 4513 struct bpf_sock_addr { 4514 __u32 user_family; /* Allows 4-byte read, but no write. */ 4515 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write. 4516 * Stored in network byte order. 4517 */ 4518 __u32 user_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write. 4519 * Stored in network byte order. 4520 */ 4521 __u32 user_port; /* Allows 1,2,4-byte read and 4-byte write. 4522 * Stored in network byte order 4523 */ 4524 __u32 family; /* Allows 4-byte read, but no write */ 4525 __u32 type; /* Allows 4-byte read, but no write */ 4526 __u32 protocol; /* Allows 4-byte read, but no write */ 4527 __u32 msg_src_ip4; /* Allows 1,2,4-byte read and 4-byte write. 4528 * Stored in network byte order. 4529 */ 4530 __u32 msg_src_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write. 4531 * Stored in network byte order. 4532 */ 4533 __bpf_md_ptr(struct bpf_sock *, sk); 4534 }; 4535 4536 /* User bpf_sock_ops struct to access socket values and specify request ops 4537 * and their replies. 4538 * Some of this fields are in network (bigendian) byte order and may need 4539 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h). 4540 * New fields can only be added at the end of this structure 4541 */ 4542 struct bpf_sock_ops { 4543 __u32 op; 4544 union { 4545 __u32 args[4]; /* Optionally passed to bpf program */ 4546 __u32 reply; /* Returned by bpf program */ 4547 __u32 replylong[4]; /* Optionally returned by bpf prog */ 4548 }; 4549 __u32 family; 4550 __u32 remote_ip4; /* Stored in network byte order */ 4551 __u32 local_ip4; /* Stored in network byte order */ 4552 __u32 remote_ip6[4]; /* Stored in network byte order */ 4553 __u32 local_ip6[4]; /* Stored in network byte order */ 4554 __u32 remote_port; /* Stored in network byte order */ 4555 __u32 local_port; /* stored in host byte order */ 4556 __u32 is_fullsock; /* Some TCP fields are only valid if 4557 * there is a full socket. If not, the 4558 * fields read as zero. 4559 */ 4560 __u32 snd_cwnd; 4561 __u32 srtt_us; /* Averaged RTT << 3 in usecs */ 4562 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */ 4563 __u32 state; 4564 __u32 rtt_min; 4565 __u32 snd_ssthresh; 4566 __u32 rcv_nxt; 4567 __u32 snd_nxt; 4568 __u32 snd_una; 4569 __u32 mss_cache; 4570 __u32 ecn_flags; 4571 __u32 rate_delivered; 4572 __u32 rate_interval_us; 4573 __u32 packets_out; 4574 __u32 retrans_out; 4575 __u32 total_retrans; 4576 __u32 segs_in; 4577 __u32 data_segs_in; 4578 __u32 segs_out; 4579 __u32 data_segs_out; 4580 __u32 lost_out; 4581 __u32 sacked_out; 4582 __u32 sk_txhash; 4583 __u64 bytes_received; 4584 __u64 bytes_acked; 4585 __bpf_md_ptr(struct bpf_sock *, sk); 4586 /* [skb_data, skb_data_end) covers the whole TCP header. 4587 * 4588 * BPF_SOCK_OPS_PARSE_HDR_OPT_CB: The packet received 4589 * BPF_SOCK_OPS_HDR_OPT_LEN_CB: Not useful because the 4590 * header has not been written. 4591 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB: The header and options have 4592 * been written so far. 4593 * BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB: The SYNACK that concludes 4594 * the 3WHS. 4595 * BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB: The ACK that concludes 4596 * the 3WHS. 4597 * 4598 * bpf_load_hdr_opt() can also be used to read a particular option. 4599 */ 4600 __bpf_md_ptr(void *, skb_data); 4601 __bpf_md_ptr(void *, skb_data_end); 4602 __u32 skb_len; /* The total length of a packet. 4603 * It includes the header, options, 4604 * and payload. 4605 */ 4606 __u32 skb_tcp_flags; /* tcp_flags of the header. It provides 4607 * an easy way to check for tcp_flags 4608 * without parsing skb_data. 4609 * 4610 * In particular, the skb_tcp_flags 4611 * will still be available in 4612 * BPF_SOCK_OPS_HDR_OPT_LEN even though 4613 * the outgoing header has not 4614 * been written yet. 4615 */ 4616 }; 4617 4618 /* Definitions for bpf_sock_ops_cb_flags */ 4619 enum { 4620 BPF_SOCK_OPS_RTO_CB_FLAG = (1<<0), 4621 BPF_SOCK_OPS_RETRANS_CB_FLAG = (1<<1), 4622 BPF_SOCK_OPS_STATE_CB_FLAG = (1<<2), 4623 BPF_SOCK_OPS_RTT_CB_FLAG = (1<<3), 4624 /* Call bpf for all received TCP headers. The bpf prog will be 4625 * called under sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB 4626 * 4627 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB 4628 * for the header option related helpers that will be useful 4629 * to the bpf programs. 4630 * 4631 * It could be used at the client/active side (i.e. connect() side) 4632 * when the server told it that the server was in syncookie 4633 * mode and required the active side to resend the bpf-written 4634 * options. The active side can keep writing the bpf-options until 4635 * it received a valid packet from the server side to confirm 4636 * the earlier packet (and options) has been received. The later 4637 * example patch is using it like this at the active side when the 4638 * server is in syncookie mode. 4639 * 4640 * The bpf prog will usually turn this off in the common cases. 4641 */ 4642 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG = (1<<4), 4643 /* Call bpf when kernel has received a header option that 4644 * the kernel cannot handle. The bpf prog will be called under 4645 * sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB. 4646 * 4647 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB 4648 * for the header option related helpers that will be useful 4649 * to the bpf programs. 4650 */ 4651 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG = (1<<5), 4652 /* Call bpf when the kernel is writing header options for the 4653 * outgoing packet. The bpf prog will first be called 4654 * to reserve space in a skb under 4655 * sock_ops->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB. Then 4656 * the bpf prog will be called to write the header option(s) 4657 * under sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB. 4658 * 4659 * Please refer to the comment in BPF_SOCK_OPS_HDR_OPT_LEN_CB 4660 * and BPF_SOCK_OPS_WRITE_HDR_OPT_CB for the header option 4661 * related helpers that will be useful to the bpf programs. 4662 * 4663 * The kernel gets its chance to reserve space and write 4664 * options first before the BPF program does. 4665 */ 4666 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG = (1<<6), 4667 /* Mask of all currently supported cb flags */ 4668 BPF_SOCK_OPS_ALL_CB_FLAGS = 0x7F, 4669 }; 4670 4671 /* List of known BPF sock_ops operators. 4672 * New entries can only be added at the end 4673 */ 4674 enum { 4675 BPF_SOCK_OPS_VOID, 4676 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or 4677 * -1 if default value should be used 4678 */ 4679 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized 4680 * window (in packets) or -1 if default 4681 * value should be used 4682 */ 4683 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an 4684 * active connection is initialized 4685 */ 4686 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an 4687 * active connection is 4688 * established 4689 */ 4690 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a 4691 * passive connection is 4692 * established 4693 */ 4694 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control 4695 * needs ECN 4696 */ 4697 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is 4698 * based on the path and may be 4699 * dependent on the congestion control 4700 * algorithm. In general it indicates 4701 * a congestion threshold. RTTs above 4702 * this indicate congestion 4703 */ 4704 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered. 4705 * Arg1: value of icsk_retransmits 4706 * Arg2: value of icsk_rto 4707 * Arg3: whether RTO has expired 4708 */ 4709 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted. 4710 * Arg1: sequence number of 1st byte 4711 * Arg2: # segments 4712 * Arg3: return value of 4713 * tcp_transmit_skb (0 => success) 4714 */ 4715 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state. 4716 * Arg1: old_state 4717 * Arg2: new_state 4718 */ 4719 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after 4720 * socket transition to LISTEN state. 4721 */ 4722 BPF_SOCK_OPS_RTT_CB, /* Called on every RTT. 4723 */ 4724 BPF_SOCK_OPS_PARSE_HDR_OPT_CB, /* Parse the header option. 4725 * It will be called to handle 4726 * the packets received at 4727 * an already established 4728 * connection. 4729 * 4730 * sock_ops->skb_data: 4731 * Referring to the received skb. 4732 * It covers the TCP header only. 4733 * 4734 * bpf_load_hdr_opt() can also 4735 * be used to search for a 4736 * particular option. 4737 */ 4738 BPF_SOCK_OPS_HDR_OPT_LEN_CB, /* Reserve space for writing the 4739 * header option later in 4740 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB. 4741 * Arg1: bool want_cookie. (in 4742 * writing SYNACK only) 4743 * 4744 * sock_ops->skb_data: 4745 * Not available because no header has 4746 * been written yet. 4747 * 4748 * sock_ops->skb_tcp_flags: 4749 * The tcp_flags of the 4750 * outgoing skb. (e.g. SYN, ACK, FIN). 4751 * 4752 * bpf_reserve_hdr_opt() should 4753 * be used to reserve space. 4754 */ 4755 BPF_SOCK_OPS_WRITE_HDR_OPT_CB, /* Write the header options 4756 * Arg1: bool want_cookie. (in 4757 * writing SYNACK only) 4758 * 4759 * sock_ops->skb_data: 4760 * Referring to the outgoing skb. 4761 * It covers the TCP header 4762 * that has already been written 4763 * by the kernel and the 4764 * earlier bpf-progs. 4765 * 4766 * sock_ops->skb_tcp_flags: 4767 * The tcp_flags of the outgoing 4768 * skb. (e.g. SYN, ACK, FIN). 4769 * 4770 * bpf_store_hdr_opt() should 4771 * be used to write the 4772 * option. 4773 * 4774 * bpf_load_hdr_opt() can also 4775 * be used to search for a 4776 * particular option that 4777 * has already been written 4778 * by the kernel or the 4779 * earlier bpf-progs. 4780 */ 4781 }; 4782 4783 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect 4784 * changes between the TCP and BPF versions. Ideally this should never happen. 4785 * If it does, we need to add code to convert them before calling 4786 * the BPF sock_ops function. 4787 */ 4788 enum { 4789 BPF_TCP_ESTABLISHED = 1, 4790 BPF_TCP_SYN_SENT, 4791 BPF_TCP_SYN_RECV, 4792 BPF_TCP_FIN_WAIT1, 4793 BPF_TCP_FIN_WAIT2, 4794 BPF_TCP_TIME_WAIT, 4795 BPF_TCP_CLOSE, 4796 BPF_TCP_CLOSE_WAIT, 4797 BPF_TCP_LAST_ACK, 4798 BPF_TCP_LISTEN, 4799 BPF_TCP_CLOSING, /* Now a valid state */ 4800 BPF_TCP_NEW_SYN_RECV, 4801 4802 BPF_TCP_MAX_STATES /* Leave at the end! */ 4803 }; 4804 4805 enum { 4806 TCP_BPF_IW = 1001, /* Set TCP initial congestion window */ 4807 TCP_BPF_SNDCWND_CLAMP = 1002, /* Set sndcwnd_clamp */ 4808 TCP_BPF_DELACK_MAX = 1003, /* Max delay ack in usecs */ 4809 TCP_BPF_RTO_MIN = 1004, /* Min delay ack in usecs */ 4810 /* Copy the SYN pkt to optval 4811 * 4812 * BPF_PROG_TYPE_SOCK_OPS only. It is similar to the 4813 * bpf_getsockopt(TCP_SAVED_SYN) but it does not limit 4814 * to only getting from the saved_syn. It can either get the 4815 * syn packet from: 4816 * 4817 * 1. the just-received SYN packet (only available when writing the 4818 * SYNACK). It will be useful when it is not necessary to 4819 * save the SYN packet for latter use. It is also the only way 4820 * to get the SYN during syncookie mode because the syn 4821 * packet cannot be saved during syncookie. 4822 * 4823 * OR 4824 * 4825 * 2. the earlier saved syn which was done by 4826 * bpf_setsockopt(TCP_SAVE_SYN). 4827 * 4828 * The bpf_getsockopt(TCP_BPF_SYN*) option will hide where the 4829 * SYN packet is obtained. 4830 * 4831 * If the bpf-prog does not need the IP[46] header, the 4832 * bpf-prog can avoid parsing the IP header by using 4833 * TCP_BPF_SYN. Otherwise, the bpf-prog can get both 4834 * IP[46] and TCP header by using TCP_BPF_SYN_IP. 4835 * 4836 * >0: Total number of bytes copied 4837 * -ENOSPC: Not enough space in optval. Only optlen number of 4838 * bytes is copied. 4839 * -ENOENT: The SYN skb is not available now and the earlier SYN pkt 4840 * is not saved by setsockopt(TCP_SAVE_SYN). 4841 */ 4842 TCP_BPF_SYN = 1005, /* Copy the TCP header */ 4843 TCP_BPF_SYN_IP = 1006, /* Copy the IP[46] and TCP header */ 4844 TCP_BPF_SYN_MAC = 1007, /* Copy the MAC, IP[46], and TCP header */ 4845 }; 4846 4847 enum { 4848 BPF_LOAD_HDR_OPT_TCP_SYN = (1ULL << 0), 4849 }; 4850 4851 /* args[0] value during BPF_SOCK_OPS_HDR_OPT_LEN_CB and 4852 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB. 4853 */ 4854 enum { 4855 BPF_WRITE_HDR_TCP_CURRENT_MSS = 1, /* Kernel is finding the 4856 * total option spaces 4857 * required for an established 4858 * sk in order to calculate the 4859 * MSS. No skb is actually 4860 * sent. 4861 */ 4862 BPF_WRITE_HDR_TCP_SYNACK_COOKIE = 2, /* Kernel is in syncookie mode 4863 * when sending a SYN. 4864 */ 4865 }; 4866 4867 struct bpf_perf_event_value { 4868 __u64 counter; 4869 __u64 enabled; 4870 __u64 running; 4871 }; 4872 4873 enum { 4874 BPF_DEVCG_ACC_MKNOD = (1ULL << 0), 4875 BPF_DEVCG_ACC_READ = (1ULL << 1), 4876 BPF_DEVCG_ACC_WRITE = (1ULL << 2), 4877 }; 4878 4879 enum { 4880 BPF_DEVCG_DEV_BLOCK = (1ULL << 0), 4881 BPF_DEVCG_DEV_CHAR = (1ULL << 1), 4882 }; 4883 4884 struct bpf_cgroup_dev_ctx { 4885 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */ 4886 __u32 access_type; 4887 __u32 major; 4888 __u32 minor; 4889 }; 4890 4891 struct bpf_raw_tracepoint_args { 4892 __u64 args[0]; 4893 }; 4894 4895 /* DIRECT: Skip the FIB rules and go to FIB table associated with device 4896 * OUTPUT: Do lookup from egress perspective; default is ingress 4897 */ 4898 enum { 4899 BPF_FIB_LOOKUP_DIRECT = (1U << 0), 4900 BPF_FIB_LOOKUP_OUTPUT = (1U << 1), 4901 }; 4902 4903 enum { 4904 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */ 4905 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */ 4906 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */ 4907 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */ 4908 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */ 4909 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */ 4910 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */ 4911 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */ 4912 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */ 4913 }; 4914 4915 struct bpf_fib_lookup { 4916 /* input: network family for lookup (AF_INET, AF_INET6) 4917 * output: network family of egress nexthop 4918 */ 4919 __u8 family; 4920 4921 /* set if lookup is to consider L4 data - e.g., FIB rules */ 4922 __u8 l4_protocol; 4923 __be16 sport; 4924 __be16 dport; 4925 4926 /* total length of packet from network header - used for MTU check */ 4927 __u16 tot_len; 4928 4929 /* input: L3 device index for lookup 4930 * output: device index from FIB lookup 4931 */ 4932 __u32 ifindex; 4933 4934 union { 4935 /* inputs to lookup */ 4936 __u8 tos; /* AF_INET */ 4937 __be32 flowinfo; /* AF_INET6, flow_label + priority */ 4938 4939 /* output: metric of fib result (IPv4/IPv6 only) */ 4940 __u32 rt_metric; 4941 }; 4942 4943 union { 4944 __be32 ipv4_src; 4945 __u32 ipv6_src[4]; /* in6_addr; network order */ 4946 }; 4947 4948 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in 4949 * network header. output: bpf_fib_lookup sets to gateway address 4950 * if FIB lookup returns gateway route 4951 */ 4952 union { 4953 __be32 ipv4_dst; 4954 __u32 ipv6_dst[4]; /* in6_addr; network order */ 4955 }; 4956 4957 /* output */ 4958 __be16 h_vlan_proto; 4959 __be16 h_vlan_TCI; 4960 __u8 smac[6]; /* ETH_ALEN */ 4961 __u8 dmac[6]; /* ETH_ALEN */ 4962 }; 4963 4964 struct bpf_redir_neigh { 4965 /* network family for lookup (AF_INET, AF_INET6) */ 4966 __u32 nh_family; 4967 /* network address of nexthop; skips fib lookup to find gateway */ 4968 union { 4969 __be32 ipv4_nh; 4970 __u32 ipv6_nh[4]; /* in6_addr; network order */ 4971 }; 4972 }; 4973 4974 enum bpf_task_fd_type { 4975 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */ 4976 BPF_FD_TYPE_TRACEPOINT, /* tp name */ 4977 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */ 4978 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */ 4979 BPF_FD_TYPE_UPROBE, /* filename + offset */ 4980 BPF_FD_TYPE_URETPROBE, /* filename + offset */ 4981 }; 4982 4983 enum { 4984 BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG = (1U << 0), 4985 BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL = (1U << 1), 4986 BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP = (1U << 2), 4987 }; 4988 4989 struct bpf_flow_keys { 4990 __u16 nhoff; 4991 __u16 thoff; 4992 __u16 addr_proto; /* ETH_P_* of valid addrs */ 4993 __u8 is_frag; 4994 __u8 is_first_frag; 4995 __u8 is_encap; 4996 __u8 ip_proto; 4997 __be16 n_proto; 4998 __be16 sport; 4999 __be16 dport; 5000 union { 5001 struct { 5002 __be32 ipv4_src; 5003 __be32 ipv4_dst; 5004 }; 5005 struct { 5006 __u32 ipv6_src[4]; /* in6_addr; network order */ 5007 __u32 ipv6_dst[4]; /* in6_addr; network order */ 5008 }; 5009 }; 5010 __u32 flags; 5011 __be32 flow_label; 5012 }; 5013 5014 struct bpf_func_info { 5015 __u32 insn_off; 5016 __u32 type_id; 5017 }; 5018 5019 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10) 5020 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff) 5021 5022 struct bpf_line_info { 5023 __u32 insn_off; 5024 __u32 file_name_off; 5025 __u32 line_off; 5026 __u32 line_col; 5027 }; 5028 5029 struct bpf_spin_lock { 5030 __u32 val; 5031 }; 5032 5033 struct bpf_sysctl { 5034 __u32 write; /* Sysctl is being read (= 0) or written (= 1). 5035 * Allows 1,2,4-byte read, but no write. 5036 */ 5037 __u32 file_pos; /* Sysctl file position to read from, write to. 5038 * Allows 1,2,4-byte read an 4-byte write. 5039 */ 5040 }; 5041 5042 struct bpf_sockopt { 5043 __bpf_md_ptr(struct bpf_sock *, sk); 5044 __bpf_md_ptr(void *, optval); 5045 __bpf_md_ptr(void *, optval_end); 5046 5047 __s32 level; 5048 __s32 optname; 5049 __s32 optlen; 5050 __s32 retval; 5051 }; 5052 5053 struct bpf_pidns_info { 5054 __u32 pid; 5055 __u32 tgid; 5056 }; 5057 5058 /* User accessible data for SK_LOOKUP programs. Add new fields at the end. */ 5059 struct bpf_sk_lookup { 5060 __bpf_md_ptr(struct bpf_sock *, sk); /* Selected socket */ 5061 5062 __u32 family; /* Protocol family (AF_INET, AF_INET6) */ 5063 __u32 protocol; /* IP protocol (IPPROTO_TCP, IPPROTO_UDP) */ 5064 __u32 remote_ip4; /* Network byte order */ 5065 __u32 remote_ip6[4]; /* Network byte order */ 5066 __u32 remote_port; /* Network byte order */ 5067 __u32 local_ip4; /* Network byte order */ 5068 __u32 local_ip6[4]; /* Network byte order */ 5069 __u32 local_port; /* Host byte order */ 5070 }; 5071 5072 /* 5073 * struct btf_ptr is used for typed pointer representation; the 5074 * type id is used to render the pointer data as the appropriate type 5075 * via the bpf_snprintf_btf() helper described above. A flags field - 5076 * potentially to specify additional details about the BTF pointer 5077 * (rather than its mode of display) - is included for future use. 5078 * Display flags - BTF_F_* - are passed to bpf_snprintf_btf separately. 5079 */ 5080 struct btf_ptr { 5081 void *ptr; 5082 __u32 type_id; 5083 __u32 flags; /* BTF ptr flags; unused at present. */ 5084 }; 5085 5086 /* 5087 * Flags to control bpf_snprintf_btf() behaviour. 5088 * - BTF_F_COMPACT: no formatting around type information 5089 * - BTF_F_NONAME: no struct/union member names/types 5090 * - BTF_F_PTR_RAW: show raw (unobfuscated) pointer values; 5091 * equivalent to %px. 5092 * - BTF_F_ZERO: show zero-valued struct/union members; they 5093 * are not displayed by default 5094 */ 5095 enum { 5096 BTF_F_COMPACT = (1ULL << 0), 5097 BTF_F_NONAME = (1ULL << 1), 5098 BTF_F_PTR_RAW = (1ULL << 2), 5099 BTF_F_ZERO = (1ULL << 3), 5100 }; 5101 5102 #endif /* _UAPI__LINUX_BPF_H__ */ 5103